SMOOTHNESS OF THE GENERAL ANTICANONICAL DIVISOR
ON A FANO 3-FOLD

V. V. ŠOKUROV

Abstract. Smoothness of the general anticanonical divisor of a Fano 3-fold is proved. In addition, an analogous result is established for the linear system \(|K| \), where \(rK \sim -K_V \) for some natural number \(r \). The results obtained in the paper can be used to investigate projective imbeddings of Fano 3-folds.

Bibliography: 6 titles.

Following [4], we call a smooth complete irreducible algebraic variety \(V \) of dimension 3 over a field \(k \) which has an ample anticanonical class \(-K_V \) a Fano 3-fold. In [4] projective embeddings of such varieties were considered under the following hypothesis:

HYPOTHESIS (1.14) [4]. There exist an invertible sheaf \(\mathcal{L} \in \text{Pic} \, V \) and a natural number \(r \) such that \(r\mathcal{L} \cong -K_V \) and the linear system \(|\mathcal{L}| \) contains a smooth surface \(H \) (the greatest such \(r \) is called the index of \(V \)).

The purpose of the present work is to show that this hypothesis is satisfied for every Fano 3-fold over an algebraically closed field of characteristic 0. Thus all the results of [4] where Hypothesis (1.14) is assumed remain true also without that assumption.

The question considered in this paper can be given the following more general formulation. Let \(V \) be a complete nonsingular smooth irreducible algebraic variety of dimension \(n \) with an ample anticanonical class \(-K'_V \). Does there exist a smooth divisor in the linear system \(|-K'_V| \)? This problem naturally arises in considering the mapping defined by the linear system \(|-K'_V| \). The answer to this question is affirmative in the case of an algebraically closed field \(k \) of any characteristic if \(n \leq 2 \) and in characteristic 0 for \(n \leq 3 \). In the remaining cases the answer is unknown. In connection with the notion of the index of a variety there arises also an analogous question for \(-K'_V/r \in \text{Pic} \, V \).

While writing this paper I had several useful conversations with V. A. Iskovskih, to whom I gratefully express my indebtedness.

§ 1. The main result

1.1. All the algebraic varieties considered in this paper are defined over an algebraically closed field \(k \) of characteristic zero.

1980 Mathematics Subject Classification. Primary 14J10; Secondary 14N05, 14M20.

Copyright © 1980, American Mathematical Society
1.2. Theorem. Let V be a Fano 3-fold, and let \mathcal{L} be an invertible sheaf such that $r\mathcal{L} \cong -K_V$ for some natural r. Then in the linear system $|\mathcal{L}|$ there is a smooth surface D.

Theorem 1.2 is proved in §3 for the case $r = 1$, and in §4 for $r \geq 2$. §2 is devoted to auxiliary propositions. The general plan of the proof is the following. First we prove that the linear system $|\mathcal{L}|$ is not composite with a pencil. Then using Bertini's theorem we bring the general element of $|\mathcal{L}|$ to the form $D + D_0$ with fixed part D_0 and irreducible reduced movable divisor D. The dimension of the space $H^0(V, \mathcal{L})$ is known to us from [4]. On the other hand, $h^0(V, \mathcal{O}_V(D)) = h^0(V, \mathcal{L})$. The presence of fixed components or of singularities in the general divisor D reduces the last equality to a contradiction either with the Riemann-Roch theorem on the surface \overline{D}, which resolves the singularities of D, or with Lemma 2.3. If $r \geq 2$ one shows that the base locus of $|\mathcal{L}|$ consists of no more than a finite number of points. Further, one uses Theorem 4.1 of [3].

§2. Auxiliary lemmas

2.1. Lemma. If V is a Fano 3-fold, then every effective divisor D from the linear system $|-K_V|$ is connected.

Proof. According to (1.4) (i) of [4], $h^0(D, \mathcal{O}_D) = 1$ for $D \in |-K_V|$. Therefore, D is connected.

2.2. Lemma. Let D be an effective divisor on a K3 surface X such that some multiple of D gives a linear system without fixed components and

$$h^0(X, \mathcal{O}_X(D)) = \frac{D^2}{2} + 2.$$

Then the fixed components of D have multiplicity 1.

Proof. By Bertini's theorem [1] we may assume that the movable components of D have multiplicity one. We denote by D_1, \ldots, D_n the connected components of the multiplicity one part of the general D. Then we have the following representation of D as the sum of effective divisors: $D = \sum_{i=0}^n D_i$, where D_0 denotes a multiple of the fixed component of D. We need to show that $D_0 = 0$. Let us assume the contrary: $D_0 \neq 0$. By duality and the Riemann-Roch theorem we have

$$h^2(X, \mathcal{O}_X(D)) = h^1(X, \mathcal{O}_X(D)) = 0.$$

The latter, using duality and the Ramanujan vanishing theorem for a regular surface (see the remark on page 180 in [2]) implies that

$$h^2(D, \mathcal{O}_D) = h^1(X, \mathcal{O}_X(-D)) + 1 = h^1(X, \mathcal{O}_X(D)) + 1 = 1.$$

Therefore D is connected. Consequently, by the nontriviality of D_0, $(D_0 \cdot D_0) \geq 2$ for $n \geq i \geq 1$. Hence $(\sum_{i=1}^n D_0, D_0) \geq 2n$.

Using Ramanujan's theorem and duality for the divisor $\sum_{i=1}^n D_i$, we obtain

$$h^1\left(X, \mathcal{O}_X\left(\sum_{i=1}^n D_i\right)\right) = h^0\left(\bigcup_{i=1}^n D_i, \mathcal{O}_{\bigcup_{i=1}^n D_i}\right) - 1 = n - 1.$$
By duality and the nontriviality of $\Sigma_1^n D_i$ (since there exists a movable part), we have $h^2(X, \mathcal{O}_X(\Sigma_1^n D_i)) = 0$. Consequently by the Riemann-Roch theorem

$$h^0(X, \mathcal{O}_X \left(\sum_{i=1}^n D_i \right)) = \frac{\left(\sum_{i=1}^n D_i \right)^2}{2} + n + 1.$$

By construction, the movable part of D is contained in the components of multiplicity one. Therefore

$$h^0 \left(X, \mathcal{O}_X \left(\sum_{i=1}^n D_i \right) \right) = h^0(X, \mathcal{O}_X(D)) = \frac{D^2}{2} + 2,$$

whence we obtain the relation

$$\frac{D^2}{2} + 2 = \frac{\left(\sum_{i=1}^n D_i \right)^2}{2} + n + 1,$$

i.e.

$$\frac{D_0 \cdot \sum_{i=1}^n D_i + (D_0, D)}{2} = n - 1.$$

But $(D, D_0) \geq 0$ because of the absence of fixed components in a multiple of the divisor D. The latter contradicts the inequality $(\Sigma_1^n D_i, D_0) \geq 2n$.

2.3. Lemma. Let D be an effective divisor on a K3 surface X such that some multiple mD, m a natural number, gives a linear system $|mD|$ without base points and such that the image of the corresponding morphism is two-dimensional. Then D can have at most one fixed component, which is a smooth rational curve.

Proof. The linear system $|D|$ satisfies the assumptions of Mumford's theorem about degeneration. Hence by duality and the Riemann-Roch theorem we have

$$h^0(X, \mathcal{O}_X(D)) = \frac{D^2}{2} + 2,$$

but then by Lemma 2.2 the fixed part D_0 of D has multiplicity one. Every irreducible component of D_0 is a smooth rational curve C with $C^2 = -2$. We will show that every connected component D'_0 of D_0 is a tree such that at every vertex two curves meet and $(D'_0)^2 = -2$. The proof will proceed by induction starting with some curve C_1 in D_0 and adding curves C_2, \ldots, C_n so that the divisor $\Sigma_1^n C_i$ should be connected and contained in D'_0. The first step of the induction is trivial. Therefore we assume that $\Sigma_1^n C_i$ is a connected tree of the kind described above and that $(\Sigma_1^n C_i)^2 = -2$. We also assume that in D'_0 there is a curve C_{n+1} which intersects $\Sigma_1^n C_i$; in the contrary case everything is proven. By Ramanujan's...
theorem, since $\sum_{i=1}^{n+1} C_i$ is connected and of multiplicity one, and by the Riemann-Roch theorem,

$$h^0 \left(X, \mathcal{O}_X \left(\sum_{i=1}^{n+1} C_i \right) \right) = \frac{\left(\sum_{i=1}^{n+1} C_i \right)^2}{2} + 2 = \left(\sum_{i=1}^{n} C_i, C_{n+1} \right).$$

Then, because $\sum_{i=1}^{n+1} C_i$ is fixed,

$$\left(\sum_{i=1}^{n+1} C_i \right)^2 = -2, \quad \left(\sum_{i=1}^{n} C_i, C_{n+1} \right) = 1.$$

This completes the induction. Let us now consider the movable part D_1 of D. If D_1 is not a pencil, then its general element is irreducible and reduced. Hence, again using Ramanujan's theorem and the Riemann-Roch theorem, we obtain

$$h^0 (X, \mathcal{O}_X (D_1)) = \frac{D_1^2}{2} + 2.$$

Let D'_0 be a connected component of the fixed part. By the assumption of the lemma on the divisor D we have $(D, D'_0) \geq 0$. On the other hand, $(D, D'_0) = (D_1 + D'_0, D'_0) = (D_1, D'_0) + (D'_0)^2$. Then $(D_1, D'_0) \geq 2$. The divisor $D_1 + D'_0$ is connected and of multiplicity one. Therefore, as above,

$$h^0 (X, \mathcal{O}_X (D_1 + D'_0)) = \frac{(D_1 + D'_0)^2}{2} + 2 = \frac{D_1^2}{2} + 2 + (D_1, D'_0) + \frac{(D'_0)^2}{2},$$

whence $h^0 (X, \mathcal{O}_X (D_1 + D'_0)) > h^0 (X, \mathcal{O}_X (D_1))$. Consequently in this case D has no fixed components. If D_1 is a pencil, then $|D_1| = |nE|$, where $|E|$ is an elliptic pencil on the $K3$ surface X. In this case because D is connected there must exist at least one fixed component. We will prove that it is unique and that it is a nonsingular rational curve which is a section of $|E|$. Because D is connected there exists a curve C in D_0 such that C does not lie in the fibers of $|E|$, i.e. $C \cdot E > 0$. Because $C + E$ is connected and of multiplicity one, we have

$$h^0 (X, \mathcal{O}_X (C + E)) = \frac{(C + E)^2}{2} + 2 = h^0 (X, \mathcal{O}_X (E)) + (C, E) + \frac{C^2}{2};$$

hence $(C, E) = 1$. Consequently C is a section. If in D_0 there are two sections C_1 and C_2, and $n \geq 2$, then

$$h^0 (X, \mathcal{O}_X (C_1 + C_2 + 2E)) = \frac{(C_1 + C_2 + 2E)^2}{2} + 2 = h^0 (X, \mathcal{O}_X (2E)) + \frac{C_1^2}{2} + \frac{C_2^2}{2} + 2 (C_1, E) + 2 (C_2, E) + (C_1, C_2) - 1 \geq h^0 (X, \mathcal{O}_X (2E)) + 1.$$
The latter contradicts the choice of \(C_1 \) and \(C_2 \) from the fixed part of \(D \). Therefore if \(D_0 \) has two sections then \(n \leq 1 \). But \(|D| = |nE + D_0| \) and \(D^2 = \sum_{i=1}^{n} (2nE, D_0^{(i)}) + (D_0^{(i)})^2 > 0 \), where \(D_0^{(i)} \) is a connected component of \(D_0 \). Hence it follows that \(n = 1 \) and that there exists a connected component \(D_0^{(i)} \) with \((D_0^{(i)}, E) \geq 2 \). From this, as above in the nonpencil case, we derive the inequality

\[
\begin{aligned}
&h^0(X, O_X(E + D_0^{(i)})) > h^0(X, O_X(E)),
\end{aligned}
\]

which leads to a contradiction. Consequently in \(D_0 \) there exists exactly one section \(C \), and the remaining curves \(D_0 \) lie in the fibers. We will assume that the last set of curves is nonempty. Then there exists a curve \(C' \) in \(D_0 \) extreme in some tree, i.e. \((C', D_0) = -1 \) and \((C', E) = 0 \). Then \((D, C') = (nE + D_0, C') = -1 \), which contradicts the choice of \(|D| \). Consequently \(C \) is the only fixed component of \(|D| \) and \(|D| = nE + C \).

Remark. Lemma 2.3 in the case of an ample \(D \) was proved in [6].

§3. Proof of the theorem in the case \(r = 1 \)

3.1. We denote by \(W \) the image of the rational map \(V \rightarrow \mathbb{P}^{\dim |-K_V|} \) defined by the linear system \(|K_V| \).

3.2. **Lemma.** \(\dim W \geq 2 \).

Proof. Let the linear system \(|K_V| \) define a mapping onto a curve \(W \) in \(\mathbb{P}^{g+1} \), \(g = (-K_V)^2/2 + 1 \). We denote by \(D_0 \) the fixed component of the system \(|-K_V| \) and by \(D \) the general divisor of the movable part. The curve \(W \) is rational since \(h^1(V, O_V) = 0 \) (see (1.3) in [4]). From linear normality it follows that \(W \) is a smooth rational curve of degree \(g + 1 \) which generates \(\mathbb{P}^{g+1} \). Therefore \(D \sim (g + 1)E \) and the (projectively) one-dimensional system \(|E| \) defines a rational map \(\pi: V \rightarrow W \cong \mathbb{P}^1 \). We have \((D_0 + (g + 1)E)^2, -K_V) = 2g - 2 \) from the definition of \(g \), since \(-K_V \sim D_0 + (g + 1)E \). The following relation is evident:

\[
((D_0 + (g + 1)E)^2, -K_V) = ((g + 1)^2E^2 + (g + 1) (E, D_0) + (D_0, -K_V), -K_V).
\]

The movability of \(E \) and the ampleness of \(-K_V\) implies the inequalities

\[
(E^2, -K_V) \geq 0, \quad (D_0, (-K_V)^2) \geq 0, \quad (E, D_0, -K_V) \geq 0.
\]

If \((E^2, -K_V) > 0 \), then

\[
2g - 2 = ((D_0 + (g + 1)E)^2, -K_V) \geq (g + 1)^2.
\]

The latter leads to a contradiction. Therefore \((E^2, -K_V) = 0 \). Then by the ampleness of \(-K_V\) the general members of \(|E|\) do not intersect and the linear system \(|E|\) defines a morphism \(\pi: V \rightarrow W \cong \mathbb{P}^1 \) whose fibers give \(|E|\). By Lemma 2.1 every divisor in \(|-K_V|\) is connected. Consequently \(D_0 \neq 0 \) and intersects the general member of \(|E|\) along a nontrivial effective one-dimensional algebraic cycle. In addition,

\[
2g - 2 = (g + 1)(E, D_0, -K_V) + (D_0, K_V^2),
\]

where \((E, D_0, -K_V) > 0 \) and \((D_0, K_V^2) > 0 \). That means that \((E, D_0, -K_V) = 1 \) and
(D_0, K_V^2) = g - 3. Then obviously \((E, K_V, K_V) = 1\). This last equality together with the ampleness of \(-K_V\) implies that any fiber (i.e. an element of \(|E|\)) is irreducible and reduced. Therefore \(D_0\) does not have components contained in the fibers of \(\pi\). Since \((E, D_0, -K_V) = 1\) and \(-K_V\) is ample, it follows that \(D_0\) is an irreducible reduced divisor and the fibers of the morphism \(\pi: D_0 \rightarrow W\), which are irreducible and reduced curves, define a linear system \(|(E, D_0)|_{D_0}\) on \(D_0\) whose elements we will call the fibers of \(D_0\). Also, the relation \((E, D_0, -K_V) = 1\) implies the smoothness of the general point of all the fibers of \(D_0\). By the Bertini-Zariski theorem the general fiber \(E\) of \(\pi\) is a smooth irreducible surface. The given surface \(E\) is a del Pezzo surface of degree 1, and \((E, D_0) = (E, -K_V)\) gives an ample anticanonical class of degree 1 on \(E\), \((E, D_0^2) = 1\). Therefore there exists on \(D_0\) a pencil of irreducible reduced curves of arithmetic genus one consisting of the fibers of \(D_0\). Consequently \(h^1(D_0, \mathcal{O}_{D_0}) \leq 1\).

On the other hand, from the long exact cohomology sequence for the triple \(0 \rightarrow \mathcal{O}_V(-D_0) \rightarrow \mathcal{O}_V \rightarrow \mathcal{O}_{D_0} \rightarrow 0\) we find that \(h^1(D_0, \mathcal{O}_{D_0}) = h^2(V, \mathcal{O}_V(-D_0))\). By duality

\[h^2(V, \mathcal{O}_V(-D_0)) = h^1(V, \mathcal{O}_V(-(g + 1)E)).\]

From the exact sequence corresponding to

\[0 \rightarrow \mathcal{O}_V(-(g + 1)E) \rightarrow \mathcal{O}_V \rightarrow \mathcal{O}_{(g+1)E} \rightarrow 0,
\]

it follows that

\[h^1(V, \mathcal{O}_V(-(g + 1)E)) = h^1((g + 1)E, \mathcal{O}_{(g+1)E}) - 1.\]

Hence, since the general member of the pencil \(|E|\) is irreducible and reduced, we have \(h^1(V, \mathcal{O}_V(-(g + 1)E)) = g\). This means that \(h^1(D_0, \mathcal{O}_{D_0}) = g\). Then because of the above we obtain the inequality \(1 \geq h^1(D_0, \mathcal{O}_{D_0}) = g\). But \((-K_V)^3 = 2g - 2 > 0\) because of the ampleness of \(-K_V\). This contradiction completes the proof of the lemma. ■

Proof of Theorem 1.2 (case \(r = 1\)). By Lemma 3.2, \(\dim W \geq 2\). Then by Bertini’s theorem [1] the general element of the linear system \(|-K_V|\) is of the form \(D + D_0\), where \(D_0\) is the fixed component of \(|-K_V|\) and \(D\) is the movable irreducible reduced divisor normally intersecting \(D_0\) (\(\dim D \cap D_0 \leq 1\)) and having singular points only at the base points of the linear system \(|D|\). We will resolve the points of indeterminacy of \(|D|\) (in the Hironaka-Zariski sense) by monoidal transformations with smooth centers in the base locus. We denote a general resolution by \(\sigma: \tilde{V} \rightarrow V\). By Bertini’s theorem the strict transform \(\widetilde{D}\) of a generic \(D\) is nonsingular and \(\sigma^*(D) = \widetilde{D} + \sum E_i\), where \(E_i\) is the surface corresponding to the \(i\)th monoidal transformation (the strict transform on \(\tilde{V}\) of the \(i\)th center of blowing up). Also \(\widetilde{D}\) is the maximal movable part of the linear system \(|\sigma^*(D)|\). Consequently

\[h^0(\widetilde{V}, \mathcal{O}_{\widetilde{V}}(\widetilde{D})) = h^0(\tilde{V}, \mathcal{O}_{\tilde{V}}(\sigma^*(D))) = h^0(V, \mathcal{O}_V(D)) = \frac{-K_V^2}{2} + 3\]

(the last part because of (1.3) (ii) of [4]). The canonical class of \(\tilde{V}\) is computed from the
where $\alpha_i \geq 1$. Under blowing up a curve the canonical class changes according to the formula $K_{\tilde{V}} \sim \sigma^*(K_V) + E$. In our case the blowing up is carried out only at the base curves and points. Hence by induction we obtain $n_i \geq \alpha_i$, if $\alpha(E_i)$ is a curve on V. Then

$$-K_{\tilde{V}} \sim \tilde{D} + \sigma^*(D_0) + \sum_{i=1}^m (n_i - \alpha_i) E_i.$$

By the adjunction formula

$$K_{\tilde{D}} \sim -\left(\tilde{D}, \sum_{i=1}^m (n_i - \alpha_i) E_i + \sigma^*(D_0) \right).$$

Let us consider on \tilde{D} the divisors $F = (\tilde{D}, \sigma^*(D + D_0))$ and $L = (\tilde{D}, \tilde{D} + \sum_{i=1}^m \alpha_i E_i)$. Then $K_{\tilde{D}} + F \sim L$. A multiple of F comes from a hyperplane section because of the ampleness of $-K_{\tilde{V}}$. The sheaf $\mathcal{O}_{\tilde{D}}(-F)$ satisfies the conditions of Mumford's vanishing theorem [5], $H^1(\tilde{D}, \mathcal{O}_{\tilde{D}}(-F)) = 0$, since $\sigma_* \mathcal{O}_{\tilde{D}}(F)$ is ample on D. Consequently

$$h^1(\tilde{D}, \mathcal{O}_{\tilde{D}}(L)) = h^1(\tilde{D}, \mathcal{O}_{\tilde{D}}(K_{\tilde{D}} - L)) = h^1(\tilde{D}, \mathcal{O}_{\tilde{D}}(-F)) = 0.$$

Also it is obvious that $h^2(\tilde{D}, \mathcal{O}_{\tilde{D}}(L)) = 0$ since $h^0(\tilde{D}, \mathcal{O}_{\tilde{D}}(-F)) = 0$, whence by the Riemann-Roch theorem we obtain

$$h^0(\tilde{D}, \mathcal{O}_{\tilde{D}}(L)) = \frac{L(L - K_{\tilde{D}})}{2} + 1 - q + p_g.$$

Using the zero part of the cohomology sequence corresponding to the short exact sequence

$$0 \rightarrow \mathcal{O}_{\tilde{V}} \rightarrow \mathcal{O}_{\tilde{V}}(\tilde{D}) \rightarrow \mathcal{O}_{\tilde{D}}((\tilde{D}, \tilde{D})) \rightarrow 0,$$

we obtain the inequality

$$h^0(\tilde{D}, \mathcal{O}_{\tilde{D}}(L)) \geq h^0(\tilde{D}, \mathcal{O}_{\tilde{D}}((\tilde{D}, \tilde{D}))) \geq \frac{(K_V)^3}{2} + 2.$$

The latter together with the previous computations gives

$$\frac{(K_V)^3}{2} + 2 \leq \frac{L(L - K_{\tilde{D}})}{2} + 1 - q + p_g. \quad (3.3)$$

We now prove that $p_g - q - 1 \geq 0$. We have $L - K_{\tilde{D}} \sim F$, and by (3.3)

$$\frac{\sigma^*(-K_V)^3}{2} - \frac{\left(\sigma^*(-K_V), \tilde{D}, \tilde{D} + \sum_{i=1}^m \alpha_i E_i \right)}{2} \leq p_g - q - 1. \quad (3.4)$$

The left-hand side of (3.4) can be written in the form

$$\left(\frac{\sigma^*(-K_V)}{2}, \left(\tilde{D}, \sum_{i=1}^m (n_i - \alpha_i) E_i + \sigma^*(D_0), \sum_{i=1}^m n_i E_i + \sigma^*(D_0), \sigma^*(-K_V) \right) \right).$$
Here $\sigma^*(-K_V)$ is the lifting of the ample divisor, and \tilde{D} is movable, irreducible and reduced. Hence the left-hand side of (3.4) is obviously positive in all its terms except perhaps $(\sigma^*(-K_V)/2, \tilde{D}, (n_i - \alpha_i)E_i)$ in the case when $a(E_i)$ is a point of V, since in the opposite case $n_i \geq \alpha_i$. But then in this case the corresponding term is equal to 0 by the projection formula. From (3.4) we obtain the desired inequality. Let us now consider a divisor D such that for some smooth model of it the inequality $p_g - q - 1 \geq 0$ is satisfied, and in addition let D be chosen so general that its singularities lie only in the base locus of its complete linear system. We resolve the singularities of D by monoidal transformations centered in singular sets of D.

We will denote the new resolution by $\sigma': V' \to V$. Accordingly $\sigma'(\mathcal{O}_D) = \mathcal{O}_{\sigma'(V')} + \sum n_i E_i$ and $K_{V'} \sim \sigma^*(K_V) + \sum \alpha_i' E_i$, where $\alpha_i' \geq 1$, since this time we perform monoidal transformations only in singular sets $n_i \geq \alpha_i'$. Therefore by the adjunction formula $K_{D'} \leq 0$. Consequently $p_g \leq 1$, whence because $p_g - q - 1 \geq 0$ we have $p_g = 1$, $q = 0$ and $K_{D'} = 0$. This means that D' is a $K3$ surface. From the latter one easily concludes by Lemma 2.1 that $D_0 = 0$ and $K_{V'} \sim -D'$. Consequently,

$$\sigma'^*(-K_V) \sim D' + \sum_{i=1}^m \alpha_i' E_i.$$

We have

$$h^0(V', \mathcal{O}_{V'}(D' + \sum_{i=1}^m \beta_i E_i')) = h^0(V, \mathcal{O}_V(-K_V)) = \frac{(-K_V)^3}{2} + 3$$

for the maximal movable part $|D' + \sum_{i=1}^m \beta_i E_i'|$ in $|D' + \sum_{i=1}^m \alpha_i' E_i'|$, where $\beta_i \leq \alpha_i'$. For $L' = (D', D' + \sum_{i=1}^m \alpha_i' E_i')$ we have

$$h^0(D', \mathcal{O}_{D'}(L')) \geq h^0\left(D', \mathcal{O}_{D'}\left(D' + \sum_{i=1}^m \beta_i E_i'\right)\right) \geq \frac{-(K_V)^3}{2} + 2.$$

Hence, as above, using Mumford's theorem about degeneration and the Riemann-Roch theorem we obtain the inequality

$$\frac{-(K_V)^3}{2} + 2 \leq h^0(D', \mathcal{O}_{D'}(L')) \leq \frac{(L')^2}{2} + 2,$$

(3.5)

since in the last case $K_{D'} = 0$, $q = 0$ and $p_g = 1$. Considering the difference in the left-hand side of the corresponding inequality analogous to (3.4), we find that it is positive, which means that our inequality (3.5) becomes an equality. Hence the linear system $|L'|$ on D' has a fixed component $\sum_{i=1}^m (\alpha_i' - \beta_i')(E_i' \cdot D')$. Obviously the first resolution in σ' as well as all the others resolve an isolated quadratic singularity, i.e. $\alpha_i' = 2$ according to the formula $-D' \sim K_{V'}$ for the canonical class of V'. Hence, by Lemma 2.3, $\beta_1 \geq 1$. This means that the first resolved singularity is movable. By the requirement that singularities should be at the base points we obtain that $\beta_1 = 1$, $\alpha_1' - \beta_1 = 1$, and $|D|$ and $|D' + \sum_{i=1}^m \alpha_i' E_i'|$ have a fixed curve outside of E_1'. Hence $|L'|$ has at least two distinct fixed curves: (E_1', D') and one lying
outside E_i. The latter is impossible by Lemma 2.3. Consequently the general element $D = D'$, and it is nonsingular. This completes the proof of the theorem for the case $r = 1$.

§4. Proof of the theorem for $r \geq 2$

4.1. We denote by W the image of the rational map $V \dashrightarrow \mathbb{P}^{\dim |H|}$ defined by the linear system $|H|$, where H is an effective divisor in $|\mathcal{L}|$.

4.2. Lemma. $\dim W \geq 2$.

Proof. Let us assume the contrary; then, as in the proof of Lemma 3.2, we obtain the decomposition $|H| = |D_0 + nE|$, $n = h^0(V, \mathcal{O}_V(H)) - 1$, and the one-dimensional linear system $|E|$ without fixed components gives a rational mapping $\pi: V \dashrightarrow W \cong \mathbb{P}^1$. According to (1.9) (ii) of [4],

$$n = \frac{(r+1)(r+2)}{2} H^3 + \frac{2}{r} \geq 2;$$

hence

$$H^3 = \frac{12n}{(r+1)(r+2)} - \frac{24}{r(r+1)(r+2)} < n$$

for $r \geq 2$. Using the relation $H^3 = (H, n^2 E^2 + nED_0 + D_0 H)$, the ampleness of H and the absence of fixed components in $|E|$, we show as in the case $r = 1$ that $(H, E^2) = 0$. Because of the connectedness of the divisors in $|H|$ (a simple consequence of 2.1) we have $(H, E, D_0) \geq 1$ and $(H^2, D_0) \geq 1$. Therefore $n > H^3 \geq n + 1$, a contradiction.

4.3. Lemma. For $r \geq 2$ the linear system $|H|$ can only have base points in the absence of a fixed component.

Proof. By Theorems 1.2 ($r = 1$) and 1.5 of [4] the general surface D of the linear system $|-K_V|$ is a smooth $K3$ surface. Let us assume that the linear system $|H|$ has a fixed curve. Then by the ampleness of D we obtain fixed points of the restricted system $|(H, D)|_D$. After restricting to D one obtains a complete linear system. The latter follows from the exact cohomology sequence of the short exact sequence

$$0 \rightarrow \mathcal{O}_V((1-r)H) \rightarrow \mathcal{O}_V(H) \rightarrow \mathcal{O}_D((D, H)) \rightarrow 0,$$

since $h^1(V, \mathcal{O}_V((1-r)H)) = 0$ by (1.9) (i) of [4]. The restricted linear system is ample. In [6] it is shown that for every ample sheaf \mathcal{L} on a $K3$ surface D the linear system $|\mathcal{L}|$ has no base points if it has no fixed components. Therefore the linear system $|(H, D)|_D$ has a fixed component. Consequently by Lemma 2.3 the linear system $|(H, D)|_D = |nE + Z|$, with Z a fixed curve. Then either $|H|$ has a fixed component or $|-K_V|$ has the fixed curve Z. We will show that the last case is impossible. Indeed, assuming the contrary we obtain for the restricted linear system $|(\mathcal{-K}_V, D)|_D$ on D a representation of the form $|Z + n'E'|$, where E' is a fiber of the elliptic pencil $|E'|$ on D. Consequently $rZ + nE \sim Z + n'E'$. Z is a section of both pencils. Intersecting both sides of the last equivalence with E', we obtain a contradiction for $r \geq 2$.

4.4. Lemma. Let the linear system $|H|$ (4.1) have only fixed points and $H^3 < 8$. Then the general element of $|H|$ is smooth.

Proof. By Bertini's theorem [1] singular points of the general surface H can only be among the fixed base points. If there exists a singular base point, then $H^3 \geq 8$ since at that singular point the general surfaces from $|H|$ have intersection index ≥ 8.

Proof of Theorem 1.2 (case $r \geq 2$). By Lemma 4.2 and Bertini's theorem [1] the general element of the linear system $|H|$ has the form $D + D_0$, where D_0 is the fixed component of $|H|$ and D is a movable irreducible and reduced divisor normally intersecting D_0 and having singular points only at the base points of the linear system $|D|$, $K_V \sim -rD - rD_0$. We resolve by monoidal transformations the points of indeterminacy of $|D|$. We denote the general resolution by $\sigma: \tilde{V} \to V$. The strict transform for the general divisor D, by Bertini's theorem, will be a smooth divisor $\tilde{D} \subset \tilde{V}$, and $\sigma^*(D) = \tilde{D} + \sum_{i=1}^{m} n_iE_i$, where E_i is the surface corresponding to the ith transform and $n_i \geq 1$. We may assume that \tilde{D} is the maximal movable part in $\sigma^*(D)$. Hence by (1.9) (ii) of [4] we have

$$h^0(\tilde{V}, \mathcal{O}_{\tilde{V}}(\tilde{D})) = h^0(V, \mathcal{O}_V(H)) = \frac{(r+1)(r+2)}{12} H^3 + \frac{2}{r} + 1.$$

The canonical classes that we need have the form

$$-K_{\tilde{V}} \sim r\tilde{D} + \sum_{i=1}^{m} (rn_i - \alpha_i) E_i + r\sigma^*(D_0),$$

and

$$K_{\tilde{D}} \sim -\left(\tilde{D}, (r - 1)\tilde{D} + \sum_{i=1}^{m} (rn_i - \alpha_i) E_i + r\sigma^*(D_0)\right),$$

where $n_i \geq \alpha_i$ if $\sigma(E_i)$ is not a point of V and all $\alpha_i \geq 1$. We consider on the surface \tilde{D} the following divisors:

$$F = (\tilde{D}, \sigma^*(D + D_0)) \quad \text{and} \quad L = \left(\tilde{D}, \tilde{D} + \sum_{i=1}^{m} \alpha_iE_i\right).$$

Then $K_{\tilde{D}} + rf \sim L$.

Further using the degeneration theorem as in §3 for the sheaf $\mathcal{O}_{\tilde{D}}(F)$, we obtain the inequalities

$$\frac{(r+1)(r+2)}{12} H^3 + \frac{2}{r} \leq h^0(\tilde{D}, \mathcal{O}_{\tilde{D}}((\tilde{D}, \tilde{D}))) = \frac{L \cdot (I - K_{\tilde{V}})}{2} + 1 - q. \quad (4.5)$$

In contrast to §3, in (4.5) we have $p_g = 0$, as it is easy to check that $K_{\tilde{D}} < 0$. The extreme terms of (4.5) give the inequality

$$\left(\sigma^*(H), \frac{(r+1)(r+2)}{12} \sigma^*(H)^2 - \frac{r}{2} \left(\tilde{D}, \tilde{D} + \sum_{i=1}^{m} \alpha_iE_i\right)\right) \leq 1 - q - \frac{r}{2}. \quad (4.6)$$
Substituting in (4.6) the expression for $\sigma^*(H) = \sigma^*(D + D_0)$ and collecting like terms, we obtain

$$
\frac{(r-1)(r-2)}{12} \left(\sigma^*(H), \tilde{D}, \tilde{D} + \sum_{i=1}^{m} a_i E_i \right) + \frac{(r+1)(r+2)}{12} \left(\sigma^*(H)^2, \sum_{i=1}^{m} n_i E_i + \sigma^*(D_0) \right) \leq 1 - q \cdot \frac{2}{r}.
$$

As in §3, one proves the positivity of the left-hand side of (4.7). Therefore $q = 0$ and $D_0 = 0$. The latter follows from the fact that $(\sigma^*(H), \tilde{D}, \sigma^*(D_0)) = (H, D, D_0) \geq 1$ by the connectedness of H. We now note that if $D_0 = 0$ then by Lemma 4.3 $|H|$ has only base points. Then by Lemma 4.4 we may assume that $H^3 \geq 8$. Let $d = H^3 > 0$ and $\Delta = 3 + d - h^0(V, \mathcal{O}_V(H))$, and let g be defined by the relation $2g - 2 = (K_V + 2H)H^2 = (2 - r)H^3$, i.e. $g = ((2 - r)d + 2)/2$. Knowing $h^0(V, \mathcal{O}_V(H))$ from (1.9) in [4], we can easily check that $\Delta \leq g$ for $d = H^3 \geq 2$. Therefore, by Theorem 4.1 of [3], there are no base points in $|H|$ if $d \geq 2\Delta$. This inequality fails to be satisfied only for $r = 2, d = 1$ and $r = 3, d = 1$. In our case $d = H^3 \geq 8$. Consequently there are no base points in this case. Therefore by Bertini’s theorem the general member of $|H|$ is smooth. □

Received 27/APR/1978

BIBLIOGRAPHY

Translated by PIOTR and MARGOT BLASS