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On a conjecture of Ciliberto

I. A. Cheltsov

Abstract. We prove that a threefold hypersurface of degree d with at
most ordinary double points is factorial if it contains no planes and has
at most (d− 1)2 singular points.
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§ 1. Introduction

Let X be a normal hypersurface in P4 of degree d > 3 that has at most isolated
singular points. The hypersurface X can be given by an equation

f(x, y, z, t, u) = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, u]),

where f(x, y, z, t, u) is a homogeneous polynomial of degree d.

Definition 1.1. The hypersurface X is factorial if every Weil divisor on X is
a Cartier divisor.

It is well known that the following conditions are equivalent:
– the hypersurface X is factorial;
– each surface S ⊂ X is cut out on X by a hypersurface in P4;
– the quotient ring

C[x, y, z, t, u]/〈f(x, y, z, t, u)〉

is a unique factorization domain.

Example 1.2. Suppose that the hypersurface X is given by the equation

xg(x, y, z, t, u) + yh(x, y, z, t, u) = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, u]),

where g and h are general homogeneous polynomials of degree d− 1. Then

|Sing(X)| = (d− 1)2,

the hypersurface X has at most isolated ordinary double points, X contains the
plane x = y = 0, but the hypersurface X is not factorial.

Example 1.3. Suppose that the hypersurface X is given by the equation

xg(x, y, z, t, u) + (yz + tu)h(x, y, z, t, u) = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, u]),
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where g is a general homogeneous polynomial of degree d − 1 and h is a general
homogeneous polynomial of degree d− 2. Then

|Sing(X)| = 2(d− 1)(d− 2),

the hypersurface X has at most isolated ordinary double points, X contains the
quadric surface x = yz + tu = 0, but the hypersurface X is not factorial.

It is natural to expect the following to be true (see [1]).

Conjecture 1.4. The hypersurface X is factorial in the case when

|Sing(X)| 6 2(d− 1)(d− 2),

the hypersurface X has at most isolated ordinary double points, and the hypersur-
face X contains neither planes nor quadric surfaces.

Currently, the assertion of Conjecture 1.4 has only been proved for d 6 4 (see
[2], [3]), however, the following weaker version of Conjecture 1.4 holds (see [2] and
[4]–[9]).

Theorem 1.5. The hypersurface X is factorial in the case when

|Sing(X)| < (d− 1)2

and the hypersurface X has only isolated ordinary double points.

Recently Youngho Woo announced the following result.

Theorem 1.6. The hypersurface X is factorial in the case when

|Sing(X)| 6 (d− 1)2,

the hypersurface X has at most isolated ordinary double points and X contains no
planes.

The aim of this paper is to give an independent geometric proof of Theorem 1.6,
which is based on the results obtained in [8] and [9]. Our paper has the following
structure: in § 2 we consider some auxiliary results; in § 3 we prove Theorem 3.1,
which is used in the proof of Theorem 1.6; in § 4 we prove Theorem 1.6 omitting
the proof of Lemma 4.10; in § 5 we prove Lemma 4.10.

§ 2. Auxiliary results

Let Σ be a finite nonempty subset of Pn, n > 2, and let ξ be a natural number.
Then the points of Σ impose independent linear conditions on hypersurfaces in Pn
of degree ξ if and only if for every point P ∈ Σ there exists a hypersurface of
degree ξ that contains Σ \ P and does not contain the point P ∈ Σ.

Let us consider Σ as a subscheme of Pn. Then there is an exact sequence of
sheaves

0 −→ IΣ ⊗ OPn(ξ) −→ OPn(ξ) −→ OΣ −→ 0,

where IΣ is the ideal sheaf of the subscheme Σ. Thus Σ imposes independent linear
conditions on hypersurfaces of degree ξ if and only if h1(IΣ ⊗ OPn(ξ)) = 0.
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Theorem 2.1. Suppose that the subscheme Σ is a closed subscheme of a zero-
dimensional scheme Γ that is a zero-dimensional complete intersection of n hyper-
surfaces X1, . . . , Xn in Pn. Let Λ be a closed subscheme of the scheme Γ such
that

IΛ = Ann(IΣ

/
IΓ),

where IΛ and IΓ are the ideal sheaves of the subschemes Λ and Γ, respectively.
Then

h1(IΣ ⊗ OPn(ξ)) = h0

(
IΛ ⊗ OPn

( n∑
i=1

deg(Xi)− n− 1− ξ
))

− h0

(
IΓ ⊗ OPn

( n∑
i=1

deg(Xi)− n− 1− ξ
))

.

This is a consequence of Theorem 3 in [10].

Lemma 2.2. If ξ > 2 and at most kξ + 1 points of the subset Σ are contained in
a linear subspace of dimension k for every k ∈ N, then the set Σ imposes indepen-
dent linear conditions on hypersurfaces of degree ξ.

This is a consequence of Theorem 2 in [11].

Lemma 2.3. Let P be a point in Σ. Suppose that n = 2, the inequality

|Σ \ P | 6 max
{⌊

ξ + 3
2

⌋(
ξ + 3−

⌊
ξ + 3

2

⌋)
− 1,

⌊
ξ + 3

2

⌋2}
,

holds, ξ > 3 and at most
k(ξ + 3− k)− 2

points in Σ \ P lie on a curve of degree k for every k 6 (ξ + 3)/2. Then there is
a curve in P2 of degree ξ that contains Σ \ P and does not contain P ∈ Σ.

This is a special case of Corollary 4.3 in [12].
Let Π ⊂ Pn be a linear subspace of dimension m < n, let Ω ⊂ Pn be a general

linear subspace of dimension n−m− 1 and let

ψ : Pn 99K Π ∼= Pm

be a linear projection from Ω. Suppose that m > 2. Let λ be a natural number.

Lemma 2.4. Let M be a linear system consisting of hypersurfaces in Pn of degree λ
that contain all points of Σ. Then the base locus of the linear system M is zero-
dimensional if

– the set Σ is not contained in any irreducible curve of degree λ;
– the set ψ(Σ) is contained in some irreducible curve of degree λ.

Proof. We may assume that m = 2. Suppose that there is an irreducible curve
Z ⊂ Pn which is contained in the base locus of the linear system M . Also suppose
that

– the set Σ is not contained in an irreducible curve of degree λ;
– the set ψ(Σ) is contained in some irreducible curve of degree λ.
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Put Ξ = Z∩Σ. We may assume that the restriction ψ|Z is a birational morphism
and

ψ(Z) ∩ ψ(Σ \ Ξ) = ∅

because the linear subspace Ω is sufficiently general. In particular, we see that

deg(ψ(Z)) = deg(Z).

Let C be an irreducible curve in Π of degree λ that contains ψ(Σ) and let W be
a cone in Pn over C whose vertex is Ω. Then

W ∈M ,

which implies that Z ⊂ W . Therefore, we see that ψ(Z) = C, which implies that
Ξ = Σ and deg(Z) = λ, giving a contradiction.

Corollary 2.5. If Σ is not contained in any line, then nor is ψ(Σ).

Lemma 2.6. Let M be a linear system consisting of hypersurfaces in Pn of degree λ
that contain the set Σ. Then the base locus of the linear system M does not contain
surfaces if

– the set Σ is not contained in any irreducible surface of degree λ;
– the set ψ(Σ) is contained in some irreducible surface of degree λ;
– the inequality m > 3 holds.

See the proof of Lemma 2.4.

Corollary 2.7. Suppose that m > 3 and Σ is not contained in any two-dimensional
linear subspace. Then ψ(Σ) is not contained in any two-dimensional linear sub-
space, either.

Lemma 2.8. Let M be a linear system consisting of hypersurfaces in Π of degree λ
that contain the set ψ(Σ). Then the base locus of the linear system M is zero-
dimensional if

– the subset Σ is not contained in any irreducible curve of degree λ;
– the set ψ(Σ) is contained in some irreducible curve of degree λ;
– the equality m = n− 1 holds and m > 3.

Proof. Suppose that
– the set Σ is not contained in any irreducible curve of degree λ;
– the set ψ(Σ) is contained in some irreducible curve of degree λ;
– m = n− 1 and m > 3.

Note that Ω is a point.
Let Y be the set of all cones in Pn over all irreducible curves in Π of degree λ

that contain all the points in Σ, and let Υ be the set-theoretic intersection of all
cones in Y . Then obviously,

Σ ⊆ Υ ⊂ Pn

because every cone in Y contains Σ.
Let C be an irreducible curve in Π of degree λ that contains ψ(Σ), and let W be

a cone in Pn over the curve C whose vertex is the point Ω. Then W ∈ Y , which
implies that Υ ⊆W .
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We will show that Υ is a finite set.
Suppose that there exists an irreducible curve Z ⊂ Υ. Then the cone W must

contain Z. Put Ξ = Z ∩ Σ. We may assume that ψ|Z is an isomorphism and

ψ(Z) ∩ ψ(Σ \ Ξ) = ∅

because the point Ω is sufficiently general. Then ψ(Z) is a curve of degree deg(Z).
We have

ψ(Z) = C,

which gives Ξ = Σ and deg(Z) = λ, which is a contradiction. Hence the set Υ is
finite.

Let S be the set of all irreducible surfaces in Pm such that

S ∈ S ⇐⇒ ∃Y ∈ Y : ψ(Y ) = S,

and let Ψ be the set theoretic intersection of all surfaces in Y . Then

ψ(Σ) ⊆ ψ(Υ) ⊆ Ψ.

The set Ψ is a set-theoretic intersection of surfaces of degree at most λ. Each of
these surfaces is a set-theoretic intersection of hypersurfaces of degree λ. Thus Ψ
is a set-theoretic intersection of surfaces in the linear system M . Hence to finish
the proof it is enough to show that Ψ is finite.

Let W1,W2, . . . ,Wr be irreducible surfaces in Y such that

Υ =
r⋂
i=1

Wi

and ψ(Wi) ∈ S for any i. Put

Θ =
r⋂
i=1

ψ(Wi).

We will show that Θ ⊂ Pm is a finite set if the point Ω is general enough. Note
that if the set Θ is finite, then Ψ is finite because Ψ ⊆ Θ.

Let H be a sufficiently general hypersurface in Pn that contains the point Ω.
Put

Ci = Wi ∩H ⊂ H ∼= Pm

for every i. Then C1 ∩ C1 ∩ · · · ∩ Cr = ∅ because Υ is a finite set. But

Θ ∩H =
r⋂
i=1

ψ(Wi) ∩H =
r⋂
i=1

ψ(Ci)

because Ω ∈ H. Hence to prove that Θ is a finite set it is enough to show that

r⋂
i=1

ψ(Ci) = ∅.
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Let ∆ be a (possibly empty) subset of H such that

P ∈ ∆ ⇐⇒ ∃L ⊂ H : P ∈ L, L ∩ Ci 6= ∅ ∀ i,

where P is a point in H. Then by the definition of ∆

r⋂
i=1

ψ(Ci) = ∅ ⇐⇒ Ω 6∈ ∆,

but an easy dimension count implies that dim(∆)62 because C1∩C1∩· · ·∩Cr=∅.
As m > 3, thus ∆ 6= H. Hence we may assume that

Ω ∈ H \∆,

which implies that Θ is a finite set and completes the proof.

Corollary 2.9. Suppose that Σ is not contained in an irreducible curve of degree λ,
but

|Σ| > λ2

and m > 3. Then ψ(Σ) is not contained in any irreducible curve of degree λ.

Lemma 2.10. Suppose that Σ is a disjoint union of nonempty finite subsets Λ and
∆ such that

– there exists a hypersurface in Pn of degree ζ that passes through all points of
the set Λ and does not contain any point of ∆;

– the points of the set Λ and the points of ∆ impose independent linear condi-
tions on hypersurfaces of degrees ξ and ξ − ζ , respectively,

where ζ is some natural number such that ξ > ζ .
Then the points in Σ impose independent linear conditions on hypersurfaces of

degree ξ.

Proof. Let P be an arbitrary point in Σ. We must show that there exists a hyper-
surface of degree ξ that contains the set Σ \ P and does not contain P .

Note that we may assume that P ∈ Λ.
Let F be a homogeneous polynomial of degree ξ that vanishes at every point of

the set Λ \ P and does not vanish at the point P . Put

∆ = {Q1, . . . , Qδ},

where Qi is a point. For every Qi there is a homogeneous polynomial Gi of degree ξ
which vanishes at every point of the set Σ \Qi and does not vanish at Qi. Then

F (Qi) + µiGi(Qi) = 0

for some µi ∈ C because Gi(Qi) 6= 0. Then the hypersurface given by the equation

F +
δ∑
i=1

µiGi = 0,

contains the set Σ \ P and does not contain the point P .
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§ 3. Points in projective spaces

Let Σ be a finite subset of Pn, n > 2. Let d and ε be natural numbers such that
d > 3 and ε < d. In this section we prove the following result.

Theorem 3.1. The set Σ imposes independent linear conditions on hypersurfaces
of degree 2d− 4− ε if the strict inequality

|Σ| < (d− 1)(d− ε)

holds and no curve in Pn of degree k contains more than k(d−1) points of the set Σ
for every k 6 d− ε− 1.

Proof. Note that the assertion of Theorem 3.1 obviously holds for ε = d − 1, and,
as follows from [9], Theorem 1.1, the assertion of Theorem 3.1 obviously holds for
ε = 1. Hence we may suppose that

|Σ| 6 (d− 1)(d− ε)− 1,

at most k(d− 1) points of the subset Σ are contained in a curve in Pn of degree k
for every natural number k 6 d− ε− 1, and 2 6 ε 6 d− 2.

Suppose that Theorem 3.1 fails. Then points of Σ impose dependent linear
conditions on hypersurfaces of degree 2d− 4− ε.

Lemma 3.2. The inequality ε 6 d− 3 holds.

Proof. Suppose that ε = d− 2. Then 2d− 4− ε = d− 2. But

|Σ| 6 2d− 3,

and at most d − 1 points of Σ are contained on a line in Pn. By Lemma 2.2 the
points of the set Σ impose independent linear conditions on hypersurfaces of degree
2d− 4− ε, which is a contradiction.

There exists a point P ∈ Σ such that each hypersurface in Pn of degree 2d−4−ε
that contains the set Σ \ P must also contain the point P ∈ Σ. Note that d > 5.

Lemma 3.3. The inequality n 6= 2 holds.

Proof. Suppose that n = 2. Put ξ = 2d− 4− ε. Then ξ > 3 and

|Σ \ P | 6 max
{⌊

ξ + 3
2

⌋(
ξ + 3−

⌊
ξ + 3

2

⌋)
− 1,

⌊
ξ + 3

2

⌋2}
because |Σ| 6 (d− 1)(d− ε)− 1.

Let us show that at most k(ξ + 3− k)− 2 points of the set Σ \ P lie on a curve
of degree k for every natural number k 6 (ξ + 3)/2. We must show that

k(2d− 1− ε− k)− 2 > k(d− 1)

for every k 6 (ξ + 3)/2. However, we only need prove this for natural numbers
k > 1 such that

k(2d− 1− ε− k)− 2 < |Σ \ P | 6 (d− 1)(d− ε)− 2.
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We may assume that k < d− ε because otherwise

k(2d− 1− ε− k)− 2 > (d− ε)(2d− 1− ε− d+ ε)− 2 = (d− 1)(d− ε)− 2 > |Σ \P |.

We may assume that k 6= 1 because ε 6 d− 3 and at most

d− 1 6 ξ = 2d− 4− ε

points of the set Σ \ P lie on a line. Then

k(2d− 1− ε− k)− 2 > k(d− 1) ⇐⇒ k(d− ε− k) > 2 ⇐⇒ d− ε > k,

which immediately implies that at most k(ξ+ 3− k)− 2 points of the subset Σ \P
are contained on a curve of degree k for every natural number k 6 (ξ + 3)/2.

By Lemma 2.3 there is a curve in P2 of degree 2d − 4 − ε that contains Σ \ P
and does not contain the point P ∈ Σ, which is a contradiction.

By Lemma 2.4 and Corollary 2.9, to complete the proof of Theorem 3.1 we may
assume that n = 3. Let Π be a sufficiently general plane in P3 and let

ψ : P3 99K Π ∼= P2

be a projection from a sufficiently general point O ∈ P3. Put Σ′ = ψ(Σ) and
P ′ = ψ(P ).

Lemma 3.4. There exists a curve C ⊂ Π of degree k 6 d− ε− 1 such that

|C ∩ Σ′| > k(d− 1) + 1.

Proof. Suppose that no curve of degree k contains k(d− 1)+1 points of the subset
Σ′ for every k 6 d− ε− 1. Arguing as in the proof of Lemma 3.3, we see that there
is a curve

Z ⊂ Π ∼= P2

of degree 2d − 4 − ε that contains the set Σ′ \ P ′ and does not contain the point
P ′ ∈ Σ′.

A cone in P3 over Z whose vertex is O is a surface of degree 2d − 4 − ε that
contains Σ \ P and does not contain the point P ∈ Σ, which is a contradiction.

We may assume that k is the smallest natural number such that at least
k(d− 1) + 1 points of the set Σ′ are contained in an irreducible curve in Π ∼= P2 of
degree k. We see that there is a disjoint union of sets

l⋃
j=k

cj⋃
i=1

Λij ⊂ Σ

such that |Λij | > j(d − 1) + 1, all points of ψ(Λij) are contained in an irreducible
curve of degree j, and at most ζ(d− 1) points of the subset

ψ

(
Σ \

( l⋃
j=k

cj⋃
i=1

Λij

))
( Σ′ ⊂ Π ∼= P2
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can lie on a curve in Π ∼= P2 of degree ζ for every natural number ζ. Put

Λ =
l⋃

j=k

cj⋃
i=1

Λij .

Let Ξij be the base locus of the linear subsystem of |OP3(j)| that contains all
surfaces that pass through all points of the subset Λij . Put

∆ = Σ ∩
( l⋃
j=k

cj⋃
i=1

Ξij

)
.

The set Ξij is finite by Lemma 2.4. On the other hand we have

|Σ \ Λ| 6 (d− 1)
(
d− ε−

l∑
i=k

cii

)
− 2. (∗)

Corollary 3.5. The inequality
∑l
i=k ici 6 d− ε− 1 holds.

Note that Λ ⊆ ∆ ⊆ Σ. We have k > 2 by Corollary 2.5.

Lemma 3.6. The points of the set ∆ impose independent linear conditions on
hypersurfaces of degree 2d− ε− 4.

Proof. Suppose that the points of the set ∆ impose dependent linear conditions
on hypersurfaces of degree 2d − ε − 4. Let us consider ∆ as a zero-dimensional
subscheme of P3. Then

h1
(
I∆ ⊗ OP3(2d− ε− 4)

)
6= 0,

where I∆ is the ideal sheaf of the subscheme ∆.
Let M be the linear subsystem of the linear system |OP3(d−ε−1)| that contains

all surfaces that pass through ∆. Then the base locus of the linear system M is
zero-dimensional since

∑l
i=k ici 6 d− ε− 1 and

∆ ⊆
l⋃

j=k

cj⋃
i=1

Ξij ,

whilst Ξij is a zero-dimensional base locus of the system |OP3(j)|. Put

Γ = M1 ·M2 ·M3,

where M1,M2,M3 are general enough surfaces in M . Then Γ is a closed zero-
dimensional subscheme of P3 and ∆ is a closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

IΥ = Ann(I∆

/
IΓ),

where IΥ and IΓ are ideal sheaves of the subschemes Υ and Γ, respectively. Then

0 6= h1
(
OP3(2d−ε−4)⊗I∆

)
= h0

(
OP3(d−2ε−3)⊗IΥ

)
−h0

(
OP3(d−2ε−3)⊗IΓ

)
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by Theorem 2.1. Hence there is a surface F ∈ |OP3(d− 2ε− 3)⊗IΥ|. Then

(d−2ε−3)(d−ε−1)2 = F ·M1 ·M2 > h0(OΥ) = h0(OΓ)−h0(O∆) = (d−ε−1)3−|∆|,

which implies that |∆| > (ε+ 2)(d− ε− 1)2. Thus we see that

(d− 1)(d− ε)− 1 > |Σ| > |∆| > (ε+ 2)(d− ε− 1)2,

which easily leads to a contradiction. The proof is complete.

Put Γ = Σ \∆, Γ′ = ψ(Γ) and ξ = 2d− ε− 4−
∑l
i=k ici.

Lemma 3.7. The inequality ξ > 3 holds.

Proof. Suppose that ξ 6 2. Then it follows from Corollary 3.5 that

2 > ξ = 2d− ε− 4−
l∑

i=k

ici > d− 3,

which gives d 6 5. Then d = 5 and ε = 2 because 2 6 ε 6 d− 3. We have |Σ| 6 11.
By Lemma 2.2 the points of the set Σ impose independent linear conditions on

hypersurfaces of degree 2d− ε− 4 if at most 9 points of the set Σ are contained in
a plane P3. This implies that there exists a plane Υ ⊂ P3 such that |Υ ∪ Σ| > 10.

It follows from Lemma 3.4 that |Υ ∪ Σ| = 10. Note that P ∈ Υ.
Arguing as in the proof of Lemma 3.3 we see that there is a curve

Z ⊂ Υ ∼= P2

of degree 2d − ε − 4 that contains the set Υ \ P and does not contain the point
P ∈ Σ.

A cone in P3 over Z whose vertex is Σ \Υ is a surface of degree 2d− ε− 4 that
contains Σ \ P and does not contain the point P ∈ Σ, which is a contradiction.

It easily follows from inequality (∗) that

|Γ′| 6 max
{⌊

ξ + 3
2

⌋(
ξ + 3−

⌊
ξ + 3

2

⌋)
− 1,

⌊
ξ + 3

2

⌋2}
.

Lemma 3.8. At most ξ points of the set Γ are contained in a line.

Proof. Suppose that ξ + 1 points of the set Γ are contained in some line. Then

d− 1 > ξ + 1 = 2d− ε− 4−
l∑

i=k

ici,

because at most d− 1 points of the set Γ are contained in a line in P3. Then

d− ε− 1 >
l∑

i=k

cii > d− ε− 2

by Corollary 3.5. We see that either
∑l
i=k cii = d− ε− 2 or

∑l
i=k cii = d− ε− 1.
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Suppose that
∑l
i=k cii = d− ε− 2. Then

|Γ| 6 |Σ \ Λ| 6 (d− 1)
(
d− ε−

l∑
i=k

cii

)
− 2 = 2d− 4,

so by Lemma 2.2 the points of the set Γ impose independent linear conditions
on hypersurfaces of degree d − 2. The points of the set Σ impose independent
linear conditions on hypersurfaces of degree 2d − ε − 4 by Lemma 2.10, which is
a contradiction.

We see that
∑l
i=k cii = d− ε− 1. Then

|Γ| 6 |Σ \ Λ| 6 (d− 1)
(
d− ε−

l∑
i=k

cii

)
− 2 = d− 3,

which implies that the points of the set Γ impose independent linear conditions
on hypersurfaces of degree ξ = d − 3. By Lemma 2.10 the points of the set Σ
impose independent linear conditions on hypersurfaces of degree 2d− ε− 4, which
is a contradiction.

It follows from Corollary 2.5 that at most ξ points of the set Γ′ are contained in
a line.

Lemma 3.9. For every t 6 (ξ + 3)/2 at most

t(ξ + 3− t)− 2

points of the set Γ′ are contained in a curve in Π ∼= P2 of degree t.

Proof. At most t(d− 1) points of the subset Γ′ are contained in a curve of degree t.
Thus by Lemma 3.8, we need to show that

t(ξ + 3− t)− 2 > t(d− 1)

for every t 6 (ξ + 3)/2 such that t(ξ + 3− t)− 2 < |Γ′| and t > 1. But

t(ξ + 3− t)− 2 > t(d− 1) ⇐⇒ d− ε−
l∑

i=k

cii > t

because t > 1. Therefore, we may assume that t(ξ + 3− t)− 2 < |Γ′| and

d− ε−
l∑

i=k

cii 6 t 6
ξ + 3

2
.

Put g(x) = x(ξ + 3− x)− 2. Then

g(t) > g

(
d− ε−

l∑
i=k

cii

)
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because g(x) is an increasing function for x < (ξ + 3)/2. We have

(d− 1)
(
d− ε−

l∑
i=k

ici

)
− 2 > |Γ′| > g(t) > g

(
d− ε−

l∑
i=k

cii

)

= (d− 1)
(
d− ε−

l∑
i=k

ici

)
− 2,

which is a contradiction.

The points of the set Γ impose independent linear conditions on hypersurfaces
of degree ξ, because the points of the set Γ′ impose independent linear conditions
on hypersurfaces of degree ξ by Lemma 2.3. Hence the points of the set Σ impose
independent linear conditions on hypersurfaces of degree 2d−ε−4 by Lemma 2.10,
which is a contradiction.

The assertion of Theorem 3.1 is proved.

§ 4. The main result

The goal of this section is to prove Theorem 1.6. Let X be hypersurface in P4 of
degree d with at most isolated ordinary double points.

Lemma 4.1. Let C be a curve in P4 of degree λ. Then

|Supp(C) ∩ Sing(X)| 6 λ(d− 1),

and if |Supp(C) ∩ Sing(X)| = λ(d− 1), then

Sing(C) ∩ Sing(X) = ∅.

See the proof in [8], Lemma 29.

It follows from [13] that the following conditions are equivalent:
– the hypersurface X is factorial;
– the points of the set Sing(X) impose independent linear conditions on hyper-

surfaces in P4 of degree 2d− 5.
Suppose that

|Sing(X)| 6 (d− 1)2

and the hypersurface X contains no planes. Let Σ = Sing(X).

Lemma 4.2. Suppose that |Σ| < (d− 1)2. Then X is factorial.

Proof. By Theorem 3.1 the points of Σ impose independent linear conditions on
hypersurfaces of degree 2d− 5, which implies that X is factorial.

Let |Σ| = (d− 1)2, but assume that points of Σ impose dependent linear condi-
tions on hypersurfaces of degree 2d−5. We shall show this leads to a contradiction.

Lemma 4.3. Let Π ⊂ P4 be a plane. Then |Π ∩ Σ| 6 d− 1.
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Proof. It easily follows from [6], Lemma 2.9 that

|Π ∩ Σ| 6 d(d− 1)
2

6 (d− 1)2 − 1

since X does not contain planes. Then the points of the set Π∩Σ impose indepen-
dent linear conditions on hypersurfaces of degree 2d− 5 by Theorem 3.1.

Suppose that |Π∩Σ| > d−1. Let H be a general hyperplane in P4 containing Π.
Then H ∩ Σ = Π ∩ Σ. On the other hand we have

|Σ \ (Π ∩ Σ)| 6 (d− 1)2 − d = (d− 1)(d− 2)− 1,

which implies that the points of the set Σ \ (Π ∩ Σ) impose independent linear
conditions on hypersurfaces of degree 2d − 6 by Theorem 3.1. Then Σ imposes
independent linear conditions on hypersurfaces of degree 2d − 5 by Lemma 2.10,
which is a contradiction.

Corollary 4.4. At most d− 2 points of the set Σ lie on a line.

The assertion of Theorem 1.6 is proved in [2] for d 6 4. Thus, we have shown
that d > 5.

Lemma 4.5. The inequality d > 6 holds.

Proof. Suppose that d = 5. By Lemmas 2.2 and 4.3 the points of Σ impose indepen-
dent linear conditions on hypersurfaces of degree 2d− 5, which is a contradiction.

Lemma 4.6. Let C be a curve in P4 of degree λ 6 d− 2. Then

|C ∩ Σ| 6 λ(d− 1)− 1.

Proof. We may assume that C is irreducible. Suppose that |C ∩ Σ| = λ(d − 1).
Then

|Σ \ (C ∩ Σ)| = (d− 1)(d− λ− 1) > 5

by Lemma 4.5. Moreover, it follows from Corollary 4.4 that λ 6= 1.
Let P and Q be two distinct points in the set Σ \ (C ∩ Σ). Let YP and YQ

be the cones in P4 over the curve C whose vertices are at the points P and Q,
respectively. Then YP and YQ are irreducible. Let us show that YP 6= YQ. Suppose
that YP = YQ. Let L be the line in P4 that contains P and Q. Then YP is a cone
over the curve C whose vertex is on the line L. Therefore, the surface YP must be
a plane, which is impossible by Lemma 4.3. Hence we see that YP 6= YQ.

Let O be a point on the surface YP such that O 6∈ YQ, and let YO be the cone
over the curve C whose vertex is the point O. Then Q 6∈ YO because O 6∈ YQ. The
cone YO is a set-theoretic intersection of hypersurfaces of degree λ, which implies
that there is a hypersurface F ⊂ P4 of degree λ such that

F ∩ Σ = YO ∩ Σ,

which implies that Q 6∈ F . Thus, the points of the set F ∩ Σ impose independent
linear conditions on hypersurfaces of degree 2d− 5 by Theorem 3.1. On the other
hand we have

|Σ \ (Π ∩ Σ)| 6 (d− 1)(d− 1− λ)− 1,
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which implies that the points of the set Σ \ (F ∩ Σ) impose independent linear
conditions on hypersurfaces of degree 2d− 5− λ by Theorem 3.1. Then Σ imposes
independent linear conditions on hypersurfaces of degree 2d − 5 by Lemma 2.10,
which is a contradiction.

Lemma 4.7. Let C be a curve in P4 of degree d− 1. Then

|C ∩ Σ| 6 (d− 1)2 − 1.

Proof. Suppose that |C ∩ Σ| = (d − 1)2. Then Σ ⊂ C, where C is irreducible
by Lemma 4.6, and C is not contained in a two-dimensional linear subspace by
Lemma 4.3.

We have to consider the following two mutually exclusive cases:
– the curve C is contained in some three-dimensional linear subspace of P4,
– the curve C is not contained in any three-dimensional linear subspace of P4.

Suppose that C is contained in some three-dimensional linear subspace H ⊂ P4.
Then H ∼= P3 and we may consider Σ as a zero-dimensional subscheme of P3. Then

h1(IΣ ⊗ OP3(2d− 5)) 6= 0,

where IΣ is the ideal sheaf of the subscheme Σ.
Taking into account the linear projection P3 99K P2 from a sufficiently general

point of C we see that there exist two different irreducible surfaces F1 and F2 in
the linear system |OP3(d− 2)| such that C ⊂ F1 ∩ F2.

Let M be a linear subsystem in |OP3(d− 1)| that contains all surfaces that pass
through the set Σ. Then the base locus of the linear system M is zero-dimensional.
Put

Γ = M · F1 · F2,

where M is a general surface in the linear system M . Then Γ is a closed zero-
dimensional subscheme of P3 and Σ is a closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

IΥ = Ann(IΣ

/
IΓ),

where IΥ and IΓ are the ideal sheaves of the subschemes Υ and Γ, respectively.
Then

0 6= h1
(
OP3(2d− 5)⊗IΣ

)
= h0

(
OP3(d− 4)⊗IΥ

)
− h0

(
OP3(d− 4)⊗IΓ

)
by Theorem 2.1. Thus, there exists a surface G ∈ |OP3(d− 4)⊗IΥ|. Then

(d−4)(d−2)(d−1) = G·F1 ·M > h0(OΥ) = h0(OΓ)−h0(OΣ) = (d−1)(d−2)2−|Σ|,

which implies that (d− 1)2 = |Σ| > 2(d− 2)(d− 1), which is a contradiction.
We see that C is not contained in any three-dimensional linear subspace of P4.

It should be pointed out that C ⊂ X because otherwise we have

d(d− 1) = deg(C) deg(X) > 2(d− 1)2,

which is a contradiction because d > 6.
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Let O be a sufficiently general point of C and let

ψ : P4 99K Π

be a projection from the point O, where Π is a three-dimensional linear subspace
of P4. Then ψ induces a birational morphism C 99K ψ(C). Put Z = ψ(C). Then
the degree of the curve Z is d− 2.

Let Y be a cone in P4 over the curve Z whose vertex is O. Then

C ⊂ Y 6⊂ X

since O is a sufficiently general point because X is not a secant variety of the
curve C.

Since O is sufficiently general, we may assume that O is not contained in a three-
dimensional linear subspace that is tangent to X at some point of the curve C
because C is not contained in a three-dimensional linear subspace of P4. Then the
cycle X · Y is reduced at a general point on the curve C. Put

X · Y = C +R,

where R is a curve of degree d2 − 3d+ 1 such that C 6⊆ Supp(R). By Lemma 4.1,
since O is sufficiently general, we have

C ∩ Σ ⊂ Y \ Sing(Y ).

Let α : Z → Z be a normalization of the curve Z. Then there is a commutative
diagram

Y
β //

π

��

Y

ψ|Y
���
�
�

Z α
// Z

where Y is a smooth surface, β is a birational morphism, and π is a morphism with
connected fibres that is a P1-bundle.

Let L and E be a fibre and a section of π such that β(E) = O, respectively.
Then

E2 = −d+ 2

on the surface Y . Let C and R be curves on Y such that α(C) = C, the equality

R · α∗(OP4(1)|Y ) = d2 − 3d+ 1

holds and α(R) = R. Then

R ≡ (d− 2)E + (d2 − 3d+ 1)L

on the surface Y and similarly C ≡ E + (d− 1)L. Put s = (d− 1)2 and

Σ = {Q1, Q2, . . . , Qs},
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where Qi is a point of the set Σ. For every point Qi there is a point Qi ∈ Y such
that

Qi ∈ Supp(C ·R)

and β(Qi) = Qi. Therefore, we have

(d− 1)2 − 2 = C ·R >
s∑
i=1

multQi
(C ·R) > (d− 1)2,

which is a contradiction.

Corollary 4.8. Let C be a curve in P4 of degree λ. Then

|C ∩ Σ| 6 λ(d− 1)− 1.

Let η : P4 99K P3 be a general linear projection. Put Ξ = η(Σ). Then it follows
from Corollaries 2.9 and 2.7 that the set Ξ has the following properties:

– |Ξ| = (d− 1)2;
– at most λ(d − 1) − 1 points in the set Ξ are contained in a curve of degree
λ 6 d− 2;

– at most d− 1 points of the set Ξ are contained in a plane.
However, the points of Ξ impose dependent linear conditions on hypersurfaces of
degree 2d− 5. Let us consider Ξ as a subscheme of P3. Then

h1(IΞ ⊗ OP3(2d− 5)) 6= 0,

where IΞ is the ideal sheaf of the subscheme Ξ.

Lemma 4.9. Let C be a curve in P3 of degree d− 1. Then |C ∩Ξ| 6 (d− 1)2 − 1.

Proof. Suppose that |C∩Ξ| = (d−1)2. Then C is an irreducible curve not contained
in a plane. Arguing as in the proof of Lemma 4.7 and using Lemma 2.8 we get
a contradiction.

Thus we have shown that the set Ξ has the following properties:
– |Ξ| = (d− 1)2;
– at most λ(d − 1) − 1 points of the set Ξ are contained in a curve of degree
λ 6 d− 2;

– at most d− 1 points of the set Ξ are contained in a plane;
– there is a point Q ∈ Ξ such that every hypersurface in P3 of degree 2d − 5

that contains the set Ξ \Q must also contain Q ∈ Ξ.

Lemma 4.10. Let M be a linear subsystem in |OP3(d−1)| consisting of all surfaces
that contain Ξ. Then the base locus of the linear system M contains a curve.

See the proof in § 5.
Let Π ⊂ P3 be a general plane and let

ψ : P3 99K Π ∼= P2

be a linear projection from a sufficiently general point O ∈ P3. Put Ξ′ = ψ(Ξ) and
Q′ = ψ(Q).
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Lemma 4.11. Suppose that no more than λ(d−1) points of the set Ξ′ are contained
in a curve of degree λ for every λ 6 d− 2. Then Ξ′ is not contained in a curve of
degree d− 1.

Proof. Suppose that Ξ′ is contained in a curve C ⊂ P2 of degree d − 1. We claim
that this contradicts Lemma 4.10.

Let M be a linear subsystem of the linear system |OP3(d − 1)| consisting of all
surfaces that contains Ξ. Then the base locus of M contains an irreducible Z ⊂ P3

by Lemma 4.10.
The curve C is reducible by Lemma 2.4. Put

C =
s∑
i=1

Ci,

where Ci is an irreducible curve of degree di. Then |Ci ∩ Ξ′| = di(d− 1).
Let Ξi be a subset in Ξ such that |Ξi| = di(d − 1) and ψ(Ξi) ⊂ Ci, and let Mi

be a linear system consisting of all surfaces of degree di that contain the subset Ξi.
Then, by Lemma 4.10 and Corollary 4.8, the base locus of the linear system Mi

does not contain any curves.
Let Mi be a surface in Mi that does not contain the curve Z. Then

s∑
i=1

Mi ∈M ,

which is a contradiction, since Z is contained in the base locus of the linear sys-
tem M .

Lemma 4.12. There exists a curve C ⊂ Π of degree k 6 d− 2 such that

|C ∩ Ξ′| > k(d− 1).

Proof. We will prove the required assertion by reductio ad absurdum. Suppose
that every curve in Π of degree k contains at most k(d− 1) points of the set Ξ′ for
every k 6 d− 2. Suppose further that there is no curve in P2 of degree d− 1 which
contains the whole set Ξ′.

Put ξ = 2d− 5. Then ξ > 7 because d > 6.
Suppose that no more than k(ξ + 3 − k) − 2 points of the subset Ξ′ \ Q′ are

contained in a curve of degree k for every k 6 (ξ+3)/2. By Lemma 2.3 there exists
a curve

Z ⊂ P2

of degree 2d − 5 that contains Ξ′ \ Q′ and does not contain Q′. Let S be a cone
in P3 over the curve Z whose vertex is the point O. Then S is a surface in P3

of degree 2d − 5 that contains Ξ \ Q and does not contain the point Q, which is
a contradiction.

Hence we see that there exists a curve R ⊂ P2 of degree k 6 d− 1 that contains
at least k(ξ + 3− k)− 1 points of the set Ξ′ \Q′.

Suppose that k = d− 1. Then the curve R contains at least

k(ξ + 3− k)− 1 = k(2d− 2− k)− 1 = (d− 1)2 − 1
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points of the set Ξ′ \ Q′. Then Q′ 6∈ R because there is no curve of degree d − 1
containing the whole of Ξ′. The cone in P3 over R whose vertex is the point O is
a surface of degree 2d−5 that contains Ξ\Q and does not contain the point Q ∈ Ξ,
which is a contradiction.

Hence we see that k 6 d− 2. Then k(2d− 2− k)− 1 6 k(d− 1).
Suppose that k = 1. Then 2d − 4 6 d − 1, which is impossible because d > 6.

Hence we see that k 6= 1. Then

k(2d− 2− k)− 1 6 k(d− 1) ⇐⇒ k(d− 1− k) 6 1 ⇐⇒ k > d− 1,

which is a contradiction because k 6 d− 2.

Without loss of generality we may assume that the number k is the smallest
natural number with this property. Then the curve C is irreducible.

Lemma 4.13. The curve C contains the set Ξ′.

Proof. Suppose that Ξ′ 6⊂ C. Let S be a cone in P3 over C whose vertex is O. Then
Ξ 6⊂ S and

|Ξ \ (S ∩ Ξ)| 6 (d− 1)(d− 1− k)− 1.

Thus, the set Ξ\ (S ∩Ξ) imposes independent linear conditions on hypersurfaces of
degree 2d− 5− k by Theorem 3.1. Then the set Ξ imposes independent linear con-
ditions on hypersurfaces of degree 2d− 5 by Lemma 2.10, which is a contradiction.

Let us consider Ξ as a subscheme of P3 with ideal sheaf IΞ. Then

h1(IΞ ⊗ OP3(2d− 5)) 6= 0.

Let D be a linear subsystem of the linear system |OP3(d − 2)| consisting of
all surfaces that contain the set Ξ. Then its base locus is zero-dimensional by
Lemma 2.4. Put

Γ = M1 ·M2 ·M3,

where M1, M2 and M3 are general surfaces in the linear system D . Then Γ
is a closed zero-dimensional subscheme of P3, and Ξ is closed subscheme of the
scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

IΥ = Ann(IΞ

/
IΓ),

where IΥ and IΓ are the ideal sheaves of the subschemes Υ and Γ, respectively.
Then

0 6= h1
(
OP3(2d− 5)⊗IΞ

)
= h0

(
OP3(d− 5)⊗IΥ

)
− h0

(
OP3(d− 5)⊗IΓ

)
by Theorem 2.1. Thus there exists a surface F ∈ |OP3(d− 5)⊗IΥ|. Then

(d− 5)(d− 2)2 = F ·M1 ·M2 > h0(OΥ) = h0(OΓ)− h0(OΞ) = (d− 2)3 − |Ξ|,

which implies that (d− 1)2 = |Ξ| > 3(d− 2)2, which is a contradiction.
The assertion of Theorem 1.6 is proved.
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§ 5. A special projection

The purpose of this section is to prove Lemma 4.10.
Let Ξ be a finite subset in P3, let P be a point in Ξ, and let d be a natural

number such that d > 6, Suppose that Ξ has the following properties:
– |Ξ| = (d− 1)2;
– at most λ(d− 1)− 1 points of Ξ are contained in a curve of degree λ for any
λ ∈ N;

– at most d− 1 points of the set Ξ are contained in a plane;
– each surface in P3 of degree 2d−5 that contains Ξ\P passes through P ∈ Ξ.

Lemma 5.1. Let S be a surface in P3 of degree µ such that |S ∩Ξ| > (d− 1)µ+1.
Then

Ξ ⊂ S.

Proof. Suppose that |S ∩ Ξ| > (d− 1)µ+ 1, but Ξ 6⊂ S. Then

|Ξ \ (S ∩ Ξ)| 6 (d− 1)2 − (d− 1)µ+ 1 = (d− 1)(d− 1− µ)− 1,

which implies that the subset Ξ \ (S ∩ Ξ) imposes independent linear conditions
on hypersurfaces of degree 2d − 5 − µ by Theorem 3.1. Then Ξ imposes indepen-
dent linear conditions on hypersurfaces of degree 2d − 5 by Lemma 2.10, which is
a contradiction.

Let M be a linear system consisting of all surfaces of degree d− 1 that contain
the set Ξ. To prove Lemma 4.10 we must show that the base locus of M con-
tains a curve. Suppose that this base locus is zero-dimensional. We shall derive
a contradiction.

Lemma 5.2. The set Ξ ⊂ P3 contains two different point Q1 and Q2 such that
– the line that passes through Q1 and Q2 does not contain the point P ∈ Ξ;
– the line that passes through Q1 and Q2 contains at most d− 3 points of the

set Ξ.

This assertion is obvious.
Let L be a line in P3 that passes through the points Q1 and Q2, let O be

a sufficiently general point in the line L, let Π be a plane in P3 such that L 6⊂ Π,
and let

ψ : P3 99K Π ∼= P2

be a projection from O ∈ P3. Put Ξ′ = ψ(Ξ) and P ′ = ψ(P ). Then ψ induces
a bijection

Ξ \ (Ξ ∩ L)←→ Ξ′ \ ψ(L)

and (d− 1)(d− 2) < |Ξ′| < (d− 1)2.

Lemma 5.3. Let λ be a natural number and let Λ be a subset of the set Ξ such
that

|ψ(Λ)| > λ(d− 1) + 1.

Suppose that there exists a curve C of degree λ such that

ψ(Λ) ⊂ C ⊂ Π ∼= P2.
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Let D be a linear subsystem of |OP3(λ)| consisting of all surfaces of degree λ that
contain Λ. Then the base locus of the linear system D is contained in the union of
the line L and some finite set.

Proof. Suppose that there exists an irreducible curve Z ⊂ P3 that is contained in
the base locus of the linear system D . We must show that Z = L.

We suppose that Z 6= L and show this leads to contradiction. We may assume
that O 6∈ Z. Then ψ(Z) is an irreducible curve.

For every point Q ∈ Λ let YQ be a cone in P3 over Z whose vertex is Q. Then

L ⊂ YQ ⇐⇒ Q ∈ L,

which implies that we may assume that O 6∈ YQ if Q 6∈ L because O ∈ L is
sufficiently general. Put Θ = Z ∩ Λ and Ω = L ∩ Λ. Then

ψ(Z) ∩ ψ(Λ \ (Ξ ∪ Ω)) = ∅.

As O ∈ L is a general point, we may assume that |Λ \ Ω| = |ψ(Λ \ Ω)|.
Let C be an irreducible curve in Π of degree λ that contains the set ψ(Σ), and

let W be a cone in P3 over the curve C whose vertex is our point O. Then W ∈ D ,
which implies that Z ⊂W . Then ψ(Z) = C. Thus, we have Λ \ (Ξ ∪ Ω) ⊂ Z.

Let B be any smooth point of the curve Z such that B is not contained in the
line L, and let H be a plane in P3 that passes through the line L and the point B.

If Z ⊂ H, then H ∩Π = Z, which gives λ = 1, a contradiction.
Thus we have shown that Z 6⊂ H, so the intersection H ∩ Z is a finite set

containing the point B. In particular, there exists a line L′ ⊂ H such that

L′ ∩ Z = B

and L′ is not tangent to Z at the point B. If O = L ∩ L′, then the morphism

ψ
∣∣
Z

: Z −→ C

is birational, which implies that deg(Z) = λ. Thus, as O ∈ L is a general point, we
may assume that deg(Z) = λ.

We see that Z is an irreducible curve in P3 of degree λ that contains Λ \Ω. But

|Λ \ Ω| = |ψ(Λ)| − |ψ(Ω)| > |ψ(Λ)| − 1 > λ(d− 1)

because ψ(Ω) = ψ(L) of Ω 6= ∅. But at most λ(d − 1) − 1 points of the set Ξ are
contained in any curve of degree λ, which is a contradiction.

Lemma 5.4. There exists a curve C ⊂ Π of degree k 6 d− 2 such that

|C ∩ Ξ′| > k(d− 1).

Proof. Suppose that at most k(d− 1) points of the set Ξ′ are contained in a curve
of degree k for every k 6 d− 2. Put ξ = 2d− 5. Then ξ > 7 because d > 6.

Suppose that at most k(ξ + 3− k)− 2 points of the set Ξ′ \ P ′ are contained in
any curve of degree k for every k 6 (ξ + 3)/2. By Lemma 2.3, there exists a curve

Z ⊂ P2
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of degree 2d − 5 that contains Ξ′ \ P ′ and does not contain P ′. Let S be a cone
in P3 over the curve Z whose vertex is the point O. Then S is a surface of degree
2d − 5 that contains all points of the set Ξ \ P and does not contain the point P ,
which is a contradiction.

Thus, we see that there exists some curve R ⊂ P2 of degree k 6 d− 1 such that
R contains at least k(ξ + 3− k)− 1 points of the set Ξ′ \ P ′.

If k = d− 1, then the curve R contains at least

k(ξ + 3− k)− 1 = k(2d− 2− k)− 1 = (d− 1)2 − 1

points of the set Ξ′ \P ′. But the set Ξ′ \P ′ consists of at most (d− 1)2− 2 points.
We see that k 6 d− 2. Then k(2d− 2− k)− 1 6 k(d− 1).
If k = 1, then 2d − 4 6 d − 1, which is impossible since d > 6. We see that

k 6= 1. Then

k(2d− 2− k)− 1 6 k(d− 1) ⇐⇒ k(d− 1− k) 6 1 ⇐⇒ k > d− 1,

which is a contradiction because k 6 d− 2.

Without loss of generality, we may assume that k is the smallest natural number
such that there is a curve in Π of degree k 6 d−2 that contains at least k(d−1)+1
points of the set Ξ′, which implies that the curve C is irreducible. Let S be a cone
in P3 over the curve C whose vertex is the point O. Then

|S ∩ Ξ| > k(d− 1) + 1,

which implies that Ξ ⊂ S by Lemma 5.1. Then Ξ′ ⊂ C.
Let us consider Ξ as a closed zero-dimensional subscheme of P3. Then

h1(IΞ ⊗ OP3(2d− 5)) 6= 0,

where IΞ is the ideal sheaf of the subscheme Ξ.
Let R be the linear subsystem of the linear system |OP3(d− 2)| consisting of all

surfaces that pass through Ξ. By Lemma 5.3 the base locus of the linear system R
is contained in the union of the line L with some finite set. Put

Γ = R1 ·R2 ·M,

where R1 and R2 are general surfaces in the linear system R and M is a general
surface in the linear system M . Then Γ is a zero-dimensional scheme in P3 and Ξ
is its closed subscheme.

Let Υ be a closed subscheme of the scheme Γ such that

IΥ = Ann(IΞ

/
IΓ),

where IΥ and IΓ are the ideal sheaves of the subschemes Υ and Γ, respectively.
Then

0 6= h1
(
OP3(2d− 5)⊗IΞ

)
= h0

(
OP3(d− 4)⊗IΥ

)
− h0

(
OP3(d− 4)⊗IΓ

)
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by Theorem 2.1. Thus there exists a surface F ∈ |OP3(d− 4)⊗IΥ|. Then

(d−4)(d−1)(d−2) = F ·R1 ·M > h0(OΥ) = h0(OΓ)−h0(OΞ) = (d−2)2(d−1)−|Ξ|,

which implies that |Ξ| > 2(d− 2)(d− 1). Therefore, we see that

(d− 1)2 = |Ξ| > 2(d− 2)(d− 1),

which is a contradiction because d > 4.
The assertion of Lemma 4.10 is proved.
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