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ON SINGULAR CUBIC SURFACES∗
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Abstract. We study global log canonical thresholds of singular cubic surfaces.

Key words. Cubic surfaces, singularities, log canonical thresholds, del Pezzo fibrations, bira-
tional maps, Kahler-Einstein metric, alpha-invariant of Tian, orbifolds.

AMS subject classifications. 14J26, 14J45, 14J70, 14Q10, 14B05, 14E05, 32Q20

All varieties are assumed to be defined over C.

1. Introduction. Let X be a variety with at most log terminal singularities, let
Z ⊆ X be a closed subvariety, and let D be an effective Q-Cartier Q-divisor on X .
Then the number

lctZ

(

X, D
)

= sup
{

λ ∈ Q
∣

∣

∣
the log pair

(

X, λD
)

is log canonical along Z
}

is said to be the log canonical threshold of D along Z (see [8]).

Example 1.1. Let φ ∈ C[z1, · · · , zn] be a nonzero polynomial, let O ∈ Cn be
the origin. Then

lctO

(

Cn,
(

φ = 0
)

)

= sup

{

c ∈ Q
∣

∣

∣
the function

1
∣

∣φ
∣

∣

2c
is locally integrable near O

}

.

For the case Z = X we use the notation lct(X, D) instead of lctX(X, D). Then

lct
(

X, D
)

= inf
{

lctP

(

X, D
)

∣

∣

∣
P ∈ X

}

= sup
{

λ ∈ Q
∣

∣

∣
the log pair

(

X, λD
)

is log canonical
}

.

Suppose, in addition, that X is a Fano variety.

Definition 1.2. We define the global log canonical threshold of X by the number

lct
(

X
)

= inf
{

lct
(

X, D
)

∣

∣

∣
D is effective Q-divisor on X such that D ≡ −KX

}

.

The number lct(X) is an algebraic counterpart of the α-invariant introduced in
[11].

Example 1.3. Let X be a smooth cubic surface in P3. Then it follows from [4]
that

lct
(

X
)

=

{

2/3 when X has an Eckardt point,

3/4 when X does not have Eckardt points.
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In this paper we prove the following result1.

Theorem 1.4. Let X be a singular cubic surface in P3 with canonical singulari-

ties. Then

lct
(

X
)

=































































2/3 when Sing
(

X
)

=
{

A1

}

,

1/3 when Sing
(

X
)

⊇
{

A4

}

,

1/3 when Sing
(

X
)

=
{

D4

}

,

1/3 when Sing
(

X
)

⊇
{

A2, A2

}

,

1/4 when Sing
(

X
)

⊇
{

A5

}

,

1/4 when Sing
(

X
)

=
{

D5

}

,

1/6 when Sing
(

X
)

=
{

E6

}

,

1/2 in other cases.

Let us consider one birational application of Theorem 1.4.

Theorem 1.5. Let Z be a smooth curve. Suppose that there is a commutative

diagram

V

π

��

ρ
//______ V̄

π̄

��

Z Z

(1.6)

such that π and π̄ are flat morphisms, and ρ is a birational map that induces an

isomorphism

ρ
∣

∣

V \X
: V \ X −→ V̄ \ X̄, (1.7)

where X and X̄ are scheme fibers of π and π̄ over a point O ∈ Z, respectively. Suppose

that

• the varieties V and V̄ have terminal Q-factorial singularities,

• the divisors −KV and −KV̄ are π-ample and π̄-ample, respectively,

• the fibers X and X̄ are irreducible.

Then ρ is an isomorphism if one of the following conditions hold:

• the varieties X and X̄ have log terminal singularities, and lct(X)+lct(X̄) > 1;
• the variety X has log terminal singularities, and lct(X) > 1.

The assertion of Theorem 1.5 is sharp (see [10, Example 5.2–5.6]).

Example 1.8. Let V be V̄ subvarieties in C1 × P3 given by the equations

x3 + y3 + z2w + t6w3 = 0 and x3 + y3 + z2w + w3 = 0,

respectively, where t is a coordinate on C1, and (x, y, z, w) are coordinates on P3. The
projections

π : V −→ C1 and π̄ : V̄ −→ C1

1A cubic surface in P3 with isolated singularities has canonical singularities ⇐⇒ it is not a
cone.
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are fibrations into cubic surfaces. Let O be the point on C1 given by t = 0. Then
X̄ is smooth, the surface X has one singular point of type D4. Put Z = C1. Then
the map

(

x, y, z, w
)

−→
(

t2x, t2y, t3z, w
)

induces a birational map ρ : V 99K V̄ such that the diagrams 1.6 and isomorphism 1.7
exist, and ρ is not biregular. But lct(X) = 1/3 and lct(X̄) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

Example 1.9. Let V be V̄ subvarieties in C1 × P3 given by the equations

x3 + y2z + z2w + t12w3 = 0 and x3 + y2z + z2w + w3 = 0,

respectively, where t is a coordinate on C1, and (x, y, z, w) are coordinates on P3. The
projections

π : V −→ C1 and π̄ : V̄ −→ C1

are fibrations into cubic surfaces. Let O be the point on C1 given by t = 0. Then
X̄ is smooth, the surface X has one singular point of type E6. Put Z = C1. Then
the map

(

x, y, z, w
)

−→
(

t2x, t3y, z, t6w
)

induces a birational map ρ : V 99K V̄ such that the diagrams 1.6 and isomorphism 1.7
exist, and ρ is not biregular. But lct(X) = 1/6 and lct(X̄) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

Example 1.10. Let V be V̄ subvarieties in C1 × P3 given by the equations

wz2 + zx2 + y2x + t8w3 = 0 and wz2 + zx2 + y2x + w3 = 0,

respectively, where t is a coordinate on C1, and (x, y, z, w) are coordinates on P3. The
projections

π : V −→ C1 and π̄ : V̄ −→ C1

are fibrations into cubic surfaces. Let O be the point on C1 given by t = 0. Then
X̄ is smooth, the surface X has one singular point of type D5. Put Z = C1. Then
the map

(

x, y, z, w
)

−→
(

t2x, ty, z, t4w
)

induces a birational map ρ : V 99K V̄ such that the diagrams 1.6 and isomorphism 1.7
exist, and ρ is not biregular. But lct(X) = 1/4 and lct(X̄) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

The number lct(X) is closely related to the existence of a Kähler–Einstein metric
(see [6]), but we can not use Theorem 1.4 to prove the existence of such a metric on
singular cubic surfaces.

Remark 1.11. If a singular normal cubic surface in P3 admits an orbifold Kähler–
Einstein metric, then its singular locus must consist of singular points of type A1 and
A2 (see [7]).
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Nevertheless, we can use an equivariant analogue of the number lct(X) to prove
the existence of an orbifold Kähler–Einstein metric on some symmetric singular cubic
surfaces.

Example 1.12. Let X1 be the Cayley cubic surface in P3, i.e. a singular surface
given by

xyz + xyt + xzt + yzt = 0 ⊆ P3 ∼= Proj
(

C[x, y, z, t]
)

,

and let X2 be a cubic surface in P3 that is given by the equation xyz = t3. Put

lct
(

X1, S4

)

= sup

{

λ ∈ Q

∣

∣

∣

∣

∣

the log pair (X1, λD) has log canonical singularities

for every S4-invariant effective Q-divisor D ≡ −KX1

}

,

where we consider S4 as a subgroup of Aut(X1). Similarly, we define lct(X2, S3×Z3).
Then

lct
(

X1, S4

)

= lct
(

X2, S3 × Z3

)

= 1 >
2

3

by [4, Lemma 5.1]. Then X1 and X2 admit Kähler–Einstein metrics2 by [6] (cf. [5,
Appendix A]).

We prove Theorem 1.4 in Section 3, and we prove Theorem 1.5 in Section 4.

2. Basic tools. Let S be a surface with canonical singularities, and D be an
effective Q-divisor on it.

Remark 2.1. Let B be an effective Q-divisor on S such that (S, B) is log
canonical. Then

(

S,
1

1 − α

(

D − αB
)

)

is not log canonical if (S, D) is not log canonical, where α ∈ Q such that 0 6 α < 1.

Let LCS(S, D) ⊂ S be a subset such that P ∈ LCS(S, D) if and only if (S, D) is
not log terminal at the point P . The set LCS(S, D) is called the locus of log canonical
singularities.

Lemma 2.2. Suppose that −(KS + D) is ample. Then LCS(S, D) is connected.

Proof. See Theorem 17.4 in [9].
Let P be a point of the surface S such that (S, D) is not log canonical at the point

P .

Remark 2.3. Suppose that S is smooth at P . Then multP (D) > 1.

Let C be an irreducible curve on the surface S. Put

D = mC + Ω,

where m ∈ Q such that m > 0, and Ω is an effective Q-divisor such that C 6⊆ Supp(Ω).

2The existence of orbifold Kähler–Einstein metrics on X1 and X2 is obvious, because both X1

and X2 are quotients branched over singular points of smooth Kähler–Einstein del Pezzo surfaces
(see [2] and [7, Example 1.4]).
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Remark 2.4. Suppose that C ⊆ LCS(S, D). Then m > 1.

Lemma 2.5. Suppose that P ∈ C, the surface S is smooth at P , and m 6 1.
Then C · Ω > 1.

Proof. It follows from Theorem 17.6 in [9] that C · Ω > multP (Ω|C) > 1.
Let π : S̄ → S be a birational morphism such that the surface S̄ has canonical

singularities, and D̄ is a proper transform of D via π. Then

KS̄ + D̄ +

r
∑

i=1

aiEi ≡ π∗
(

KS + D
)

,

where Ei is a π-exceptional curve, and ai is a rational number.

Remark 2.6. The log pair (S, D) is log canonical if and only if (S̄, D̄+
∑r

i=1
aiEi)

is log canonical.

Suppose that r = 1, π(E1) = P , and P is an ordinary double point.

Lemma 2.7. Suppose that S̄ is smooth along E1. Then a1 > 1/2.

Proof. The inequality a1 > 1/2 follows from Theorem 17.6 in [9].
Most of the described results are valid in much more general settings (see [9]).

3. Main result. Let S be a singular cubic surface in P3 with canonical singu-
larities. Put Σ = Sing(S) and

lctn

(

S
)

= sup
{

µ ∈ Q
∣

∣

∣
the log pair

(

S,
µ

n
D
)

is log canonical for every D ∈
∣

∣−nKX

∣

∣

}

for every n ∈ N. Then it follows from [12] that

lct
(

S
)

= infn∈N

(

lctn

(

S
)

)

6 lct1
(

S
)

=































































2/3 when Σ =
{

A1

}

,

1/3 when Σ ⊇
{

A4

}

,

1/3 when Σ =
{

D4

}

,

1/3 when Σ ⊇
{

A2, A2

}

,

1/4 when Σ ⊇
{

A5

}

,

1/4 when Σ =
{

D5

}

,

1/6 when Σ =
{

E6

}

,

1/2 in other cases.

Let D be an arbitrary effective Q-divisor on the surface S such that

D ≡ −KS ∼ OP3

(

1
)

∣

∣

∣

S
,

and let λ be an arbitrary positive rational number such that λ < lct1(S).

Lemma 3.1. Suppose that lct1(S) 6 1/3. Then LCS(S, λD) ⊆ Σ.

Proof. Suppose that (S, λD) is not log terminal at a smooth point P ∈ S. Then

3 = −KS · D > multP

(

D
)

> 1/λ > 3,
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which is a contradiction. The obtained contradiction implies that LCS(S, λD) ⊆ Σ.

Lemma 3.2. Suppose that |LCS(S, λD)| < +∞. Then LCS(S, λD) ⊆ Σ.

Proof. The required assertion follows from [4].
Let O be a singular point of the surface S, and α : S̄ → S be a partial resolution

of singularities that contracts smooth rational curves E1, . . . , Ek to the point O such
that

S̄ \

(

k
⋃

i=1

Ei

)

∼= S \ O,

the surface S̄ is smooth along ∪k
i=1

Ei, and E2

i = −2 for every i = 1, . . . , k. Then

D̄ ≡ α∗
(

D
)

−

k
∑

i=1

aiEi,

where D̄ is the proper transform of D on the surface S̄, and ai ∈ Q. Let L1, . . . , Lr

be lines on the surface S such that O ∈ Li, and L̄i be the proper transform of Li on
the surface S̄. Then

−KS̄ · L̄1 = · · · = −KS̄ · L̄r = 1.

Remark 3.3. To prove Theorem 1.4, we must show that the equality

lct
(

S
)

= lct1
(

S
)

holds. Hence, it follows from the choice of the divisor D and λ ∈ Q that to prove
Theorem 1.4 it is enough to show that the singularities of the log pair (S, λD) are log
canonical.

In the rest of the section, we prove Theorem 1.4 case by case using [1].

Lemma 3.4. Suppose that Σ = {A1}. Then lct(S) = 2/3.

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

Suppose that there is an irreducible curve Z ⊂ S such that D = µZ + Ω, where
µ is a rational number such that µ > 1/λ, and Ω is an effective Q-divisor such that
Z 6⊂ Supp(Ω). Then

3 = −KS · D = µdeg
(

Z
)

− KS · Ω > µdeg
(

Z
)

> 3deg
(

Z
)

/2,

which implies that Z is a line. Let C be a general conic on S such that −KS ∼ Z +C.
Then

2 = C · D = µC · Z + C · Ω > µC · Z >
3

2
µ,

which is a contradiction. Then LCS(S, λD) = O by Lemma 3.2.
We have 3 − 2a1 = H̄ · D̄ > 0, where H̄ is a general curve in | − KS̄ − E1|. It

follows from

KS̄ + λD̄ + λa1E1 ≡ α∗
(

KS + λD
)
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that there is a point Q ∈ E1 such that (S̄, λD̄+λa1E1) is not log canonical at the point
Q.

It follows from [1] that r = 6. Let π : S̄ → P2 be a contraction of the curves
L̄1, . . . , L̄6.

Suppose that Q 6∈ ∪6

i=1
L̄i. Then

π
(

D̄ + a1E1

)

≡ π
(

− KS̄

)

≡ −KP2,

and π is an isomorphism in a neighborhood of Q. Let L be a general line on P2. Then
the locus

LCS
(

P2, L + π
(

λD̄ + λa1E1

)

)

is not connected, which is impossible by Lemma 2.2.
Therefore, we may assume that Q ∈ L̄1. Put D = aL1 + Υ, where a is a non-

negative rational number, and Υ is an effective Q-divisor, whose support does not
contain the line L1. Then

Ῡ ≡ α∗
(

Υ
)

− ǫE1,

where ǫ = a1 − a/2, and Ῡ is the proper transform of the divisor Υ on the surface S̄.
The log pair (S̄, λaL̄1 + λῩ + λ(a/2 + ǫ)E1) is not log canonical at Q. Then

1 + a/2 − ǫ = L̄1 · Ῡ > 1/λ − a/2 − ǫ

by Lemma 2.5, because λa 6 1. Hence, we have a > 1/2.
It follows from [12] that there is a conic C1 ⊂ S such that the log pair

(

S, lct1(S)
(

L1 + C1

)

)

is not log terminal. But it must be log canonical. Therefore, in the case when
C1 ⊆ Supp(D), we can use Remark 2.1 to find an effective divisor D′ on the surface
S such that the equivalence

D′ ≡ −KS

holds, the log pair (S, λD′) is not log canonical at the point P , and C1 6⊆ Supp(D′).
To complete the proof, we may assume that C1 6⊆ Supp(D).
Let C̄1 be the proper transforms of the conic C1 on the surface S̄. Then

2 − 3a/2 − ǫ = C̄1 · Ῡ > multQ

(

Ῡ
)

> 1/λ − a/2 − ǫ,

which implies that a < 1/2. But a > 1/2. The obtained contradiction completes
the proof.

Lemma 3.5. Suppose that Σ = {A1, . . . , A1} and |Σ| > 2. Then lct(S) = 1/2.

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

Suppose that there is an irreducible curve Z on the surface S such that

D = µZ + Ω,
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where µ is a rational number such that µ > 1/λ, and Ω is an effective Q-divisor, whose
support does not contain the curve Z. Then Z is a line (see the proof of Lemma 3.4).
We have

2 = C · D = µC · Z + C · Ω > µC · Z > µ > 1/λ > 2,

where C is a general conic on S that intersects Z in two points.
We may assume that LCS(S, λD) = O by Lemmas 2.2 and 3.2. Then a1 > 1 by

Lemma 2.7.
Arguing as in the proof of Lemma 3.4, we see that there is a point Q ∈ E such

that the singularities of the log pair (S̄, λD̄+λa1E1) are not log canonical at the point
Q.

Let P be a point in Σ such that P 6= O. We may assume that P ∈ L1. Then

2L1 + L′ ∼ −KS

for some line L′ ⊂ S.
Suppose that Q ∈ L̄1. Let a be a non-negative rational number such that

D = aL1 + Υ,

where Υ is an effective Q-divisor, whose support does not contain the line L1. Then

Ῡ ≡ α∗
(

Υ
)

− ǫE1,

where Ῡ is the proper transforms of Υ on the surface S̄, and ǫ = a1 − a/2. The log
pair

(

S̄, λaL̄1 + λῩ + λ(a/2 + ǫ)E1

)

is not log canonical at the point Q. We have L̄2

1 = −1/2. Then

1 − ǫ = L̄1 · Ῡ > 1/λ − a/2 − ǫ

by Lemma 2.5. We have a > 1/λ, which is impossible. Hence, we see that Q 6∈ L̄1.
There is a unique reduced conic Z ⊂ S such that O ∈ Z ∋ P and Q ∈ Z̄, where Z̄

is the proper transform of the conic Z on the surface S̄. Then L1 6⊆ Supp(Z), because
Q 6∈ L̄1.

Suppose that Z is irreducible. Put

D = eZ + ∆,

where e ∈ Q, and ∆ is an effective Q-divisor such that C 6⊆ Supp(∆). Then

∆̄ ≡ α∗
(

∆
)

− δE1,

where ∆̄ is the proper transforms of ∆ on the surface S̄, and δ = a1 − e/2. Then

2 − e − δ = Z̄ · ∆̄ > 1/λ − e/2 − δ > 2 − e/2 − δ

by Lemma 2.5, because C̄2 = 1/2. We have e < 0, which is impossible.
We see that the conic Z is reducible. Then

Z = L2 + L′
2
,
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where L′
2

is a line on S such that P ∈ L′
2

and L2 ∩ L′
2
6= ∅.

The intersection L2 ∩ L′
2 consists of a single point. The impossibility of the case

Q ∈ L̄1 implies that the surface S is smooth at the point L2 ∩L′
2
. There is a rational

number c > 0 such that

D = cL2 + Ξ,

where Ξ is an effective Q-divisor, whose support does not contain the line L2. Then

Ξ̄ ≡ α∗
(

Ξ
)

− υE1,

where Ξ̄ is the proper transforms of Ξ on the surface S̄, and υ = a1 − c/2. The log
pair

(

S̄, λcL̄2 + λΞ̄ + λ(c/2 + υ)E1

)

is not log canonical at Q. We have Q ∈ L̄2 and L̄2

2
= −1. Then

1 + c/2 − υ = L̄2 · Ξ̄ > 1/λ − c/2 − υ > 2 − c/2 − υ

by Lemma 2.5. Therefore, the inequality c > 1 holds.
There is a unique hyperplane section T of the surface S such that T = C2 + L2

and

Q = C̄2 ∩ L̄2 = O,

where C2 is a conic, and C̄2 is the proper transforms of C2 on the surface S̄.
The conic C2 is irreducible. We may assume that C2 6⊆ Supp(D) (see Remark 2.1).

Then

2 − 3c/2 − υ = C̄2 · Ξ̄ > multQ

(

Ξ̄
)

> 1/λ − c/2 − υ,

which implies that c < 0. The obtained contradiction completes the proof.

Lemma 3.6. Suppose that Σ = {D4}. Then lct(S) = 1/3.

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 3. The lines L1, L2, L3 lie in a single plane. Thus,
we may assume that L3 6⊆ Supp(D) due to Remark 2.1 and Lemma 3.1.

Let β : S̃ → S be a birational morphism such that the morphism α contracts one
irreducible rational curve E that contains three singular points O1, O2, O3 of type
A1.

Let D̃ and L̃i be the proper transforms of D and Li on the surface S̃, respectively.
Then

D̃ ≡ β∗
(

D
)

− µE,

where µ is a positive rational number. We have L̃i ≡ β∗(Li) − E. Then

0 6 D̃ · L̃3 =
(

β∗
(

D
)

− µE
)

· L̃3 = 1 − µE · L̃3 = 1 − µ/2,

which implies that µ 6 2. Therefore, we may assume that there is a point Q ∈ E such
that the singularities of the log pair (S̃, λD̃ + µE) are not log canonical at the point
Q (see Lemma 3.1).
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Suppose that S̃ is smooth at Q. The log pair (S̃, λD̃ + E) is not log canonical at
Q. Then

1 > µ/2 = −µE2 = E · D̃ > 1/λ > 3

by Lemma 2.5. We see that Q = Oj for some j.

The curves L̃1, L̃2 and L̃3 are disjoined, and each of them passes through a
singular point of the surface S̃. Therefore, we may assume that Oi ∈ L̃i for every i.

Let γ : Ŝ → S̃ be a blow up of the point Oj , and G be the exceptional curve of γ.
Then

L̂j ≡ γ∗
(

L̃j

)

−
1

2
G ≡

(

β ◦ γ
)∗(

L1

)

− Ê − G,

where L̂j and Ê are proper transforms of the curves L̄j and E on the surface Ŝ,
respectively.

Let D̂ be the proper transform of the divisor D̃ on the surface Ŝ. Then

D̂ ≡ γ∗
(

D̃
)

− ǫG ≡
(

β ◦ γ
)∗(

D
)

− µÊ −
(

µ/2 + ǫ
)

G,

where ǫ is a rational number, because 2Ê ≡ γ∗(2E) − G. By Lemma 2.7, we have

λǫ + λµ/2 > 1/2.

Suppose that j = 3. Then 1 − µ/2 − ǫ = D̂ · L̂3 > 0. But ǫ + µ/2 > 3/2.
We may assume that Q = O1, and the support of the divisor D contains the line

L1. Put

D = aL1 + Ω,

where a ∈ Q and a > 0, and Ω is an effective Q-divisor such that L1 6⊆ Supp(Ω).
Then

Ω̂ ≡
(

β ◦ γ
)∗(

Ω
)

− mÊ −
(

m/2 + b
)

G,

where Ω̂ is the proper transform of Ω, and m and b are non-negative rational numbers.
Then

(

β ◦ γ
)∗(

D
)

− µÊ −
(

µ/2 + ǫ
)

G ≡ D̂ = aL̂1 + Ω̂

≡
(

β ◦ γ
)∗(

aL1 + Ω
)

−
(

a + m
)

Ê −
(

a + m/2 + b
)

G,

which implies that µ = a + m 6 2 and ǫ = a/2 + b. We have

L̂2

1
= −1, Ê2 = −1, G2 = −2, L̂ · Ê = 0, L̂ · G = Ê · G = 1

on the surface Ŝ. The surface Ŝ is smooth along the curve G. Then

−a 6 −a + Ω̂ · L̂1 =
(

aL̂1 + Ω̂
)

· L̂1 = 1 − a − m/2 − b,

which implies that m/2+b 6 1 and a+m/2+b 6 1+a 6 3. Thus, by the equivalence

K
Ŝ

+ λaL̂1 + λΩ̂ + λ
(

a + m
)

Ê + λ
(

a + m/2 + b
)

G ≡
(

β ◦ γ
)∗(

KS + λaL1 + λΩ
)

,
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there exists a point A ∈ G such that the log pair
(

Ŝ, λaL̂1 + λΩ̂ + λ
(

a + m
)

Ê + λ
(

a + m/2 + b
)

G
)

is not log canonical at the point A.
Suppose that A 6∈ L̂1 ∪ Ê. Then (Ŝ, λΩ̂ + λ(a + m/2 + b)G) is not log canonical

at A, and

2b + a =
(

aL̂1 + Ω̂
)

· G = a + Ω̂ · G > a + 3,

by Lemma 2.5. We see that b > 3/2. But m/2 + b 6 1. We see that A ∈ L̂1 ∪ Ê.
Suppose that A 6∈ L̂1. The log pair

(

Ŝ, λΩ̂ + λ
(

a + m
)

Ê + λ
(

a + m/2 + b
)

G
)

is not log canonical at the point A. Arguing as in the previous case, we see that

m/2 − b = Ω̂ · Ê > 3 − a − m/2 − b,

which implies that a + m > 3. But a + m 6 2. We see that A ∈ L̂1.
The log pair (Ŝ, λaL̂1 + λΩ̂ + λ(a + m/2 + b)G) is not log canonical at A. Then

1 − a − m/2 − b =
(

aL̂1 + Ω̂
)

· L̂1 = −a + Ω̂ · L̂1 > −a + 3 −
(

a + m/2 + b
)

by Lemma 2.5. We have a > 2. But a + m 6 2, which is a contradiction.

Lemma 3.7. Suppose that Σ = {D5}. Then lct(S) = 1/4.

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

We see that LCS(S, λD) = {O} by Lemma 3.1.
It follows from [1] that r = 2 and the surface S contains a line L such that O 6∈ L.
Projecting from L, we see that there is a conic C ⊂ S such that the equivalence

−KS ∼ C + L

holds, O 6∈ C and |C ∩ L| = 1. Put P = C ∩ L. Then

P ∪ O ⊆ LCS

(

S,
3

4

(

C + L
)

+ λD

)

⊆ P ∪ O ∪ C ∪ L,

which is impossible by Lemma 2.2. The obtained contradiction completes the proof.

Lemma 3.8. Suppose that Σ = {E6}. Then lct(S) = 1/6

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 1. The log pair

(

S, lct1(S)L1

)

is not log terminal. But it must be log canonical. The surface S contains a plane
cuspidal cubic curve C such that O 6∈ C. Arguing as in the proof of Lemma 3.6, we
obtain a contradiction.
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Using the classification of possible singularities of the surface S obtained in [1],
we see that it follows from Lemmas 3.4, 3.5, 3.6, 3.7 and 3.8 that we may assume that

Σ =
{

Ai1 , . . . , Ais

}

to complete the proof of Theorem 1.4 . We assume that i1 6 · · · 6 is and O is of
type Ais

.

Lemma 3.9. Suppose that Σ = {A2}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (S, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 6. We may assume that the equivalences

−KS ∼ L1 + L2 + L3 ∼ L4 + L5 + L6

hold. The log pairs (S, lct1(S)(L1 + L2 + L3)) and (S, lct1(S)(L4 + L5 + L6)) are log
canonical.

Arguing as in the proof of Lemma 3.4, we see that

LCS
(

S, λD
)

= O.

Let H̄ be a proper transform on S̄ of a general hyperplane section that contains
O. Then

0 6 H̄ · D̄ = 3 − a1 − a2, 2a1 − a2 = E1 · D̄ > 0, 2a2 − a1 = E2 · D̄ > 0,

which implies that a1 6 2 and a2 6 2. There is a point Q ∈ E1 ∪E2 such that the log
pair

(

S̄, λ
(

D̄ + a1E1 + a2E2

)

)

is not log canonical at Q. We may assume that Q ∈ E1, and

L̄1 · E1 = L̄2 · E1 = L̄3 · E1 = L̄4 · E2 = L̄5 · E2 = L̄6 · E2 = 1,

which implies that L̄1 · E2 = L̄2 · E2 = L̄3 · E2 = L̄4 · E1 = L̄5 · E1 = L̄6 · E1 = 0.
It follows from Remark 2.1 that we may assume that L̄1 6⊆ Supp(D) 6⊇ L̄4. Then

{

1 − a1 = D̄ · L̄1 > 0,

1 − a2 = D̄ · L̄4 > 0,

which implies that a1 6 1 and a2 6 1.
Suppose that Q 6∈ E2. Then (S̄, λD̄ + E1) is not log canonical at Q. We have

2a1 − a2 = D̄ · E1 > 1/λ > 2,

by Lemma 2.5. Then a1 > 4/3, which is impossible, because a1 6 1. Hence, we see
that Q ∈ E2.

The log pairs (S̄, λD̄ +E1 + a2E2) and (S̄, λD̄ + a1E1 +E2) are not log canonical
at Q. Then

{

2a1 − a2 = D̄ · E1 > 1/λ − a2 > 2 − a2,

2a2 − a1 = D̄ · E2 > 1/λ − a1 > 2 − a1,
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by Lemma 2.5. Then a1 > 1 and a2 > 1. But a1 6 1 and a2 6 1, which is a
contradiction.

Lemma 3.10. Suppose that Σ = {A3}. Then lct(S) = 1/2

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 5. We may assume that

L̄1 · E1 = L̄2 · E1 = L̄3 · E2 = L̄4 · E3 = L̄5 · E3 = 1,

which implies that L̄3 · E1 = L̄3 · E2 = 0 and

L̄1 · E2 = L̄2 · E2 = L̄1 · E3 = L̄2 · E3 = L̄4 · E2 = L̄5 · E2 = L̄4 · E1 = L̄5 · E1 = 0.

The inequalities L̄2

i = −1 and L̄i · L̄j = 0 hold for i 6= j. We have −KS ∼
L1 + L2 + L3.

Suppose that there are a line L ⊂ S and a rational number µ > 1/λ such that
D = µL+Ω, where Ω is an effective Q-divisor, whose support does not contain the line
L. Then

2 = C · D = µC · L + C · Ω > µC · L > 2C · L,

where C is a general conic on the surface S such that the divisor C+L is a hyperplane
section of the surface S. Then |L∩C| = 1 and C ·L < 1, which implies that L = L3.
But L3 · C = 1.

Arguing as in the proof of Lemma 3.2, we see that LCS(S, λD) = O by Lem-
mas 2.2.

Let H̄ be a general curve in | − KS̄ −
∑3

i=1
Ei|. Then

a1 + a3 6 3, 2a1 > a2, 2a2 > a1 + a3, 2a3 > a2,

because H̄ · D̄ > 0, E1 · D̄ > 0, E2 · D̄ > 0, E3 · D̄ > 0, respectively.
We may assume that either L1 6⊆ Supp(D) or L3 6⊆ Supp(D) by Remark 2.1. But

L̄1 · D̄ = 1 − a1, L̄3 · D̄ = 1 − a2,

which implies that either a1 6 1 or a2 6 1. Similarly, we assume that either a3 6 1
or a2 6 1.

We have a1 6 2, a2 6 2, a3 6 2. There is a point Q ∈ E1 ∪ E2 ∪ E3 such that
the log pair

(

S̄, λ
(

D̄ + a1E1 + a2E2 + a3E3

)

)

is not log canonical at Q. We may assume that Q 6∈ E3.
Suppose that Q 6∈ E2. Then (S̄, λD̄+E1) is not log canonical at Q, which implies

that

2a1 − a2 = D̄ · E1 > 2

by Lemma 2.5. Then a1 > 3/2 and a2 > 1. But either a1 6 1 or a2 6 1.
Suppose that Q ∈ E2 ∩E1. Arguing as in the proof of of Lemma 3.9, we see that

{

2a1 − a2 = D̄ · E1 > 1/λ − a2 > 2 − a2,

2a2 − a1 − a3 = D̄ · E2 > 1/λ − a1 > 2 − a1,
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by Lemma 2.5. Then a1 > 1 and 2a2 > 2 + a3, which is impossible.
We see that Q ∈ E2 and Q 6∈ E1. Then (S̄, λD̄ + E2) is not log canonical at Q.

We have

2a2 − a1 − a3 = D̄ · E2 > 1/λ > 2,

which implies that a1 > 3/2 and a2 > 2. The obtained contradiction completes
the proof.

Lemma 3.11. Suppose that Σ = {A4}. Then lct(S) = 1/3

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 4. We may assume that

L̄1 · E1 = L̄2 · E1 = L̄3 · E3 = L̄4 · E4 = 1,

which implies that L̄3 · E1 = L̄3 · E2 = L̄3 · E4 = 0 and

L̄1 ·E2 = L̄2 ·E2 = L̄1 ·E3 = L̄2 ·E3 = L̄1 ·E4 = L̄2 ·E4 = L̄4 ·E1 = L̄4 ·E2 = L̄4 ·E3 = 0.

We have LCS(S, λD) = O by Lemma 3.1. Let H̄ be a general curve in | − KS̄ −
∑

4

i=1
Ei|. Then

3 > a1 + a4, 2a1 > a2, 2a2 > a1 + a3, 2a3 > a2 + a4, 2a4 > a3,

because H̄ · D̄ > 0, E1 · D̄ > 0, E2 · D̄ > 0, E3 · D̄ > 0, E4 · D̄ > 0, respectively.
One can easily check that the equivalences

−KS ∼ L1 + L2 + L3 ∼ 2L3 + L4

hold. Therefore, we may assume that either

L1 6⊆ Supp(D) 6⊇ L4

or L3 6⊆ Supp(D) by Remark 2.1 and Lemma 3.1. But

L̄3 · D̄ = 1 − a3, L̄1 · D̄ = 1 − a1, L̄4 · D̄ = 1 − a4,

which implies that there is a point Q ∈ ∪4

i=1
Ei such that the log pair

(

S̄, λ
(

D̄ +

4
∑

i=1

aiEi

)

)

is not log canonical at the point Q. Arguing as in the proof of Lemma 3.10, we see
that



















































Q ∈ E1 \ (E1 ∩ E2) ⇒ 2a1 > a2 + 3,

Q ∈ E1 ∩ E2 ⇒ 2a1 > 3 and 2a2 > 3 + a3,

Q ∈ E2 \
(

(E1 ∩ E2) ∪ (E2 ∩ E3)
)

⇒ 2a2 > a1 + a3 + 3,

Q ∈ E2 ∩ E3 ⇒ 2a2 > 3 + a1 and 2a3 > 3 + a4,

Q ∈ E3 \
(

(E2 ∩ E3) ∪ (E3 ∩ E4)
)

⇒ 2a3 > 3 + a2 + a4,

Q ∈ E3 ∩ E4 ⇒ 2a3 > 3 + a2 and 2a4 > 3,

Q ∈ E4 \ (E4 ∩ E3) ⇒ 2a4 > 3,
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which leads to a contradiction, because either a3 6 1 or a1 6 1 and a4 6 1.

Lemma 3.12. Suppose that Σ = A5. Then lct(S) = 1/4.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 3. We may assume that L̄1 ·E1 = L̄2 ·E1 = L̄3 ·E4 =
1 and

L̄1 · E2 = L̄2 · E2 = L̄1 · E3 = L̄2 · E3 = L̄1 · E4 = L̄2 · E4 = L̄1 · E5 = L̄2 · E3 = 0

and L̄3 ·E1 = L̄3 ·E2 = L̄3 ·E3 = L̄3 ·E5 = 0. Then LCS(S, λD) = O by Lemma 3.1.
Let H̄ be a proper transform on S̄ of a general hyperplane section that contains

O. Then

3 > a1 +a5, 2a1 > a2, 2a2 > a1 +a3, 2a3 > a2+a4, 2a4 > a3 +a5, 2a5 > a4, (3.13)

because H̄ · D̄ > 0, E1 · D̄ > 0, E2 · D̄ > 0, E3 · D̄ > 0, E4 · D̄ > 0, E5 · D̄ > 0,
respectively.

We have −KS ∼ 3L3. Thus, we may assume that L3 6⊆ Supp(D) by Remark 2.1.
Then

a1 6 5/2, a2 6 2, a3 6 3/2, a4 6 1, a5 6 5/4,

because 1 − a4 = L̄3 · D̄ > 0.
Arguing as in the proof of Lemma 3.10, we see that there is a point Q ∈ ∪5

i=1
Ei

such that






































































Q ∈ E1 \ (E1 ∩ E2) ⇒ 2a1 > a2 + 4,

Q ∈ E1 ∩ E2 ⇒ 2a1 > 4 and 2a2 > 4 + a3,

Q ∈ E2 \
(

(E1 ∩ E2) ∪ (E2 ∩ E3)
)

⇒ 2a2 > a1 + a3 + 4,

Q ∈ E2 ∩ E3 ⇒ 2a2 > 4 + a1 and 2a3 > 4 + a4,

Q ∈ E3 \
(

(E2 ∩ E3) ∪ (E3 ∩ E4)
)

⇒ 2a3 > 4 + a2 + a4,

Q ∈ E3 ∩ E4 ⇒ 2a3 > 4 + a2 and 2a4 > 4 + a5,

Q ∈ E4 \
(

(E3 ∩ E4) ∪ (E4 ∩ E5)
)

⇒ 2a4 > 4 + a3 + a5,

Q ∈ E4 ∩ E5 ⇒ 2a4 > 4 + a3 and 2a5 > 4,

Q ∈ E5 \ (E4 ∩ E5) ⇒ 2a5 > a4 + 4.

(3.14)

The inequalities 3.13 and 3.14 imply that either Q = E3 ∩ E4 or Q = E4 ∩ E5,
because a4 6 1.

Let H1 and H3 be general divisors in |−KS| that contain L1 and L3, respectively.
Then

H1 = L1 + C1, H3 = L3 + C3,

where C1 and C3 are irreducible conics such that C1 6⊆ Supp(D) 6⊇ C3.
Let C̄1 and C̄3 be the proper transforms of C1 and C3 on the surface S̄, respec-

tively. Then

{

2 − a5 = C̄1 · D̄ > 0,

2 − a2 = C̄3 · D̄ > 0,
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which is impossible due to the inequalities 3.13 and 3.14.

Lemma 3.15. Suppose that Σ = {A1, A5}. Then lct(S) = 1/4.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 2. We have LCS(S, λD) ⊆ Σ by Lemma 3.1.
Let P be a point in Σ of type A1. We may assume that P ∈ L1. Then

L̄2 · E1 = L̄2 · E2 = L̄2 · E3 = L̄2 · E5 = L̄1 · E2 = L̄1 · E3 = L̄1 · E4 = L̄1 · E5 = 0,

and L̄1 · E1 = L̄2 · E4 = 1. The equivalence −KS ∼ 3L2 holds.
Suppose that (S, λD) is not log canonical at P . Let β : S̃ → S be a blow up of

P . Then

D̃ ≡ β∗
(

− KS

)

− mF,

where F is the β-exceptional curve, D̃ is the proper transform of the divisor D, and
m ∈ Q. Then

0 6 H̃ · D̃ =
(

β∗
(

− KS

)

− mF
)

·
(

β∗
(

− KS

)

− F
)

= 3 − 2m,

where H̃ is general curve in | − KS̃ − F |. Thus, we have m 6 3/2. But m > 2 by
Lemma 2.7.

We see that LCS(S, λD) = O. Let C1 and C2 be general conics on the surface S
such that

L1 + C1 ∼ L2 + C2 ∼ −KS,

and let C̄1 and C̄2 be the proper transforms of C1 and C2 on the surface S̄, respectively.
Then

{

2 − a1 = C̄1 · D̄ > 0,

2 − a5 = C̄2 · D̄ > 0,

because C1 6⊆ Supp(D) 6⊇ C2. We may assume that L2 6⊆ Supp(D) due to Remark 2.1.
Arguing as in the proof of Lemma 3.12, we obtain the inequalities

3 > a1 + a5, 2a1 > a2, 2a2 > a1 + a3, 2a3 > a2 + a4,

2a4 > a3 + a5, 2a5 > a4, 2 > a2, 2 > a5, 1 > a4,

which imply that there is a point Q ∈ ∪5

i=1
Ei such that the log pair

(

S̄, λ
(

D̄ +

5
∑

i=1

aiEi

)

)

is not log canonical at Q. Arguing as in the proof of Lemma 3.10, we obtain a
contradiction.

Lemma 3.16. Suppose that Σ = {A1, A4}. Then lct(S) = 1/3.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.
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Let P be a point in Σ of type A1. We may assume that P ∈ L1.
It follows from [1] that r = 3. Then

L̄1 · E1 = 1, L̄1 · E2 = L̄1 · E3 = L̄1 · E4 = 0,

and we may assume that L̄3 · E3 = L̄2 · E4 = 1. Then −KS ∼ L2 + 2L3 and

L̄3 · E1 = L̄3 · E2 = L̄3 · E4 = L̄2 · E1 = L̄2 · E2 = L̄2 · E3 = 0.

We may assume that either L3 6⊆ Supp(D) or L1 6⊆ Supp(D) 6⊇ L2 (see Re-
mark 2.1).

Arguing as in the proof of Lemma 3.15, we see that

LCS
(

S, λD
)

= O,

and arguing as in the proof of Lemma 3.11, we obtain a contradiction.

Lemma 3.17. Suppose that Σ = {A1, A3}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

Let P be a point in Σ of type A1. We may assume that P ∈ L1.
It follows from [1] that r = 4 and S contains lines L5, L6, L7 such that

L5 ∋ P ∈ L6, O 6∈ L7 6∋ P, L3 ∩ L5 6= ∅, L4 ∩ L6 6= ∅,

L7 ∩ L2 6= ∅, L7 ∩ L5 6= ∅, L7 ∩ L6 6= ∅,

which implies that L7 ∩ L1 = L7 ∩ L3 = L7 ∩ L4 = ∅. Then

L1 + L3 + L5 ∼ L1 + L4 + L6 ∼ L5 + L6 + L7 ∼ L2 + 2L1 ∼ L2 + L3 + L4 ∼ 2L2 + L7

and −KS ∼ L1 + L3 + L5. Put

D = µiLi + Ωi,

where µi is a non-negative rational number, and Ωi is an effective Q-divisor, whose
support does not contain the line Li. Let us show that that µi < 1/λ for i = 1, . . . , 7.

Suppose that µ2 > 1/λ. We may assume that L1 6⊆ Supp(D) by Remark 2.1.
Then

1 = L1 · D = L1 ·
(

µ2L2 + Ω2

)

> µ2L1 · L2 = µ2/2 > 1,

which is a contradiction. Similarly, we see that µi < 1/λ for i = 1, . . . , 7.
Arguing as in the proof of Lemma 3.4, we see that

LCS
(

S, λD
)

⊆ Σ,

which implies that LCS(S, λD) = O or LCS(S, λD) = P by Lemma 2.2.
Suppose that LCS(S, λD) = P . Put

D = µ5L5 + µ6L6 + Υ,

where Υ is an effective Q-divisor such that L5 6⊆ Supp(Υ) 6⊇ L6. Then µ5 > 0 and
µ6 > 0. But

1 = L7 · D = L7 ·
(

µ5L5 + µ6L6 + Υ
)

> L7 ·
(

µ5L5 + µ6L6

)

= µ5 + µ6,
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because we may assume that L7 6⊆ Supp(Υ). Let β : S̃ → S be a blow up of the
point P . Then

µ5L̃5 + µ6L̃6 + Υ̃ ≡ β∗
(

µ5L5 + µ6L6 + Υ
)

−
(

µ5/2 + µ6/2 + ǫ
)

G,

where ǫ is a rational number, G is the exceptional curve of β, and L̃5, L̃6, Υ̃ are proper
transforms of the divisors L5, L6, Υ on the surface S̃, respectively. Then

0 6

(

µ5L̃5 + µ6L̃6 + Υ̃
)

H̃ = 3 − µ5 − µ6 − 2ǫ,

where H̃ is a general curve in | − KS̃ − G|. There is a point Q ∈ G such that the log
pair

(

S̃, λ
(

µ5L̃5 + µ6L̃6 + Υ̃
)

+ λ
(

µ5/2 + µ6/2 + ǫ
)

G
)

are not log canonical at Q. We have

2 − 2ǫ = Υ̃ ·
(

L̃5 + L̃6

)

> 0,

which implies that ǫ 6 1. Then it follows from Lemma 2.5 that

2ǫ = Ω̃ · G > 2

if Q 6∈ L̃5 ∪ L̃6, which implies that we may assume that Q ∈ L̃5. Then

1 + µ5/2 − µ6 − ǫ = Ω̃ · L̃5 > 2 − µ5/2 − µ6/2 − ǫ,

by Lemma 2.5. Thus, we see that µ5 > 1. But

µ5 6 µ5 + µ6 6 1,

which is a contradiction. The obtained contradiction shows that LCS(S, λD) 6= P .
We see that LCS(S, λD) = O. We may assume that

L̄1 · E2 = L̄1 · E3 = L̄2 · E1 = L̄2 · E3 = L̄3 · E1 = L̄3 · E2 = L̄4 · E1 = L̄4 · E2 = 0

and L̄1 · E1 = L̄2 · E2 = L̄3 · E3 = L̄4 · E3 = 1. But the log pair

(

S, lct1(S)
(

2L1 + L2

)

)

has log canonical singularities. Similarly, the log pair

(

S, lct1(S)
(

L2 + L3 + L3

)

)

is log canonical. By Remark 2.1 and Lemma 3.1, we may assume that either

L1 6⊆ Supp
(

D
)

6⊇ L3

or L2 6⊆ Supp(D). Arguing as in the proof of Lemma 3.10, we obtain a contradiction.

Lemma 3.18. Suppose that Σ = {A1, A2}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.
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It follows from [1] that r = 5. We may assume that

L̄1 · E1 = L̄2 · E1 = L̄3 · E2 = L̄4 · E2 = L̄5 · E2 = 1

and L̄1 · E2 = L̄2 · E2 = L̄3 · E1 = L̄4 · E1 = L̄5 · E1 = 0.
Let P be a point in Σ of type A1. We may assume that P ∈ L1.
It follows from [1] that S contains lines L6, L7, L8, L9, L10, L11 such that

P = L1 ∩ L6 ∩ L7 ∩ L8, L9 ∩ L6 6= ∅, L9 ∩ L7 6= ∅, L9 ∩ L6 6= ∅

and L9 ∩ L7 6= ∅, L10 ∩ L7 6= ∅, L10 ∩ L8 6= ∅, L11 ∩ L6 6= ∅, L11 ∩ L8 6= ∅. Then

L2 6∋ P 6∈ L3, L4 6∋ P 6∈ L5, L6 6∋ O 6∈ L7, L8 6∋ O 6∈ L9, L10 6∋ O 6∈ L11,

which implies that −KS ∼ L3 + L4 + L5 ∼ 2L1 + L2 ∼ L3 + L4 + L5 and

−KS ∼ 2L1 + L2 ∼ L1 + L3 + L6 ∼ L1 + L4 + L7 ∼ L1 + L5 + L8 ∼ L6 + L7 + L9

and −KS ∼ L7 + L8 + L10 ∼ L6 + L8 + L11.
Arguing as in the proof of Lemma 3.17, we see that

LCS
(

S, λD
)

= O.

By Remark 2.1, we may assume that either L1 6⊆ Supp(D) or L2 6⊆ Supp(D),
because

2L1 + L2 ∼ −KS

and the log pair (S, lct1(S)(2L1 + L2)) has log canonical singularities. Similarly, we
may assume that Supp(D) does not contain at least one of the lines L3, L4, L5,
because the equivalence

L3 + L4 + L5 ∼ −KS

holds. Arguing as in the proof of Lemma 3.9, we obtain a contradiction.

Lemma 3.19. Suppose that Σ = {A2, . . . , A2} and |Σ| > 2. Then lct(S) = 1/3.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

Let P be a point in Σ such that P 6= O. We may assume that P ∈ L1. Then

−KS ∼ 3L1.

We may assume that (S, λD) is not log canonical at O by Lemma 3.1, and we
assume that

L1 6⊆ Supp(D)

by Remark 2.1 and Lemma 3.1.
We may assume that L̄1 ∩ E2 6= ∅. Then a2 6 1, because D̄ · L̄1 > 0.
Arguing as in the proof of Lemma 3.9, we see that 3 > a1 + a2, 2a1 > a2, 2a2 >

a1, 1 > a2.
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There is a point Q ∈ E1 ∪ E2 such that the log pair

(

S̄, λ
(

D̄ + a1E1 + a2E2

)

)

is not log canonical at the point Q. Arguing as in the proof of Lemma 3.9, we see
that











Q ∈ E1 \ (E1 ∩ E2) ⇒ 2a1 > a2 + 3,

Q ∈ E1 ∩ E2 ⇒ 2a1 > 3 and 2a2 > 3,

Q ∈ E2 \ (E2 ∩ E1) ⇒ 2a2 > a1 + 3,

which easily leads to a contradiction, because 3 > a1+a2, 2a1 > a2, 2a2 > a1, 1 > a2.

Lemma 3.20. Suppose that Σ = {A1, A2, A2}. Then lct(S) = 1/3.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from Lemma 3.1 that LCS(S, λD) ⊆ Σ.
Let P 6= O be a point in Σ of type A2. We may assume that P ∈ L1. Then

−KS ∼ 3L1,

which implies that we may assume that L1 6⊆ Supp(D) due to Remark 2.1 and
Lemma 3.1.

Arguing as in the proof of Lemma 3.15, we see that

LCS
(

S, λD
)

⊆ O ∪ P,

which easily leads to a contradiction (see the proof of Lemma 3.19).

Lemma 3.21. Suppose that Σ = {A1, A1, A3}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 3.
Let P1 and P2 be points in Σ of type A1. Then we may assume that P1 ∈ L1 and

P2 ∈ L2.
It follows from [1] that S contains lines L4 and L5 such that

P1 ∈ L4 ∋ P2, O 6∈ L4, P1 6∈ L3 6∋ P2, L5 ∩ Σ = ∅,

which implies that L5 ∩ L3 6= ∅, L5 ∩ L4 6= ∅, L5 ∩ L1 = ∅, L5 ∩ L2 = ∅. Then

−KS ∼ L1 + L2 + L4 ∼ L3 + 2L1 ∼ L3 + 2L2 ∼ 2L3 + L5 ∼ 2L4 + L5. (3.22)

Let us show that LCS(S, λD) does not contains the lines L1, . . . , L5. Put

D = µiLi + Ωi,

where µi ∈ Q, and Ωi is an effective Q-divisor such that Li 6⊆ Supp(Ωi).
Suppose that µ1 > 1/λ. Then it follows from the equivalence 3.22 and Remark 2.1

that we may assume that L3 6⊆ Supp(D). Therefore, we have

1 = L3 · D = L3 ·
(

µ1L1 + Ω1

)

> µ1L3 · L1 = µ1/2 > 1,
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which is a contradiction. Similarly, we see that µ2 < 1/λ, µ3 < 1/λ, µ4 < 1/λ,
µ5 < 1/λ.

Arguing as in the proof of Lemma 3.4, we see that |LCS(S, λD)| = 1 and

LCS
(

S, λD
)

( Σ.

Suppose that LCS(S, λD) = P1. Let β : S̃ → S be a blow up of the point P1.
Then

µ4L̃4 + Ω̃ ≡ β∗
(

µ4L4 + Ω
)

−
(

µ4/2 + ǫ
)

G,

where G is the exceptional curve of the birational morphism β, L̃4 and Ω̃ are proper
transforms of the divisors L4 and Ω on the surface S̃, respectively, and ǫ is a positive
rational number. Then

0 6

(

µ4L̃4 +Ω̃
)

H̃ =
(

β∗
(

µ4L4 +Ω
)

−
(

µ4/2+ ǫ
)

G
)

·
(

β∗
(

−KS

)

−G
)

= 3−µ4−2ǫ,

where H̃ is a general curve in | − KS̃ − G|. Thus, there is a point P ∈ G such that
the log pair

(

S̃, µ4L̃4 + Ω̃ +
(

µ4/2 + ǫ
)

G
)

is not log canonical at P . Then 1 − ǫ = Ω̃ · L̃4 > 0. It follows from Lemma 2.5 that

2ǫ = Ω̃ · G > 2

in the case when P 6∈ L̃4. Therefore, we see that P ∈ L̃4. Then

1 − ǫ = Ω̃ · L̃4 > 2 − µ4/2 − ǫ

by Lemma 2.5. Thus, we see that µ4 > 2, which is a contradiction.
Similarly, we see that P2 6∈ LCS(S, λD). Then LCS(S, λD) = O. We may assume

that

L̄1·E1 = L̄2·E3 = L̄3·E2 = 1, L̄1·E2 = L̄1·E3 = L̄2·E1 = L̄2·E2 = L̄3·E1 = L̄3·E3 = 0.

It follows from the equivalences 3.22 that we may assume that either L3 6⊆
Supp(D) or

L1 6⊆ Supp(D) 6⊇ L2

by Remark 2.1. Arguing as in the proof of Lemma 3.10, we obtain a contradiction.

Lemma 3.23. Suppose that Σ = {A1, A1, A2}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (X, λD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 4.
Let P1 6= P2 be points in Σ of type A1. Then we may assume that P1 ∈ L1 and

P2 ∈ L4.
It follows from [1] that S contains lines L5, L6, L7, L8 such that

P1 ∈ L5, P2 ∈ L6, P1 ∈ L7 ∋ P2, O 6∈ L8, P1 6∈ L8 6∋ P2,
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which implies that L8∩L7 6= ∅, L8∩L2 6= ∅, L8∩L3 6= ∅, L2∩L7 = ∅, L3∩L7 = ∅.
Then

L1 + L4 + L7 ∼ L2 + 2L1 ∼ L3 + 2L4 ∼ 2L7 + L8

∼ L2 + L3 + L8 ∼ L1 + L3 + L5 ∼ L4 + L2 + L6,

and −KS ∼ L1 + L4 + L7. Without loss of generality, we may assume that

L̄1 · E1 = L̄2 · E1 = L̄3 · E2 = L̄4 · E2 = 1, L̄1 · E2 = L̄2 · E2 = L̄3 · E1 = L̄4 · E1 = 0.

Arguing as in the proof of Lemma 3.21, we see that LCS(S, λD) = O.
By Remark 2.1, we may assume that either L1 6⊆ Supp(D) or L2 6⊆ Supp(D),

because

2L1 + L2 ∼ −KS ∼ OP3

(

1
)

∣

∣

∣

S

and the log pair (X, lct1(S)(2L1+L2)) is log canonical, where lct1(S) = 1/2. Similarly,
we may assume that either L3 6⊆ Supp(D) or L4 6⊆ Supp(D), because −KS ∼ L3+2L4.

Arguing as in the proof of Lemma 3.9, we obtain a contradiction.
It follows from [1], that the equalities

lct
(

S
)

= lct1
(

S
)

=































































2/3 when Σ =
{

A1

}

,

1/3 when Σ ⊇
{

A4

}

,

1/3 when Σ =
{

D4

}

,

1/3 when Σ ⊇
{

A2, A2

}

,

1/4 when Σ ⊇
{

A5

}

,

1/4 when Σ =
{

D5

}

,

1/6 when Σ =
{

E6

}

,

1/2 in other cases.

are proved for all possible values of the set Σ. Hence, the assertion of Theorem 1.4 is
proved.

4. Fiberwise maps. Let us use the assumptions and notation of Theorem 1.5.

Proof of Theorem 1.5. Suppose that X is log terminal and lct(X) > 1, but ρ is
not an isomorphism. Let D be a general very ample divisor on Z. Put

Λ =
∣

∣− nKV + π∗(nD)
∣

∣, Γ =
∣

∣− nKV̄ + π̄∗(nD)
∣

∣, Λ̄ = ρ(Λ), Γ̄ = ρ−1(Γ),

where n is a natural number such that Λ and Γ have no base points. Put

MV =
2ε

n
Λ +

1 − ε

n
Γ, MV̄ =

2ε

n
Λ̄ +

1 − ε

n
Γ,

where ε is a positive rational number.
The log pairs (V, MV ) and (V̄ , MV̄ ) are birationally equivalent, and KV + MV

and KV̄ +MV̄ are ample. The uniqueness of canonical model (see [3, Theorem 1.3.20])
implies that ρ is biregular if the singularities of both log pairs (V, MV ) and (V, MV̄ )
are canonical.
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The linear system Γ does not have base points. Thus, there is a rational number ε
such that the log pair (V̄ , MV̄ ) is canonical. So, the log pair (V, MV ) is not canonical.
Then the log pair

(

V, X +
1 − ε

n
Γ̄
)

is not log canonical, because Λ does not have not base points, and Γ̄ does not have
base points outside of the fiber X , which is a Cartier divisor on the variety V . The
log pair

(

X,
1 − ε

n
Γ̄
∣

∣

∣

X

)

is not log canonical by Theorem 17.6 in [9], which is impossible, because lct(X) > 1.
To conclude the proof we may assume that the varieties X and X̄ have log terminal

singularities, the inequality lct(X) + lct(X̄) > 1 holds, and ρ is not an isomorphism.
Let Λ, Γ, Λ̄, Γ̄ and n be the same as in the previous case. Put

MV =
lct(X̄) − ε

n
Λ +

lct(X) − ε

n
Γ, MV̄ =

lct(X̄) − ε

n
Λ̄ +

lct(X) − ε

n
Γ,

where ε is a sufficiently small positive rational number. Then it follows from
the uniqueness of canonical model that ρ is biregular if both log pair (V, MV ) and
(V, MV̄ ) are canonical.

Without loss of generality, we may assume that the singularities of the log pair
(V, MV ) are not canonical. Arguing as in the previous case, we see that the log pair

(

X,
lct(X) − ε

n
Γ̄
∣

∣

∣

X

)

is not log canonical, which is impossible, because Γ̄|X ≡ −nKX .
The assertion of Theorem 1.5 is a generalization of the Main Theorem in [10].
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