Related content

On a conjecture of Ciliberto

To cite this article: Ivan A Cheltsov 2010 Sb. Math. 2011069

View the article online for updates and enhancements.

- Birational geometry of Fano double spaces of index two Aleksandr V Pukhlikov
- Birationally rigid varieties. II. Fano fibre spaces Aleksandr V Pukhlikov

Log canonical thresholds on hypersurfaces
A Cheltsov

On a conjecture of Ciliberto

I. A. Cheltsov

Abstract

We prove that a threefold hypersurface of degree d with at most ordinary double points is factorial if it contains no planes and has at most $(d-1)^{2}$ singular points.

Bibliography: 13 titles.

Keywords: hypersurfaces, ordinary double points, factorial property.

§ 1. Introduction

Let X be a normal hypersurface in \mathbb{P}^{4} of degree $d \geqslant 3$ that has at most isolated singular points. The hypersurface X can be given by an equation

$$
f(x, y, z, t, u)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u])
$$

where $f(x, y, z, t, u)$ is a homogeneous polynomial of degree d.
Definition 1.1. The hypersurface X is factorial if every Weil divisor on X is a Cartier divisor.

It is well known that the following conditions are equivalent:

- the hypersurface X is factorial;
- each surface $S \subset X$ is cut out on X by a hypersurface in \mathbb{P}^{4};
- the quotient ring

$$
\mathbb{C}[x, y, z, t, u] /\langle f(x, y, z, t, u)\rangle
$$

is a unique factorization domain.
Example 1.2. Suppose that the hypersurface X is given by the equation

$$
x g(x, y, z, t, u)+y h(x, y, z, t, u)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u]),
$$

where g and h are general homogeneous polynomials of degree $d-1$. Then

$$
|\operatorname{Sing}(X)|=(d-1)^{2}
$$

the hypersurface X has at most isolated ordinary double points, X contains the plane $x=y=0$, but the hypersurface X is not factorial.

Example 1.3. Suppose that the hypersurface X is given by the equation

$$
x g(x, y, z, t, u)+(y z+t u) h(x, y, z, t, u)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u])
$$

where g is a general homogeneous polynomial of degree $d-1$ and h is a general homogeneous polynomial of degree $d-2$. Then

$$
|\operatorname{Sing}(X)|=2(d-1)(d-2)
$$

the hypersurface X has at most isolated ordinary double points, X contains the quadric surface $x=y z+t u=0$, but the hypersurface X is not factorial.

It is natural to expect the following to be true (see [1]).
Conjecture 1.4. The hypersurface X is factorial in the case when

$$
|\operatorname{Sing}(X)| \leqslant 2(d-1)(d-2)
$$

the hypersurface X has at most isolated ordinary double points, and the hypersurface X contains neither planes nor quadric surfaces.

Currently, the assertion of Conjecture 1.4 has only been proved for $d \leqslant 4$ (see [2], [3]), however, the following weaker version of Conjecture 1.4 holds (see [2] and [4]-[9]).

Theorem 1.5. The hypersurface X is factorial in the case when

$$
|\operatorname{Sing}(X)|<(d-1)^{2}
$$

and the hypersurface X has only isolated ordinary double points.
Recently Youngho Woo announced the following result.
Theorem 1.6. The hypersurface X is factorial in the case when

$$
|\operatorname{Sing}(X)| \leqslant(d-1)^{2}
$$

the hypersurface X has at most isolated ordinary double points and X contains no planes.

The aim of this paper is to give an independent geometric proof of Theorem 1.6, which is based on the results obtained in [8] and [9]. Our paper has the following structure: in § 2 we consider some auxiliary results; in § 3 we prove Theorem 3.1, which is used in the proof of Theorem 1.6; in $\S 4$ we prove Theorem 1.6 omitting the proof of Lemma 4.10; in $\S 5$ we prove Lemma 4.10.

\S 2. Auxiliary results

Let Σ be a finite nonempty subset of $\mathbb{P}^{n}, n \geqslant 2$, and let ξ be a natural number. Then the points of Σ impose independent linear conditions on hypersurfaces in \mathbb{P}^{n} of degree ξ if and only if for every point $P \in \Sigma$ there exists a hypersurface of degree ξ that contains $\Sigma \backslash P$ and does not contain the point $P \in \Sigma$.

Let us consider Σ as a subscheme of \mathbb{P}^{n}. Then there is an exact sequence of sheaves

$$
0 \longrightarrow \mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^{n}}(\xi) \longrightarrow \mathscr{O}_{\mathbb{P}^{n}}(\xi) \longrightarrow \mathscr{O}_{\Sigma} \longrightarrow 0
$$

where \mathscr{I}_{Σ} is the ideal sheaf of the subscheme Σ. Thus Σ imposes independent linear conditions on hypersurfaces of degree ξ if and only if $h^{1}\left(\mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^{n}}(\xi)\right)=0$.

Theorem 2.1. Suppose that the subscheme Σ is a closed subscheme of a zerodimensional scheme Γ that is a zero-dimensional complete intersection of n hypersurfaces X_{1}, \ldots, X_{n} in \mathbb{P}^{n}. Let Λ be a closed subscheme of the scheme Γ such that

$$
\mathscr{I}_{\Lambda}=\operatorname{Ann}\left(\mathscr{I}_{\Sigma} / \mathscr{I}_{\Gamma}\right)
$$

where \mathscr{I}_{Λ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Λ and Γ, respectively. Then

$$
\begin{aligned}
h^{1}\left(\mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^{n}}(\xi)\right)=h^{0} & \left(\mathscr{I}_{\Lambda} \otimes \mathscr{O}_{\mathbb{P}^{n}}\left(\sum_{i=1}^{n} \operatorname{deg}\left(X_{i}\right)-n-1-\xi\right)\right) \\
& -h^{0}\left(\mathscr{I}_{\Gamma} \otimes \mathscr{O}_{\mathbb{P}^{n}}\left(\sum_{i=1}^{n} \operatorname{deg}\left(X_{i}\right)-n-1-\xi\right)\right) .
\end{aligned}
$$

This is a consequence of Theorem 3 in [10].
Lemma 2.2. If $\xi \geqslant 2$ and at most $k \xi+1$ points of the subset Σ are contained in a linear subspace of dimension k for every $k \in \mathbb{N}$, then the set Σ imposes independent linear conditions on hypersurfaces of degree ξ.

This is a consequence of Theorem 2 in [11].
Lemma 2.3. Let P be a point in Σ. Suppose that $n=2$, the inequality

$$
|\Sigma \backslash P| \leqslant \max \left\{\left\lfloor\frac{\xi+3}{2}\right\rfloor\left(\xi+3-\left\lfloor\frac{\xi+3}{2}\right\rfloor\right)-1,\left\lfloor\frac{\xi+3}{2}\right\rfloor^{2}\right\}
$$

holds, $\xi \geqslant 3$ and at most

$$
k(\xi+3-k)-2
$$

points in $\Sigma \backslash P$ lie on a curve of degree k for every $k \leqslant(\xi+3) / 2$. Then there is a curve in \mathbb{P}^{2} of degree ξ that contains $\Sigma \backslash P$ and does not contain $P \in \Sigma$.

This is a special case of Corollary 4.3 in [12].
Let $\Pi \subset \mathbb{P}^{n}$ be a linear subspace of dimension $m<n$, let $\Omega \subset \mathbb{P}^{n}$ be a general linear subspace of dimension $n-m-1$ and let

$$
\psi: \mathbb{P}^{n} \rightarrow \Pi \cong \mathbb{P}^{m}
$$

be a linear projection from Ω. Suppose that $m \geqslant 2$. Let λ be a natural number.
Lemma 2.4. Let \mathscr{M} be a linear system consisting of hypersurfaces in \mathbb{P}^{n} of degree λ that contain all points of Σ. Then the base locus of the linear system \mathscr{M} is zerodimensional if

- the set Σ is not contained in any irreducible curve of degree λ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ.

Proof. We may assume that $m=2$. Suppose that there is an irreducible curve $Z \subset \mathbb{P}^{n}$ which is contained in the base locus of the linear system \mathscr{M}. Also suppose that

- the set Σ is not contained in an irreducible curve of degree λ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ.

Put $\Xi=Z \cap \Sigma$. We may assume that the restriction $\left.\psi\right|_{Z}$ is a birational morphism and

$$
\psi(Z) \cap \psi(\Sigma \backslash \Xi)=\varnothing
$$

because the linear subspace Ω is sufficiently general. In particular, we see that

$$
\operatorname{deg}(\psi(Z))=\operatorname{deg}(Z)
$$

Let C be an irreducible curve in Π of degree λ that contains $\psi(\Sigma)$ and let W be a cone in \mathbb{P}^{n} over C whose vertex is Ω. Then

$$
W \in \mathscr{M}
$$

which implies that $Z \subset W$. Therefore, we see that $\psi(Z)=C$, which implies that $\Xi=\Sigma$ and $\operatorname{deg}(Z)=\lambda$, giving a contradiction.
Corollary 2.5. If Σ is not contained in any line, then nor is $\psi(\Sigma)$.
Lemma 2.6. Let \mathscr{M} be a linear system consisting of hypersurfaces in \mathbb{P}^{n} of degree λ that contain the set Σ. Then the base locus of the linear system \mathscr{M} does not contain surfaces if

- the set Σ is not contained in any irreducible surface of degree λ;
- the set $\psi(\Sigma)$ is contained in some irreducible surface of degree λ;
- the inequality $m \geqslant 3$ holds.

See the proof of Lemma 2.4.
Corollary 2.7. Suppose that $m \geqslant 3$ and Σ is not contained in any two-dimensional linear subspace. Then $\psi(\Sigma)$ is not contained in any two-dimensional linear subspace, either.

Lemma 2.8. Let \mathscr{M} be a linear system consisting of hypersurfaces in Π of degree λ that contain the set $\psi(\Sigma)$. Then the base locus of the linear system \mathscr{M} is zerodimensional if

- the subset Σ is not contained in any irreducible curve of degree λ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ;
- the equality $m=n-1$ holds and $m \geqslant 3$.

Proof. Suppose that

- the set Σ is not contained in any irreducible curve of degree λ;
- the set $\psi(\Sigma)$ is contained in some irreducible curve of degree λ;
$-m=n-1$ and $m \geqslant 3$.
Note that Ω is a point.
Let \mathscr{Y} be the set of all cones in \mathbb{P}^{n} over all irreducible curves in Π of degree λ that contain all the points in Σ, and let Υ be the set-theoretic intersection of all cones in \mathscr{Y}. Then obviously,

$$
\Sigma \subseteq \Upsilon \subset \mathbb{P}^{n}
$$

because every cone in \mathscr{Y} contains Σ.
Let C be an irreducible curve in Π of degree λ that contains $\psi(\Sigma)$, and let W be a cone in \mathbb{P}^{n} over the curve C whose vertex is the point Ω. Then $W \in \mathscr{Y}$, which implies that $\Upsilon \subseteq W$.

We will show that Υ is a finite set.
Suppose that there exists an irreducible curve $Z \subset \Upsilon$. Then the cone W must contain Z. Put $\Xi=Z \cap \Sigma$. We may assume that $\left.\psi\right|_{Z}$ is an isomorphism and

$$
\psi(Z) \cap \psi(\Sigma \backslash \Xi)=\varnothing
$$

because the point Ω is sufficiently general. Then $\psi(Z)$ is a curve of degree $\operatorname{deg}(Z)$. We have

$$
\psi(Z)=C
$$

which gives $\Xi=\Sigma$ and $\operatorname{deg}(Z)=\lambda$, which is a contradiction. Hence the set Υ is finite.

Let \mathscr{S} be the set of all irreducible surfaces in \mathbb{P}^{m} such that

$$
S \in \mathscr{S} \Longleftrightarrow \exists Y \in \mathscr{Y}: \quad \psi(Y)=S
$$

and let Ψ be the set theoretic intersection of all surfaces in \mathscr{Y}. Then

$$
\psi(\Sigma) \subseteq \psi(\Upsilon) \subseteq \Psi
$$

The set Ψ is a set-theoretic intersection of surfaces of degree at most λ. Each of these surfaces is a set-theoretic intersection of hypersurfaces of degree λ. Thus Ψ is a set-theoretic intersection of surfaces in the linear system \mathscr{M}. Hence to finish the proof it is enough to show that Ψ is finite.

Let $W_{1}, W_{2}, \ldots, W_{r}$ be irreducible surfaces in \mathscr{Y} such that

$$
\Upsilon=\bigcap_{i=1}^{r} W_{i}
$$

and $\psi\left(W_{i}\right) \in \mathscr{S}$ for any i. Put

$$
\Theta=\bigcap_{i=1}^{r} \psi\left(W_{i}\right) .
$$

We will show that $\Theta \subset \mathbb{P}^{m}$ is a finite set if the point Ω is general enough. Note that if the set Θ is finite, then Ψ is finite because $\Psi \subseteq \Theta$.

Let H be a sufficiently general hypersurface in \mathbb{P}^{n} that contains the point Ω. Put

$$
C_{i}=W_{i} \cap H \subset H \cong \mathbb{P}^{m}
$$

for every i. Then $C_{1} \cap C_{1} \cap \cdots \cap C_{r}=\varnothing$ because Υ is a finite set. But

$$
\Theta \cap H=\bigcap_{i=1}^{r} \psi\left(W_{i}\right) \cap H=\bigcap_{i=1}^{r} \psi\left(C_{i}\right)
$$

because $\Omega \in H$. Hence to prove that Θ is a finite set it is enough to show that

$$
\bigcap_{i=1}^{r} \psi\left(C_{i}\right)=\varnothing .
$$

Let Δ be a (possibly empty) subset of H such that

$$
P \in \Delta \quad \Longleftrightarrow \quad \exists L \subset H: \quad P \in L, \quad L \cap C_{i} \neq \varnothing \forall i
$$

where P is a point in H. Then by the definition of Δ

$$
\bigcap_{i=1}^{r} \psi\left(C_{i}\right)=\varnothing \quad \Longleftrightarrow \quad \Omega \notin \Delta
$$

but an easy dimension count implies that $\operatorname{dim}(\Delta) \leqslant 2$ because $C_{1} \cap C_{1} \cap \cdots \cap C_{r}=\varnothing$.
As $m \geqslant 3$, thus $\Delta \neq H$. Hence we may assume that

$$
\Omega \in H \backslash \Delta,
$$

which implies that Θ is a finite set and completes the proof.
Corollary 2.9. Suppose that Σ is not contained in an irreducible curve of degree λ, but

$$
|\Sigma|>\lambda^{2}
$$

and $m \geqslant 3$. Then $\psi(\Sigma)$ is not contained in any irreducible curve of degree λ.
Lemma 2.10. Suppose that Σ is a disjoint union of nonempty finite subsets Λ and Δ such that

- there exists a hypersurface in \mathbb{P}^{n} of degree ζ that passes through all points of the set Λ and does not contain any point of Δ;
- the points of the set Λ and the points of Δ impose independent linear conditions on hypersurfaces of degrees ξ and $\xi-\zeta$, respectively,
where ζ is some natural number such that $\xi \geqslant \zeta$.
Then the points in Σ impose independent linear conditions on hypersurfaces of degree ξ.
Proof. Let P be an arbitrary point in Σ. We must show that there exists a hypersurface of degree ξ that contains the set $\Sigma \backslash P$ and does not contain P.

Note that we may assume that $P \in \Lambda$.
Let F be a homogeneous polynomial of degree ξ that vanishes at every point of the set $\Lambda \backslash P$ and does not vanish at the point P. Put

$$
\Delta=\left\{Q_{1}, \ldots, Q_{\delta}\right\}
$$

where Q_{i} is a point. For every Q_{i} there is a homogeneous polynomial G_{i} of degree ξ which vanishes at every point of the set $\Sigma \backslash Q_{i}$ and does not vanish at Q_{i}. Then

$$
F\left(Q_{i}\right)+\mu_{i} G_{i}\left(Q_{i}\right)=0
$$

for some $\mu_{i} \in \mathbb{C}$ because $G_{i}\left(Q_{i}\right) \neq 0$. Then the hypersurface given by the equation

$$
F+\sum_{i=1}^{\delta} \mu_{i} G_{i}=0
$$

contains the set $\Sigma \backslash P$ and does not contain the point P.

§ 3. Points in projective spaces

Let Σ be a finite subset of $\mathbb{P}^{n}, n \geqslant 2$. Let d and ε be natural numbers such that $d \geqslant 3$ and $\varepsilon<d$. In this section we prove the following result.

Theorem 3.1. The set Σ imposes independent linear conditions on hypersurfaces of degree $2 d-4-\varepsilon$ if the strict inequality

$$
|\Sigma|<(d-1)(d-\varepsilon)
$$

holds and no curve in \mathbb{P}^{n} of degree k contains more than $k(d-1)$ points of the set Σ for every $k \leqslant d-\varepsilon-1$.

Proof. Note that the assertion of Theorem 3.1 obviously holds for $\varepsilon=d-1$, and, as follows from [9], Theorem 1.1, the assertion of Theorem 3.1 obviously holds for $\varepsilon=1$. Hence we may suppose that

$$
|\Sigma| \leqslant(d-1)(d-\varepsilon)-1,
$$

at most $k(d-1)$ points of the subset Σ are contained in a curve in \mathbb{P}^{n} of degree k for every natural number $k \leqslant d-\varepsilon-1$, and $2 \leqslant \varepsilon \leqslant d-2$.

Suppose that Theorem 3.1 fails. Then points of Σ impose dependent linear conditions on hypersurfaces of degree $2 d-4-\varepsilon$.

Lemma 3.2. The inequality $\varepsilon \leqslant d-3$ holds.
Proof. Suppose that $\varepsilon=d-2$. Then $2 d-4-\varepsilon=d-2$. But

$$
|\Sigma| \leqslant 2 d-3,
$$

and at most $d-1$ points of Σ are contained on a line in \mathbb{P}^{n}. By Lemma 2.2 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2 d-4-\varepsilon$, which is a contradiction.

There exists a point $P \in \Sigma$ such that each hypersurface in \mathbb{P}^{n} of degree $2 d-4-\varepsilon$ that contains the set $\Sigma \backslash P$ must also contain the point $P \in \Sigma$. Note that $d \geqslant 5$.

Lemma 3.3. The inequality $n \neq 2$ holds.
Proof. Suppose that $n=2$. Put $\xi=2 d-4-\varepsilon$. Then $\xi \geqslant 3$ and

$$
|\Sigma \backslash P| \leqslant \max \left\{\left\lfloor\frac{\xi+3}{2}\right\rfloor\left(\xi+3-\left\lfloor\frac{\xi+3}{2}\right\rfloor\right)-1,\left\lfloor\frac{\xi+3}{2}\right\rfloor^{2}\right\}
$$

because $|\Sigma| \leqslant(d-1)(d-\varepsilon)-1$.
Let us show that at most $k(\xi+3-k)-2$ points of the set $\Sigma \backslash P$ lie on a curve of degree k for every natural number $k \leqslant(\xi+3) / 2$. We must show that

$$
k(2 d-1-\varepsilon-k)-2 \geqslant k(d-1)
$$

for every $k \leqslant(\xi+3) / 2$. However, we only need prove this for natural numbers $k \geqslant 1$ such that

$$
k(2 d-1-\varepsilon-k)-2<|\Sigma \backslash P| \leqslant(d-1)(d-\varepsilon)-2 .
$$

We may assume that $k<d-\varepsilon$ because otherwise

$$
k(2 d-1-\varepsilon-k)-2 \geqslant(d-\varepsilon)(2 d-1-\varepsilon-d+\varepsilon)-2=(d-1)(d-\varepsilon)-2 \geqslant|\Sigma \backslash P|
$$

We may assume that $k \neq 1$ because $\varepsilon \leqslant d-3$ and at most

$$
d-1 \leqslant \xi=2 d-4-\varepsilon
$$

points of the set $\Sigma \backslash P$ lie on a line. Then

$$
k(2 d-1-\varepsilon-k)-2 \geqslant k(d-1) \quad \Longleftrightarrow \quad k(d-\varepsilon-k) \geqslant 2 \quad \Longleftrightarrow \quad d-\varepsilon>k
$$

which immediately implies that at most $k(\xi+3-k)-2$ points of the subset $\Sigma \backslash P$ are contained on a curve of degree k for every natural number $k \leqslant(\xi+3) / 2$.

By Lemma 2.3 there is a curve in \mathbb{P}^{2} of degree $2 d-4-\varepsilon$ that contains $\Sigma \backslash P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

By Lemma 2.4 and Corollary 2.9, to complete the proof of Theorem 3.1 we may assume that $n=3$. Let Π be a sufficiently general plane in \mathbb{P}^{3} and let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi \cong \mathbb{P}^{2}
$$

be a projection from a sufficiently general point $O \in \mathbb{P}^{3}$. Put $\Sigma^{\prime}=\psi(\Sigma)$ and $P^{\prime}=\psi(P)$.

Lemma 3.4. There exists a curve $C \subset \Pi$ of degree $k \leqslant d-\varepsilon-1$ such that

$$
\left|C \cap \Sigma^{\prime}\right| \geqslant k(d-1)+1
$$

Proof. Suppose that no curve of degree k contains $k(d-1)+1$ points of the subset Σ^{\prime} for every $k \leqslant d-\varepsilon-1$. Arguing as in the proof of Lemma 3.3, we see that there is a curve

$$
Z \subset \Pi \cong \mathbb{P}^{2}
$$

of degree $2 d-4-\varepsilon$ that contains the set $\Sigma^{\prime} \backslash P^{\prime}$ and does not contain the point $P^{\prime} \in \Sigma^{\prime}$.

A cone in \mathbb{P}^{3} over Z whose vertex is O is a surface of degree $2 d-4-\varepsilon$ that contains $\Sigma \backslash P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

We may assume that k is the smallest natural number such that at least $k(d-1)+1$ points of the set Σ^{\prime} are contained in an irreducible curve in $\Pi \cong \mathbb{P}^{2}$ of degree k. We see that there is a disjoint union of sets

$$
\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i} \subset \Sigma
$$

such that $\left|\Lambda_{j}^{i}\right| \geqslant j(d-1)+1$, all points of $\psi\left(\Lambda_{j}^{i}\right)$ are contained in an irreducible curve of degree j, and at most $\zeta(d-1)$ points of the subset

$$
\psi\left(\Sigma \backslash\left(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i}\right)\right) \subsetneq \Sigma^{\prime} \subset \Pi \cong \mathbb{P}^{2}
$$

can lie on a curve in $\Pi \cong \mathbb{P}^{2}$ of degree ζ for every natural number ζ. Put

$$
\Lambda=\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i}
$$

Let Ξ_{j}^{i} be the base locus of the linear subsystem of $\left|\mathscr{O}_{\mathbb{P}^{3}}(j)\right|$ that contains all surfaces that pass through all points of the subset Λ_{j}^{i}. Put

$$
\Delta=\Sigma \cap\left(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Xi_{j}^{i}\right)
$$

The set Ξ_{j}^{i} is finite by Lemma 2.4. On the other hand we have

$$
\begin{equation*}
|\Sigma \backslash \Lambda| \leqslant(d-1)\left(d-\varepsilon-\sum_{i=k}^{l} c_{i} i\right)-2 \tag{*}
\end{equation*}
$$

Corollary 3.5. The inequality $\sum_{i=k}^{l} i c_{i} \leqslant d-\varepsilon-1$ holds.
Note that $\Lambda \subseteq \Delta \subseteq \Sigma$. We have $k \geqslant 2$ by Corollary 2.5.
Lemma 3.6. The points of the set Δ impose independent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$.

Proof. Suppose that the points of the set Δ impose dependent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$. Let us consider Δ as a zero-dimensional subscheme of \mathbb{P}^{3}. Then

$$
h^{1}\left(\mathscr{I}_{\Delta} \otimes \mathscr{O}_{\mathbb{P}^{3}}(2 d-\varepsilon-4)\right) \neq 0
$$

where \mathscr{I}_{Δ} is the ideal sheaf of the subscheme Δ.
Let \mathscr{M} be the linear subsystem of the linear system $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-\varepsilon-1)\right|$ that contains all surfaces that pass through Δ. Then the base locus of the linear system \mathscr{M} is zero-dimensional since $\sum_{i=k}^{l} i c_{i} \leqslant d-\varepsilon-1$ and

$$
\Delta \subseteq \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Xi_{j}^{i}
$$

whilst Ξ_{j}^{i} is a zero-dimensional base locus of the system $\left|\mathscr{O}_{\mathbb{P}^{3}}(j)\right|$. Put

$$
\Gamma=M_{1} \cdot M_{2} \cdot M_{3}
$$

where M_{1}, M_{2}, M_{3} are general enough surfaces in \mathscr{M}. Then Γ is a closed zerodimensional subscheme of \mathbb{P}^{3} and Δ is a closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

$$
\mathscr{I}_{\Upsilon}=\operatorname{Ann}\left(\mathscr{I}_{\Delta} / \mathscr{I}_{\Gamma}\right),
$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are ideal sheaves of the subschemes Υ and Γ, respectively. Then $0 \neq h^{1}\left(\mathscr{O}_{\mathbb{P}^{3}}(2 d-\varepsilon-4) \otimes \mathscr{I}_{\Delta}\right)=h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-2 \varepsilon-3) \otimes \mathscr{I}_{\Upsilon}\right)-h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-2 \varepsilon-3) \otimes \mathscr{I}_{\Gamma}\right)$
by Theorem 2.1. Hence there is a surface $F \in\left|\mathscr{O}_{\mathbb{P}^{3}}(d-2 \varepsilon-3) \otimes \mathscr{I}_{\Upsilon}\right|$. Then $(d-2 \varepsilon-3)(d-\varepsilon-1)^{2}=F \cdot M_{1} \cdot M_{2} \geqslant h^{0}\left(\mathscr{O}_{\Upsilon}\right)=h^{0}\left(\mathscr{O}_{\Gamma}\right)-h^{0}\left(\mathscr{O}_{\Delta}\right)=(d-\varepsilon-1)^{3}-|\Delta|$, which implies that $|\Delta| \geqslant(\varepsilon+2)(d-\varepsilon-1)^{2}$. Thus we see that

$$
(d-1)(d-\varepsilon)-1 \geqslant|\Sigma| \geqslant|\Delta| \geqslant(\varepsilon+2)(d-\varepsilon-1)^{2}
$$

which easily leads to a contradiction. The proof is complete.

$$
\text { Put } \Gamma=\Sigma \backslash \Delta, \Gamma^{\prime}=\psi(\Gamma) \text { and } \xi=2 d-\varepsilon-4-\sum_{i=k}^{l} i c_{i} .
$$

Lemma 3.7. The inequality $\xi \geqslant 3$ holds.
Proof. Suppose that $\xi \leqslant 2$. Then it follows from Corollary 3.5 that

$$
2 \geqslant \xi=2 d-\varepsilon-4-\sum_{i=k}^{l} i c_{i} \geqslant d-3
$$

which gives $d \leqslant 5$. Then $d=5$ and $\varepsilon=2$ because $2 \leqslant \varepsilon \leqslant d-3$. We have $|\Sigma| \leqslant 11$.
By Lemma 2.2 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$ if at most 9 points of the set Σ are contained in a plane \mathbb{P}^{3}. This implies that there exists a plane $\Upsilon \subset \mathbb{P}^{3}$ such that $|\Upsilon \cup \Sigma| \geqslant 10$.

It follows from Lemma 3.4 that $|\Upsilon \cup \Sigma|=10$. Note that $P \in \Upsilon$.
Arguing as in the proof of Lemma 3.3 we see that there is a curve

$$
Z \subset \Upsilon \cong \mathbb{P}^{2}
$$

of degree $2 d-\varepsilon-4$ that contains the set $\Upsilon \backslash P$ and does not contain the point $P \in \Sigma$.

A cone in \mathbb{P}^{3} over Z whose vertex is $\Sigma \backslash \Upsilon$ is a surface of degree $2 d-\varepsilon-4$ that contains $\Sigma \backslash P$ and does not contain the point $P \in \Sigma$, which is a contradiction.

It easily follows from inequality $(*)$ that

$$
\left|\Gamma^{\prime}\right| \leqslant \max \left\{\left\lfloor\frac{\xi+3}{2}\right\rfloor\left(\xi+3-\left\lfloor\frac{\xi+3}{2}\right\rfloor\right)-1,\left\lfloor\frac{\xi+3}{2}\right\rfloor^{2}\right\}
$$

Lemma 3.8. At most ξ points of the set Γ are contained in a line.
Proof. Suppose that $\xi+1$ points of the set Γ are contained in some line. Then

$$
d-1 \geqslant \xi+1=2 d-\varepsilon-4-\sum_{i=k}^{l} i c_{i}
$$

because at most $d-1$ points of the set Γ are contained in a line in \mathbb{P}^{3}. Then

$$
d-\varepsilon-1 \geqslant \sum_{i=k}^{l} c_{i} i \geqslant d-\varepsilon-2
$$

by Corollary 3.5. We see that either $\sum_{i=k}^{l} c_{i} i=d-\varepsilon-2$ or $\sum_{i=k}^{l} c_{i} i=d-\varepsilon-1$.

Suppose that $\sum_{i=k}^{l} c_{i} i=d-\varepsilon-2$. Then

$$
|\Gamma| \leqslant|\Sigma \backslash \Lambda| \leqslant(d-1)\left(d-\varepsilon-\sum_{i=k}^{l} c_{i} i\right)-2=2 d-4
$$

so by Lemma 2.2 the points of the set Γ impose independent linear conditions on hypersurfaces of degree $d-2$. The points of the set Σ impose independent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$ by Lemma 2.10, which is a contradiction.

We see that $\sum_{i=k}^{l} c_{i} i=d-\varepsilon-1$. Then

$$
|\Gamma| \leqslant|\Sigma \backslash \Lambda| \leqslant(d-1)\left(d-\varepsilon-\sum_{i=k}^{l} c_{i} i\right)-2=d-3
$$

which implies that the points of the set Γ impose independent linear conditions on hypersurfaces of degree $\xi=d-3$. By Lemma 2.10 the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$, which is a contradiction.

It follows from Corollary 2.5 that at most ξ points of the set Γ^{\prime} are contained in a line.

Lemma 3.9. For every $t \leqslant(\xi+3) / 2$ at most

$$
t(\xi+3-t)-2
$$

points of the set Γ^{\prime} are contained in a curve in $\Pi \cong \mathbb{P}^{2}$ of degree t.
Proof. At most $t(d-1)$ points of the subset Γ^{\prime} are contained in a curve of degree t. Thus by Lemma 3.8, we need to show that

$$
t(\xi+3-t)-2 \geqslant t(d-1)
$$

for every $t \leqslant(\xi+3) / 2$ such that $t(\xi+3-t)-2<\left|\Gamma^{\prime}\right|$ and $t>1$. But

$$
t(\xi+3-t)-2 \geqslant t(d-1) \quad \Longleftrightarrow \quad d-\varepsilon-\sum_{i=k}^{l} c_{i} i>t
$$

because $t>1$. Therefore, we may assume that $t(\xi+3-t)-2<\left|\Gamma^{\prime}\right|$ and

$$
d-\varepsilon-\sum_{i=k}^{l} c_{i} i \leqslant t \leqslant \frac{\xi+3}{2}
$$

Put $g(x)=x(\xi+3-x)-2$. Then

$$
g(t) \geqslant g\left(d-\varepsilon-\sum_{i=k}^{l} c_{i} i\right)
$$

because $g(x)$ is an increasing function for $x<(\xi+3) / 2$. We have

$$
\begin{aligned}
& (d-1)\left(d-\varepsilon-\sum_{i=k}^{l} i c_{i}\right)-2 \geqslant\left|\Gamma^{\prime}\right|>g(t) \geqslant g\left(d-\varepsilon-\sum_{i=k}^{l} c_{i} i\right) \\
& \quad=(d-1)\left(d-\varepsilon-\sum_{i=k}^{l} i c_{i}\right)-2,
\end{aligned}
$$

which is a contradiction.
The points of the set Γ impose independent linear conditions on hypersurfaces of degree ξ, because the points of the set Γ^{\prime} impose independent linear conditions on hypersurfaces of degree ξ by Lemma 2.3. Hence the points of the set Σ impose independent linear conditions on hypersurfaces of degree $2 d-\varepsilon-4$ by Lemma 2.10, which is a contradiction.

The assertion of Theorem 3.1 is proved.

§ 4. The main result

The goal of this section is to prove Theorem 1.6. Let X be hypersurface in \mathbb{P}^{4} of degree d with at most isolated ordinary double points.

Lemma 4.1. Let C be a curve in \mathbb{P}^{4} of degree λ. Then

$$
|\operatorname{Supp}(C) \cap \operatorname{Sing}(X)| \leqslant \lambda(d-1),
$$

and if $|\operatorname{Supp}(C) \cap \operatorname{Sing}(X)|=\lambda(d-1)$, then

$$
\operatorname{Sing}(C) \cap \operatorname{Sing}(X)=\varnothing
$$

See the proof in [8], Lemma 29.
It follows from [13] that the following conditions are equivalent:

- the hypersurface X is factorial;
- the points of the set $\operatorname{Sing}(X)$ impose independent linear conditions on hypersurfaces in \mathbb{P}^{4} of degree $2 d-5$.
Suppose that

$$
|\operatorname{Sing}(X)| \leqslant(d-1)^{2}
$$

and the hypersurface X contains no planes. Let $\Sigma=\operatorname{Sing}(X)$.
Lemma 4.2. Suppose that $|\Sigma|<(d-1)^{2}$. Then X is factorial.
Proof. By Theorem 3.1 the points of Σ impose independent linear conditions on hypersurfaces of degree $2 d-5$, which implies that X is factorial.

Let $|\Sigma|=(d-1)^{2}$, but assume that points of Σ impose dependent linear conditions on hypersurfaces of degree $2 d-5$. We shall show this leads to a contradiction.

Lemma 4.3. Let $\Pi \subset \mathbb{P}^{4}$ be a plane. Then $|\Pi \cap \Sigma| \leqslant d-1$.

Proof. It easily follows from [6], Lemma 2.9 that

$$
|\Pi \cap \Sigma| \leqslant \frac{d(d-1)}{2} \leqslant(d-1)^{2}-1
$$

since X does not contain planes. Then the points of the set $\Pi \cap \Sigma$ impose independent linear conditions on hypersurfaces of degree $2 d-5$ by Theorem 3.1.

Suppose that $|\Pi \cap \Sigma| \geqslant d-1$. Let H be a general hyperplane in \mathbb{P}^{4} containing Π. Then $H \cap \Sigma=\Pi \cap \Sigma$. On the other hand we have

$$
|\Sigma \backslash(\Pi \cap \Sigma)| \leqslant(d-1)^{2}-d=(d-1)(d-2)-1
$$

which implies that the points of the set $\Sigma \backslash(\Pi \cap \Sigma)$ impose independent linear conditions on hypersurfaces of degree $2 d-6$ by Theorem 3.1. Then Σ imposes independent linear conditions on hypersurfaces of degree $2 d-5$ by Lemma 2.10, which is a contradiction.

Corollary 4.4. At most $d-2$ points of the set Σ lie on a line.
The assertion of Theorem 1.6 is proved in [2] for $d \leqslant 4$. Thus, we have shown that $d \geqslant 5$.

Lemma 4.5. The inequality $d \geqslant 6$ holds.
Proof. Suppose that $d=5$. By Lemmas 2.2 and 4.3 the points of Σ impose independent linear conditions on hypersurfaces of degree $2 d-5$, which is a contradiction.

Lemma 4.6. Let C be a curve in \mathbb{P}^{4} of degree $\lambda \leqslant d-2$. Then

$$
|C \cap \Sigma| \leqslant \lambda(d-1)-1
$$

Proof. We may assume that C is irreducible. Suppose that $|C \cap \Sigma|=\lambda(d-1)$. Then

$$
|\Sigma \backslash(C \cap \Sigma)|=(d-1)(d-\lambda-1) \geqslant 5
$$

by Lemma 4.5. Moreover, it follows from Corollary 4.4 that $\lambda \neq 1$.
Let P and Q be two distinct points in the set $\Sigma \backslash(C \cap \Sigma)$. Let Y_{P} and Y_{Q} be the cones in \mathbb{P}^{4} over the curve C whose vertices are at the points P and Q, respectively. Then Y_{P} and Y_{Q} are irreducible. Let us show that $Y_{P} \neq Y_{Q}$. Suppose that $Y_{P}=Y_{Q}$. Let L be the line in \mathbb{P}^{4} that contains P and Q. Then Y_{P} is a cone over the curve C whose vertex is on the line L. Therefore, the surface Y_{P} must be a plane, which is impossible by Lemma 4.3. Hence we see that $Y_{P} \neq Y_{Q}$.

Let O be a point on the surface Y_{P} such that $O \notin Y_{Q}$, and let Y_{O} be the cone over the curve C whose vertex is the point O. Then $Q \notin Y_{O}$ because $O \notin Y_{Q}$. The cone Y_{O} is a set-theoretic intersection of hypersurfaces of degree λ, which implies that there is a hypersurface $F \subset \mathbb{P}^{4}$ of degree λ such that

$$
F \cap \Sigma=Y_{O} \cap \Sigma
$$

which implies that $Q \notin F$. Thus, the points of the set $F \cap \Sigma$ impose independent linear conditions on hypersurfaces of degree $2 d-5$ by Theorem 3.1. On the other hand we have

$$
|\Sigma \backslash(\Pi \cap \Sigma)| \leqslant(d-1)(d-1-\lambda)-1
$$

which implies that the points of the set $\Sigma \backslash(F \cap \Sigma)$ impose independent linear conditions on hypersurfaces of degree $2 d-5-\lambda$ by Theorem 3.1. Then Σ imposes independent linear conditions on hypersurfaces of degree $2 d-5$ by Lemma 2.10, which is a contradiction.

Lemma 4.7. Let C be a curve in \mathbb{P}^{4} of degree $d-1$. Then

$$
|C \cap \Sigma| \leqslant(d-1)^{2}-1
$$

Proof. Suppose that $|C \cap \Sigma|=(d-1)^{2}$. Then $\Sigma \subset C$, where C is irreducible by Lemma 4.6, and C is not contained in a two-dimensional linear subspace by Lemma 4.3.

We have to consider the following two mutually exclusive cases:

- the curve C is contained in some three-dimensional linear subspace of \mathbb{P}^{4},
- the curve C is not contained in any three-dimensional linear subspace of \mathbb{P}^{4}.

Suppose that C is contained in some three-dimensional linear subspace $H \subset \mathbb{P}^{4}$. Then $H \cong \mathbb{P}^{3}$ and we may consider Σ as a zero-dimensional subscheme of \mathbb{P}^{3}. Then

$$
h^{1}\left(\mathscr{I}_{\Sigma} \otimes \mathscr{O}_{\mathbb{P}^{3}}(2 d-5)\right) \neq 0
$$

where \mathscr{I}_{Σ} is the ideal sheaf of the subscheme Σ.
Taking into account the linear projection $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ from a sufficiently general point of C we see that there exist two different irreducible surfaces F_{1} and F_{2} in the linear system $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-2)\right|$ such that $C \subset F_{1} \cap F_{2}$.

Let \mathscr{M} be a linear subsystem in $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-1)\right|$ that contains all surfaces that pass through the set Σ. Then the base locus of the linear system \mathscr{M} is zero-dimensional. Put

$$
\Gamma=M \cdot F_{1} \cdot F_{2},
$$

where M is a general surface in the linear system \mathscr{M}. Then Γ is a closed zerodimensional subscheme of \mathbb{P}^{3} and Σ is a closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

$$
\mathscr{I}_{\Upsilon}=\operatorname{Ann}\left(\mathscr{I}_{\Sigma} / \mathscr{I}_{\Gamma}\right),
$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ, respectively. Then

$$
0 \neq h^{1}\left(\mathscr{O}_{\mathbb{P}^{3}}(2 d-5) \otimes \mathscr{I}_{\Sigma}\right)=h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Upsilon}\right)-h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Gamma}\right)
$$

by Theorem 2.1. Thus, there exists a surface $G \in\left|\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Upsilon}\right|$. Then
$(d-4)(d-2)(d-1)=G \cdot F_{1} \cdot M \geqslant h^{0}\left(\mathscr{O}_{\Upsilon}\right)=h^{0}\left(\mathscr{O}_{\Gamma}\right)-h^{0}\left(\mathscr{O}_{\Sigma}\right)=(d-1)(d-2)^{2}-|\Sigma|$,
which implies that $(d-1)^{2}=|\Sigma| \geqslant 2(d-2)(d-1)$, which is a contradiction.
We see that C is not contained in any three-dimensional linear subspace of \mathbb{P}^{4}. It should be pointed out that $C \subset X$ because otherwise we have

$$
d(d-1)=\operatorname{deg}(C) \operatorname{deg}(X) \geqslant 2(d-1)^{2}
$$

which is a contradiction because $d \geqslant 6$.

Let O be a sufficiently general point of C and let

$$
\psi: \mathbb{P}^{4} \rightarrow \Pi
$$

be a projection from the point O, where Π is a three-dimensional linear subspace of \mathbb{P}^{4}. Then ψ induces a birational morphism $C \rightarrow \psi(C)$. Put $Z=\psi(C)$. Then the degree of the curve Z is $d-2$.

Let Y be a cone in \mathbb{P}^{4} over the curve Z whose vertex is O. Then

$$
C \subset Y \not \subset X
$$

since O is a sufficiently general point because X is not a secant variety of the curve C.

Since O is sufficiently general, we may assume that O is not contained in a threedimensional linear subspace that is tangent to X at some point of the curve C because C is not contained in a three-dimensional linear subspace of \mathbb{P}^{4}. Then the cycle $X \cdot Y$ is reduced at a general point on the curve C. Put

$$
X \cdot Y=C+R
$$

where R is a curve of degree $d^{2}-3 d+1$ such that $C \nsubseteq \operatorname{Supp}(R)$. By Lemma 4.1, since O is sufficiently general, we have

$$
C \cap \Sigma \subset Y \backslash \operatorname{Sing}(Y)
$$

Let $\alpha: \bar{Z} \rightarrow Z$ be a normalization of the curve Z. Then there is a commutative diagram

where \bar{Y} is a smooth surface, β is a birational morphism, and π is a morphism with connected fibres that is a \mathbb{P}^{1}-bundle.

Let L and E be a fibre and a section of π such that $\beta(E)=O$, respectively. Then

$$
E^{2}=-d+2
$$

on the surface \bar{Y}. Let \bar{C} and \bar{R} be curves on \bar{Y} such that $\alpha(\bar{C})=C$, the equality

$$
\bar{R} \cdot \alpha^{*}\left(\left.\mathscr{O}_{\mathbb{P}^{4}}(1)\right|_{Y}\right)=d^{2}-3 d+1
$$

holds and $\alpha(\bar{R})=R$. Then

$$
\bar{R} \equiv(d-2) E+\left(d^{2}-3 d+1\right) L
$$

on the surface \bar{Y} and similarly $\bar{C} \equiv E+(d-1) L$. Put $s=(d-1)^{2}$ and

$$
\Sigma=\left\{Q_{1}, Q_{2}, \ldots, Q_{s}\right\}
$$

where Q_{i} is a point of the set Σ. For every point Q_{i} there is a point $\bar{Q}_{i} \in \bar{Y}$ such that

$$
\bar{Q}_{i} \in \operatorname{Supp}(\bar{C} \cdot \bar{R})
$$

and $\beta\left(\bar{Q}_{i}\right)=Q_{i}$. Therefore, we have

$$
(d-1)^{2}-2=\bar{C} \cdot \bar{R} \geqslant \sum_{i=1}^{s} \operatorname{mult}_{Q_{i}}(\bar{C} \cdot \bar{R}) \geqslant(d-1)^{2}
$$

which is a contradiction.
Corollary 4.8. Let C be a curve in \mathbb{P}^{4} of degree λ. Then

$$
|C \cap \Sigma| \leqslant \lambda(d-1)-1
$$

Let $\eta: \mathbb{P}^{4} \rightarrow \mathbb{P}^{3}$ be a general linear projection. Put $\Xi=\eta(\Sigma)$. Then it follows from Corollaries 2.9 and 2.7 that the set Ξ has the following properties:
$-|\Xi|=(d-1)^{2} ;$

- at most $\lambda(d-1)-1$ points in the set Ξ are contained in a curve of degree $\lambda \leqslant d-2$;
- at most $d-1$ points of the set Ξ are contained in a plane.

However, the points of Ξ impose dependent linear conditions on hypersurfaces of degree $2 d-5$. Let us consider Ξ as a subscheme of \mathbb{P}^{3}. Then

$$
h^{1}\left(\mathscr{I}_{\Xi} \otimes \mathscr{O}_{\mathbb{P}^{3}}(2 d-5)\right) \neq 0
$$

where $\mathscr{I} \Xi$ is the ideal sheaf of the subscheme Ξ.
Lemma 4.9. Let C be a curve in \mathbb{P}^{3} of degree $d-1$. Then $|C \cap \Xi| \leqslant(d-1)^{2}-1$.
Proof. Suppose that $|C \cap \Xi|=(d-1)^{2}$. Then C is an irreducible curve not contained in a plane. Arguing as in the proof of Lemma 4.7 and using Lemma 2.8 we get a contradiction.

Thus we have shown that the set Ξ has the following properties:
$-|\Xi|=(d-1)^{2}$;

- at most $\lambda(d-1)-1$ points of the set Ξ are contained in a curve of degree $\lambda \leqslant d-2$;
- at most $d-1$ points of the set Ξ are contained in a plane;
- there is a point $Q \in \Xi$ such that every hypersurface in \mathbb{P}^{3} of degree $2 d-5$ that contains the set $\Xi \backslash Q$ must also contain $Q \in \Xi$.
Lemma 4.10. Let \mathscr{M} be a linear subsystem in $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-1)\right|$ consisting of all surfaces that contain Ξ. Then the base locus of the linear system \mathscr{M} contains a curve.

See the proof in $\S 5$.
Let $\Pi \subset \mathbb{P}^{3}$ be a general plane and let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi \cong \mathbb{P}^{2}
$$

be a linear projection from a sufficiently general point $O \in \mathbb{P}^{3}$. Put $\Xi^{\prime}=\psi(\Xi)$ and $Q^{\prime}=\psi(Q)$.

Lemma 4.11. Suppose that no more than $\lambda(d-1)$ points of the set Ξ^{\prime} are contained in a curve of degree λ for every $\lambda \leqslant d-2$. Then Ξ^{\prime} is not contained in a curve of degree $d-1$.

Proof. Suppose that Ξ^{\prime} is contained in a curve $C \subset \mathbb{P}^{2}$ of degree $d-1$. We claim that this contradicts Lemma 4.10.

Let \mathscr{M} be a linear subsystem of the linear system $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-1)\right|$ consisting of all surfaces that contains Ξ. Then the base locus of \mathscr{M} contains an irreducible $Z \subset \mathbb{P}^{3}$ by Lemma 4.10 .

The curve C is reducible by Lemma 2.4. Put

$$
C=\sum_{i=1}^{s} C_{i}
$$

where C_{i} is an irreducible curve of degree d_{i}. Then $\left|C_{i} \cap \Xi^{\prime}\right|=d_{i}(d-1)$.
Let Ξ_{i} be a subset in Ξ such that $\left|\Xi_{i}\right|=d_{i}(d-1)$ and $\psi\left(\Xi_{i}\right) \subset C_{i}$, and let \mathscr{M}_{i} be a linear system consisting of all surfaces of degree d_{i} that contain the subset Ξ_{i}. Then, by Lemma 4.10 and Corollary 4.8, the base locus of the linear system \mathscr{M}_{i} does not contain any curves.

Let M_{i} be a surface in \mathscr{M}_{i} that does not contain the curve Z. Then

$$
\sum_{i=1}^{s} M_{i} \in \mathscr{M}
$$

which is a contradiction, since Z is contained in the base locus of the linear system \mathscr{M}.

Lemma 4.12. There exists a curve $C \subset \Pi$ of degree $k \leqslant d-2$ such that

$$
\left|C \cap \Xi^{\prime}\right|>k(d-1) .
$$

Proof. We will prove the required assertion by reductio ad absurdum. Suppose that every curve in Π of degree k contains at most $k(d-1)$ points of the set Ξ^{\prime} for every $k \leqslant d-2$. Suppose further that there is no curve in \mathbb{P}^{2} of degree $d-1$ which contains the whole set Ξ^{\prime}.

Put $\xi=2 d-5$. Then $\xi \geqslant 7$ because $d \geqslant 6$.
Suppose that no more than $k(\xi+3-k)-2$ points of the subset $\Xi^{\prime} \backslash Q^{\prime}$ are contained in a curve of degree k for every $k \leqslant(\xi+3) / 2$. By Lemma 2.3 there exists a curve

$$
Z \subset \mathbb{P}^{2}
$$

of degree $2 d-5$ that contains $\Xi^{\prime} \backslash Q^{\prime}$ and does not contain Q^{\prime}. Let S be a cone in \mathbb{P}^{3} over the curve Z whose vertex is the point O. Then S is a surface in \mathbb{P}^{3} of degree $2 d-5$ that contains $\Xi \backslash Q$ and does not contain the point Q, which is a contradiction.

Hence we see that there exists a curve $R \subset \mathbb{P}^{2}$ of degree $k \leqslant d-1$ that contains at least $k(\xi+3-k)-1$ points of the set $\Xi^{\prime} \backslash Q^{\prime}$.

Suppose that $k=d-1$. Then the curve R contains at least

$$
k(\xi+3-k)-1=k(2 d-2-k)-1=(d-1)^{2}-1
$$

points of the set $\Xi^{\prime} \backslash Q^{\prime}$. Then $Q^{\prime} \notin R$ because there is no curve of degree $d-1$ containing the whole of Ξ^{\prime}. The cone in \mathbb{P}^{3} over R whose vertex is the point O is a surface of degree $2 d-5$ that contains $\Xi \backslash Q$ and does not contain the point $Q \in \Xi$, which is a contradiction.

Hence we see that $k \leqslant d-2$. Then $k(2 d-2-k)-1 \leqslant k(d-1)$.
Suppose that $k=1$. Then $2 d-4 \leqslant d-1$, which is impossible because $d \geqslant 6$. Hence we see that $k \neq 1$. Then

$$
k(2 d-2-k)-1 \leqslant k(d-1) \quad \Longleftrightarrow \quad k(d-1-k) \leqslant 1 \quad \Longleftrightarrow \quad k \geqslant d-1
$$

which is a contradiction because $k \leqslant d-2$.
Without loss of generality we may assume that the number k is the smallest natural number with this property. Then the curve C is irreducible.

Lemma 4.13. The curve C contains the set Ξ^{\prime}.
Proof. Suppose that $\Xi^{\prime} \not \subset C$. Let S be a cone in \mathbb{P}^{3} over C whose vertex is O. Then $\Xi \not \subset S$ and

$$
|\Xi \backslash(S \cap \Xi)| \leqslant(d-1)(d-1-k)-1
$$

Thus, the set $\Xi \backslash(S \cap \Xi)$ imposes independent linear conditions on hypersurfaces of degree $2 d-5-k$ by Theorem 3.1. Then the set Ξ imposes independent linear conditions on hypersurfaces of degree $2 d-5$ by Lemma 2.10, which is a contradiction.

Let us consider Ξ as a subscheme of \mathbb{P}^{3} with ideal sheaf \mathscr{I}_{Ξ}. Then

$$
h^{1}\left(\mathscr{I} \Xi \otimes \mathscr{O}_{\mathbb{P}^{3}}(2 d-5)\right) \neq 0 .
$$

Let \mathscr{D} be a linear subsystem of the linear system $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-2)\right|$ consisting of all surfaces that contain the set Ξ. Then its base locus is zero-dimensional by Lemma 2.4. Put

$$
\Gamma=M_{1} \cdot M_{2} \cdot M_{3}
$$

where M_{1}, M_{2} and M_{3} are general surfaces in the linear system \mathscr{D}. Then Γ is a closed zero-dimensional subscheme of \mathbb{P}^{3}, and Ξ is closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

$$
\mathscr{I}_{\Upsilon}=\operatorname{Ann}\left(\mathscr{I}_{\Xi} / \mathscr{I}_{\Gamma}\right),
$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ, respectively. Then

$$
0 \neq h^{1}\left(\mathscr{O}_{\mathbb{P}^{3}}(2 d-5) \otimes \mathscr{I}_{\Xi}\right)=h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-5) \otimes \mathscr{I}_{\Upsilon}\right)-h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-5) \otimes \mathscr{I}_{\Gamma}\right)
$$

by Theorem 2.1. Thus there exists a surface $F \in\left|\mathscr{O}_{\mathbb{P}^{3}}(d-5) \otimes \mathscr{I}_{\Upsilon}\right|$. Then

$$
(d-5)(d-2)^{2}=F \cdot M_{1} \cdot M_{2} \geqslant h^{0}\left(\mathscr{O}_{\Upsilon}\right)=h^{0}\left(\mathscr{O}_{\Gamma}\right)-h^{0}\left(\mathscr{O}_{\Xi}\right)=(d-2)^{3}-|\Xi|
$$

which implies that $(d-1)^{2}=|\Xi| \geqslant 3(d-2)^{2}$, which is a contradiction.
The assertion of Theorem 1.6 is proved.

§ 5. A special projection

The purpose of this section is to prove Lemma 4.10.
Let Ξ be a finite subset in \mathbb{P}^{3}, let P be a point in Ξ, and let d be a natural number such that $d \geqslant 6$, Suppose that Ξ has the following properties:
$-|\Xi|=(d-1)^{2} ;$

- at most $\lambda(d-1)-1$ points of Ξ are contained in a curve of degree λ for any $\lambda \in \mathbb{N}$;
- at most $d-1$ points of the set Ξ are contained in a plane;
- each surface in \mathbb{P}^{3} of degree $2 d-5$ that contains $\Xi \backslash P$ passes through $P \in \Xi$.

Lemma 5.1. Let S be a surface in \mathbb{P}^{3} of degree μ such that $|S \cap \Xi| \geqslant(d-1) \mu+1$. Then

$$
\Xi \subset S
$$

Proof. Suppose that $|S \cap \Xi| \geqslant(d-1) \mu+1$, but $\Xi \not \subset S$. Then

$$
|\Xi \backslash(S \cap \Xi)| \leqslant(d-1)^{2}-(d-1) \mu+1=(d-1)(d-1-\mu)-1
$$

which implies that the subset $\Xi \backslash(S \cap \Xi)$ imposes independent linear conditions on hypersurfaces of degree $2 d-5-\mu$ by Theorem 3.1. Then Ξ imposes independent linear conditions on hypersurfaces of degree $2 d-5$ by Lemma 2.10, which is a contradiction.

Let \mathscr{M} be a linear system consisting of all surfaces of degree $d-1$ that contain the set Ξ. To prove Lemma 4.10 we must show that the base locus of \mathscr{M} contains a curve. Suppose that this base locus is zero-dimensional. We shall derive a contradiction.

Lemma 5.2. The set $\Xi \subset \mathbb{P}^{3}$ contains two different point Q_{1} and Q_{2} such that

- the line that passes through Q_{1} and Q_{2} does not contain the point $P \in \Xi$;
- the line that passes through Q_{1} and Q_{2} contains at most $d-3$ points of the set Ξ.

This assertion is obvious.
Let L be a line in \mathbb{P}^{3} that passes through the points Q_{1} and Q_{2}, let O be a sufficiently general point in the line L, let Π be a plane in \mathbb{P}^{3} such that $L \not \subset \Pi$, and let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi \cong \mathbb{P}^{2}
$$

be a projection from $O \in \mathbb{P}^{3}$. Put $\Xi^{\prime}=\psi(\Xi)$ and $P^{\prime}=\psi(P)$. Then ψ induces a bijection

$$
\Xi \backslash(\Xi \cap L) \longleftrightarrow \Xi^{\prime} \backslash \psi(L)
$$

and $(d-1)(d-2)<\left|\Xi^{\prime}\right|<(d-1)^{2}$.
Lemma 5.3. Let λ be a natural number and let Λ be a subset of the set Ξ such that

$$
|\psi(\Lambda)| \geqslant \lambda(d-1)+1
$$

Suppose that there exists a curve C of degree λ such that

$$
\psi(\Lambda) \subset C \subset \Pi \cong \mathbb{P}^{2}
$$

Let \mathscr{D} be a linear subsystem of $\left|\mathscr{O}_{\mathbb{P}^{3}}(\lambda)\right|$ consisting of all surfaces of degree λ that contain Λ. Then the base locus of the linear system \mathscr{D} is contained in the union of the line L and some finite set.

Proof. Suppose that there exists an irreducible curve $Z \subset \mathbb{P}^{3}$ that is contained in the base locus of the linear system \mathscr{D}. We must show that $Z=L$.

We suppose that $Z \neq L$ and show this leads to contradiction. We may assume that $O \notin Z$. Then $\psi(Z)$ is an irreducible curve.

For every point $Q \in \Lambda$ let Y_{Q} be a cone in \mathbb{P}^{3} over Z whose vertex is Q. Then

$$
L \subset Y_{Q} \quad \Longleftrightarrow \quad Q \in L
$$

which implies that we may assume that $O \notin Y_{Q}$ if $Q \notin L$ because $O \in L$ is sufficiently general. Put $\Theta=Z \cap \Lambda$ and $\Omega=L \cap \Lambda$. Then

$$
\psi(Z) \cap \psi(\Lambda \backslash(\Xi \cup \Omega))=\varnothing
$$

As $O \in L$ is a general point, we may assume that $|\Lambda \backslash \Omega|=|\psi(\Lambda \backslash \Omega)|$.
Let C be an irreducible curve in Π of degree λ that contains the set $\psi(\Sigma)$, and let W be a cone in \mathbb{P}^{3} over the curve C whose vertex is our point O. Then $W \in \mathscr{D}$, which implies that $Z \subset W$. Then $\psi(Z)=C$. Thus, we have $\Lambda \backslash(\Xi \cup \Omega) \subset Z$.

Let B be any smooth point of the curve Z such that B is not contained in the line L, and let H be a plane in \mathbb{P}^{3} that passes through the line L and the point B.

If $Z \subset H$, then $H \cap \Pi=Z$, which gives $\lambda=1$, a contradiction.
Thus we have shown that $Z \not \subset H$, so the intersection $H \cap Z$ is a finite set containing the point B. In particular, there exists a line $L^{\prime} \subset H$ such that

$$
L^{\prime} \cap Z=B
$$

and L^{\prime} is not tangent to Z at the point B. If $O=L \cap L^{\prime}$, then the morphism

$$
\left.\psi\right|_{Z}: Z \longrightarrow C
$$

is birational, which implies that $\operatorname{deg}(Z)=\lambda$. Thus, as $O \in L$ is a general point, we may assume that $\operatorname{deg}(Z)=\lambda$.

We see that Z is an irreducible curve in \mathbb{P}^{3} of degree λ that contains $\Lambda \backslash \Omega$. But

$$
|\Lambda \backslash \Omega|=|\psi(\Lambda)|-|\psi(\Omega)| \geqslant|\psi(\Lambda)|-1 \geqslant \lambda(d-1)
$$

because $\psi(\Omega)=\psi(L)$ of $\Omega \neq \emptyset$. But at most $\lambda(d-1)-1$ points of the set Ξ are contained in any curve of degree λ, which is a contradiction.

Lemma 5.4. There exists a curve $C \subset \Pi$ of degree $k \leqslant d-2$ such that

$$
\left|C \cap \Xi^{\prime}\right|>k(d-1) .
$$

Proof. Suppose that at most $k(d-1)$ points of the set Ξ^{\prime} are contained in a curve of degree k for every $k \leqslant d-2$. Put $\xi=2 d-5$. Then $\xi \geqslant 7$ because $d \geqslant 6$.

Suppose that at most $k(\xi+3-k)-2$ points of the set $\Xi^{\prime} \backslash P^{\prime}$ are contained in any curve of degree k for every $k \leqslant(\xi+3) / 2$. By Lemma 2.3 , there exists a curve

$$
Z \subset \mathbb{P}^{2}
$$

of degree $2 d-5$ that contains $\Xi^{\prime} \backslash P^{\prime}$ and does not contain P^{\prime}. Let S be a cone in \mathbb{P}^{3} over the curve Z whose vertex is the point O. Then S is a surface of degree $2 d-5$ that contains all points of the set $\Xi \backslash P$ and does not contain the point P, which is a contradiction.

Thus, we see that there exists some curve $R \subset \mathbb{P}^{2}$ of degree $k \leqslant d-1$ such that R contains at least $k(\xi+3-k)-1$ points of the set $\Xi^{\prime} \backslash P^{\prime}$.

If $k=d-1$, then the curve R contains at least

$$
k(\xi+3-k)-1=k(2 d-2-k)-1=(d-1)^{2}-1
$$

points of the set $\Xi^{\prime} \backslash P^{\prime}$. But the set $\Xi^{\prime} \backslash P^{\prime}$ consists of at most $(d-1)^{2}-2$ points.
We see that $k \leqslant d-2$. Then $k(2 d-2-k)-1 \leqslant k(d-1)$.
If $k=1$, then $2 d-4 \leqslant d-1$, which is impossible since $d \geqslant 6$. We see that $k \neq 1$. Then

$$
k(2 d-2-k)-1 \leqslant k(d-1) \quad \Longleftrightarrow \quad k(d-1-k) \leqslant 1 \quad \Longleftrightarrow \quad k \geqslant d-1
$$

which is a contradiction because $k \leqslant d-2$.
Without loss of generality, we may assume that k is the smallest natural number such that there is a curve in Π of degree $k \leqslant d-2$ that contains at least $k(d-1)+1$ points of the set Ξ^{\prime}, which implies that the curve C is irreducible. Let S be a cone in \mathbb{P}^{3} over the curve C whose vertex is the point O. Then

$$
|S \cap \Xi| \geqslant k(d-1)+1
$$

which implies that $\Xi \subset S$ by Lemma 5.1. Then $\Xi^{\prime} \subset C$.
Let us consider Ξ as a closed zero-dimensional subscheme of \mathbb{P}^{3}. Then

$$
h^{1}\left(\mathscr{I} \Xi \otimes \mathscr{O}_{\mathbb{P}^{3}}(2 d-5)\right) \neq 0,
$$

where $\mathscr{I} \Xi$ is the ideal sheaf of the subscheme Ξ.
Let \mathscr{R} be the linear subsystem of the linear system $\left|\mathscr{O}_{\mathbb{P}^{3}}(d-2)\right|$ consisting of all surfaces that pass through Ξ. By Lemma 5.3 the base locus of the linear system \mathscr{R} is contained in the union of the line L with some finite set. Put

$$
\Gamma=R_{1} \cdot R_{2} \cdot M
$$

where R_{1} and R_{2} are general surfaces in the linear system \mathscr{R} and M is a general surface in the linear system \mathscr{M}. Then Γ is a zero-dimensional scheme in \mathbb{P}^{3} and Ξ is its closed subscheme.

Let Υ be a closed subscheme of the scheme Γ such that

$$
\mathscr{I}_{\Upsilon}=\operatorname{Ann}\left(\mathscr{I}_{\Xi} / \mathscr{I}_{\Gamma}\right),
$$

where \mathscr{I}_{Υ} and \mathscr{I}_{Γ} are the ideal sheaves of the subschemes Υ and Γ, respectively. Then

$$
0 \neq h^{1}\left(\mathscr{O}_{\mathbb{P}^{3}}(2 d-5) \otimes \mathscr{I}_{\Xi}\right)=h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Upsilon}\right)-h^{0}\left(\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Gamma}\right)
$$

by Theorem 2.1. Thus there exists a surface $F \in\left|\mathscr{O}_{\mathbb{P}^{3}}(d-4) \otimes \mathscr{I}_{\Upsilon}\right|$. Then

$$
(d-4)(d-1)(d-2)=F \cdot R_{1} \cdot M \geqslant h^{0}\left(\mathscr{O}_{\Upsilon}\right)=h^{0}\left(\mathscr{O}_{\Gamma}\right)-h^{0}\left(\mathscr{O}_{\Xi}\right)=(d-2)^{2}(d-1)-|\Xi|,
$$

which implies that $|\Xi| \geqslant 2(d-2)(d-1)$. Therefore, we see that

$$
(d-1)^{2}=|\Xi| \geqslant 2(d-2)(d-1)
$$

which is a contradiction because $d \geqslant 4$.
The assertion of Lemma 4.10 is proved.

Bibliography

[1] C. Ciliberto and V. Di Gennaro, "Factoriality of certain hypersurfaces of \mathbb{P}^{4} with ordinary double points", Algebraic transformation groups and algebraic varieties (Vienna, Austria 2001), Encyclopaedia Math. Sci., vol. 132, Springer-Verlag, Berlin 2004, pp. 1-7.
[2] I. Cheltsov, "Nonrational nodal quartic threefolds", Pacific J. Math. 226:1 (2006), 65-81.
[3] K. A. Shramov, "©-factorial quartic threefolds", Mat. Sb. 198:8 (2007), 103-114; English transl. in Sb. Math. 198:8 (2007), 1165-1174.
[4] A. A. du Plessis and C. T. C. Wall, "Singular hypersurfaces, versality, and Gorenstein algebras", J. Algebraic Geom. 9:2 (2000), 309-322.
[5] I. Cheltsov, "On factoriality of nodal threefolds", J. Algebraic Geom. 14:4 (2005), 663-690.
[6] I. Cheltsov and J. Park, "Factorial hypersurfaces in \mathbb{P}^{4} with nodes", Geom. Dedicata 121:1 (2006), 205-219.
[7] D. Kosta, "Factoriality condition of some nodal threefolds in \mathbb{P}^{4} ", Manuscripta Math. 127:2 (2008), 151-166.
[8] I. Cheltsov, "Points in projective spaces and applications", J. Differential Geom. 81:3 (2009), 575-599.
[9] I. Cheltsov, "Factorial threefold hypersurfaces", J. Algebraic Geom. (to appear).
[10] E. D. Davis, A. V. Geramita and F. Orecchia, "Gorenstein algebras and the Cayley-Bacharach theorem", Proc. Amer. Math. Soc. 93:4 (1985), 593-597.
[11] D. Eisenbud and J.-H. Koh, "Remarks on points in a projective space", Commutative algebra (Berkeley, CA 1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer-Verlag, New York 1989, pp. 157-172.
[12] E. D. Davis and A. V. Geramita, "Birational morphisms to \mathbb{P}^{2} : an ideal-theoretic perspective", Math. Ann. 279:3 (1988), 435-448.
[13] A. Dimca, "Betti numbers of hypersurfaces and defects of linear systems", Duke Math. J. 60:1 (1990), 285-298.

I. A. Cheltsov

University of Edinburgh, UK
E-mail: cheltsov@yahoo.com

