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On a conjecture of Ciliberto

I. A. Cheltsov

Abstract. We prove that a threefold hypersurface of degree d with at
most ordinary double points is factorial if it contains no planes and has
at most (d — 1)? singular points.

Bibliography: 13 titles.
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§ 1. Introduction

Let X be a normal hypersurface in P* of degree d > 3 that has at most isolated
singular points. The hypersurface X can be given by an equation

flz,y, z,t,u) =0 C Pt~ Proj(Clx,y, z, t, u]),

where f(z,vy,z,t,u) is a homogeneous polynomial of degree d.

Definition 1.1. The hypersurface X is factorial if every Weil divisor on X is
a Cartier divisor.

It is well known that the following conditions are equivalent:
— the hypersurface X is factorial;
— each surface S C X is cut out on X by a hypersurface in P4;
— the quotient ring

Cle,y, z,t,ul/(f(z,y, 2,1, u))
is a unique factorization domain.
Example 1.2. Suppose that the hypersurface X is given by the equation
zg(x,y, 2, t,u) + yh(z,y, z,t,u) = 0 C P* = Proj(Clz, y, 2, t,u)),
where g and h are general homogeneous polynomials of degree d — 1. Then

[Sing(X)| = (d - 1)?,

the hypersurface X has at most isolated ordinary double points, X contains the
plane x = y = 0, but the hypersurface X is not factorial.

Ezample 1.3. Suppose that the hypersurface X is given by the equation
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1070 I. A. Cheltsov

where ¢ is a general homogeneous polynomial of degree d — 1 and h is a general
homogeneous polynomial of degree d — 2. Then

[Sing(X)| = 2(d — 1)(d - 2),
the hypersurface X has at most isolated ordinary double points, X contains the
quadric surface x = yz + tu = 0, but the hypersurface X is not factorial.
It is natural to expect the following to be true (see [1]).

Conjecture 1.4. The hypersurface X is factorial in the case when
[Sing(X)| < 2(d —1)(d - 2),

the hypersurface X has at most isolated ordinary double points, and the hypersur-
face X contains neither planes nor quadric surfaces.

Currently, the assertion of Conjecture 1.4 has only been proved for d < 4 (see
[2], [3]), however, the following weaker version of Conjecture 1.4 holds (see [2] and

[4]-19])-

Theorem 1.5. The hypersurface X is factorial in the case when
[Sing(X)| < (d - 1)?
and the hypersurface X has only isolated ordinary double points.

Recently Youngho Woo announced the following result.

Theorem 1.6. The hypersurface X is factorial in the case when
[Sing(X)| < (d - 1)?,

the hypersurface X has at most isolated ordinary double points and X contains no
planes.

The aim of this paper is to give an independent geometric proof of Theorem 1.6,
which is based on the results obtained in [8] and [9]. Our paper has the following
structure: in §2 we consider some auxiliary results; in §3 we prove Theorem 3.1,
which is used in the proof of Theorem 1.6; in §4 we prove Theorem 1.6 omitting
the proof of Lemma 4.10; in §5 we prove Lemma 4.10.

8§ 2. Auxiliary results

Let ¥ be a finite nonempty subset of P", n > 2, and let £ be a natural number.
Then the points of 3 impose independent linear conditions on hypersurfaces in P"
of degree ¢ if and only if for every point P € X there exists a hypersurface of
degree £ that contains 3\ P and does not contain the point P € X.

Let us consider ¥ as a subscheme of P". Then there is an exact sequence of

sheaves
0— S5 ® ﬁ]pm(g) — ﬁpn(f) — Oy, — 0,

where #5; is the ideal sheaf of the subscheme Y. Thus ¥ imposes independent linear
conditions on hypersurfaces of degree £ if and only if A (S5 ® Opa(€)) = 0.
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Theorem 2.1. Suppose that the subscheme ¥ is a closed subscheme of a zero-
dimensional scheme T" that is a zero-dimensional complete intersection of n hyper-
surfaces Xq,..., X, in P". Let A be a closed subscheme of the scheme I' such
that

fA = Ann(fz/fr),
where Zx and It are the ideal sheaves of the subschemes A and T, respectively.
Then

W (Is ® Opn (€)) = h° («]A ® Opn (Zn: deg(X;) —n—1- f))

i=1
— h0<,ﬂp ® Opn (Zdeg(Xi) —n—1 —g)).
i=1
This is a consequence of Theorem 3 in [10].
Lemma 2.2. If £ > 2 and at most k§ + 1 points of the subset o are contained in

a linear subspace of dimension k for every k € N, then the set 2 imposes indepen-
dent linear conditions on hypersurfaces of degree &.

This is a consequence of Theorem 2 in [11].

Lemma 2.3. Let P be a point in ¥. Suppose that n = 2, the inequality

e 152 o1 [52]) o [}

holds, & > 3 and at most
k(€+3—k)—2

points in X\ P lie on a curve of degree k for every k < (£ + 3)/2. Then there is
a curve in P? of degree & that contains X\ P and does not contain P € .

This is a special case of Corollary 4.3 in [12].
Let IT C P™ be a linear subspace of dimension m < n, let Q C P" be a general
linear subspace of dimension n —m — 1 and let

P PP - TP
be a linear projection from €. Suppose that m > 2. Let A be a natural number.

Lemma 2.4. Let 4 be alinear system consisting of hypersurfaces in P™ of degree A
that contain all points of . Then the base locus of the linear system 4 is zero-
dimensional if

— the set X is not contained in any irreducible curve of degree \;

— the set (X)) is contained in some irreducible curve of degree \.

Proof. We may assume that m = 2. Suppose that there is an irreducible curve
Z C P™ which is contained in the base locus of the linear system .#. Also suppose
that

— the set ¥ is not contained in an irreducible curve of degree \;

— the set ¥(X) is contained in some irreducible curve of degree .
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Put 2 = ZNX. We may assume that the restriction | is a birational morphism
and

H(Z)NY(E\E) = &

because the linear subspace € is sufficiently general. In particular, we see that

deg(¥(2)) = deg(Z).

Let C be an irreducible curve in II of degree A that contains (X)) and let W be
a cone in P" over C whose vertex is 2. Then

W e .,

which implies that Z C W. Therefore, we see that ¢(Z) = C, which implies that
= =Y and deg(Z) = A, giving a contradiction.

Corollary 2.5. If X is not contained in any line, then nor is ¥(3).

Lemma 2.6. Let ./ be alinear system consisting of hypersurfaces in P™ of degree A
that contain the set 3. Then the base locus of the linear system .# does not contain
surfaces if

— the set X is not contained in any irreducible surface of degree X;

— the set (X)) is contained in some irreducible surface of degree \;

— the inequality m > 3 holds.

See the proof of Lemma 2.4.

Corollary 2.7. Suppose that m > 3 and X is not contained in any two-dimensional
linear subspace. Then ¥(X) is not contained in any two-dimensional linear sub-
space, either.

Lemma 2.8. Let .4 be a linear system consisting of hypersurfaces in 11 of degree A
that contain the set ¥(X). Then the base locus of the linear system M is zero-
dimensional if

— the subset X is not contained in any irreducible curve of degree \;

— the set ¥(X) is contained in some irreducible curve of degree \;

— the equality m = n — 1 holds and m > 3.

Proof. Suppose that
— the set ¥ is not contained in any irreducible curve of degree \;
— the set 9(X) is contained in some irreducible curve of degree X;
-~ m=n-—1and m > 3.

Note that 2 is a point.

Let & be the set of all cones in P™ over all irreducible curves in II of degree A
that contain all the points in ¥, and let T be the set-theoretic intersection of all
cones in %. Then obviously,

YCYcCP”

because every cone in % contains X.

Let C be an irreducible curve in IT of degree A that contains ¢(X), and let W be
a cone in P™ over the curve C whose vertex is the point Q. Then W € %, which
implies that T C W.
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We will show that T is a finite set.
Suppose that there exists an irreducible curve Z C Y. Then the cone W must
contain Z. Put Z = Z NX. We may assume that 1|z is an isomorphism and

W(Z)NY(ENE) =2

because the point 2 is sufficiently general. Then ¢ (Z) is a curve of degree deg(Z).
We have

W(Z) =C,

which gives E = ¥ and deg(Z) = A, which is a contradiction. Hence the set T is
finite.
Let . be the set of all irreducible surfaces in P such that

Ses «— 3IJYe#: Y)=25,

and let ¥ be the set theoretic intersection of all surfaces in 2. Then
P(B) CY(T) C .

The set ¥ is a set-theoretic intersection of surfaces of degree at most A. Each of
these surfaces is a set-theoretic intersection of hypersurfaces of degree A. Thus ¥
is a set-theoretic intersection of surfaces in the linear system .#. Hence to finish
the proof it is enough to show that W is finite.

Let Wy, W, ..., W, be irreducible surfaces in ¢ such that

and Y(W;) € .7 for any i. Put

We will show that © C P™ is a finite set if the point (2 is general enough. Note
that if the set © is finite, then W is finite because ¥ C ©.
Let H be a sufficiently general hypersurface in P™ that contains the point €.
Put
C;i=W,NHCH>=P™"

for every i. Then C; NC1N---NC, = & because Y is a finite set. But

ONH = (\¢(W;) N H = ()¥(C)
i=1 =1

because €2 € H. Hence to prove that © is a finite set it is enough to show that
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Let A be a (possibly empty) subset of H such that
PeA < dLCH: PelL, LNC;#9 Vi,

where P is a point in H. Then by the definition of A

T

v(C)=2 <« Q¢Aa,

i=1

but an easy dimension count implies that dim(A) <2 because C1NC1N---NC, =2
As m > 3, thus A # H. Hence we may assume that

Qe H\A,

which implies that © is a finite set and completes the proof.

Corollary 2.9. Suppose that 3 is not contained in an irreducible curve of degree \,
but
12| > A2

and m > 3. Then ¥(X) is not contained in any irreducible curve of degree \.

Lemma 2.10. Suppose that ¥ is a disjoint union of nonempty finite subsets A and
A such that
— there exists a hypersurface in P™ of degree ( that passes through all points of
the set A and does not contain any point of A;
— the points of the set A and the points of A impose independent linear condi-
tions on hypersurfaces of degrees & and & — (, respectively,
where C is some natural number such that & > C.
Then the points in Y impose independent linear conditions on hypersurfaces of
degree &.

Proof. Let P be an arbitrary point in ¥. We must show that there exists a hyper-
surface of degree ¢ that contains the set ¥\ P and does not contain P.

Note that we may assume that P € A.

Let F be a homogeneous polynomial of degree £ that vanishes at every point of
the set A\ P and does not vanish at the point P. Put

A:{le"’vQ5}v

where @Q); is a point. For every @); there is a homogeneous polynomial G; of degree &
which vanishes at every point of the set X\ Q; and does not vanish at ;. Then

F(Qi) + 11:Gi(Qs) =0

for some p; € C because G;(Q;) # 0. Then the hypersurface given by the equation

5
F+> piGi=0,
i=1

contains the set ¥\ P and does not contain the point P.
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8§ 3. Points in projective spaces

Let ¥ be a finite subset of P™, n > 2. Let d and € be natural numbers such that
d > 3 and € < d. In this section we prove the following result.

Theorem 3.1. The set 3 imposes independent linear conditions on hypersurfaces
of degree 2d — 4 — ¢ if the strict inequality

X[ < (d=1)(d -¢)
holds and no curve in P™ of degree k contains more than k(d—1) points of the set ¥
for everyk <d—¢e—1.

Proof. Note that the assertion of Theorem 3.1 obviously holds for e = d — 1, and,
as follows from [9], Theorem 1.1, the assertion of Theorem 3.1 obviously holds for
€ = 1. Hence we may suppose that

X< (d=1)(d-¢e)—1,

at most k(d — 1) points of the subset ¥ are contained in a curve in P of degree k
for every natural number k < d—ec¢—1,and 2 <e < d— 2.

Suppose that Theorem 3.1 fails. Then points of ¥ impose dependent linear
conditions on hypersurfaces of degree 2d — 4 — e.

Lemma 3.2. The inequality € < d — 3 holds.
Proof. Suppose that e =d — 2. Then 2d —4 — ¢ =d — 2. But

and at most d — 1 points of ¥ are contained on a line in P". By Lemma 2.2 the
points of the set ¥ impose independent linear conditions on hypersurfaces of degree
2d — 4 — ¢, which is a contradiction.

There exists a point P € X such that each hypersurface in P” of degree 2d—4 —¢
that contains the set ¥\ P must also contain the point P € . Note that d > 5.

Lemma 3.3. The inequality n # 2 holds.
Proof. Suppose that n = 2. Put £ =2d — 4 —e. Then £ > 3 and

ot <o [ €52 (60 | £52)) -1, | 221

because |X| < (d—1)(d —¢) — 1.
Let us show that at most k(£ + 3 — k) — 2 points of the set ¥\ P lie on a curve
of degree k for every natural number k < (£ + 3)/2. We must show that

k(2d—1—e—k)—2 > k(d—1)

for every k < (£ + 3)/2. However, we only need prove this for natural numbers
k > 1 such that

k(2d—1—c—k)—2<|S\P|<(d—1)(d—¢) -2
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We may assume that & < d — € because otherwise

kE2d—1—e—k)—2>2(d—¢e)(2d—1—ec—d+e)—2=(d—1)(d—e)—-2 = |\ P|.

We may assume that k& # 1 because ¢ < d — 3 and at most
d—1<€&=2d—4—¢

points of the set ¥\ P lie on a line. Then

k2d—1—e—k)—2>2k(d—1) <= kd—e—-k)22 < d—e>k,

which immediately implies that at most k(£ + 3 — k) — 2 points of the subset X\ P
are contained on a curve of degree k for every natural number k < (€ + 3)/2.

By Lemma 2.3 there is a curve in P? of degree 2d — 4 — ¢ that contains ¥\ P
and does not contain the point P € ¥, which is a contradiction.

By Lemma 2.4 and Corollary 2.9, to complete the proof of Theorem 3.1 we may
assume that n = 3. Let II be a sufficiently general plane in P? and let
i P3P -5 1T = P2
be a projection from a sufficiently general point O € P3. Put ¥/ = (X) and
P’ =(P).
Lemma 3.4. There exists a curve C' C 11 of degree k < d — e — 1 such that
ICNY| > k(d—1)+1.

Proof. Suppose that no curve of degree k contains k(d — 1) 4+ 1 points of the subset
Y/ for every k < d —e — 1. Arguing as in the proof of Lemma 3.3, we see that there
is a curve
Zclx=p?

of degree 2d — 4 — ¢ that contains the set ¥/ \ P’ and does not contain the point
P ey

A cone in P? over Z whose vertex is O is a surface of degree 2d — 4 — ¢ that
contains ¥\ P and does not contain the point P € X, which is a contradiction.

We may assume that k is the smallest natural number such that at least
k(d — 1) + 1 points of the set ¥’ are contained in an irreducible curve in II = P? of
degree k. We see that there is a disjoint union of sets

1 ¢y
UUrics
j=ki=1

such that [A%] > j(d — 1) + 1, all points of ¢(A’) are contained in an irreducible
curve of degree j, and at most ((d — 1) points of the subset

¢(2\<O UAJ) CY chop?

j=ki=1
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can lie on a curve in IT = P2 of degree ¢ for every natural number ¢. Put
[
_ i
A= AL
j=ki=1

Let Z% be the base locus of the linear subsystem of |@ps(j)| that contains all
surfaces that pass through all points of the subset A; Put

L<
A=3%n (U U EJ>
j=ki=1
The set E; is finite by Lemma 2.4. On the other hand we have

l

|E\A|<(d—1)(d—a—2qi>—2. (+)

i=k
Corollary 3.5. The inequality Zi:k ic; < d—¢e—1 holds.
Note that A € A C 3. We have k > 2 by Corollary 2.5.

Lemma 3.6. The points of the set A impose independent linear conditions on
hypersurfaces of degree 2d — & — 4.

Proof. Suppose that the points of the set A impose dependent linear conditions
on hypersurfaces of degree 2d — ¢ — 4. Let us consider A as a zero-dimensional
subscheme of P3. Then

h' (Sa ® Ops(2d — e — 4)) #0,

where #x is the ideal sheaf of the subscheme A.

Let .# be the linear subsystem of the linear system |Ops (d—e —1)| that contains
all surfaces that pass through A. Then the base locus of the linear system . is
zero-dimensional since '_, ic; < d — ¢ — 1 and

l cj
=i
NAVIEY
j=ki=1
whilst =% is a zero-dimensional base locus of the system |Ops(j)|. Put

I' = M; - My - Ms,

where My, My, M3 are general enough surfaces in .#. Then T' is a closed zero-
dimensional subscheme of P? and A is a closed subscheme of the scheme T'.
Let T be a closed subscheme of the scheme I' such that

fy = Ann(fA/fp),
where Sy and 1 are ideal sheaves of the subschemes T and I', respectively. Then

0# h' (Ops(2d—e—4)® In) = B0 (Ops(d— 26 —3) @ I1) — h?(Ops (d— 2 —3) @ IT)
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by Theorem 2.1. Hence there is a surface F' € |Ops(d — 2e — 3) ® Fy|. Then
(d—2e—3)(d—e—1)? = F-M,-My > h°(Oy) = h°(0r)—h°(Oa) = (d—e—1)*—|A],
which implies that |A]| > (¢ + 2)(d — e — 1)%. Thus we see that
(@=1)(d—e) 133> |A] > (e +2)(d—e — 12,

which easily leads to a contradiction. The proof is complete.

Put T =X\ A, I"=¢() and € =2d —e —4— S\, ic;.
Lemma 3.7. The inequality & > 3 holds.
Proof. Suppose that £ < 2. Then it follows from Corollary 3.5 that

l
2>¢(=2d-c—4-) ic;>d-3,
i=k

which gives d < 5. Then d =5 and & = 2 because 2 < ¢ < d—3. We have |X| < 11.
By Lemma 2.2 the points of the set ¥ impose independent linear conditions on
hypersurfaces of degree 2d — € — 4 if at most 9 points of the set 3 are contained in
a plane P3. This implies that there exists a plane T C P3 such that |Y U X| > 10.
It follows from Lemma 3.4 that |Y UX| = 10. Note that P € T.
Arguing as in the proof of Lemma 3.3 we see that there is a curve

Z CTxPp?

of degree 2d — ¢ — 4 that contains the set T\ P and does not contain the point
PeX.

A cone in P3 over Z whose vertex is ¥\ T is a surface of degree 2d — ¢ — 4 that
contains ¥\ P and does not contain the point P € X, which is a contradiction.

It easily follows from inequality () that

o[- [52]) 0 [

Lemma 3.8. At most & points of the set I' are contained in a line.

Proof. Suppose that £ + 1 points of the set I' are contained in some line. Then

l
d—1>¢+1=2d—c—4-) ic,
i=k

because at most d — 1 points of the set I' are contained in a line in P3. Then

l
d—s—l)ZciiZd—€—2
i=k

by Corollary 3.5. We see that either Y>!_, ¢ji=d—e—2o0r Y\ cii=d—e— 1.
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Suppose that Ei:k cit =d — ¢ — 2. Then

l

F|<|E\A|<(d—l)<d—s—Zcii> —2=2d— 4,

i=k

so by Lemma 2.2 the points of the set I' impose independent linear conditions
on hypersurfaces of degree d — 2. The points of the set ¥ impose independent
linear conditions on hypersurfaces of degree 2d — ¢ — 4 by Lemma 2.10, which is
a contradiction.

We see that Zi:k cii =d—e—1. Then

l
|F|<|E\A|<(d—1)<d—a—2cii> —2=d-3

i=k

which implies that the points of the set I' impose independent linear conditions
on hypersurfaces of degree £ = d — 3. By Lemma 2.10 the points of the set X
impose independent linear conditions on hypersurfaces of degree 2d — € — 4, which
is a contradiction.

It follows from Corollary 2.5 that at most £ points of the set I are contained in
a line.

Lemma 3.9. For every t < (£ 4+ 3)/2 at most
tE+3—1)—2
points of the set I are contained in a curve in 11 =2 P? of degree t.

Proof. At most t(d — 1) points of the subset I are contained in a curve of degree t.
Thus by Lemma 3.8, we need to show that

tE+3—-t)—2>td—-1)
for every ¢t < (§ + 3)/2 such that t(§ +3 —t) —2 < [I| and ¢ > 1. But

l
HE+3-t)—22td—1) <= d—c—) ci>t
i=k

because t > 1. Therefore, we may assume that t(§ +3 —¢) — 2 < |[I] and

_6_261 <i< 57

Put g(z) = (£ +3 —x) — 2. Then
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because g(x) is an increasing function for x < (£ + 3)/2. We have

l

(d—l)(d—a—ZicZ) —2> " > g(t) >g(d—5—icii)

i=k =k
= (d—l)(d—s—iiq) -2,

which is a contradiction.

The points of the set I' impose independent linear conditions on hypersurfaces
of degree £, because the points of the set IV impose independent linear conditions
on hypersurfaces of degree £ by Lemma 2.3. Hence the points of the set 3 impose
independent linear conditions on hypersurfaces of degree 2d — e — 4 by Lemma 2.10,
which is a contradiction.

The assertion of Theorem 3.1 is proved.

§ 4. The main result

The goal of this section is to prove Theorem 1.6. Let X be hypersurface in P* of
degree d with at most isolated ordinary double points.

Lemma 4.1. Let C be a curve in P4 of degree \. Then
|Supp(C) N Sing(X)| < A(d — 1),
and if [Supp(C) N Sing(X)| = A(d — 1), then
Sing(C) N Sing(X ) = @.

See the proof in [8], Lemma 29.

It follows from [13] that the following conditions are equivalent:
— the hypersurface X is factorial;
— the points of the set Sing(X ) impose independent linear conditions on hyper-
surfaces in P* of degree 2d — 5.
Suppose that
Sing(X)] < (d— 1)?

and the hypersurface X contains no planes. Let ¥ = Sing(X).
Lemma 4.2. Suppose that |X| < (d — 1)%2. Then X is factorial.

Proof. By Theorem 3.1 the points of ¥ impose independent linear conditions on
hypersurfaces of degree 2d — 5, which implies that X is factorial.

Let || = (d — 1)?, but assume that points of ¥ impose dependent linear condi-
tions on hypersurfaces of degree 2d —5. We shall show this leads to a contradiction.

Lemma 4.3. Let I1 C P* be a plane. Then IINY| < d — 1.
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Proof. Tt easily follows from [6], Lemma 2.9 that

d(d—1) <
2

since X does not contain planes. Then the points of the set IIN Y impose indepen-

dent linear conditions on hypersurfaces of degree 2d — 5 by Theorem 3.1.

Suppose that |[IINY| > d—1. Let H be a general hyperplane in P* containing II.
Then HNX =1IIN3. On the other hand we have

Nyl < (d—1)2 -1

E\NIINE)| < (d-1)2~d=(d—1)(d—2) -1,

which implies that the points of the set X\ (I N X) impose independent linear
conditions on hypersurfaces of degree 2d — 6 by Theorem 3.1. Then ¥ imposes
independent linear conditions on hypersurfaces of degree 2d — 5 by Lemma 2.10,
which is a contradiction.

Corollary 4.4. At most d — 2 points of the set ¥ lie on a line.

The assertion of Theorem 1.6 is proved in [2] for d < 4. Thus, we have shown
that d > 5.

Lemma 4.5. The inequality d > 6 holds.

Proof. Suppose that d = 5. By Lemmas 2.2 and 4.3 the points of ¥ impose indepen-
dent linear conditions on hypersurfaces of degree 2d — 5, which is a contradiction.

Lemma 4.6. Let C be a curve in P* of degree A < d — 2. Then
[CNE<Ad-1)-1.

Proof. We may assume that C' is irreducible. Suppose that |C N X| = A(d — 1).
Then
IZ\N(CNE)|=d-1)(d=A—-1)>=5

by Lemma 4.5. Moreover, it follows from Corollary 4.4 that A # 1.

Let P and @ be two distinct points in the set ¥\ (C'NX). Let Yp and Yy
be the cones in P? over the curve C whose vertices are at the points P and Q,
respectively. Then Yp and Y are irreducible. Let us show that Yp # Y. Suppose
that Yp = Yg. Let L be the line in P* that contains P and Q. Then Yp is a cone
over the curve C' whose vertex is on the line L. Therefore, the surface Yp must be
a plane, which is impossible by Lemma 4.3. Hence we see that Yp # Yg.

Let O be a point on the surface Yp such that O ¢ Yg, and let Yo be the cone
over the curve C' whose vertex is the point O. Then @ ¢ Yo because O ¢ Y. The
cone Yy is a set-theoretic intersection of hypersurfaces of degree A\, which implies
that there is a hypersurface F' C P* of degree A such that

FNY=YoNY,

which implies that @ ¢ F. Thus, the points of the set F' N3 impose independent
linear conditions on hypersurfaces of degree 2d — 5 by Theorem 3.1. On the other
hand we have

S\ < (@d—1)d—1-X) -1,
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which implies that the points of the set 3\ (F N X) impose independent linear
conditions on hypersurfaces of degree 2d —5 — A by Theorem 3.1. Then ¥ imposes
independent linear conditions on hypersurfaces of degree 2d — 5 by Lemma 2.10,
which is a contradiction.

Lemma 4.7. Let C be a curve in P* of degree d — 1. Then
ICNY[<(d—1)%—1.

Proof. Suppose that |C NY| = (d — 1)2. Then ¥ C C, where C is irreducible
by Lemma 4.6, and C' is not contained in a two-dimensional linear subspace by
Lemma 4.3.
We have to consider the following two mutually exclusive cases:
— the curve C is contained in some three-dimensional linear subspace of P4,
— the curve C' is not contained in any three-dimensional linear subspace of P4.
Suppose that C' is contained in some three-dimensional linear subspace H C P4,
Then H = P3 and we may consider ¥ as a zero-dimensional subscheme of P3. Then

Y (Fs @ Ops(2d — 5)) # 0,

where %, is the ideal sheaf of the subscheme 3.

Taking into account the linear projection P3 --s P? from a sufficiently general
point of C' we see that there exist two different irreducible surfaces F; and F5 in
the linear system |Ops(d — 2)| such that C' C Fy N Fs.

Let .# be a linear subsystem in |Ops(d — 1)| that contains all surfaces that pass
through the set ¥. Then the base locus of the linear system .# is zero-dimensional.
Put

T=M-F -F,

where M is a general surface in the linear system .#. Then T' is a closed zero-
dimensional subscheme of P? and ¥ is a closed subscheme of the scheme T'.
Let T be a closed subscheme of the scheme I' such that

fr = Ann(jg/fr),

where Sy and 4T are the ideal sheaves of the subschemes T and T', respectively.
Then

0# h'(Ops(2d — 5) @ I5) = h?(Ops (d — 4) @ Iv) — h®(Ops(d — 4) ® I1)
by Theorem 2.1. Thus, there exists a surface G € |Ops(d — 4) ® Fy|. Then
(d—4)(d—2)(d—1) = G-F;-M > h°(Oy) = h°(Or)—h°(O%) = (d—1)(d—2)*—|%|,
which implies that (d — 1)? = |£| > 2(d — 2)(d — 1), which is a contradiction.
We see that C' is not contained in any three-dimensional linear subspace of P*.
It should be pointed out that C' C X because otherwise we have
d(d — 1) = deg(C) deg(X) > 2(d — 1)*,

which is a contradiction because d > 6.
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Let O be a sufficiently general point of C' and let
P Pt o5 11

be a projection from the point O, where II is a three-dimensional linear subspace
of P*. Then 1 induces a birational morphism C' --+ ¢(C). Put Z = ¢ (C). Then
the degree of the curve Z is d — 2.

Let Y be a cone in P* over the curve Z whose vertex is O. Then

ccY¢gX

since O is a sufficiently general point because X is not a secant variety of the
curve C.

Since O is sufficiently general, we may assume that O is not contained in a three-
dimensional linear subspace that is tangent to X at some point of the curve C
because C is not contained in a three-dimensional linear subspace of P4. Then the
cycle X - Y is reduced at a general point on the curve C. Put

X -Y=C+R,

where R is a curve of degree d?> — 3d + 1 such that C ¢ Supp(R). By Lemma 4.1,
since O is sufficiently general, we have

CNECY\ Sing(Y).

Let a: Z — Z be a normalization of the curve Z. Then there is a commutative

diagram
— B

Y —Y

|

ﬂ'i [y

v Y

J———FFZ

where Y is a smooth surface, 3 is a birational morphism, and 7 is a morphism with
connected fibres that is a P'-bundle.
Let L and E be a fibre and a section of 7 such that G(E) = O, respectively.
Then
E? = —-d+2

on the surface Y. Let C' and R be curves on Y such that o(C) = C, the equality
R-a*(Ops(1)|y)=d®> —3d + 1

holds and «(R) = R. Then
R=(d—2)E+ (d*> —3d+ 1)L

on the surface Y and similarly C = E + (d — 1)L. Put s = (d — 1)? and

Y= {Q17Q27~"7Q3}a
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where Q; is a point of the set ¥. For every point @; there is a point Q; € Y such
that - o
Q; € Supp(C'- R)

and 3(Q;) = Q;. Therefore, we have
(d-1)?-2=C-R>>» multg,(C-R) > (d—1)°
i=1

which is a contradiction.

Corollary 4.8. Let C be a curve in P* of degree \. Then
[CNE<Ad-1)—1.

Let n: P4 ——» P3 be a general linear projection. Put Z = n(X). Then it follows

from Corollaries 2.9 and 2.7 that the set = has the following properties:

Bl = -1

— at most A(d — 1) — 1 points in the set = are contained in a curve of degree

A<d—2;

— at most d — 1 points of the set = are contained in a plane.
However, the points of = impose dependent linear conditions on hypersurfaces of
degree 2d — 5. Let us consider Z as a subscheme of P3. Then

h'(I= @ Ops(2d — 5)) # 0,

where Z= is the ideal sheaf of the subscheme =.
Lemma 4.9. Let C be a curve in P? of degree d — 1. Then |CNE| < (d—1)% — 1.

Proof. Suppose that |[CNZ| = (d—1)2. Then C is an irreducible curve not contained
in a plane. Arguing as in the proof of Lemma 4.7 and using Lemma 2.8 we get
a contradiction.

Thus we have shown that the set = has the following properties:
-2 = (d— 1)
— at most A(d — 1) — 1 points of the set = are contained in a curve of degree
A<d—2;
— at most d — 1 points of the set = are contained in a plane;
— there is a point Q € = such that every hypersurface in P of degree 2d — 5
that contains the set =\ @ must also contain @ € =.

Lemma 4.10. Let A be a linear subsystem in |Ops (d—1)| consisting of all surfaces
that contain Z. Then the base locus of the linear system .# contains a curve.

See the proof in §5.
Let IT C P be a general plane and let

i P - T = P2

be a linear projection from a sufficiently general point O € P3. Put Z' = (=) and

Q' =v(Q).
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Lemma 4.11. Suppose that no more than A\(d—1) points of the set Z' are contained
in a curve of degree X for every A < d — 2. Then Z' is not contained in a curve of
degree d — 1.

=/

Proof. Suppose that Z' is contained in a curve C' C P? of degree d — 1. We claim
that this contradicts Lemma 4.10.

Let .4 be a linear subsystem of the linear system |Ops(d — 1)| consisting of all
surfaces that contains Z. Then the base locus of .# contains an irreducible Z C P3
by Lemma 4.10.

The curve C is reducible by Lemma 2.4. Put

czﬁia,
i=1

where C; is an irreducible curve of degree d;. Then |C; NZ'| = d;(d — 1).

Let Z; be a subset in Z such that |Z;| = d;(d — 1) and ¥(Z;) C C;, and let .#;
be a linear system consisting of all surfaces of degree d; that contain the subset =;.
Then, by Lemma 4.10 and Corollary 4.8, the base locus of the linear system .#;
does not contain any curves.

Let M; be a surface in .#; that does not contain the curve Z. Then

iMi e,
=1

which is a contradiction, since Z is contained in the base locus of the linear sys-

tem A .
Lemma 4.12. There exists a curve C C Il of degree k < d — 2 such that

ICNE| > k(d-1).

Proof. We will prove the required assertion by reductio ad absurdum. Suppose
that every curve in II of degree k contains at most k(d — 1) points of the set =’ for
every k < d — 2. Suppose further that there is no curve in P? of degree d — 1 which
contains the whole set Z'.

Put £ =2d — 5. Then £ > 7 because d > 6.

Suppose that no more than k(€ + 3 — k) — 2 points of the subset Z'\ Q' are
contained in a curve of degree k for every k < (£+3)/2. By Lemma 2.3 there exists
a curve

Z CP?

of degree 2d — 5 that contains =’ \ " and does not contain Q’. Let S be a cone
in P3 over the curve Z whose vertex is the point O. Then S is a surface in P3
of degree 2d — 5 that contains E \ @ and does not contain the point @, which is
a contradiction.

Hence we see that there exists a curve R C P? of degree k < d — 1 that contains
at least k(¢ +3 — k) — 1 points of the set 2"\ Q.

Suppose that £ = d — 1. Then the curve R contains at least

k(+3—k)—1=k(2d—2—k)—1=(d—-1)>—-1
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points of the set 2’ \ @’. Then Q" ¢ R because there is no curve of degree d — 1
containing the whole of Z’. The cone in P? over R whose vertex is the point O is
a surface of degree 2d — 5 that contains =\ ) and does not contain the point @ € =,
which is a contradiction.

Hence we see that k < d— 2. Then k(2d —2 — k) — 1 < k(d—1).

Suppose that £ = 1. Then 2d — 4 < d — 1, which is impossible because d > 6.
Hence we see that k& # 1. Then

E2d—2—-k)—1<k(d-1) <— k(d-1-k) <1 <<= k>=2d-1,

which is a contradiction because k < d — 2.

Without loss of generality we may assume that the number k is the smallest
natural number with this property. Then the curve C' is irreducible.

Lemma 4.13. The curve C contains the set ='.

Proof. Suppose that Z' ¢ C. Let S be a cone in P? over C' whose vertex is O. Then
=¢ S and
E\(SNE)|<(d=-1)(d-1—-k)—1.

Thus, the set Z\ (SN Z) imposes independent linear conditions on hypersurfaces of
degree 2d — 5 — k by Theorem 3.1. Then the set = imposes independent linear con-
ditions on hypersurfaces of degree 2d — 5 by Lemma 2.10, which is a contradiction.

Let us consider = as a subscheme of P? with ideal sheaf .#z. Then
h'(I= @ Ops(2d — 5)) # 0.

Let & be a linear subsystem of the linear system |Ops(d — 2)| consisting of
all surfaces that contain the set =. Then its base locus is zero-dimensional by
Lemma 2.4. Put

I'= M - My - Ms,

where M;, M> and M;j are general surfaces in the linear system %. Then T’
is a closed zero-dimensional subscheme of P3, and Z is closed subscheme of the
scheme T'.

Let Y be a closed subscheme of the scheme I" such that

]’r = Ann(]g/fr),

where £y and . are the ideal sheaves of the subschemes T and T', respectively.
Then

0# h'(Ops(2d — 5) @ I=) = h°(Ops(d — 5) @ Sv) — h?(Ops(d — 5) ® IT)
by Theorem 2.1. Thus there exists a surface F' € |Opz(d — 5) ® Sy |. Then

(d-5)(d—2)2 = F - My - My > h0(0%) = h(6r) — h(6=) = (d — 2)° — |2,

which implies that (d — 1)? = |Z| > 3(d — 2)?, which is a contradiction.
The assertion of Theorem 1.6 is proved.
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8§ 5. A special projection

The purpose of this section is to prove Lemma 4.10.
Let = be a finite subset in P3, let P be a point in =, and let d be a natural
number such that d > 6, Suppose that = has the following properties:

- 2l = (- 1)
— at most A(d — 1) — 1 points of = are contained in a curve of degree A for any
AeEN;

— at most d — 1 points of the set = are contained in a plane;
— each surface in P3 of degree 2d — 5 that contains =\ P passes through P € Z.

Lemma 5.1. Let S be a surface in P? of degree yu such that |[SNE| > (d—1)p+ 1.
Then
=cCs.

Proof. Suppose that [SNE| > (d—1)u+1, but Z ¢ S. Then
E\NSND) < (@-12 = ([d=—Dp+1=(d-1)(d—1—p)—1,

which implies that the subset =\ (S N E) imposes independent linear conditions
on hypersurfaces of degree 2d — 5 — 1 by Theorem 3.1. Then = imposes indepen-
dent linear conditions on hypersurfaces of degree 2d — 5 by Lemma 2.10, which is
a contradiction.

Let . be a linear system consisting of all surfaces of degree d — 1 that contain
the set =. To prove Lemma 4.10 we must show that the base locus of .#Z con-
tains a curve. Suppose that this base locus is zero-dimensional. We shall derive
a contradiction.

Lemma 5.2. The set = C P3 contains two different point Q1 and Qo such that
— the line that passes through Q1 and Qo does not contain the point P € E;
— the line that passes through Q1 and Qo contains at most d — 3 points of the
set =.

This assertion is obvious.
Let L be a line in P3 that passes through the points @ and Qq, let O be
a sufficiently general point in the line L, let II be a plane in P? such that L ¢ II,
and let
i P3P -5 I = P2

be a projection from O € P3. Put & = ¢(Z) and P’ = ¢(P). Then 1 induces
a bijection
E\N(ENL) <—>E/\w(L)

and (d —1)(d —2) < |Z/| < (d —1)2.

Lemma 5.3. Let A be a natural number and let A be a subset of the set = such
that
[p(A)] = Ad—1) + 1.

Suppose that there exists a curve C' of degree A such that

Y(A) C C CII=P?
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Let 9 be a linear subsystem of |Ops(X\)| consisting of all surfaces of degree A that
contain A. Then the base locus of the linear system 2 is contained in the union of
the line L and some finite set.

Proof. Suppose that there exists an irreducible curve Z C P3 that is contained in
the base locus of the linear system 2. We must show that Z = L.

We suppose that Z # L and show this leads to contradiction. We may assume
that O € Z. Then 9(Z) is an irreducible curve.

For every point Q € A let Y, be a cone in P? over Z whose vertex is Q. Then

LCYy <= Qc¢clL,

which implies that we may assume that O & Yp if Q ¢ L because O € L is
sufficiently general. Put © = ZN A and 2 = LN A. Then

P(Z)NY(A\ (EUQ)) = o

As O € L is a general point, we may assume that [A\ Q| = [¢(A\ Q)].

Let C be an irreducible curve in IT of degree A that contains the set ¢(X), and
let W be a cone in P? over the curve C' whose vertex is our point O. Then W € 2,
which implies that Z C W. Then ¢(Z) = C. Thus, we have A\ (EUQ) C Z.

Let B be any smooth point of the curve Z such that B is not contained in the
line L, and let H be a plane in P? that passes through the line L and the point B.

If Z C H, then H NIl = Z, which gives A = 1, a contradiction.

Thus we have shown that Z ¢ H, so the intersection H N Z is a finite set
containing the point B. In particular, there exists a line L’ C H such that

L'nZ=08
and L’ is not tangent to Z at the point B. If O = L N L/, then the morphism
¢|Z: Z —C

is birational, which implies that deg(Z) = A. Thus, as O € L is a general point, we
may assume that deg(Z) = \.
We see that Z is an irreducible curve in P? of degree \ that contains A \ Q. But

AN Q] = [pA)] = [P(Q)] = [p(A)] 12> A(d - 1)

because (Q) = (L) of Q # 0. But at most A(d — 1) — 1 points of the set E are
contained in any curve of degree A\, which is a contradiction.

Lemma 5.4. There exists a curve C C I of degree k < d — 2 such that
ICNE| > k(d-1).

Proof. Suppose that at most k(d — 1) points of the set Z’ are contained in a curve

of degree k for every k < d — 2. Put £ =2d — 5. Then £ > 7 because d > 6.
Suppose that at most k(£ + 3 — k) — 2 points of the set Z' \ P’ are contained in

any curve of degree k for every k < (£ 4+ 3)/2. By Lemma 2.3, there exists a curve

7 c P?
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of degree 2d — 5 that contains =’ \ P’ and does not contain P’. Let S be a cone
in P? over the curve Z whose vertex is the point O. Then S is a surface of degree
2d — 5 that contains all points of the set =\ P and does not contain the point P,
which is a contradiction.

Thus, we see that there exists some curve R C P? of degree k < d — 1 such that
R contains at least k(§ + 3 — k) — 1 points of the set =’ \ P'.

If k =d — 1, then the curve R contains at least

E(+3—k)—1=k(2d—2—-k)—1=(d—1)*-1

points of the set '\ P’. But the set Z'\ P’ consists of at most (d — 1)? — 2 points.
We see that k < d—2. Then k(2d —2 — k) — 1 < k(d —1).
If k =1, then 2d — 4 < d — 1, which is impossible since d > 6. We see that
k # 1. Then

kE(2d—2—-k)—1<k(d-1) <= k(d-1-k) <1 <= k=2d-1,

which is a contradiction because k < d — 2.

Without loss of generality, we may assume that k is the smallest natural number
such that there is a curve in II of degree k < d — 2 that contains at least k(d—1)+1
points of the set =/, which implies that the curve C is irreducible. Let S be a cone
in P3 over the curve C' whose vertex is the point O. Then

[SNE| > k(d—1)+1,

which implies that = C S by Lemma 5.1. Then Z' C C.
Let us consider = as a closed zero-dimensional subscheme of P2. Then

h (= @ Ops(2d — 5)) # 0,

where Z= is the ideal sheaf of the subscheme =.

Let Z be the linear subsystem of the linear system |Ops (d — 2)| consisting of all
surfaces that pass through =Z. By Lemma 5.3 the base locus of the linear system %2
is contained in the union of the line L with some finite set. Put

I'=R, Ry M,

where R; and Ry are general surfaces in the linear system % and M is a general
surface in the linear system .#. Then I is a zero-dimensional scheme in P? and =
is its closed subscheme.

Let Y be a closed subscheme of the scheme I" such that

f'r = Ann(fg/fr),

where Sy and . are the ideal sheaves of the subschemes T and T', respectively.
Then

0# h'(Ops(2d — 5) @ I=) = h®(Ops(d — 4) ® Sy) — O (Ops(d — 4) ® IT)
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by Theorem 2.1. Thus there exists a surface F' € |Ops(d — 4) ® Sy |. Then
(d—4)(d—1)(d—2) = F-Ry-M > h°(0y) = h°(0r)—h°(0z) = (d—2)*(d—1)—|=|,
which implies that |Z] > 2(d — 2)(d — 1). Therefore, we see that

(d—1)? = 2] > 2(d —2)(d 1),

which is a contradiction because d > 4.
The assertion of Lemma 4.10 is proved.
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