ON SINGULAR CUBIC SURFACES*

IVAN CHELTSOV ${ }^{\dagger}$
Abstract. We study global log canonical thresholds of singular cubic surfaces.
Key words. Cubic surfaces, singularities, log canonical thresholds, del Pezzo fibrations, birational maps, Kahler-Einstein metric, alpha-invariant of Tian, orbifolds.

AMS subject classifications. 14J26, 14J45, 14J70, 14Q10, 14B05, 14E05, 32Q20
All varieties are assumed to be defined over \mathbb{C}.

1. Introduction. Let X be a variety with at most log terminal singularities, let $Z \subseteq X$ be a closed subvariety, and let D be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. Then the number

$$
\operatorname{lct}_{Z}(X, D)=\sup \{\lambda \in \mathbb{Q} \mid \text { the log pair }(X, \lambda D) \text { is } \log \text { canonical along } Z\}
$$

is said to be the \log canonical threshold of D along Z (see [8]).
Example 1.1. Let $\phi \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ be a nonzero polynomial, let $O \in \mathbb{C}^{n}$ be the origin. Then
$\operatorname{lct}_{O}\left(\mathbb{C}^{n},(\phi=0)\right)=\sup \left\{c \in \mathbb{Q} \mid\right.$ the function $\frac{1}{|\phi|^{2 c}}$ is locally integrable near $\left.O\right\}$.
For the case $Z=X$ we use the notation $\operatorname{lct}(X, D)$ instead of $\operatorname{lct}_{X}(X, D)$. Then

$$
\begin{aligned}
\operatorname{lct}(X, D) & =\inf \left\{\operatorname{lct}_{P}(X, D) \mid P \in X\right\} \\
& =\sup \{\lambda \in \mathbb{Q} \mid \text { the log pair }(X, \lambda D) \text { is log canonical }\} .
\end{aligned}
$$

Suppose, in addition, that X is a Fano variety.
Definition 1.2. We define the global log canonical threshold of X by the number

$$
\operatorname{lct}(X)=\inf \left\{\operatorname{lct}(X, D) \mid D \text { is effective } \mathbb{Q} \text {-divisor on } X \text { such that } D \equiv-K_{X}\right\} .
$$

The number $\operatorname{lct}(X)$ is an algebraic counterpart of the α-invariant introduced in [11].

Example 1.3. Let X be a smooth cubic surface in \mathbb{P}^{3}. Then it follows from [4] that

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
2 / 3 \text { when } X \text { has an Eckardt point, } \\
3 / 4 \text { when } X \text { does not have Eckardt points. }
\end{array}\right.
$$

[^0]In this paper we prove the following result ${ }^{1}$.
THEOREM 1.4. Let X be a singular cubic surface in \mathbb{P}^{3} with canonical singularities. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
2 / 3 \text { when } \operatorname{Sing}(X)=\left\{\mathbb{A}_{1}\right\} \\
1 / 3 \text { when } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{4}\right\} \\
1 / 3 \text { when } \operatorname{Sing}(X)=\left\{\mathbb{D}_{4}\right\} \\
1 / 3 \text { when } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\} \\
1 / 4 \text { when } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{5}\right\} \\
1 / 4 \text { when } \operatorname{Sing}(X)=\left\{\mathbb{D}_{5}\right\} \\
1 / 6 \text { when } \operatorname{Sing}(X)=\left\{\mathbb{E}_{6}\right\} \\
1 / 2 \text { in other cases. }
\end{array}\right.
$$

Let us consider one birational application of Theorem 1.4.
ThEOREM 1.5. Let Z be a smooth curve. Suppose that there is a commutative diagram

such that π and $\bar{\pi}$ are flat morphisms, and ρ is a birational map that induces an isomorphism

$$
\begin{equation*}
\left.\rho\right|_{V \backslash X}: V \backslash X \longrightarrow \bar{V} \backslash \bar{X} \tag{1.7}
\end{equation*}
$$

where X and \bar{X} are scheme fibers of π and $\bar{\pi}$ over a point $O \in Z$, respectively. Suppose that

- the varieties V and \bar{V} have terminal \mathbb{Q}-factorial singularities,
- the divisors $-K_{V}$ and $-K_{\bar{V}}$ are π-ample and $\bar{\pi}$-ample, respectively,
- the fibers X and \bar{X} are irreducible.

Then ρ is an isomorphism if one of the following conditions hold:

- the varieties X and \bar{X} have log terminal singularities, and $\operatorname{lct}(X)+\operatorname{lct}(\bar{X})>1$;
- the variety X has \log terminal singularities, and $\operatorname{lct}(X) \geqslant 1$.

The assertion of Theorem 1.5 is sharp (see [10, Example 5.2-5.6]).
Example 1.8. Let V be \bar{V} subvarieties in $\mathbb{C}^{1} \times \mathbb{P}^{3}$ given by the equations

$$
x^{3}+y^{3}+z^{2} w+t^{6} w^{3}=0 \text { and } x^{3}+y^{3}+z^{2} w+w^{3}=0
$$

respectively, where t is a coordinate on \mathbb{C}^{1}, and (x, y, z, w) are coordinates on \mathbb{P}^{3}. The projections

$$
\pi: V \longrightarrow \mathbb{C}^{1} \text { and } \bar{\pi}: \bar{V} \longrightarrow \mathbb{C}^{1}
$$

[^1]are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^{1} given by $t=0$. Then \bar{X} is smooth, the surface X has one singular point of type \mathbb{D}_{4}. Put $Z=\mathbb{C}^{1}$. Then the map
$$
(x, y, z, w) \longrightarrow\left(t^{2} x, t^{2} y, t^{3} z, w\right)
$$
induces a birational map $\rho: V \rightarrow \bar{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But $\operatorname{lct}(X)=1 / 3$ and $\operatorname{lct}(\bar{X})=2 / 3$ (see Example 1.3 and Theorem 1.4).

Example 1.9. Let V be \bar{V} subvarieties in $\mathbb{C}^{1} \times \mathbb{P}^{3}$ given by the equations

$$
x^{3}+y^{2} z+z^{2} w+t^{12} w^{3}=0 \text { and } x^{3}+y^{2} z+z^{2} w+w^{3}=0
$$

respectively, where t is a coordinate on \mathbb{C}^{1}, and (x, y, z, w) are coordinates on \mathbb{P}^{3}. The projections

$$
\pi: V \longrightarrow \mathbb{C}^{1} \text { and } \bar{\pi}: \bar{V} \longrightarrow \mathbb{C}^{1}
$$

are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^{1} given by $t=0$. Then \bar{X} is smooth, the surface X has one singular point of type \mathbb{E}_{6}. Put $Z=\mathbb{C}^{1}$. Then the map

$$
(x, y, z, w) \longrightarrow\left(t^{2} x, t^{3} y, z, t^{6} w\right)
$$

induces a birational map $\rho: V \rightarrow \bar{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But $\operatorname{lct}(X)=1 / 6$ and $\operatorname{lct}(\bar{X})=2 / 3$ (see Example 1.3 and Theorem 1.4).

Example 1.10 . Let V be \bar{V} subvarieties in $\mathbb{C}^{1} \times \mathbb{P}^{3}$ given by the equations

$$
w z^{2}+z x^{2}+y^{2} x+t^{8} w^{3}=0 \text { and } w z^{2}+z x^{2}+y^{2} x+w^{3}=0
$$

respectively, where t is a coordinate on \mathbb{C}^{1}, and (x, y, z, w) are coordinates on \mathbb{P}^{3}. The projections

$$
\pi: V \longrightarrow \mathbb{C}^{1} \text { and } \bar{\pi}: \bar{V} \longrightarrow \mathbb{C}^{1}
$$

are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^{1} given by $t=0$. Then \bar{X} is smooth, the surface X has one singular point of type \mathbb{D}_{5}. Put $Z=\mathbb{C}^{1}$. Then the map

$$
(x, y, z, w) \longrightarrow\left(t^{2} x, t y, z, t^{4} w\right)
$$

induces a birational map $\rho: V \rightarrow \bar{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But $\operatorname{lct}(X)=1 / 4$ and $\operatorname{lct}(\bar{X})=2 / 3$ (see Example 1.3 and Theorem 1.4).

The number $\operatorname{lct}(X)$ is closely related to the existence of a Kähler-Einstein metric (see [6]), but we can not use Theorem 1.4 to prove the existence of such a metric on singular cubic surfaces.

REMARK 1.11. If a singular normal cubic surface in \mathbb{P}^{3} admits an orbifold KählerEinstein metric, then its singular locus must consist of singular points of type \mathbb{A}_{1} and \mathbb{A}_{2} (see [7]).

Nevertheless, we can use an equivariant analogue of the number $\operatorname{lct}(X)$ to prove the existence of an orbifold Kähler-Einstein metric on some symmetric singular cubic surfaces.

Example 1.12. Let X_{1} be the Cayley cubic surface in \mathbb{P}^{3}, i.e. a singular surface given by

$$
x y z+x y t+x z t+y z t=0 \subseteq \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

and let X_{2} be a cubic surface in \mathbb{P}^{3} that is given by the equation $x y z=t^{3}$. Put
$\operatorname{lct}\left(X_{1}, \mathrm{~S}_{4}\right)=\sup \left\{\begin{array}{l|l}\lambda \in \mathbb{Q} & \begin{array}{l}\text { the log pair }\left(X_{1}, \lambda D\right) \text { has log canonical singularities } \\ \text { for every } \mathrm{S}_{4} \text {-invariant effective } \mathbb{Q} \text {-divisor } D \equiv-K_{X_{1}}\end{array}\end{array}\right\}$,
where we consider S_{4} as a subgroup of $\operatorname{Aut}\left(X_{1}\right)$. Similarly, we define $\operatorname{lct}\left(X_{2}, \mathrm{~S}_{3} \times \mathbb{Z}_{3}\right)$. Then

$$
\operatorname{lct}\left(X_{1}, \mathrm{~S}_{4}\right)=\operatorname{lct}\left(X_{2}, \mathrm{~S}_{3} \times \mathbb{Z}_{3}\right)=1>\frac{2}{3}
$$

by [4, Lemma 5.1]. Then X_{1} and X_{2} admit Kähler-Einstein metrics ${ }^{2}$ by [6] (cf. [5, Appendix A]).

We prove Theorem 1.4 in Section 3, and we prove Theorem 1.5 in Section 4.
2. Basic tools. Let S be a surface with canonical singularities, and D be an effective \mathbb{Q}-divisor on it.

Remark 2.1. Let B be an effective \mathbb{Q}-divisor on S such that (S, B) is \log canonical. Then

$$
\left(S, \frac{1}{1-\alpha}(D-\alpha B)\right)
$$

is not \log canonical if (S, D) is not \log canonical, where $\alpha \in \mathbb{Q}$ such that $0 \leqslant \alpha<1$.
Let $\operatorname{LCS}(S, D) \subset S$ be a subset such that $P \in \operatorname{LCS}(S, D)$ if and only if (S, D) is not \log terminal at the point P. The set $\operatorname{LCS}(S, D)$ is called the locus of \log canonical singularities.

Lemma 2.2. Suppose that $-\left(K_{S}+D\right)$ is ample. Then $\operatorname{LCS}(S, D)$ is connected.
Proof. See Theorem 17.4 in [9].
Let P be a point of the surface S such that (S, D) is not \log canonical at the point P.

REmARK 2.3. Suppose that S is smooth at P. Then $\operatorname{mult}_{P}(D)>1$.
Let C be an irreducible curve on the surface S. Put

$$
D=m C+\Omega
$$

where $m \in \mathbb{Q}$ such that $m \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $C \nsubseteq \operatorname{Supp}(\Omega)$.

[^2]REmark 2.4. Suppose that $C \subseteq \operatorname{LCS}(S, D)$. Then $m \geqslant 1$.
Lemma 2.5. Suppose that $P \in C$, the surface S is smooth at P, and $m \leqslant 1$. Then $C \cdot \Omega>1$.

Proof. It follows from Theorem 17.6 in [9] that $C \cdot \Omega \geqslant \operatorname{mult}_{P}\left(\left.\Omega\right|_{C}\right)>1$.
Let $\pi: \bar{S} \rightarrow S$ be a birational morphism such that the surface \bar{S} has canonical singularities, and \bar{D} is a proper transform of D via π. Then

$$
K_{\bar{S}}+\bar{D}+\sum_{i=1}^{r} a_{i} E_{i} \equiv \pi^{*}\left(K_{S}+D\right)
$$

where E_{i} is a π-exceptional curve, and a_{i} is a rational number.
REmARK 2.6. The \log pair (S, D) is \log canonical if and only if ($\bar{S}, \bar{D}+\sum_{i=1}^{r} a_{i} E_{i}$) is \log canonical.

Suppose that $r=1, \pi\left(E_{1}\right)=P$, and P is an ordinary double point.
Lemma 2.7. Suppose that \bar{S} is smooth along E_{1}. Then $a_{1}>1 / 2$.
Proof. The inequality $a_{1}>1 / 2$ follows from Theorem 17.6 in [9].
Most of the described results are valid in much more general settings (see [9]).
3. Main result. Let S be a singular cubic surface in \mathbb{P}^{3} with canonical singularities. Put $\Sigma=\operatorname{Sing}(S)$ and
$\operatorname{lct}_{n}(S)=\sup \left\{\mu \in \mathbb{Q} \mid\right.$ the \log pair $\left(S, \frac{\mu}{n} D\right)$ is \log canonical for every $\left.D \in\left|-n K_{X}\right|\right\}$
for every $n \in \mathbb{N}$. Then it follows from [12] that

$$
\operatorname{lct}(S)=\inf _{n \in \mathbb{N}}\left(\operatorname{lct}_{n}(S)\right) \leqslant \operatorname{lct}_{1}(S)=\left\{\begin{array}{l}
2 / 3 \text { when } \Sigma=\left\{\mathbb{A}_{1}\right\} \\
1 / 3 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{4}\right\} \\
1 / 3 \text { when } \Sigma=\left\{\mathbb{D}_{4}\right\} \\
1 / 3 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\} \\
1 / 4 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{5}\right\} \\
1 / 4 \text { when } \Sigma=\left\{\mathbb{D}_{5}\right\} \\
1 / 6 \text { when } \Sigma=\left\{\mathbb{E}_{6}\right\} \\
1 / 2 \text { in other cases. }
\end{array}\right.
$$

Let D be an arbitrary effective \mathbb{Q}-divisor on the surface S such that

$$
D \equiv-\left.K_{S} \sim \mathcal{O}_{\mathbb{P}^{3}}(1)\right|_{S}
$$

and let λ be an arbitrary positive rational number such that $\lambda<\operatorname{lct}_{1}(S)$.
Lemma 3.1. Suppose that $\operatorname{lct}_{1}(S) \leqslant 1 / 3$. Then $\operatorname{LCS}(S, \lambda D) \subseteq \Sigma$.
Proof. Suppose that $(S, \lambda D)$ is not \log terminal at a smooth point $P \in S$. Then

$$
3=-K_{S} \cdot D \geqslant \operatorname{mult}_{P}(D)>1 / \lambda>3
$$

which is a contradiction. The obtained contradiction implies that $\operatorname{LCS}(S, \lambda D) \subseteq \Sigma$. \square

Lemma 3.2. Suppose that $|\operatorname{LCS}(S, \lambda D)|<+\infty$. Then $\operatorname{LCS}(S, \lambda D) \subseteq \Sigma$.
Proof. The required assertion follows from [4]. \square
Let O be a singular point of the surface S, and $\alpha: \bar{S} \rightarrow S$ be a partial resolution of singularities that contracts smooth rational curves E_{1}, \ldots, E_{k} to the point O such that

$$
\bar{S} \backslash\left(\bigcup_{i=1}^{k} E_{i}\right) \cong S \backslash O
$$

the surface \bar{S} is smooth along $\cup_{i=1}^{k} E_{i}$, and $E_{i}^{2}=-2$ for every $i=1, \ldots, k$. Then

$$
\bar{D} \equiv \alpha^{*}(D)-\sum_{i=1}^{k} a_{i} E_{i}
$$

where \bar{D} is the proper transform of D on the surface \bar{S}, and $a_{i} \in \mathbb{Q}$. Let L_{1}, \ldots, L_{r} be lines on the surface S such that $O \in L_{i}$, and \bar{L}_{i} be the proper transform of L_{i} on the surface \bar{S}. Then

$$
-K_{\bar{S}} \cdot \bar{L}_{1}=\cdots=-K_{\bar{S}} \cdot \bar{L}_{r}=1
$$

Remark 3.3. To prove Theorem 1.4, we must show that the equality

$$
\operatorname{lct}(S)=\operatorname{lct}_{1}(S)
$$

holds. Hence, it follows from the choice of the divisor D and $\lambda \in \mathbb{Q}$ that to prove Theorem 1.4 it is enough to show that the singularities of the \log pair $(S, \lambda D)$ are \log canonical.

In the rest of the section, we prove Theorem 1.4 case by case using [1].
Lemma 3.4. Suppose that $\Sigma=\left\{\mathbb{A}_{1}\right\}$. Then $\operatorname{lct}(S)=2 / 3$.
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

Suppose that there is an irreducible curve $Z \subset S$ such that $D=\mu Z+\Omega$, where μ is a rational number such that $\mu \geqslant 1 / \lambda$, and Ω is an effective \mathbb{Q}-divisor such that $Z \not \subset \operatorname{Supp}(\Omega)$. Then

$$
3=-K_{S} \cdot D=\mu \operatorname{deg}(Z)-K_{S} \cdot \Omega \geqslant \mu \operatorname{deg}(Z)>3 \operatorname{deg}(Z) / 2
$$

which implies that Z is a line. Let C be a general conic on S such that $-K_{S} \sim Z+C$. Then

$$
2=C \cdot D=\mu C \cdot Z+C \cdot \Omega \geqslant \mu C \cdot Z \geqslant \frac{3}{2} \mu
$$

which is a contradiction. Then $\operatorname{LCS}(S, \lambda D)=O$ by Lemma 3.2.
We have $3-2 a_{1}=\bar{H} \cdot \bar{D} \geqslant 0$, where \bar{H} is a general curve in $\left|-K_{\bar{S}}-E_{1}\right|$. It follows from

$$
K_{\bar{S}}+\lambda \bar{D}+\lambda a_{1} E_{1} \equiv \alpha^{*}\left(K_{S}+\lambda D\right)
$$

that there is a point $Q \in E_{1}$ such that $\left(\bar{S}, \lambda \bar{D}+\lambda a_{1} E_{1}\right)$ is not log canonical at the point Q.

It follows from [1] that $r=6$. Let $\pi: \bar{S} \rightarrow \mathbb{P}^{2}$ be a contraction of the curves $\bar{L}_{1}, \ldots, \bar{L}_{6}$.

Suppose that $Q \notin \cup_{i=1}^{6} \bar{L}_{i}$. Then

$$
\pi\left(\bar{D}+a_{1} E_{1}\right) \equiv \pi\left(-K_{\bar{S}}\right) \equiv-K_{\mathbb{P}^{2}}
$$

and π is an isomorphism in a neighborhood of Q. Let L be a general line on \mathbb{P}^{2}. Then the locus

$$
\operatorname{LCS}\left(\mathbb{P}^{2}, L+\pi\left(\lambda \bar{D}+\lambda a_{1} E_{1}\right)\right)
$$

is not connected, which is impossible by Lemma 2.2.
Therefore, we may assume that $Q \in \bar{L}_{1}$. Put $D=a L_{1}+\Upsilon$, where a is a nonnegative rational number, and Υ is an effective \mathbb{Q}-divisor, whose support does not contain the line L_{1}. Then

$$
\bar{\Upsilon} \equiv \alpha^{*}(\Upsilon)-\epsilon E_{1}
$$

where $\epsilon=a_{1}-a / 2$, and $\bar{\Upsilon}$ is the proper transform of the divisor Υ on the surface \bar{S}.
The log pair $\left(\bar{S}, \lambda a \bar{L}_{1}+\lambda \bar{\Upsilon}+\lambda(a / 2+\epsilon) E_{1}\right)$ is not \log canonical at Q. Then

$$
1+a / 2-\epsilon=\bar{L}_{1} \cdot \bar{\Upsilon}>1 / \lambda-a / 2-\epsilon
$$

by Lemma 2.5 , because $\lambda a \leqslant 1$. Hence, we have $a>1 / 2$.
It follows from [12] that there is a conic $C_{1} \subset S$ such that the log pair

$$
\left(S, \operatorname{lct}_{1}(S)\left(L_{1}+C_{1}\right)\right)
$$

is not \log terminal. But it must be \log canonical. Therefore, in the case when $C_{1} \subseteq \operatorname{Supp}(D)$, we can use Remark 2.1 to find an effective divisor D^{\prime} on the surface S such that the equivalence

$$
D^{\prime} \equiv-K_{S}
$$

holds, the \log pair $\left(S, \lambda D^{\prime}\right)$ is not \log canonical at the point P, and $C_{1} \nsubseteq \operatorname{Supp}\left(D^{\prime}\right)$.
To complete the proof, we may assume that $C_{1} \nsubseteq \operatorname{Supp}(D)$.
Let \bar{C}_{1} be the proper transforms of the conic C_{1} on the surface \bar{S}. Then

$$
2-3 a / 2-\epsilon=\bar{C}_{1} \cdot \bar{\Upsilon} \geqslant \operatorname{mult}_{Q}(\bar{\Upsilon})>1 / \lambda-a / 2-\epsilon
$$

which implies that $a<1 / 2$. But $a>1 / 2$. The obtained contradiction completes the proof.

Lemma 3.5. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \ldots, \mathbb{A}_{1}\right\}$ and $|\Sigma| \geqslant 2$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

Suppose that there is an irreducible curve Z on the surface S such that

$$
D=\mu Z+\Omega
$$

where μ is a rational number such that $\mu \geqslant 1 / \lambda$, and Ω is an effective \mathbb{Q}-divisor, whose support does not contain the curve Z. Then Z is a line (see the proof of Lemma 3.4). We have

$$
2=C \cdot D=\mu C \cdot Z+C \cdot \Omega \geqslant \mu C \cdot Z \geqslant \mu \geqslant 1 / \lambda>2
$$

where C is a general conic on S that intersects Z in two points.
We may assume that $\operatorname{LCS}(S, \lambda D)=O$ by Lemmas 2.2 and 3.2 . Then $a_{1}>1$ by Lemma 2.7.

Arguing as in the proof of Lemma 3.4, we see that there is a point $Q \in E$ such that the singularities of the \log pair $\left(\bar{S}, \lambda \bar{D}+\lambda a_{1} E_{1}\right)$ are not \log canonical at the point Q.

Let P be a point in Σ such that $P \neq O$. We may assume that $P \in L_{1}$. Then

$$
2 L_{1}+L^{\prime} \sim-K_{S}
$$

for some line $L^{\prime} \subset S$.
Suppose that $Q \in \bar{L}_{1}$. Let a be a non-negative rational number such that

$$
D=a L_{1}+\Upsilon
$$

where Υ is an effective \mathbb{Q}-divisor, whose support does not contain the line L_{1}. Then

$$
\bar{\Upsilon} \equiv \alpha^{*}(\Upsilon)-\epsilon E_{1}
$$

where $\bar{\Upsilon}$ is the proper transforms of Υ on the surface \bar{S}, and $\epsilon=a_{1}-a / 2$. The log pair

$$
\left(\bar{S}, \lambda a \bar{L}_{1}+\lambda \bar{\Upsilon}+\lambda(a / 2+\epsilon) E_{1}\right)
$$

is not \log canonical at the point Q. We have $\bar{L}_{1}^{2}=-1 / 2$. Then

$$
1-\epsilon=\bar{L}_{1} \cdot \bar{\Upsilon}>1 / \lambda-a / 2-\epsilon
$$

by Lemma 2.5. We have $a>1 / \lambda$, which is impossible. Hence, we see that $Q \notin \bar{L}_{1}$.
There is a unique reduced conic $Z \subset S$ such that $O \in Z \ni P$ and $Q \in \bar{Z}$, where \bar{Z} is the proper transform of the conic Z on the surface \bar{S}. Then $L_{1} \nsubseteq \operatorname{Supp}(Z)$, because $Q \notin \bar{L}_{1}$.

Suppose that Z is irreducible. Put

$$
D=e Z+\Delta
$$

where $e \in \mathbb{Q}$, and Δ is an effective \mathbb{Q}-divisor such that $C \nsubseteq \operatorname{Supp}(\Delta)$. Then

$$
\bar{\Delta} \equiv \alpha^{*}(\Delta)-\delta E_{1}
$$

where $\bar{\Delta}$ is the proper transforms of Δ on the surface \bar{S}, and $\delta=a_{1}-e / 2$. Then

$$
2-e-\delta=\bar{Z} \cdot \bar{\Delta}>1 / \lambda-e / 2-\delta>2-e / 2-\delta
$$

by Lemma 2.5 , because $\bar{C}^{2}=1 / 2$. We have $e<0$, which is impossible.
We see that the conic Z is reducible. Then

$$
Z=L_{2}+L_{2}^{\prime}
$$

where L_{2}^{\prime} is a line on S such that $P \in L_{2}^{\prime}$ and $L_{2} \cap L_{2}^{\prime} \neq \varnothing$.
The intersection $L_{2} \cap L_{2}^{\prime}$ consists of a single point. The impossibility of the case $Q \in \bar{L}_{1}$ implies that the surface S is smooth at the point $L_{2} \cap L_{2}^{\prime}$. There is a rational number $c \geqslant 0$ such that

$$
D=c L_{2}+\Xi
$$

where Ξ is an effective \mathbb{Q}-divisor, whose support does not contain the line L_{2}. Then

$$
\bar{\Xi} \equiv \alpha^{*}(\Xi)-v E_{1}
$$

where $\bar{\Xi}$ is the proper transforms of Ξ on the surface \bar{S}, and $v=a_{1}-c / 2$. The log pair

$$
\left(\bar{S}, \lambda c \bar{L}_{2}+\lambda \bar{\Xi}+\lambda(c / 2+v) E_{1}\right)
$$

is not \log canonical at Q. We have $Q \in \bar{L}_{2}$ and $\bar{L}_{2}^{2}=-1$. Then

$$
1+c / 2-v=\bar{L}_{2} \cdot \bar{\Xi}>1 / \lambda-c / 2-v>2-c / 2-v
$$

by Lemma 2.5. Therefore, the inequality $c>1$ holds.
There is a unique hyperplane section T of the surface S such that $T=C_{2}+L_{2}$ and

$$
Q=\bar{C}_{2} \cap \bar{L}_{2}=O
$$

where C_{2} is a conic, and \bar{C}_{2} is the proper transforms of C_{2} on the surface \bar{S}.
The conic C_{2} is irreducible. We may assume that $C_{2} \nsubseteq \operatorname{Supp}(D)$ (see Remark 2.1). Then

$$
2-3 c / 2-v=\bar{C}_{2} \cdot \bar{\Xi} \geqslant \operatorname{mult}_{Q}(\bar{\Xi})>1 / \lambda-c / 2-v
$$

which implies that $c<0$. The obtained contradiction completes the proof.
Lemma 3.6. Suppose that $\Sigma=\left\{\mathbb{D}_{4}\right\}$. Then $\operatorname{lct}(S)=1 / 3$.
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=3$. The lines L_{1}, L_{2}, L_{3} lie in a single plane. Thus, we may assume that $L_{3} \nsubseteq \operatorname{Supp}(D)$ due to Remark 2.1 and Lemma 3.1.

Let $\beta: \tilde{S} \rightarrow S$ be a birational morphism such that the morphism α contracts one irreducible rational curve E that contains three singular points O_{1}, O_{2}, O_{3} of type \mathbb{A}_{1}.

Let \tilde{D} and \tilde{L}_{i} be the proper transforms of D and L_{i} on the surface \tilde{S}, respectively. Then

$$
\tilde{D} \equiv \beta^{*}(D)-\mu E
$$

where μ is a positive rational number. We have $\tilde{L}_{i} \equiv \beta^{*}\left(L_{i}\right)-E$. Then

$$
0 \leqslant \tilde{D} \cdot \tilde{L}_{3}=\left(\beta^{*}(D)-\mu E\right) \cdot \tilde{L}_{3}=1-\mu E \cdot \tilde{L}_{3}=1-\mu / 2
$$

which implies that $\mu \leqslant 2$. Therefore, we may assume that there is a point $Q \in E$ such that the singularities of the log pair $(\tilde{S}, \lambda \tilde{D}+\mu E)$ are not log canonical at the point Q (see Lemma 3.1).

Suppose that \tilde{S} is smooth at Q. The \log pair $(\tilde{S}, \lambda \tilde{D}+E)$ is not \log canonical at Q. Then

$$
1 \geqslant \mu / 2=-\mu E^{2}=E \cdot \tilde{D}>1 / \lambda>3
$$

by Lemma 2.5. We see that $Q=O_{j}$ for some j.
The curves $\tilde{L}_{1}, \tilde{L}_{2}$ and \tilde{L}_{3} are disjoined, and each of them passes through a singular point of the surface \tilde{S}. Therefore, we may assume that $O_{i} \in \tilde{L}_{i}$ for every i.

Let $\gamma: \hat{S} \rightarrow \tilde{S}$ be a blow up of the point O_{j}, and G be the exceptional curve of γ. Then

$$
\hat{L}_{j} \equiv \gamma^{*}\left(\tilde{L}_{j}\right)-\frac{1}{2} G \equiv(\beta \circ \gamma)^{*}\left(L_{1}\right)-\hat{E}-G
$$

where \hat{L}_{j} and \hat{E} are proper transforms of the curves \bar{L}_{j} and E on the surface \hat{S}, respectively.

Let \hat{D} be the proper transform of the divisor \tilde{D} on the surface \hat{S}. Then

$$
\hat{D} \equiv \gamma^{*}(\tilde{D})-\epsilon G \equiv(\beta \circ \gamma)^{*}(D)-\mu \hat{E}-(\mu / 2+\epsilon) G
$$

where ϵ is a rational number, because $2 \hat{E} \equiv \gamma^{*}(2 E)-G$. By Lemma 2.7, we have

$$
\lambda \epsilon+\lambda \mu / 2>1 / 2
$$

Suppose that $j=3$. Then $1-\mu / 2-\epsilon=\hat{D} \cdot \hat{L}_{3} \geqslant 0$. But $\epsilon+\mu / 2>3 / 2$.
We may assume that $Q=O_{1}$, and the support of the divisor D contains the line L_{1}. Put

$$
D=a L_{1}+\Omega
$$

where $a \in \mathbb{Q}$ and $a \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $L_{1} \nsubseteq \operatorname{Supp}(\Omega)$. Then

$$
\hat{\Omega} \equiv(\beta \circ \gamma)^{*}(\Omega)-m \hat{E}-(m / 2+b) G
$$

where $\hat{\Omega}$ is the proper transform of Ω, and m and b are non-negative rational numbers. Then

$$
\begin{aligned}
& (\beta \circ \gamma)^{*}(D)-\mu \hat{E}-(\mu / 2+\epsilon) G \equiv \hat{D}=a \hat{L}_{1}+\hat{\Omega} \\
& \equiv(\beta \circ \gamma)^{*}\left(a L_{1}+\Omega\right)-(a+m) \hat{E}-(a+m / 2+b) G
\end{aligned}
$$

which implies that $\mu=a+m \leqslant 2$ and $\epsilon=a / 2+b$. We have

$$
\hat{L}_{1}^{2}=-1, \hat{E}^{2}=-1, G^{2}=-2, \hat{L} \cdot \hat{E}=0, \hat{L} \cdot G=\hat{E} \cdot G=1
$$

on the surface \hat{S}. The surface \hat{S} is smooth along the curve G. Then

$$
-a \leqslant-a+\hat{\Omega} \cdot \hat{L}_{1}=\left(a \hat{L}_{1}+\hat{\Omega}\right) \cdot \hat{L}_{1}=1-a-m / 2-b
$$

which implies that $m / 2+b \leqslant 1$ and $a+m / 2+b \leqslant 1+a \leqslant 3$. Thus, by the equivalence

$$
K_{\hat{S}}+\lambda a \hat{L}_{1}+\lambda \hat{\Omega}+\lambda(a+m) \hat{E}+\lambda(a+m / 2+b) G \equiv(\beta \circ \gamma)^{*}\left(K_{S}+\lambda a L_{1}+\lambda \Omega\right)
$$

there exists a point $A \in G$ such that the \log pair

$$
\left(\hat{S}, \lambda a \hat{L}_{1}+\lambda \hat{\Omega}+\lambda(a+m) \hat{E}+\lambda(a+m / 2+b) G\right)
$$

is not \log canonical at the point A.
Suppose that $A \notin \hat{L}_{1} \cup \hat{E}$. Then $(\hat{S}, \lambda \hat{\Omega}+\lambda(a+m / 2+b) G)$ is not \log canonical at A, and

$$
2 b+a=\left(a \hat{L}_{1}+\hat{\Omega}\right) \cdot G=a+\hat{\Omega} \cdot G>a+3
$$

by Lemma 2.5. We see that $b>3 / 2$. But $m / 2+b \leqslant 1$. We see that $A \in \hat{L}_{1} \cup \hat{E}$. Suppose that $A \notin \hat{L}_{1}$. The \log pair

$$
(\hat{S}, \lambda \hat{\Omega}+\lambda(a+m) \hat{E}+\lambda(a+m / 2+b) G)
$$

is not \log canonical at the point A. Arguing as in the previous case, we see that

$$
m / 2-b=\hat{\Omega} \cdot \hat{E}>3-a-m / 2-b
$$

which implies that $a+m>3$. But $a+m \leqslant 2$. We see that $A \in \hat{L}_{1}$.
The log pair $\left(\hat{S}, \lambda a \hat{L}_{1}+\lambda \hat{\Omega}+\lambda(a+m / 2+b) G\right)$ is not \log canonical at A. Then

$$
1-a-m / 2-b=\left(a \hat{L}_{1}+\hat{\Omega}\right) \cdot \hat{L}_{1}=-a+\hat{\Omega} \cdot \hat{L}_{1}>-a+3-(a+m / 2+b)
$$

by Lemma 2.5. We have $a>2$. But $a+m \leqslant 2$, which is a contradiction.
Lemma 3.7. Suppose that $\Sigma=\left\{\mathbb{D}_{5}\right\}$. Then $\operatorname{lct}(S)=1 / 4$.
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

We see that $\operatorname{LCS}(S, \lambda D)=\{O\}$ by Lemma 3.1.
It follows from [1] that $r=2$ and the surface S contains a line L such that $O \notin L$.
Projecting from L, we see that there is a conic $C \subset S$ such that the equivalence

$$
-K_{S} \sim C+L
$$

holds, $O \notin C$ and $|C \cap L|=1$. Put $P=C \cap L$. Then

$$
P \cup O \subseteq \operatorname{LCS}\left(S, \frac{3}{4}(C+L)+\lambda D\right) \subseteq P \cup O \cup C \cup L
$$

which is impossible by Lemma 2.2. The obtained contradiction completes the proof. Z
Lemma 3.8. Suppose that $\Sigma=\left\{\mathbb{E}_{6}\right\}$. Then $\operatorname{lct}(S)=1 / 6$
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=1$. The log pair

$$
\left(S, \operatorname{lct}_{1}(S) L_{1}\right)
$$

is not \log terminal. But it must be log canonical. The surface S contains a plane cuspidal cubic curve C such that $O \notin C$. Arguing as in the proof of Lemma 3.6, we obtain a contradiction.

Using the classification of possible singularities of the surface S obtained in [1], we see that it follows from Lemmas 3.4, 3.5, 3.6, 3.7 and 3.8 that we may assume that

$$
\Sigma=\left\{\mathbb{A}_{i_{1}}, \ldots, \mathbb{A}_{i_{s}}\right\}
$$

to complete the proof of Theorem 1.4. We assume that $i_{1} \leqslant \cdots \leqslant i_{s}$ and O is of type $\mathbb{A}_{i_{s}}$.

Lemma 3.9. Suppose that $\Sigma=\left\{\mathbb{A}_{2}\right\}$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=6$. We may assume that the equivalences

$$
-K_{S} \sim L_{1}+L_{2}+L_{3} \sim L_{4}+L_{5}+L_{6}
$$

hold. The log pairs $\left(S, \operatorname{lct}_{1}(S)\left(L_{1}+L_{2}+L_{3}\right)\right)$ and $\left(S, \operatorname{lct}_{1}(S)\left(L_{4}+L_{5}+L_{6}\right)\right)$ are log canonical.

Arguing as in the proof of Lemma 3.4, we see that

$$
\operatorname{LCS}(S, \lambda D)=O
$$

Let \bar{H} be a proper transform on \bar{S} of a general hyperplane section that contains O. Then

$$
0 \leqslant \bar{H} \cdot \bar{D}=3-a_{1}-a_{2}, 2 a_{1}-a_{2}=E_{1} \cdot \bar{D} \geqslant 0,2 a_{2}-a_{1}=E_{2} \cdot \bar{D} \geqslant 0
$$

which implies that $a_{1} \leqslant 2$ and $a_{2} \leqslant 2$. There is a point $Q \in E_{1} \cup E_{2}$ such that the log pair

$$
\left(\bar{S}, \lambda\left(\bar{D}+a_{1} E_{1}+a_{2} E_{2}\right)\right)
$$

is not \log canonical at Q. We may assume that $Q \in E_{1}$, and

$$
\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{1}=\bar{L}_{4} \cdot E_{2}=\bar{L}_{5} \cdot E_{2}=\bar{L}_{6} \cdot E_{2}=1
$$

which implies that $\bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{4} \cdot E_{1}=\bar{L}_{5} \cdot E_{1}=\bar{L}_{6} \cdot E_{1}=0$.
It follows from Remark 2.1 that we may assume that $\bar{L}_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq \bar{L}_{4}$. Then

$$
\left\{\begin{array}{l}
1-a_{1}=\bar{D} \cdot \bar{L}_{1} \geqslant 0 \\
1-a_{2}=\bar{D} \cdot \bar{L}_{4} \geqslant 0
\end{array}\right.
$$

which implies that $a_{1} \leqslant 1$ and $a_{2} \leqslant 1$.
Suppose that $Q \notin E_{2}$. Then $\left(\bar{S}, \lambda \bar{D}+E_{1}\right)$ is not \log canonical at Q. We have

$$
2 a_{1}-a_{2}=\bar{D} \cdot E_{1}>1 / \lambda>2
$$

by Lemma 2.5. Then $a_{1} \geqslant 4 / 3$, which is impossible, because $a_{1} \leqslant 1$. Hence, we see that $Q \in E_{2}$.

The log pairs $\left(\bar{S}, \lambda \bar{D}+E_{1}+a_{2} E_{2}\right)$ and $\left(\bar{S}, \lambda \bar{D}+a_{1} E_{1}+E_{2}\right)$ are not log canonical at Q. Then

$$
\left\{\begin{array}{l}
2 a_{1}-a_{2}=\bar{D} \cdot E_{1}>1 / \lambda-a_{2}>2-a_{2} \\
2 a_{2}-a_{1}=\bar{D} \cdot E_{2}>1 / \lambda-a_{1}>2-a_{1}
\end{array}\right.
$$

by Lemma 2.5. Then $a_{1}>1$ and $a_{2}>1$. But $a_{1} \leqslant 1$ and $a_{2} \leqslant 1$, which is a contradiction. \quad ㅁ

Lemma 3.10. Suppose that $\Sigma=\left\{\mathbb{A}_{3}\right\}$. Then $\operatorname{lct}(S)=1 / 2$
Proof. Suppose that the log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=5$. We may assume that

$$
\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{4} \cdot E_{3}=\bar{L}_{5} \cdot E_{3}=1
$$

which implies that $\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=0$ and

$$
\bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{4} \cdot E_{2}=\bar{L}_{5} \cdot E_{2}=\bar{L}_{4} \cdot E_{1}=\bar{L}_{5} \cdot E_{1}=0
$$

The inequalities $\bar{L}_{i}^{2}=-1$ and $\bar{L}_{i} \cdot \bar{L}_{j}=0$ hold for $i \neq j$. We have $-K_{S} \sim$ $L_{1}+L_{2}+L_{3}$.

Suppose that there are a line $L \subset S$ and a rational number $\mu \geqslant 1 / \lambda$ such that $D=\mu L+\Omega$, where Ω is an effective \mathbb{Q}-divisor, whose support does not contain the line L. Then

$$
2=C \cdot D=\mu C \cdot L+C \cdot \Omega \geqslant \mu C \cdot L>2 C \cdot L
$$

where C is a general conic on the surface S such that the divisor $C+L$ is a hyperplane section of the surface S. Then $|L \cap C|=1$ and $C \cdot L<1$, which implies that $L=L_{3}$. But $L_{3} \cdot C=1$.

Arguing as in the proof of Lemma 3.2, we see that $\operatorname{LCS}(S, \lambda D)=O$ by Lemmas 2.2.

Let \bar{H} be a general curve in $\left|-K_{\bar{S}}-\sum_{i=1}^{3} E_{i}\right|$. Then

$$
a_{1}+a_{3} \leqslant 3,2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant a_{1}+a_{3}, 2 a_{3} \geqslant a_{2}
$$

because $\bar{H} \cdot \bar{D} \geqslant 0, E_{1} \cdot \bar{D} \geqslant 0, E_{2} \cdot \bar{D} \geqslant 0, E_{3} \cdot \bar{D} \geqslant 0$, respectively.
We may assume that either $L_{1} \nsubseteq \operatorname{Supp}(D)$ or $L_{3} \nsubseteq \operatorname{Supp}(D)$ by Remark 2.1. But

$$
\bar{L}_{1} \cdot \bar{D}=1-a_{1}, \quad \bar{L}_{3} \cdot \bar{D}=1-a_{2}
$$

which implies that either $a_{1} \leqslant 1$ or $a_{2} \leqslant 1$. Similarly, we assume that either $a_{3} \leqslant 1$ or $a_{2} \leqslant 1$.

We have $a_{1} \leqslant 2, a_{2} \leqslant 2, a_{3} \leqslant 2$. There is a point $Q \in E_{1} \cup E_{2} \cup E_{3}$ such that the \log pair

$$
\left(\bar{S}, \lambda\left(\bar{D}+a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}\right)\right)
$$

is not \log canonical at Q. We may assume that $Q \notin E_{3}$.
Suppose that $Q \notin E_{2}$. Then $\left(\bar{S}, \lambda \bar{D}+E_{1}\right)$ is not \log canonical at Q, which implies that

$$
2 a_{1}-a_{2}=\bar{D} \cdot E_{1}>2
$$

by Lemma 2.5. Then $a_{1}>3 / 2$ and $a_{2}>1$. But either $a_{1} \leqslant 1$ or $a_{2} \leqslant 1$.
Suppose that $Q \in E_{2} \cap E_{1}$. Arguing as in the proof of of Lemma 3.9, we see that

$$
\left\{\begin{array}{l}
2 a_{1}-a_{2}=\bar{D} \cdot E_{1}>1 / \lambda-a_{2}>2-a_{2} \\
2 a_{2}-a_{1}-a_{3}=\bar{D} \cdot E_{2}>1 / \lambda-a_{1}>2-a_{1}
\end{array}\right.
$$

by Lemma 2.5. Then $a_{1}>1$ and $2 a_{2}>2+a_{3}$, which is impossible.
We see that $Q \in E_{2}$ and $Q \notin E_{1}$. Then $\left(\bar{S}, \lambda \bar{D}+E_{2}\right)$ is not \log canonical at Q. We have

$$
2 a_{2}-a_{1}-a_{3}=\bar{D} \cdot E_{2}>1 / \lambda>2
$$

which implies that $a_{1}>3 / 2$ and $a_{2}>2$. The obtained contradiction completes the proof.

Lemma 3.11. Suppose that $\Sigma=\left\{\mathbb{A}_{4}\right\}$. Then $\operatorname{lct}(S)=1 / 3$
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=4$. We may assume that

$$
\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{3}=\bar{L}_{4} \cdot E_{4}=1
$$

which implies that $\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{3} \cdot E_{4}=0$ and
$\bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{1} \cdot E_{4}=\bar{L}_{2} \cdot E_{4}=\bar{L}_{4} \cdot E_{1}=\bar{L}_{4} \cdot E_{2}=\bar{L}_{4} \cdot E_{3}=0$.
We have $\operatorname{LCS}(S, \lambda D)=O$ by Lemma 3.1. Let \bar{H} be a general curve in $\mid-K_{\bar{S}}-$ $\sum_{i=1}^{4} E_{i} \mid$. Then

$$
3 \geqslant a_{1}+a_{4}, 2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant a_{1}+a_{3}, 2 a_{3} \geqslant a_{2}+a_{4}, 2 a_{4} \geqslant a_{3}
$$

because $\bar{H} \cdot \bar{D} \geqslant 0, E_{1} \cdot \bar{D} \geqslant 0, E_{2} \cdot \bar{D} \geqslant 0, E_{3} \cdot \bar{D} \geqslant 0, E_{4} \cdot \bar{D} \geqslant 0$, respectively.
One can easily check that the equivalences

$$
-K_{S} \sim L_{1}+L_{2}+L_{3} \sim 2 L_{3}+L_{4}
$$

hold. Therefore, we may assume that either

$$
L_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq L_{4}
$$

or $L_{3} \nsubseteq \operatorname{Supp}(D)$ by Remark 2.1 and Lemma 3.1. But

$$
\bar{L}_{3} \cdot \bar{D}=1-a_{3}, \bar{L}_{1} \cdot \bar{D}=1-a_{1}, \bar{L}_{4} \cdot \bar{D}=1-a_{4}
$$

which implies that there is a point $Q \in \cup_{i=1}^{4} E_{i}$ such that the \log pair

$$
\left(\bar{S}, \lambda\left(\bar{D}+\sum_{i=1}^{4} a_{i} E_{i}\right)\right)
$$

is not \log canonical at the point Q. Arguing as in the proof of Lemma 3.10, we see that

$$
\left\{\begin{array}{l}
Q \in E_{1} \backslash\left(E_{1} \cap E_{2}\right) \Rightarrow 2 a_{1}>a_{2}+3, \\
Q \in E_{1} \cap E_{2} \Rightarrow 2 a_{1}>3 \text { and } 2 a_{2}>3+a_{3}, \\
Q \in E_{2} \backslash\left(\left(E_{1} \cap E_{2}\right) \cup\left(E_{2} \cap E_{3}\right)\right) \Rightarrow 2 a_{2}>a_{1}+a_{3}+3, \\
Q \in E_{2} \cap E_{3} \Rightarrow 2 a_{2}>3+a_{1} \text { and } 2 a_{3}>3+a_{4}, \\
Q \in E_{3} \backslash\left(\left(E_{2} \cap E_{3}\right) \cup\left(E_{3} \cap E_{4}\right)\right) \Rightarrow 2 a_{3}>3+a_{2}+a_{4}, \\
Q \in E_{3} \cap E_{4} \Rightarrow 2 a_{3}>3+a_{2} \text { and } 2 a_{4}>3, \\
Q \in E_{4} \backslash\left(E_{4} \cap E_{3}\right) \Rightarrow 2 a_{4}>3,
\end{array}\right.
$$

which leads to a contradiction, because either $a_{3} \leqslant 1$ or $a_{1} \leqslant 1$ and $a_{4} \leqslant 1$.
Lemma 3.12. Suppose that $\Sigma=\mathbb{A}_{5}$. Then $\operatorname{lct}(S)=1 / 4$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=3$. We may assume that $\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{4}=$ 1 and

$$
\bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{1} \cdot E_{4}=\bar{L}_{2} \cdot E_{4}=\bar{L}_{1} \cdot E_{5}=\bar{L}_{2} \cdot E_{3}=0
$$

and $\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{3} \cdot E_{3}=\bar{L}_{3} \cdot E_{5}=0$. Then $\operatorname{LCS}(S, \lambda D)=O$ by Lemma 3.1.
Let \bar{H} be a proper transform on \bar{S} of a general hyperplane section that contains O. Then

$$
3 \geqslant a_{1}+a_{5}, 2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant a_{1}+a_{3}, 2 a_{3} \geqslant a_{2}+a_{4}, 2 a_{4} \geqslant a_{3}+a_{5}, 2 a_{5} \geqslant a_{4},
$$

because $\bar{H} \cdot \bar{D} \geqslant 0, E_{1} \cdot \bar{D} \geqslant 0, E_{2} \cdot \bar{D} \geqslant 0, E_{3} \cdot \bar{D} \geqslant 0, E_{4} \cdot \bar{D} \geqslant 0, E_{5} \cdot \bar{D} \geqslant 0$, respectively.

We have $-K_{S} \sim 3 L_{3}$. Thus, we may assume that $L_{3} \nsubseteq \operatorname{Supp}(D)$ by Remark 2.1. Then

$$
a_{1} \leqslant 5 / 2, a_{2} \leqslant 2, a_{3} \leqslant 3 / 2, a_{4} \leqslant 1, a_{5} \leqslant 5 / 4
$$

because $1-a_{4}=\bar{L}_{3} \cdot \bar{D} \geqslant 0$.
Arguing as in the proof of Lemma 3.10, we see that there is a point $Q \in \cup_{i=1}^{5} E_{i}$ such that

$$
\left\{\begin{array}{l}
Q \in E_{1} \backslash\left(E_{1} \cap E_{2}\right) \Rightarrow 2 a_{1}>a_{2}+4, \tag{3.14}\\
Q \in E_{1} \cap E_{2} \Rightarrow 2 a_{1}>4 \text { and } 2 a_{2}>4+a_{3}, \\
Q \in E_{2} \backslash\left(\left(E_{1} \cap E_{2}\right) \cup\left(E_{2} \cap E_{3}\right)\right) \Rightarrow 2 a_{2}>a_{1}+a_{3}+4, \\
Q \in E_{2} \cap E_{3} \Rightarrow 2 a_{2}>4+a_{1} \text { and } 2 a_{3}>4+a_{4}, \\
Q \in E_{3} \backslash\left(\left(E_{2} \cap E_{3}\right) \cup\left(E_{3} \cap E_{4}\right)\right) \Rightarrow 2 a_{3}>4+a_{2}+a_{4}, \\
Q \in E_{3} \cap E_{4} \Rightarrow 2 a_{3}>4+a_{2} \text { and } 2 a_{4}>4+a_{5}, \\
Q \in E_{4} \backslash\left(\left(E_{3} \cap E_{4}\right) \cup\left(E_{4} \cap E_{5}\right)\right) \Rightarrow 2 a_{4}>4+a_{3}+a_{5}, \\
Q \in E_{4} \cap E_{5} \Rightarrow 2 a_{4}>4+a_{3} \text { and } 2 a_{5}>4, \\
Q \in E_{5} \backslash\left(E_{4} \cap E_{5}\right) \Rightarrow 2 a_{5}>a_{4}+4 .
\end{array}\right.
$$

The inequalities 3.13 and 3.14 imply that either $Q=E_{3} \cap E_{4}$ or $Q=E_{4} \cap E_{5}$, because $a_{4} \leqslant 1$.

Let H_{1} and H_{3} be general divisors in $\left|-K_{S}\right|$ that contain L_{1} and L_{3}, respectively. Then

$$
H_{1}=L_{1}+C_{1}, H_{3}=L_{3}+C_{3}
$$

where C_{1} and C_{3} are irreducible conics such that $C_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq C_{3}$.
Let \bar{C}_{1} and \bar{C}_{3} be the proper transforms of C_{1} and C_{3} on the surface \bar{S}, respectively. Then

$$
\left\{\begin{array}{l}
2-a_{5}=\bar{C}_{1} \cdot \bar{D} \geqslant 0 \\
2-a_{2}=\bar{C}_{3} \cdot \bar{D} \geqslant 0
\end{array}\right.
$$

which is impossible due to the inequalities 3.13 and 3.14 .
Lemma 3.15. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{5}\right\}$. Then $\operatorname{lct}(S)=1 / 4$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=2$. We have $\operatorname{LCS}(S, \lambda D) \subseteq \Sigma$ by Lemma 3.1.
Let P be a point in Σ of type \mathbb{A}_{1}. We may assume that $P \in L_{1}$. Then

$$
\bar{L}_{2} \cdot E_{1}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{2} \cdot E_{5}=\bar{L}_{1} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{1} \cdot E_{4}=\bar{L}_{1} \cdot E_{5}=0
$$

and $\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{4}=1$. The equivalence $-K_{S} \sim 3 L_{2}$ holds.
Suppose that $(S, \lambda D)$ is not \log canonical at P. Let $\beta: \tilde{S} \rightarrow S$ be a blow up of P. Then

$$
\tilde{D} \equiv \beta^{*}\left(-K_{S}\right)-m F
$$

where F is the β-exceptional curve, \tilde{D} is the proper transform of the divisor D, and $m \in \mathbb{Q}$. Then

$$
0 \leqslant \tilde{H} \cdot \tilde{D}=\left(\beta^{*}\left(-K_{S}\right)-m F\right) \cdot\left(\beta^{*}\left(-K_{S}\right)-F\right)=3-2 m
$$

where \tilde{H} is general curve in $\left|-K_{\tilde{S}}-F\right|$. Thus, we have $m \leqslant 3 / 2$. But $m>2$ by Lemma 2.7.

We see that $\operatorname{LCS}(S, \lambda D)=O$. Let C_{1} and C_{2} be general conics on the surface S such that

$$
L_{1}+C_{1} \sim L_{2}+C_{2} \sim-K_{S}
$$

and let \bar{C}_{1} and \bar{C}_{2} be the proper transforms of C_{1} and C_{2} on the surface \bar{S}, respectively. Then

$$
\left\{\begin{array}{l}
2-a_{1}=\bar{C}_{1} \cdot \bar{D} \geqslant 0 \\
2-a_{5}=\bar{C}_{2} \cdot \bar{D} \geqslant 0
\end{array}\right.
$$

because $C_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq C_{2}$. We may assume that $L_{2} \nsubseteq \operatorname{Supp}(D)$ due to Remark 2.1.
Arguing as in the proof of Lemma 3.12, we obtain the inequalities

$$
\begin{aligned}
& 3 \geqslant a_{1}+a_{5}, 2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant a_{1}+a_{3}, 2 a_{3} \geqslant a_{2}+a_{4} \\
& 2 a_{4} \geqslant a_{3}+a_{5}, 2 a_{5} \geqslant a_{4}, 2 \geqslant a_{2}, 2 \geqslant a_{5}, 1 \geqslant a_{4}
\end{aligned}
$$

which imply that there is a point $Q \in \cup_{i=1}^{5} E_{i}$ such that the \log pair

$$
\left(\bar{S}, \lambda\left(\bar{D}+\sum_{i=1}^{5} a_{i} E_{i}\right)\right)
$$

is not \log canonical at Q. Arguing as in the proof of Lemma 3.10, we obtain a contradiction. \quad]

Lemma 3.16. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{4}\right\}$. Then $\operatorname{lct}(S)=1 / 3$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

Let P be a point in Σ of type \mathbb{A}_{1}. We may assume that $P \in L_{1}$.
It follows from [1] that $r=3$. Then

$$
\bar{L}_{1} \cdot E_{1}=1, \bar{L}_{1} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{1} \cdot E_{4}=0
$$

and we may assume that $\bar{L}_{3} \cdot E_{3}=\bar{L}_{2} \cdot E_{4}=1$. Then $-K_{S} \sim L_{2}+2 L_{3}$ and

$$
\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{3} \cdot E_{4}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{2} \cdot E_{3}=0
$$

We may assume that either $L_{3} \nsubseteq \operatorname{Supp}(D)$ or $L_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq L_{2}$ (see Remark 2.1).

Arguing as in the proof of Lemma 3.15, we see that

$$
\operatorname{LCS}(S, \lambda D)=O
$$

and arguing as in the proof of Lemma 3.11, we obtain a contradiction.
Lemma 3.17. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{3}\right\}$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

Let P be a point in Σ of type \mathbb{A}_{1}. We may assume that $P \in L_{1}$.
It follows from [1] that $r=4$ and S contains lines L_{5}, L_{6}, L_{7} such that

$$
\begin{aligned}
& L_{5} \ni P \in L_{6}, O \notin L_{7} \not \supset P, L_{3} \cap L_{5} \neq \varnothing, L_{4} \cap L_{6} \neq \varnothing \\
& L_{7} \cap L_{2} \neq \varnothing, L_{7} \cap L_{5} \neq \varnothing, L_{7} \cap L_{6} \neq \varnothing
\end{aligned}
$$

which implies that $L_{7} \cap L_{1}=L_{7} \cap L_{3}=L_{7} \cap L_{4}=\varnothing$. Then
$L_{1}+L_{3}+L_{5} \sim L_{1}+L_{4}+L_{6} \sim L_{5}+L_{6}+L_{7} \sim L_{2}+2 L_{1} \sim L_{2}+L_{3}+L_{4} \sim 2 L_{2}+L_{7}$ and $-K_{S} \sim L_{1}+L_{3}+L_{5}$. Put

$$
D=\mu_{i} L_{i}+\Omega_{i}
$$

where μ_{i} is a non-negative rational number, and Ω_{i} is an effective \mathbb{Q}-divisor, whose support does not contain the line L_{i}. Let us show that that $\mu_{i}<1 / \lambda$ for $i=1, \ldots, 7$.

Suppose that $\mu_{2} \geqslant 1 / \lambda$. We may assume that $L_{1} \nsubseteq \operatorname{Supp}(D)$ by Remark 2.1. Then

$$
1=L_{1} \cdot D=L_{1} \cdot\left(\mu_{2} L_{2}+\Omega_{2}\right) \geqslant \mu_{2} L_{1} \cdot L_{2}=\mu_{2} / 2>1
$$

which is a contradiction. Similarly, we see that $\mu_{i}<1 / \lambda$ for $i=1, \ldots, 7$.
Arguing as in the proof of Lemma 3.4, we see that

$$
\operatorname{LCS}(S, \lambda D) \subseteq \Sigma
$$

which implies that $\operatorname{LCS}(S, \lambda D)=O$ or $\operatorname{LCS}(S, \lambda D)=P$ by Lemma 2.2.
Suppose that LCS $(S, \lambda D)=P$. Put

$$
D=\mu_{5} L_{5}+\mu_{6} L_{6}+\Upsilon
$$

where Υ is an effective \mathbb{Q}-divisor such that $L_{5} \nsubseteq \operatorname{Supp}(\Upsilon) \nsupseteq L_{6}$. Then $\mu_{5}>0$ and $\mu_{6}>0$. But

$$
1=L_{7} \cdot D=L_{7} \cdot\left(\mu_{5} L_{5}+\mu_{6} L_{6}+\Upsilon\right) \geqslant L_{7} \cdot\left(\mu_{5} L_{5}+\mu_{6} L_{6}\right)=\mu_{5}+\mu_{6}
$$

because we may assume that $L_{7} \nsubseteq \operatorname{Supp}(\Upsilon)$. Let $\beta: \tilde{S} \rightarrow S$ be a blow up of the point P. Then

$$
\mu_{5} \tilde{L}_{5}+\mu_{6} \tilde{L}_{6}+\tilde{\Upsilon} \equiv \beta^{*}\left(\mu_{5} L_{5}+\mu_{6} L_{6}+\Upsilon\right)-\left(\mu_{5} / 2+\mu_{6} / 2+\epsilon\right) G,
$$

where ϵ is a rational number, G is the exceptional curve of β, and $\tilde{L}_{5}, \tilde{L}_{6}, \tilde{\Upsilon}$ are proper transforms of the divisors L_{5}, L_{6}, Υ on the surface \tilde{S}, respectively. Then

$$
0 \leqslant\left(\mu_{5} \tilde{L}_{5}+\mu_{6} \tilde{L}_{6}+\tilde{\Upsilon}\right) \tilde{H}=3-\mu_{5}-\mu_{6}-2 \epsilon
$$

where \tilde{H} is a general curve in $\left|-K_{\tilde{S}}-G\right|$. There is a point $Q \in G$ such that the log pair

$$
\left(\tilde{S}, \lambda\left(\mu_{5} \tilde{L}_{5}+\mu_{6} \tilde{L}_{6}+\tilde{\Upsilon}\right)+\lambda\left(\mu_{5} / 2+\mu_{6} / 2+\epsilon\right) G\right)
$$

are not \log canonical at Q. We have

$$
2-2 \epsilon=\tilde{\Upsilon} \cdot\left(\tilde{L}_{5}+\tilde{L}_{6}\right) \geqslant 0,
$$

which implies that $\epsilon \leqslant 1$. Then it follows from Lemma 2.5 that

$$
2 \epsilon=\tilde{\Omega} \cdot G>2
$$

if $Q \notin \tilde{L}_{5} \cup \tilde{L}_{6}$, which implies that we may assume that $Q \in \tilde{L}_{5}$. Then

$$
1+\mu_{5} / 2-\mu_{6}-\epsilon=\tilde{\Omega} \cdot \tilde{L}_{5}>2-\mu_{5} / 2-\mu_{6} / 2-\epsilon
$$

by Lemma 2.5. Thus, we see that $\mu_{5}>1$. But

$$
\mu_{5} \leqslant \mu_{5}+\mu_{6} \leqslant 1,
$$

which is a contradiction. The obtained contradiction shows that $\operatorname{LCS}(S, \lambda D) \neq P$.
We see that $\operatorname{LCS}(S, \lambda D)=O$. We may assume that

$$
\bar{L}_{1} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{4} \cdot E_{1}=\bar{L}_{4} \cdot E_{2}=0
$$

and $\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{3} \cdot E_{3}=\bar{L}_{4} \cdot E_{3}=1$. But the \log pair

$$
\left(S, \operatorname{lct}_{1}(S)\left(2 L_{1}+L_{2}\right)\right)
$$

has \log canonical singularities. Similarly, the log pair

$$
\left(S, \operatorname{lct}_{1}(S)\left(L_{2}+L_{3}+L_{3}\right)\right)
$$

is \log canonical. By Remark 2.1 and Lemma 3.1, we may assume that either

$$
L_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq L_{3}
$$

or $L_{2} \nsubseteq \operatorname{Supp}(D)$. Arguing as in the proof of Lemma 3.10, we obtain a contradiction.
Lemma 3.18. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{2}\right\}$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=5$. We may assume that

$$
\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{4} \cdot E_{2}=\bar{L}_{5} \cdot E_{2}=1
$$

and $\bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{3} \cdot E_{1}=\bar{L}_{4} \cdot E_{1}=\bar{L}_{5} \cdot E_{1}=0$.
Let P be a point in Σ of type \mathbb{A}_{1}. We may assume that $P \in L_{1}$.
It follows from [1] that S contains lines $L_{6}, L_{7}, L_{8}, L_{9}, L_{10}, L_{11}$ such that

$$
P=L_{1} \cap L_{6} \cap L_{7} \cap L_{8}, L_{9} \cap L_{6} \neq \varnothing, L_{9} \cap L_{7} \neq \varnothing, L_{9} \cap L_{6} \neq \varnothing
$$

and $L_{9} \cap L_{7} \neq \varnothing, L_{10} \cap L_{7} \neq \varnothing, L_{10} \cap L_{8} \neq \varnothing, L_{11} \cap L_{6} \neq \varnothing, L_{11} \cap L_{8} \neq \varnothing$. Then

$$
L_{2} \not \supset P \notin L_{3}, L_{4} \not \supset P \notin L_{5}, L_{6} \not \not O \nexists L_{7}, L_{8} \not \supset O \notin L_{9}, L_{10} \not \supset O \notin L_{11},
$$

which implies that $-K_{S} \sim L_{3}+L_{4}+L_{5} \sim 2 L_{1}+L_{2} \sim L_{3}+L_{4}+L_{5}$ and

$$
-K_{S} \sim 2 L_{1}+L_{2} \sim L_{1}+L_{3}+L_{6} \sim L_{1}+L_{4}+L_{7} \sim L_{1}+L_{5}+L_{8} \sim L_{6}+L_{7}+L_{9}
$$

and $-K_{S} \sim L_{7}+L_{8}+L_{10} \sim L_{6}+L_{8}+L_{11}$.
Arguing as in the proof of Lemma 3.17, we see that

$$
\operatorname{LCS}(S, \lambda D)=O
$$

By Remark 2.1, we may assume that either $L_{1} \nsubseteq \operatorname{Supp}(D)$ or $L_{2} \nsubseteq \operatorname{Supp}(D)$, because

$$
2 L_{1}+L_{2} \sim-K_{S}
$$

and the log pair $\left(S, \operatorname{lct}_{1}(S)\left(2 L_{1}+L_{2}\right)\right)$ has log canonical singularities. Similarly, we may assume that $\operatorname{Supp}(D)$ does not contain at least one of the lines L_{3}, L_{4}, L_{5}, because the equivalence

$$
L_{3}+L_{4}+L_{5} \sim-K_{S}
$$

holds. Arguing as in the proof of Lemma 3.9, we obtain a contradiction.
Lemma 3.19. Suppose that $\Sigma=\left\{\mathbb{A}_{2}, \ldots, \mathbb{A}_{2}\right\}$ and $|\Sigma| \geqslant 2$. Then $\operatorname{lct}(S)=1 / 3$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

Let P be a point in Σ such that $P \neq O$. We may assume that $P \in L_{1}$. Then

$$
-K_{S} \sim 3 L_{1}
$$

We may assume that $(S, \lambda D)$ is not \log canonical at O by Lemma 3.1, and we assume that

$$
L_{1} \nsubseteq \operatorname{Supp}(D)
$$

by Remark 2.1 and Lemma 3.1.
We may assume that $\bar{L}_{1} \cap E_{2} \neq \varnothing$. Then $a_{2} \leqslant 1$, because $\bar{D} \cdot \bar{L}_{1} \geqslant 0$.
Arguing as in the proof of Lemma 3.9, we see that $3 \geqslant a_{1}+a_{2}, 2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant$ $a_{1}, 1 \geqslant a_{2}$.

There is a point $Q \in E_{1} \cup E_{2}$ such that the \log pair

$$
\left(\bar{S}, \lambda\left(\bar{D}+a_{1} E_{1}+a_{2} E_{2}\right)\right)
$$

is not \log canonical at the point Q. Arguing as in the proof of Lemma 3.9, we see that

$$
\left\{\begin{array}{l}
Q \in E_{1} \backslash\left(E_{1} \cap E_{2}\right) \Rightarrow 2 a_{1}>a_{2}+3 \\
Q \in E_{1} \cap E_{2} \Rightarrow 2 a_{1}>3 \text { and } 2 a_{2}>3 \\
Q \in E_{2} \backslash\left(E_{2} \cap E_{1}\right) \Rightarrow 2 a_{2}>a_{1}+3
\end{array}\right.
$$

which easily leads to a contradiction, because $3 \geqslant a_{1}+a_{2}, 2 a_{1} \geqslant a_{2}, 2 a_{2} \geqslant a_{1}, 1 \geqslant a_{2}$.
Lemma 3.20. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{2}, \mathbb{A}_{2}\right\}$. Then $\operatorname{lct}(S)=1 / 3$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from Lemma 3.1 that $\operatorname{LCS}(S, \lambda D) \subseteq \Sigma$.
Let $P \neq O$ be a point in Σ of type \mathbb{A}_{2}. We may assume that $P \in L_{1}$. Then

$$
-K_{S} \sim 3 L_{1}
$$

which implies that we may assume that $L_{1} \nsubseteq \operatorname{Supp}(D)$ due to Remark 2.1 and Lemma 3.1.

Arguing as in the proof of Lemma 3.15, we see that

$$
\operatorname{LCS}(S, \lambda D) \subseteq O \cup P
$$

which easily leads to a contradiction (see the proof of Lemma 3.19).
Lemma 3.21. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{1}, \mathbb{A}_{3}\right\}$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=3$.
Let P_{1} and P_{2} be points in Σ of type \mathbb{A}_{1}. Then we may assume that $P_{1} \in L_{1}$ and $P_{2} \in L_{2}$.

It follows from [1] that S contains lines L_{4} and L_{5} such that

$$
P_{1} \in L_{4} \ni P_{2}, O \notin L_{4}, P_{1} \notin L_{3} \not \supset P_{2}, L_{5} \cap \Sigma=\varnothing \text {, }
$$

which implies that $L_{5} \cap L_{3} \neq \varnothing, L_{5} \cap L_{4} \neq \varnothing, L_{5} \cap L_{1}=\varnothing, L_{5} \cap L_{2}=\varnothing$. Then

$$
\begin{equation*}
-K_{S} \sim L_{1}+L_{2}+L_{4} \sim L_{3}+2 L_{1} \sim L_{3}+2 L_{2} \sim 2 L_{3}+L_{5} \sim 2 L_{4}+L_{5} \tag{3.22}
\end{equation*}
$$

Let us show that $\operatorname{LCS}(S, \lambda D)$ does not contains the lines L_{1}, \ldots, L_{5}. Put

$$
D=\mu_{i} L_{i}+\Omega_{i}
$$

where $\mu_{i} \in \mathbb{Q}$, and Ω_{i} is an effective \mathbb{Q}-divisor such that $L_{i} \nsubseteq \operatorname{Supp}\left(\Omega_{i}\right)$.
Suppose that $\mu_{1} \geqslant 1 / \lambda$. Then it follows from the equivalence 3.22 and Remark 2.1 that we may assume that $L_{3} \nsubseteq \operatorname{Supp}(D)$. Therefore, we have

$$
1=L_{3} \cdot D=L_{3} \cdot\left(\mu_{1} L_{1}+\Omega_{1}\right) \geqslant \mu_{1} L_{3} \cdot L_{1}=\mu_{1} / 2>1
$$

which is a contradiction. Similarly, we see that $\mu_{2}<1 / \lambda, \mu_{3}<1 / \lambda, \mu_{4}<1 / \lambda$, $\mu_{5}<1 / \lambda$.

Arguing as in the proof of Lemma 3.4, we see that $|\operatorname{LCS}(S, \lambda D)|=1$ and

$$
\operatorname{LCS}(S, \lambda D) \subsetneq \Sigma
$$

Suppose that $\operatorname{LCS}(S, \lambda D)=P_{1}$. Let $\beta: \tilde{S} \rightarrow S$ be a blow up of the point P_{1}. Then

$$
\mu_{4} \tilde{L}_{4}+\tilde{\Omega} \equiv \beta^{*}\left(\mu_{4} L_{4}+\Omega\right)-\left(\mu_{4} / 2+\epsilon\right) G
$$

where G is the exceptional curve of the birational morphism β, \tilde{L}_{4} and $\tilde{\Omega}$ are proper transforms of the divisors L_{4} and Ω on the surface \tilde{S}, respectively, and ϵ is a positive rational number. Then
$0 \leqslant\left(\mu_{4} \tilde{L}_{4}+\tilde{\Omega}\right) \tilde{H}=\left(\beta^{*}\left(\mu_{4} L_{4}+\Omega\right)-\left(\mu_{4} / 2+\epsilon\right) G\right) \cdot\left(\beta^{*}\left(-K_{S}\right)-G\right)=3-\mu_{4}-2 \epsilon$,
where \tilde{H} is a general curve in $\left|-K_{\tilde{S}}-G\right|$. Thus, there is a point $P \in G$ such that the \log pair

$$
\left(\tilde{S}, \mu_{4} \tilde{L}_{4}+\tilde{\Omega}+\left(\mu_{4} / 2+\epsilon\right) G\right)
$$

is not \log canonical at P. Then $1-\epsilon=\tilde{\Omega} \cdot \tilde{L}_{4} \geqslant 0$. It follows from Lemma 2.5 that

$$
2 \epsilon=\tilde{\Omega} \cdot G>2
$$

in the case when $P \notin \tilde{L}_{4}$. Therefore, we see that $P \in \tilde{L}_{4}$. Then

$$
1-\epsilon=\tilde{\Omega} \cdot \tilde{L}_{4}>2-\mu_{4} / 2-\epsilon
$$

by Lemma 2.5. Thus, we see that $\mu_{4}>2$, which is a contradiction.
Similarly, we see that $P_{2} \notin \operatorname{LCS}(S, \lambda D)$. Then $\operatorname{LCS}(S, \lambda D)=O$. We may assume that
$\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{3}=\bar{L}_{3} \cdot E_{2}=1, \bar{L}_{1} \cdot E_{2}=\bar{L}_{1} \cdot E_{3}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{3} \cdot E_{1}=\bar{L}_{3} \cdot E_{3}=0$.
It follows from the equivalences 3.22 that we may assume that either $L_{3} \nsubseteq$ $\operatorname{Supp}(D)$ or

$$
L_{1} \nsubseteq \operatorname{Supp}(D) \nsupseteq L_{2}
$$

by Remark 2.1. Arguing as in the proof of Lemma 3.10, we obtain a contradiction.
Lemma 3.23. Suppose that $\Sigma=\left\{\mathbb{A}_{1}, \mathbb{A}_{1}, \mathbb{A}_{2}\right\}$. Then $\operatorname{lct}(S)=1 / 2$.
Proof. Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. Let us derive a contradiction.

It follows from [1] that $r=4$.
Let $P_{1} \neq P_{2}$ be points in Σ of type \mathbb{A}_{1}. Then we may assume that $P_{1} \in L_{1}$ and $P_{2} \in L_{4}$.

It follows from [1] that S contains lines $L_{5}, L_{6}, L_{7}, L_{8}$ such that

$$
P_{1} \in L_{5}, P_{2} \in L_{6}, P_{1} \in L_{7} \ni P_{2}, O \notin L_{8}, P_{1} \notin L_{8} \not \supset P_{2}
$$

which implies that $L_{8} \cap L_{7} \neq \varnothing, L_{8} \cap L_{2} \neq \varnothing, L_{8} \cap L_{3} \neq \varnothing, L_{2} \cap L_{7}=\varnothing, L_{3} \cap L_{7}=\varnothing$. Then

$$
\begin{aligned}
& L_{1}+L_{4}+L_{7} \sim L_{2}+2 L_{1} \sim L_{3}+2 L_{4} \sim 2 L_{7}+L_{8} \\
& \sim L_{2}+L_{3}+L_{8} \sim L_{1}+L_{3}+L_{5} \sim L_{4}+L_{2}+L_{6}
\end{aligned}
$$

and $-K_{S} \sim L_{1}+L_{4}+L_{7}$. Without loss of generality, we may assume that
$\bar{L}_{1} \cdot E_{1}=\bar{L}_{2} \cdot E_{1}=\bar{L}_{3} \cdot E_{2}=\bar{L}_{4} \cdot E_{2}=1, \bar{L}_{1} \cdot E_{2}=\bar{L}_{2} \cdot E_{2}=\bar{L}_{3} \cdot E_{1}=\bar{L}_{4} \cdot E_{1}=0$.
Arguing as in the proof of Lemma 3.21, we see that $\operatorname{LCS}(S, \lambda D)=O$.
By Remark 2.1, we may assume that either $L_{1} \nsubseteq \operatorname{Supp}(D)$ or $L_{2} \nsubseteq \operatorname{Supp}(D)$, because

$$
2 L_{1}+L_{2} \sim-\left.K_{S} \sim \mathcal{O}_{\mathbb{P}^{3}}(1)\right|_{S}
$$

and the \log pair $\left(X, \operatorname{lct}_{1}(S)\left(2 L_{1}+L_{2}\right)\right)$ is \log canonical, where $\operatorname{lct}_{1}(S)=1 / 2$. Similarly, we may assume that either $L_{3} \nsubseteq \operatorname{Supp}(D)$ or $L_{4} \nsubseteq \operatorname{Supp}(D)$, because $-K_{S} \sim L_{3}+2 L_{4}$.

Arguing as in the proof of Lemma 3.9, we obtain a contradiction.
It follows from [1], that the equalities

$$
\operatorname{lct}(S)=\operatorname{lct}_{1}(S)=\left\{\begin{array}{l}
2 / 3 \text { when } \Sigma=\left\{\mathbb{A}_{1}\right\}, \\
1 / 3 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{4}\right\}, \\
1 / 3 \text { when } \Sigma=\left\{\mathbb{D}_{4}\right\}, \\
1 / 3 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\}, \\
1 / 4 \text { when } \Sigma \supseteq\left\{\mathbb{A}_{5}\right\}, \\
1 / 4 \text { when } \Sigma=\left\{\mathbb{D}_{5}\right\}, \\
1 / 6 \text { when } \Sigma=\left\{\mathbb{E}_{6}\right\}, \\
1 / 2 \text { in other cases. }
\end{array}\right.
$$

are proved for all possible values of the set Σ. Hence, the assertion of Theorem 1.4 is proved.
4. Fiberwise maps. Let us use the assumptions and notation of Theorem 1.5.

Proof of Theorem 1.5. Suppose that X is \log terminal and $\operatorname{lct}(X) \geqslant 1$, but ρ is not an isomorphism. Let D be a general very ample divisor on Z. Put

$$
\Lambda=\left|-n K_{V}+\pi^{*}(n D)\right|, \Gamma=\left|-n K_{\bar{V}}+\bar{\pi}^{*}(n D)\right|, \bar{\Lambda}=\rho(\Lambda), \bar{\Gamma}=\rho^{-1}(\Gamma)
$$

where n is a natural number such that Λ and Γ have no base points. Put

$$
M_{V}=\frac{2 \varepsilon}{n} \Lambda+\frac{1-\varepsilon}{n} \bar{\Gamma}, M_{\bar{V}}=\frac{2 \varepsilon}{n} \bar{\Lambda}+\frac{1-\varepsilon}{n} \Gamma
$$

where ε is a positive rational number.
The log pairs $\left(V, M_{V}\right)$ and $\left(\bar{V}, M_{\bar{V}}\right)$ are birationally equivalent, and $K_{V}+M_{V}$ and $K_{\bar{V}}+M_{\bar{V}}$ are ample. The uniqueness of canonical model (see [3, Theorem 1.3.20]) implies that ρ is biregular if the singularities of both \log pairs $\left(V, M_{V}\right)$ and $\left(V, M_{\bar{V}}\right)$ are canonical.

The linear system Γ does not have base points. Thus, there is a rational number ε such that the log pair $\left(\bar{V}, M_{\bar{V}}\right)$ is canonical. So, the log pair $\left(V, M_{V}\right)$ is not canonical. Then the log pair

$$
\left(V, X+\frac{1-\varepsilon}{n} \bar{\Gamma}\right)
$$

is not \log canonical, because Λ does not have not base points, and $\bar{\Gamma}$ does not have base points outside of the fiber X, which is a Cartier divisor on the variety V. The log pair

$$
\left(X,\left.\frac{1-\varepsilon}{n} \bar{\Gamma}\right|_{X}\right)
$$

is not \log canonical by Theorem 17.6 in [9], which is impossible, because $\operatorname{lct}(X) \geqslant 1$.
To conclude the proof we may assume that the varieties X and \bar{X} have log terminal singularities, the inequality $\operatorname{lct}(X)+\operatorname{lct}(\bar{X})>1$ holds, and ρ is not an isomorphism.

Let $\Lambda, \Gamma, \bar{\Lambda}, \bar{\Gamma}$ and n be the same as in the previous case. Put

$$
M_{V}=\frac{\operatorname{lct}(\bar{X})-\varepsilon}{n} \Lambda+\frac{\operatorname{lct}(X)-\varepsilon}{n} \bar{\Gamma}, M_{\bar{V}}=\frac{\operatorname{lct}(\bar{X})-\varepsilon}{n} \bar{\Lambda}+\frac{\operatorname{lct}(X)-\varepsilon}{n} \Gamma,
$$

where ε is a sufficiently small positive rational number. Then it follows from the uniqueness of canonical model that ρ is biregular if both \log pair $\left(V, M_{V}\right)$ and ($V, M_{\bar{V}}$) are canonical.

Without loss of generality, we may assume that the singularities of the log pair $\left(V, M_{V}\right)$ are not canonical. Arguing as in the previous case, we see that the log pair

$$
\left(X,\left.\frac{\operatorname{lct}(X)-\varepsilon}{n} \bar{\Gamma}\right|_{X}\right)
$$

is not \log canonical, which is impossible, because $\left.\bar{\Gamma}\right|_{X} \equiv-n K_{X}$.
The assertion of Theorem 1.5 is a generalization of the Main Theorem in [10].

REFERENCES

[1] J.W. Bruce and C.T.C. Wall, On the classification of cubic surfaces, Journal of the London Mathematical Society, 19 (1979), pp. 245-256.
[2] A. del Centina and S. Recillas, Some projective geometry associated with unramified double covers of curves of genus 4, Annali di Matematica Pura ed Applicata, 133 (1983), pp. 125140.
[3] I. Cheltsov, Birationally rigid Fano varieties, Russian Mathematical Surveys, 60 (2005), pp. 875-965
[4] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geometric and Functional Analysis, 18 (2008), pp. 1118-1144.
[5] I. Cheltsov and C. Shramov, Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly, Russian Mathematical Surveys, 63 (2008), pp. 73-180.
[6] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and KählerEinstein metrics on Fano orbifolds, Annales Scientifiques de l'École Normale Supérieure, 34 (2001), pp. 525-556.
[7] W. Ding and G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant, Inventiones Mathematicae, 110 (1992), pp. 315-335.
[8] J. Kollár, Singularities of pairs, Proceedings of Symposia in Pure Mathematics, 62 (1997), pp. 221-287.
[9] J. Kollár et al., Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).
[10] J. Park, Birational maps of del Pezzo fibrations, Journal fur die Reine und Angewandte Mathematik, 538 (2001), pp. 213-221.
[11] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Inventiones Mathematicae, 89 (1987), pp. 225-246.
[12] J. Park and J. Won, Log canonical thresholds on Gorenstein canonical del Pezzo surfaces, arXiv:0904.4513.

[^0]: *Received October 28, 2008; accepted for publication December 2, 2008.
 ${ }^{\dagger}$ School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK (I.Cheltsov@ ed.ac.uk). The author would like to thank I. Dolgachev, J. Kollár, V. Shokurov, J. Park and the referee for useful comments.

[^1]: ${ }^{1} \mathrm{~A}$ cubic surface in \mathbb{P}^{3} with isolated singularities has canonical singularities \Longleftrightarrow it is not a cone.

[^2]: ${ }^{2}$ The existence of orbifold Kähler-Einstein metrics on X_{1} and X_{2} is obvious, because both X_{1} and X_{2} are quotients branched over singular points of smooth Kähler-Einstein del Pezzo surfaces (see [2] and [7, Example 1.4]).

