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Log canonical thresholds
of three-dimensional Fano hypersurfaces

I. A. Cheltsov

Abstract. We study global log canonical thresholds of generic hypersur-
faces in P(1, a1, a2, a3, a4) of degree

P4
i=1 ai that have at most terminal

singularities.

Keywords: Fano variety, log canonical threshold, Tian’s alpha-invariant,
Kähler–Einstein metric.

§ 1. Introduction

Let X be a Fano variety1 with at most log terminal singularities.

Definition 1.1. The global log canonical threshold of X is the number

lct(X) = sup
{
λ ∈ Q

∣∣∣ the log pair (X, λD) has log canonical singularities

for every effective Q-divisor D ≡ −KX

}
> 0.

The number lct(X) plays an important role in Kähler geometry.

Example 1.2. If X has at most quotient singularities and we have

lct(X) >
dim(X)

dim(X) + 1
,

then X admits an orbifold Kähler–Einstein metric [1].

Suppose further that X is a Fano variety with terminal Q-factorial singularities
and rkPic(X) = 1.

Definition 1.3. The Fano variety X is said to be birationally superrigid if for
every linear system M on X without fixed components, the log pair (X,λM) has
canonical singularities, where λ ∈ Q is such that KX + λM≡ 0.

Let X1, . . . , Xr be Fano varieties with at most Q-factorial terminal singularities
and rkPic(Xi) = 1 for all i = 1, . . . , r. The following result is proved in [2].

Theorem 1.4. Suppose that Xi is birationally superrigid and lct(Xi) > 1 for all
i = 1, . . . , r. Then

Bir(X1 × · · · ×Xr) = Aut(X1 × · · · ×Xr)

1All varieties are assumed to be projective, normal and defined over C.

AMS 2000 Mathematics Subject Classification. 14J45, 14E07, 14J17, 14J30, 14B05, 32Q20.
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and, for every rational dominant map ρ : X1×· · ·×Xr 99K Y whose generic fibre is
rationally connected, there is a subset {i1, . . . , ik} ⊆ {1, . . . , r} and a commutative
diagram

X1 × · · · ×Xr

π

��

ρ

**VVVVVVVVVVVVVV

Xi1 × · · · ×Xik ξ
//____________ Y

where ξ is a birational map and π is the natural projection.

Example 1.5. Let X be a generic hypersurface of degree 2n > 6 in P(1n+1, n).
Then X is birationally superrigid and lct(X) = 1 (see [2]).

Let us show how to generalize Theorem 1.4 to the case of Fano varieties with
non-biregular birational automorphisms (see [3]).

Definition 1.6. A variety X is said to be birationally rigid if for every non-empty
linear systemM onX without fixed components there is a birational automorphism
ξ ∈ Bir(X) such that the log pair (X,λξ(M)) has canonical singularities, where
λ ∈ Q is such that KX + λξ(M) ≡ 0.

The birational rigidity of X implies that
1) there is no dominant rational map ρ : X 99K Y such that dim(Y ) > 1 and the

generic fibre of ρ is rationally connected,
2) there is no birational map ρ : X 99K Y such that Y 6∼= X has Q-factorial

terminal singularities and rkPic(Y ) = 1.

Definition 1.7. A subset Γ ⊂ Bir(X) untwists all maximal singularities on X if
for every linear system M on X without fixed components there is an element ξ ∈ Γ
such that the log pair (X,λξ(M)) has canonical singularities, where λ ∈ Q is such
that KX + λξ(M) ≡ 0.

The existence of a subset Γ ⊂ Bir(X) that untwists all maximal singularities
implies that the group Bir(X) is generated by Γ and the biregular automorphisms
(see [4]).

Definition 1.8. A variety X is said to be universally birationally rigid if the vari-
ety X⊗Spec(K) is birationally rigid over K for every finitely generated field exten-
sion K of C.

We note that Definition 1.6 extends naturally to Fano varieties defined over any
perfect field.

Definition 1.9. A subset Γ ⊂ Bir(X) universally untwists all maximal singular-
ities if, for every finitely generated field extension K of C, the induced subgroup

Γ ⊂ Bir(X) ⊆ Bir(X ⊗ Spec(K))

untwists all maximal singularities on X ⊗ Spec(K).

Definitions 1.3 and 1.9 imply that if X is birationally superrigid, then every
non-empty subset of Bir(X) universally untwists all maximal singularities.
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Remark 1.10. As noticed by Kollár, in the case when dim(X) > 2, the whole
group Bir(X) universally untwists all maximal singularities if and only if Bir(X) is
countable.

Suppose thatX1, . . . , Xr are Fano varieties with Q-factorial terminal singularities
and rkPic(Xi) = 1 for all i = 1, . . . , r. Consider the projection

πi : X1×· · ·×Xi−1×Xi×Xi+1×· · ·×Xr −→ X1×· · ·×Xi−1×X̂i×Xi+1×· · ·×Xr

and write ii for the generic fibre of πi in the scheme sense.

Remark 1.11. The variety ii is a Fano variety defined over the field of all rational
functions on X1 × · · · · · · ×Xi−1 × X̂i ×Xi+1 × · · · ×Xr.

There are natural embeddings of groups

r∏
i=1

Bir(Xi) ⊆ 〈Bir(i1), . . . ,Bir(ir)〉 ⊆ Bir(X1 × · · · ×Xr),

and the proof of Theorem 1.4 yields the following result (see [3]).

Theorem 1.12. Suppose that X1, . . . , Xr are universally birationally rigid and
lct(Xi) > 1 for all i = 1, . . . , r. Then

Bir(X1 × · · · ×Xr) = 〈Bir(i1), . . . ,Bir(ir),Aut(X1 × · · · ×Xr)〉,

the variety X1 × · · · ×Xr is non-rational and, for every dominant rational map ρ:
X1 × · · · ×Xr 99K Y whose generic fibre is rationally connected, there is a subset
{i1, . . . , ik} ⊆ {1, . . . , r} and a commutative diagram

X1 × · · · ×Xr

π

��

σ //______ X1 × · · · ×Xr

ρ

((R
RRRRRRR

Xi1 × · · · ×Xik ξ
//__________________ Y

where π is the natural projection and ξ, σ are birational maps.

Corollary 1.13. Suppose that there is a subgroup Γi ⊆ Bir(Xi) that universally
untwists all maximal singularities and we have lct(Xi) > 1 for all i = 1, . . . , r.
Then

Bir(X1 × · · · ×Xr) =
〈 r∏
i=1

Γi,Aut(X1 × · · · ×Xr)
〉
.

Let X be a generic quasi-smooth well-shaped hypersurface in P(1, a1, a2, a3, a4)
of degree

∑4
i=1 ai with terminal singularities, where a1 6 a2 6 a3 6 a4. Then X is

a Fano variety. For historical reasons, it is commonly referred to as a Reid–Fletcher
variety. In [5], a finite set τ1, . . . , τk of birational involutions of X was found
explicitly and the following important and complicated result was proved.
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Theorem 1.14. The variety X is birationally rigid, the sequence of groups

1 −→ 〈τ1, . . . , τk〉 −→ Bir(X) −→ Aut(X) −→ 1

is exact and the group 〈τ1, . . . , τk〉 universally untwists all maximal singularities.

There are 95 possibilities for the quadruple (a1, a2, a3, a4). Let ג ∈ {1, . . . , 95}
be the ordinal number of the quadruple in the standard notation (see [5]). We shall
prove the following result.2

Theorem 1.15. Suppose that ג /∈ {1, 2, 4, 5}. Then lct(X) = 1.

In many cases one can show that the group Aut(X) is either trivial (see
Lemma 8.3) or isomorphic to Z2 (see Corollary 8.2). Relations between the involu-
tions τ1, . . . , τk are also known (see [6]). Thus one can obtain explicit applications
of Theorem 1.12.

Example 1.16. Suppose that ג = 41. Using Theorems 1.12 and 1.14, one can
show (see Corollary 8.2 below) that there is an exact sequence of groups

1 −→
m∏
i=1

(Z2 ∗ Z2) −→ Bir
(
X × · · · ×X︸ ︷︷ ︸

m

)
−→ Sm −→ 1

by Theorem 1.15. Let V be a generic hypersurface of degree 2n > 6 in P(1n+1, n).
Then

Bir(X × V ) ∼= (Z2 ∗ Z2)⊕ Z2,

again by Theorems 1.12, 1.14 and 1.15 (see Example 1.5 and [7]).

It follows from [8] that lct(X) > 16/21 for ג = 1. We shall prove the following
result.

Theorem 1.17. Suppose that ג = 2. Then lct(X) > 7/9.

Corollary 1.18. Suppose that ג 6= 4 and ג 6= 5. Then X has a Kähler–Einstein
metric.

For the convenience of the reader, we organize this paper in the following way.
1) We prove Theorem 1.15 in § 2, omitting the proofs of Lemmas 2.4, 2.10, 2.11.
2) We prove the technical Lemmas 2.4, 2.10, 2.11 in §§ 3, 5, 6 respectively.
3) We explicitly describe the group Bir(X) for ג = 9 and ג = 41 in § 8.
4) We consider an alternative approach to the proof of Theorem 1.15 in § 9.

§ 2. Log canonical thresholds

Consider a generic quasi-smooth well-shaped hypersurface X ⊂ P(1, a1, . . . , a4)
of degree d =

∑4
i=1 ai with terminal singularities, where a1 6 · · · 6 a4. We write

ג ∈ {1, . . . , 95} for the ordinal number of the quadruple (a1, a2, a3, a4) according
to [5]. Then −K3

X 6 1 ⇐⇒ ג > 6.
Suppose that ג /∈ {1, 2, 4, 5}. Let D be a divisor in |−nKX |, where n ∈ N.

2A sketch of the proof of Theorem 1.15 was given in [3].
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Remark 2.1. The proof of Theorem 1.15 implies that the log pair (X, 1
nD) is not

log terminal if and only if n = 1. However, we do not need this fact in what follows.

Suppose that the log pair (X, 1
nD) is not log canonical. To prove Theorem 1.15,

we must show that this assumption leads to a contradiction.

Remark 2.2. Let V be a variety with Q-factorial singularities and let B and B′

be effective Q-divisors on V such that (V,B) is log canonical and (V,B′) is not.
Then the log pair

(
V, 1

1−α (B′ − αB)
)

is not log canonical for any α ∈ Q such
that 0 6 α < 1 and the divisor B′ − αB is effective.

Thus we may assume that D is an irreducible surface. It follows from [2] that
ג 6= 3.

Lemma 2.3. We have n 6= 1.

Proof. Suppose that n = 1. Then the log pair (X,D) is log canonical at every
singular point of X according to Lemma 8.12 and Proposition 8.14 of [9]. It follows
that a1 = 1.

Suppose that the singularities of the log pair (X,D) are not log canonical at
some smooth point P of the hypersurface X. Let us derive a contradiction. We
consider only the case ג = 14. The other cases are similar.

Suppose that ג = 14. Then there is a double covering π : X → P(1, 1, 1, 4)
branched over a hypersurface F ⊂ P(1, 1, 1, 4) of degree 12, which is sufficiently
generic by assumption.

Put D = π(D) and P = π(P ). Counting parameters, we see that

multP (F |D) 6 2,

which is a contradiction because the singularities of the log pair (D, 1
2F |D) are not

log canonical at P by Lemma 8.12 of [9]. The lemma is proved.

Lemma 2.4. The log pair (X, 1
nD) is log canonical at smooth points of X .

This lemma will be proved in § 3.
Hence there is a singular point O of X such that the log pair (X, 1

nD) is not log
canonical at O. Then O is a singular point of type 1

r (1, a, r − a), where a and r
are coprime positive integers with r > 2a. Let α : U → X be a blow-up of O with
weights (1, a, r − a). Then

−K3
U = −K3

X −
1
r3
E3 = −K3

X −
1

ra(r − a)
=

d

a1a2a3a4
− 1
ra(r − a)

, (2.1)

where E is the exceptional divisor of α. There is a rational number µ such that

D ≡ α∗(D) + µE ≡ −nKU +
(
n

r
− µ

)
E,

where D is the proper transform of D on U . It follows from [10] that µ > n/r.

Lemma 2.5. We have −K3
U > 0.
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Proof. Suppose that −K3
U < 0. Let C be a curve in E. By Corollary 5.4.6 of [5]

there is an irreducible reduced curve Γ ⊂ U such that Γ generates an extremal ray of
the cone NE(U) different from the ray R>0C, and we have a numerical equivalence

Γ ≡ −KU · (−bKU + cE),

where b > 0 and c > 0 are integers.
Let T be a divisor in |−KU |. Then π(T ) is a divisor in |−KX | and

D · T ≡ −KU ·
(
−nKU +

(
n

r
− µ

)
E

)
/∈ NE(U)

because µ > n/r, b > 0 and c > 0. However, the cycle D ·T is effective since n 6= 1.
The lemma is proved.

Taking into account the range of values of (a1, a2, a3, a4), we see that ג /∈
{75, 84, 87, 93}.

Lemma 2.6. We have −K3
U 6= 0.

Proof. Suppose that −K3
U = 0 and ג 6= 82. Then |−rKU | has no base points for

r � 0 and induces a morphism η : U → P(1, a1, a2) such that the diagram

U

α

xxqqqqqqqqqqqqq
η

((QQQQQQQQQQQQQQ

X
ψ

//_____________ P(1, a1, a2)

is commutative, where ψ is the projection. The morphism η is an elliptic fibration.
Thus we have

D · C = −nKU · C +
(
n

r
− µ

)
E · C =

(
n

r
− µ

)
E · C < 0,

where C is the generic fibre of η, a contradiction.
Suppose that −K3

U = 0 and ג = 82. Then X is a hypersurface of degree 36
in P(1, 1, 5, 12, 18). Its singularities consist of points P and Q of type 1

5 (1, 2, 3) and
1
6 (1, 1, 5) respectively.

One can prescribe the hypersurface X by the equation

z7y +
6∑
i=0

zif36−5i(x, y, z, t) = 0 ⊂ P(1, 1, 5, 12, 18) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 5, wt(t) = 12, wt(w) = 18 and fi is a quasi-
homogeneous polynomial of degree i. Then P is given by x = z = t = w = 0.

Suppose that O = Q. Then the linear system |−rKU | has no base points
for r � 0, which leads to a contradiction as in the case ג 6= 82. Hence we see
that O = P .

Let S be the proper transform on U of the surface that is cut out on X by y = 0.
Then

S ≡ α∗(−KX)− 6
5
E,



Log canonical thresholds of Fano hypersurfaces 733

and the base locus of the pencil |−KU | consists of irreducible curves L and C such
that L is contained in the α-exceptional divisor E and the curve π(C) is the unique
base curve of the pencil |−KX |. Then −KU ·C = −1/6 and −KU ·L > 0. We also
have µ 6 n/5 because

n

5
− µ = (−KU + α∗(−5KX)) · S ·D > 0

since D 6= S by Lemma 8.12 and Proposition 8.14 of [9], a contradiction.

Taking into account the range of (a1, a2, a3, a4), we see that

ג /∈ {11, 14, 19, 22, 28, 34, 37, 39, 49, 52, 53, 57, 59, 64,
66, 70, 72, 73, 78, 80, 81, 86, 88, 89, 90, 92, 94, 95}.

Lemma 2.7. The groups Bir(X) and Aut(X) do not coincide.

Proof. Suppose that Bir(X) = Aut(X). Let S be a generic surface in |−KU |. By
Lemma 5.4.5 of [5] there is an irreducible surface T ⊂ U such that

1) we have T ∼ cS − bE for some integers c > 1 and b > 1,
2) the intersection T · S is a reduced irreducible curve Γ,
3) the curve Γ generates an extremal ray of the cone NE(U).
It is easy to construct the surface T explicitly (see [5]), and the possible values

of c and b are given in [5]. The surface T is uniquely determined by the point O.
Put T = α(T ). Then the singularities of the log pair (X, 1

cT ) are log canonical
by Lemma 8.12 and Proposition 8.14 of [9]. It follows that D 6= T .

Let P be the pencil generated by the effective divisors nT and cD. Then the
singularities of (X, 1

cnP) are non-canonical, which contradicts Theorem 1.14.

It follows from [5] that

ג /∈ {11, 21, 29, 35, 50, 51, 55, 62, 63, 67, 71, 77, 82, 83, 85, 91}.

Lemma 2.8. The divisor −KU is numerically effective.

Proof. Suppose that the anticanonical divisor −KU is not numerically effective.
Then it follows from [5] that ג = 47 and O is a singular point of type 1

5 (1, 2, 3).
The hypersurface X can be given by the equation

z4y +
3∑
i=0

zif21−5i(x, y, z, t) = 0 ⊂ P(1, 1, 5, 7, 8) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 5, wt(t) = 7, wt(w) = 8 and fi is a generic
quasi-homogeneous polynomial of degree i. Let S be the surface cut out by the
equation y = 0 on X, and let S be the proper transform of S on U . Then

S ≡ α∗(−KX)− 6
5
E,
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but the divisor −3KU +α∗(−5KX) is numerically effective (see [11]). We also have
µ 6 n/5 because

n

5
− µ =

1
3
(−3KU + α∗(−5KX)) · S ·D > 0

since D 6= S by Lemma 8.12 and Proposition 8.14 of [9]. This contradiction proves
the lemma.

Thus the divisor −KU is numerically effective and big (see Lemmas 2.5 and 2.6).

Lemma 2.9. We have µ/n− 1/r < 1.

Proof. We only consider the case when ג = 58 and O is a singular point of type
1
10 (1, 3, 7) because the proof is similar in all other cases (see Lemma 6.3 below).
Thus we assume that ג = 58. The threefold X can be given by

w2z + wf14(x, y, z, t) + f24(x, y, z, t) = 0 ⊂ P(1, 3, 4, 7, 10) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = 3, wt(z) = 4, wt(t) = 7, wt(w) = 10 and fi is
a quasi-homogeneous polynomial of degree i. Let R be the surface cut out by
the equation t = 0 on X, and let R be the proper transform of R on U . Then

R ≡ α∗(−4KX)− 7
5
E

and (X, 1
4R) is log canonical at O according to Lemma 8.12 and Proposition 8.14

of [9]. Then R 6= D and

0 6 −KU ·R ·D =
4
35
n− 2

3
µ

because −KU is numerically effective. Hence we have µ 6 6n/35.

We have shown that the log pair (U, 1
nD+(µn−

1
r )E) is not log canonical at some

point P ∈ E because

KU +
1
n
D ≡ α∗

(
KX +

1
n
D

)
+

(
1
r
− µ

n

)
E.

Lemma 2.10. The threefold U is smooth at the point P .

A proof of Lemma 2.10 is given in § 5.
Lemma 2.10 yields that multP (D) > n + n/r − µ. It follows from [5] that we

have a dichotomy:
1) either d = 2r + aj for some j ∈ {1, 2, 3, 4},
2) or d 6= 2r + aj for all j ∈ {1, 2, 3, 4} but we have d = 3r + aj for some j.

Lemma 2.11. For every j ∈ {1, 2, 3, 4} we have d 6= 2r + aj .

A proof of Lemma 2.11 is given in § 6.
Thus we have shown that d = 3r + aj for some j ∈ {1, 2, 3, 4}.
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Remark 2.12. Let V be a threefold with isolated singularities, and let B and T be
distinct irreducible effective divisors on V . We put

B · T =
r∑
i=1

εiLi + ∆,

where Li is an irreducible curve, εi is a non-negative integer and ∆ is an effec-
tive 1-cycle whose support does not contain the curves L1, . . . , Lr. Then we have∑r
i=1 εiH · Li 6 B · T ·H for any numerically effective divisor H on V .

It follows from Lemma 2.11 that3 ג ∈ {7, 20, 23, 36, 40, 44, 61, 76}.

Lemma 2.13. We have ג 6= 7, ג 6= 20, ג 6= 36.

Proof. Suppose that ג ∈ {7, 20, 36}. Then a1 = 1. The point O is a singular point
of type 1

a2
(1, 1, a2 − 1) according to Lemmas 6.4, 6.10 and 6.12 below. One can

show that there is a commutative diagram

U

σ

����
��
��
��
��
��
� α

''OOOOOOOOOOOOO W
γoo

η

$$I
IIIIIIIIIIIIIIIIIII

X
ψ

--ZZZZZZZZZZZZZZZZZZZZ

V
� � // P(1, 1, a3, 2a4, 3a4) χ

//_____ P(1, 1, a3, 2a4)
ξ

//_____ P(1, 1, a3)

where ξ, χ, ψ are projections, η is an elliptic fibration, γ is a weighted blow-up
of a singular point of type 1

a4
(1, 1, a3) with weights (1, 1, a3), σ is a birational

morphism that contracts l non-singular rational curves C1, . . . , Cl to l isolated
ordinary double points, l = d(d − a4)/a3, and V is a hypersurface of degree 42
in P(1, 1, 6, 14, 21).

Let T be the surface in |−KU | that contains the point P . Then multP (D) >
n+ n/a2 − µ.

Suppose that P /∈
⋃l
i=1 Ci. Then it follows from the proof of Theorem 5.6.2

in [5] that the linear system |−2sa4KU | contains a surface H that has multiplicity
s > 0 at P and contains no components of the cycle D · T that pass through P .
Here s is a positive integer. Then

2sa4

(
dn

a1a2a3a4
− µ

a2 − 1

)
= D · T ·H > multP (D)s > s

(
n+

n

a2
− µ

)
s,

which is impossible because µ > n/a2. Hence we can assume that P ∈ C1. We put

D · T = mC1 + ∆,

where m is a non-negative integer and ∆ is an effective cycle whose support does
not contain C1. The curve C1 is non-singular, α∗(−KX) ·C1 = 2/a2 and E ·C1 = 2.

3It follows from [5] that X has an elliptic involution ⇐⇒ ג ∈ {7, 20, 23, 36, 40, 44, 61, 76}.
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Let Ĕ be the proper transform of E on W . Then Ĕ∼= P(1, 1, a3/2) and the map

η|Ĕ : P(1, 1, a3/2) −→ P(1, 1, a3)

is a finite morphism of degree 2. Hence we can find a surface R ∈ |−a3KU | such
that R passes through the curve C1 and contains no components of ∆ that pass
through P . Thus we get

a3

(
dn

a1a2a3a4
− µ

a2 − 1

)
= R ·∆ > multP (∆) > n+

n

a2
− µ−m,

whence m > a3n/a4 because µ > n/a2. Therefore we have

a3n

a4
< m 6

−dnKX · α(C1)
a1a2a3a4

=
dn

2a1a3a4

by Remark 2.12 because −KX · α(C1) = 2/a2. It follows that ג = 7.
The fibre of the projection ψ over the point ψ(P ) consists of two irreducible

components. One of them is the curve C1. Let Z be the other. Then

C2
1 = −2, C1 · Z = 2, Z2 = −4

3
on the surface T . We write ∆ = mZ + Ω, where m is a non-negative integer and Ω
is an effective cycle whose support does not contain Z. Then

4n
3
− 2µ− 5m

3
= (Z + C1) · Ω >

3n
2
− µ−m,

but 4m/3 > 2m− 5n/6 because Ω ·Z > 0. These inequalities contradict each other
because µ > n/2 by [10]. The lemma is proved.

Thus we see that ג ∈ {23, 40, 44, 61, 76} and d = 3r + aj , where r = a3 > 2a
and 1 6 j 6 2.

The hypersurface X has a singular point Q of type 1
r̄ (1, ā, r̄ − ā) such that

−K3
X =

1
ra(r − a)

+
1

r̄ā(r̄ − ā)
,

where r̄ = a4 > 2ā and ā ∈ N. It is known that X can be given by an equation of
the form

x2
4x3 + x4a(x0, x1, x2) = x3

3xj + x2
3b(x0, x1, x2) + x3c(x0, x1, x2) + d(x0, x1, x2) = 0

in Proj(C[x0, x1, x2, x3, x4]), where wt(x0) = 1, wt(xk) = ak and a, b, c, d are
quasi-homogeneous polynomials. We put l = d(d − a4)/(a1a2). It follows from [5]
that there is a commutative diagram

U

σ

����
��
��
��
��
� α

((PPPPPPPPPPPP W
γoo

η

%%KKKKKKKKKKKKKKKKKKK

X
ψ

--ZZZZZZZZZZZZZZZZZZZ

V
� � // P(1, a1, a2, 2a4, 3a4) χ

//____ P(1, a1, a2, 2a4)
ξ

//____ P(1, a1, a2)
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where ξ, χ, ψ are projections, η is an elliptic fibration, γ is a weighted blow-up with
weights (1, ā, r̄ − ā) of a point that dominates the point Q, and σ is a birational
morphism that contracts the non-singular curves C1, . . . , Cl. It is known that V is
a hypersurface of degree 6a4 in P(1, a1, a2, 2a4, 3a4).

We note that E ∼= P(1, a, r − a). Let L be a curve on E belonging to the linear
system |OP(1,a,r−a)(1)|.

Lemma 2.14. Suppose that P /∈ L. Then µ > na(r + 1)/(r2 + ar).

Proof. There is a curve C ∈ |OP(1,a,r−a)(a)| such that P ∈C. We put

D|E = δC + Υ ≡ rµL,

where δ is a non-negative integer and Υ is an effective divisor on E whose support
does not contain the curve C. Then

rµ− aδ

r − a
= (rµ− aδ)L · C = C ·Υ > multP (Υ) > n+

n

r
− µ− δ.

It follows that µ > na(r + 1)/(r2 + ar) because δ 6 rµ/a.

Let T be a surface in |−KU |. Then −KU · T · D > 0. It follows that µ 6
−na(r − a)K3

X .

Lemma 2.15. The point P is not contained in the surface T .

Proof. Suppose that P is contained in T . Then P is not contained in the base
locus of the linear system |−a1KU | because the base locus of |−a1KU | contains no
smooth points of E. The point P is not contained in

⋃l
i=1 Ci because P ∈ T .

The proof of Theorem 5.6.2 in [5] shows that there is a surface H ∈ |−2sa1a4KU |
such that

2sa1a4

(
−nK3

X −
µ

a2

)
= D ·H · T > multP (D)s > s

(
n+

n

r
− µ

)
s,

where s is a positive integer. This is impossible because µ > n/r.

It follows from Lemmas 2.14 and 2.15 that ג ∈ {23, 44} in view of the fact
that µ 6 −na(r − a)K3

X .
Let S be a surface in |−a1KU | that contains P . Since µ > n/r, we see that

D 6= S.

Lemma 2.16. The point P is contained in
⋃l
i=1 Ci.

Proof. Suppose that P /∈
⋃l
i=1 Ci. Then it follows from the proof of Theorem 5.6.2

in [5] that

2sa1a4

(
−nK3

X −
µ

a2

)
= D ·H · S > multP (D)s > s

(
n+

n

r
− µ

)
s

for some s ∈ N and H ∈ |−2sa4KU |. This contradicts the inequality µ > n/r.
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We may assume that P ∈ C1. Put

D · S = mC1 + ∆,

wherem is a non-negative integer and ∆ is an effective cycle whose support does not
contain C1. Then it follows from Remark 2.12 that m 6 nd/(a2d − a2a3) because
−KX · α(C1) = (d− a3)/(a3a4).

The proof of Theorem 5.6.2 in [5] shows that there is a surface R ∈ |−2sa4KU |
such that

2sa1a4

(
−nK3

X −
µ

a2

)
= R ·∆ > multP (∆)s > s

(
n+

n

r
− µ−m

)
,

where s ∈ N. However, we have m 6 nd/(a2d− a2a3), whence ג = 23.
We have proved that X is a hypersurface of degree 14 in P(1, 2, 3, 4, 5) and O

is a singular point of type 1
4 (1, 1, 3). Let M be a generic surface through P in the

linear system |−3KX |. Then

S ·M = C1 + Z1,

where Z1 is a curve with −KU · Z1 = 1/5. We write

D · S = mC1 +mZ1 + Υ,

where m is a non-negative integer and Υ is an effective cycle whose support does not
contain the curves C1 or Z1. Then m < 7n/15 by Remark 2.12, but µ > n/4 and

7
10
n− 6

3
µ− 3

5
m = M ·Υ > multP (Υ) >

5
4
n− µ−m

because P /∈ Z1. The inequalities obtained lead to a contradiction.
Thus Theorem 1.15 is completely proved.

§ 3. Non-singular points

In this section we prove Lemma 2.4. We shall use the assumptions and notation
of that lemma. Let P be a smooth point of X such that the log pair (X, 1

nD) is
not log canonical at P .

Lemma 3.1. Suppose that a4 divides d and a1 6= a2. Then −a2a3K
3
X > 1.

Proof. Suppose that −a2a3K
3
X 6 1. Let L be the unique base curve of the pencil

|−a1KX |, and let T be a surface in the linear system |−KX |. Then D · T is an
effective 1-cycle and multP (L) = 1.

Suppose that P ∈ L. Let R be a generic surface in |−a1KX |. We write

D · T = mL+ ∆,

where m is a non-negative integer and ∆ is an effective cycle whose support does
not contain L. Then

−a1(n− a1m)K3
X = D · T ·R−mR · L = R ·∆ > multP (∆) > n−m,

which is impossible because −a1K
3
X 6 1. Thus we see that P /∈ L.
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Suppose that P ∈ T . Then it follows from Theorem 5.6.2 of [5] that

ns > −sa1a3nK
3
X = D · S · T > multP (D)s > ns

for some positive integer s and some surface S ∈ |−sa1a3KX |. Hence we see that
P /∈ T .

Let G be a generic surface through P in |−a2KX |. Then G ·D is an effective
cycle. By Theorem 5.6.2 of [5] one can find an integer s > 0 and an effective divisor
H ∈ |−sa3KX | such that

ns > −sa2a3nK
3
X = D ·H ·G > multP (D)s > ns

because −a2a3K
3
X 6 1. The resulting contradiction completes the proof.

We note that multP (D) > n (see [9]).

Lemma 3.2. Suppose that a4 divides d and 1 = a1 6= a2. Then −a3K
3
X > 1.

Proof. Suppose that −a3K
3
X 6 1. Arguing as in the proof of Lemma 3.1, we

see that P is not contained in the base locus of |−KX |. Let T be the surface
in |−KX | that passes through P . By Theorem 5.6.2 of [5] one can find an integer
s > 0 and a surface S ∈ |−sa3KX | such that

ns > −sa3nK
3
X = D · S · T > multP (D)s > ns.

This is a contradiction. The lemma is proved.

Lemma 3.3. Suppose that a1 6= a2. Then −a1a4K
3
X > 1.

Proof. Assume that −a1a4K
3
X 6 1. Arguing as in the proof of Lemma 3.2, we see

that a1 6= 1. Then, arguing as in the proof of Lemma 3.1, we see that P is not
contained in the unique surface of the linear system |−KX |.

Let S be a surface through P in |−a1KX |. We may assume that

multP (S) 6 a1

because P /∈ T and X is generic. Then S 6= D.
By Theorem 5.6.2 of [5] one can find an integer s > 0 and a surface H ∈

|−sa4KX | such that H has a singularity of multiplicity at least s at P and contains
no components of D · S that pass through P . We have

ns > −sa1a4nK
3
X = D · S ·H > multP (D)s > ns

because −a1a4K
3
X 6 1. The resulting contradiction completes the proof of the

lemma.

Taking into account the range of (a1, a2, a3, a4), we see that

ג ∈ {6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 32, 33, 38}

by Lemmas 3.1–3.3. We now treat the remaining cases separately.
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Lemma 3.4. We have ג 6= 6 and ג 6= 10.

Proof. We may assume that ג = 6 since the case ג = 10 can be treated in a similar
way. It follows from [11] that X has singular points O1 and O2 of type 1

2 (1, 1, 1)
such that there is a commutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiii

α

��

Y
γoo

η

��6
66

66
66

66
66

66
66

V

ω $$JJJJJJJJJJ X
ξ

zzt
t

t
t

t
ψ

**UUUUUUUUUU

P(1, 1, 1, 4)
χ

//______________ P(1, 1, 1)

where ξ, ψ and χ are projections, α is a blow-up of O1 with weights (1, 1, 1), γ is
a blow-up with weights (1, 1, 1) of the point that dominates O2, η is an elliptic
fibration, ω is a double covering and σ is a birational morphism that contracts 48
irreducible curves C1, . . . , C48.

The threefold U contains 48 curves Z1, . . . , Z48 such that α(Zi) ∪ α(Ci) is the
fibre of the natural projection ψ over the point ψ(Ci). We put Zi = α(Zi) and
Ci = α(Ci). Let L be the fibre of the projection ψ that passes through the point P ,
and let T1, T2 be generic surfaces through P in the linear system |−KX |.

Suppose that L is irreducible. As usual, we write

D · T1 = mL+ Υ,

where m is a non-negative integer and Υ is an effective cycle whose support does
not contain L. Then m 6 n (see Remark 2.12), but

n−m = D · T1 · T2 −mT2 · L = T2 ·∆ > multP (∆) > n−mmultP (L),

which implies that L is singular at P . Hence there is an irreducible surface T ∈
|−KX | which is also singular at P . Now let S be a generic surface through P in
the linear system |−2KX |. Then

2n = D · T · S > multP (D · T ) > 2n.

This contradiction shows that the curve L is reducible.
We have shown that L = Ci ∪ Zi. Write D|T1 = m1Ci + m2Zi + ∆, where

the mi are non-negative integers and ∆ is an effective cycle whose support does not
contain Ci or Zi.

In the case when P ∈ Ci ∩ Zi, there is a surface T ∈ |−KX | such that T is
singular at P . Arguing as in the previous case, we obtain a contradiction. Hence
we may assume that P ∈ Ci and P /∈ Zi.

We have equations C
2

i = Z
2

i = −3/2 and Ci · Zi = 2 on the surface T1. Then

0 6 ∆ · Zi =
1
2
n− 2m1 +

3
2
m2, n−m1 6 ∆ · Ci =

1
2
n+

3
2
m1 − 2m2,
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and it follows from Remark 2.12 that m1 + m2 6 2n. Hence m1 6 n. Therefore
the log pair

(
T1, Ci + 1

n∆
)

is not log canonical at P by Theorem 7.5 of [9] since
P /∈ Zi. Then we have

multP (∆|Ci
) > n,

again by Theorem 7.5 of [9]. Thus,

n < ∆ · Ci =
1
2
n−m1C

2

i −m2Zi · Ci =
1
2
n+

3
2
m1 − 2m2,

which is easily seen to contradict the inequalities obtained above.

Lemma 3.5. We have ג 6= 12.

Proof. Assume that ג =12. Then X is a hypersurface of degree 10 in P(1, 1, 2, 3, 4)
with singular points P1, P2, P3, P4 of types 1

2 (1, 1, 1), 1
2 (1, 1, 1), 1

3 (1, 1, 2), 1
4 (1, 1, 3)

respectively. There is a commutative diagram

Y
γ5

~~||
||

||
| γ3

  B
BB

BB
BB η

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

U34
β4

~~||
||

|| β3

  B
BB

BB
B U45

β5~~||
||

||
P(1, 1, 2)

U3

α3   B
BB

BB
BB

U4

α4~~||
||

||
|

X

ψ

44iiiiiiiiiiiiiiiiiiiii

where ψ is the natural projection, η is an elliptic fibration, α3 is a weighted
blow-up of P3 with weights (1, 1, 2), α4 is a blow-up of P4 with weights (1, 1, 3),
β4 is a weighted blow-up with weights (1, 1, 3) of the point that dominates P4,
β3 is a weighted blow-up with weights (1, 1, 2) of the singular point that domi-
nates P3, β5 is a weighted blow-up with weights (1, 1, 2) of the singular point of the
α4-exceptional divisor, γ3 is a weighted blow-up with weights (1, 1, 2) of the sin-
gular point that dominates P3, and γ5 is a weighted blow-up with weights (1, 1, 2)
of the singular point of the β4-exceptional divisor.

Let L be the fibre of ψ that passes through P . Arguing as in the proof of
Lemma 3.1, we see that L is not the base curve of the pencil |−KX |. It follows that
L does not pass through P1 or P2.

Since X is generic, the curve L is reduced and has at most double points out-
side P4. We have −KX · L = 5/6, and there is a unique surface T ∈ |−KX |
through P . The exceptional divisors of γ5 and γ3 are sections of the elliptic fibra-
tion η.

Assume that L is irreducible. Write

D · T = mL+ ∆,

where m is a non-negative integer and ∆ is an effective cycle whose support does
not contain L. Let S be a generic surface through P in the linear system |−2KX |.
Then

5
6
n− 6

3
m = S ·∆ > multP (∆) > n−mmultP (L) > n− 2m,
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which implies that m > n/2. However, m 6 n/2 (see Remark 2.12). Thus the
fibre L is reducible.

Let C be an irreducible component of L that passes through P3, and let Z be
an irreducible component of L that is different from C. Then

−KX · C >
1
3
, −KX · C >

1
4
, −4KX · Z ∈ N.

Indeed, the curve Z does not pass through P3 because the exceptional divisor of
the birational morphism γ3 is a section of the elliptic fibration η.

Let C be the proper transform of C on U3. Then

−KX · C =
1
3
⇐⇒ −KU3 · C = 0,

but there are only finitely many curves on U3 whose intersection with the divi-
sor −KU3 is trivial. Hence we may assume that L = C + Z and −KX · Z = 1/2.

The hypersurface X can be given by the equation

w2z + w
(
t2 + tf3(x, y, z) + f6(x, y, z)

)
+ tf7(x, y, z) + f10(x, y, z) = 0

⊂ Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 3, wt(w) = 4, and fi is a quasi-
homogeneous polynomial of degree i. Let R be the surface cut out on X by the
equation

wz + t2 + tf3(x, y, z) = 0,

and let R̆ be the proper transform of R on the threefold U45. Then

R̆ · Z̆ =
6
5
− 10

4
E · β5(Z̆)− 6

3
G · Z̆ 6 −6KX · Z −

5
6
− 2,

where E and G are the exceptional divisors of α4 and β5 respectively and Z̆ is the
proper transform of Z on U45. Hence Z is one of the finitely many curves that are
contracted by the natural projection X 99K P(1, 1, 2, 3), and we have L = C + Z
if −KX · Z = 1/4. We write

D|T = mCC +mZZ + Ω,

where mC and mZ are non-negative integers and Ω is an effective divisor whose
support does not contain C or Z. We get a system of linear inequalities

Ω · C > (multP (D)−mZ multP (Z)−mC multP (C))multP (C),
Ω · Z > (multP (D)−mZ multP (Z)−mC multP (C))multP (Z),

and −mCKX · C −mZKX · Z 6 5n/12. It is easy to see that

Z2 = −5
4
, C · Z =

7
4
, C2 = − 7

12
on the surface T in the case when −KX · Z = 1/4, and

Z2 = −1, C · Z = 2, C2 = −4
3

if −KX · Z 6= 1/4. Simple calculations now yield a contradiction.
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Lemma 3.6. We have ג 6= 13.

Proof. Assume that ג =13. Then X is a hypersurface of degree 11 in P(1, 1, 2, 3, 5).
The singularities of X consist of points P1, P2, P3 of types 1

2 (1, 1, 1), 1
3 (1, 1, 2),

1
5 (1, 2, 3) respectively.

Let L be the fibre of the projection X 99K P(1, 1, 2) that contains P . The proof
of Lemma 3.1 shows directly that L is not the base curve of the pencil |−KX |. It
follows that P1 /∈ L and the curve L has at most double points outside P3.

Arguing as in the proof of Lemma 3.5, we see that L = C+Z, where C and Z are
irreducible curves such that C 6= Z and either −KX · C = 1/5 or −KX · C = 1/3.

Suppose that −KX ·C = 1/5. Then −KX ·Z = 8/15 and C is one of the finitely
many curves contracted by the projection X 99K P(1, 1, 2, 3). The hypersurface X
is given by the equation

w2y + wg(x, y, z, t) + h(x, y, z, t) = 0 ⊂ P(1, 1, 2, 3, 5) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 3, wt(w) = 5, and g and h are
quasi-homogeneous polynomials. Let R be the irreducible reduced surface cut out
on X by the equation y = 0. Then R contains the curves Z and C and we have

C2 = −4
5
, C · Z =

6
5
, Z2 = − 2

15
on R. (These equations make sense since the surface R is normal.) We write

D|R = mCC +mZZ + Ω,

where mC and mZ are non-negative integers, and Ω is an effective divisor whose
support does not contain C or Z. Thus we get

1
5
n+

4
5
mC −

6
5
mZ = Ω · C > n−mC −mZ ,

8
15
n− 6

5
mC +

2
15
mZ = Ω · Z > n−mC −mZ

in the case when P ∈C ∩Z. However we have 3mC+8mZ 6 11n/2 by Remark 2.12.
Hence P /∈ C ∩ Z and either

1
5
n+

4
5
mC −

6
5
mZ = Ω · C > n−mC and

8
15
n− 6

5
mC +

2
15
mZ = Ω · Z > 0,

or Ω · C > 0 and Ω · Z > n−mZ , which leads to a contradiction.
We have shown that −KX · C = 1/3 and −KX · Z = 2/5. Let α : U → X be

a weighted blow-up of the singular point P2 with weights (1, 1, 2). Then the proper
transform of C on U is one of the finitely many curves on U whose intersection
with −KU is trivial. Let S be the surface through P in |−KX |. Then

C2 = −4
3
, C · Z = 2Z2 = −6

5
on S. Arguing as in the case when −KX · C = 1/5, we arrive at a contradiction.
The lemma is proved.
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Lemma 3.7. We have ג 6= 14.

Proof. Assume that ג =14. Then X is a hypersurface of degree 12 in P(1, 1, 1, 4, 6).
The singularities of X consist of a singular point O of type 1

2 (1, 1, 1). Let ψ:
X 99K P2 be the natural projection, and let L be the fibre of ψ that contains P .
Since −KX · L = 1/2, we see that L is a reduced irreducible curve.

Let T1 and T2 be generic surfaces through P in |−KX |. We write

D · T1 = mL+ ∆,

where m is a non-negative integer and ∆ is an effective cycle whose support does
not contain L. Then m 6 n by Remark 2.12. However,

n−m

2
= D · T1 · T2 −mT2 · L = T2 ·∆ > multP (∆) > n−mmultP (L).

It follows that m > n if multP (C) = 1. Hence the curve C is singular at P and,
therefore, there is a surface T ∈ |−KX | which is also singular at P . We have

2n = D · T · S > multP (D · T ) > 2n,

where S is a generic surface through P in |−4KX |. This is a contradiction.

Lemma 3.8. We have ג 6= 16.

Proof. Assume that ג =16. Then X is a hypersurface of degree 12 in P(1, 1, 2, 4, 5).
The singularities of X consist of three points of type 1

2 (1, 1, 1) and a point O of
type 1

5 (1, 1, 4).
There is a commutative diagram

U

α

��

W
βoo Y

γoo

η

��
X

ψ
//_____________ P(1, 1, 2)

where α is a weighted blow-up of O with weights (1, 1, 4), β is a weighted blow-up
with weights (1, 1, 3) of the singular point of type 1

4 (1, 1, 3), γ is a blow-up with
weights (1, 1, 2) of the singular point of type 1

3 (1, 1, 2), η is an elliptic fibration, and
ψ is the natural projection. The proof of Lemma 3.1 yields that ψ(P ) is a smooth
point of P(1, 1, 2).

Let L be the fibre of ψ that passes through P . Then L contains no singular
points of X of type 1

2 (1, 1, 1). It follows that the curve L is reduced. Since X is
generic, we see that L has at most double singular points outside O. Let T be the
unique surface through P in the linear system |−KX |. Then L ⊂ T .

Assume that the curve L is irreducible. Write D · T = mL + ∆, where m is
a non-negative integer and ∆ is an effective cycle whose support does not contain L.
Then

3
5
n− 6

5
m = S ·∆ > multP (∆) > n−mmultP (L) > n− 2m,
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where S is a generic surface through P in the linear system |−2KX |. We have
shown that m > n/2. But this is impossible since m 6 n/2 by Remark 2.12. This
contradiction shows that the fibre L must be reducible.

Let C be an irreducible component of L that minimizes the number −KX · C.
Then we have −KX ·C = 1/5 because −KX ·L = 3/5. The hypersurface X can be
given by

w2z + wg(x, y, z, t) + h(x, y, z, t) = 0 ⊂ P(1, 1, 2, 4, 5) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 4, wt(w) = 5, and g, h are generic
quasi-homogeneous polynomials. Let R be the surface cut out by the equation
z = 0 on X, and let R̆ be the proper transform of R on W . Then

R̆ ≡ (α ◦ β)∗(−2KX)− 7
5
β∗(E)− 3

4
G,

where E and G are the exceptional divisors of the birational morphisms α and β
respectively.

Let C̆ and C be the proper transforms of C on W and U respectively. Then

R̆ · C̆ =
1
5
− 7

5
E · C − 3

4
G · C̆ 6

1
7
− 7

20
− 1

4
< 0.

It follows that the curve C is contained in the surface R. Since X is generic, it
follows that −KU · C = 0 and E · C = 1.

Moreover, since X is generic, we also see that the surface T is quasi-smooth and
the curve L consists of two components, C and Z, where Z is an irreducible curve
and −KX · Z = 2/5. We have

C2 = −6
5
, C · Z =

8
5
, Z2 = −4

5

on the surface T . Hence we arrive at a contradiction by repeating the proof of
Lemma 3.6.

Lemma 3.9. We have ג 6= 18.

Proof. Assume that ג =18. Then X is a hypersurface of degree 12 in P(1, 2, 2, 3, 5).
The singularities of X consist of 6 points of type 1

2 (1, 1, 1) and a point O of type
1
5 (1, 2, 3).

It follows from [11] that there is a commutative diagram

U

α

��

W
βoo

η

��
X

ψ
//______ P(1, 2, 2)

where α is a weighted blow-up of O with weights (1, 2, 3), β is a weighted blow-up
with weights (1, 1, 3) of the singular point of type 1

3 (1, 1, 2), η is an elliptic fibration,
and ψ is the natural projection.



746 I. A. Cheltsov

Let C be the scheme fibre of ψ that passes through P , and let L be a reduced
irreducible component of C. Then

−KX · C =
4
5
, −10KX · L ∈ N.

But the rational number −5KX ·L is an integer unless the curve L passes through
a singular point of type 1

2 (1, 1, 1). Thus we see that C = 2L whenever C passes
through such a singular point.

Let T be the surface in |−KX |, and let S and S̀ be generic surfaces through P
in |−2KX |. Then S and S̀ are irreducible. We have S ⊃ L ⊂ S̀ but S 6= D 6= S̀.

Assume that L ⊂ T . Then C = 2L and −KX · L = 2/5. Since X is generic, the
singularities of L are at most double points. We write D|T = mL+ Υ, where m is
a non-negative integer and Υ is an effective cycle whose support does not contain L.
Then we have

2
5
n− 4

5
m = S ·Υ > multP (Υ) > multP (D)−multP (L) > n− 2m.

It follows that m > n/2. But m 6 n/2 by Remark 2.12, a contradiction.
We have shown that L 6⊂ T . Assume that C = L. Then multP (L) 6 2. We

write
D · S̀ = m̀C + Ὺ,

where m̀ is a non-negative integer and Ὺ is an effective cycle whose support does
not contain C. Then

4
5
n− 8

5
m̀ = S · Ὺ > multP (Ὺ) > n− 2m.

It follows that m > n/2. But m 6 n/2 by Remark 2.12, a contradiction.
We have shown that C 6= L but L does not pass through a point of type 1

2 (1, 1, 1).
Since the threefold X is generic, it follows that C = L+Z, where Z is an irreducible
curve and Z 6= L. We write

D|S = mLL+mZZ + Ω,

where mL and mZ are non-negative integers and Ω is an effective divisor on S
whose support does not contain the curves L and Z. There is no loss of generality
in assuming that

−KX · L 6 −KX · Z.

It follows that either −KX ·L=1/5 and −KX ·Z =3/5, or −KX ·L=−KX ·Z =2/5.
Assume that −KX · L = 2/5. Then L and Z are smooth outside O, and

4
5
n− 4

5
mL −

4
5
mZ = S̀|S · Ω > multP (Ω) > n−mL −mC .

It follows that mL +mC > n. But mL +mC 6 n by Remark 2.12, a contradiction.
Thus we have −KX · L = 1/5. The hypersurface X can be given by

w2z + wg(x, y, z, t) + h(x, y, z, t) = 0 ⊂ P(1, 2, 2, 3, 5) ∼= Proj(C[x, y, z, t, w]),
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where wt(x) = 1, wt(y) = wt(z) = 2, wt(t) = 3, wt(w) = 5, and g, h are generic
quasi-homogeneous polynomials of degree 7 and 12 respectively. Let R be the
surface cut out on X by the equation z = 0, and let R and L̄ be the proper
transforms on U of the surface R and the curve L respectively. Then R · L < 0.
It follows that L ⊂ R ⊃ Z, the curve L is contracted by the projection X 99K
P(1, 2, 2, 3) to a point and the intersection L ∩ Z contains no singular points of X
different from O.

Let Z be the proper transform of Z on the threefold U , and let π : R → R be
the birational morphism induced by α. Then

L̄+ Z = S|R ≡ −KU |R,

where S is the proper transform of S on U .
Let E be the curve on R which is contracted by π to a point. Then

L̄2 = −1, L̄ · Z = L̄ · E = 1, Z
2

= −1
3
, E

2
= −35

6
, Z · E =

4
3

on the surface R. It follows that L2 = −29/35, L · Z = 43/35, Z2 = −1/35 on the
surface R.

Suppose that P ∈ L ∩ Z. Then mL + 3mC 6 5n by Remark 2.12. But

1
5
n+

29
35
mL −

43
35
mZ = Ω · L > n−mL −mZ ,

2
5
n− 43

35
mL +

1
35
mZ = Ω · Z > n−mL −mZ ,

which leads to a contradiction. Hence either L 3 P /∈ Z, or Z 3 P /∈ L.
Suppose that Z 3 P /∈ L. Then Ω · Z > n −mZ and Ω · L > 0, which easily

yields a contradiction. Thus we see that L 3 P /∈ Z. Then

1
5
n+

29
35
mL −

43
35
mZ = Ω · L > n−mL,

2
5
n− 43

35
mL +

1
35
mZ = Ω · Z > 0.

It follows that mL < n. By Theorem 7.5 of [9], the log pair(
R,L+

mC

n
C +

1
n

Ω
)

is not log canonical at P . Then multP (Ω|L) > n by Theorem 7.5 of [9]. Thus we
see that Ω · L > n, which easily yields a contradiction.

Lemma 3.10. We have ג 6= 19.

Proof. Suppose that ג = 19. Then X is a generic hypersurface of degree 12
in P(1, 2, 3, 3, 4). Let T be the unique surface in the linear system |−KX |, and
let S be a generic surface through P in the linear system |−6KX |. Then P /∈ T
since otherwise

n = D · S · T > multP (D) > n.

Let H and G be generic surfaces through P in the linear systems |−2KX | and
|−3KX | respectively. Then

n = D ·H ·G > multP (D) > n
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provided that D 6= H. Hence we see that D = H, n = 2 and multP (D) > 3. Since
X is generic, an easy parameter count shows that the inequality multP (D) > 3 is
impossible in the case when P /∈ T , a contradiction.

Lemma 3.11. We have ג 6= 20.

Proof. Suppose that ג =20. Then X is a hypersurface of degree 13 in P(1, 1, 3, 4, 5).
The singularities of X consist of points P1, P2, P3 of types 1

3 (1, 1, 2), 1
4 (1, 1, 3),

1
5 (1, 1, 4) respectively.

Arguing as in the proof of Lemma 3.2 and using Theorem 5.6.2 of [5], we see that
multP (D) 6 n in the case when the point P is not contained in the finitely many
curves contracted by the projection X 99K P(1, 1, 3, 4). Hence we may assume that
P is contained in one of the curves contracted by the projection X 99K P(1, 1, 3, 4).
There is a commutative diagram

Y
γ3

~~~~
~~

~~
~~ γ1

  @
@@

@@
@@

@
ω

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

U1

α1
  @

@@
@@

@@
@ U3

α3
~~~~

~~
~~

~~
P(1, 1, 4)

X

ξ

22dddddddddddddddddddddd

where ξ is a projection, α1 is a blow-up of P1 with weights (1, 1, 2), α3 is a weighted
blow-up of P3 with weights (1, 1, 4), γ3 is a blow-up with weights (1, 1, 4) of
the singular point that dominates P3, γ1 is a blow-up with weights (1, 1, 2)
of the singular point that dominates P1, and ω is an elliptic fibration.

Let Z be the fibre of ξ that contains P . Then Z = L + C, where L and C are
irreducible curves with −KX · L = 1/5 and −KX · C = 2/3. The curves L and C
are smooth at P .

Let S be a surface through P in the linear system |−KX |. Then S contains L
and C. One can assume that S is quasi-smooth.

We have L2 = −6/5, C2 = 2/3, and L · C = 2 on the surface S. Write

D|T = mLL+mCC + Ω,

where mL and mC are non-negative integers and Ω is an effective 1-cycle whose
support does not contain L or C. Suppose that P ∈ L ∩ C. Then

1
5
n+

6
5
mL − 2mC = Ω · L > n−mL −mC ,

2
3
n− 2mL −

2
3
mC = Ω · C > n−mL −mC ,

which leads to a contradiction. Hence we have shown that P ∈ L and P /∈ C. Then
1
5
n+

6
5
mL − 2mC = Ω · L > n−mL,

2
3
n− 2mL −

2
3
mC = Ω · C > 0.

This also leads to a contradiction. The lemma is proved.
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Lemma 3.12. We have ג 6= 22.

Proof. Suppose that ג = 22. Then X is a generic hypersurface of degree 14
in P(1, 2, 2, 3, 7). Let T be the unique effective divisor in the linear system |−KX |,
and let S be a generic surface through P in the linear system |−6KX |. Then P /∈ T
since otherwise we have the contradictory inequality n = D · S · T > multP (D).

Let S2 be a generic surface through P in the linear system |−2KX |. It is easy
to see that there is a surface S3 ∈ |−3KX | that also passes through P but contains
no components of the cycle D · S2. Thus we have

n = D · S2 · S3 > multP (D) > n,

which contradicts the assumption. The lemma is proved.

Lemma 3.13. We have ג 6= 23.

Proof. Suppose that ג =23. Then X is a hypersurface of degree 9 in P(1, 2, 3, 4, 5),
and the natural projection ψ : X 99K P(1, 2, 3, 4) is a finite morphism outside 21
smooth rational curves C1, . . . , C21 such that ψ(Ci) is a point and −KX ·Ci = 1/5.

Arguing as in the proof of Lemma 3.1, we see that the point P is not contained in
the base locus of the linear systems |−KX |, |−2KX |. Let R be a surface through P
in the pencil |−2KX |. Then the proof of Lemma 3.10 yields that R 6= D.

Suppose that P /∈
⋃21
i=1 Ci. Then it follows from the proof of Theorem 5.6.2

in [5] that there is a surface H ∈ |−4sKX | that has multiplicity at least s > 0 at
the point P and contains no components of the effective cycle D · R, where s is
a positive integer. Then

ns >
56
60
ns = H ·D ·R > multP (D)s > ns,

a contradiction. Thus we may assume that P ∈ C1.
Let M be a generic surface through P in |−3KX |. Then M ·R = C1 +Z1, where

Z1 is an irreducible curve smooth at P and −KX · Z1 = 1/2.
It is easy to see that M 6= D. We write

D|M = m1C1 +m2Z1 + Υ ≡ −nKX |M ,

wherem1 andm2 are non-negative integers and Υ is an effective cycle whose support
does not contain C1 or Z1. The surface M is normal and smooth at P , but we have

C2
1 = −8

5
, Z2

1 = −1, C1 · Z1 = 2

on M . We may assume that P ∈ Z1 since the case P /∈ Z1 is simpler. Then

1
5
n+

8
5
m1 − 2m2 = Υ · C1 > n−m1 −m2,

1
2
n− 2m1 +m2 = Υ · Z1 > n−m1 −m2.

Hence we have strict inequalities m1 > n/2 and m2 > n/2, which contradict the
inequality m1/5 +m2/2 6 7n/20 (see Remark 2.12). The lemma is proved.
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Lemma 3.14. We have ג 6= 24.

Proof. Suppose that ג =24. Then X is a hypersurface of degree 15 in P(1, 1, 2, 5, 7).
The singularities of X consist of a point P1 of type 1

2 (1, 1, 1) and a point P2 of type
1
7 (1, 2, 5).

It follows from [11] that there is a commutative diagram

U

α

��

W
βoo Y

γoo

η

��
X

ψ
//_____________ P(1, 1, 2)

where α is a weighted blow-up of P2 with weights (1, 2, 5), β is a weighted blow-up
with weights (1, 2, 3) of the singular point of type 1

5 (1, 2, 3), γ is a weighted blow-
up with weights (1, 1, 2) of the singular point of type 1

3 (1, 1, 2), and η is an elliptic
fibration.

Let L be the fibre of ψ that passes through P . Arguing as in the proof of
Lemma 3.1, we see that L is not the base curve of |−KX |. It follows that L
does not pass through P1. The singularities of L consist of at most double points
outside P2.

Suppose that L is irreducible. Let T be a generic surface through P in the pencil
|−KX |. We write D · T = mL+ ∆, where m is a non-negative integer and ∆ is an
effective cycle whose support does not contain L. Then

3
7
n− 6

7
m = S ·∆ > multP (∆) > n−mmultP (L) > n− 2m,

where S is a generic surface through P in |−2KX |. Hence m > n/2, which is
impossible because m 6 n/2 by Remark 2.12, a contradiction. Thus the fibre L
is reducible.

The divisor−7KX is a Cartier divisor in a neighbourhood of L, but−7KX ·L = 3.
Hence L consists of at most 3 components, all components of L pass through P2,
and there is a component C of L such that −KX · C = 1/7.

The hypersurface X can be given by the equation

w2y + wg(x, y, z, t) + h(x, y, z, t) = 0 ⊂ P(1, 1, 2, 5, 7) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 5, wt(w) = 7, and g, h are quasi-
homogeneous polynomials. Let R be the surface cut out on X by the equation y=0.
Then

R ≡ α∗(−KX)− 8
7
E,

where R is the proper transform of R on U and E is the exceptional divisor of α.
Let C be the proper transform of C on U . Then

R · C =
1
7
− 8

7
E · C 6

1
7
− 8

35
< 0.

It follows that C ⊂ R. Since X is generic, the curve C must be one of the 12 curves
that satisfy −KU · C = 0 and E · C = 1.
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The surface R is normal and L consists of two components, C and Z, where Z
is an irreducible curve and −KX · Z = 2/7. Then

C2 = −23
28
, C · Z =

31
28
, Z2 = −15

28

on the surface R. We write D|R = mCC + mZZ + Ω, where mC and mZ are
non-negative integers and Ω is an effective divisor on R whose support does not
contain C or Z. Then mC + 2mZ 6 3n/2 by Remark 2.12.

Suppose that P ∈ C ∩ Z. Then

1
7
n+

23
28
mC −

31
28
mZ = Ω · C > n−mC −mZ ,

2
7
n− 31

28
mC +

15
28
mZ = Ω · Z > n−mC −mZ ,

which leads to a contradiction. Hence we have either C 3 P /∈ Z, or Z 3 P /∈ C.
Suppose that C 3 P /∈ Z. Then

1
7
n+

23
28
mC −

31
28
mZ = Ω · C > n−mC ,

2
7
n− 31

28
mC +

15
28
mZ = Ω · Z > 0,

which leads to a contradiction. Thus we have Z 3 P /∈ C. Then

1
7
n+

23
28
mC −

31
28
mZ = Ω · C > 0,

2
7
n− 31

28
mC +

15
28
mZ = Ω · Z > n−mZ .

It follows that mC > 16. But mC 6 3/2 by Remark 2.12, a contradiction. The
lemma is proved.

Lemma 3.15. We have ג 6= 25.

Proof. Suppose that ג = 25. Then X can be given by the equation

w2y + wg(x, y, z, t) + h(x, y, z, t) = 0 ⊂ P(1, 1, 3, 4, 7) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 3, wt(t) = 4, wt(w) = 7, and g, h are generic
quasi-homogeneous polynomials of degree 8 and 15 respectively.

Let ψ : X 99K P(1, 1, 3) and ξ : X 99K P(1, 1, 3, 4) be the natural projections.
Then ξ is a finite morphism outside the smooth irreducible curves C1, . . . , C10 that
are cut out on X by the equations

y = g(x, y, z, t) = h(x, y, z, t) = 0,

and the normalization of the generic fibre of ψ is an elliptic curve. It follows from
the proof of Lemma 3.13 that multP (D) 6 n in the case when P /∈

⋃10
i=1 Ci.

We may assume that P ∈ C1. The fibre of ψ over the point ψ(C1) consists of two
irreducible components: let Z1 be the one such that Z1 6= C1. Then the curve Z1

is smooth at P .
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Let T be the surface cut out on X by the equation y = 0. Then P ∈ C1 ⊂ T
and the surface T is normal. The intersection form of the curves C1 and Z1 on the
surface T is given by

Z2
1 = − 1

28
, C2

1 = −11
14
, Z1 · C1 =

17
14
.

We write D|T = mCC1+mZZ1+Ω, where mC and mZ are non-negative integers
and Ω is an effective divisor on T whose support does not contain C1 or Z1. Then
mC 6 5n/4 and mZ 6 5n/11 by Remark 2.12 because we have −KX · C1 = 1/7
and −KX · Z1 = 11/28 respectively.

Suppose that P ∈ C1 ∩ Z1. Then

1
7
n+

11
14
mC −

17
14
mZ = Ω · C1 > n−mC −mZ ,

11
28
n− 17

14
mC +

1
28
mZ = Ω · Z1 > n−mC −mZ .

It follows that mZ > 5n/11, a contradiction. Hence we have P ∈ C1 and P /∈ Z1.
Then

1
7
n+

11
14
mC −

17
14
mZ = Ω · C1 > n−mC ,

11
28
n− 17

14
mC +

1
28
mZ = Ω · Z1 > 0,

which leads to a contradiction to the assumption. The lemma is proved.

Lemma 3.16. We have ג 6= 32, ג 6= 33, ג 6= 38.

Proof. Suppose that ג ∈ {32, 33, 38}. The projection X 99K P(1, a1, a2, a3) con-
tracts finitely many smooth curves. Let C be one of them and let M be a generic
surface containing C in the linear system |−aKX |, where a = 3 for ג 6= 33 and
a = 2 for ג = 33.

Let ψ : X 99K P(1, a1, a2) be the natural projection, and let Z be the component
of the fibre of ψ over the point ψ(C) such that Z 6= C. Then

C2 = −10
7
, Z2 = −6

7
, C · Z =

12
7

if ג = 32,

C2 = −9
7
, Z2 = −24

35
, C · Z =

12
7

if ג = 33,

C2 = −11
8
, Z2 = −39

40
, C · Z =

13
8

if ג = 38

on the surface M . Arguing as in the proof of Lemma 3.13, we easily get a contra-
diction. The lemma is proved.

Thus we have shown that ג ∈ {7, 8, 9}.

Lemma 3.17. We have ג 6= 9.

Proof. Suppose that ג = 9. Then X is a hypersurface of degree 9 in P(1, 1, 2, 3, 3).
The singularities ofX consist of points O1, O2, O3 of type 1

3 (1, 1, 2) and one singular
point of type 1

2 (1, 1, 1).
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It follows from [11] that there is a commutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiii

α

��

Y
γoo

η

��6
66

66
66

66
66

66
66

V

ω $$JJJJJJJJJJ X
ξ

zzt
t

t
t

t
ψ

**UUUUUUUUUU

P(1, 1, 2, 3)
χ

//______________ P(1, 1, 2)

where ξ, ψ and χ are projections, α is a blow-up of O1 with weights (1, 1, 3), γ is the
composite of weighted blow-ups with weights (1, 1, 3) of the singular points that
dominate O2 and O3, the morphism η is an elliptic fibration, ω is a double covering
and σ is a birational morphism that contracts 27 smooth rational curves C1, . . . , C27.

The threefold U contains 27 irreducible curves Z1, . . . , Z27 such that α(Zi) is
a curve and the union α(Zi) ∪ α(Ci) is the fibre of ψ over the point ψ(Ci).

We put Zi = α(Zi) and Ci = α(Ci). Then

−KX · Zi = −2KX · Ci =
2
3
,

but O1 ∈ Ci, O2 /∈ Ci, O3 /∈ Ci, O1 /∈ Zi, O2 ∈ Zi and O3 ∈ Zi.
It follows from the proof of Lemma 3.1 that P is not contained in the base curve

of |−KX |.
Let L be the fibre of ψ that contains P . Since X is generic, it follows that L is

reduced and its singularities consist of finitely many double points. We easily see
that L = α(Zi) ∪ α(Ci) for some i if L is reducible.

Suppose that L is irreducible. Let T be the unique surface through P in the
linear system |−KX |. We write D ·T = mL+∆, where m is a non-negative integer
and ∆ is an effective cycle whose support does not contain L. Then m 6 n/2.

We may assume that L is singular at P since otherwise we easily get a contra-
diction. Suppose that T is smooth at P . Then

n− 2m = ∆ · L > n− 2m,

which is a contradiction. Thus the surface T is singular at P and

n− 2m = ∆ · S > multP (D)multP (T )−mS · L > 2n− 2m,

where S is a generic surface through P in |−2KX |, a contradiction.
Thus the curve L is reducible. We may assume that L = C1 ∪Z1 and the

surface T is quasi-smooth. Then C
2

1 = −4/3, Z
2

1 = −2/3 and C1 · Z1 = 2 on
the surface T , but

D|T = m1C1 +m2Z1 + Υ ≡ −nKX |T ,

where m1 and m2 are non-negative integers and Υ is an effective divisor whose
support does not contain the curves C1 or Z1.
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Suppose that P ∈ Z1 ∩ C1. Then

1
3
n+

4
3
m1−2m2 = Υ·C1 > n−m1−m2,

2
3
n−2m1+

2
3
m2 = Υ·Z1 > n−m1−m2.

It follows that m1>n/2 and m2>n/2, but m1/3 + 2m2/3 6n/2 by Remark 2.12,
a contradiction.

We may assume that C1 3 P /∈ Z1 because the case Z1 3 P /∈ C1 is simpler.
Then

1
3
n+

4
3
m1 − 2m2 = Υ · C1 > n−m1,

2
3
n− 2m1 +

2
3
m2 = Υ · Z1 > 0,

which gives m1 < n because m1/3 + 2m2/3 6 n/2. It follows from the proof of
Lemma 3.9 that multP (Υ · C1) > n, which implies that n/3 + 4m1/3 − 2m2 > n.
The resulting inequalities are incompatible.

Lemma 3.18. We have ג 6= 8.

Proof. Suppose that ג = 8. Then X is a hypersurface of degree 9 in P(1, 1, 1, 3, 4).
Its singularities consist of one singular point O of type 1

4 (1, 1, 3). There is a com-
mutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiii

α

��

W
βoo

Y

ω $$JJJJJJJJJJ X
ξ

zzt
t

t
t

t
ψ

))TTTTTTTTTTT Z

η
��~~

~~
~~

~~

γ

hhPPPPPPPPPPPPPPP

P(1, 1, 1, 3)
χ

//______________ P2

where ξ, ψ and χ are projections, α is a weighted blow-up of O with weights (1, 1, 3),
β is a weighted blow-up with weights (1, 1, 2) of the singular point of type 1

3 (1, 1, 2),
γ is a blow-up with weights (1, 1, 1) of the singular point of type 1

2 (1, 1, 1), η is an
elliptic fibration, σ is a birational morphism that contracts smooth rational curves
C1, . . . , C15, and ω is a double covering.

We put Ci = α(Ci). Then −KX · Ci = 1/4.
Let L be the fibre of ψ that passes through P , and let S be a generic surface

through P in the linear system |−KX |. Then L is reduced and L ⊂ S.
Suppose that the curve L is irreducible. Arguing as in the proof of Lemma 3.5,

we see that L must be singular at P . Hence some surface T ∈ |−KX | is singular
at P . We write D · T = mL + ∆, where m is a non-negative integer and ∆ is an
effective cycle whose support does not contain L. Then

3
4
n− 3

4
m = S ·∆ > multP (∆) > 2n−mmultP (L) = 2n− 2m.

It follows that m > n. But m 6 n by Remark 2.12, a contradiction.
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Thus the fibre L is reducible. Arguing as in the proof of Lemma 3.9, we see
that L = Ci + Zi, where Zi is an irreducible curve and −KX · Zi = 1/2. The
hypersurface X can be given by the equation

w2z + f5(x, y, z, t)w + f9(x, y, z, t) = 0 ⊂ P(1, 1, 1, 3, 4) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = wt(z) = 1, wt(t) = 3, wt(w) = 4, and fi is a quasi-
homogeneous polynomial of degree i. Let R be the surface cut out on X by the
equation z = 0. Then

C2
i = −17

20
, Z2

i = −3
5
, Ci · Zi =

11
10

on the surface R. We write D|R = mCCi + mZZi + Υ, where mC and mZ are
non-negative integers and Υ is an effective cycle whose support does not contain
Ci or Zi. Then

1
4
n+

17
20
mC −

11
10
mZ = Υ · Ci > 0,

1
2
n− 11

10
mC +

3
5
mZ = Υ · Zi > 0.

It follows that mC 6 n and mZ 6 n because mC + 2mZ 6 3n by Remark 2.12.
Suppose that P ∈ Z1 ∩ C1. Arguing as in the proofs of Lemmas 3.9 and 3.17,

we get
1
4
n+

17
20
mC −

11
10
mZ = Υ · Ci > n−mZ ,

1
2
n− 11

10
mC +

3
5
mZ = Υ · Zi > n−mC ,

which contradicts the inequality mC + 2mZ 6 3n. Now the proofs of Lemmas 3.9
and 3.17 show that either

1
4
n+

17
20
mC −

11
10
mZ = Υ · Ci > n,

1
2
n− 11

10
mC +

3
5
mZ = Υ · Zi > 0,

or we have a system of linear inequalities

1
4
n+

17
20
mC −

11
10
mZ > 0,

1
2
n− 11

10
mC +

3
5
mZ > n.

In both cases we easily derive a contradiction. The lemma is proved.

Lemma 3.19. We have ג 6= 7.

Proof. Suppose that ג = 7. Then X is a hypersurface of degree 8 in P(1, 1, 2, 2, 3).
The singularities of X consist of a singular point Q of type 1

3 (1, 1, 2) and 4 singular
points of type 1

2 (1, 1, 1).
Let ψ : X 99K P(1, 1, 2) be the natural projection. Then there is a commutative

diagram

U

α

��

Y
βoo

η

((PPPPPPPPPPPPP

X
ψ

//_____________ P(1, 1, 2)
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where α is a weighted blow-up ofQ with weights (1, 1, 2), β is a blow-up with weights
(1, 1, 1) of the singular point that dominates Q, and η is an elliptic fibration.

Let C be the fibre of ψ that passes through P . Arguing as in the proof of
Lemma 3.1, we see that C is not the base curve of the pencil |−KX |. It follows
that |−KX | contains a unique surface S that passes through P , and the curve C is
reduced and contains no singular points of type 1

2 (1, 1, 1).
Suppose that C is irreducible. Then the singularities of C consist of finitely

many double points outside Q. Arguing as in the proof of Lemma 3.5, we see that
C must be singular at P . Thus either the surface S is singular at P , or there is an
irreducible surface in |−2KX | which is singular at P . Arguing as in the proof of
Lemma 3.18, we obtain a contradiction. Hence C is reducible.

Arguing as in the proof of Lemma 3.5, we see that C = L + Z, where L and Z
are irreducible curves with L 6= Z and either

−KX · L = −KX · Z =
2
3
,

or −KX · L = 1/3 and −KX · Z = 1. The proof of Lemma 3.9 shows that L is one
of the finitely many curves contracted by the projection X 99K P(1, 1, 2, 2). Then

L2 = −4
3
, Z2 = 0, Z · L = 2

on the surface S. Arguing as in the proof of Lemma 3.18, we obtain a contradiction.
The lemma is proved.

This completes the proof of Lemma 2.4.

§ 4. Non-superrigid threefolds

We use the notation and assumptions of Lemma 2.10. Then X is not birationally
superrigid by Lemma 2.7. Let us show that ג /∈ {27, 30, 41, 68}.

Lemma 4.1. We have ג 6= 30 and ג 6= 41.

Proof. We may assume that ג = 41 because the proof of the inequality ג 6= 30 is
similar. Using the notation of § 8, we can assume that O = O1 by Lemmas 2.4
and 2.6.

Let G be the surface on X cut out by the equation w = 0, and let G be the
proper transform of G on U . Suppose that µ > 3n/10. Then D 6= G and

0 6 −KU ·G ·D =
(
α∗(−KX)− 1

5
E

)
· (α∗(−10KX)− 3E) · (α∗(−nKX)− µ)

= n− 15µ
4

.

It follows that µ 6 4n/15 < 3n/10.
Suppose that P is a smooth point of U . Then

1 < multP

(
1
n
D +

(
µ

n
− 1

5

)
E

)
=

multP (D)
n

+
µ

n
− 1

5
.
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It follows that multP (D) > 6n/5 − µ. Let S be the unique surface through P in
the linear system |−KU |. Then D 6= S.

Suppose that P /∈
⋃75
i=1 Ci. Let H be a generic surface through P in |−10KU |.

Then H contains no components of the cycle D · S. It follows that

n− 5
2
µ = D · S ·H >

6
5
n− µ,

which is a contradiction. Thus there is a curve Ci such that P ∈ Ci.
The fibre of the rational map ψ ◦ α over the point ψ(P ) consists of the curve Ci

and another irreducible curve Ci such that −KU · Ci = 1/5 and E · Ci = 0. We
write

D · S = mCi +mCi + ∆,

where m and m are non-negative integers and ∆ is an effective cycle whose support
does not contain Ci or Ci. Let R be a generic surface through P in the linear
system |−4KU |. Then

2
5
n− µ+

4
5
m = R ·∆ >

6
5
n− µ−m.

It follows thatm−4m/5 > 4n/5. Butm+m 6 n/2 by Remark 2.12, a contradiction.
Thus the threefold U is singular at P . Let ι : Ŭ → U be a weighted blow-up of P

with weights (1, 1, 3). Then
D̆ ≡ ι∗(D)− νF,

where ν is a positive rational number, F is the exceptional divisor of the birational
morphism ι, and D̆ is the proper transform of D on Ŭ .

Let Ĕ be the proper transform of E on Ŭ . Then

D̆ +
(
µ− 1

5
n

)
Ĕ ≡ ι∗

(
D +

(
µ− 1

5
n

)
E

)
−

(
ν +

3
4
µ− 3

20
n

)
F.

It follows that ν > 2n/5− 3µ/4 because of [10].
Let T̆ and T̆ ′ be generic surfaces in |−KŬ |. Then T̆ · T̆ ′ = L̆, where L̆ is an

irreducible curve. We write D̆ · T̆ = εL̆+ Υ, where ε is a non-negative integer and
Υ is an effective cycle whose support does not contain L̆. Then

0 6 T̆ ′ ·Υ = T̆ ′ · (D̆ · T̆ − εL̆) =
1
10
n− 1

4
µ− 1

3
ν +

ε

30
.

It follows that ν 6 3n/10− 3µ/4 + ε/10. But ν > 2n/5− 3µ/4. Then

3
10
n− 3

4
µ+

ε

10
>

2
5
n− 3

4
µ,

which is impossible because ε 6 n by Remark 2.12. The lemma is proved.
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Lemma 4.2. We have ג 6= 27 and ג 6= 68.

Proof. We may assume that ג = 68 because the proof of ג 6= 27 is similar. Then
X is a hypersurface of degree 28 in P(1, 3, 4, 7, 14). It contains singular points O1

and O2 of type 1
7 (1, 3, 4).

We may assume that O = O1 (see Lemmas 2.4, 2.5). Then X can be given by
the equation

t2w + tf21(x, y, z, w) + f28(x, y, z, w) = 0 ⊂ P(1, 3, 4, 7, 14) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = 3, wt(z) = 4, wt(t) = 7, wt(w) = 14 and fi is a quasi-
homogeneous polynomial of degree i. The point O1 is given by x = y = z = w = 0.
There is a commutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiiii

α

��

Y
γoo

η

��6
66

66
66

66
66

66
66

V

ω %%KKKKKKKKKK X
ξ

yys
s

s
s

s
ψ

**UUUUUUUUUU

P(1, 3, 4, 14)
χ

//______________ P(1, 3, 4)

where ξ, ψ and χ are projections, γ is a weighted blow-up with weights (1, 3, 4) of
the point that dominates O2, the morphism η is an elliptic fibration, σ is a birational
morphism that contracts 49 curves C1, . . . , C49, and ω is a double covering.

Exceptional divisors of the birational morphism α ◦ γ are sections of η, and U
contains 49 smooth irreducible curves Z1, . . . , Z49 such that α(Zi) is a curve and
α(Zi) ∪ α(Ci) is the fibre of the projection ψ over the point ψ(Ci). It follows that
−KU · Zi = 1/7.

Suppose that µ > 3n/14. Let M be the surface on X cut out by the equation
w = 0, and let M be the proper transform of M on U . Then

M ≡ α∗(−14KX)− 3E.

It follows that D 6= M . The divisor −KU is numerically effective and big. Thus we
have

0 6 −KU ·M ·D =
(
α∗(−KX)− 1

7
E

)
· (α∗(−14KX)− 3E) · (α∗(−nKX)− µ)

=
1
42
n− 1

8
µ.

It follows that µ 6 4n/21 < 3n/14. So the inequalities 3n/14 > µ > n/7 hold.
Suppose that the threefold U is smooth at P . Then

multP (D) >
8
7
n− µ

and there is a surface S ∈ |−3KU | that contains P . Let T be the unique surface in
the linear system |−KU |.
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Suppose that P ∈ T . Then P /∈
⋃49
i=1 Ci. In particular, one can show that there

is a surface H ∈ |−84KU | that contains P and does not contain components of the
effective cycle D · T . Hence we have

2n− 7µ = D · T ·H >
8
7
n− µ.

It follows that µ < n/7. But µ > n/7 by [10], a contradiction.
This proves that P is not contained in T . Let L be the unique curve on the

surface E ∼= P(1, 3, 4) which is contained in the linear system |OP(1,3,4)(1)|. Then
P /∈ L = T · E. It follows that there is a unique smooth irreducible curve C ⊂ E
through P in the linear system |OP(1,3,4)(3)|. We write

D|E = εC + Υ ≡ 7µL,

where ε is a non-negative integer and Υ is an effective cycle on E whose support
does not contain C. Then

7µ− 3ε
4

= (7µ− 3ε)L · C = C ·Υ > multP (Υ) >
8
7
n− µ− ε.

It follows that 11µ+ ε > 32n/7. But ε 6 7µ/3 because Υ ≡ (7µ− 3ε)L. We have

40
3
µ > 11µ+ ε >

32
7
n.

It follows that µ > 12n/35. This is a contradiction because µ 6 3n/14.
Suppose that P is a singular point of type 1

4 (1, 1, 3). Let ι : Ŭ → U be the
weighted blow-up of the point P with weights (1, 1, 3). Then

D̆ ≡ ι∗(D)− νF,

where ν is a positive rational number, F is the exceptional divisor of the birational
morphism ι and D̆ is the proper transform of D on Ŭ .

Let Ĕ be the proper transform of E on Ŭ . Then

D̆ +
(
µ− 1

7

)
Ĕ ≡ ι∗

(
D +

(
µ− 1

7
n

)
E

)
−

(
ν +

1
4
µ− 1

28
n

)
F.

It follows that ν > 2n/7− µ/4 according to [10].
Let T̆ be the proper transform of T on Ŭ , and let H̆ be a generic surface in the

linear system |−3KŬ |. We write D̆ · T̆ = εL̆+ Φ, where ε is a non-negative integer,
L̆ is the base curve of the pencil |−3KŬ |, and Φ is an effective cycle whose support
does not contain the curve L̆. Then

0 6 H̆ · Φ = H̆ · (D̆ · T̆ − εL̆) =
1
14
n− 1

4
µ− ν +

9
14
ε,

but ν > 2n/7− µ/4, which implies that ε > n/3. The last inequality is impossible
since ε 6 n/3 by Remark 2.12.
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Thus P is a singular point of type 1
3 (1, 1, 2). Let υ : Ù → U be the weighted

blow-up of P with weights (1, 1, 2). Then

D̀ ≡ υ∗(D)− θG,

where θ is a rational number, G is the exceptional divisor of the birational mor-
phism υ, and D̀ is the proper transform of the surface D on the threefold Ù .

Let È be the proper transform of E on Ù . Then

D̀ +
(
µ− 1

7
n

)
È ≡ υ∗

(
D +

(
µ− 1

7
n

)
E

)
−

(
θ +

2
3
µ− 2

21
n

)
G.

It follows that θ > 3n/7− 2µ/3 according to [10].
Let S be a generic surface in |−4KU |. Then T ·S = L, where L is an irreducible

curve such that α(L) is the base curve of the pencil |−4KX |. We write D · T =
εL+Ψ, where ε is a non-negative integer and Ψ is an effective cycle whose support
does not contain L.

Let T̀ and S̀ be the proper transforms on Ù of the surfaces T and S respectively.
Then

T̀ ≡ υ∗(−KU )− 1
3
G, S̀ ≡ υ∗(−4KU )− 1

3
G,

but T̀ · S̀ = L̀, where L̀ is the proper transform of the curve L. Write D̀ · T̀ = εL̀+Ξ
for some effective cycle Ξ whose support does not contain the curve L̀. Then

0 6 S̀ · Ξ = S̀ · (D̀ · T̀ − εL̀) =
2
21
n− 1

3
µ− 1

2
θ − 1

42
ε

because S̀ · L̀ = 1/42. On the other hand, θ > 3n/7− 2µ/3. Therefore we have

0 6
1
42
ε 6

2
21
n− 1

3
µ− 1

2
θ <

2
21
n− 1

3
µ− 1

2

(
3
7
n− 2

3
µ

)
= − 5

42
n < 0.

This is a contradiction. The lemma is proved.

We note that the approach used to prove Lemmas 4.1 and 4.2 may also be applied
to prove Lemmas 2.10 and 2.11.

§ 5. Singular points

In this section we prove Lemma 2.10. We shall use the hypotheses and notation of
that lemma. Suppose that P is a singular point of U . Let us derive a contradiction.

The point P is a singular point of type 1
r̄ (1, ā, r̄− ā), where ā and r̄ are coprime

positive integers with r̄ > 2ā. Let β : W → U be the blow-up of P with weights
(1, ā, r̄ − ā). Then

−K3
W = −K3

X −
1

ra(r − a)
− 1
r̄ā(r̄ − ā)

=
∑4
i=1 ai

a1a2a3a4
−K3

X −
1

ra(r − a)
− 1
r̄ā(r̄ − ā)

.

Let D̆ be the proper transform of D on W . There is a rational number ν such
that

D̆ ≡ (α ◦ β)∗(−nKX)− µβ∗(E)− νG,
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where G is the β-exceptional divisor. Then

KW +
1
n
D̆ +

(
µ

n
− 1
r

)
Ĕ ≡ β∗

(
KU +

1
n
D +

(
µ

n
− 1
r

)
E

)
− εG ≡ −εG,

where Ĕ is the proper transform of E on W and ε is a rational number. Then ε > 0
because of [10].

Lemma 5.1. We have −K3
W 6= 0.

Proof. Suppose that −K3
W = 0. It follows from [11] that the linear system |−rKW |

is free and induces an elliptic fibration η : W → Y for r � 0. Then

0 6 D̆ · C = −εG · C < 0,

where C is a generic fibre of the elliptic fibration η. This contradiction proves the
lemma.

Thus it follows from [11] that either −K3
W < 0 or the anticanonical divisor −KW

is numerically effective and big.

Lemma 5.2. Suppose that −K3
W < 0. Then −KW is not big.

Proof. Suppose that −KW is big. Then it follows from [11] that we have the
following alternative:

1) either ג = 25 and O is a singular point of type 1
7 (1, 3, 4),

2) or ג = 43 and O is a singular point of type 1
9 (1, 4, 5).

Suppose that ג = 43. Then the divisor −KW − 4β∗(KU ) is numerically effective
(see [11]) and there is a surface H in the linear system |−2KX | such that

H̆ ≡ (α ◦ β)∗(−2KX)− 11
9
β∗(E)− 3

2
G,

where H̆ is the proper transform of H on W . Hence

0 6 H̆ · D̆ · (−KW − 4β∗(KU )) =
5
9
n− 11

4
µ− ν.

This is a contradiction because ν − n/3 + 3µ/4 = nε > 0 and µ > n/9.
Thus we see that ג = 25. It follows from [11] that the divisor −KW − 3γ∗(KU )

is numerically effective and there is a surface R ⊂W such that

R ≡ (α ◦ β)∗(−KX)− 8
7
β∗(E)− 2

3
G

and ν + 2µ/3− 3n/7 = nε > 0. Then

0 6 R · D̆ · (−KW − 3β∗(KU )) =
5
7
n− 8

3
µ− ν.

This is a contradiction because µ > n/7. The lemma is proved.
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Let T be a surface in |−KX |, and let P be the pencil generated by the divisors
nT and D. Then

B ≡ −nKW ≡ (α ◦ β)∗(−nKX)− n

r
β∗(E)− n

r̄
G, (5.1)

where B is the proper transform of the pencil P on the threefold W .

Lemma 5.3. The divisor −KW is numerically effective and big.

Proof. Suppose that −KW is not numerically effective and big. Then −K3
W < 0

and −KW is not big by Lemma 5.2. It follows from [12] that the equivalence (5.1)
almost uniquely determines4 the pencil P.

Suppose that ג ∈ {45, 48, 58, 69, 74, 79}. Then O is of type 1
a4

(1, a1, a3) and X
can be given by

w2z + wf(x, y, z, t) + g(x, y, z, t) = 0 ⊂ P(1, a1, a2, a3, a4) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = a1, wt(z) = a2, wt(t) = a3, wt(w) = a4, and f , g are
quasi-homogeneous polynomials. Let S be the surface on X cut out by the equation
z = 0, and let M be the pencil generated by the divisors a2T and S. It follows
from [12] that P = M or P = |−a1KX |.

Suppose that P = |−a1KX |. Then µ = n/a1, which is impossible because
µ > n/a4.

Thus we see that P = M. Let M be a divisor in M, and let M be the proper
transform of M on U . If M 6= S, then the following numerical equivalence holds:

M ≡ α∗(M)− a3

a4
E.

The inequality µ > n/a4 implies that D=S. On the other hand, since X is generic,
we see from Lemma 8.12 and Proposition 8.14 of [9] that the log pair (X, 1

a2
S) has

log canonical singularities at O, a contradiction.
Thus we see that ג /∈ {45, 48, 58, 69, 74, 79}. Suppose that ג 6= 76. Then O is

a singular point of type 1
a4

(1, a1, a3) and X can be given by

w2z + wf(x, y, z, t) + g(x, y, z, t) = 0 ⊂ P(1, a1, a2, a3, a4) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = a1, wt(z) = a2, wt(t) = a3, wt(w) = a4 and f , g are
quasi-homogeneous polynomials. Here O is given by the equations x = y = z =
t = 0.

Let S be the surface on X cut out by the equation z = 0, and let M be the
sheaf generated by the divisors a2T and S. It follows from [12] and the numerical
equivalence (5.1) that either P = |−a1KX | or P = M. But we have n 6= a1 because
µ > n/a4. Thus we see that P = M and n = a2.

Let M be any divisor in the pencil M, and let M be the proper transform of M
on U . If M 6= S, then

M ≡ α∗(M)− a3

a4
E.

4For example, by [12], (5.1) implies that n = 1 if a1 = 1.



Log canonical thresholds of Fano hypersurfaces 763

But µ > n/a4. We see that D = S, but the log pair (X, 1
a2
S) has log canonical

singularities at O according to Lemma 8.12 and Proposition 8.14 of [9] since X is
generic by hypothesis. This is a contradiction.

Thus we see that ג = 76. Arguing as in the previous case, we easily get a con-
tradiction. The lemma is proved.

We have proved that ג ∈ {8, 12, 13, 16, 20, 24, 25, 26, 31, 33, 36, 38, 46, 47, 48, 54,
56, 58, 65, 74, 79}.

Lemma 5.4. The case ג /∈ {12, 13, 20, 25, 31, 33, 38, 58} is impossible.

Proof. Suppose that ג /∈ {12, 13, 20, 25, 31, 33, 38, 58}. Then

r = a4, r − a = a3, r̄ = r − a, ā = a, nε = ν − 1
r̄
(r̄ − ā)

(
n

r
− µ

)
− n

r̄
.

Suppose that ג 6= 24. Then X can be given by the equation

w2z + wf(x, y, z, t) + g(x, y, z, t) = 0 ⊂ P(1, a1, a2, a3, a4) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = a, wt(z) = d− 2a4, wt(t) = a3, wt(w) = a4, the point O
is given by the equations x = y = z = t = 0, and f , g are quasi-homogeneous
polynomials. Then

R̆ ≡ (α ◦ β)∗(−a2KX)− d− r

r
β∗(E)− r̄ − ā

r̄
G,

where R̆ is the proper transform on W of the surface cut out by the equation z = 0
on X. Then D̆ 6= R̆ and

n
∑4
i=1 ai

a1a3a4
− µ(d− r)
a(r − a)

− ν(r̄ − ā)
ā(r̄ − ā)

= −KW · D̆ · R̆ > 0.

It follows that µ < n/r because ε > 0, a contradiction.
Thus ג = 24. We use the notation in the proof of Lemma 3.14. Then

R̆ ≡ (α ◦ β)∗(−KX)− 8
7
β∗(E)− 3

5
G,

where R̆ is the proper transform of the surface R on the threefold W . We have

3
14
n− 8

10
µ− 1

2
ν = −KW · D̆ · R̆ > 0,

but nε = ν + 3µ/5 − 2n/7 > 0 and µ < n/7. This leads to a contradiction. The
lemma is proved.

The divisor −KW is numerically effective and big and we have ג ∈ {12, 13, 20, 25,
31, 33, 38, 58}. Then

r = a4, r − a = a3, ā = a1, r̄ − ā = a2, a2 6= a3,

nε = ν +
r − 2a
r − a

µ− 2
r
n



764 I. A. Cheltsov

according to [11], and W has a singular point P 6= P of type 1
r̄ (1, ā, r̄− ā) such that

the diagram

U

α

��

W
βoo V

γoo

η

��
X

ψ
//_____________ P(1, a1, a2)

is commutative, where ψ is a projection, γ is a blow-up of P with weights (1, ā, r̄−ā),
and η is an elliptic fibration. Let F be the exceptional divisor of γ, and let G be the
proper transform of the surface G on the threefold V . Then F and G are sections
of η and G 63 P /∈ Ĕ.

Lemma 5.5. We have ε < 1.

Proof. We may assume that ג = 25 since the proof is similar in the other cases.
If ג = 25, then

0 6 −KW ·D̆·Ĕ =
(
β∗(E)− 1

4
G

)
·
(
−1

7
β∗(E)− 1

4
G

)
·(−µβ∗(E)−νG) =

7
12
µ− 1

3
ν,

where O and P are singular points of types 1
7 (1, 3, 4) and 1

4 (1, 1, 3) respectively.
Then

nε = ν +
1
4
µ− 2

7
n 6 2µ− 2

7
n 6

1
4
n

because the proof of Lemma 2.9 yields that µ 6 15n/56. The lemma is proved.

Thus the singularities of the log pair
(
W, 1

nD̆ +
(
µ
n −

1
r

)
Ĕ + εG

)
are not log

canonical at some point Q ∈ G.

Lemma 5.6. The threefold W is smooth at the point Q.

Proof. Suppose that W is singular at Q. Then Q is a singular point of type
1
r̆ (1, 1, r̆ − 1), where either r̆ = r̄ − ā or r̆ = ā 6= 1. Let ω : W̆ →W be a weighted
blow-up of Q with weights (1, 1, r̆ − 1), and let H be the proper transform of the
pencil P on the threefold W̆ . Then H ≡ −nKW̆ by [10].

It follows from [12] and the equivalence H ≡ −nKW̆ that n = rµ = a1. But we
saw earlier that µ > n/r, a contradiction. The lemma is proved.

The log pair
(
W, 1

nD̆ +
(
µ
n −

1
r

)
Ĕ + εG

)
is not canonical at Q. It follows that

multQ(D̆) >

{
n+ n/r − µ− nε, if Q ∈ Ĕ,
n− nε, if Q /∈ Ĕ.

Lemma 5.7. There is a surface T ∈ |−KW | such that Q ∈ T .

Proof. If a1 = 1, then the existence of a surface T ∈ |−KW | passing through Q is
obvious. Hence we may assume that a1 6= 1. Then ג ∈ {33, 38, 58}.
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Suppose that ג = 38. Then there is a unique surface T ∈ |−KW |. Suppose
that Q is not contained in T . Arguing as in the proof of Lemma 2.14, we see that
multQ(D̆) 6 (a1 + a2)ν/a1. Then

ν
a1 + a2

a1
> n−

(
µ− 1

7
n

)
−

(
ν +

3
5
µ− 2

7
n

)
,

but multQ(D̆) > n+ n/r − µ− nε. Hence µ > 55n/56− 5ν/2. But the inequality
−KW · D̆ > 0 and the proof of Lemma 2.9 yield that ν 6 10µ/7 and µ 6 9n/40
respectively.

The hypersurface X can be given by the equation

w2y + w
(
t2 + tf5(x, y, z) + f10(x, y, z)

)
+ tf13(x, y, z) + f18(x, y, z) = 0

⊂ Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = 2, wt(z) = 3, wt(t) = 5, wt(w) = 8 and fi(x, y, z) is
a quasi-homogeneous polynomial of degree i. Let S̆ be the proper transform on W
of the surface cut out on X by the equation wy+

(
t2+tf5(x, y, z)+f10(x, y, z)

)
= 0.

Then
S̆ ≡ (α ◦ β)∗(−10KX)− 18

8
β∗(E)− 13

5
G,

but S̆ 6= D̆. Since the divisor −KW is numerically effective, we see that

0 6 −KW · D̆ · S̆ =
3
4
n− 6

5
µ− 13

6
ν,

but ν 6 8µ/5. It follows that ν 6 9n/35. We now easily obtain a contradiction.
This proves that ג 6= 38.

Suppose that ג = 33. Then X is a hypersurface of degree 17 in P(1, 2, 3, 5, 7),
O is a singular point of type 1

7 (1, 2, 5), and P is a singular point of type 1
5 (1, 2, 3).

The proofs of Lemmas 5.5, 2.9 yield that ν 6 7µ/5 and µ 6 17/70. Arguing as
in the proof of Lemma 2.14, we see that multQ(D̆) 6 5ν/2. It follows that

5
2
ν > n−

(
µ− 1

7
n

)
−

(
ν +

3
5
µ− 2

7
n

)
,

whence 7ν/2 + 8µ/5 > 10n/7. The threefold X can be given by the equation

w2z + w
(
t2 + tf5(x, y, z) + f10(x, y, z)

)
+ tf12(x, y, z) + f17(x, y, z) = 0

⊂ Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = 2, wt(z) = 3, wt(t) = 5, wt(w) = 7, and fi is
a quasi-homogeneous polynomial of degree i. Let S be the surface cut out on X by
the equation

wz +
(
t2 + tf5(x, y, z) + f10(x, y, z)

)
= 0,

and let S̆ be the proper transform of S on W . Then

S̆ ≡ (α ◦ β)∗(−10KX)− 17
8
β∗(E)− 12

5
G,
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but the singularities of the log pair (X, 1
10S) are log canonical by Lemma 8.12 and

Proposition 8.14 of [9]. Thus we see that S 6= D.
The divisor −KW is numerically effective. Hence

0 6 −KW · D̆ · S̆ =
17
21
n− 17

10
µ− 2ν,

but ν 6 7µ/5. Then ν 6 34n/135 contrary to the inequalities µ 6 17n/70 and
7ν/2 + 8µ/5 > 10n/7.

Thus we have ג = 58. Then X is a hypersurface of degree 24 in P(1, 3, 4, 7, 10),
O is a singular point of type 1

10 (1, 3, 7), and P is a singular point of type 1
7 (1, 3, 4).

The proofs of Lemmas 5.5 and 2.9 yield that ν 6 10µ/7 and µ 6 6/35. Arguing
as in the proof of Lemma 2.14, we see that

7
3
ν > multQ(D̆) > n−

(
µ− 1

10
n

)
−

(
ν +

4
7
µ− 1

5
n

)
since nε = ν + 4µ/7− n/5. It follows that 10ν/3 + 11µ/7 > 13n/10. Then

39
190

n >
6
35
n > µ >

39
190

n

because ν 6 10µ/7. The resulting contradiction completes the proof of the lemma.

It follows from [11] that |−rKW | has no base points for r � 0 and induces
a birational morphism ω : W → W such that W is a hypersurface of degree 6a3

with only canonical singularities in P(1, a1, a2, 2a3, 3a3).

Lemma 5.8. The morphism ω is not an isomorphism in a neighbourhood of Q.

Proof. Suppose that ω is an isomorphism in a neighbourhood of Q. Then it follows
from the proof of Theorem 5.6.2 in [5] that there is a divisor R ∈ |−2sa1a3KW |
such that multQ(R) > s for some positive integer s, but the set Supp(R) contains
no components through Q of the cycle D̆ · S. Then

2sa1a3

(
n

∑4
i=1 ai

a1a2a3a4
− µ

a1a3
− ν

a1a2

)
= R · D̆ · T

> multQ(D̆ · T )s >
(
n− ν − µ

a3 − a1

a3
+

2n
a4

)
s

because Q /∈ Ĕ. For all possible values of ג we easily see that this inequality cannot
hold because nε = ν + (a3 − a1)µ/a3 − 2n/a4 > 0. The lemma is proved.

Thus there is a unique curve C ⊂W that contains Q and satisfies

−KW · C = 0, β∗(−KU ) · C =
1
a4
, C ·G = 1.

It follows that ג /∈ {33, 38, 58} by Lemma 5.7. Hence we have ג ∈ {12, 13, 20, 25, 31}.
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We write D̆ ·T = mC+Ω, where m is a non-negative integer and Ω is an effective
1-cycle whose support does not contain C. Then it follows from Remark 2.12 that

m 6
5
4
n− µ, m 6

11
15
n− 1

2
µ, m 6

13
15
n− µ,

m 6
5
7
n− 1

3
µ, m 6

2
3
n− µ

in the cases when ג = 12, 13, 20, 25, 31 respectively. We recall that G is a section of
the fibration η.

Let H be the pencil consisting of all surfaces through Q in the linear system
|−a2KW |, and let H be a generic surface in H. Then C is the only curve in the
base locus of H that passes through Q. Hence,

a2

(
n

∑4
i=1 ai

a1a2a3a4
− µ

a1a3
− ν

a1a2

)
= H ·Ω > multQ(Ω) > n− ν−µa3 − a1

a3
+

2n
a4
−m.

It follows that either ג = 12 or ג = 13.

Lemma 5.9. We have ג 6= 12.

Proof. Suppose that ג = 12. Let R be a generic surface through Q in the linear
system |−2KW |. Then

R|T = C + L+ Z,

where L = G|T , Z is a reduced curve and P /∈ β(Z).
Suppose that Z is irreducible. Then we have

Z2 = −4
3
, C2 = −2, L2 = −3

2

on the surface T . As usual, we write

D̆|T = mCC +mLL+mZZ + Υ,

where mC , mL and mZ are non-negative integers and Υ is an effective cycle whose
support does not contain the curves C, L or Z.

Suppose that Q /∈ Ĕ. Then mC > 2n/3−mZ/3 because

5
6
n− 2

3
µ−ν = R ·D̆ ·T = mL+

1
3
mZ+R ·Υ > mL+

1
3
mZ+

3
2
n−ν− 2

3
µ−mL−mC ,

but 4mZ/3 > 2mC − n/3 because Υ · Z > 0. Therefore we have

mC >
2
3
n+

1
3
mZ >

7
12
n+

1
2
mC ,

whence mC > 7n/6. But mC 6 5n/6 by Remark 2.12 since −KX · α ◦ β(C) = 5/6.
This proves that Q ∈ Ĕ. Then C ⊂ Ĕ and β(C) ∈ |OP(1,1,3)(1)|. But

5
6
n− 2

3
µ−ν = R ·D̆ ·T = mL+

1
3
mZ+R ·Υ > mL+

1
3
mZ+

7
4
n−ν− 5

3
µ−mL−mC .
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It follows that mC > 11n/12 − µ + mZ/3. We have −KX · α ◦ β(Z) = 5/6 and
Z · Ĕ = 2. But

4
3
mZ > 2mC + 2µ− 5

6
n

because Z ·Υ > 0. Then mZ > 3n/2. But mZ 6 n/2 by Remark 2.12, a contradic-
tion.

Therefore the curve Z is reducible. Then Q ∈ Ĕ and Z = Ź + Z̀, where Ź and
Z̀ are irreducible curves such that

G · Ź = G · Z̀ = −KU · β(Z̀) = 0

and −KX · α ◦ β(Ź) = 7/12. It is easy to calculate that

Ź2 = −4
3
, Z̀2 = C2 = −2, L2 = −3

2
,

L · C = Ź · C = Ź · Z̀ = Z̀ · C = 1, L · Z̀ = L · Ź = 0

on the surface T . As in the previous case, we write

D̆|T = mCC +mLL+mZŹ + Φ,

where mC , mL, mZ are non-negative integers and Φ is an effective cycle whose
support does not contain C, L or Ź. Then

R|T · Φ > multQ(Φ) >
7
4
n− ν − 5

3
µ−mL −mC

and Φ · Ź > 0. Clearly, β∗(−KU )|T · Φ > 0. Hence we see that

mC >
11
12
n− µ+

1
3
mZ ,

4
3
mZ > mC + µ− 5

6
n, mC + µ 6

5
4
−mZ .

But these linear inequalities are incompatible. The resulting contradiction com-
pletes the proof of the lemma.

Lemma 5.10. We have ג 6= 13.

Proof. Suppose that ג = 13. Then C ⊂ Ĕ because otherwise

2
(

11
30
n− 1

6
µ− 1

2
ν

)
= H · Ω > multQ(Ω) >

7
5
n− ν − 1

3
µ−m

and, therefore, m > 2n/3 contrary to the inequalities m 6 11n/15 − µ/2 and
µ > n/5. We write

D|Ĕ = mC + Υ,

where m is a non-negative integer and Υ is an effective cycle whose support does
not contain C. Then m 6 5µ/2 because β(C) ∈ |OP(1,2,3)(2)| and the curve C is
reduced, where E ∼= P(1, 2, 3). Hence we have m 6 11n/12 because µ 6 11n/30.

Clearly, the log pair (W, 1
nD̆+ Ĕ + εG) is not log canonical at Q. Hence the log

pair (
Ĕ, C +

ν + µ/3− 2n/5
n

G

∣∣∣∣
Ĕ

+
1
n

Υ
)
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is not log canonical at Q by Theorem 7.5 of [9]. Then

5
3
µ− ν = (mC + Υ) · C = Υ · C > multQ(Υ|C) >

7
5
n− ν − 1

3
µ

by Theorem 7.5 of [9]. It follows that µ > 7n/10, but µ 6 11n/30, a contradiction.
The lemma is proved.

This completes the proof of Lemma 2.10.

§ 6. Quadratic involutions

In this section we prove Lemma 2.11. We shall use the hypotheses and notation
of that lemma. Suppose that d = 2r + aj . To prove Lemma 2.11, we must derive
a contradiction.

Lemma 6.1. We have ג 6= 9 and ג 6= 17.

Proof. We may assume that ג = 9 since the proof of ג 6= 17 is similar. We use the
notation from the proof of Lemma 3.17 and identify the point O with O1.

Suppose that µ > 2n/3. Let G be the surface cut out by the equation w = 0
on X, and let G be the proper transform of G on U . Then

0 6−KU ·G·D =
(
α∗(−KX)− 1

3
E

)
·(α∗(−3KX)−2E)·(α∗(−nKX)−µ) =

3
2
n−3µ.

It follows that µ 6 n/2 < 2n/3, a contradiction. Thus µ 6 2n/3.
Suppose that P ∈ Ci. Let S be a surface through P in the linear system |−KU |.

We write
D · S = mCi +mZi + ∆,

where m and m are non-negative integers and ∆ is an effective cycle whose support
does not contain the curves Ci or Zi. Let R be a generic surface through P in the
linear system |−2KU |. Then we have

n− µ− 2
3
m = R ·∆ >

4
3
n− µ−m,

whence m− 4m/3 > n/3. Put H = α(S). Then

C
2

i = −4
3
, Z

2

i = −2
3
, Ci · Zi = 2

on the surface H. On the other hand, if we write

D|H = mCi +mZi + Ω ≡ −nKX |H ,

where Ω is an effective divisor whose support does not contain the curves Ci or Zi,
then

0 6 Ω · Z =
2
3
n−mCi · Zi −mZ

2

i =
2
3
n− 2m+

2
3
m.

This contradicts the inequality m− 4m/3 > n/3. We see that P /∈
⋃27
i=1 Ci.
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Let L be the fibre of the rational map ψ ◦ α over the point ψ ◦ α(P ), and let S
be a surface through P in the linear system |−KU |. We write

D · S = m̀L+ Υ,

where m̀ is a non-negative integer and Υ is an effective cycle whose support does
not contain the curve L. Let R be a generic surface through P in |−2KU |. Then

n− µ− 2
3
m̀ = R ·∆ >

4
3
n− µ− m̀

because the curve L is smooth at P . Hence m̀ > n. But Remark 2.12 yields that
m̀ 6 n/2, a contradiction. The lemma is proved.

Lemma 6.2. We have ג 6= 6 and ג 6= 15.

Proof. We may assume that ג = 15 since the proof of ג 6= 6 is similar. Then O
is a singular point of type 1

3 (1, 1, 2) and X is a hypersurface of degree 12 in
P(1, 1, 2, 3, 6). We have a commutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiii

α

��

Y
γoo

η

��6
66

66
66

66
66

66
66

V

ω $$JJJJJJJJJJ X
ξ

zzt
t

t
t

t
ψ

**UUUUUUUUUU

P(1, 1, 2, 6)
χ

//______________ P(1, 1, 2)

where ξ, ψ and χ are projections, γ is a weighted blow-up with weights (1, 1, 2)
of the singular point of type 1

3 (1, 1, 2), σ is a birational morphism that contracts
rational curves C1, . . . , C54, η is an elliptic fibration, and ω is a double covering.

Let S be the unique surface through the non-singular point P in the linear system
|−KU |. Then multP (D · S) > 4

3n− µ.
Suppose that P /∈

⋃54
i=1 Ci. Let H be a generic surface through P in the linear

system |−6KU |. Then H contains no components of the effective cycle D ·S. Hence,

2n− 3µ = D · S ·H >
4
3
n− µ.

It follows that µ < n/3. Hence there is a curve Ci such that P ∈ Ci.
The fibre of the rational map ψ ◦ α over the point ψ(P ) consists of the curve Ci

and an irreducible curve Ci such that −KU · Ci = 1/3 and E · Ci = 0. We write

D · S = mCi +mCi + ∆,

where m and m are non-negative integers and ∆ is an effective cycle whose support
does not contain the curves Ci or Ci. Let R be a generic surface through P in the
linear system |−2KU |. Then

2
3
n− µ− 2

3
m = R ·∆ >

4
3
n− µ−m.

It follows that m− 2m/3 > 2n/3.
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We put S̆ = α(S), Z = α(Ci) and Z = α(Zi). Then S̆ is a generic surface
of degree 12 in P(1, 3, 4, 8), and the curves Z and Z are contained in S̆. We have

Z2 = Z
2

= −4
3
, Z · Z = 2

on the surface S̆. Write D|S̆ = mZ +mZ + Ω, where Ω is an effective divisor on S̆
whose support does not contain Z or Z. Then

0 6 Ω · Z =
1
3
n−mZ · Z −mZ

2
=

1
3
n− 2m+

4
3
m,

but m > 2n/3 + 2m/3. The resulting inequalities are incompatible. The lemma
is proved.

It follows from the equation d = 2r + aj that the threefold X can be given by

x2
ixj + xif(x0, x1, x2, x3, x4) + g(x0, x1, x2, x3, x4) = 0 ⊂ Proj(C[x0, x1, x2, x3, x4]),

where i 6= j, ai = r, wt(x0) = 1, wt(xk) = ak, and f , g are general quasi-
homogeneous polynomials that do not depend on xi. We put ā3 = a3+4−i, ā4 = aiaj ,
d̄ = 2ā4. Then there is a commutative diagram

U

σ

��

α // X

ξ

���
�
�

V
� � // P(1, a1, a2, ā3, ā4) χ

//______ P(1, a1, a2, ā3)

where ξ and χ are projections and σ is a birational morphism that contracts ratio-
nal curves C1, . . . , Cl, where l = aiaj(d − ai)

∑4
i=1 ai and V is a hypersurface of

degree d̄ in P(1, a1, a2, ā3, ā4) with terminal singularities. Then −KX ·α(Ck) = 1/ai.
Let M be the surface cut out on X by the equation xj = 0, and let M be the

proper transform of M on the threefold U . Since X is generic, it follows from
Lemma 8.12 and Proposition 8.14 of [9] that M 6= D.

Lemma 6.3. We have µ 6 −ajnK3
X(r − a)a/(d− r) 6 n(d− r)/(raj).

Proof. The inequality µ 6 −ajnK3
X(r − a)a/(d− r) is trivial: we have

0 6 −KU ·M ·D = −ajnK3
X −

µ(d− r)
a(r − a)

since the divisor −KU is numerically effective. It remains to show that −ajnK3
X ×

(r − a)a/(d− r) 6 n(d− r)/(raj).
Suppose that −ajnK3

X(r − a)a/(d− r) > n(d− r)/(raj). Then

d− r

raj
< −ajK3

X

(r − a)a
d− r

=
daj(r − a)a

(d− r)a1a2a3a4
,

but a1a2a3a4 > ajr(r − a)a. Thus we have (d − r)2 < d(d − 2r), a contradiction.
The lemma is proved.
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We note that E ∼= P(1, a, r− a) and the linear system |OP(1,a,r−a)(1)| consists of
a single curve when a 6= 1. Taking into account the possible values of (a1, a2, a3, a4),
we see that

a = 1 ⇒ ג ∈ {7, 8, 12, 13, 16, 20, 25, 26, 30, 36, 31, 41, 47, 54}

by Lemmas 6.1, 6.2.

Lemma 6.4. We have ג 6= 7.

Proof. Suppose that ג = 7. Then X is a hypersurface of degree 8 in P(1, 1, 2, 2, 3)
and O is a singular point of type 1

3 (1, 1, 2). Let S be the unique surface through P
in the linear system |−KU |. Then S is smooth at P .

The singularities of U consist of singular points P0, P1, P2, P3 and P4 of type
1
2 (1, 1, 1) such that P0 is a singular point of E. There is a commutative diagram

U

α

��

Yi
βioo

ηi

''PPPPPPPPPPPPP

X
ξi

//_____________ P(1, 1, 2)

where ξi is a projection, βi is a blow-up of Pi with weights (1, 1, 1), and ηi is an
elliptic fibration.

Suppose that P /∈
⋃l
i=1 Ci. We easily see that the proper transform of the

surface E on the variety Yi is a section of the elliptic fibration ηi if i 6= 0. Hence
there is a surface H ∈ |−2KU | such that

2
(

2
3
n− 1

2
µ

)
= D ·H · S > multP (D) >

4
3
n− µ.

This is a contradiction. Thus, we may assume that P ∈ C1.
Clearly, −KX · α(C1) = 1/3. Then

M |S = C1 + Z1 ≡ (−2KU − E)|S ,

where Z1 is an irreducible curve and −KX · α(Z1) = 1. We put L = E|S . Then

C2
1 = −2, Z2

1 = L2 = −3
2
, C1 · Z1 = L · C1 = 1, L · Z1 =

3
2

on the surface S. Write D|S = mCC1 +mZZ1 +mLL+ Ω, where mC , mZ and mL

are non-negative integers and Ω is an effective cycle on S whose support does not
contain the curves C1, Z1 or L. Then

n− 3
2
µ+

3
2
mZ −

3
2
mL −mC = Z1 · Ω > 0.

It follows that 3mZ/2 > 3(µ+mL)/2 +mC − n. We similarly see that

3
2
µ− 3

2
mZ +

3
2
mL −mC = L · Ω > 0.
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It follows that 3(µ+mL)/2 > 3mZ/2 +mC . We also have

4
3
n− µ−mL −mZ = (L+ C1 + Z1) · Ω > multP (Ω) >

4
3
n− µ−mL −mC ,

whence mC > mZ and 4n/3 > µ + mL + mZ . This proves that mZ 6 n/2 and
mC 6 n/2.

By Theorem 7.5 of [9], the log pair(
S,C1 +

mL + µ− n/3
n

L+
mZ

n
Z +

1
n

Ω
)

is not log canonical at P because mC 6 n. It follows that

C1 · Ω > multP (Ω|C1) > n−mL − µ+
1
3
n

by Theorem 7.5 of [9]. Hence mC > mZ/2 + n/2. But we already know that
mC 6 n/2, a contradiction. The lemma is proved.

Lemma 6.5. We have ג 6= 8.

Proof. Suppose that ג = 8. We use the notation from the proof of Lemma 3.18.
Let R be the proper transform of the surface R on the threefold U , and let S be
a generic surface through P in |−KU |. Then multP (S) = 1.

Suppose that P /∈ R. Then R|S is an irreducible curve. We denote it by Z.
Write D|S = mFF +mZZ + Υ, where mF and mZ are non-negative integers, F is
a smooth irreducible curve with E|S = F , and Υ is an effective divisor on S whose
support does not contain the curves F or Z. Then

F 2 = Z2 = −4
3
, Z · F =

5
3

on the surface S. Hence 4mZ/3 > 5(µ+mF )/4− 3n/4 because Υ ·Z > 0. We have

4
3
µ+

4
3
mF −

5
3
mZ = Υ · F >

5
4
n− µ−mF ,

whence 7(µ+mF )/3 > 5n/4 + 5mZ/3. Therefore we see that

4
3
mZ >

5
7

(
5
4
n+

5
3
mZ

)
− 3

4
n.

It follows that mZ > n. But Remark 2.12 implies that mZ 6 n because
α∗(−KX) · Z = 3/4, a contradiction.

Thus P ∈ R. Suppose that P /∈
⋃l
i=1 Ci. There is a surface H ∈ |−3KU | such

that

3
(

3
4
n− 5

3
µ

)
= D ·H ·R > multP (D) >

5
4
n− µ.

It follows that µ < n/4. But µ > n/4 by [10], a contradiction. Thus, we may
assume that P ∈ C1.



774 I. A. Cheltsov

Put B = E|R and C1 +Z1 = S|R, where B and Z1 are irreducible curves. Write

D|R = mCC1 +mZZ1 +mBB + Ω,

where mC , mZ and mB are non-negative integers and Ω is an effective divi-
sor (on the surface R) whose support does not contain the curves C1, Z1 or B.
We easily see that

C2
1 = −1, Z2

1 = −2
3
, B2 = −20

3
, B ·Z1 =

2
3
, B ·C1 = Z1 ·C1 = 1

on the surface R. Then 2mZ/3 > 2(mB + µ) +mC − n/2 because Ω · Z > 0, but

3
4
n− 5

3
µ− 1

3
mZ −

1
3
mB = (C1 + Z1) · Ω > multP (Ω) >

5
4
n− µ−mB −mC

since the curve Z1 does not pass through P . Therefore we have

2
3
mZ > 2(mB + µ) +mC −

1
2
n >

1
3
mZ +

4
3
µ,

whence mZ > 4µ > n. On the other hand, we have

9
4
n− 5µ−mZ −mB = 3(C1 + Z1) · Ω > multP (Ω) >

5
4
n− µ−mB −mC ,

whence mC > mZ + 4µ − n > n. But Remark 2.12 implies that mC + 2mZ 6 3n
because α∗(−KX) ·Z1 = 1/2 and α∗(−KX) ·C1 = 1/4, a contradiction. The lemma
is proved.

Lemma 6.6. We have ג 6= 12.

Proof. Suppose that ג =12. Then X is a hypersurface of degree 10 in P(1, 1, 2, 3, 4),
and O is either a singular point of type 1

3 (1, 1, 2) or a singular point of type 1
4 (1, 1, 3).

Let S be a surface through P in the pencil |−KU |. Then S is smooth at P .
Suppose that P /∈

⋃l
i=1 Ci. Then we have µ 6 n/r because the proof of Theo-

rem 5.6.2 in [5] yields that there is a surface H ∈ |−s(7− r)KU | such that

s(7− a)
(

5
12
n− µ

r − a

)
= D ·H · S > multP (D)s >

(
n+

n

r
− µ

)
s,

where s is a positive integer. But we have µ > n/r by [10], a contradiction.
We may assume that P ∈ C1. Let R be a generic hypersurface through P in the

linear system |−2KU |. Then R · S = C1 + Z + L, where Z and L are irreducible
curves such that L ⊂ E and Z 6= C1. We write

D|S = mCC1 +mZZ +mLL+ Υ,

where mC , mZ and mL are non-negative integers and Υ is an effective divisor
(on the surface S) whose support does not contain the curves C1, Z or L.
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Suppose that r = 3. Then C2
1 = −2, Z2 = −1 and C1 · Z = 2 on the surface S.

Therefore we have
5
6
n− µ−mZ = R · (Υ +mLL) >

4
3
n− µ−mC

because R · L > 0. Thus we have mC > n/2 +mZ . But

1
2
n− 2mC +mZ = (Ω +mLL) · Z > 0.

This leads to a contradiction because mC > n/2 +mZ .
Thus we see that r = 4. Then Z2 = L2 = −4/3, C2

1 = −2 and L ·C1 = Z ·C1 =
Z · L = 1, but

5
6
n− µ = R ·D · S =

2
3
mL +

2
3
mZ +R ·Υ >

2
3
mL +

2
3
mZ +

5
4
n− µ−mC −mL.

It follows that mC > 5n/12 + 2mZ/3− (µ+mL)/3. But

4
3
µ = L · (mCC1 +mZZ +mLL+ Υ) > −4

3
mL +mZ +mC +

5
4
n− µ−mL −mC .

Therefore 7(µ + mL)/3 > 5n/4 + mZ . We have µ + mL 6 5
4n −mZ and 4

3mZ >
(µ+mL) +mC − 7

12n because −KU ·Υ > 0 and Υ ·Z > 0 respectively. So we have
mZ > n/2 because

4
3
mZ > (µ+mL)− 1

6
n+

2
3
mZ −

1
3
(µ+mL) >

2
7

(
5
4
n+mZ

)
− 1

6
n+

2
3
mZ .

But it follows from the proof of Theorem 5.6.2 in [5] that

3s
(

5
12
n− 1

3
µ−mL −mZ

)
= M ·Υ > multP (D)s >

(
5
4
n− µ−mL −mC

)
s

for some integer s > 0 and some surface M ∈ |−3sKU |. We have mC > mZ and

4
3
mZ > (µ+mL) +mZ −

7
12
n >

3
7

(
5
4
n+mZ

)
+mZ −

7
12
n,

whence mZ < n/2. This contradicts the previous inequality mZ > n/2. The lemma
is proved.

Lemma 6.7. Suppose that ג = 13. Then O is a singular point of type 1
5 (1, 2, 3).

Proof. Suppose that O is not a singular point of type 1
5 (1, 2, 3). Then O is a singular

point of type 1
3 (1, 1, 2). Let S be a surface through P in |−KU |. Then D 6= S by

Lemma 2.3.
Suppose that the birational morphism σ is an isomorphism in a neighbourhood

of P . Then it follows from the proof of Theorem 5.6.2 in [5] that one can find an
integer s > 0 and a surface H ∈ |−5sKU | such that

5s
(

11
30
n− 1

2
µ

)
= D ·H · S > multP (D)s >

(
4
3
n− µ

)
s.

It follows that µ < n/3. But this is impossible since µ > n/3 by [10].
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We see that σ contracts some irreducible curve passing through P . This curve is
actually unique. We denote it by L. Then P ∈ L and −KU · L = 0. The curve L
is smooth and rational.

Let H be a generic surface through P in the linear system |−2KU |. There is an
irreducible curve C ⊂ U such that H|S = L+ C. Then

L2 = −2, L · C = 2, C2 = −6
5

on the surface S. We write D|S = mLL + mCC + Ω, where mL and mC are
non-negative integers and Ω is an effective divisor whose support does not contain
L or Z. Then P /∈ C and

1
3
n− µ− 2mC + 2mL = Ω · L > 4

3
n−mu−mL,

but 2n/5 − 2mL + 6mC/5 = Ω · C > 0. This easily leads to a contradiction. The
lemma is proved.

Lemma 6.8. We have ג 6= 16.

Proof. Suppose that ג =16. Then X is a hypersurface of degree 12 in P(1, 1, 2, 4, 5),
and O is a singular point of type 1

5 (1, 1, 4). Let S be the unique surface through P
in the pencil |−KU |. Then S is smooth at P .

Suppose that P /∈
⋃l
i=1 Ci. Then there is a surface H ∈ |−4KU | that passes

through P and contains no components of the effective cycle D · S. Then

4
(

3
10
n− 1

4
µ

)
= D ·H · S > multP (D) >

6
5
n− µ.

This leads to a contradiction. Thus we may assume that P ∈ C1. Then C1 ⊂ S.
Let ψ : X 99K P(1, 1, 2) be the natural projection, and let F be the curve cut out

on the surface S by the divisor E. Then the fibre of the rational map ψ ◦α over the
point ψ ◦ α(P ) consists of the curves F and C1 and another irreducible curve Z
such that

Z2 = F 2 = −5
4
, C2

1 = −2, Z · C1 = F · C1 = 1, Z · F =
3
4

on the surface S. It is easy to see that P = F ∩ C1. We write

D|S = mCC1 +mFF +mZZ + Ω,

where mC , mF and mZ are non-negative integers and Ω is an effective cycle whose
support does not contain the curves C1, F or Z. Then the linear system |−4KU |
contains a surface M that passes through P and contains no components of Ω.
We have

4
(

3
10
n− 1

4
µ− 1

4
mZ −

1
4
mF

)
= M |S · Ω > multP (Ω) >

6
5
n− µ−mF −mC .
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It follows that mC > mZ . On the other hand, we have

3
10
n− 1

4
µ = −KU |S · (mCC1 +mFF +mZZ + Ω)

> −KU |S · (mCC1 +mFF +mZZ) =
mF +mZ

4
.

It follows that mF +mZ 6 6n/5− µ. We similarly have

5
4
µ+

5
4
mF −

3
4
mZ −mC = Ω · F >

6
5
n− µ−mC −mF ,

whence 9(µ+mF )/4 > 6n/5 + 3mZ/4. Since Ω · Z > 0, it follows that

5
4
mZ >

3
4
µ+mC +

3
4
mF −

2
5
n.

But mZ 6 3n/4 by Remark 2.12 because −KX · α(Z) = 2/5. Thus we have

9
4

(
6
5
n− µ

)
>

9
4
(µ+mF ) >

6
5
n+

3
4
mZ ,

15
16
n >

5
4
mZ >

3
4
µ+mC +

3
4
mF −

2
5
n >

3
4
µ+mZ +

3
4
mF −

2
5
n.

But these linear inequalities are easily seen to be incompatible, a contradiction.
The lemma is proved.

Lemma 6.9. We have ג 6= 25.

Proof. Suppose that ג =25. Then X is a hypersurface of degree 15 in P(1, 1, 3, 4, 7),
and O is either a singular point of type 1

4 (1, 1, 3) or a singular point of type 1
7 (1, 3, 4).

Suppose that O is of type 1
4 (1, 1, 3). Let S be the unique surface through P in

the pencil |−KU |. Then D 6= S.
Suppose that the birational morphism σ is an isomorphism in a neighbourhood

of P . Then the proof of Theorem 5.6.2 in [5] shows the existence of an integer s > 0
and a surface H ∈ |−7sKU | that has multiplicity at least s at P and contains no
components through P of the cycle D · S. Then

7s
(

5
28
n− 1

3
µ

)
= D ·H · S > multP (D)s >

(
5
4
n− µ

)
s.

This contradicts the inequality µ > n/4 which follows from [10].
Thus σ is not an isomorphism in a neighbourhood of P . Then there is a unique

irreducible curve L ⊂ U such that P ∈ L and −KU ·L = 0. The curve L is smooth
and rational.

Let H be a generic surface through P in the linear system |−3KU |. Then H|S =
L+ C, where C is an irreducible curve such that

L2 = −2, L · C = 2, C2 = −8
7



778 I. A. Cheltsov

on the surface S. We write D|S = mLL + mCC + Ω, where mL and mC are
non-negative integers and Ω is an effective divisor whose support does not contain
L or Z. Then P /∈ C and

1
4
n− µ− 2mC + 2mL = Ω · L > 5

4
n−mu−mL,

2
7
n− 2mL +

8
7
mC = Ω · C > 0.

This easily leads to a contradiction.
Hence the point P is a singular point of type 1

7 (1, 3, 4). Let T be a generic surface
in the pencil |−KU |.

Suppose that P ∈ T . The base locus of the pencil |−KU | consists of irreducible
curves C and L̄ such that C = E|T and L̄ = M |T . Then

C
2

= L̄2 = − 7
12
, L̄ · C =

8
12

on the surface S, but α∗(−KX) · L̄ = −K3
X . We write D|T = mLL̄ + mCC + Υ,

where mL and mC are non-negative integers and Υ is an effective divisor (on the
surface T ) whose support does not contain the curves L̄ or C. The inequalities
Υ · L̄ > 0 and Υ · C > multP (Υ) imply that

19
12

(µ+mC) >
8
7
n+

2
3
mL,

2
3
(µ+mC) 6

5
28
n+

7
12
mL,

whence mL > n. The last inequality contradicts Remark 2.12.
Thus P is not contained in T . Then µ > 24n/70 by Lemma 2.14. But we have

µ 6 15n/56 by Lemma 6.3, a contradiction. The lemma is proved.

Lemma 6.10. We have ג 6= 26 and ג 6= 36.

Proof. We may assume that ג = 36 because the proof of ג 6= 26 is almost the same.
Then X is a hypersurface of degree 18 in P(1, 1, 4, 6, 7), and O is a singular point
of type 1

7 (1, 1, 6). There is a unique surface through P in the pencil |−KU |. We
denote this surface by S.

Suppose that P /∈
⋃l
i=1 Ci. It follows from the proof of Theorem 5.6.2 in [5] that

one can find an integer s > 0 and a surface H ∈ |−6sKU | such that multP (H) > s

and H contains no components through P of the cycle D · S. Then

6s
(

3
28
n− 1

6
µ

)
= D ·H · S > multP (D)s >

(
8
7
n− µ

)
s.

This is a contradiction. Hence P ∈
⋃l
i=1 Ci. We may assume that P ∈ C1.

Put L = C1 and C = E|S . Then M |S = L+Z, where Z is an irreducible curve.
Let us find the intersection form of the curves C, L and Z on the surface S. This
is easy. We have

Z2 = C2 = −7
6
, L2 = −2, Z · L = C · L = 1, Z · C =

5
6
.
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The point P is the intersection point of the curves L and C. We put

D|S = mLL+mCC +mZZ + Ω,

where mL, mC and mZ are non-negative integers and Ω is an effective divisor
whose support does not contain the curves L, C or Z. It follows from the proof of
Theorem 5.6.2 in [5] that one can find an integer s > 0 and a surface H ∈ |−6sKU |
such that multP (H) > s and H contains no components through P of the support
of the effective cycle Ω. Then

6s
(

3
28
n− 1

6
µ− 1

6
mC −

1
6
mZ

)
= H|S ·Ω > multP (Ω)s >

(
8
7
n−µ−mL−mC

)
s.

It follows that mL > n/2 +mZ . But mL 6 3n/4 by Remark 2.12. We have

3
28
n− 1

6
µ = −KU |S · (mLL+mCC +mZZ + Ω)

> −KU |S · (mLL+mCC +mZZ) =
mC +mZ

6
.

Hence mC +mZ 6 9n/14− µ. We similarly have

7
6
µ+

7
6
mC −

5
6
mZ −mL = Ω · C >

8
7
n− µ−mL −mC .

It follows that 13(µ + mC)/6 > 8n/7 + 5mZ/6. The inequality Ω · Z > 0 implies
that

2
7
n− 5

6
µ−mL −

5
6
mC +

7
6
mZ > 0.

Hence we have 7mZ/6 > 5µ/6 + mL + 5mC/6 − 2n/7. But mZ 6 3n/8 by
Remark 2.12.

It follows from Lemma 6.3 that 18n/77 > µ > n/7. The resulting system of
linear inequalities

13
6

(µ+mC) >
8
7
n+

5
6
mZ ,

21
48
n >

7
6
mZ >

5
6
µ+mL +

5
6
mC −

2
7
n,

mC +mZ 6
9
14
n− µ,

3
4
n > mL >

1
2
n+mZ ,

18
77
n > µ >

1
7
n

is easily seen to be incompatible, a contradiction. The lemma is proved.

Lemma 6.11. We have ג 6= 31.

Proof. Suppose that ג =31. Then X is a hypersurface of degree 16 in P(1, 1, 4, 5, 6),
and O is either a singular point of type 1

5 (1, 1, 4) or a singular point of type 1
6 (1, 1, 5).

Let S be a surface through P in the pencil |−KU |. Then D 6= S, and the
argument used to prove Lemma 6.10 yields that P ∈ C1 ⊂ S.
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Suppose that O is a singular point of type 1
6 (1, 1, 5). Arguing as in the proof

of Lemma 6.10, we arrive at a contradiction. Hence O is a singular point of type
1
5 (1, 1, 4).

Let ω : U 99K P(1, 1, 4) be the composite of the weighted blow-up α and the
natural projection, and let L be the component of the fibre of ω over the point
ω(C1) such that L 6= C1. We write

D|S = mC1 +m′L+ Υ,

where m and m′ are non-negative integers and Υ is an effective divisor whose sup-
port does not contain the curves L or C1. The curve L is smooth and P /∈ L. Using
the inequalities Υ · L > 0 and Υ · C1 > multP (Υ), we easily obtain a contradiction
because we have L2 = −2/3, C2

1 = −2, and L ·C1 = 2 on the surface S. The lemma
is proved.

Lemma 6.12. We have ג 6= 20.

Proof. Suppose that ג = 20. Arguing as in the proof of Lemma 6.10, we see that
O must be a singular point of type 1

4 (1, 1, 3). Then we easily get a contradiction as
in the proof of Lemma 6.11. The lemma is proved.

Lemma 6.13. We have ג 6= 47 and ג 6= 54.

Proof. We may assume that ג = 47 because the proof that ג 6= 54 is similar.
Then X is a hypersurface of degree 21 in P(1, 1, 5, 7, 8) and it follows from
Lemma 2.8 that O is a singular point of type 1

8 (1, 1, 7).
Let T be the unique surface through P in the pencil |−KU |. Then D 6= T .
Suppose that P /∈

⋃l
i=1 Ci. Then it follows from the proof of Theorem 5.6.2

in [5] that one can find an integer s > 0 and a surface H ∈ |−7sKU | such that the
multiplicity of H at P is greater than or equal to s and H contains no components
through P of the effective cycle D · T . We have

s

(
21
40
n− µ

)
= D ·H · T > multP (D)s > s

(
9
8
n− µ

)
s.

This contradicts the inequality µ > n/8. Thus we may assume that P ∈ C1.
We write D · T = mC1 + ∆, where m is a non-negative integer and ∆ is an

effective cycle whose support does not contain C1. It follows from the proof of
Theorem 5.6.2 in [5] that one can find an integer s > 0 and a surface R ∈ |−7sKU |
such that multP (R) > s and R contains no components through P of the effective
cycle ∆. Then

s

(
21
40
n− µ

)
= R ·∆ > multP (∆)s > s

(
9
8
n− µ−m

)
.

It follows that m > 3n/5. But we have m 6 3n/5 by Remark 2.12 because
α∗(−KX) · C1 = 1/8, a contradiction. The lemma is proved.

Lemmas 6.1, 6.2, 6.4–6.6, 6.8–6.13 yield that

ג ∈ {13, 18, 23, 24, 32, 38, 40, 42, 43, 44, 45, 46, 48, 56, 58, 60, 61, 65, 69, 74, 76, 79}

and a 6= 1. Let T be a generic surface in |−KU |. Then T |E ∈ |OP(1,a,r−a)(1)|.
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Lemma 6.14. The point P is contained in the surface T .

Proof. It follows from Lemmas 2.14 and 6.3 that P ∈ T if ג /∈ {13, 24}. Therefore
we may assume that ג ∈ {13, 24} and P /∈ T . Let us derive a contradiction.

Let L be the unique curve in the linear system |OP(1,a,r−a)(1)|. Then P /∈ L
because P /∈ T . Hence there is a unique smooth irreducible curve C through P in
the linear system |OP(1,a,r−a)(a)|. We write

D|E = δC + Υ ≡ rµL,

where δ is a non-negative integer and Υ is an effective divisor (on the surface E)
whose support does not contain C. Arguing as in the proof of Lemma 2.14, we see
that δ 6 rµ/a. Hence δ < n by Lemma 6.3.

The log pair (E, 1
nD|E) is not log canonical at P (see Theorem 7.5 in [9]). Since

δ < n, it follows that the log pair (E,C + 1
nΥ) is not log canonical at P . Again

using Theorem 7.5 of [9], we see that

rµ

r − a
>
rµ− aδ

r − a
= C ·Υ > multP (Υ|C) > n.

It follows that µ > n(r − a)/r. This inequality is impossible by Lemma 6.3. The
lemma is proved.

It follows from easy calculations (see the proof of Theorem 5.6.2 in [5]) that

T ∩ E ∩
l⋃
i=1

Ci 6= ∅ ⇐⇒ ג ∈ {43, 46, 69, 74, 76, 79}.

Lemma 6.15. The case ג /∈ {13, 24, 32, 43, 46} is impossible.

Proof. Suppose that ג /∈ {13, 24, 32, 43, 46, 56}. It follows from the proof of Theo-
rem 5.6.2 in [5] that one can find an integer s > 0 and a surface H ∈ |−sa1ā3KU |
such that multP (H) > s and H contains no components through P of the cycle
D · T except possibly for one of the curves C1, . . . , Cl.

It is easy to see that ג ∈ {69, 74, 76, 79} and P ∈
⋃l
i=1 Ci since otherwise we

obtain a contradiction from the inequalities

sa1ā3

(
−nK3

X −
µ

a(r − a)

)
= D ·H · T > multP (D)s >

(
n+

n

r
− µ

)
s.

We may assume that P ∈ C1. Write D ·T = mC1+∆, where m is a non-negative
integer and ∆ is an effective cycle whose support does not contain C1. Then

sa1ā3

(
−nK3

X −
µ

a(r − a)

)
= H ·∆ > multP (∆)s >

(
n+

n

r
− µ−m

)
s.

This is impossible because m 6 −ainK3
X by Remark 2.12.

This shows that ג = 56. As in the previous case, one can find an integer s > 0
and a surface H in the linear system |−24sKU | such that

24s
(

1
22
n− 1

24
µ

)
= D ·H · T > multP (D)s >

(
12
11
n− µ

)
s.

This contradicts the inequality µ > n/r. The lemma is proved.
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Thus ג ∈ {13, 24, 32, 43, 46}. We successively treat these cases.

Lemma 6.16. We have ג 6= 13.

Proof. Suppose that ג = 13. Then the point O is a singular point of type 1
5 (1, 2, 3)

by Lemma 6.7, the base locus of the pencil |−KU | consists of curves C and L̄ with
C = E|T , and α(L̄) is the base curve of the pencil |−KX |. The curves C and L̄ are
irreducible and we have

C
2

= L̄2 = −5
6
, L̄ · C = 1

on the surface T . We write D|T = mLL̄ + mCC + Υ, where mL and mC are
non-negative integers and Υ is an effective divisor whose support does not contain
L̄ or C. Then

11
5
n− 11

6
µ = (6L+ 5C) · (mLL̄+mCC + Υ) =

11
6
mC + (6L+ 5C) ·Υ >

11
6
mC .

It follows that mC 6 6n/5− µ. Thus we have mC < n because µ > n/5.
Suppose that P /∈ L̄. Then it follows from Theorem 7.5 of [9] that the log pair(

S,C +
mL

n
L+

1
n

Υ
)

is not log canonical at P because mC+µ−n/5 6 n. Hence we have multP (Υ|C) > n
by Theorem 7.5 of [9]. Therefore,

5
6
µ+

5
6
mC >

5
6
µ−mL +

5
6
mC = Υ · C > n.

This is impossible because mC 6 6/5− µ. Thus we see that P = L̄ ∩ C.
Write D|M = mL̄ + Ω, where m is a non-negative integer and Ω is an effective

divisor whose support does not contain L̄. Then L2 = 1/6 on the surface M . But
we have m 6 n by Remark 2.12 because α∗(−KX) · L̄ = 11/30.

Arguing as in the case when P /∈ L̄, we see that multP (Ω|L̄)>n. We have

11
30
n− µ = D · L̄ =

1
6
m+ Ω · L̄ > 1

6
m+ n.

It follows that m < 0, a contradiction. The lemma is proved.

Lemma 6.17. We have ג 6= 24.

Proof. Suppose that ג =24. The base locus of |−KU | consists of irreducible curves
L and C such that α(C) is the base curve of |−KX |, and the curve L is contained in
the surface E ∼= P(1, 2, 5) and is the unique curve in the linear system |OP(1,2,5)(1)|.

Let S be a generic surface in the pencil |−KU |. Then P ∈ L by Lemma 6.14.
But P /∈ C because the intersection L ∩C consists of a singular point of U of type
1
5 (1, 2, 3).

The surface S is normal. We easily see that

L2 = C2 = − 7
10
, L · C =

4
5
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on the surface S. We write D|S = mLL + mCC + ∆, where mL and mC are
non-negative integers and ∆ is an effective divisor (on the surface S) whose support
does not contain L or C. Then

3
14
n− 4

5
µ− 4

5
mL +

7
10
mC = ∆ · C > 0.

But mC 6 n by Remark 2.12 because α∗(−KX) ·C = 3/14. Thus µ+mL 6 8n/7.
The surface S is smooth at P . By Theorem 7.5 of [9] the log pair(

S,
mL + µ− n/7

n
L+

mC

n
C +

1
n

∆
)

is not log canonical at P , but µ+mL − n/7 6 n. It follows that the log pair(
S,L+

mC

n
C +

1
n

∆
)

is not log canonical at P . Using Theorem 7.5 of [9], we see that

7
10
µ+

7
10
mL = ∆ · L > multP (∆|L) > n.

It follows that µ+mL > 10n/7. But µ+mL 6 8n/7, a contradiction. The lemma
is proved.

Lemma 6.18. We have ג 6= 32.

Proof. Suppose that ג =32. Then X is a hypersurface of degree 16 in P(1, 2, 3, 4, 7),
the point O is a singular point of type 1

7 (1, 3, 4), the base locus of the pencil |−2KU |
consists of non-singular curves L and C with L = T ·E, and α(C) is the base curve
of |−2KX |.

We write D · T = m1L+m2C + ∆, where m1 and m2 are non-negative integers
and ∆ is an effective cycle whose support does not contain the curves L or C. Then

−KU · L = −KU · C =
1
12
.

It follows that m1 +m2 + µ 6 8n/7 by Remark 2.12.
It is easy to see that the intersection C ∩ L consists of a singular point of U .

Hence the curve C does not contain P . Let S be a generic surface in |−2KU |. Then

4
21
n− 1

6
µ− 1

6
(m1 +m2) = S ·∆ > multP (∆) >

8
7
n− µ−m1.

It follows that 40n/7 > 40n/7− 6m2 > 5n(m1 +m2 +µ)− 6m2 > 40n/7, a contra-
diction. The lemma is proved.

Lemma 6.19. We have ג 6= 43.

Proof. Suppose that ג =43. Then X is a hypersurface of degree 20 in P(1, 2, 3, 5, 9),
the point O is a singular point of type 1

9 (1, 4, 5) and j = 1. The base locus of |−2KU |
consists of irreducible curves C and L, where L = T · E and C is the only one of
the curves C1, . . . , Cl that intersects L.
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Suppose that P /∈ C. Then it follows from the proof of Theorem 5.6.2 in [5] that
one can find an integer s > 0 and a surface H in the linear system |−20sKU | such
that the multiplicity of H at P is greater than or equal to s > 0 and H contains
no components through P of the effective cycle D · T . Hence,

20s
(

1
18
n− 1

20
µ

)
= D ·H · T > multP (D)s >

(
10
9
n− µ

)
s.

It follows that µ < n/9. This contradicts the inequality µ > n/10.
We see that P ∈ C. Then M contains C and L. We write

D|M = m1L+m2C + ∆,

where m1 and m2 are non-negative integers and ∆ is an effective cycle whose
support does not contain the curves L or C. It follows from Remark 2.12 that
m2 6 n because α∗(−KX) · C = 1/9.

The surface M is smooth at P . Hence, by Theorem 7.5 of [9], the log pair(
M,

1
n
D|M +

(
µ

n
− 1

9

)
E|M

)
is not log canonical at P . We have E|M = L+ Z, where Z is an irreducible curve
that does not pass through P . Thus the log pair(

M,

(
m1

n
+
µ

n
− 1

9

)
L+ C +

1
n

∆
)

is not log canonical at P . Using Theorem 7.5 of [9], we see that

1
9
n− µ−m1 +m2 = ∆ · C > multP (∆|C) > n−m1 − µ+

1
9
n

since C2 = −1 and C · L = 1 on the surface M . It follows that m2 > n, a contra-
diction. The lemma is proved.

Lemma 6.20. We have ג 6= 46.

Proof. Suppose that ג = 46. Then X is a hypersurface of degree 21 in P(1, 1, 3,
7, 10), the point O is a singular point of type 1

10 (1, 3, 7), and the base locus of |−KU |
consists of irreducible smooth rational curves C and L such that α(C) is the unique
base curve of |−KX | and L is contained in the surface E.

The curve C is the only one of C1, . . . , Cl that is contained in the surface T . The
surface M contains C and L, whence P ∈M .

Suppose that P /∈ C. Then it follows from the proof of Theorem 5.6.2 of [5] that
one can find an integer s > 0 and a surface H in the linear system |−21sKU | such
that the multiplicity of H at P is greater than or equal to s and H contains no
components through P of the cycle D ·M . Then

21s
(

1
10
n− 11

21
µ

)
= D ·H · S > multP (D)s >

(
11
10
n− µ

)
s.

It follows that µ < n/10. But µ > n/10 by [10], a contradiction.
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Thus P = C ∩ L. We write D|M = m1L + m2C + ∆, where m1 and m2 are
non-negative integers and ∆ is an effective divisor (on the surfaceM) whose support
does not contain L or C. Then m2 6 n by Remark 2.12.

The surface M is smooth at P . It follows from the proof of Theorem 7.5 in [9]
that the log pair (

M,

(
m1

n
+
µ

n
− 1

10

)
L+ C +

1
n

∆
)

is not log canonical at P since E|M = L+ Z, where Z is an irreducible curve that
does not pass through P . It now follows from Theorem 7.5 of [9] that

1
10
n− µ−m1 +m2 = ∆ · C > multP (∆|C) > n−m1 − µ+

1
10
n

because C2 = −1 and C · L = 1. Thus m2 > n. This contradicts the inequality
m2 6 n which follows from Remark 2.12. The lemma is proved.

This completes the proof of Lemma 2.11.

§ 7. The hypersurface of degree 5/2

In this section we prove Theorem 1.17. Let X be a generic surface of degree 5
in P(1, 1, 1, 1, 2). The singularities of X consist of a singular point O of type
1
2 (1, 1, 1), and X can be given by the equation

xw2 + f3(x, y, z, t)w + f5(x, y, z, t) = 0 ⊂ P(1, 1, 1, 1, 2) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 2, fi(x, y, z, t) is a homo-
geneous polynomial of degree i > 1, and the point O is given by x = y = z = t = 0.

Let ψ : X 99K P3 be the natural projection. Then there is a commutative diagram

Y
π

xxqqqqqqqqqqq
γ

��@
@@

@@
@@

Wi
αioo

ωi

  B
BB

BB
B

X

ψ &&M
MMMMM Z

η��~~
~~

~~
Ui

βioo

ξi~~||
||

||

P3
χi

//______ P2

(7.1)

where π is a blow-up of O with weights (1, 1, 1), γ is a birational morphism that
contracts 15 smooth rational curves C1, . . . , C15 to 15 ordinary double points
P1, . . . , P15 of the variety Z, η is a double covering branched over the irreducible
surface R ⊂ P3 of degree 6 that is given by an equation of the form

f2
3 (x, y, z, t) = 4xf5(x, y, z, t) ⊂ P3 ∼= Proj(C[x, y, z, t])

and has 15 ordinary double points η(P1), . . . , η(P15), the morphism αi is a blow-
up of the smooth curve Ci, the morphism βi is a blow-up of the point Pi, wi is
a birational morphism, χi is the projection from the point η(Pi), and ξi is an elliptic
fibration.
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Put λ = 7/9. Let D be any effective Q-divisor on X such that D ≡ −KX . We
claim that the log pair (X,λD) is log canonical, which implies that lct(X) > 7/9.

Suppose that the log pair (X,λD) is not log canonical. Let L(X,λD) be its sub-
scheme of log canonical singularities (see [4]), and let J (λD) be the corresponding
ideal sheaf. Then

H1(X,J (λD)) = 0 (7.2)

by the Nadel vanishing theorem (see Theorem 2.16 in [9]).

Lemma 7.1. Let T be a divisor in |−KX |. Then the log pair (X,T ) is log canonical.

Proof. Let T be the surface cut out by the equation x = 0 on X. Since the
hypersurface X is generic, Lemma 8.12 and Proposition 8.14 of [9] imply that
the singularities of the log pair (X,T ) are log canonical.

Hence we may assume that T is not cut out by x=0. Then the diagram (7.1)
and Lemma 8.12 of [9] yield that T is normal and the log pair (X,T ) is log canon-
ical at O.

Let P be a point of T different from the point O. If ψ(P ) /∈ R, then T is smooth
at P . On the other hand, an easy parameter count yields that the singularity
of T at P is at most An if P ∈

⋃15
i=1 π(Ci).

We may assume that ψ is a double covering in a neighbourhood of P , the log
pair (X,T ) is not log canonical at P and ψ(P ) ∈ R.

Put T = ψ(T ) and P = ψ(P ). It follows from Lemma 8.12 of [9] that the
log pair (P3, T + 1

2R) is not log canonical at P . Then Theorem 7.5 of [9] yields that
the log pair (T , 1

2R|T ) is not log canonical at P . Hence,

multP (R|T ) > 3, (7.3)

where T is a plane in P3. However, it follows from a parameter count that inequality
(7.3) never holds for generic polynomials f3 and f5. The lemma is proved.

It follows from Remark 2.2 that to complete the proof of Theorem 1.17 we
may assume that the support of the divisor D contains no surfaces of the linear
system |−KX |.

Lemma 7.2. The scheme L(X,λD) is zero-dimensional.

Proof. Clearly, the scheme L(X,λD) contains no two-dimensional components since
λ < 1 and the divisor class group of X is generated by the divisor −KX . Suppose
that the scheme L(X,λD) is not zero-dimensional.

There is a curve C ⊂ X such that the singularities of the log pair (X,λD) are
not log canonical at a generic point of C. In particular, we have

multC(D) >
1
λ

=
9
7

and we may assume that the curve C is irreducible.
Suppose that ψ(C) is a curve and the intersection R∩ψ(C) contains some

smooth point Q of the ramification surface R. Let Q be the point of X such
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that ψ(Q) = Q. Then there is a surface H ′ ∈ |−KX | with a singularity at Q. Then

5
2

= H ·H ′ ·D > multQ(T ) multC(D) >
2
λ

=
18
7
>

5
2
,

where H is a generic surface through Q in |−KX |.
Hence either ψ(C) is a point or R ∩ ψ(C) ⊆ Sing(R).
Suppose that C is not contracted by ψ and the curve ψ(C) is not a line. Let Q1

and Q2 be generic points on the curve C. Then

5
2

= H1 ·H2 ·D > 2 multC(D) >
2
λ

=
18
7
>

5
2
,

where Hi is a generic surface through Qi in |−KX |, a contradiction.
We easily see that no line in P3 can intersect the surface R only at singular points

of R. It follows that C is one of the curves π(C1), . . . , π(C15).
We put Ci = π(Ci) and assume that C = C1. Let T be the surface cut out by

the equation x = 0 on X, and let T be the proper transform of the surface T on Y .
The surface T contains all the curves C1, . . . , C15, the surface T is smooth and the
morphism γ induces a birational morphism

γ|T : T −→ γ(T ) ∼= P2,

which contracts the curves C1, . . . , C15 to the points P1, . . . , P15 respectively.
We put T̀ = γ(T ) and T̆ = ν(T̀ ). Then T̆ is a plane in P3.
Let Lj be the proper transform on the surface T of the line through the points

ν(P1) and ν(Pj) in T̆ , where j 6= 1. Then

C1 · Lj = Cj · Lj = 1, C2
i = L2

j = −1, Lj · Ck = Li · Lj = Ci · Ck = 0

on the surface T , where i 6= j 6= k and j 6= 1. Let E be the curve contracted by the
birational morphism π|T to the point O. Then

E · Ci = E · Lj = 1, E2 = −6

on the surface T . We put L̄j = π(Lj). Then we have

C1 · L̄j = Cj · L̄j =
7
6
, C

2

i = L̄2
j = −5

6
, Ci · Ck = Ck · L̄j = L̄i · L̄j =

1
6

on the surface T , where i 6= j 6= k and j 6= 1. We now write

D|T = mC1 +
15∑
i=2

εiL̄i + ∆ ≡ −KX |T ,

where m and εi are non-negative rational numbers and ∆ is an effective Q-divisor
(on the surface T ) whose support does not contain the curves C1, L2, . . . , L15.
Then m > 1/λ and

3
2

= D|T · L̄k = mC1 · L̄k +
15∑
i=2

εiL̄i · L̄k + ∆ · L̄k > mC1 · L̄k +
15∑
i=2

εiL̄i · L̄k

=
7m
6
− εk +

∑15
i=2 εi
6

,
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where k 6= 1. Summing the last inequality over k, we get

21 >
49m

3
+

4
3

15∑
i=2

εi >
49m

3
.

It follows that m 6 9/7. This contradicts the inequality m > 1/λ = 9/7. The
lemma is proved.

Equation (7.2) implies that there is a point P ∈ X such that the log pair (X,λD)
has log canonical singularities outside P . Let E be the exceptional divisor of
the weighted blow-up π, and let D be the proper transform of the divisor D on the
variety Y . Then

D ≡ π∗(D)−mE,

where m is a non-negative rational number.

Lemma 7.3. The point P is the point O.

Proof. Suppose that P /∈
⋃15
i=1 π(Ci). Then it follows from Proposition 3 in [2] that

there is a surface T ∈ |−KX | such that

5
2

= D ·H · T > multP (D · T ) >
2
λ

=
18
7
>

5
2
,

where H is a generic surface through P in |−KX |, a contradiction.
Assume that P 6= O and P ∈ π(C1). Restricting the divisor D to the sur-

face E, we see that 2m > multC1(D). It follows from the proof of Lemma 7.2 that
multC1(D) 6 9/7.

Let D̆ be the proper transform of the divisor D on the variety W1. Then

D̆ ≡ (π ◦ α1)∗(D)−mĔ −multC1(D)G1,

where G1 is the exceptional divisor of the birational morphism α1 and Ĕ is the
proper transform of the divisor E on the variety W1. The assumption P 6= O and
the equivalence

KW1 + λD̆ +
(
λm− 1

2

)
Ĕ + (λmultC1(D)− 1)G1 ≡ (π ◦ α1)∗(KX + λD)

imply that the log pair (W1, λD̆) is not log canonical since multC1(D) 6 9/7. Then
the log pair (G1, λD̆) is not log canonical (Theorem 7.5 of [9]).

We have G1
∼= P1 × P1. Let L be the fibre of the morphism π ◦ α1 over the

point P . The curve L is contained in the surface G1. Let Ĺ be the curve on G1

such that L · Ĺ = 0 and Ĺ2 = 0. Then

λD̆|G1 ≡
(
λ

2
− λm+ λmultC1(D)

)
L+ λmultC1(D)Ĺ.

It follows (see Lemma 1.7.9 in [4]) that the log pair (G1, λD̆) is log canonical if

λ

2
− λm+ λmultC1(D) 6 1.
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But the log pair (G1, λD̆) is not log canonical. Hence multC1(D) > 11/14 + m.
It follows that 9/7 > multC1(D) > 11/7 since 2m > multC1(D), a contradiction.
The lemma is proved.

Let T be the surface cut out by the equation x = 0 on X. Then

T ≡ π∗(T )− 3
2
E,

where T is the proper transform of the divisor T on Y . Hence, 5/2 − 3m =
D · T ·H > 0, where H is a generic surface in the linear system |−KY |.

Corollary 7.4. We have m 6 5/6.

It follows from [10] or [9] that m > 9/14. Hence the equivalence

KY + λD +
(
λm− 1

2

)
E ≡ π∗(KX + λD)

implies the existence of a point Q ∈ E ∼= P2 such that the log pair (Y, λD +
(λm− 1/2)E) is not log canonical at Q. In particular, we have

multQ(D) >
3
2λ

−m

because the divisor λD + (λm− 1/2)E is effective.

Lemma 7.5. If Q ∈ T , then Q ∈
⋃15
i=1 Ci.

Proof. Suppose that Q ∈ T and Q /∈
⋃15
i=1 Ci. Let H be a generic surface through

Q in the linear system |−KY |. Then H contains no components of the effective
cycle D · T . Thus we see that

5
2
− 3m = D · T ·H > multQ(D) >

3
2λ

−m.

It follows that m < 1/2, a contradiction. The lemma is proved.

Lemma 7.6. Let ι : S → P2 be a double covering branched over a smooth curve
Z ⊂ P2 of degree 6, and let B be an effective Q-divisor on S such that

1) we have B ≡ ι∗(OP2(1)),
2) the log pair (S,B) is log canonical in a punctured neighbourhood of a point

Θ ∈ S such that ι(Θ) /∈ Z .
Then the log pair (S,B) is log canonical at Θ.

Proof. Suppose that the log pair (S,B) is not log canonical at Θ. Taking the
intersection of the divisor B with the proper transform of a generic line through
the point ι(Θ) in the plane P2, we see that multΘ(B) 6 2.

Let υ : S → S be a blow-up of the point Θ. Then

KS +B + (multΘ(B)− 1)F ≡ υ∗(KS +B),

where F is the exceptional curve of the blow-up υ and B is the proper transform
of the divisor B on the surface S. Then there is a point Θ ∈ F such that the
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singularities of the log pair (S,B + (multΘ(B) − 1)F ) are not log canonical at Θ.
Hence multΘ̄(B) > 2−multΘ(B).

Let L be a generic surface in the linear system
∣∣ι∗(OP2(1))

∣∣ such that the proper
transform L̄ of L on the surface S passes through the point Θ. Then L consists
of at most two components and one of them contains the point Θ, but L is smooth
at Θ.

By Remark 2.2 we may assume that the support of the divisor B does not contain
at least one component of L. Therefore, if L is irreducible, then

2−multΘ(B) = B · L̄ > multΘ(B) > 2−multΘ(B),

which is a contradiction. Hence we see that L is reducible.
Let L1 and L2 be the components of L such that L2 63 Θ ∈ L1, and let L̄1 be

the proper transform of L1 on the surface S. Then we have

1−multΘ(B) = B · L̄1 > multΘ(B) > 2−multΘ(B) > 1−multΘ(B)

in the case when the support of B does not contain L1. Thus we see that the
support of B contains L1 but not L2. We write

B = εL1 + Ω,

where ε is a positive rational number and Ω is an effective Q-divisor (on the sur-
face S) whose support does not contain L1. Then

1 = B · L2 = 3ε+ Ω · L2.

It follows that ε 6 1/3.
Let Ω be the proper transform of the divisor Ω on the surface S. Then the log

pair (S, εL̄1 + Ω + (multΘ(Ω) + ε − 1)F ) is not log canonical at the point Θ. By
Theorem 7.5 of [9], the log pair (L̄1,Ω|L̄1

+ (multΘ(Ω) + ε − 1)F |L̄1
) is not log

canonical at Θ. This is equivalent to the inequality

multΘ(Ω|L̄1
) > 2−multΘ(Ω)− ε,

whence Ω · L̄1 > 2−multΘ(Ω)− ε. We have

1−multΘ(Ω) + 2ε = Ω · L̄1 > 2−multΘ(Ω)− ε.

It follows that ε > 1/3. But we have seen that ε 6 1/3. The lemma is proved.

Lemma 7.6 yields the following result.

Lemma 7.7. The point Q belongs to the set
⋃15
i=1 Ci.

Proof. Suppose that Q /∈
⋃15
i=1 Ci. Let H be a generic surface through Q in the

linear system |−KY |. Then the log pair (H,λD|H + (λm − 1/2)E|H) is not log
canonical at Q (see Theorem 7.5 in [9]). This contradicts Lemma 7.6 since Q /∈ T
by Lemma 7.5. The lemma is proved.
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We may assume that Q ∈ C1. Let S be a generic surface through Q in the linear
system |−KY |. We put Θ = Q, L1 = E|S , C = C1 and B = D|S + (m − 1/2)L1.
The proof of Lemma 7.2 yields that multC(D) 6 1/λ. Hence the following assertions
hold.

1) We have B ≡ ι∗(OP2(1)), where ι = η ◦ γ|S : S → P2.
2) The log pair (S, λB) is log canonical in a punctured neighbourhood of the

point Θ ∈ S.

Lemma 7.8. The log pair (S, λB) is log canonical at the point Θ.

Proof. Suppose that the log pair (S, λB) is not log canonical at Θ. Let L2 be an
irreducible curve such that ι(L2) = ι(L1) and L1 6= L2. Then

L1 + L2 + C ≡ ι∗(OP2(1))

and the log pair (S,L1 + L2 + C) is log canonical.
We may assume (see Remark 2.2) that the support of the divisor B does not

contain one of the curves L1, L2, C. Taking the intersection of B with these curves,
we see that the support of B does not contain L2. We write

B = εC +mL1 + Ω,

where ε and m are non-negative rational numbers and Ω is an effective Q-divisor
(on the surface S) whose support does not contain the curves L1, L2, C. Then

1 = B · L2 = 2m+ ε+ Ω · L2 > 2m+ ε.

It follows that 2m+ ε 6 1. By Theorem 7.5 in [9], the log pairs

(C, λmL1|C + λΩ|C), (L1, λεC|L1 + λΩ|L1)

are not log canonical at Θ. Hence we have 2ε > 1/λ and 2m > 1/λ−1 respectively.
Let υ : S → S be a blow-up of the point Θ. Then

KS+λεC+λmL̄1+λΩ+(λε+λm+multΘ(Ω)−1)F ≡ υ∗(KS+λεC+λmL1+λΩ),

where F is the exceptional curve of the birational morphism υ and C, L̄1, Ω are
the proper transforms of the divisors C, L1, Ω respectively. Then it follows that
λε+ λm+ multΘ(Ω)− 1 < 1 because

0 = B · C = −2ε+m+ C · Ω > −2ε+m+ multΘ(Ω)

and 2m+ ε 6 1. Hence there is a point Θ ∈ F such that the log pair

(S, λεC + λmL̄1 + λΩ + (λε+ λm+ multΘ(Ω)− 1)F )

is not log canonical at Θ.
Suppose that Θ /∈ C ∪ L̄1. Then multΘ(Ω) = F ·Ω > 1/λ = 9/7 because the log

pair (F, λΩ|F ) is not log canonical at Θ by Theorem 7.5 of [9]. We have

0 = C ·B = m− 2ε+ Ω · C > m− 2ε+
1
λ
,

1 = L1 ·B = −2m+ ε+ Ω · L1 > −2m+ ε+
1
λ
.

This contradicts the inequality 2m+ ε 6 1.
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Suppose that Θ ∈ L̄1. Then

1−multΘ(Ω)− ε+ 2m = L̄1 · Ω >
2
λ
−multΘ(Ω)− ε−m

because the singularities of the log pair (L̄1, λΩ|L̄1
+(λε+λm+multΘ(Ω)− 1)F |L̄1

)
are not log canonical at the point Θ by Theorem 7.5 of [9]. Hence m > 11/21. This
contradicts the inequality 2m+ ε 6 1.

Hence we see that Θ ∈ C. Then

−multΘ(Ω) + 2ε−m = C · Ω >
2
λ
−multΘ(Ω)− ε−m

because the singularities of the log pair (C, λΩ|C + (λε+ λm+ multΘ(Ω)− 1)F |C)
are not log canonical at the point Θ by Theorem 7.5 in [9]. Hence ε > 6/7. This
contradicts the inequalities 2m > 1/λ − 1 = 2/7 and 2m + ε 6 1. The lemma is
proved.

By Theorem 7.5 of [9], the log pair (S, λB) is not log canonical at Θ. This con-
tradicts Lemma 7.8. Theorem 1.17 is proved.

§ 8. Birational automorphisms

Let X be a generic hypersurface of degree 20 in P(1, 1, 4, 5, 10). Then the singu-
larities of X consist of a singular point Q of type 1

2 (1, 1, 1) and singular points O1

and O2 of type 1
5 (1, 1, 4).

Let α : U → X be a weighted blow-up of the point O1 with weights (1, 1, 4).
Then there is a commutative diagram

U
σ

ttiiiiiiiiiiiiiiiiiiiiiii

α

��

Y
γoo

η

��6
66

66
66

66
66

66
66

V

ω %%KKKKKKKKKK X
ξ

yys
s

s
s

s
ψ

**UUUUUUUUUU

P(1, 1, 4, 10)
χ

//______________ P(1, 1, 4)

where ξ, ψ and χ are projections, γ is a weighted blow-up with weights (1, 1, 4)
of the singular point that dominates O2, η is an elliptic fibration, σ is a birational
morphism that contracts 75 rational curves C1, . . . , C75, and ω is a double covering.

Let τ be the involution of X that is induced by the projection X → P(1, 1, 4, 5).

Lemma 8.1. The group Aut(X) is generated by the involution τ .

Proof. We put Pi = σ(Ci). Then X can be given by the equation

t2w + tg(x, y, z, w) + h(x, y, z, w) = 0 ⊂ P(1, 1, 4, 5, 10) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = 1, wt(z) = 4, wt(t) = 5, wt(w) = 10, and g, h are quasi-
homogeneous polynomials of degree 15 and 20 respectively. The point O1 is given
by x = y = z = w = 0.
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Let υ be any biregular automorphism of X such that υ 6= τ . Twisting υ by τ if
necessary, we may assume that υ(O1) = O1. We claim that then υ is the identity
map.

Indeed, the automorphism υ induces a biregular automorphism ὺ of the three-
fold U such that the divisor E is ὺ-invariant. Put P̀i = Ci ∩ E. Then the points
P̀1, . . . , P̀75 can be given by

g̀(x, y, z) = h̀(x, y, z) = 0 ⊂ P(1, 1, 4) ∼= Proj(C[x, y, z]),

where wt(x) = wt(y) = 1, wt(z) = 4 and g̀, h̀ are generic quasi-homogeneous
polynomials of degree 15 and 20 respectively. The set {P̀1, . . . , P̀75} is ὺ|E-invariant.
The proper transform on U of the surface that is cut out on X by the equation
w = 0 is ὺ-invariant. It follows that ὺ|E is the identity map.

We easily see that υ induces a biregular automorphism ῡ of Y such that the
fibration η is invariant with respect to ῡ. Let E and F be exceptional divisors of
the birational morphism α ◦ γ such that γ(E) = E and α ◦ γ(F ) = O2. Then the
surfaces E and F are ῡ-invariant sections of η and the restrictions ῡ|E and ῡ|F are
the identity maps.

As shown in [6], the sections E and F induce Z-linearly independent points in
the Picard group of a generic fibre of η. Hence the induced automorphism ῡ acts
trivially on the generic fibre of η. It follows that ῡ is the identity map. Thus the
automorphism υ is the identity map. The lemma is proved.

The following result is a corollary of [6] and Lemma 8.1.

Corollary 8.2. There is an exact sequence of groups

1 −→ Z2 ∗ Z2 −→ Bir(X) −→ Z2 −→ 1,

whence Bir(X) ∼= Z2 ∗ Z2.

The following result can similarly be deduced from [6].

Lemma 8.3. Let V be a generic hypersurface of degree 9 in P(1, 1, 2, 3, 3). Then

Bir(V ) ∼= 〈a, b, c | a2 = b2 = c2 = (abc)2 = 1〉.

Proof. The singularities of the threefold V consist of points O1, O2, O3 of type
1
3 (1, 1, 2) and a singular point O of type 1

2 (1, 1, 1). Let υ be a biregular automor-
phism of V . We claim that υ is the identity map (see [6]).

Indeed, let Z be the base curve of the pencil |−KV |. Then Z is a smooth
υ-invariant rational curve that contains the points O1, O2, O3 and O. It follows
that υ(Oi) = Oi because

υ({O1, O2, O3}) = {O1, O2, O3}

and υ(O) = O. Arguing as in the proof of Lemma 8.1, we see that υ is the identity
map. The lemma is proved.

It would be interesting to prove analogues of Corollary 8.2 and Lemma 8.3 for
all birationally rigid Fano threefolds that satisfy the hypotheses of Theorem 1.14.
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§ 9. Kollár’s method

In this section we consider an alternative approach to the proof of Theorem 1.15
due to J. Kollár. We use the hypotheses and notation of Theorem 1.14.

The hypersurface X can be given by the equation

f(x, y, z, t, w) = 0 ⊂ P(1, a1, a2, a3, a4) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = a1, wt(z) = a2, wt(t)= a3, wt(w) = a3, and f(x, y, z, t, w)
is a generic quasi-homogeneous polynomial of degree d=

∑4
i=1 ai. We introduce the

following notation: S is a generic surface in the linear system |−KX |, Z is
the curve that is cut out on S by the equations x = y = 0, and L is the curve
in P(1, a1, a2, a3, a4) given by the equations x = y = z = 0.

Proposition 9.1. We have lct(X) = 1 if one of the following conditions holds :
1) d 6 a1a2,
2) d 6 a1a3 and the curve L is not contained in X ,
3) d 6 a2a3, the curve Z is irreducible and the log pair (S, 1

a1
Z) is log canonical.

Proof. Let D be an arbitrary effective Q-divisor on X such that the numerical
equivalence D ≡ −KX holds. It follows from Lemma 2.4 that the log pair (X,D)
is log canonical outside the singular points of X, but S contains all singular points
of X.

Suppose that the log pair (X,D) is not log canonical. Then Theorem 7.5 of [9]
yields that the log pair (S,D|S) is not log canonical. This contradicts Corollary 12
of [13] if either 1) or 2) holds.

To complete the proof, we assume that d 6 a2a3, the curve Z is irreducible
and the log pair (S, 1

a1
Z) has log canonical singularities. We may assume that the

support of the divisor D|S does not contain the curve Z (see Remark 2.2). Then
the proof of Proposition 11 in [13] yields that d > a2a3, a contradiction. The
proposition is proved.

Corollary 9.2. We have lct(X) = 1 in the case when ג > 17 and

ג /∈ {18, . . . , 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 42, 43, 46, 47, 50, 52,
55, 56, 57, 62, 63, 67, 82}.

A proof of Proposition 9.1 was communicated to the author by J. Kollár.
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