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B o u n d e d  T h r e e - D i m e n s i o n a l  F a n o  V a r i e t i e s  o f  I n t e g e r  I n d e x  
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ABSTRACT. The cube of the anticanonical class of a three-dimensional Fano variety with canonical singularities 
and integer Fano index is effectively bounded. 
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All varieties under consideration are complex and projective. The basic definitions and notation can be 
found in [1] and [2]. 

w I n t r o d u c t i o n  

The main purpose of this paper is to prove the following theorem. 

T h e o r e m  1. Suppose that X is a three-dimensional Fano variety with canonical singularities, and 
- K x  ~Q H ,  where H is an ample Cartier divisor. Then H 3 ~_ 184/I,  where I is the Gorenstein index 
of X .  

R e m a r k  1. In Theorem 1, I equals 1 or 2 (see [3]). Considering the global canonical covering of X 
(see [4]), we can assume that I = 1, i.e., that X is Gorenstein. It is easy to see that - K x  ~ H in this 
case .  

R e m a r k  2. The bound for H 3 given by Theorem 1 is apparently far from being perfect. If X is 
smooth, then H 3 < 64 (see [2]), and the equality is attained for ~3. If X has terminal Gorenstein 
singularities, X can be deformed into a smooth variety (see [5]), and hence H 3 ~ 64. If X has terminal 
singularities, a consideration of the canonical covering of X (see Remark 1) implies that H 3 _~ 64/I .  

There exist examples of three-dimensional Fmlo varieties with canonical Gorenstein singularities for 
which H 3 = 72, such as the cone over an anticanonically embedded del Pezzo surface of degree 9 (see [2]). 

For X with non-Gorenstein terminal quotient singularities, the classification implies that H 3 ~ 24; 
the equality is attained for the quotient of p1 • 1~1 • p1 by an involution with a finite number of fixed 
points (see [4]). 

In [6, 7], Fano examined three-dimensional varieties whose hyperplane sections are K3 and Enriques 
(with canonical singularities) surfaces, respectively. Assuming the normality of such varieties, we can show 
that they coincide with the varieties satisfying the assumptions of Theorem 1 and the additional condition 
that the divisor H is very ample. If H is a K3 surface, we have I -- 1, and if it is an Enriques surface, 
then I -- 2 (see [3]). Interestingly, Fano conjectured that H 3 _< 72 if X has Gorenstein singularities and 
H 3 _ 24 otherwise. 

w X with Bs[H I ~ 0 

T h e o r e m  2. If I = l and BslH 1 r  in Theorem 1, then H 3 <46.  
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P r o o f .  The results of [8] imply that, if H 3 > 2, Bs[H[ is a smooth rational curve Z E X \  Sing(X). 
Let It: X -+ X be a blow-up of Z. Then the following diagram is commutative: 

X 

~ /  % f ,  
~IHI 

X --* S 

where the morphism f is a fibration into elliptic curves and 7r-l(Z) = Z is a section of f .  Moreover, 
f [z :  Z --+ S is either an isomorphism or a contraction of the exceptional section of the ruled surface 
Z ~ - F n  (n e N0). 

Let E and F be the surfaces swept out by the fibers of the morphism f and passing through the fiber 
and tt~e exceptional section of the ruled surface Z ,  respectively. Then 

- -  m + n - -  

K X = -F  ~ E ,  

where m = (H 3 + 2)/2 and m = n if S is singular. 
If the surface S is nonsingular, then Bs[E[ -- O. If the surface S is singular and BslE [ ~ g ,  then 

dim(Bsl l) = 0, because 
Bs[E[ A Z = Bs[E[ A ~T-I(H) = O 

and H is ample. Note that BslE I r O only if E is not a Q-Cartier divisor. In the latter case, let 
g: -+ X be a small morphism such that g - l ( ~ )  is a g-ample Q-Cartier divisor (see [9]). Then 
Bs[g- l (E) l  -- O. Indeed, if Bs]g-l(E)[  ~ g ,  then Bslg- l (E)]  -- E ;  f~ E2 for sufficiently general 

divisors E~ and E2 from the linear system [9-1(~)[,  and Bs[g- l (E) l  lies in fibers of the morphism 

f o g]~[ : E~ -+ s The intersection form is seminegative definite in the fibers of the morphism f o g[~,,  

and hence, g-1(~)3 < 0; but E~ N E  2 lies in fibers of the morphism g, and g-1(~)3 > 0, because the 

divisor g - l ( ~ )  is g-ample. Therefore, Bs]g-l(E)[  = O. Now, replacing X with X '  where necessary, we 

can assume that BslE I = O. 
The assertion of the theorem follows from the inequality (m + n)/2 < 12. Suppose that this inequality 

does not hold. Consider the log pair 

KX, 3, Z + F +  4 L ' I +  (,) 

where 7 E Q>0 and E1 and E2 are two sufficiently general divisors from the linear system [E]. It is 
well known that, if 7 < 1, the set of log-canonical singularities (see [10]) of the log pair ( . )  is connected. 
Indeed, consider the log resolution w: Y -+ X .  The following relation holds: 

k l 

K y  + v* (lr* ( ( 1 -  7 )H))  - ~'* (KZ + =*(H)) - E a i E i  + E b j D j ,  
i = 1  j = l  

where Ei and Dj are irreducible divisors on Y,  ai and bj are positive rational numbers, and the 

divisors Dj are exceptional for the morphism ~". We must show that the set V = - [- ~-~fi=l aiEi] is 

connected. Note that 
m + n-~ 

7r* (H) - - Z + F +  2 " 

In a neighborhood of Z ,  ~- can be assumed to be an isomorphism, and V is either ~ ,  if 

4 
7 < m + n '  
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or {E l ,  E2},  otherwise. By the Kawamata-Viehweg vanishing theorem (see [1]), 

k 

This implies surjectivity: 

l 

Since the divisors Dj are r-exceptional and the divisor Z is 

! 

+IzbJ Jl) 0 
"j----1 " - 

+r bJoJl  v) 
fixed, we have 

~ 0 .  

"j=l 

Now let us show that ,  if (m + n) /2  > 12 and "7 = 1/(6 % r (0 < r << 1), then the set of log-canonical 
singularities of the log pair ( * ) is disconnected. First, this set contains the divisors E1 and E2. Secondly, 
the assertion is trivially true in a neighborhood of Z .  Therefore, it is sufficient to show that  the set of 
log-canonical singularities of the log pair 

,6_t_T ~ (**) 

contains no elements of codimension two tha t  do not lie in fibers of the morphism f .  It is easy to see 
that ,  in codimension two, the singularities of the pair ( ** ) that  do not lie in fibers of f coincide with the 
singularities of the log pair 

1' 6 + ~  Fc~ 

Note tha t  F A E 1  is a nonmultiple irreducible fiber of tile elliptic fibration fiN1 : E1 ~ IP 1 , and the surface 

E1 has canonical singularities, because the linear system IEI can be assumed flee. It is easy to calculate 
directly that  the log pair ( * * * ) is log-terminal if 3' < 1 ,5 /6 ,  3/4, 2/3, 1/2, 1/3, 1/4, or 1/6 and the 
preimage of F n E1 on the minimal resolution of the surface E1 is a degenerate fiber of an elliptic surface 
of the type of stable fiber, I I ,  I I I ,  I V ,  Ig>0, I V * ,  I I I * ,  or I I* ,  respectively. [] 

R e m a r k  3. If I -- 1 and X has terminal singularities in Theorem 1, then H 3 _~ 6. Indeed, this can 
be shown by setting 3" -- 5/(6 + e) (0 < ~ << 1) in the proof of Theorem 2. 

R e m a r k  4. If I ---- 1 and H 3 :> 48 in Theorem 1, then there are the following possibilities: 

(1) H is very ample; 
(2) the linear system IHI determines a double covering of a variety of minimal degree ( X  is hyperel- 

liptic). 

This follows from Theorem 2 and the properties of movable linear systems on K3 surfaces (see [2, 8]). 

w X is h y p e r e l l i p t i c  or  t r i g o n a l  

L e m m a  1 (M. Reid). Consider 

V "~ and "~ Pro (di) , = Pro pl(d~ = el 
x i---- I / i = j  

where dl >_ ""  >_ din, dl > din, and m > j > 1. Let us identify Yj with the subvariety in V determined 
by the natural projection (~i~=l Opl(di) --+ ~im=j Opl(di).  Suppose that s e H~ | f*(Opi(b))  ) , 
where f :  V --+ ]71 is the natural projection and a and b are integers. Then s has a zero on Yj of order 
no smaller that q if and only if 

adj +b + (di - dj)(q - 1) < O. 
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P r o o f .  See [2].  [ ]  

L e m m a  2. If, in Theorem 1, I = 1 and X is hyperelliptic (see Remark 4), then H 3 <_ 16. 

P r o o f  (In the smooth case, see [2]). It is easy to see that  ~IHI(X) is a variety of "minimal degree;" 
taking into account  the required inequality, we can assume tha t  

V -~ Pro j  Op~(d~ , d l >  d2 >_ d3 > O. 
i=l  

If dl = d2 = d3, then H 3 < 16. Therefore,  we can assume tha t  dl > d3. If ~IHI(X) is singular in 
codimension 2, then [11] H a < 8. Hence we can assume tha t  d2 # 0. Note that  d3 = 0 if ~IHI(X) is 
singular, and, in the notat ions of Lemma 1, ~lOv/~lO)l contracts  the curve ]I3. 

Let D be the  proper  preimage on V of the ramification divisor of the double covering ~IH[ . In the 
notat ions of Lemma 1, we have 

D ~ Or~p,(4) - f* (O~, (2(dl + d2 + d3 - 2))) .  

Considering the normalizat ion of the fiber product  X x~ml(x  ) V,  we readily see that  D contains Y3 
with multiplicity no larger than  2. Since D is reduced, it contains Y'2 with multiplicity no larger than  1. 
Lemma 1 implies the inequalities 

d2 - d l  - 2d3 A- 4 _> O, 4 - 2d2 > O, 

whence  H 3 --- 2(dl  + d2 A- d3) _< 16. [] 

L e m m a  3. Suppose that, in Theorem 1, I = 1 and X is trigonal, i.e., H is very ample, and a general 
element of the family {H 2} of curves is an irreducible smooth trigonal curve. Then H 3 < 54. 

P r o o f .  Let  us identify X with its anticanonical image. As in the case of a smooth X (see [2]), we can 

show tha t  the intersection of the quadrics in I~ H3/2+2  tha t  contain X is W ~- ~lov/~l(1)l(V), where 

= P r o j  ~1 ~ , 

i=1 / 

dl > d 2  > d 3 > d 4 > 0 .  

If dl = d2 = d3 = d4, then H 3 < 18. Therefore,  we can assume that  dl > d4. Suppose tha t  Z = 
Sing(W) ~ ~k (k = 0, 1,2);  then W is a cone with vertex Z .  As in the smooth case, Z • X  C Sing(X) .  
Note that ,  if d im(Z)  = 2, then dim(Z n X)  = 1, d2 = d3 = d4 = 0, and, in the notations of Lemma 1, 
~lOv/~t(i) I contracts  Y2 onto Z and is a blow-up at a generic point of Z .  

Suppose tha t  X = ~lOv/~,(1)l(X). The subadjunct ion formula (see [1]) and the smoothness of V imply 

tha t  X has canonical singularities; in the notat ions of Lemma 1, we have 

" Z  ,": OV/pl(3) -f- f *  ( O p , ( 2  -- d l  - d2 - d3 - d 4 ) ) .  

Since X is irreducible, X does not contain ]I2 ; it contains Y3 with multiplicity no larger than  1 and 1/4 
with multiplicity no larger than  2. Lemma 1 implies the inequalities 

2d2 - dl - d3 - d4 + 2 > 0, d3 - d2 -+" 2 > 0, 2 - d2 - d3 -4- dl > 0, 

whence H 3 = 2 + 2(dl + d2 -4- d3 + d4) < 54. [] 
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w X is s w e p t  out by "straight lines" 

L e m m a  4. Suppose that x is a closed smooth point of a k-dimensional  variety X and H is an ample 
Cartier divisor on X .  I f  a generic point v E X is connected with x by an irreducible curve Cv such that 
HCv <_ d,  then H k < d k. 

P r o o f .  We have 
h~ = m k H k / k [  + O (m  k - l )  

for m E 5[>>o. If H k > d k , then, for m >> 0, there exists a divisor D E H~ of multiplicity no 
smaller than  (rod + 1) at the point x.  Therefore, D contains all curves Cv, which cannot be. [] 

L e m m a  5. If, in Theorem 1, I = 1 and there exists an irreducible curve Cv passing through a generic 
point v �9 X and such that HCv = 1, then H 3 <_ 46. 

P r o o f .  If Bs[H I ~ O, then Theorem 2 implies that  H 3 _< 46. Suppose that  BsIH I = ~ and consider 
the family {C} of irreducible reduced curves such that  H C  = 1 and {C} contains a curve passing through 
a generic point of X .  Remark 4 implies that  C -~ p1. 

Consider the RC-fibration (see [12, 13]) ~: X - - .  W associated with {C}. 
If d im(W) = 0, then two generic points of X can be connected by a chain of no more than  three curves 

from {C} ; we can glue together these curves and obtain a new family {C'} such that  two generic points 
of X can be connected by one curve from the family {C'} (see [13]). The application of Lemma 4 to 
{C'} yields the inequality H 3 < 26 ( H  a is even). 

Consider the commutat ive diagram 

, 

X ---I* W 

where .~ is a smooth variety, 7r is birational, and ~ is a morphism. 
Suppose that  dim(W) = 1. Consider a generic fiber S of the morphism ~ and a generic curve C 

from {C}. The family {7r-1(C)} of curves determines a family {Cs}  �9 S of curves on S. The generic 
curve Cs from {Cs}  is irreducible, smooth, and rational; we have - K s C s  _< 1 and C 2 > 0, which 
contradicts the adjunction formula. 

If d im(W) = 2, we consider a generic curve C from {C} ; 7r-1(C) is a generic fiber of the morphism 
~3 and - K 2 z r  -1 (C) < 1, which contradicts the relation - K 2 z r  -1 (C) = 2, because the generic fiber of ~5 
is I? 1 . [] 

w Double  projec t ion  from a generic  point  o f  X 

L e m m a  6. Suppose that, in Theorem 1, I = 1, H 3 > 56, and ~r: .~ ---> X is a blow-up of a sufficiently 
generic point v E X with exceptional divisor E .  Then the divisor 7r* (H) - 2E  is numerically effective 
and volume. 

P r o o f .  It is sufficient to prove that  7r*(H) - 2E is numerically effective. Remark 4 and Lemma 2 
imply tha t  H is very ample. Let us identify X with its anticanonical image. If (~r* (H) - 2 E ) C  < 0 for 

a curve C c -~, then v E 7r(C) E T v ( X )  n X ,  where T v ( X )  is the tangent space to X at the point v. 
Lemma 3, the Noether-Enxiques-Peetre Theorem (see [14]), and the results of [2] imply that  X is cut out 
by quadrics. Therefore, C is a straight line on X passing through the point v; by Lemma 5, this cannot 
be. [:3 

P r o o f  o f  T h e o r e m  1. According to Remark 1, it is sufficient to prove Theorem 1 under the condition 
I = 1. Let 7r: ) (  --+ X be a blow-up of a generic point v E X .  If H 3 _> 56, then, by Lemma 6, the divisor 
K 2  ~ 1r*(H) - 2E is numerically effective and volume. By the base point free theorem (see [1]), there 
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exists N C N such that ,  for n E N>N, the linear system ]n(Tr*(H)  - 2E) I is base-point-free. Therefore, 

for n >> 0, there exists a morphism q0: ) (  -4 X ~ such tha t  X t has canonical singularities, 

7r*(H) - 2E = ~*(HP), - K x ,  "~ H ' ,  and H '3 -- H 3 - 8, 

where H '  is an ample Cartier divisor. 
Under the assumptions of Theorem 1, this surgery can be repeated 17 times. Thus we can assume 

that  7r is a blow-up of 17 points of X in general position. 
The general divisor /9 E I - K.~I is reduced and irreducible, it has only canonical singularities, and 

it is a / (3  surface (see [15]). Since the divisor - K 2  is 7r-ample, the morphism rr determines on 5 a 
contraction of 17 pairwise disjoint curves; according to [16], this cannot be. [] 

The author  is greatly indebted to V. A. Iskovskikh, W. Kleinert, Yu. G. Prokhorov, and V. V. Shokurov 
for useful discussions and attention. The author  wishes to thank John Hopkins University (USA) and 
Humboldt  University in Berlin (Germany) for hospitality. 
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