

On a conjecture of Ciliberto

To cite this article: Ivan A Cheltsov 2010 Sb. Math. 201 1069

View the article online for updates and enhancements.

Related content

- <u>Birational geometry of Fano double</u> <u>spaces of index two</u> Aleksandr V Pukhlikov
- <u>Birationally rigid varieties. II. Fano fibre</u> <u>spaces</u> Aleksandr V Pukhlikov
- Log canonical thresholds on hypersurfaces
 I A Cheltsov

Matematicheskiĭ Sbornik 201:7 137–160

DOI 10.1070/SM2010v201n07ABEH004103

On a conjecture of Ciliberto

I.A. Cheltsov

Abstract. We prove that a threefold hypersurface of degree d with at most ordinary double points is factorial if it contains no planes and has at most $(d-1)^2$ singular points.

Bibliography: 13 titles.

Keywords: hypersurfaces, ordinary double points, factorial property.

§1. Introduction

Let X be a normal hypersurface in \mathbb{P}^4 of degree $d \ge 3$ that has at most isolated singular points. The hypersurface X can be given by an equation

$$f(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u]),$$

where f(x, y, z, t, u) is a homogeneous polynomial of degree d.

Definition 1.1. The hypersurface X is *factorial* if every Weil divisor on X is a Cartier divisor.

It is well known that the following conditions are equivalent:

- the hypersurface X is factorial;
- each surface $S \subset X$ is cut out on X by a hypersurface in \mathbb{P}^4 ;
- the quotient ring

$$\mathbb{C}[x, y, z, t, u]/\langle f(x, y, z, t, u) \rangle$$

is a unique factorization domain.

Example 1.2. Suppose that the hypersurface X is given by the equation

$$xg(x, y, z, t, u) + yh(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u]),$$

where g and h are general homogeneous polynomials of degree d-1. Then

$$|\operatorname{Sing}(X)| = (d-1)^2,$$

the hypersurface X has at most isolated ordinary double points, X contains the plane x = y = 0, but the hypersurface X is not factorial.

Example 1.3. Suppose that the hypersurface X is given by the equation

$$xg(x, y, z, t, u) + (yz + tu)h(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u]),$$

AMS 2010 Mathematics Subject Classification. Primary 14J30, 14J70.

where g is a general homogeneous polynomial of degree d-1 and h is a general homogeneous polynomial of degree d-2. Then

$$|Sing(X)| = 2(d-1)(d-2),$$

the hypersurface X has at most isolated ordinary double points, X contains the quadric surface x = yz + tu = 0, but the hypersurface X is not factorial.

It is natural to expect the following to be true (see [1]).

Conjecture 1.4. The hypersurface X is factorial in the case when

$$|\operatorname{Sing}(X)| \leq 2(d-1)(d-2),$$

the hypersurface X has at most isolated ordinary double points, and the hypersurface X contains neither planes nor quadric surfaces.

Currently, the assertion of Conjecture 1.4 has only been proved for $d \leq 4$ (see [2], [3]), however, the following weaker version of Conjecture 1.4 holds (see [2] and [4]–[9]).

Theorem 1.5. The hypersurface X is factorial in the case when

$$|\operatorname{Sing}(X)| < (d-1)^2$$

and the hypersurface X has only isolated ordinary double points.

Recently Youngho Woo announced the following result.

Theorem 1.6. The hypersurface X is factorial in the case when

$$|\operatorname{Sing}(X)| \leqslant (d-1)^2$$

the hypersurface X has at most isolated ordinary double points and X contains no planes.

The aim of this paper is to give an independent geometric proof of Theorem 1.6, which is based on the results obtained in [8] and [9]. Our paper has the following structure: in § 2 we consider some auxiliary results; in § 3 we prove Theorem 3.1, which is used in the proof of Theorem 1.6; in § 4 we prove Theorem 1.6 omitting the proof of Lemma 4.10; in § 5 we prove Lemma 4.10.

§2. Auxiliary results

Let Σ be a finite nonempty subset of \mathbb{P}^n , $n \ge 2$, and let ξ be a natural number. Then the points of Σ impose independent linear conditions on hypersurfaces in \mathbb{P}^n of degree ξ if and only if for every point $P \in \Sigma$ there exists a hypersurface of degree ξ that contains $\Sigma \setminus P$ and does not contain the point $P \in \Sigma$.

Let us consider Σ as a subscheme of \mathbb{P}^n . Then there is an exact sequence of sheaves

$$0 \longrightarrow \mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^n}(\xi) \longrightarrow \mathscr{O}_{\mathbb{P}^n}(\xi) \longrightarrow \mathscr{O}_{\Sigma} \longrightarrow 0,$$

where \mathscr{I}_{Σ} is the ideal sheaf of the subscheme Σ . Thus Σ imposes independent linear conditions on hypersurfaces of degree ξ if and only if $h^1(\mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^n}(\xi)) = 0$.

Theorem 2.1. Suppose that the subscheme Σ is a closed subscheme of a zerodimensional scheme Γ that is a zero-dimensional complete intersection of n hypersurfaces X_1, \ldots, X_n in \mathbb{P}^n . Let Λ be a closed subscheme of the scheme Γ such that

$$\mathscr{I}_{\Lambda} = \operatorname{Ann}(\mathscr{I}_{\Sigma}/\mathscr{I}_{\Gamma}),$$

where \mathscr{I}_{Λ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Λ and Γ , respectively. Then

$$h^{1}(\mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^{n}}(\xi)) = h^{0}\left(\mathscr{I}_{\Lambda} \otimes \mathscr{O}_{\mathbb{P}^{n}}\left(\sum_{i=1}^{n} \deg(X_{i}) - n - 1 - \xi\right)\right)$$
$$-h^{0}\left(\mathscr{I}_{\Gamma} \otimes \mathscr{O}_{\mathbb{P}^{n}}\left(\sum_{i=1}^{n} \deg(X_{i}) - n - 1 - \xi\right)\right).$$

This is a consequence of Theorem 3 in [10].

Lemma 2.2. If $\xi \ge 2$ and at most $k\xi + 1$ points of the subset Σ are contained in a linear subspace of dimension k for every $k \in \mathbb{N}$, then the set Σ imposes independent linear conditions on hypersurfaces of degree ξ .

This is a consequence of Theorem 2 in [11].

Lemma 2.3. Let P be a point in Σ . Suppose that n = 2, the inequality

$$|\Sigma \setminus P| \leq \max\left\{ \left\lfloor \frac{\xi+3}{2} \right\rfloor \left(\xi+3 - \left\lfloor \frac{\xi+3}{2} \right\rfloor \right) - 1, \ \left\lfloor \frac{\xi+3}{2} \right\rfloor^2 \right\},\$$

holds, $\xi \ge 3$ and at most

$$k(\xi + 3 - k) - 2$$

points in $\Sigma \setminus P$ lie on a curve of degree k for every $k \leq (\xi + 3)/2$. Then there is a curve in \mathbb{P}^2 of degree ξ that contains $\Sigma \setminus P$ and does not contain $P \in \Sigma$.

This is a special case of Corollary 4.3 in [12].

Let $\Pi \subset \mathbb{P}^n$ be a linear subspace of dimension m < n, let $\Omega \subset \mathbb{P}^n$ be a general linear subspace of dimension n - m - 1 and let

$$\psi \colon \mathbb{P}^n \dashrightarrow \Pi \cong \mathbb{P}^m$$

be a linear projection from Ω . Suppose that $m \ge 2$. Let λ be a natural number.

Lemma 2.4. Let \mathscr{M} be a linear system consisting of hypersurfaces in \mathbb{P}^n of degree λ that contain all points of Σ . Then the base locus of the linear system \mathscr{M} is zerodimensional if

- the set Σ is not contained in any irreducible curve of degree λ ;

- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ .

Proof. We may assume that m = 2. Suppose that there is an irreducible curve $Z \subset \mathbb{P}^n$ which is contained in the base locus of the linear system \mathscr{M} . Also suppose that

- the set Σ is not contained in an irreducible curve of degree λ ;

- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ .

Put $\Xi = Z \cap \Sigma$. We may assume that the restriction $\psi|_Z$ is a birational morphism and

$$\psi(Z) \cap \psi(\Sigma \setminus \Xi) = \emptyset$$

because the linear subspace Ω is sufficiently general. In particular, we see that

$$\deg(\psi(Z)) = \deg(Z).$$

Let C be an irreducible curve in Π of degree λ that contains $\psi(\Sigma)$ and let W be a cone in \mathbb{P}^n over C whose vertex is Ω . Then

$$W \in \mathcal{M},$$

which implies that $Z \subset W$. Therefore, we see that $\psi(Z) = C$, which implies that $\Xi = \Sigma$ and $\deg(Z) = \lambda$, giving a contradiction.

Corollary 2.5. If Σ is not contained in any line, then nor is $\psi(\Sigma)$.

Lemma 2.6. Let \mathscr{M} be a linear system consisting of hypersurfaces in \mathbb{P}^n of degree λ that contain the set Σ . Then the base locus of the linear system \mathscr{M} does not contain surfaces if

- the set Σ is not contained in any irreducible surface of degree λ ;
- the set $\psi(\Sigma)$ is contained in some irreducible surface of degree λ ;

- the inequality $m \ge 3$ holds.

See the proof of Lemma 2.4.

Corollary 2.7. Suppose that $m \ge 3$ and Σ is not contained in any two-dimensional linear subspace. Then $\psi(\Sigma)$ is not contained in any two-dimensional linear subspace, either.

Lemma 2.8. Let \mathscr{M} be a linear system consisting of hypersurfaces in Π of degree λ that contain the set $\psi(\Sigma)$. Then the base locus of the linear system \mathscr{M} is zerodimensional if

- the subset Σ is not contained in any irreducible curve of degree λ ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ ;
- the equality m = n 1 holds and $m \ge 3$.

Proof. Suppose that

- the set Σ is not contained in any irreducible curve of degree λ ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ ;

-m = n - 1 and $m \ge 3$.

Note that Ω is a point.

Let \mathscr{Y} be the set of all cones in \mathbb{P}^n over all irreducible curves in Π of degree λ that contain all the points in Σ , and let Υ be the set-theoretic intersection of all cones in \mathscr{Y} . Then obviously,

$$\Sigma \subseteq \Upsilon \subset \mathbb{P}^n$$

because every cone in \mathscr{Y} contains Σ .

Let C be an irreducible curve in Π of degree λ that contains $\psi(\Sigma)$, and let W be a cone in \mathbb{P}^n over the curve C whose vertex is the point Ω . Then $W \in \mathscr{Y}$, which implies that $\Upsilon \subseteq W$. We will show that Υ is a finite set.

Suppose that there exists an irreducible curve $Z \subset \Upsilon$. Then the cone W must contain Z. Put $\Xi = Z \cap \Sigma$. We may assume that $\psi|_Z$ is an isomorphism and

$$\psi(Z) \cap \psi(\Sigma \setminus \Xi) = \emptyset$$

because the point Ω is sufficiently general. Then $\psi(Z)$ is a curve of degree deg(Z). We have

$$\psi(Z) = C,$$

which gives $\Xi = \Sigma$ and $\deg(Z) = \lambda$, which is a contradiction. Hence the set Υ is finite.

Let ${\mathscr S}$ be the set of all irreducible surfaces in ${\mathbb P}^m$ such that

$$S \in \mathscr{S} \iff \exists Y \in \mathscr{Y} : \psi(Y) = S,$$

and let Ψ be the set theoretic intersection of all surfaces in \mathscr{Y} . Then

$$\psi(\Sigma) \subseteq \psi(\Upsilon) \subseteq \Psi.$$

The set Ψ is a set-theoretic intersection of surfaces of degree at most λ . Each of these surfaces is a set-theoretic intersection of hypersurfaces of degree λ . Thus Ψ is a set-theoretic intersection of surfaces in the linear system \mathcal{M} . Hence to finish the proof it is enough to show that Ψ is finite.

Let W_1, W_2, \ldots, W_r be irreducible surfaces in \mathscr{Y} such that

$$\Upsilon = \bigcap_{i=1}^{r} W_i$$

and $\psi(W_i) \in \mathscr{S}$ for any *i*. Put

$$\Theta = \bigcap_{i=1}^{r} \psi(W_i).$$

We will show that $\Theta \subset \mathbb{P}^m$ is a finite set if the point Ω is general enough. Note that if the set Θ is finite, then Ψ is finite because $\Psi \subseteq \Theta$.

Let H be a sufficiently general hypersurface in \mathbb{P}^n that contains the point Ω . Put

$$C_i = W_i \cap H \subset H \cong \mathbb{P}^m$$

for every *i*. Then $C_1 \cap C_1 \cap \cdots \cap C_r = \emptyset$ because Υ is a finite set. But

$$\Theta \cap H = \bigcap_{i=1}^{r} \psi(W_i) \cap H = \bigcap_{i=1}^{r} \psi(C_i)$$

because $\Omega \in H$. Hence to prove that Θ is a finite set it is enough to show that

$$\bigcap_{i=1}^{r} \psi(C_i) = \emptyset.$$

Let Δ be a (possibly empty) subset of H such that

$$P \in \Delta \iff \exists L \subset H : P \in L, L \cap C_i \neq \emptyset \forall i,$$

where P is a point in H. Then by the definition of Δ

$$\bigcap_{i=1}^{r} \psi(C_i) = \emptyset \quad \Longleftrightarrow \quad \Omega \notin \Delta,$$

but an easy dimension count implies that $\dim(\Delta) \leq 2$ because $C_1 \cap C_1 \cap \cdots \cap C_r = \emptyset$.

As $m \ge 3$, thus $\Delta \ne H$. Hence we may assume that

$$\Omega \in H \setminus \Delta,$$

which implies that Θ is a finite set and completes the proof.

Corollary 2.9. Suppose that Σ is not contained in an irreducible curve of degree λ , but

 $|\Sigma| > \lambda^2$

and $m \ge 3$. Then $\psi(\Sigma)$ is not contained in any irreducible curve of degree λ .

Lemma 2.10. Suppose that Σ is a disjoint union of nonempty finite subsets Λ and Δ such that

- there exists a hypersurface in \mathbb{P}^n of degree ζ that passes through all points of the set Λ and does not contain any point of Δ ;
- the points of the set Λ and the points of Δ impose independent linear conditions on hypersurfaces of degrees ξ and $\xi - \zeta$, respectively,

where ζ is some natural number such that $\xi \ge \zeta$.

Then the points in Σ impose independent linear conditions on hypersurfaces of degree ξ .

Proof. Let P be an arbitrary point in Σ . We must show that there exists a hypersurface of degree ξ that contains the set $\Sigma \setminus P$ and does not contain P.

Note that we may assume that $P \in \Lambda$.

Let F be a homogeneous polynomial of degree ξ that vanishes at every point of the set $\Lambda \setminus P$ and does not vanish at the point P. Put

$$\Delta = \{Q_1, \ldots, Q_\delta\},\$$

where Q_i is a point. For every Q_i there is a homogeneous polynomial G_i of degree ξ which vanishes at every point of the set $\Sigma \setminus Q_i$ and does not vanish at Q_i . Then

$$F(Q_i) + \mu_i G_i(Q_i) = 0$$

for some $\mu_i \in \mathbb{C}$ because $G_i(Q_i) \neq 0$. Then the hypersurface given by the equation

$$F + \sum_{i=1}^{\delta} \mu_i G_i = 0,$$

contains the set $\Sigma \setminus P$ and does not contain the point P.

§ 3. Points in projective spaces

Let Σ be a finite subset of \mathbb{P}^n , $n \ge 2$. Let d and ε be natural numbers such that $d \ge 3$ and $\varepsilon < d$. In this section we prove the following result.

Theorem 3.1. The set Σ imposes independent linear conditions on hypersurfaces of degree $2d - 4 - \varepsilon$ if the strict inequality

$$|\Sigma| < (d-1)(d-\varepsilon)$$

holds and no curve in \mathbb{P}^n of degree k contains more than k(d-1) points of the set Σ for every $k \leq d - \varepsilon - 1$.

Proof. Note that the assertion of Theorem 3.1 obviously holds for $\varepsilon = d - 1$, and, as follows from [9], Theorem 1.1, the assertion of Theorem 3.1 obviously holds for $\varepsilon = 1$. Hence we may suppose that

$$|\Sigma| \leq (d-1)(d-\varepsilon) - 1,$$

at most k(d-1) points of the subset Σ are contained in a curve in \mathbb{P}^n of degree k for every natural number $k \leq d-\varepsilon-1$, and $2 \leq \varepsilon \leq d-2$.

Suppose that Theorem 3.1 fails. Then points of Σ impose dependent linear conditions on hypersurfaces of degree $2d - 4 - \varepsilon$.

Lemma 3.2. The inequality $\varepsilon \leq d-3$ holds.

Proof. Suppose that $\varepsilon = d - 2$. Then $2d - 4 - \varepsilon = d - 2$. But

 $|\Sigma| \leqslant 2d - 3,$

and at most d-1 points of Σ are contained on a line in \mathbb{P}^n . By Lemma 2.2 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2d - 4 - \varepsilon$, which is a contradiction.

There exists a point $P \in \Sigma$ such that each hypersurface in \mathbb{P}^n of degree $2d - 4 - \varepsilon$ that contains the set $\Sigma \setminus P$ must also contain the point $P \in \Sigma$. Note that $d \ge 5$.

Lemma 3.3. The inequality $n \neq 2$ holds.

Proof. Suppose that n = 2. Put $\xi = 2d - 4 - \varepsilon$. Then $\xi \ge 3$ and

$$|\Sigma \setminus P| \leq \max\left\{ \left\lfloor \frac{\xi + 3}{2} \right\rfloor \left(\xi + 3 - \left\lfloor \frac{\xi + 3}{2} \right\rfloor \right) - 1, \ \left\lfloor \frac{\xi + 3}{2} \right\rfloor^2 \right\}$$

because $|\Sigma| \leq (d-1)(d-\varepsilon) - 1$.

Let us show that at most $k(\xi + 3 - k) - 2$ points of the set $\Sigma \setminus P$ lie on a curve of degree k for every natural number $k \leq (\xi + 3)/2$. We must show that

$$k(2d-1-\varepsilon-k)-2 \ge k(d-1)$$

for every $k \leq (\xi + 3)/2$. However, we only need prove this for natural numbers $k \geq 1$ such that

$$k(2d - 1 - \varepsilon - k) - 2 < |\Sigma \setminus P| \leq (d - 1)(d - \varepsilon) - 2.$$

We may assume that $k < d - \varepsilon$ because otherwise

$$k(2d-1-\varepsilon-k)-2 \ge (d-\varepsilon)(2d-1-\varepsilon-d+\varepsilon)-2 = (d-1)(d-\varepsilon)-2 \ge |\Sigma \setminus P|.$$

We may assume that $k \neq 1$ because $\varepsilon \leq d-3$ and at most

$$d-1 \leqslant \xi = 2d - 4 - \varepsilon$$

points of the set $\Sigma \setminus P$ lie on a line. Then

$$k(2d-1-\varepsilon-k)-2 \geqslant k(d-1) \quad \Longleftrightarrow \quad k(d-\varepsilon-k) \geqslant 2 \quad \Longleftrightarrow \quad d-\varepsilon > k,$$

which immediately implies that at most $k(\xi + 3 - k) - 2$ points of the subset $\Sigma \setminus P$ are contained on a curve of degree k for every natural number $k \leq (\xi + 3)/2$.

By Lemma 2.3 there is a curve in \mathbb{P}^2 of degree $2d - 4 - \varepsilon$ that contains $\Sigma \setminus P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

By Lemma 2.4 and Corollary 2.9, to complete the proof of Theorem 3.1 we may assume that n = 3. Let Π be a sufficiently general plane in \mathbb{P}^3 and let

$$\psi \colon \mathbb{P}^3 \dashrightarrow \Pi \cong \mathbb{P}^2$$

be a projection from a sufficiently general point $O \in \mathbb{P}^3$. Put $\Sigma' = \psi(\Sigma)$ and $P' = \psi(P)$.

Lemma 3.4. There exists a curve $C \subset \Pi$ of degree $k \leq d - \varepsilon - 1$ such that

$$|C \cap \Sigma'| \ge k(d-1) + 1.$$

Proof. Suppose that no curve of degree k contains k(d-1) + 1 points of the subset Σ' for every $k \leq d - \varepsilon - 1$. Arguing as in the proof of Lemma 3.3, we see that there is a curve

$$Z \subset \Pi \cong \mathbb{P}^2$$

of degree $2d - 4 - \varepsilon$ that contains the set $\Sigma' \setminus P'$ and does not contain the point $P' \in \Sigma'$.

A cone in \mathbb{P}^3 over Z whose vertex is O is a surface of degree $2d - 4 - \varepsilon$ that contains $\Sigma \setminus P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

We may assume that k is the smallest natural number such that at least k(d-1) + 1 points of the set Σ' are contained in an irreducible curve in $\Pi \cong \mathbb{P}^2$ of degree k. We see that there is a disjoint union of sets

$$\bigcup_{j=k}^{l}\bigcup_{i=1}^{c_j}\Lambda_j^i\subset\Sigma$$

such that $|\Lambda_j^i| \ge j(d-1) + 1$, all points of $\psi(\Lambda_j^i)$ are contained in an irreducible curve of degree j, and at most $\zeta(d-1)$ points of the subset

$$\psi\left(\Sigma\setminus\left(\bigcup_{j=k}^{l}\bigcup_{i=1}^{c_{j}}\Lambda_{j}^{i}\right)\right)\subsetneq\Sigma'\subset\Pi\cong\mathbb{P}^{2}$$

can lie on a curve in $\Pi \cong \mathbb{P}^2$ of degree ζ for every natural number ζ . Put

$$\Lambda = \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i.$$

Let Ξ_j^i be the base locus of the linear subsystem of $|\mathscr{O}_{\mathbb{P}^3}(j)|$ that contains all surfaces that pass through all points of the subset Λ_j^i . Put

$$\Delta = \Sigma \cap \left(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i \right).$$

The set Ξ_i^i is finite by Lemma 2.4. On the other hand we have

$$|\Sigma \setminus \Lambda| \leqslant (d-1) \left(d - \varepsilon - \sum_{i=k}^{l} c_i i \right) - 2. \tag{(*)}$$

Corollary 3.5. The inequality $\sum_{i=k}^{l} ic_i \leq d-\varepsilon - 1$ holds.

Note that $\Lambda \subseteq \Delta \subseteq \Sigma$. We have $k \ge 2$ by Corollary 2.5.

Lemma 3.6. The points of the set Δ impose independent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$.

Proof. Suppose that the points of the set Δ impose dependent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$. Let us consider Δ as a zero-dimensional subscheme of \mathbb{P}^3 . Then

$$h^1(\mathscr{I}_\Delta \otimes \mathscr{O}_{\mathbb{P}^3}(2d - \varepsilon - 4)) \neq 0,$$

where \mathscr{I}_{Δ} is the ideal sheaf of the subscheme Δ .

Let \mathscr{M} be the linear subsystem of the linear system $|\mathscr{O}_{\mathbb{P}^3}(d-\varepsilon-1)|$ that contains all surfaces that pass through Δ . Then the base locus of the linear system \mathscr{M} is zero-dimensional since $\sum_{i=k}^{l} ic_i \leq d-\varepsilon-1$ and

$$\Delta \subseteq \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i,$$

whilst Ξ_j^i is a zero-dimensional base locus of the system $|\mathscr{O}_{\mathbb{P}^3}(j)|$. Put

$$\Gamma = M_1 \cdot M_2 \cdot M_3,$$

where M_1, M_2, M_3 are general enough surfaces in \mathcal{M} . Then Γ is a closed zerodimensional subscheme of \mathbb{P}^3 and Δ is a closed subscheme of the scheme Γ .

Let Υ be a closed subscheme of the scheme Γ such that

$$\mathscr{I}_{\Upsilon} = \operatorname{Ann}(\mathscr{I}_{\Delta}/\mathscr{I}_{\Gamma}),$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are ideal sheaves of the subschemes Υ and Γ , respectively. Then $0 \neq h^1 \left(\mathscr{O}_{\mathbb{P}^3}(2d - \varepsilon - 4) \otimes \mathscr{I}_{\Delta} \right) = h^0 \left(\mathscr{O}_{\mathbb{P}^3}(d - 2\varepsilon - 3) \otimes \mathscr{I}_{\Upsilon} \right) - h^0 \left(\mathscr{O}_{\mathbb{P}^3}(d - 2\varepsilon - 3) \otimes \mathscr{I}_{\Gamma} \right)$ by Theorem 2.1. Hence there is a surface $F \in |\mathscr{O}_{\mathbb{P}^3}(d-2\varepsilon-3) \otimes \mathscr{I}_{\Upsilon}|$. Then

$$(d-2\varepsilon-3)(d-\varepsilon-1)^2 = F \cdot M_1 \cdot M_2 \ge h^0(\mathscr{O}_{\Upsilon}) = h^0(\mathscr{O}_{\Gamma}) - h^0(\mathscr{O}_{\Delta}) = (d-\varepsilon-1)^3 - |\Delta|,$$

which implies that $|\Delta| \ge (\varepsilon + 2)(d - \varepsilon - 1)^2$. Thus we see that

$$(d-1)(d-\varepsilon) - 1 \ge |\Sigma| \ge |\Delta| \ge (\varepsilon+2)(d-\varepsilon-1)^2$$
,

which easily leads to a contradiction. The proof is complete.

Put $\Gamma = \Sigma \setminus \Delta$, $\Gamma' = \psi(\Gamma)$ and $\xi = 2d - \varepsilon - 4 - \sum_{i=k}^{l} ic_i$.

Lemma 3.7. The inequality $\xi \ge 3$ holds.

Proof. Suppose that $\xi \leq 2$. Then it follows from Corollary 3.5 that

$$2 \ge \xi = 2d - \varepsilon - 4 - \sum_{i=k}^{l} ic_i \ge d - 3,$$

which gives $d \leq 5$. Then d = 5 and $\varepsilon = 2$ because $2 \leq \varepsilon \leq d - 3$. We have $|\Sigma| \leq 11$.

By Lemma 2.2 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$ if at most 9 points of the set Σ are contained in a plane \mathbb{P}^3 . This implies that there exists a plane $\Upsilon \subset \mathbb{P}^3$ such that $|\Upsilon \cup \Sigma| \ge 10$.

It follows from Lemma 3.4 that $|\Upsilon \cup \Sigma| = 10$. Note that $P \in \Upsilon$.

Arguing as in the proof of Lemma 3.3 we see that there is a curve

$$Z \subset \Upsilon \cong \mathbb{P}^2$$

of degree $2d - \varepsilon - 4$ that contains the set $\Upsilon \setminus P$ and does not contain the point $P \in \Sigma$.

A cone in \mathbb{P}^3 over Z whose vertex is $\Sigma \setminus \Upsilon$ is a surface of degree $2d - \varepsilon - 4$ that contains $\Sigma \setminus P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

It easily follows from inequality (*) that

$$|\Gamma'| \leq \max\left\{ \left\lfloor \frac{\xi+3}{2} \right\rfloor \left(\xi+3 - \left\lfloor \frac{\xi+3}{2} \right\rfloor \right) - 1, \ \left\lfloor \frac{\xi+3}{2} \right\rfloor^2 \right\}.$$

Lemma 3.8. At most ξ points of the set Γ are contained in a line.

Proof. Suppose that $\xi + 1$ points of the set Γ are contained in some line. Then

$$d-1 \ge \xi + 1 = 2d - \varepsilon - 4 - \sum_{i=k}^{l} ic_i,$$

because at most d-1 points of the set Γ are contained in a line in \mathbb{P}^3 . Then

$$d - \varepsilon - 1 \ge \sum_{i=k}^{l} c_i i \ge d - \varepsilon - 2$$

by Corollary 3.5. We see that either $\sum_{i=k}^{l} c_i i = d - \varepsilon - 2$ or $\sum_{i=k}^{l} c_i i = d - \varepsilon - 1$.

Suppose that $\sum_{i=k}^{l} c_i i = d - \varepsilon - 2$. Then

$$|\Gamma| \leq |\Sigma \setminus \Lambda| \leq (d-1) \left(d - \varepsilon - \sum_{i=k}^{l} c_i i \right) - 2 = 2d - 4,$$

so by Lemma 2.2 the points of the set Γ impose independent linear conditions on hypersurfaces of degree d - 2. The points of the set Σ impose independent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$ by Lemma 2.10, which is a contradiction.

We see that $\sum_{i=k}^{l} c_i i = d - \varepsilon - 1$. Then

$$|\Gamma| \leq |\Sigma \setminus \Lambda| \leq (d-1) \left(d - \varepsilon - \sum_{i=k}^{l} c_i i \right) - 2 = d - 3,$$

which implies that the points of the set Γ impose independent linear conditions on hypersurfaces of degree $\xi = d - 3$. By Lemma 2.10 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$, which is a contradiction.

It follows from Corollary 2.5 that at most ξ points of the set Γ' are contained in a line.

Lemma 3.9. For every $t \leq (\xi + 3)/2$ at most

$$t(\xi + 3 - t) - 2$$

points of the set Γ' are contained in a curve in $\Pi \cong \mathbb{P}^2$ of degree t.

Proof. At most t(d-1) points of the subset Γ' are contained in a curve of degree t. Thus by Lemma 3.8, we need to show that

$$t(\xi + 3 - t) - 2 \ge t(d - 1)$$

for every $t \leq (\xi + 3)/2$ such that $t(\xi + 3 - t) - 2 < |\Gamma'|$ and t > 1. But

$$t(\xi+3-t)-2 \ge t(d-1) \quad \iff \quad d-\varepsilon - \sum_{i=k}^{l} c_i i > t$$

because t > 1. Therefore, we may assume that $t(\xi + 3 - t) - 2 < |\Gamma'|$ and

$$d - \varepsilon - \sum_{i=k}^{l} c_i i \leqslant t \leqslant \frac{\xi + 3}{2}.$$

Put $g(x) = x(\xi + 3 - x) - 2$. Then

$$g(t) \ge g\left(d - \varepsilon - \sum_{i=k}^{l} c_i i\right)$$

because g(x) is an increasing function for $x < (\xi + 3)/2$. We have

$$\begin{split} (d-1)\bigg(d-\varepsilon-\sum_{i=k}^{l}ic_{i}\bigg)-2\geqslant|\Gamma'|>g(t)\geqslant g\bigg(d-\varepsilon-\sum_{i=k}^{l}c_{i}i\bigg)\\ &=(d-1)\bigg(d-\varepsilon-\sum_{i=k}^{l}ic_{i}\bigg)-2, \end{split}$$

which is a contradiction.

The points of the set Γ impose independent linear conditions on hypersurfaces of degree ξ , because the points of the set Γ' impose independent linear conditions on hypersurfaces of degree ξ by Lemma 2.3. Hence the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2d - \varepsilon - 4$ by Lemma 2.10, which is a contradiction.

The assertion of Theorem 3.1 is proved.

§4. The main result

The goal of this section is to prove Theorem 1.6. Let X be hypersurface in \mathbb{P}^4 of degree d with at most isolated ordinary double points.

Lemma 4.1. Let C be a curve in \mathbb{P}^4 of degree λ . Then

 $|\operatorname{Supp}(C) \cap \operatorname{Sing}(X)| \leq \lambda(d-1),$

and if $|\operatorname{Supp}(C) \cap \operatorname{Sing}(X)| = \lambda(d-1)$, then

$$\operatorname{Sing}(C) \cap \operatorname{Sing}(X) = \emptyset.$$

See the proof in [8], Lemma 29.

It follows from [13] that the following conditions are equivalent:

- the hypersurface X is factorial;
- the points of the set $\operatorname{Sing}(X)$ impose independent linear conditions on hypersurfaces in \mathbb{P}^4 of degree 2d-5.

Suppose that

$$|\operatorname{Sing}(X)| \leqslant (d-1)^2$$

and the hypersurface X contains no planes. Let $\Sigma = \text{Sing}(X)$.

Lemma 4.2. Suppose that $|\Sigma| < (d-1)^2$. Then X is factorial.

Proof. By Theorem 3.1 the points of Σ impose independent linear conditions on hypersurfaces of degree 2d - 5, which implies that X is factorial.

Let $|\Sigma| = (d-1)^2$, but assume that points of Σ impose dependent linear conditions on hypersurfaces of degree 2d-5. We shall show this leads to a contradiction.

Lemma 4.3. Let $\Pi \subset \mathbb{P}^4$ be a plane. Then $|\Pi \cap \Sigma| \leq d-1$.

Proof. It easily follows from [6], Lemma 2.9 that

$$|\Pi \cap \Sigma| \leqslant \frac{d(d-1)}{2} \leqslant (d-1)^2 - 1$$

since X does not contain planes. Then the points of the set $\Pi \cap \Sigma$ impose independent linear conditions on hypersurfaces of degree 2d - 5 by Theorem 3.1.

Suppose that $|\Pi \cap \Sigma| \ge d-1$. Let H be a general hyperplane in \mathbb{P}^4 containing Π . Then $H \cap \Sigma = \Pi \cap \Sigma$. On the other hand we have

$$|\Sigma \setminus (\Pi \cap \Sigma)| \leqslant (d-1)^2 - d = (d-1)(d-2) - 1,$$

which implies that the points of the set $\Sigma \setminus (\Pi \cap \Sigma)$ impose independent linear conditions on hypersurfaces of degree 2d - 6 by Theorem 3.1. Then Σ imposes independent linear conditions on hypersurfaces of degree 2d - 5 by Lemma 2.10, which is a contradiction.

Corollary 4.4. At most d-2 points of the set Σ lie on a line.

The assertion of Theorem 1.6 is proved in [2] for $d \leq 4$. Thus, we have shown that $d \geq 5$.

Lemma 4.5. The inequality $d \ge 6$ holds.

Proof. Suppose that d = 5. By Lemmas 2.2 and 4.3 the points of Σ impose independent linear conditions on hypersurfaces of degree 2d - 5, which is a contradiction.

Lemma 4.6. Let C be a curve in \mathbb{P}^4 of degree $\lambda \leq d-2$. Then

$$|C \cap \Sigma| \leq \lambda(d-1) - 1.$$

Proof. We may assume that C is irreducible. Suppose that $|C \cap \Sigma| = \lambda(d-1)$. Then

$$|\Sigma \setminus (C \cap \Sigma)| = (d-1)(d-\lambda-1) \ge 5$$

by Lemma 4.5. Moreover, it follows from Corollary 4.4 that $\lambda \neq 1$.

Let P and Q be two distinct points in the set $\Sigma \setminus (C \cap \Sigma)$. Let Y_P and Y_Q be the cones in \mathbb{P}^4 over the curve C whose vertices are at the points P and Q, respectively. Then Y_P and Y_Q are irreducible. Let us show that $Y_P \neq Y_Q$. Suppose that $Y_P = Y_Q$. Let L be the line in \mathbb{P}^4 that contains P and Q. Then Y_P is a cone over the curve C whose vertex is on the line L. Therefore, the surface Y_P must be a plane, which is impossible by Lemma 4.3. Hence we see that $Y_P \neq Y_Q$.

Let O be a point on the surface Y_P such that $O \notin Y_Q$, and let Y_O be the cone over the curve C whose vertex is the point O. Then $Q \notin Y_O$ because $O \notin Y_Q$. The cone Y_O is a set-theoretic intersection of hypersurfaces of degree λ , which implies that there is a hypersurface $F \subset \mathbb{P}^4$ of degree λ such that

$$F \cap \Sigma = Y_O \cap \Sigma,$$

which implies that $Q \notin F$. Thus, the points of the set $F \cap \Sigma$ impose independent linear conditions on hypersurfaces of degree 2d - 5 by Theorem 3.1. On the other hand we have

$$|\Sigma \setminus (\Pi \cap \Sigma)| \leq (d-1)(d-1-\lambda)-1,$$

which implies that the points of the set $\Sigma \setminus (F \cap \Sigma)$ impose independent linear conditions on hypersurfaces of degree $2d - 5 - \lambda$ by Theorem 3.1. Then Σ imposes independent linear conditions on hypersurfaces of degree 2d - 5 by Lemma 2.10, which is a contradiction.

Lemma 4.7. Let C be a curve in \mathbb{P}^4 of degree d-1. Then

$$|C \cap \Sigma| \leqslant (d-1)^2 - 1.$$

Proof. Suppose that $|C \cap \Sigma| = (d-1)^2$. Then $\Sigma \subset C$, where C is irreducible by Lemma 4.6, and C is not contained in a two-dimensional linear subspace by Lemma 4.3.

We have to consider the following two mutually exclusive cases:

- the curve C is contained in some three-dimensional linear subspace of \mathbb{P}^4 ,
- the curve C is not contained in any three-dimensional linear subspace of \mathbb{P}^4 .

Suppose that C is contained in some three-dimensional linear subspace $H \subset \mathbb{P}^4$. Then $H \cong \mathbb{P}^3$ and we may consider Σ as a zero-dimensional subscheme of \mathbb{P}^3 . Then

$$h^1(\mathscr{I}_{\Sigma}\otimes\mathscr{O}_{\mathbb{P}^3}(2d-5))\neq 0,$$

where \mathscr{I}_{Σ} is the ideal sheaf of the subscheme Σ .

Taking into account the linear projection $\mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ from a sufficiently general point of C we see that there exist two different irreducible surfaces F_1 and F_2 in the linear system $|\mathscr{O}_{\mathbb{P}^3}(d-2)|$ such that $C \subset F_1 \cap F_2$.

Let \mathscr{M} be a linear subsystem in $|\mathscr{O}_{\mathbb{P}^3}(d-1)|$ that contains all surfaces that pass through the set Σ . Then the base locus of the linear system \mathscr{M} is zero-dimensional. Put

$$\Gamma = M \cdot F_1 \cdot F_2,$$

where M is a general surface in the linear system \mathcal{M} . Then Γ is a closed zerodimensional subscheme of \mathbb{P}^3 and Σ is a closed subscheme of the scheme Γ .

Let Υ be a closed subscheme of the scheme Γ such that

$$\mathscr{I}_{\Upsilon} = \operatorname{Ann}(\mathscr{I}_{\Sigma}/\mathscr{I}_{\Gamma}),$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ , respectively. Then

$$0 \neq h^1 \big(\mathscr{O}_{\mathbb{P}^3}(2d-5) \otimes \mathscr{I}_{\Sigma} \big) = h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Upsilon} \big) - h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Gamma} \big)$$

by Theorem 2.1. Thus, there exists a surface $G \in |\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Upsilon}|$. Then

$$(d-4)(d-2)(d-1) = G \cdot F_1 \cdot M \ge h^0(\mathscr{O}_{\Upsilon}) = h^0(\mathscr{O}_{\Gamma}) - h^0(\mathscr{O}_{\Sigma}) = (d-1)(d-2)^2 - |\Sigma|,$$

which implies that $(d-1)^2 = |\Sigma| \ge 2(d-2)(d-1)$, which is a contradiction.

We see that C is not contained in any three-dimensional linear subspace of \mathbb{P}^4 . It should be pointed out that $C \subset X$ because otherwise we have

$$d(d-1) = \deg(C)\deg(X) \ge 2(d-1)^2,$$

which is a contradiction because $d \ge 6$.

Let O be a sufficiently general point of C and let

$$\psi \colon \mathbb{P}^4 \dashrightarrow \Pi$$

be a projection from the point O, where Π is a three-dimensional linear subspace of \mathbb{P}^4 . Then ψ induces a birational morphism $C \dashrightarrow \psi(C)$. Put $Z = \psi(C)$. Then the degree of the curve Z is d - 2.

Let Y be a cone in \mathbb{P}^4 over the curve Z whose vertex is O. Then

$$C \subset Y \not\subset X$$

since O is a sufficiently general point because X is not a secant variety of the curve C.

Since O is sufficiently general, we may assume that O is not contained in a threedimensional linear subspace that is tangent to X at some point of the curve C because C is not contained in a three-dimensional linear subspace of \mathbb{P}^4 . Then the cycle $X \cdot Y$ is reduced at a general point on the curve C. Put

$$X \cdot Y = C + R,$$

where R is a curve of degree $d^2 - 3d + 1$ such that $C \not\subseteq \text{Supp}(R)$. By Lemma 4.1, since O is sufficiently general, we have

$$C \cap \Sigma \subset Y \setminus \operatorname{Sing}(Y).$$

Let $\alpha \colon \overline{Z} \to Z$ be a normalization of the curve Z. Then there is a commutative diagram

where \overline{Y} is a smooth surface, β is a birational morphism, and π is a morphism with connected fibres that is a \mathbb{P}^1 -bundle.

Let L and E be a fibre and a section of π such that $\beta(E)=O,$ respectively. Then

$$E^2 = -d + 2$$

on the surface \overline{Y} . Let \overline{C} and \overline{R} be curves on \overline{Y} such that $\alpha(\overline{C}) = C$, the equality

$$\overline{R} \cdot \alpha^*(\mathscr{O}_{\mathbb{P}^4}(1)|_Y) = d^2 - 3d + 1$$

holds and $\alpha(\overline{R}) = R$. Then

$$\overline{R} \equiv (d-2)E + (d^2 - 3d + 1)L$$

on the surface \overline{Y} and similarly $\overline{C} \equiv E + (d-1)L$. Put $s = (d-1)^2$ and

$$\Sigma = \{Q_1, Q_2, \dots, Q_s\},\$$

where Q_i is a point of the set Σ . For every point Q_i there is a point $\overline{Q}_i \in \overline{Y}$ such that

$$\overline{Q}_i \in \operatorname{Supp}(\overline{C} \cdot \overline{R})$$

and $\beta(\overline{Q}_i) = Q_i$. Therefore, we have

$$(d-1)^2 - 2 = \overline{C} \cdot \overline{R} \ge \sum_{i=1}^s \operatorname{mult}_{Q_i}(\overline{C} \cdot \overline{R}) \ge (d-1)^2,$$

which is a contradiction.

Corollary 4.8. Let C be a curve in \mathbb{P}^4 of degree λ . Then

$$|C \cap \Sigma| \leq \lambda(d-1) - 1.$$

Let $\eta: \mathbb{P}^4 \dashrightarrow \mathbb{P}^3$ be a general linear projection. Put $\Xi = \eta(\Sigma)$. Then it follows from Corollaries 2.9 and 2.7 that the set Ξ has the following properties:

- $-|\Xi| = (d-1)^2;$
- at most $\lambda(d-1) 1$ points in the set Ξ are contained in a curve of degree $\lambda \leq d-2$;
- at most d-1 points of the set Ξ are contained in a plane.

However, the points of Ξ impose dependent linear conditions on hypersurfaces of degree 2d - 5. Let us consider Ξ as a subscheme of \mathbb{P}^3 . Then

$$h^1(\mathscr{I}_{\Xi} \otimes \mathscr{O}_{\mathbb{P}^3}(2d-5)) \neq 0,$$

where \mathscr{I}_{Ξ} is the ideal sheaf of the subscheme Ξ .

Lemma 4.9. Let C be a curve in \mathbb{P}^3 of degree d-1. Then $|C \cap \Xi| \leq (d-1)^2 - 1$.

Proof. Suppose that $|C \cap \Xi| = (d-1)^2$. Then C is an irreducible curve not contained in a plane. Arguing as in the proof of Lemma 4.7 and using Lemma 2.8 we get a contradiction.

Thus we have shown that the set Ξ has the following properties:

- $-|\Xi| = (d-1)^2;$
- at most $\lambda(d-1) 1$ points of the set Ξ are contained in a curve of degree $\lambda \leq d-2$;
- at most d-1 points of the set Ξ are contained in a plane;
- there is a point $Q \in \Xi$ such that every hypersurface in \mathbb{P}^3 of degree 2d 5 that contains the set $\Xi \setminus Q$ must also contain $Q \in \Xi$.

Lemma 4.10. Let \mathscr{M} be a linear subsystem in $|\mathscr{O}_{\mathbb{P}^3}(d-1)|$ consisting of all surfaces that contain Ξ . Then the base locus of the linear system \mathscr{M} contains a curve.

See the proof in $\S 5$.

Let $\Pi \subset \mathbb{P}^3$ be a general plane and let

$$\psi \colon \mathbb{P}^3 \dashrightarrow \Pi \cong \mathbb{P}^2$$

be a linear projection from a sufficiently general point $O \in \mathbb{P}^3$. Put $\Xi' = \psi(\Xi)$ and $Q' = \psi(Q)$.

Lemma 4.11. Suppose that no more than $\lambda(d-1)$ points of the set Ξ' are contained in a curve of degree λ for every $\lambda \leq d-2$. Then Ξ' is not contained in a curve of degree d-1.

Proof. Suppose that Ξ' is contained in a curve $C \subset \mathbb{P}^2$ of degree d-1. We claim that this contradicts Lemma 4.10.

Let \mathscr{M} be a linear subsystem of the linear system $|\mathscr{O}_{\mathbb{P}^3}(d-1)|$ consisting of all surfaces that contains Ξ . Then the base locus of \mathscr{M} contains an irreducible $Z \subset \mathbb{P}^3$ by Lemma 4.10.

The curve C is reducible by Lemma 2.4. Put

$$C = \sum_{i=1}^{s} C_i,$$

where C_i is an irreducible curve of degree d_i . Then $|C_i \cap \Xi'| = d_i(d-1)$.

Let Ξ_i be a subset in Ξ such that $|\Xi_i| = d_i(d-1)$ and $\psi(\Xi_i) \subset C_i$, and let \mathscr{M}_i be a linear system consisting of all surfaces of degree d_i that contain the subset Ξ_i . Then, by Lemma 4.10 and Corollary 4.8, the base locus of the linear system \mathscr{M}_i does not contain any curves.

Let M_i be a surface in \mathcal{M}_i that does not contain the curve Z. Then

$$\sum_{i=1}^{s} M_i \in \mathcal{M},$$

which is a contradiction, since Z is contained in the base locus of the linear system $\mathscr{M}.$

Lemma 4.12. There exists a curve $C \subset \Pi$ of degree $k \leq d-2$ such that

$$|C \cap \Xi'| > k(d-1).$$

Proof. We will prove the required assertion by reductio ad absurdum. Suppose that every curve in Π of degree k contains at most k(d-1) points of the set Ξ' for every $k \leq d-2$. Suppose further that there is no curve in \mathbb{P}^2 of degree d-1 which contains the whole set Ξ' .

Put $\xi = 2d - 5$. Then $\xi \ge 7$ because $d \ge 6$.

Suppose that no more than $k(\xi + 3 - k) - 2$ points of the subset $\Xi' \setminus Q'$ are contained in a curve of degree k for every $k \leq (\xi + 3)/2$. By Lemma 2.3 there exists a curve

 $Z \subset \mathbb{P}^2$

of degree 2d - 5 that contains $\Xi' \setminus Q'$ and does not contain Q'. Let S be a cone in \mathbb{P}^3 over the curve Z whose vertex is the point O. Then S is a surface in \mathbb{P}^3 of degree 2d - 5 that contains $\Xi \setminus Q$ and does not contain the point Q, which is a contradiction.

Hence we see that there exists a curve $R \subset \mathbb{P}^2$ of degree $k \leq d-1$ that contains at least $k(\xi + 3 - k) - 1$ points of the set $\Xi' \setminus Q'$.

Suppose that k = d - 1. Then the curve R contains at least

$$k(\xi + 3 - k) - 1 = k(2d - 2 - k) - 1 = (d - 1)^2 - 1$$

points of the set $\Xi' \setminus Q'$. Then $Q' \notin R$ because there is no curve of degree d-1 containing the whole of Ξ' . The cone in \mathbb{P}^3 over R whose vertex is the point O is a surface of degree 2d-5 that contains $\Xi \setminus Q$ and does not contain the point $Q \in \Xi$, which is a contradiction.

Hence we see that $k \leq d-2$. Then $k(2d-2-k) - 1 \leq k(d-1)$.

Suppose that k = 1. Then $2d - 4 \leq d - 1$, which is impossible because $d \ge 6$. Hence we see that $k \ne 1$. Then

$$k(2d-2-k)-1\leqslant k(d-1)\quad \Longleftrightarrow \quad k(d-1-k)\leqslant 1\quad \Longleftrightarrow \quad k\geqslant d-1,$$

which is a contradiction because $k \leq d-2$.

Without loss of generality we may assume that the number k is the smallest natural number with this property. Then the curve C is irreducible.

Lemma 4.13. The curve C contains the set Ξ' .

Proof. Suppose that $\Xi' \not\subset C$. Let S be a cone in \mathbb{P}^3 over C whose vertex is O. Then $\Xi \not\subset S$ and

$$|\Xi \setminus (S \cap \Xi)| \leq (d-1)(d-1-k) - 1.$$

Thus, the set $\Xi \setminus (S \cap \Xi)$ imposes independent linear conditions on hypersurfaces of degree 2d - 5 - k by Theorem 3.1. Then the set Ξ imposes independent linear conditions on hypersurfaces of degree 2d - 5 by Lemma 2.10, which is a contradiction.

Let us consider Ξ as a subscheme of \mathbb{P}^3 with ideal sheaf \mathscr{I}_{Ξ} . Then

$$h^1(\mathscr{I}_{\Xi} \otimes \mathscr{O}_{\mathbb{P}^3}(2d-5)) \neq 0.$$

Let \mathscr{D} be a linear subsystem of the linear system $|\mathscr{O}_{\mathbb{P}^3}(d-2)|$ consisting of all surfaces that contain the set Ξ . Then its base locus is zero-dimensional by Lemma 2.4. Put

$$\Gamma = M_1 \cdot M_2 \cdot M_3,$$

where M_1 , M_2 and M_3 are general surfaces in the linear system \mathscr{D} . Then Γ is a closed zero-dimensional subscheme of \mathbb{P}^3 , and Ξ is closed subscheme of the scheme Γ .

Let Υ be a closed subscheme of the scheme Γ such that

$$\mathscr{I}_{\Upsilon} = \operatorname{Ann}(\mathscr{I}_{\Xi}/\mathscr{I}_{\Gamma}),$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ , respectively. Then

$$0 \neq h^1 \big(\mathscr{O}_{\mathbb{P}^3}(2d-5) \otimes \mathscr{I}_{\Xi} \big) = h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-5) \otimes \mathscr{I}_{\Upsilon} \big) - h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-5) \otimes \mathscr{I}_{\Gamma} \big)$$

by Theorem 2.1. Thus there exists a surface $F \in |\mathscr{O}_{\mathbb{P}^3}(d-5) \otimes \mathscr{I}_{\Upsilon}|$. Then

$$(d-5)(d-2)^2 = F \cdot M_1 \cdot M_2 \ge h^0(\mathscr{O}_{\Upsilon}) = h^0(\mathscr{O}_{\Gamma}) - h^0(\mathscr{O}_{\Xi}) = (d-2)^3 - |\Xi|,$$

which implies that $(d-1)^2 = |\Xi| \ge 3(d-2)^2$, which is a contradiction.

The assertion of Theorem 1.6 is proved.

§5. A special projection

The purpose of this section is to prove Lemma 4.10.

Let Ξ be a finite subset in \mathbb{P}^3 , let P be a point in Ξ , and let d be a natural number such that $d \ge 6$, Suppose that Ξ has the following properties:

- $-|\Xi| = (d-1)^2;$
- at most $\lambda(d-1) 1$ points of Ξ are contained in a curve of degree λ for any $\lambda \in \mathbb{N}$;
- at most d-1 points of the set Ξ are contained in a plane;
- each surface in \mathbb{P}^3 of degree 2d-5 that contains $\Xi \setminus P$ passes through $P \in \Xi$.

Lemma 5.1. Let S be a surface in \mathbb{P}^3 of degree μ such that $|S \cap \Xi| \ge (d-1)\mu + 1$. Then

 $\Xi \subset S.$

Proof. Suppose that $|S \cap \Xi| \ge (d-1)\mu + 1$, but $\Xi \not\subset S$. Then

$$|\Xi \setminus (S \cap \Xi)| \leqslant (d-1)^2 - (d-1)\mu + 1 = (d-1)(d-1-\mu) - 1,$$

which implies that the subset $\Xi \setminus (S \cap \Xi)$ imposes independent linear conditions on hypersurfaces of degree $2d - 5 - \mu$ by Theorem 3.1. Then Ξ imposes independent linear conditions on hypersurfaces of degree 2d - 5 by Lemma 2.10, which is a contradiction.

Let \mathscr{M} be a linear system consisting of all surfaces of degree d-1 that contain the set Ξ . To prove Lemma 4.10 we must show that the base locus of \mathscr{M} contains a curve. Suppose that this base locus is zero-dimensional. We shall derive a contradiction.

Lemma 5.2. The set $\Xi \subset \mathbb{P}^3$ contains two different point Q_1 and Q_2 such that

- the line that passes through Q_1 and Q_2 does not contain the point $P \in \Xi$;
- the line that passes through Q_1 and Q_2 contains at most d-3 points of the set Ξ .

This assertion is obvious.

Let L be a line in \mathbb{P}^3 that passes through the points Q_1 and Q_2 , let O be a sufficiently general point in the line L, let Π be a plane in \mathbb{P}^3 such that $L \not\subset \Pi$, and let

$$\psi \colon \mathbb{P}^3 \dashrightarrow \Pi \cong \mathbb{P}^2$$

be a projection from $O \in \mathbb{P}^3$. Put $\Xi' = \psi(\Xi)$ and $P' = \psi(P)$. Then ψ induces a bijection

$$\Xi \setminus (\Xi \cap L) \longleftrightarrow \Xi' \setminus \psi(L)$$

and $(d-1)(d-2) < |\Xi'| < (d-1)^2$.

Lemma 5.3. Let λ be a natural number and let Λ be a subset of the set Ξ such that

$$|\psi(\Lambda)| \ge \lambda(d-1) + 1.$$

Suppose that there exists a curve C of degree λ such that

$$\psi(\Lambda) \subset C \subset \Pi \cong \mathbb{P}^2.$$

Let \mathscr{D} be a linear subsystem of $|\mathscr{O}_{\mathbb{P}^3}(\lambda)|$ consisting of all surfaces of degree λ that contain Λ . Then the base locus of the linear system \mathscr{D} is contained in the union of the line L and some finite set.

Proof. Suppose that there exists an irreducible curve $Z \subset \mathbb{P}^3$ that is contained in the base locus of the linear system \mathscr{D} . We must show that Z = L.

We suppose that $Z \neq L$ and show this leads to contradiction. We may assume that $O \notin Z$. Then $\psi(Z)$ is an irreducible curve.

For every point $Q \in \Lambda$ let Y_Q be a cone in \mathbb{P}^3 over Z whose vertex is Q. Then

$$L \subset Y_Q \quad \iff \quad Q \in L,$$

which implies that we may assume that $O \notin Y_Q$ if $Q \notin L$ because $O \in L$ is sufficiently general. Put $\Theta = Z \cap \Lambda$ and $\Omega = L \cap \Lambda$. Then

$$\psi(Z) \cap \psi(\Lambda \setminus (\Xi \cup \Omega)) = \emptyset.$$

As $O \in L$ is a general point, we may assume that $|\Lambda \setminus \Omega| = |\psi(\Lambda \setminus \Omega)|$.

Let C be an irreducible curve in Π of degree λ that contains the set $\psi(\Sigma)$, and let W be a cone in \mathbb{P}^3 over the curve C whose vertex is our point O. Then $W \in \mathscr{D}$, which implies that $Z \subset W$. Then $\psi(Z) = C$. Thus, we have $\Lambda \setminus (\Xi \cup \Omega) \subset Z$.

Let B be any smooth point of the curve Z such that B is not contained in the line L, and let H be a plane in \mathbb{P}^3 that passes through the line L and the point B. If $Z \subset H$, then $H \cap \Pi = Z$, which gives $\lambda = 1$, a contradiction.

Thus we have shown that $Z \not\subset H$, so the intersection $H \cap Z$ is a finite set containing the point B. In particular, there exists a line $L' \subset H$ such that

$$L' \cap Z = B$$

and L' is not tangent to Z at the point B. If $O = L \cap L'$, then the morphism

$$\psi|_Z \colon Z \longrightarrow C$$

is birational, which implies that $\deg(Z) = \lambda$. Thus, as $O \in L$ is a general point, we may assume that $\deg(Z) = \lambda$.

We see that Z is an irreducible curve in \mathbb{P}^3 of degree λ that contains $\Lambda \setminus \Omega$. But

$$|\Lambda \setminus \Omega| = |\psi(\Lambda)| - |\psi(\Omega)| \ge |\psi(\Lambda)| - 1 \ge \lambda(d-1)$$

because $\psi(\Omega) = \psi(L)$ of $\Omega \neq \emptyset$. But at most $\lambda(d-1) - 1$ points of the set Ξ are contained in any curve of degree λ , which is a contradiction.

Lemma 5.4. There exists a curve $C \subset \Pi$ of degree $k \leq d-2$ such that

$$|C \cap \Xi'| > k(d-1).$$

Proof. Suppose that at most k(d-1) points of the set Ξ' are contained in a curve of degree k for every $k \leq d-2$. Put $\xi = 2d-5$. Then $\xi \geq 7$ because $d \geq 6$.

Suppose that at most $k(\xi + 3 - k) - 2$ points of the set $\Xi' \setminus P'$ are contained in any curve of degree k for every $k \leq (\xi + 3)/2$. By Lemma 2.3, there exists a curve

$$Z \subset \mathbb{P}^2$$

of degree 2d - 5 that contains $\Xi' \setminus P'$ and does not contain P'. Let S be a cone in \mathbb{P}^3 over the curve Z whose vertex is the point O. Then S is a surface of degree 2d - 5 that contains all points of the set $\Xi \setminus P$ and does not contain the point P, which is a contradiction.

Thus, we see that there exists some curve $R \subset \mathbb{P}^2$ of degree $k \leq d-1$ such that R contains at least $k(\xi + 3 - k) - 1$ points of the set $\Xi' \setminus P'$.

If k = d - 1, then the curve R contains at least

$$k(\xi + 3 - k) - 1 = k(2d - 2 - k) - 1 = (d - 1)^2 - 1$$

points of the set $\Xi' \setminus P'$. But the set $\Xi' \setminus P'$ consists of at most $(d-1)^2 - 2$ points. We see that $k \leq d-2$. Then $k(2d-2-k) - 1 \leq k(d-1)$.

If k = 1, then $2d - 4 \leq d - 1$, which is impossible since $d \ge 6$. We see that $k \ne 1$. Then

$$k(2d-2-k)-1\leqslant k(d-1)\quad \Longleftrightarrow \quad k(d-1-k)\leqslant 1 \quad \Longleftrightarrow \quad k\geqslant d-1,$$

which is a contradiction because $k \leq d-2$.

Without loss of generality, we may assume that k is the smallest natural number such that there is a curve in Π of degree $k \leq d-2$ that contains at least k(d-1)+1points of the set Ξ' , which implies that the curve C is irreducible. Let S be a cone in \mathbb{P}^3 over the curve C whose vertex is the point O. Then

$$|S \cap \Xi| \ge k(d-1) + 1,$$

which implies that $\Xi \subset S$ by Lemma 5.1. Then $\Xi' \subset C$.

Let us consider Ξ as a closed zero-dimensional subscheme of \mathbb{P}^3 . Then

$$h^1(\mathscr{I}_{\Xi} \otimes \mathscr{O}_{\mathbb{P}^3}(2d-5)) \neq 0,$$

where \mathscr{I}_{Ξ} is the ideal sheaf of the subscheme Ξ .

Let \mathscr{R} be the linear subsystem of the linear system $|\mathscr{O}_{\mathbb{P}^3}(d-2)|$ consisting of all surfaces that pass through Ξ . By Lemma 5.3 the base locus of the linear system \mathscr{R} is contained in the union of the line L with some finite set. Put

$$\Gamma = R_1 \cdot R_2 \cdot M,$$

where R_1 and R_2 are general surfaces in the linear system \mathscr{R} and M is a general surface in the linear system \mathscr{M} . Then Γ is a zero-dimensional scheme in \mathbb{P}^3 and Ξ is its closed subscheme.

Let Υ be a closed subscheme of the scheme Γ such that

$$\mathscr{I}_{\Upsilon} = \operatorname{Ann}(\mathscr{I}_{\Xi}/\mathscr{I}_{\Gamma}),$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ , respectively. Then

$$0 \neq h^1 \big(\mathscr{O}_{\mathbb{P}^3}(2d-5) \otimes \mathscr{I}_{\Xi} \big) = h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Upsilon} \big) - h^0 \big(\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Gamma} \big)$$

by Theorem 2.1. Thus there exists a surface $F \in |\mathscr{O}_{\mathbb{P}^3}(d-4) \otimes \mathscr{I}_{\Upsilon}|$. Then

$$(d-4)(d-1)(d-2) = F \cdot R_1 \cdot M \ge h^0(\mathscr{O}_{\Upsilon}) = h^0(\mathscr{O}_{\Gamma}) - h^0(\mathscr{O}_{\Xi}) = (d-2)^2(d-1) - |\Xi|,$$

which implies that $|\Xi| \ge 2(d-2)(d-1)$. Therefore, we see that

$$(d-1)^2 = |\Xi| \ge 2(d-2)(d-1),$$

which is a contradiction because $d \ge 4$.

The assertion of Lemma 4.10 is proved.

Bibliography

- C. Ciliberto and V. Di Gennaro, "Factoriality of certain hypersurfaces of P⁴ with ordinary double points", Algebraic transformation groups and algebraic varieties (Vienna, Austria 2001), Encyclopaedia Math. Sci., vol. 132, Springer-Verlag, Berlin 2004, pp. 1–7.
- [2] I. Cheltsov, "Nonrational nodal quartic threefolds", Pacific J. Math. 226:1 (2006), 65-81.
- K. A. Shramov, "Q-factorial quartic threefolds", Mat. Sb. 198:8 (2007), 103–114; English transl. in Sb. Math. 198:8 (2007), 1165–1174.
- [4] A. A. du Plessis and C. T. C. Wall, "Singular hypersurfaces, versality, and Gorenstein algebras", J. Algebraic Geom. 9:2 (2000), 309–322.
- [5] I. Cheltsov, "On factoriality of nodal threefolds", J. Algebraic Geom. 14:4 (2005), 663–690.
- [6] I. Cheltsov and J. Park, "Factorial hypersurfaces in P⁴ with nodes", Geom. Dedicata 121:1 (2006), 205-219.
- [7] D. Kosta, "Factoriality condition of some nodal threefolds in P⁴", Manuscripta Math. 127:2 (2008), 151–166.
- [8] I. Cheltsov, "Points in projective spaces and applications", J. Differential Geom. 81:3 (2009), 575–599.
- [9] I. Cheltsov, "Factorial threefold hypersurfaces", J. Algebraic Geom. (to appear).
- [10] E. D. Davis, A. V. Geramita and F. Orecchia, "Gorenstein algebras and the Cayley–Bacharach theorem", Proc. Amer. Math. Soc. 93:4 (1985), 593–597.
- [11] D. Eisenbud and J.-H. Koh, "Remarks on points in a projective space", Commutative algebra (Berkeley, CA 1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer-Verlag, New York 1989, pp. 157–172.
- [12] E. D. Davis and A. V. Geramita, "Birational morphisms to P²: an ideal-theoretic perspective", Math. Ann. 279:3 (1988), 435–448.
- [13] A. Dimca, "Betti numbers of hypersurfaces and defects of linear systems", Duke Math. J. 60:1 (1990), 285–298.

I.A. Cheltsov

University of Edinburgh, UK *E-mail*: cheltsov@yahoo.com

Received 12/MAY/09 Translated by I. CHELTSOV