65—
ISSKN 0158-0221.

JAMES COOK MATHEMATICAL NOTES

Issue No. 21, Vel, 2

January, 1980.




-66~
POLYNOMIALS FROM A RECURSION

G. Szekeres

Let the rational functioms ¢m(x) form=1, 2, ..., be determined

from ¢°(x) =1, ¢,x) =1, and

2\11—!(

o, o () = [¢m_l(x)]2+x 1-x)

for all m 2 2, Show that ¢m(x) is a polynomial with integer coeff-

jcients. Determine the roots of ¢m(x).

Your editor, thinking the problem to be hard and trying to be helpful,
has worked out the first few of these polynomials.

¢2(x) = 1+x-x°
¢3(x) - 1 +2x - x* - x°
o, (x) = 1+ 3x- 3x?

¢5(x) = 1 4 4x + 2x% - 5x¥ - M + x®

TWO POINTS IN A CIRCLE

J.B. Parker writes that a mathematician in Wales described to him

the following problem, but we do mot know the original author.

Given two points, A and B, inside a circle with centre C, find P
on the circle so that CP bisects the engle APB.
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VISITING ON A CIRCLE
F.J.M, Salaborn (University of Adelaide)

Consider a circle with m points equally spaced, the distance between
each pair of adjacent points being 1, travelling round the clrcle.
We are looking for trips 1‘ hd iz LT T g 1m - im+x = 1l going along
the circle clockwise, such that each point is visited exactly once
(a point may be passed without visiting). Let d(ik, 1k+1) be the.

digtance between two consec-
utive visiting points. The
figure shows the trip
1+2+4+5+3~+1

with the set of digtances
{1, 1, 2, 3, 3}. Clearly
[atg, 4,,) 1sa sultiple

of m.

Problem: Given m positive

integers a , ... & with
1 ]

their sum s multiple of m,

can oune always find a trip
such that (al, ves am} 1s Just the set of distances travelled (not
necessarily in the same order) in going round the m pointa? 1f eo,

is there a systematic way of finding such & trip?

VECTOR DIFFERENTIAL EQUATION
< H. Keatelman
The following arose from a problem brought to me by & pharmacologist.
A matrix Q has a simple eigenvalue of zero, and all its other eigen-

values have negative real parts. Show that there exist vectors v and

w such that every vector function x(t) satisfying dx/dt = Qx also

satisfles 1lim x(t) = (EF x(O))l. How cﬁn v and ¥ be found from Q7
t +®
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GEOMETRY
C.P, Moppert

Basil Rennie and I have exchanged many letters over the past
few months on the subject of geometry. It all started with a modest
problem I sent him for the James Cock Mathematical Notes.
It ended by him asking me to submit a couple of pages on the subject.

Here they are.

‘Several times in the past I have asked fellow mathematicians:
how accurate is Pythagoras? The first response was always perplexity.
When I then started explaining, all of my friends said: ah, you think
we might be in a curved space and this depends, of course, con thg

gravitational field, etc. etc..

This kind of response is nonsense, Einstein was a priori Kantian
in assuming that in a Galilean environment the geometry is Euclidean.
Gauss went further: he checked experimentally whether our geometry
differs noticeably from the Euclidean one. Gauss's experiment must be
repeated periodically. It is possible that tomorrow it will be found
that in a gravity-free space the geometry is not Euclidean. If this
is not the case and if we assume (it can never be proved experimentally)
that the geometry in such a space is Euclidean, then this fact has to be
put as the cornerstone of our science and should then, as such, be put

into a wider framework.

I take then geometry as an experimental science: lines are light

rays. They were not popular when I was a student. They have a
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better reputation now as laser beams. There is no doubt that almost
every applied science is based on visual observation and thus on geometry
{in my sense}. A "plane" is formed by a grid of lines. A line has two
points at infinity or "ideal points”. I use Hilbert's word, "ends",

for these. The geometry then has points, ends and lines as objects.

Two points determine one line; a point and an end also determine one
line. It follows that two lines have at the most one point in common.
This excludes elliptic geometry where any two lines have two points in
common . Klein said that every geometry is projective. I don't like
this approach: the projective plane is an unpleasant thing: it cannot

be orientated.

The crucial question: does the parallel axiom hold? Boliay put
it as follows: given a line g with the ends El and E2 and a point
P outside g, are then the lines through P and El and through P and

E2 identical or not?

e

Fig. 1.

An equivalent question: Are there many lines through two ends or is there
only one such? In the first case (for both questions) the geometry

is Euclidean, in the second case hyperbolic.
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a() = B is equivalent to ab = ba.

-70- The geometry then has the group of superimposed reflections abc ... .

I call the product of any two reflections an "elementary motion” and

If the geometry is euclidean, everything is simpler than otherwise. have the postulate that the elementary motions A, B, C, ... form a group

In particular we have then similarity and an angle can be defined as (a subgroup of index 2 of the full group). Any number of reflections

. . .
the constant ratio between arc and radius. As one doesn't know whether can then be represented by at the most three such.

Euclidean geometry “"exists", one can ask: is Euclidean geometry consistent

i i i i i i able to characterise the
or does it lead to contradictions? Hilbert answered this question: From our incidence relations we are now

; . . . . i two geometries.
Euclidean geometry is as consistent as is arithmetic because we can give fixpoints of an elementary motion A depending on the g

" " i - . By the
an arithmetical model. Indeed, this model was given by Descartes, Our "points" are ordered pairs of real number: P (x,y) 24
' . - . \ LxSayol o, flex -1 v
long before Hilbert, in his analytic geometry. We see then that analytic mapping (x,y) + (x',y") with x' = 2,2 R 2

X +y XT+y

geometry does not make analysis visible but it shows that our Euclidean the "plane" is mapped onto the open disc

ig. 2
imagination is consistent. As such, analytic geometry does not get us x'z + y'2 <1 and this disc can be made compact by adding its boundary. (Fig )

one inch further than arithmetic. An elementary motion A = ab is a continuous map of this closed disc

onto itself and has thus at least one fixpoint. We denote with P the
With the incidence relations alone we do not get far in our : :
° proper points {the inner ones) of the closed disc and with E the ideal

eometry: we must be able to measure. In Paris there is the standard
’ Y ones (the ends). Assume that P is fixpoint for A : abP = P or
meter. The length of"two meters® is obtained by moving the standard : :
° ! ’ bP = aP, If P ¢ bP then ¥ is the unique median bisectrix of P
meter along itself. If a copy of the meter is sent via Suez to

and bP and so is #, thus a =b and A =€ (the identity). For A j ¢
Australia and back to Paris via New York it is found on return to e have then P = ap = bP and P is the unique point.of intersection of
have the same length as before. Mathematically speaking: there are
? v i £ and P, i.e. A can have at most one proper fixpoint. I1f an end E
motions and they form a group. I find it useful to follow Hilbert :
I is fixpoint for A and E # bE then E and bE determine a unique line
Hjelmslev and Bachmann and start with "reflections" as a basic notion. . _
£ and bf = ¢ as b interchanges the ends of §£. Thus ¢ is perpen
They are continuous maps on the plane (i.e. the set of ordered pairs
dicular to ¥ and (for the same reasons) to . If E = bE = aE then
(x,y) of real numbers) to itself; to every line corresponds a reflection
A and ¥ have the end E in common. Thus: if ab = A ¥ € then the
and the line is the set of points invariant under its reflection. The

lines £ and ¥ have either a proper point or an end in common or they
postulate of the median bisectrix means that to any pair of points

have a common perpendicular, Euclidean and hyperbolic geometry correspond
corresponds a unique reflection. I use the symbols A, B,... for lines
and a, b,... for the corresponding reflection. We have then
2 2 . . . 5
a =Db" = ... =g (the identity) and it is easy to show that perpendicularity: \
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to the two possibilities; two lines with a common end may or may not
have a common perpendicular. If some two 1ine; with a common end do
have a common perpendicular then the same applies to any two lines with
a common end, furthermore in this, the Euclidean case, any two lines
with one common end have also their other ends in common. For the
elementary motions A we have then:

The fixpoints of A are:

hyperbolic case Euclidean case
i) one point P i) one point P
ii) one point E ii) two points E

iii) two points E

As I have pointed out earlier, Euclidean geometry "exists" in the

sense that there is a model for it, namely analytic geometry. The

group of elementary motions is there the group consisting of all rotations

and all translations. Within analytic geometry there are many possible

models of hyperbolic geometry. The group of elementary motions will

be the same for every model. The simplest model for our purpose is

due to Poincaré and it can be formulated in the complex plane (of course
this word is misleading, all we do is to write x + iy instead of (x,y)).

In this model, points P are complex numbers z with |z| <1 and ends

are complex numbers 2z with (z| = 1. "Lines" are arcs of circles

intersecting the boundary circle at right angles. (Fig. 3)

Easy problems are now coming thick and fast:

i) the hyperbolic incidence relations are satisfied.
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ii) The "reflection” on a "line™ can be realized as inversion on the
circle carrying the arc.

iii) An elementary motion A has the form w = 53:9 (a and b are
bz+a
arbitrary complex numbers) .

iv) The group of elementary motion is isomorphic to the multiplicative

group of the matrices [g ;} with aa - bb = 1.

v) Every elementary motion has a unique representation of the form

[g g} with aa - bb = 1 and &(a) > 0.

vi) Putting ®&(a) = a, the elementary motion A = [g ;] with a >0
belongs to type i), ii) or iii) according to whether a <1, a =1 or

a > 1.

Problems a bit deeper will appear in the next issue.

Fig. 2.

P’ (x*,y") P(x,y)

Fig. 3.
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COMMUTING MATRICES (JCMN 20, page 60)

Firstly the editor must apologise for a mistake in the original, after

agy =1 1f 1 + 1 = j" there should have been added "# m + 1.". Use

the notation Jm for the mxm matrix consisting of ones on the super-

diagonal and zeros everywhere else, that is with r, s element = 1 when
2Sr+1=35sSm and with all other elements zero. Let A be the
(m+n) x (m+n) matrix given in block notation by Jm 0

o J 4+c¢clI
n n

where m 2 2 and n 2 2.

The problem was to show that if ¢ # O then every B commuting with A
must be a polynomial in A, but if ¢ = O this is not the case. Solutions
came in from H.O. Davies and H. Kestelman, but we shall not print them,
for the result is 8 special case of the more general theorem by H. Kes-

telman printed below, under the heading of 'Commuting Matrices II".

COMMUTING MATRICES (II)

d. Kestelman

Let A be a square matrix of complex numbers; it is obvious that f(A)
commutes with A if f is a polynomial. 1In recent issues of JCMN the
converse has been mentioned; in what conditions can it be said that
every matrix commuting with A is a pclynomial in A? There is no diff-
iculty in deciding the question when tne nxn matrix A has n distinct
eigenvalues, for then A 1is similar tc a diagonal matrix D and every
matrix commuting with D is also diagonal and is a polynomial in D.

At the other extreme, with J or Jn denoting the nXxn matrix with
ones in the first superdiagonal and zetos elsewhere, every matrix comm-—
uting with J {s a polynomial in J (see JCMN 18, page 22, and JOMN 19,
page 31). The two cases mentioned hawve this in common: their eigen-
spaces are all one-dimensional (in the first there are n such eigen-
spaces and in the second there is just one); it is shown below that

this 1s a necessary and sufficient condition on A to ensure that every

i
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matrix commuting with A is a polynomial in A.

1. For any m and n both 21, (J, = 0) suppose that

Jm 0 Om [¢]
A = and B = .

0 J 0 I
n n

then if f is a polynomial, £(A) = diag(f(Jm), £(3)) ; if this
were equal to B it would follow that f(t) would be divisible by
t® (the minimal polynomial of Jm) and consequently that f(Jn) would
be singular. But f(Jn) = In' and this contradiction shows that

although AB = BA, B is not a polynomial in A,

2. Since the various properties, of one matrix being a polynomial in
another, of one commuting with another, and of eigenspaces being
one-dimensional, are all unchanged under a similarity transformat-
ion, we shall henceforward assume that the nXn matrix A has the

Jordan block form.

2 "m m

(1) A=diag e, I +J ,c, I +J , .y, c, I +J
lm1 m, 2 2 jmj m_j

since every A 1s similar to such a matrix. Here
Br
(e -c)) = det(t I -A) and ): m,o = 0
If Ay, A,

that is the dimension of the eigenspace of A belonging to Xs , is
the number of r for which e, = >‘s; this is because the nullity

..., A are the eigenvalues of A, the nullity of A—)‘s 1,

of J is one.

3. Suppose that A has a multidimensional eigenspace, belonging to
eigenvalue 0, say. We can then write A = diag(.lr, Js. Q), and
if we set B = diag(or, IS, I) we have AB = BA, but, as in
paragraph 1 above, B is not a polynomial in A.

4, It remains to prove the converse. Suppose that all the <. in
equation (1) are distinct and that AB = BA. We have to show
that B = F(A) for some polynomial F. The first step is to
show that B = diag(M,, M, ..., Mj) for gsome suitable matrices,
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each Hr being of m_ rows and colums. We can write B = (P Q
G 3

with P a square matrix of m, rows and columas. 1If we can prove

that @Q = 0 and R = 0 an obvious inductive argument will display B

as required. We can assume that ¢, = 0 and that ¢,, ..., c, are

all non-zero. Then there ig an invertible H such that A = .Im 0\ -
G

The equation AB = BA implies that Jm Q = QH and by induction
1

k

k
Jm Q =QH", Takek-ml, to get QHk=0. Since H is invert-
1

ible, Q = 0. Similarly R = 0.

Now it is established that B must be of the form above,

B = diag(Hl, Mz' ., M,), and for each r = 1, 2, ... j, the mat-
rix Mr commutes with Jp . From the result of JCMN 19, page 31,

r
there exist lynomial =
polynomisls g , gj such that !r g, (er).

We have to find a polynomial F such that
2 =
(2) F(cs 1+ Jm] gs{Jm ]

S 5 s
for all s =1, 2, ..., J.

Now we proceed by induction. Suppose that, for gome k, 15k<],
there is a polynomial Fk such that equation (2) holds for s = 1,
2, ..., k when F is replaced by Fk. Evidently we can take
Fl(t) - gl(t - cl). Since the c,  are all different, and so

rgk (t - ct)mr and (t - ckM)mk"'l are prime to one another in
the ring of polynomials, there are polynomials ¢ and 6 such that

» ™
@ B 46O T (t-c) " =g, (- )+ dO(E-c,) .

rsk

Now set Fk+1 to be equal to either side of this equation (3).

From F . being equal to the left hand side we have (for s = 1,

k+
2y ooy K)

IR R R RRERRNEREER]

e

+J M {(c_ ~c)I +J .
s ms] rSk( s rim ma]

¢(cs Im
In the second term on the right, one of the factors (the one for

which r = 8) is zero, and therefore Fkﬂ[ca Ims + Jms] -

Fk[cs Ims + Jms] = g (Jms] . From the expression for Fk+l

+
as the right hand side of (3) it follows that Fkﬂ(ckﬂ 1mk+l Jmkﬂ]

!

J:kﬂ which is zero. This has established that Fkﬂ has the
kt+1

desired properties. By repetition we ultimately reach Fj , and

differs from ng(J ] by a product of some matrix with

this may be taken for the F that we have been seeking.

Remark. The condition postulated for A, that all the eigenspaces
are one-dimensional, has the alternative forms: det(t I-4) is
the minimal polynomial of A, or 2 I-A has rank n or n-1 for

every complex number z.

BINOMIAL IDENTITY NUMBER SIX

Supposing that m and n are positive integers, then
ntm-l nto-1 r n+m-1-r mod a+r-1{ 0 r
2 [ r ] x (1-x) = ¥ [ N ]x(l-x) .
r=n r=o

and 1f |x| < 1 these also equal:
Y [m ;- ) <fQ -x".

rT=n

G. Bode
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BINOMIAL IDENTITY NUMBER SEVEN

A.P. Suinand writes to say that one of his students, Michael Lasure
modified a Pascal triangle by taking the reciprocal of each number
and changing alternate signs, and then added each row. Alternate

rows, of course, add to zero, but the sum of row 2n is

3
Zr-o

r,(2n 2n + 1
D /(r] YS! '

2 2n k
More generally, put S: - zr-o (-I)I(Z:) . There are simple
formulae for k = 1, 2, 3, but for the formula s} = (1) ()1 (D)~

is there any simple proof? N page LO12

BINOMIAL IDENTITY NUMBER EIGHT

o a -
Lao V@ = @+ [ 2%/@-c+1)

KEANE SEQUENCES
Alf van der Poorten

Take a sheet of paper and fold it in half, so that the right hand edge
comes down on top of the left hand edge. Then do the same, fold the

nev right hand edge over on top of the left hand edge. The paper is
now like this

- o)

After o ?oldingo, unfold the paper and you will find 2_“ = 1 creases

in it, some are valleys and some are ridges. Assign to valleys the
value 1 and to ridges the value 0, and read them from left to right.

You will have one of the finite Keane sequences

s RRRREERE R
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1
110
1101100
110110011100100

They have the same property as the Thue sequences, that each is an
initial segment of the next, and consequently there is an infinite
Keane sequences, denote it by LA A An interesting exercise

for the student is to find a functional equation connecting F(z)

with F(z?) when F(z) = ij 3.

PRODUCT OF SINES

There is a well-known trigonmetric identity

n-1

sinn8 = 2" sin® sin(® + w/n) ... sin(6 + (n-1)W/n).

How many proofs can we uncover?

E.C.G. Sudarghan

GEOMETRIC INEQUALITY (JCMN 19, Vol. 2, page 32)

This question from M.J.C. and B.J.W. Baker was about carrying a
horizontal table round a right-angled bend in a corridor of unit
width. What is the largest area of table for which this 1s possible?
The proposers point out that #/2 + 2/% = 2-207 can be attained by

this shape

of table.

It has quarter-circles

of unit radius at each end unit Tadius "%" 1

and a semicircular bite of radius 2/7 taken out of one side. So far

nobody has produced any improvement on this area.

A related problem has been suggested by G.P. Henderson in Crux Math-
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ematicomm Vol, 5, No. 3, March 1979, page 77. The table {s restricted

to being rectangular but the two bits of corridor are of unequal
widths, a and b. Both these problems may be made a little more
difficult by making the angle of the cormer in the corridor either
bigger or smaller than a right anéle.

MATRIX NUMBER THEORY (JCMN Vol. 2, pages 39 and 56)

E.S. Barmes
In the earlier contributions two conjectures were made.

Conjecture 1. Given any integer vector of integer length there

exists another of the same length orthogonal to the first.

Conjecture 2. In three dimensions if two orthogonal integer vectors
have the same integer length m, then their vector product has every

component divisible by m.

Both conjectures are true., Their truth follows easily from results

of Marshall Hall [1], which are based on work of Hall and Ryser [2].

Theorer 1. Suppose thet X 1s an integral rxn matrix (0<r <n)
gatisgfying xxT - mzlr (m integral). Then there exists a rational

nXn matrix A satisfying AAT - sz, with X as its first r rows.
Hall then considers integral completion and proves:

Theorem 2. In Theorem 1, there exists an integral A satisfying

the given conditions, provided that n-r = 1 or 2, or that r = | and

a =464,

The case r = 1, n = 3 of Theorem 2 shows immediately that if

a’”+ nzz + a:z = m? (all integers), then there exists an integral A

~-81-
e 1
with AAT = m’I and (“1' a,, aa) as its first row. Thus Conjectur
is true; indeed there are two linearly independent integral vectors of

length m orthogonal to (al, a,, a,).

For Conjecture 2, we can use a slightly stronger version of Theorem 2,

namely: if n-r= 1, then any rational completion A 1is necessarily

integral.
T 2
Proof. Since AAT = m?1, it follows that A"A = m 1. Hence, for
n oo,
2 =t dso at, =mt - J a is integral.
j=1, ..., o, izlaij m an 2] £ 13
But anj is rational, and so it is integral.

let now a and b be orthogonal integral vectors of length m., Then
- ¥ T

a
< 1 T
we have a rational completion of X = bT by o (a x 13) . The last

1
result now shows that (3 x E) is integral.

T
(1} Marshall Hall, Integral matrices A for which AA" = mI, Number
Theory and Algebra (Ed. H. Zagssenhaus, Academic Press, 1977),
119=134.

(2] Marshall Hall and H.J. Ryser, Normal completions of incidence
matrices, Amer. J. Math. 76 (1954), 581-589.
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MURPHY'S EXPRESSION FOR A LEGENDRE POLYNOMIAL

" The formula P_(z) = F(otl, -n; 1; (1-x)/2) was mentioned by C.S.
Davig in our last issue (page 49) as being a little esoteric., However
if we confine ourselves to positive integer n, as Murphy did in his
1833 book Electricity, then there is a simple proof suggested by
A. van der Poorten's coantribution (page 48).

First note the following binomial identities which will be needed:
-1/2 2r

(4)1' - 1 MM . -1 b -
(Y2 = (3, 0" () = (T, a0 D) = (ICD9).

The Legendre polynomials are defined b); their generating function:

IR (-2t o (-2esbez+ed™ = ((1-0)2 + 4e) ™

(-0 ((1+4e2/(1 - 1))

=07 I (ko -

L (3 a-n

LIDGA 2N okt

Now equating coefficients of t" and noting that

3T (~2k-
SR G R

2
P(l1-22) = zkﬂ_o &) 2';k) (-n)*

= DR 2t

) (nt]) (m42) ... (n4K) (-n) (-n#1) .. . (-o+k-1) &
k! k! z

Here the sum may be taken from 0 to n or from 0 to infinity because.
the terms from n+ ! onwards are all zero. This expression is the
hypergeometric function F(n+l, -n; 1; z).

s NERRRREERE
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HERMITEAN MATRICES (JCMN 19, page 36)

Let A and B be complex square matrices, m x m and n X n Tespectively.
A is hermitean (A* = A) and B is skew-hermitean (B* = -B). There is

a pon-zero mxn matrix X such that AX = XB. Prove that A and B are

both singular.

Solution from E.C.G. Sudarshan:

put XX = Y, and then YB = X*XB = X*AX = (AX)*X = (XB)*X = -BX*X = -BY.
Also note that all the eigenvalues of Y are non-negative, because if
Yu = Au then Al u [|2 = ukhu = u*Yu = u*X*Xu = [Ixull?.

If B were non-singular then we would also have B_IY = —‘IB-l and

AB 'y = B A = B 'Yy = -YB_lu, so that -\ would also have to be an
eigenvalue, which would imply that all the eigenvalues of Y are zero,
and therefore Y (being Hermitian symmetric) would have to be identically
In particular each diagonal element of Y (= X*X) would be zero

zero.
and so each column of X would be zero. The contradiction implies that

B must be singular.

Because AY = AX*X = (XA)*X = (BX)*X = -X*BX = -X*XA = -YA it follows.

from a similar argument that A must be singular.

Solution from B.B. Neuman:

The eigenvalues of A are real. The eigenvalues of B are purely
imaginary or zero. The equation AX = XB, X # 0 tmplies that A and B
have a common eigenvalue (Theorem 5,17, Matrices and Linear Transfor-

mation - Cullen.). Hence A and B both have a zero eigenvalue, 80

that -both are singular.

For those that do not have Cullen's book handy, the theorem may be

proved as follows. Both A and B have full sets of eigenvectors, and

so there exist eigenvectors u* and V so that u*kv # 0 and

u*A = \u* and By = Wy. Therefore (A - Wu*Xv = u*AXv - u*xBv = O.
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Solution from H. Kestelman:

Let k, kz' v kq be the eigenvalues of B, then the minimal polynom-
{al f of B has f(t) equal to a product of powers of (t - kr)' and so
£(A) is a product of powers of (A - kr I). But AX = XB and AjX - XBj
(for all § =1, 2, ...) and f(A)X = Xf(B) = O and so f(A) is singular.
Therefore, for some r, A - kr I is singular and kr is an eigenvalue
of A, and since A 1is hermitean, kr is real; but 1B 1is also Hermit-
ean and so 1 kr is real, therefore kr = 0, The matrices A and B both

have a zero eigenvalue and so are singular.

Editorial note. We are open minded about whether to call a matrix
hermitean or hermitian, but #. Kestelmmi who sent in the problem favours
the first, writing that although in a minority he follows Hermann Weyl.
And there is the question of whether to use a capital H or small h;

we try to give both sides an innings by being consistently inconsistent.

QUOTATION CORNER (4)

Lovely lace and silk shirt open to the waste, hair looking a little

blow-waved. A sentence from an article about a "rock star" in

the Week-End Australian Magazine, July 2-3, 1977, page 7.

An examination candidate in my class mentioned the "Principal of

Inductance”. Is this the mysterious being otherwise known as "Lord

of the Rings'?

Your editor would like to hear from you anything cormected with

mathematics or with Jamea Cook.
Prof. B.C. Remnie,
Mathematics Department,
James Cook University of North
Jugensland,
Post Office,
James Cook University, Q. 4811,
JCME21. Australia.



