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On a smooth quintic 4-fold

I.A. Cheltsov

Abstract. The birational geometry of an arbitrary smooth quintic 4-fold is studied
using the properties of log pairs. As a result, a new proof of its birational rigidity is
given and all birational maps of a smooth quintic 4-fold into fibrations with general
fibre of Kodaira dimension zero are described.

In the Addendum similar results are obtained for all smooth hypersurfaces of
degree n in Pn in the case of n equal to 6, 7, or 8.

Bibliography: 11 titles.

All the varieties considered in this paper are assumed to be projective and defined
over C. The main definitions, notation, and concepts are contained in [1] and [2].
The author would like to thank Profs. A.Corti, V.A. Iskovskikh, A.V. Pukhlikov,

and V.V. Shokurov for useful ideas and helpful comments.

Main results and their historical background

In 1971 Iskovskikh and Manin proved in [3] the following result.

Quartic theorem. Let X be a smooth quartic 3-fold in P4. Then

BirX = AutX.

This result gave the first counterexample to the famous Lüroth problem in dimen-
sion 3 in the following way. The Quartic theorem implies the non-rationality of each
smooth quartic 3-fold. On the other hand some special quartic 3-folds are unira-
tional.

Example. The quartic

x40 + x0x
3
4 + x41 − 6x21x22 + x42 + x43 + x33x4 = 0

is unirational (see [4]).

In 1987, strengthening the method of Iskovskikh and Manin, Pukhlikov proved
in [5] the following result.

This work was carried out with the partial support of the NSF (grant no. DMS-9800807).
AMS 2000 Mathematics Subject Classification. Primary 14J35, 14E05.
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Pukhlikov’s theorem I. For an arbitrary smooth quintic 4-fold X in P5,

BirX = AutX.

In particular, all smooth quintic 4-folds are non-rational. In the 1980s it was
shown that the method of Iskovskikh and Manin establishes (implicitly) a much
stronger result than the equality of the groups of birational and biregular automor-
phisms (see [4], [6] and [7]). For example, Pukhlikov’s theorem I can be comple-
mented in the following way.

Pukhlikov’s theorem II. A smooth quintic 4-fold X in P5 is not birationally
isomorphic to

(1) Mori 4-folds1 that are not isomorphic to X,
(2) fibrations by surfaces and 3-folds of Kodaira dimension −∞.

How, in their turn, can Pukhlikov’s Theorems I and II be generalized?

Question 1. What kind of Fano 4-folds with canonical singularities or fibrations
by surfaces and 3-folds of Kodaira dimension zero can a smooth quintic 4-fold in
P5 be birationally transformed into?

Note that a smooth quintic 4-fold can be easily birationally transformed into
fibrations by Calabi-Yau 3-folds.

Construction I. Take an arbitrary smooth quintic 4-fold X ⊂ P5. Let ψ : X ���
P1 be a projection from some 3-dimensional linear subspace of P5. Consider the
resolution of the indeterminacies of the map ψ by means of the commutative dia-
gram

W
f ↙ ↘ g

X
ψ��� P1

.

Then it is easy to show that g is a fibration by Calabi-Yau 3-folds.

Thus, Question 1 can have no negative answer in principle.

Construction II. In P5 we choose a smooth quintic 4-foldX containing a 2-dimen-
sional plane P . Let ψ : X ��� P2 be a projection from P and let

W
f ↙ ↘ g

X
ψ��� P2

be a resolution of the indeterminacies of the map ψ. Then g is a fibration by
K3 surfaces.

Important observation. A general smooth quintic 4-fold in P5 does not contain
2-dimensional planes.
It follows from this important observation and Construction II that the answer

to Question 1 depends on the deformation type of the smooth quintic 4-fold.

1Mori 4-folds are Fano 4-folds with terminal Q-factorial singularities and Picard group Z.
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Agreement. We shall say that a fibration is induced by a projection in P5 if it is
birationally equivalent (as a fibration) to one of the fibrations in Constructions I
and II.

The aim of this paper is to present an alternative proof of Pukhlikov’s theorems I
and II and give the following answer to Question 1.

Main theorem. A smooth quintic 4-fold X in P5 is not birationally isomorphic
to

(1) Fano 4-folds with canonical singularities that are not biregular to X,
(2) fibrations by surfaces and 3-folds of Kodaira dimension zero that are not

induced by projections in P5.

Note that a generalization of the Quartic theorem along the same lines as our
main theorem (which generalizes Pukhlikov’s theorems I and II) has been performed
in [2].

Interesting observation. As the main theorem shows, a smooth quintic 4-fold in P5 is
the first example of a rationally connected 4-fold that is not birationally equivalent
to an elliptic fibration.

§ 1. New objects and their properties
In this section we introduce objects that will be used throughout what follows.

Main object. A movable log pair

(X,MX) =

(
X,

n∑
i=1

biMi

)

is a variety X together with a formal finite linear combination of linear systems Mi

without fixed components such that all bi ∈ Q�0.
Note that (X,MX) can be regarded as a usual log pair: it suffices to replace each

linear system Mi by an appropriate weighted sum of sufficiently general divisors in
this system.

Observation. The strict transform of MX is defined in a natural way for each bira-
tional map of X.
We shall assume that log canonical divisors of all log pairs under consideration are

Q-Cartier divisors. Thus, discrepancies, terminality, canonicalness, log terminality,
and log canonicalness can be defined for movable log pairs in a similar way to
ordinary ones.
It is easy to verify that an application of the Log Minimal Model Program to a

canonical (terminal) movable log pair preserves its canonicalness (its terminality).

Centre of canonical singularities. A proper irreducible and reduced sub-
variety Y of a variety X is called a centre of canonical singularities of a
movable log pair (X,MX) if there exist a birational morphism f : W → X and an
f-exceptional divisor E ⊂W such that

a(X,MX , E) � 0 and f(E) = Y.
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We shall denote by CS(X,MX) the set of all centres of canonical singularities of
(X,MX).

The following example will clarify the nature of the objects just introduced.

Simple example. Consider a movable log pair (P2, bM), where M is a linear
system of lines in P2 passing through a fixed point O. Then

CS(P2, bM) =

{
∅ if b < 1,

{O} if b � 1.

This example is an illustration of the following property of movable log pairs.

Observation. The singularities of a movable log pair coincide with the singularities
of the variety outside the base loci of the components of the boundary.
It is natural to ask whether there exists a special model of a movable log pair.

Canonical model. We say that a movable log pair (V,MV ) is a canonical model
of a movable log pair (X,MX) if there exists a birational map ψ : X ��� V such
that

(V,MV ) = (V, ψ(MX )),

the divisor KV +MV is ample, and (V,MV ) has canonical singularities.

This definition of a canonical model is justified by the following important prop-
erty.

Uniqueness theorem. A canonical model is unique, once it exists.

To prove the uniqueness theorem one merely has to write “canonical” in place
of “log canonical” throughout [8].
For an arbitrary movable log pair (X,MX) we consider a birational morphism

f : W → X such that the movable log pair

(W,MW ) = (W, f−1(MX))

has canonical singularities.

Iitaka map and Kodaira dimension. If the linear system |n(KW +MW )| is not
empty for n� 0, then the map

I(X,MX ) = ϕ|n(KW+MW )| ◦ f−1 for n� 0

is called the Iitaka map of (X,MX) and

κ(X,MX) = dim(I(X,MX )(X))

is called the Kodaira dimension of (X,MX). Otherwise I(X,MX) is considered to
be nowhere defined on X and κ(X,MX) = −∞.

One can prove the following result.
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Consistency theorem. The map I(X,MX) and the quantity κ(X,MX) do not
depend on the choice of the morphism f .

Note that the Iitaka map and the Kodaira dimension of a movable log pair
depend a priori on the positive integer n � 0 used in their definition. One can
show that the Kodaira dimension does not depend on this quantity. Moreover, it
follows from the Log Abundance (see [1]) that the Iitaka map also depends only
on the properties of the movable log pair. Unfortunately, the Log Abundance is
proved only in dimensions 2 and 3. Nevertheless, one can see a posteriori that the
Iitaka maps of all movable log pairs in this paper do not depend on n� 0.
We use mostly2 movable log pairs, and we shall call them simply log pairs.

§ 2. Log Calabi-Yau structures on a quintic 4-fold
We now show the relation between the objects introduced in the previous section

and the main theorem.

Main assumption. In what follows X is a smooth quintic 4-fold in P5.

The adjunction formula and Lefschetz’s theorem yield the relations

PicX = ZKX and KX ∼ OP5(−1)|X .

We fix a log pair (X,MX) and choose λ ∈ Q>0 ∪ {+∞} such that

KX + λMX ∼Q 0,

where λ = +∞ for MX = ∅.

Agreement. In the case λ = 1 we call (X,MX) a log Calabi-Yau quintic 4-fold.

This means simply that the log canonical divisorKX+MX isQ-rationally trivial.

Core theorem. Let (X,MX) be a log Calabi–Yau quintic 4-fold. Then (X,MX)
is canonical, κ(X,MX) = 0, and

CS(X,MX) =




∅,

{S} for a linear subspace
S ⊂ X of dimension 2,

{X ∩H} for a linear subspace
H ⊂ P5 of dimension 3.

One may notice a similarity between the core theorem and the main theorem.
In the next two sections we shall deduce the main theorem from the core theorem.
Unfortunately, the core theorem says nothing about the structure of the boundary
MX . Nevertheless, we can obtain a rather precise description of MX on the basis
of the core theorem in the case CS(X,MX) �= ∅.

2Except in § 5.
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Refinement of the core theorem. Under the assumptions of the core theorem

MX = ψ−1(MY ),

where the rational map ψ : X ��� Y is a projection from CS(X,MX).
3

Proof. Let S be the union of all elements of CS(X,MX). It follows from the core
theorem that S is a surface lying in a linear subspace T ⊂ P5 of dimension 3.
We consider a linear system HT of hyperplane sections of X containing S. Next

we choose a birational morphism f : W → X such that the linear system f−1(HT )
is free and the variety W is smooth.
We may assume that f is an isomorphism outside S and W contains a single

f-exceptional divisor lying over the generic point of each irreducible component
of S. In the case when S is a linear subspace of P5 we set f to be a blow up of S.
Let

g = ϕHT ◦ f and E = f−1(S).

We take a sufficiently general divisor D in the linear system f−1(HT ). Then

D ∼ f∗(−KX )−E −
k∑
i=1

aiFi,

where ai ∈ N and
dim f(Fi) � 1.

On the other hand,

f−1(MX)|D ∼Q




αD|D for some α ∈ Q>0 if S is a 2-dimensional plane in P5,
k∑
i=1

ciFi|D for some ci ∈ Q otherwise.

These equivalences show that the boundary f−1(MX) lies in the fibres of g. It is now
easy to demonstrate that the map g◦f−1 is a projection from the locus CS(X,MX).
To illustrate the result just proved consider the following example.

Example. Let (X, bM) be a log Calabi-Yau quintic 4-fold such that the linear
system M has an irreducible general member and b ∈ Q>0. Let

CS(X,MX) = {X ∩H},

where H is a 3-dimensional linear subspace of P5. Then it follows from the refine-
ment of the core theorem that M is a pencil of hyperplane sections of X passing
through H.

We prove the core theorem in §§ 5 and 6.

3We set ψ to be the identity map if CS(X,MX) = ∅.
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§ 3. Iitaka maps and the quintic 4-fold
We use the notation and the assumptions of the previous section. The assertions

of the core theorem impose fairly strong structural constraints on log pairs on X.

Corollary to the core theorem. The following relations hold :

λ = 1 ⇐⇒ κ(X,MX) = 0,

λ < 1 ⇐⇒ κ(X,MX) > 0,

λ > 1 ⇐⇒ κ(X,MX) = −∞.

Proof. All these relations are easy to prove. We shall show that λ < 1 implies
κ(X,MX) > 0. Assume that λ < 1 and κ(X,MX) � 0. Then

0 = κ(X, λMX) � κ(X,MX) � 0.

Hence κ(X, λMX) = κ(X,MX) = 0. The last equality is easily seen to contradict
the definition of the Kodaira dimension and the movability of the log pair (X,MX).

Log pairs with κ(X,MX) ∈ [1, 3] can be described rather explicitly.
Description theorem I. Let κ(X,MX) ∈ [1, 3]. Then (X,MX) is not canonical
and

I(X,MX)=




the restriction of a projection from
a 2-dimensional linear subspace S⊂X,

the restriction of a projection from
a 3-dimensional linear subspace H ⊂P5.

Moreover,
MX = I(X,MX )

−1(MY ),

where Y = I(X,MX)(X).

Proof. The fact that (X, λMX) is canonical is a consequence of the core theorem.
Thus,

κ(X,MX) � κ(X, λMX) = 0.

Assume now that (X, λMX) is terminal. We select δ ∈ Q∩(λ, 1) such that (X, δMX)
is still terminal. Then

4 = κ(X, δMX) � κ(X,MX) < 4.

Hence
CS(X, λMX) �= ∅.

The assertion now follows from the refinement of the core theorem.

Log pairs of Kodaira dimension −∞ cannot be described so neatly.

Description theorem II. Let κ(X,MX) = −∞. Then CS(X,MX) = ∅.

Proof. The log pair (X, λMX) is canonical by the core theorem and the required
result follows from the inequality λ > 1.

We shall see in the next chapter that Pukhlikov’s theorems I and II follow from
Description theorem II.
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§ 4. Birational geometry of a quintic 4-fold
It is now time to prove the main theorem and Pukhlikov’s theorems I and II

using the results of the previous section, the core theorem and the refinement of
the core theorem. In view of the main assumption, X is a smooth quintic 4-fold
in P5.

Theorem A. X is not birationally isomorphic to any fibration with general fibre
of Kodaira dimension −∞.
Proof. Assume that ρ is a birational transformation of the quintic 4-fold X into a
fibration τ : Y → Z such that the general fibre of τ has Kodaira dimension −∞.
For example, τ can be a conic bundle or a del Pezzo fibration.
We take a ‘sufficiently big’ very ample divisor H on Z and choose µ ∈ Q>0 such

that
(X,MX) = (X, µρ−1(|τ∗(H)|))

is a log Calabi-Yau quintic 4-fold. By construction,

κ(X,MX) = −∞;
but this contradicts the core theorem.

Note, that Theorem A covers one-half of Pukhlikov’s theorem II. Our next result
completes the proofs of Pukhlikov’s theorems I and II and proves the first part of
the main theorem.

Theorem B. BirX = AutX and X is not birational to any Fano 4-fold with
canonical singularities that is not biregularly equivalent to X.

Proof. We shall establish a slightly stronger result. Assume that we have a bira-
tional map ρ : X ��� Y such that Y is a weak Fano 4-fold with canonical singular-
ities and the divisor −KY is nef and big. We claim that ρ is an isomorphism.
For n� 0 the linear system |−nKY | is well known to be free. Consider the log

pairs

(Y,MY ) =

(
Y,
1

n
|−nKY |

)
and (X,MX) = (X, ρ−1(MY )).

The corollary to the core theorem shows that (X,MX) is a log Calabi-Yau quintic
4-fold, and the refinement of the core theorem ensures the terminality of the log
pair (X,MX). Thus, we can find ζ ∈ Q>1 such that both log pairs (X, ζMX) and
(Y, ζMY ) are canonical models. The uniqueness theorem now shows that ρ is an
isomorphism.

The next result completes the proof of the main theorem.

Theorem C. All fibrations birational to X and with general fibre of Kodaira
dimension zero are induced by projections in P5.

Proof. Let ρbe a birational transformation of the quinticX into a fibration τ :Y →Z
such that the Kodaira dimension of the general fibre of τ is zero. We take a
‘sufficiently big’ very ample divisor H on Z. The equality

κ(X, ρ−1(|τ∗(H)|)) = dimZ

and Description theorem I now ensure the required result.
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§ 5. Proof of the core theorem, part I
In this section we prove one half of the core theorem. We use ideas based on

Corti’s ideas and results [9]. Fix a log Calabi-Yau 4-fold (X,MX), where X is a
smooth quintic 4-fold. The main result of this section is as follows.

Non-existence theorem. CS(X,MX) contains no points.

We shall prove the non-existence theorem in several steps; meanwhile, we explain
its importance.

Important observation. As shown in [6], Pukhlikov’s theorems I and II are conse-
quences of the non-existence theorem.
First, we outline the scheme of the proof of the non-existence theorem.

Global strategy : (1) Assume the existence of a point in CS(X,MX); (2) replace
(X,MX) by a new log pair that contains the above-mentioned point in CS(X,MX)
as a centre of log canonical singularities (LCS); (3) reduce the non-existence theo-
rem to a 3-fold problem.

Assume that CS(X,MX) contains a point O and consider the log pair

(X,BX) = (X,HX +MX),

where HX is a sufficiently general hyperplane section of X passing through O.
Note that the log pair (X,BX) is neither a movable nor an ordinary log pair.

Nevertheless, we may handle it as an ordinary log pair.

Observation. O ∈ LCS(X,BX).

Let f : W → X be a blow up of O and let E = f−1(O). Then

a(X,BX , E) = a(X,MX , E)− 1.
Note that, in principle, the f-exceptional divisor E can realize the point O as

a centre of canonical singularities of the log pair (X,MX) and as a centre of log
canonical singularities of the log pair (X,BX).

Lemma 5.1. The following inequalities hold :

a(X,BX , E) > −1 and a(X,MX , E) > 0.

Proof. Assume the contrary. Then

multO(MX) � 3
and

5 = (−KX)
2 ·M2

X � multO(M2
X) � mult2O(MX) � 9.

Consider the log pair

(W,BW ) = (W, (multO(MX)−2)E+BW ) = (W, (multO(MX)−2)E+HW +MW ),

where HW = f−1(HX) and MW = f−1(MX).

Observation. By construction,

KW +BW ∼Q f∗(KX +BX).

The following result is a consequence of Lemma 5.1.
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Lemma 5.2. LCS(W,BW ) contains a proper irreducible subvariety of E not lying
in HW .

Proof. The equivalence

(multO(MX)− 3)E +MW ∼Q f∗(KX +MX)

and Lemma 5.1 yield

S ∈ CS(W, (multO(MX)− 3)E +MW ),

where S is a proper irreducible subvariety of the f-exceptional divisor E. Hence

S ∈ LCS(W, (multO(MX)− 2)E +MW )

and the assumption that HX is general completes the proof.

We consider now a subvariety of W that plays a rather important role in the
proof of the non-existence theorem.

New object. Let S be an element of maximum dimension of LCS(W,BW ) such
that S is a proper subvariety of E and S �⊂ HW .

Note that S can be a point, a curve, or a surface.

Local strategy: (1) prove that S is not a surface; (2) deduce from Shokurov’s con-
nectedness theorem that S is not a point; (3) show that S is a ‘line’ in E ∼= P3.
We shall now use a result of Corti’s — more precisely, Theorem 3.1 of [9].

Corti’s lemma. Let P be a smooth point on a surface H and assume that for
some non-negative rational numbers a1 and a2,

P ∈ LCS(H, (1− a1)∆1 + (1− a2)∆2 +MH),

where the boundary MH is movable and the irreducible reduced curves ∆1 and ∆2
have a normal intersection at P . Then

multP (M
2
H) �

{
4a1a2 if a1 � 1 or a2 � 1,
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Note that Corti’s lemma here differs slightly, but not significantly, from its orig-
inal form.

Lemma 5.3. S is not a surface.

Proof. Assume the contrary. The fact that

S ∈ LCS(W, (multO(MX)− 2)E +MW )

allows us to apply Corti’s lemma. This gives us the inequality

multS(M
2
W ) � 4(3−multO(MX)).

Thus,

multO(M
2
X) � mult2O(MX) + multS(M

2
W ) � mult2O(MX) + 4(3−multO(MX)).

Hence
5 = (−KX)

2 ·M2
X � multO(M2

X) � (multO(MX) − 2)2 + 8.

The next result is a special case of Shokurov’s connectedness theorem (see [10]).
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Connectedness theorem. LCS(W,BW ) is connected in the neighbourhood of E.

In particular, we have the following result.

Lemma 5.4. S is not a point.

Thus, S is a curve in E. Corollary 3.6 in [9] shows that S is a ‘line’ in E ∼= P3.
Nevertheless, to keep this paper self-contained we prove this result as the following
lemma.

Lemma 5.5. S is a ‘line’ in E ∼= P3.

Proof. We know that the set

LCS(W, (multO(MX)− 2)E +HW +MW )

is connected in the neighbourhood of E and we have much freedom in our choice
of HX . Combined with the adjunction formula this shows that

LCS(HW , (multO(MX) − 2)E|HW +MW |HW )

contains only points and

{S ∩HW} ⊂ LCS(HW , (multO(MX) − 2)E|HW +MW |HW ).

Applying Shokurov’s connectedness theorem to

LCS(HW , (multO(MX) − 2)E|HW +MW |HW )

and the morphism f |HW we obtain the connectedness of

LCS(HW , (multO(MX) − 2)E|HW +MW |HW )

in the neighbourhood of E|HW . Hence S ∩HW consists of one point.

We now summarize what we have established so far.

Summary. LCS(W,BW ) contains an irreducible curve S �⊂ HW such that S is a
‘line’ in E ∼= P3.

We now come down from a 4-fold to a 3-fold.

Local strategy : (1) restrict ‘everything’ to a special hyperplane section passing
through the point O; (2) use a result of Lemma 5.3 type to show that the quintic
X contains a plane passing through the point O.

Note that we have, incidentally, shown that

O ∈ LCS(HX ,MX |HX ).

Unfortunately, this is not sufficient for the proof of the non-existence theorem. We
require a stronger result.
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Let Y be a sufficiently general hyperplane section of X passing through O such
that

S ⊂ f−1(Y ).

We set
(Y,MY ) = (Y,MX |Y ).

Warning. Y may be singular and the log pair (Y,MY ) may no longer be movable!

Nevertheless, we can rather freely handle the log pair (Y,MY ) in the neighbour-
hood of the point O.

Remark. The point O is smooth on Y and

O ∈ LCS(Y,MY ).

Let g : V → Y be a blow up of O and let F = g−1(O). By construction

S ⊂ F, E|V = F, multO(MY ) = multO(MX), g−1(MY ) =MW |V .

Consider now the log pair

(V,MV ) = (V, (multO(MY )− 2)F +MV ),

where MV = g−1(MY ). Then

KV +MV ∼Q f∗(KY +MY ).

Most important property of YYY . S ∈ LCS(V,MV ).

Proof. By construction S ⊂ V and

S ∈ LCS(W,BW ).

By the adjunction formula and Shokurov’s connectedness theorem the log pair
(V,MV ) is not log terminal in the neighbourhood of the curve S.
Assume that LCS(V,MV ) does not contain the curve S. Then LCS(V,MV )

contains a point on the curve S. Moreover, applying Shokurov’s connectedness
theorem to the log pair (V,MV ) again, we conclude that LCS(V,MV ) contains
precisely one point on S.
Let h : U → W be a blow up of S and let G = h−1(S). Consider the log pair

(U,BU ) = (U, h−1(BW ) + (multS(B
W )− 2)G).

Then
KU +BU ∼Q h∗(KW + BW ).

The adjunction formula and Shokurov’s connectedness theorem ensure (see the

proof of Lemma 5.1) the existence of a curve S̃ ⊂ G in LCS(U,BU ) such that S̃ is

a section of h|G and either S̃ lies in the 3-fold h−1(V ) or the intersection of S̃ and
h−1(V ) consists of one point.
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Note that everything here is local with respect to X. Hence, applying the
Kawamata–Viehweg vanishing theorem (see [1]) to the divisor h−1(V )−G we obtain
the surjectivity

H0(h−1(V ))→ H0(h−1(V )|G)→ 0.

On the other hand, the linear system
∣∣h−1(V )|G∣∣ is free and, therefore, in view of

the generality in our choice of Y , the curve S̃ does not lie in h−1(V ).
Direct calculations show that the divisor h−1(V )|G is nef and big onG. Moreover,

its intersection with each section of the morphism h|G is either trivial or contains

more than one point. However, we have already proved that the intersection of S̃
and the 3-fold h−1(V ) consists of a single point.

How can we use the most important property of Y ?

Observation. We must apply arguments similar to the proof of Lemma 5.3 to S
and Y to arrive at a contradiction.
Recall that the log pair (Y,MY ) is not necessarily movable.

Lemma 5.6. The log pair (Y,MY ) is not movable.

Proof. If (Y,MY ) is movable, then we can repeat the proof of Lemma 5.3 word for
word and obtain a contradiction.

Thus, it would be nice to adjust the proof of Lemma 5.3 so that one can apply
it to the non-movable log pair (Y,MY ).

Observation. X contains a 2-dimensional plane P such that the curve S lies in
f−1(P ), because otherwise (Y,MY ) is movable.
Note that the multiplicity of P in MY is equal to the multiplicity of P in the

boundary MX .

Decomposition. We have

MY = multP (MX)P +RY ,

where the log pair (Y,RY ) is movable.

What shall we do now?

Local strategy : (1) use Corti’s lemma to obtain a lower bound for multO(R
2
Y );

(2) use the properties of the embedding of Y in P4 to obtain an upper bound for
multO(R

2
Y ).

Note that our proof of Lemma 5.3 is based on Corti’s lemma for two normally
intersecting prime divisors and one movable boundary.

Observation. The divisors F and g−1(P ) intersect normally at S.
Thus, we can apply Corti’s lemma to the log pair

(V,MV ) = (V, (multO(RY ) + multP (MX)− 2)F +multP (MX)g
−1(P ) + RV ),

where RV = g−1(RY ). This gives us

multS(R
2
V ) � 4(3−multO(RY )−multP (MX))(1 −multP (MX)).
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Combining this with the relation

multO(R
2
Y ) � mult2O(RY ) + multS(R2V )

we obtain the following inequality.

Important inequality I:

multO(R
2
Y ) � (multO(RY )− 1 +multP (MX))

2 + 8(1−multP (MX)).

We shall now find an upper estimate of multO(R
2
Y ). Let Z be a sufficiently

general hyperplane section of Y passing through the point O.

Observation. Z is a smooth quintic surface in P3.
On the one hand

(RY |Z)2 � multO(R2Y ).

On the other hand

(RY |Z)2 = ((Z −multP (MX)P )|Z)2 = 5− 2multP (MX)− 3mult2P (MX).

Hence we obtain the following inequality.

Important inequality II:

multO(R
2
Y ) � 5− 2multP (MX)− 3mult2P (MX).

Proof of the non-existence theorem. Important inequalities I and II yield

multP (MX) = 1 and multO(RY ) = 0.

Thus,

multO(MX) = multO(MY ) = multP (MX) + multO(RY ) = 1.

Hence

O /∈ CS(X,MX).

§6. Proof of the core theorem, part II
This section completes the proof of the core theorem.
As in the previous section, let (X,MX) be a smooth log Calabi-Yau quintic

4-fold. We may assume that CS(X,MX) �= ∅. Hence the non-existence theorem
ensures the existence of a variety S with dimS �= 0 such that

S ∈ CS(X,MX).

In [6] Pukhlikov proved the following result.
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Pukhlikov’s lemma. The following equality holds:

multS(MX) = 1.

Observation. It follows from the non-existence theorem and Pukhlikov’s lemma
that the log pair (X,MX) is canonical.

Global strategy : (1) obtain restrictions on the dimension and the degree of S;
(2) show that S lies in a 3-dimensional linear subspace; (3) use the properties of
the embedding of X in P5 to complete the proof of the core theorem.

Note that S is either a surface or a curve.

Lemma 6.1. S is a surface.

Proof. Assume that S is a curve. Let f : W → X be a blow up of a generic point
in the curve S.4 We have

a(X,MX , E) = 1.

Hence there exists a proper subvariety T of E such that

T ∈ CS(W, f−1(MX)− E)

and the morphism f |T : T → S is surjective. Thus,

multS(MX) � multT (g−1(MX)) > 1.

Lemma 6.2. deg S � 5.

Proof. The required result is a consequence of the inequality

5 = (−KX)
2 ·M2

X � multS(M2
X) degS � degS.

Lemma 6.3. S lies in a 3-dimensional linear subspace of P5.

Proof. Assume the contrary. Taking the intersection ofX with a general hyperplane
section we can assume that X is a quintic in P4 containing the curve S. Using the
method of [6] we shall show that the curve S is contained in a 2-dimensional linear
subspace of P4.
Consider a sufficiently general cone RS over the curve S. Then

RS ∩X = S ∪ S̃

and deg S̃ = 4degS. Let

Z = Supp

( n⋃
i=1

BsMi

)
.

4We may assume that W is a quasiprojective variety.
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Then S ⊂ Z; but since RS is general, it follows that S̃ �⊂ Z. As Pukhlikov showed
in [6], the generality of RS means that the curves S and S̃ intersect transversally
at 4 degS distinct points.
On the other hand,

4 degS = deg S̃ = degMX |S̃ � 4 degSmultS(MX) = 4 degS.

Thus,

S̃ ∩MX = S ∩ S̃.

Note that the general secant of the curve S intersects X at precisely 5 points,
because otherwise it lies in X and must be a component of Z. Consider now the
divisor

D =
n∑
i=1

biMi,

where Mi is a general member of the linear system Mi. By assumption,

multS(D) = 1.

We choose two general points PS and PD in the curve S and the divisor D,
respectively. Let L be a line passing through PS and PD, and let P be a sufficiently
general point in L. We denote by RS,P the cone over the curve S with vertex P ,
and let

RS,P ∩X = S ∪ S̃P .

We already showed before that the divisor D either contains the curve S̃P or inter-

sects it only at the points in S ∩ S̃P . By construction,

PD ∈ S̃P ∩D and PD /∈ S.

Hence S̃P ⊂ D and, in particular,

L ∩X ⊂ D.

The last condition is closed, and we can assume that

PD ∈ S \ PS .

Hence, in view of the generality of D, a general secant of the curve S intersects Z
at 5 distinct points.
On the other hand, let A be a set of 3 distinct collinear points in a general

hyperplane section of Z. Then one can show that A lies in some plane component
of Z.

We now summarize what we have already proved.
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Summary. CS(X,MX) contains a surface S with deg S ∈ [1, 5] such that S lies
in a 3-dimensional linear subspace T ⊂ P5.
Note that we have not used anywhere the irreducibility of the surface S, although

it has been convenient to keep this property in mind.

Important remark. We can assume that S is the union of all elements of CS(X,MX).

This apparently simple remark brings us to the following useful observation.

Observation. Either of the equalities deg S = 1 or deg S = 5 establishes the core
theorem!
Thus, we can assume that deg S ∈ [2, 4]. Let HT be a pencil on X cut by the

hyperplane sections containing T . Then

X ∩ T = S ∪
r∑
i=1

Si,

where the Si are irreducible surfaces.

Observation. All the surfaces Si are reduced.
To prove the core theorem we merely need to show that CS(X,MX) contains all

the Si.

Reduction. As in the proof of Lemma 6.3, by taking the intersection of X with
the general hyperplane section we may assume that X is a quintic 3-fold, T is
2-dimensional linear subspace, and S and all the Si are curves.

What can we do now?

Local strategy : Consider the intersection form of the curves Si on a hyperplane
section of X containing T .

Consider a surface D in the pencil HT that is smooth at the points of intersection
of the curve S with the curves Si. On D we have( r∑

i=1

Si

)
· Sj = (D|D − S) · Sj = deg Sj − S · Sj.

On the plane T ,

deg Sj − S · Sj = deg Sj − deg S deg Sj < 0.

Thus,
(S · Sj)D = (S · Sj)T

because the surface D is smooth at the points of intersection of S with the curves Si.
It follows from [11] that the intersection form of the curves Si on the surface D is
negative-definite.

Proof of the core theorem. The divisor

MX |D − S −
r∑
i=1

multSi(MX)Si

is nef on the surface D.
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On the other hand, on the surface D we have

MX |D − S −
r∑
i=1

multSi (MX)Si ∼Q
r∑
i=1

(1−multSi (MX))Si

and
r∑
i=1

(1−multSi(MX))Si · Sj � 0, j = 1, . . . , r.

Since the intersection form of the curves Si on D is negative-definite, it follows that

multSi (MX) � 1

for all Si.

Addendum

We fix a smooth hypersurface X of degree n in Pn, where n = 6, 7 or 8. In this
section we shall generalize our main theorem in the following way.

Hypersurface theorem. BirX = AutX and the hypersurface X is not bira-
tionally isomorphic to the following varieties: Fano varieties with canonical
singularities that are not biregular to X, fibrations with general fibre of Kodaira
dimension −∞, fibrations with general fibre of Kodaira dimension zero distinct
from fibrations induced by projections from an (n− 2)-dimensional linear subspace
of Pn.

Fix a log pair (X,MX) such that

KX +MX ∼Q 0.

It follows from the proof of the main theorem that the hypersurface theorem is a
consequence of the following generalization of the core theorem.

Core theorem I. (X,MX) is canonical, κ(X,MX) = 0, and

CS(X,MX) =



∅,

{X ∩H} for a linear subspace
H ⊂ Pn of dimension n− 2.

Moreover, it is clear in its turn from the proof of the core theorem that, in
place of core theorem I, it suffices to demonstrate the following analogue of the
non-existence theorem.
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Statement. CS(X,MX) contains no points.

Assume that CS(X,MX) contains a point O. Consider the log pair

(X,BX) = (X,HX +MX),

where

HX =
n−4∑
i=1

Hi

and the divisors Hi are general hyperplane sections of X passing through O.

Observation. The log pair (X,BX) is not log canonical at the point O.

Let f : W → X be a blow up of O and let E = f−1(O). Then

a(X,BX , E) = a(X,MX , E)− n+ 4

and the proof of Lemma 5.1 gives us the following inequalities:

a(X,BX , E) > −1, a(X,MX , E) > 0.

Consider now the log pair

(W,BW ) = (W, (multO(MX)−2)E+BW ) = (W, (multO(MX)−2)E+HW +MW ),

where HW = f−1(HX) and MW = f−1(MX). By construction,

KW +BW ∼Q f∗(KX +BX).

Arguments similar to the proof of Lemma 5.2 show that the set LCS(W,BW )
contains a proper irreducible subvariety S ⊂ E such that S does not lie in HW and
the log pair (W,BW ) is not log canonical at the generic point of S.
Let S be an element of maximum dimension among all elements of LCS(W,BW )

possessing the above properties. Then the proof of Lemma 5.3 shows that the
codimension of S is larger than 2, while the proof of Lemma 5.4 shows that S is
not a point.

Reduction to a 3-fold. Let Z =
⋂n−4
i=1 Hi. Consider the log pair

(Z,MZ) = (Z,MX |Z).

In view of the generality of HX , Z is smooth and the log pair (Z,MZ) is movable.
Note that the adjunction formula yields

KZ +MZ ∼Q (KX +BX)|Z .

What properties does the log pair (Z,MZ) inherit from (X,MX)?
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Lemma. The log pair (Z,MZ) is not log canonical at the point O.

Proof. This follows from the repeated use of the adjunction formula and Shokurov’s
connectedness theorem (see [10]).

Let h : U → Z be a blow up of the point O and let G = h−1(O). Then, by
construction,

E|U = G, multO(MZ) = multO(MX), h−1(MZ) =MW |U .

Consider now the log pair

(U,MU) = (U, (multO(MZ) − 2)G+MU ),

where MU = h−1(MZ). Then the adjunction formula yields

KU +MU ∼Q f∗(KZ +MZ) ∼Q (KW +BW )|U .

Observation. In view of the generality of HX ,

LCS(U,MU ) = LCS(W, (multO(MX) − 2)E +MW ) ∩ U.

Corollary 3.6 of [9] implies the following property of Z, which we prove here to
keep our paper self-contained.

Main property of ZZZ. LCS(U,MU ) consists of one point and the log pair (U,MU)
is not log canonical at this point.

Proof. It follows from the last observation that LCS(U,MU ) contains only points.
Shokurov’s connectedness theorem (see [10]) shows that LCS(U,MU ) contains pre-
cisely one point, and by the lemma the log pair (U,MU) is not log canonical at this
point.

The main property of Z and the last observation ensure that S is a linear sub-
space of E ∼= Pn−2 of dimension n − 4. Let Y be a sufficiently general hyperplane
section of X passing through the point O such that

S ⊂ f−1(Y ).

We set
(Y,MY ) = (Y,MX |Y ).

Warning. Y may be singular.

Nevertheless, we can still handle the log pair (Y,MY ) in the neighbourhood of
the point O because O is smooth on Y .

Observation. The log pair (Y,MY ) is movable.
Let g : V → Y be a blow up of O and let F = g−1(O). Then, by construction,

S ⊂ F, E|V = F, multO(MY ) = multO(MX), g−1(MY ) =MW |V .

Consider the log pair
(V, (multO(MY )− 2)F +MV ),

where MV = g−1(MY ).
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Most important property of YYY . The log pair

(V, (multO(MY ) − 2)F +MV )

is not log canonical at the generic point in S.

Proof. Repeatedly restricting ‘everything’ to the general hyperplane section of X
passing through the point O and applying the adjunction formula we can assume
that W is a 4-fold, V is a 3-fold, and S is a curve. We can now use the arguments
from the proof of the analogous result in § 5.
Hence Corti’s lemma yields the relation

multS(M
2
V ) > 4(3−multO(MY )).

Thus,

multO(M
2
Y ) � mult2O(MY ) +multS(M

2
V ) > mult2O(MY ) + 4(3−multO(MY )).

Finally,

n = (−KX)
n−4 ·M2

Y � multO(M2
Y ) > (multO(MY ) − 2)2 + 8.
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Lüroth problem”, Mat. Sb. 86 (128):1 (1971), 140–166; English transl. in Math. USSR-Sb.
15 (1971).

[4] V.A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, Itogi
Nauki i Tekhniki, Ser. Sovrem. Probl. Mat. 12 (1978), 159–236; English transl. in J. Soviet

Math. 13 (1980).
[5] A.V. Pukhlikov, “Birational automorphisms of four-dimensional quintic”, Invent. Math. 87

(1987), 303–329.
[6] A.V. Pukhlikov, “Notes on a theorem of V. A. Iskovskikh and Yu. I. Manin about the 3-fold

quartic”, Trudy Mat. Inst. Steklov. 208 (1995), 278–289; English transl. in Proc. Steklov
Inst. Math. 208 (1995).

[7] A. Corti, “Factorizing birational maps of threefolds after Sarkisov”, J. Algebraic Geom. 4
(1995), 223–254.

[8] V.V. Shokurov, “3-fold log models”, J. Math. Sci. 81 (1996), 2667–2699.
[9] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Preprint 11,

Warwick, 1999.
[10] V.V. Shokurov, “Semistable 3-fold flips”, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993),

165-222; English transl. in Russian Acad. Sci. Izv. Math. 42:2 (1994).
[11] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math. 88 (1966),

129–136.

Moscow
E-mail address : cheltsov@yahoo.com

Received 10/JUN/99 and 19/JAN/00
Translated by I. CHELTSOV

Typeset by AMS-TEX


