ON THE CLOSED CONE OF CURVES OF ALGEBRAIC 3-FOLDS

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 Math. USSR Izv. 24 193

(http://iopscience.iop.org/0025-5726/24/1/A08)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 195.37.209.182
The article was downloaded on 19/09/2010 at 20:20

Please note that terms and conditions apply.
ON THE CLOSED CONE OF CURVES OF ALGEBRAIC 3-FOLDS

V. V. SHOKUROV

ABSTRACT. In this paper the author establishes, under natural conditions, the local polyhedrality of the closed cone of curves of a three-dimensional algebraic variety in the part that is negative with respect to the canonical class. In particular, it is shown that there always exists an extremal ray giving a contraction. The results can be used in three-dimensional birational geometry.

Bibliography: 10 titles.

X denotes throughout a normal projective 3-fold defined over an algebraically closed field k of characteristic 0. We recall the terminology of Mori [4] and Kawamata [3]. There are two real vector spaces associated with the variety X.

$N(X) = (\{1\text{-cycles on } X \} / \equiv) \otimes \mathbb{R}$

and

$N(X)^0 = (\{\text{Cartier divisors on } X \} / \equiv) \otimes \mathbb{R},$

where \equiv denotes numerical equivalences; the intersection pairing

$(\cdot) : N(X)^0 \times N(X) \to \mathbb{R}$

is nondegenerate by definition of \equiv. On $N(X)$ and $N(X)^0$ we fix a Euclidean norm $|| \cdot ||$. This defines the closed cone of curves $\overline{NE}(X) \subset N(X)$, which is the closure with respect to $|| \cdot ||$ of the cone $NE(X)$ of effective 1-cycles on X. This cone is obviously independent of the choice of $|| \cdot ||$.

K_X denotes the canonical Weil divisor of X [5]. By definition $\partial_{\text{Reg}(X)}(K_X) = \Omega_{\text{Reg}(X)}^1$, where $\text{Reg}(X) = X - \text{Sing}(X)$ is the set of nonsingular points of X.

By a \mathbb{Q}-Cartier divisor we mean a linear combination of Cartier divisors with rational coefficients. We suppose furthermore that X is \mathbb{Q}-factorial. This means that every Weil divisor D on X is a rational multiple of a Cartier divisor; that is, there exists an integer n such that nD is a Cartier divisor on X. On such a variety each Weil divisor D corresponds to a \mathbb{Q}-Cartier divisor, and has a numerical class $(D) \in N(X)^0$. In particular, we can take the intersection of Weil divisors with 1-cycles. The Weil divisor K_X defines a \mathbb{Q}-Cartier
divisor which we continue to denote by K_X. We recall that X is said to have canonical singularities (respectively terminal singularities) if for some resolution $h: X' \to X$,

$$K_{X'} = h^*K_X + \sum a_i E_i,$$

where the E_i are the exceptional divisors of h, and all the a_i are ≥ 0 (respectively > 0). It is easy to check that this definition is independent of the resolution h. We assume from now on that X is a variety with canonical singularities.

We let $\overline{NE}(X)^-$ denote the cone \{ $\mathbf{Z} \in \overline{NE}(X) | \mathbf{Z} \cdot K_X < 0$ \}

By an extremal ray of $\overline{NE}(X)^-$ we mean a ray $R \subset \overline{NE}(X)^-$ such that

1. If $Z_1, Z_2 \in \overline{NE}(X)$ and $Z_1 + Z_2 \in R$, then $Z_1, Z_2 \in R$.

A ray R is said to be locally polyhedral if there exists a divisor $D \in N(X)^0$ and a finite collection of curves C_1, \ldots, C_r on X such that $\overline{NE}(X) = \overline{NE}(X, D)^+ + \sum R_+(C_i)$ and $D \cdot Z < 0$ for all $Z \in R - \{0\}$; here $\overline{NE}(X, D)^+ = \{ Z \in \overline{NE}(X) | D \cdot Z \geq 0 \}$. In this case the ray R satisfies Mori's conditions, namely

1. R is rational; that is, $R = R_+(C_R)$ for some curve $C_R \subset X$.
2. $R^\perp = \{ D \in N(X)^0 | D \cdot R = 0 \}$ contains an open subset of numerically effective divisors $D \in N(X)^0$ for which $D^\perp \cap \overline{NE}(X) = R$.

To a locally polyhedral extremal ray $R \subset \overline{NE}(X)^-$ we can apply Kawamata’s technique [3], and so R determines a morphism $\text{cont}_R: X \to Y$ contracting the extremal ray R. (Kawamata’s preprint in fact assumes that X has terminal singularities, but this condition is not used in an essential way in his proof; see [7].)

We say that R is a ray of type (a) (respectively of type (b)) if R is a locally polyhedral extremal ray of $\overline{NE}(X)^-$ such that the morphism $\text{cont}_R: X \to Y$ is birational and contracts a surface S of X (respectively contracts only a finite set of curves of X).

Main Theorem. Let X be a projective normal \mathbb{Q}-factorial 3-fold with canonical singularities, and suppose that any compact subset of the cone $\overline{NE}(X)^-$ has at most a finite number of extremal rays of type (b). Then $\overline{NE}(X)$ is locally polyhedral in $\overline{NE}(X)^-$; that is, for any ample divisor A and any $\varepsilon > 0$ there exists a finite set of curves C_1, \ldots, C_r such that

$$\overline{NE}(X) = \overline{NE}_\varepsilon(X, A) + \sum R_+(C_i),$$

where $\overline{NE}_\varepsilon(X, A) = \{ Z \in \overline{NE}(X) | (K_X + \varepsilon A) \cdot Z > 0 \}$.

Corollary. If K_X is not numerically effective, then $\overline{NE}(X)^-$ always contains a locally polyhedral extremal ray R.

This result was proved independently (but later) by Reid [7], using a closely related method.*

§2. The main lemma

2.1. **Lemma.** Let X be a projective normal \mathbb{Q}-factorial 3-fold with canonical singularities, let A be an ample Cartier divisor, and suppose that for some $a \in \mathbb{R}$, $D \in (A + aK)$ is a numerically effective divisor such that

1. the face of $\overline{NE}(X)$ given by $R = D^\perp \cap \overline{NE}(X)$ satisfies $R \subset \overline{NE}(X)^-$, and
2. either $D^3 > 0$ or $-D^2 K_X > 0$.

*Translator's note. Much progress has been made on this problem in recent months; see [8], [9] and [10]. Both the Contraction Theorem and the Theorem on the Cone are now known in all dimensions.
Then either $\overline{\text{NE}}(X)$ is locally polyhedral in a neighborhood of R (that is, there exist a finite set of curves C_1, \ldots, C_r and an $\varepsilon > 0$ such that

$$
\overline{\text{NE}}(X) = \overline{\text{NE}}_r(X, D) + \sum_{i=1}^r \mathbf{R}_+(C_i),
$$

(2.2)

where $\overline{\text{NE}}_r(X, D) = \{ Z \in \overline{\text{NE}}(X) | (D + \varepsilon K_X \cdot Z) \geq 0 \}$, or there exists a morphism $\varphi: X \rightarrow Y$ making X into a conic fibration, such that $(C) \in R$ for a general fiber $C = \varphi^{-1}(y)$.

Proof. Let $\alpha = m/n - \delta$, where m and n are positive integers and $0 < \delta \leq 1/n$. Then

$$D = A + (m/n)K_X - \delta K_X.
$$

From (i), the divisor $D_{m/n} = A + (m/n)K_X$ is numerically negative on R. By virtue of the proof of Theorem 1 in [3], in order to establish the decomposition (2.2) it is enough to check that, for some integer $N > 0$,

$$|ND_{m/n}| \neq \emptyset.
$$

(2.4)

We will prove this using Riemann-Roch and vanishing; consider a resolution $h: X' \rightarrow X$ which is the standard resolution along the curves of canonical singularities, and is otherwise arbitrary. Then the exceptional divisors E_i which map to curves of X have discrepancy $a_i = 0$. We also assume that all exceptional divisors of h are nonsingular and interest transversally. Set

$$\overline{h}(mK_X) = -[mK_X + \sum (m-1)a_i E_i] = mK_X - \sum [(m-1)a_i] E_i,$

where $[\]$ denotes the integral part of a number or a divisor. For $n \gg 0$ the divisor $D = (1/n - \delta)K_X = A + ((m-1)/n)K_X$ will satisfy the hypothesis of the Kawamata-Viehweg vanishing theorem [1], except in the case $D^3 = 0$ and $\delta = 1/n$. However, in this case, by (ii), D is a Q-Cartier divisor with $D^3 = 0$ and $-D^2 K_X > 0$; then D defines a conic fibration $\varphi_{|ND|}: X \rightarrow Y$. This is proved in [2] and [3] assuming terminal singularities, and in general using Kawamata’s technique in [6] and [7]. The general fiber $C = \varphi^{-1}(y)$ obviously has class $(C) \in R$ (by the definition of R; see (i)). In this case we have one of the conclusions of the lemma, so that from now on we can assume that it does not occur. Then, by Kawamata-Viehweg vanishing,

$$h^i(X', \mathcal{O}_{X'}(nh*A + \overline{h}(mK_X))) = h^i(X', \mathcal{O}_{X'}(-[nh*A - (m-1)h*K_X] + K_{X'})) = 0$$

for all $i > 0$. Hence

$$h^0(X', \mathcal{O}_{X'}(nh*A + \overline{h}(mK_X))) = \chi(\mathcal{O}_{X'}(nh*A = \overline{h}mK_X)) = \text{R-R expression}.
$$

Now note that

$$\overline{h}(mK_X) = mK_{X'} - \sum (m-1)a_j E_j - \sum \{(m-1)a_j\} E_j = mh*K_X + \sum (a_j - \{(m-1)a_j\}) E_j.
$$

(2.5)

Hence

$$nh*A + \overline{h}(mK_X) = h^*(nA + mK_X) + \sum b_j E_j.$$
where \(b_j = O(1) \) as \(n \gg 0 \). By (2.3), \(nA = mK_X = nD + \delta nK_X \). Writing down only the cubic and quadratic terms in the Riemann-Roch formula, and using the fact that \(|\delta n| \leq 1 \), we get
\[
h^0(X', \mathcal{O}_{X'}(nA^*A = \overline{h}(mK_X))) = \frac{1}{2} (nD + \delta nK_X)^3 - \frac{1}{4} (\overline{h}^*(nD + \delta nK_X))^2 K_X + \cdots.
\] (2.6)
where the dots denote terms bounded by a linear function of \(n \). We now prove that the right-hand side of (2.6) is strictly positive if \(n \gg 0 \). If \(\exists \eta > 0 \) this is obvious. Suppose then that \(D^3 = 0 \) and \(-D^2K_X > 0\). If \(\alpha \) is rational, we have seen above that \(X \) is not a conic fibration, \(\alpha \) is irrational. Then letting \(m/n \) be a continued fraction approximation of \(\alpha \), we can assume that \(\delta n < \sqrt{n} \), and then for \(n \gg 0 \) we get
\[
h^0(X', \mathcal{O}_{X'}(nh^*A + \overline{h}(mK_X))) = -\frac{1}{4} n^2 D^2 K_X + \cdots > 0,
\]
with the dots as before. Thus \(|nh^*A + \overline{h}(mK_X)| \neq \emptyset \) for suitable \(n \gg 0 \), and using (2.5) we get the required nonemptiness assertion (2.4).

\section{Proof of the main theorem}

3.1. \textit{Choice of the curves \(C \).} The cone \(\overline{NE}(X)^- \) can have at most a finite set of extremal rays of type (a) which “contract to a point”, since the exceptional surfaces \(E \) corresponding to these rays are disjoint in pairs, so that their classes in \(N(X)^0 \) are linearly independent. We also have outside \(\overline{NE},(X, A) \) a finite set of extremal rays of type (a) which “contract onto a curve”, since there is a curve \(C \) in such rays with \(CK_X = -1 \). So first of all we assume that \(\{C_i\} \) includes a finite set of curves \(C \), giving the extremal rays \(R^+(C) \) of type (a) outside \(\overline{NE},(X, A) \).

We can also see that the cone \(\{Z \in \overline{NE}(X)(K_X + \varepsilon A \cdot Z) \leq 0\} \) can have at most a finite set of rays of the form \(R^+(C) \) where \(C = \varphi^{-1}(y) \) is the general fiber of a conic fibration \(\varphi: X \to Y \). Indeed, then \(CK_X = -2 \), so that, assuming \((K_X + \varepsilon A \cdot C) < 0 \), the degree \((A \cdot C) < 2/\varepsilon \) is bounded, so that such curves belong to a bounded family. We include in \(\{C_i\} \) a finite set of curves which exhausts this set of rays.

By hypothesis, the half-cone \(\{Z \in \overline{NE}(X)(K_X + \varepsilon A \cdot Z) < 0\} \) has only a finite number of rays of type (b), and we add to \(\{C_i\} \) the curves corresponding to these.

Now consider the cone
\[
V = \overline{NE},(X, A) + \sum_{i=1}^r R^+(C_i) \subset \overline{NE}(X).
\]
If \(V = \overline{NE}(X) \) then the theorem is proved. Otherwise \(\overline{NE}(X) \) contains a rational ray \(Z = R^+(C) \subset V \), and obviously \((C \cdot K_X) < 0 \).

\[
V_Z = \overline{NE},(X, A) + \sum_{i=1}^r R^+(C_i) + Z \subset \overline{NE}(X),
\]
so that \(Z \) is an edge of \(V_Z \), and take a Cartier divisor \(D \) such that the hyperplane \(D^\perp \) passes through this edge, with \(D^\perp \cap V_Z = Z \). Corresponding to \(D \) we have an affine line \(\{D, K_X\} \subset N(X)^0 \) and this line contains a divisor \(L_1 \) such that \(L_1^+ \) is a supporting hyperplane of \(\overline{NE}(X) \), with \(L_1 \) numerically effective and positive on \(V \); this \(L_1 \) can be written as a combination \(L_1 = D + \alpha K_X \), with \(\alpha > 0 \). By construction the cone \(R = L_1^+ \cap \overline{NE}(X) \) is nonempty and is contained strictly inside the half-cone \(\overline{NE}(X)^- \). Moreover, a suitable small neighborhood of \(R \) does not contain any of the rays \(R^+(C_i) \), and the divisor
mL_1 - K_X is ample for \(m \gg 0 \). It follows that \(L_1^3 \geq 0 \). If \(L_1^3 > 0 \) then it follows from the main lemma that \(\overline{NE}(X) \) is locally polyhedral in a neighborhood of \(R \). Then \(L_1 \) can be taken to be \(\mathbb{Q} \)-rational; but then \(R \) contains an extremal ray \(R' \) of type (a) or (b), which is impossible by construction. Hence \(L_1^3 = 0 \). Then \(-L_1^3 K_X \geq 0\) if \(-L_1^3 K_X > 0\) then again using the main lemma we see that either \(R \) contains a ray of the form \(R_\gamma(C) \) where \(C = \varphi^{-1}(y) \) is the general fiber of a conic fibration, which is impossible by construction, or \(\overline{NE}(X) \) is locally polyhedral in a neighborhood of \(R \). In this final case we again get either a ray of type (a) or (b), or a ray corresponding to a conic fibration, any of which are impossible by construction. Hence \(-L_1^3 K_X = 0\).

3.2. We have thus arrived at the situation that \(L_1^3 = L_2^3 K_X = 0 \). Using Mori's argument from [4], §6, we see that \(L_2^3 = 0 \). If \(\rho(X) \geq 3 \) then there exists another \(L_2 \) so that \(L_2^3 \) is a supporting hyperplane of \(\overline{NE}(X) \) similar to \(L_1 \), but \(L_2 \) are not proportional. Again \(L_2^3 = 0 \). By the numerical effectivity of \(L_1 \) and \(L_2 \) we have \(L_1 L_2 \in \overline{NE}(X) \). On the other hand, \(L_2^2 L_2 = L_1^2 L_2 = 0 \), and hence \(L_1 L_2 \in R_1 \cap R_2 \). If \(R_1 \cap R_2 = 0 \), then \(L_1 L_2 \equiv 0 \), and that by Mori's arguments it follows that \(L_1 \) and \(L_2 \) are proportional, which is impossible by assumption. If \(R_1 \cap R_2 \neq 0 \) then \(L_1 + L_2 \) again satisfies the same conditions as \(L_1 \), and then \((L_1 + L_2)^2 = 0\). Hence \(L_1 L_2 \equiv 0 \), which again leads to a contradiction.

3.3. Finally it remains to consider the case \(L_1^3 = L_2^3 K_X = 0 \) and \(\rho(X) = 2 \), the case \(\rho(X) = 1 \) being trivial. Here the extremality condition is trivial, and according to the results of [3] we need only the rationality of \(L_1 \). Indeed, if \(L_1 \) is rational, then by Kawamata's results \(L_1^4 \) is a supporting hyperplane for a ray \(R \) specifying a fibration of del Pezzo surfaces. But as with the rays giving conic fibrations, there are only a finite number of such rays outside \(\overline{NE}_e(X,A) \). Thus we could have added to \(\{C_i\} \) the classes of curves \(C_i \) of general del Pezzo's surfaces in such fibrations having \(-C_i K_X \leq 9\).

Thus \(L_1 \) is an irrational divisor, so that we can assume that \(L_1 = D + \alpha K_X \) with \(\alpha \) irrational, and \(D \) an ample Cartier divisor. The equations \(L_1^3 = L_1^2 K_X = 0 \) give polynomial equations of degree \(\leq 3 \) and \(2 \) in \(\alpha \). Hence \(\alpha \) is a quadratic irrationality. Let \(\alpha' \) be the conjugate irrationality, and \(L_2 = D + \alpha' K_X \). Now \(L_2 \) must satisfy both the equations, since they have rational coefficients. It is easy to check that the cycle \(L_1 L_2 \) is rational. But \(L_1^2 L_2 = 0 \). Hence \(L_1 L_2 \equiv 0 \), since otherwise by irrationality of \(\alpha \) we would have \(L_1 L_2 K_X = 0 \); but if \(Z K_X = Z L_1 = 0 \) then \(Z \equiv 0 \). The relation \(L_1 L_2 \equiv 0 \) again leads to a contradiction, since \(L_1 \) and \(L_2 \) are not proportional, so that \(D = BL_1 + \gamma L_2 \), and hence \(D^3 = (BL_1 + \gamma L_2)^3 = 0 \). This contradiction completes the proof of the main theorem.

Received 4/MAR/83

BIBLIOGRAPHY

2. ______, *Finite generation of the pluricanonical ring for a 3-fold of general type*, preprint, Univ. of California, Berkeley, Calif., 1983.

** The Russian original cites a preprint of this article.

Translated by M. Reid

***Added by translator.