ON SINGULAR CUBIC SURFACES*

IVAN CHELTSOV †

Abstract. We study global log canonical thresholds of singular cubic surfaces.

Key words. Cubic surfaces, singularities, log canonical thresholds, del Pezzo fibrations, birational maps, Kahler-Einstein metric, alpha-invariant of Tian, orbifolds.

AMS subject classifications. 14J26, 14J45, 14J70, 14Q10, 14B05, 14E05, 32Q20

All varieties are assumed to be defined over \mathbb{C} .

1. Introduction. Let X be a variety with at most log terminal singularities, let $Z \subseteq X$ be a closed subvariety, and let D be an effective Q-Cartier Q-divisor on X. Then the number

$$\operatorname{lct}_{Z}(X,D) = \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X,\lambda D) \text{ is log canonical along } Z \right\}$$

is said to be the log canonical threshold of D along Z (see [8]).

EXAMPLE 1.1. Let $\phi \in \mathbb{C}[z_1, \cdots, z_n]$ be a nonzero polynomial, let $O \in \mathbb{C}^n$ be the origin. Then

$$\operatorname{lct}_O(\mathbb{C}^n, (\phi = 0)) = \sup\left\{ c \in \mathbb{Q} \mid \text{the function } \frac{1}{|\phi|^{2c}} \text{ is locally integrable near } O \right\}.$$

For the case Z = X we use the notation lct(X, D) instead of $lct_X(X, D)$. Then

$$lct(X, D) = \inf \left\{ lct_P(X, D) \mid P \in X \right\}$$
$$= \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \lambda D) \text{ is log canonical} \right\}.$$

Suppose, in addition, that X is a Fano variety.

DEFINITION 1.2. We define the global log canonical threshold of X by the number

$$\operatorname{lct}(X) = \inf \left\{ \operatorname{lct}(X, D) \mid D \text{ is effective } \mathbb{Q} \text{-divisor on } X \text{ such that } D \equiv -K_X \right\}.$$

The number lct(X) is an algebraic counterpart of the α -invariant introduced in [11].

EXAMPLE 1.3. Let X be a smooth cubic surface in \mathbb{P}^3 . Then it follows from [4] that

$$lct(X) = \begin{cases} 2/3 \text{ when } X \text{ has an Eckardt point,} \\ 3/4 \text{ when } X \text{ does not have Eckardt points.} \end{cases}$$

*Received October 28, 2008; accepted for publication December 2, 2008.

[†]School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK (I.Cheltsov@ed.ac.uk). The author would like to thank I. Dolgachev, J. Kollár, V. Shokurov, J. Park and the referee for useful comments.

I. CHELTSOV

In this paper we prove the following result¹.

THEOREM 1.4. Let X be a singular cubic surface in \mathbb{P}^3 with canonical singularities. Then

$$\operatorname{lct}(X) = \begin{cases} 2/3 \ when \ \operatorname{Sing}(X) = \{\mathbb{A}_1\}, \\ 1/3 \ when \ \operatorname{Sing}(X) \supseteq \{\mathbb{A}_4\}, \\ 1/3 \ when \ \operatorname{Sing}(X) = \{\mathbb{D}_4\}, \\ 1/3 \ when \ \operatorname{Sing}(X) \supseteq \{\mathbb{A}_2, \mathbb{A}_2\}, \\ 1/4 \ when \ \operatorname{Sing}(X) \supseteq \{\mathbb{A}_5\}, \\ 1/4 \ when \ \operatorname{Sing}(X) = \{\mathbb{D}_5\}, \\ 1/6 \ when \ \operatorname{Sing}(X) = \{\mathbb{E}_6\}, \\ 1/2 \ in \ other \ cases. \end{cases}$$

Let us consider one birational application of Theorem 1.4.

Theorem 1.5. Let Z be a smooth curve. Suppose that there is a commutative diagram

$$V - - - \stackrel{\rho}{-} - \Rightarrow \bar{V} \tag{1.6}$$

$$\pi \bigvee_{Z} = \underbrace{\qquad}_{Z} Z$$

such that π and $\bar{\pi}$ are flat morphisms, and ρ is a birational map that induces an isomorphism

$$\rho|_{V\setminus X} \colon V \setminus X \longrightarrow \bar{V} \setminus \bar{X}, \tag{1.7}$$

where X and \bar{X} are scheme fibers of π and $\bar{\pi}$ over a point $O \in Z$, respectively. Suppose that

- the varieties V and \overline{V} have terminal \mathbb{Q} -factorial singularities,
- the divisors $-K_V$ and $-K_{\bar{V}}$ are π -ample and $\bar{\pi}$ -ample, respectively,
- the fibers X and \overline{X} are irreducible.

Then ρ is an isomorphism if one of the following conditions hold:

- the varieties X and \overline{X} have log terminal singularities, and $lct(X)+lct(\overline{X}) > 1$;
- the variety X has log terminal singularities, and $lct(X) \ge 1$.

The assertion of Theorem 1.5 is sharp (see [10, Example 5.2–5.6]).

EXAMPLE 1.8. Let V be \overline{V} subvarieties in $\mathbb{C}^1 \times \mathbb{P}^3$ given by the equations

$$x^{3} + y^{3} + z^{2}w + t^{6}w^{3} = 0$$
 and $x^{3} + y^{3} + z^{2}w + w^{3} = 0$,

respectively, where t is a coordinate on \mathbb{C}^1 , and (x, y, z, w) are coordinates on \mathbb{P}^3 . The projections

$$\pi \colon V \longrightarrow \mathbb{C}^1 \text{ and } \bar{\pi} \colon \bar{V} \longrightarrow \mathbb{C}^1$$

¹A cubic surface in \mathbb{P}^3 with isolated singularities has canonical singularities \iff it is not a cone.

are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^1 given by t = 0. Then \overline{X} is smooth, the surface X has one singular point of type \mathbb{D}_4 . Put $Z = \mathbb{C}^1$. Then the map

$$(x, y, z, w) \longrightarrow (t^2 x, t^2 y, t^3 z, w)$$

induces a birational map $\rho: V \dashrightarrow \overline{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But lct(X) = 1/3 and $lct(\overline{X}) = 2/3$ (see Example 1.3 and Theorem 1.4).

EXAMPLE 1.9. Let V be \overline{V} subvarieties in $\mathbb{C}^1 \times \mathbb{P}^3$ given by the equations

$$x^{3} + y^{2}z + z^{2}w + t^{12}w^{3} = 0$$
 and $x^{3} + y^{2}z + z^{2}w + w^{3} = 0$,

respectively, where t is a coordinate on \mathbb{C}^1 , and (x, y, z, w) are coordinates on \mathbb{P}^3 . The projections

$$\pi \colon V \longrightarrow \mathbb{C}^1$$
 and $\bar{\pi} \colon \bar{V} \longrightarrow \mathbb{C}^1$

are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^1 given by t = 0. Then \overline{X} is smooth, the surface X has one singular point of type \mathbb{E}_6 . Put $Z = \mathbb{C}^1$. Then the map

$$(x, y, z, w) \longrightarrow (t^2 x, t^3 y, z, t^6 w)$$

induces a birational map $\rho: V \dashrightarrow \bar{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But lct(X) = 1/6 and $lct(\bar{X}) = 2/3$ (see Example 1.3 and Theorem 1.4).

EXAMPLE 1.10. Let V be \overline{V} subvarieties in $\mathbb{C}^1 \times \mathbb{P}^3$ given by the equations

$$wz^{2} + zx^{2} + y^{2}x + t^{8}w^{3} = 0$$
 and $wz^{2} + zx^{2} + y^{2}x + w^{3} = 0$,

respectively, where t is a coordinate on \mathbb{C}^1 , and (x, y, z, w) are coordinates on \mathbb{P}^3 . The projections

$$\pi \colon V \longrightarrow \mathbb{C}^1 \text{ and } \bar{\pi} \colon \bar{V} \longrightarrow \mathbb{C}^1$$

are fibrations into cubic surfaces. Let O be the point on \mathbb{C}^1 given by t = 0. Then \overline{X} is smooth, the surface X has one singular point of type \mathbb{D}_5 . Put $Z = \mathbb{C}^1$. Then the map

$$(x, y, z, w) \longrightarrow (t^2 x, ty, z, t^4 w)$$

induces a birational map $\rho: V \dashrightarrow \overline{V}$ such that the diagrams 1.6 and isomorphism 1.7 exist, and ρ is not biregular. But lct(X) = 1/4 and $lct(\overline{X}) = 2/3$ (see Example 1.3 and Theorem 1.4).

The number lct(X) is closely related to the existence of a Kähler–Einstein metric (see [6]), but we can not use Theorem 1.4 to prove the existence of such a metric on singular cubic surfaces.

REMARK 1.11. If a singular normal cubic surface in \mathbb{P}^3 admits an orbifold Kähler– Einstein metric, then its singular locus must consist of singular points of type \mathbb{A}_1 and \mathbb{A}_2 (see [7]).

I. CHELTSOV

Nevertheless, we can use an equivariant analogue of the number lct(X) to prove the existence of an orbifold Kähler–Einstein metric on some symmetric singular cubic surfaces.

EXAMPLE 1.12. Let X_1 be the Cayley cubic surface in \mathbb{P}^3 , i.e. a singular surface given by

$$xyz + xyt + xzt + yzt = 0 \subseteq \mathbb{P}^3 \cong \operatorname{Proj}\left(\mathbb{C}[x, y, z, t]\right).$$

and let X_2 be a cubic surface in \mathbb{P}^3 that is given by the equation $xyz = t^3$. Put

$$\operatorname{lct}(X_1, S_4) = \sup \left\{ \lambda \in \mathbb{Q} \middle| \begin{array}{c} \operatorname{the \ log \ pair \ } (X_1, \lambda D) \ \text{has \ log \ canonical \ singularities} \\ \operatorname{for \ every \ } S_4 \text{-invariant \ effective \ } \mathbb{Q} \text{-divisor \ } D \equiv -K_{X_1} \end{array} \right\}$$

where we consider S_4 as a subgroup of $Aut(X_1)$. Similarly, we define $lct(X_2, S_3 \times \mathbb{Z}_3)$. Then

$$\operatorname{lct}(X_1, S_4) = \operatorname{lct}(X_2, S_3 \times \mathbb{Z}_3) = 1 > \frac{2}{3}$$

by [4, Lemma 5.1]. Then X_1 and X_2 admit Kähler–Einstein metrics² by [6] (cf. [5, Appendix A]).

We prove Theorem 1.4 in Section 3, and we prove Theorem 1.5 in Section 4.

2. Basic tools. Let S be a surface with canonical singularities, and D be an effective \mathbb{Q} -divisor on it.

REMARK 2.1. Let B be an effective $\mathbb Q\text{-divisor}$ on S such that (S,B) is log canonical. Then

$$\left(S, \frac{1}{1-\alpha}\left(D-\alpha B\right)\right)$$

is not log canonical if (S, D) is not log canonical, where $\alpha \in \mathbb{Q}$ such that $0 \leq \alpha < 1$.

Let $LCS(S, D) \subset S$ be a subset such that $P \in LCS(S, D)$ if and only if (S, D) is not log terminal at the point P. The set LCS(S, D) is called the locus of log canonical singularities.

LEMMA 2.2. Suppose that $-(K_S + D)$ is ample. Then LCS(S, D) is connected.

Proof. See Theorem 17.4 in [9]. \Box

Let P be a point of the surface S such that (S, D) is not log canonical at the point P.

REMARK 2.3. Suppose that S is smooth at P. Then $\operatorname{mult}_P(D) > 1$.

Let C be an irreducible curve on the surface S. Put

$$D = mC + \Omega,$$

where $m \in \mathbb{Q}$ such that $m \ge 0$, and Ω is an effective \mathbb{Q} -divisor such that $C \not\subseteq \text{Supp}(\Omega)$.

²The existence of orbifold Kähler–Einstein metrics on X_1 and X_2 is obvious, because both X_1 and X_2 are quotients branched over singular points of smooth Kähler–Einstein del Pezzo surfaces (see [2] and [7, Example 1.4]).

REMARK 2.4. Suppose that $C \subseteq LCS(S, D)$. Then $m \ge 1$.

LEMMA 2.5. Suppose that $P \in C$, the surface S is smooth at P, and $m \leq 1$. Then $C \cdot \Omega > 1$.

Proof. It follows from Theorem 17.6 in [9] that $C \cdot \Omega \ge \operatorname{mult}_P(\Omega|_C) > 1$.

Let $\pi: \overline{S} \to S$ be a birational morphism such that the surface \overline{S} has canonical singularities, and \overline{D} is a proper transform of D via π . Then

$$K_{\bar{S}} + \bar{D} + \sum_{i=1}^{r} a_i E_i \equiv \pi^* (K_S + D),$$

where E_i is a π -exceptional curve, and a_i is a rational number.

REMARK 2.6. The log pair (S, D) is log canonical if and only if $(\overline{S}, \overline{D} + \sum_{i=1}^{r} a_i E_i)$ is log canonical.

Suppose that r = 1, $\pi(E_1) = P$, and P is an ordinary double point.

LEMMA 2.7. Suppose that \overline{S} is smooth along E_1 . Then $a_1 > 1/2$.

Proof. The inequality $a_1 > 1/2$ follows from Theorem 17.6 in [9].

Most of the described results are valid in much more general settings (see [9]).

3. Main result. Let S be a singular cubic surface in \mathbb{P}^3 with canonical singularities. Put $\Sigma = \text{Sing}(S)$ and

$$\operatorname{lct}_n(S) = \sup \left\{ \mu \in \mathbb{Q} \mid \text{the log pair } \left(S, \frac{\mu}{n}D\right) \text{ is log canonical for every } D \in \left|-nK_X\right| \right\}$$

for every $n \in \mathbb{N}$. Then it follows from [12] that

$$\operatorname{lct}(S) = \operatorname{inf}_{n \in \mathbb{N}} \left(\operatorname{lct}_n(S) \right) \leq \operatorname{lct}_1(S) = \begin{cases} 2/3 \text{ when } \Sigma = \{\mathbb{A}_1\}, \\ 1/3 \text{ when } \Sigma \supseteq \{\mathbb{A}_4\}, \\ 1/3 \text{ when } \Sigma \supseteq \{\mathbb{A}_2, \mathbb{A}_2\}, \\ 1/3 \text{ when } \Sigma \supseteq \{\mathbb{A}_2, \mathbb{A}_2\}, \\ 1/4 \text{ when } \Sigma \supseteq \{\mathbb{A}_5\}, \\ 1/4 \text{ when } \Sigma \supseteq \{\mathbb{A}_5\}, \\ 1/4 \text{ when } \Sigma = \{\mathbb{D}_5\}, \\ 1/6 \text{ when } \Sigma = \{\mathbb{E}_6\}, \\ 1/2 \text{ in other cases.} \end{cases}$$

Let D be an arbitrary effective \mathbb{Q} -divisor on the surface S such that

$$D \equiv -K_S \sim \mathcal{O}_{\mathbb{P}^3}(1)\Big|_S,$$

and let λ be an arbitrary positive rational number such that $\lambda < \operatorname{lct}_1(S)$.

LEMMA 3.1. Suppose that $lct_1(S) \leq 1/3$. Then $LCS(S, \lambda D) \subseteq \Sigma$.

Proof. Suppose that $(S, \lambda D)$ is not log terminal at a smooth point $P \in S$. Then

$$3 = -K_S \cdot D \ge \operatorname{mult}_P(D) > 1/\lambda > 3,$$

I. CHELTSOV

which is a contradiction. The obtained contradiction implies that $LCS(S, \lambda D) \subseteq \Sigma$.

LEMMA 3.2. Suppose that $|LCS(S, \lambda D)| < +\infty$. Then $LCS(S, \lambda D) \subseteq \Sigma$.

Proof. The required assertion follows from [4]. \Box

Let O be a singular point of the surface S, and $\alpha \colon \overline{S} \to S$ be a partial resolution of singularities that contracts smooth rational curves E_1, \ldots, E_k to the point O such that

$$\bar{S} \setminus \left(\bigcup_{i=1}^k E_i\right) \cong S \setminus O,$$

the surface \bar{S} is smooth along $\bigcup_{i=1}^{k} E_i$, and $E_i^2 = -2$ for every $i = 1, \ldots, k$. Then

$$\bar{D} \equiv \alpha^* (D) - \sum_{i=1}^k a_i E_i,$$

where \overline{D} is the proper transform of D on the surface \overline{S} , and $a_i \in \mathbb{Q}$. Let L_1, \ldots, L_r be lines on the surface S such that $O \in L_i$, and \overline{L}_i be the proper transform of L_i on the surface \overline{S} . Then

$$-K_{\bar{S}}\cdot\bar{L}_1=\cdots=-K_{\bar{S}}\cdot\bar{L}_r=1.$$

REMARK 3.3. To prove Theorem 1.4, we must show that the equality

$$lct(S) = lct_1(S)$$

holds. Hence, it follows from the choice of the divisor D and $\lambda \in \mathbb{Q}$ that to prove Theorem 1.4 it is enough to show that the singularities of the log pair $(S, \lambda D)$ are log canonical.

In the rest of the section, we prove Theorem 1.4 case by case using [1].

LEMMA 3.4. Suppose that $\Sigma = \{\mathbb{A}_1\}$. Then lct(S) = 2/3.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

Suppose that there is an irreducible curve $Z \subset S$ such that $D = \mu Z + \Omega$, where μ is a rational number such that $\mu \ge 1/\lambda$, and Ω is an effective \mathbb{Q} -divisor such that $Z \not\subset \text{Supp}(\Omega)$. Then

$$3 = -K_S \cdot D = \mu \operatorname{deg}(Z) - K_S \cdot \Omega \ge \mu \operatorname{deg}(Z) > 3 \operatorname{deg}(Z)/2,$$

which implies that Z is a line. Let C be a general conic on S such that $-K_S \sim Z + C$. Then

$$2 = C \cdot D = \mu C \cdot Z + C \cdot \Omega \ge \mu C \cdot Z \ge \frac{3}{2}\mu,$$

which is a contradiction. Then $LCS(S, \lambda D) = O$ by Lemma 3.2.

We have $3 - 2a_1 = \overline{H} \cdot \overline{D} \ge 0$, where \overline{H} is a general curve in $|-K_{\overline{S}} - E_1|$. It follows from

$$K_{\bar{S}} + \lambda \bar{D} + \lambda a_1 E_1 \equiv \alpha^* (K_S + \lambda D)$$

that there is a point $Q \in E_1$ such that $(\bar{S}, \lambda \bar{D} + \lambda a_1 E_1)$ is not log canonical at the point Q.

It follows from [1] that r = 6. Let $\pi \colon \overline{S} \to \mathbb{P}^2$ be a contraction of the curves $\overline{L}_1, \ldots, \overline{L}_6$.

Suppose that $Q \notin \bigcup_{i=1}^{6} \overline{L}_i$. Then

$$\pi(\bar{D}+a_1E_1)\equiv\pi(-K_{\bar{S}})\equiv-K_{\mathbb{P}^2},$$

and π is an isomorphism in a neighborhood of Q. Let L be a general line on \mathbb{P}^2 . Then the locus

$$\operatorname{LCS}\left(\mathbb{P}^2, \ L + \pi \left(\lambda \bar{D} + \lambda a_1 E_1\right)\right)$$

is not connected, which is impossible by Lemma 2.2.

Therefore, we may assume that $Q \in \overline{L}_1$. Put $D = aL_1 + \Upsilon$, where a is a nonnegative rational number, and Υ is an effective \mathbb{Q} -divisor, whose support does not contain the line L_1 . Then

$$\bar{\Upsilon} \equiv \alpha^*(\Upsilon) - \epsilon E_1,$$

where $\epsilon = a_1 - a/2$, and $\overline{\Upsilon}$ is the proper transform of the divisor Υ on the surface \overline{S} .

The log pair $(\bar{S}, \lambda a \bar{L}_1 + \lambda \bar{\Upsilon} + \lambda (a/2 + \epsilon) E_1)$ is not log canonical at Q. Then

$$1 + a/2 - \epsilon = \bar{L}_1 \cdot \Upsilon > 1/\lambda - a/2 - \epsilon$$

by Lemma 2.5, because $\lambda a \leq 1$. Hence, we have a > 1/2.

It follows from [12] that there is a conic $C_1 \subset S$ such that the log pair

$$(S, lct_1(S)(L_1+C_1))$$

is not log terminal. But it must be log canonical. Therefore, in the case when $C_1 \subseteq \text{Supp}(D)$, we can use Remark 2.1 to find an effective divisor D' on the surface S such that the equivalence

$$D' \equiv -K_S$$

holds, the log pair $(S, \lambda D')$ is not log canonical at the point P, and $C_1 \not\subseteq \text{Supp}(D')$.

To complete the proof, we may assume that $C_1 \not\subseteq \text{Supp}(D)$.

Let C_1 be the proper transforms of the conic C_1 on the surface S. Then

$$2 - 3a/2 - \epsilon = \overline{C}_1 \cdot \overline{\Upsilon} \ge \operatorname{mult}_Q(\overline{\Upsilon}) > 1/\lambda - a/2 - \epsilon_2$$

which implies that a < 1/2. But a > 1/2. The obtained contradiction completes the proof. \Box

LEMMA 3.5. Suppose that $\Sigma = \{\mathbb{A}_1, \dots, \mathbb{A}_1\}$ and $|\Sigma| \ge 2$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

Suppose that there is an irreducible curve Z on the surface S such that

$$D = \mu Z + \Omega,$$

where μ is a rational number such that $\mu \ge 1/\lambda$, and Ω is an effective Q-divisor, whose support does not contain the curve Z. Then Z is a line (see the proof of Lemma 3.4). We have

$$2 = C \cdot D = \mu C \cdot Z + C \cdot \Omega \ge \mu C \cdot Z \ge \mu \ge 1/\lambda > 2,$$

where C is a general conic on S that intersects Z in two points.

We may assume that $LCS(S, \lambda D) = O$ by Lemmas 2.2 and 3.2. Then $a_1 > 1$ by Lemma 2.7.

Arguing as in the proof of Lemma 3.4, we see that there is a point $Q \in E$ such that the singularities of the log pair $(\bar{S}, \lambda \bar{D} + \lambda a_1 E_1)$ are not log canonical at the point Q.

Let P be a point in Σ such that $P \neq O$. We may assume that $P \in L_1$. Then

$$2L_1 + L' \sim -K_S$$

for some line $L' \subset S$.

Suppose that $Q \in \overline{L}_1$. Let a be a non-negative rational number such that

$$D = aL_1 + \Upsilon,$$

where Υ is an effective Q-divisor, whose support does not contain the line L_1 . Then

$$\bar{\Upsilon} \equiv \alpha^*(\Upsilon) - \epsilon E_1,$$

where $\overline{\Upsilon}$ is the proper transforms of Υ on the surface \overline{S} , and $\epsilon = a_1 - a/2$. The log pair

$$\left(\bar{S}, \ \lambda a\bar{L}_1 + \lambda\bar{\Upsilon} + \lambda(a/2 + \epsilon)E_1\right)$$

is not log canonical at the point Q. We have $\bar{L}_1^2 = -1/2$. Then

$$1 - \epsilon = \overline{L}_1 \cdot \widehat{\Upsilon} > 1/\lambda - a/2 - \epsilon$$

by Lemma 2.5. We have $a > 1/\lambda$, which is impossible. Hence, we see that $Q \notin \overline{L}_1$.

There is a unique reduced conic $Z \subset S$ such that $O \in Z \ni P$ and $Q \in \overline{Z}$, where \overline{Z} is the proper transform of the conic Z on the surface \overline{S} . Then $L_1 \not\subseteq \text{Supp}(Z)$, because $Q \notin \overline{L}_1$.

Suppose that Z is irreducible. Put

$$D = eZ + \Delta$$

where $e \in \mathbb{Q}$, and Δ is an effective \mathbb{Q} -divisor such that $C \not\subseteq \text{Supp}(\Delta)$. Then

$$\bar{\Delta} \equiv \alpha^* \left(\Delta \right) - \delta E_1,$$

where $\overline{\Delta}$ is the proper transforms of Δ on the surface \overline{S} , and $\delta = a_1 - e/2$. Then

$$2-e-\delta=\bar{Z}\cdot\bar{\Delta}>1/\lambda-e/2-\delta>2-e/2-\delta$$

by Lemma 2.5, because $\bar{C}^2 = 1/2$. We have e < 0, which is impossible.

We see that the conic Z is reducible. Then

$$Z = L_2 + L'_2,$$

where L'_2 is a line on S such that $P \in L'_2$ and $L_2 \cap L'_2 \neq \emptyset$.

The intersection $L_2 \cap L'_2$ consists of a single point. The impossibility of the case $Q \in \overline{L}_1$ implies that the surface S is smooth at the point $L_2 \cap L'_2$. There is a rational number $c \ge 0$ such that

$$D = cL_2 + \Xi,$$

where Ξ is an effective \mathbb{Q} -divisor, whose support does not contain the line L_2 . Then

$$\bar{\Xi} \equiv \alpha^*(\Xi) - vE_1,$$

where $\overline{\Xi}$ is the proper transforms of Ξ on the surface \overline{S} , and $v = a_1 - c/2$. The log pair

$$\left(\bar{S}, \ \lambda c\bar{L}_2 + \lambda\bar{\Xi} + \lambda(c/2 + v)E_1\right)$$

is not log canonical at Q. We have $Q \in \overline{L}_2$ and $\overline{L}_2^2 = -1$. Then

$$1 + c/2 - v = \bar{L}_2 \cdot \bar{\Xi} > 1/\lambda - c/2 - v > 2 - c/2 - v$$

by Lemma 2.5. Therefore, the inequality c > 1 holds.

There is a unique hyperplane section T of the surface S such that $T = C_2 + L_2$ and

$$Q = \bar{C}_2 \cap \bar{L}_2 = O,$$

where C_2 is a conic, and \overline{C}_2 is the proper transforms of C_2 on the surface \overline{S} .

The conic C_2 is irreducible. We may assume that $C_2 \not\subseteq \text{Supp}(D)$ (see Remark 2.1). Then

$$2 - 3c/2 - v = \bar{C}_2 \cdot \bar{\Xi} \ge \operatorname{mult}_Q(\bar{\Xi}) > 1/\lambda - c/2 - v,$$

which implies that c < 0. The obtained contradiction completes the proof.

LEMMA 3.6. Suppose that $\Sigma = \{\mathbb{D}_4\}$. Then lct(S) = 1/3.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 3. The lines L_1, L_2, L_3 lie in a single plane. Thus, we may assume that $L_3 \not\subseteq \text{Supp}(D)$ due to Remark 2.1 and Lemma 3.1.

Let $\beta: \tilde{S} \to S$ be a birational morphism such that the morphism α contracts one irreducible rational curve E that contains three singular points O_1, O_2, O_3 of type \mathbb{A}_1 .

Let \tilde{D} and \tilde{L}_i be the proper transforms of D and L_i on the surface \tilde{S} , respectively. Then

$$\tilde{D} \equiv \beta^*(D) - \mu E,$$

where μ is a positive rational number. We have $\tilde{L}_i \equiv \beta^*(L_i) - E$. Then

$$0 \leqslant \tilde{D} \cdot \tilde{L}_3 = \left(\beta^*(D) - \mu E\right) \cdot \tilde{L}_3 = 1 - \mu E \cdot \tilde{L}_3 = 1 - \mu/2$$

which implies that $\mu \leq 2$. Therefore, we may assume that there is a point $Q \in E$ such that the singularities of the log pair $(\tilde{S}, \lambda \tilde{D} + \mu E)$ are not log canonical at the point Q (see Lemma 3.1).

Suppose that \tilde{S} is smooth at Q. The log pair $(\tilde{S}, \lambda \tilde{D} + E)$ is not log canonical at Q. Then

$$1 \ge \mu/2 = -\mu E^2 = E \cdot \tilde{D} > 1/\lambda > 3$$

by Lemma 2.5. We see that $Q = O_j$ for some j.

The curves \tilde{L}_1 , \tilde{L}_2 and \tilde{L}_3 are disjoined, and each of them passes through a singular point of the surface \tilde{S} . Therefore, we may assume that $O_i \in \tilde{L}_i$ for every *i*.

Let $\gamma: \hat{S} \to \tilde{S}$ be a blow up of the point O_j , and G be the exceptional curve of γ . Then

$$\hat{L}_j \equiv \gamma^* (\tilde{L}_j) - \frac{1}{2} G \equiv (\beta \circ \gamma)^* (L_1) - \hat{E} - G,$$

where \hat{L}_j and \hat{E} are proper transforms of the curves \bar{L}_j and E on the surface \hat{S} , respectively.

Let \hat{D} be the proper transform of the divisor \tilde{D} on the surface \hat{S} . Then

$$\hat{D} \equiv \gamma^* (\tilde{D}) - \epsilon G \equiv (\beta \circ \gamma)^* (D) - \mu \hat{E} - (\mu/2 + \epsilon)G,$$

where ϵ is a rational number, because $2\hat{E} \equiv \gamma^*(2E) - G$. By Lemma 2.7, we have

$$\lambda \epsilon + \lambda \mu/2 > 1/2.$$

Suppose that j = 3. Then $1 - \mu/2 - \epsilon = \hat{D} \cdot \hat{L}_3 \ge 0$. But $\epsilon + \mu/2 > 3/2$.

We may assume that $Q = O_1$, and the support of the divisor D contains the line L_1 . Put

$$D = aL_1 + \Omega,$$

where $a \in \mathbb{Q}$ and $a \ge 0$, and Ω is an effective \mathbb{Q} -divisor such that $L_1 \not\subseteq \text{Supp}(\Omega)$. Then

$$\hat{\Omega} \equiv \left(\beta \circ \gamma\right)^* \left(\Omega\right) - m\hat{E} - \left(m/2 + b\right)G,$$

where $\hat{\Omega}$ is the proper transform of Ω , and m and b are non-negative rational numbers. Then

$$(\beta \circ \gamma)^* (D) - \mu \hat{E} - (\mu/2 + \epsilon)G \equiv \hat{D} = a\hat{L}_1 + \hat{\Omega}$$
$$\equiv (\beta \circ \gamma)^* (aL_1 + \Omega) - (a + m)\hat{E} - (a + m/2 + b)G,$$

which implies that $\mu = a + m \leq 2$ and $\epsilon = a/2 + b$. We have

$$\hat{L}_1^2 = -1, \ \hat{E}^2 = -1, \ G^2 = -2, \ \hat{L} \cdot \hat{E} = 0, \ \hat{L} \cdot G = \hat{E} \cdot G = 1$$

on the surface \hat{S} . The surface \hat{S} is smooth along the curve G. Then

$$-a \leqslant -a + \hat{\Omega} \cdot \hat{L}_1 = \left(a\hat{L}_1 + \hat{\Omega}\right) \cdot \hat{L}_1 = 1 - a - m/2 - b$$

which implies that $m/2 + b \leq 1$ and $a + m/2 + b \leq 1 + a \leq 3$. Thus, by the equivalence

$$K_{\hat{S}} + \lambda a \hat{L}_1 + \lambda \hat{\Omega} + \lambda (a+m) \hat{E} + \lambda (a+m/2+b) G \equiv (\beta \circ \gamma)^* (K_S + \lambda a L_1 + \lambda \Omega),$$

200

there exists a point $A \in G$ such that the log pair

$$(\hat{S}, \lambda a \hat{L}_1 + \lambda \hat{\Omega} + \lambda (a+m) \hat{E} + \lambda (a+m/2+b)G)$$

is not log canonical at the point A.

Suppose that $A \notin \hat{L}_1 \cup \hat{E}$. Then $(\hat{S}, \lambda \hat{\Omega} + \lambda(a + m/2 + b)G)$ is not log canonical at A, and

$$2b + a = \left(a\hat{L}_1 + \hat{\Omega}\right) \cdot G = a + \hat{\Omega} \cdot G > a + 3,$$

by Lemma 2.5. We see that b > 3/2. But $m/2 + b \leq 1$. We see that $A \in \hat{L}_1 \cup \hat{E}$. Suppose that $A \notin \hat{L}_1$. The log pair

$$(\hat{S}, \lambda \hat{\Omega} + \lambda (a+m)\hat{E} + \lambda (a+m/2+b)G)$$

is not log canonical at the point A. Arguing as in the previous case, we see that

$$m/2 - b = \hat{\Omega} \cdot \hat{E} > 3 - a - m/2 - b,$$

which implies that a + m > 3. But $a + m \leq 2$. We see that $A \in \hat{L}_1$.

The log pair $(\hat{S}, \lambda a \hat{L}_1 + \lambda \hat{\Omega} + \lambda (a + m/2 + b)G)$ is not log canonical at A. Then

$$1 - a - m/2 - b = \left(a\hat{L}_1 + \hat{\Omega}\right) \cdot \hat{L}_1 = -a + \hat{\Omega} \cdot \hat{L}_1 > -a + 3 - \left(a + m/2 + b\right)$$

by Lemma 2.5. We have a > 2. But $a + m \leq 2$, which is a contradiction.

LEMMA 3.7. Suppose that $\Sigma = \{\mathbb{D}_5\}$. Then lct(S) = 1/4.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

We see that $LCS(S, \lambda D) = \{O\}$ by Lemma 3.1.

It follows from [1] that r = 2 and the surface S contains a line L such that $O \notin L$. Projecting from L, we see that there is a conic $C \subset S$ such that the equivalence

$$-K_S \sim C + L$$

holds, $O \notin C$ and $|C \cap L| = 1$. Put $P = C \cap L$. Then

$$P \cup O \subseteq \text{LCS}\left(S, \ \frac{3}{4}(C+L) + \lambda D\right) \subseteq P \cup O \cup C \cup L,$$

which is impossible by Lemma 2.2. The obtained contradiction completes the proof. \Box

LEMMA 3.8. Suppose that $\Sigma = \{\mathbb{E}_6\}$. Then lct(S) = 1/6

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 1. The log pair

$$\left(S, \operatorname{lct}_1(S)L_1\right)$$

is not log terminal. But it must be log canonical. The surface S contains a plane cuspidal cubic curve C such that $O \notin C$. Arguing as in the proof of Lemma 3.6, we obtain a contradiction. \Box

Using the classification of possible singularities of the surface S obtained in [1], we see that it follows from Lemmas 3.4, 3.5, 3.6, 3.7 and 3.8 that we may assume that

$$\Sigma = \left\{ \mathbb{A}_{i_1}, \dots, \mathbb{A}_{i_s} \right\}$$

to complete the proof of Theorem 1.4 . We assume that $i_1 \leq \cdots \leq i_s$ and O is of type \mathbb{A}_{i_s} .

LEMMA 3.9. Suppose that $\Sigma = \{\mathbb{A}_2\}$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(S, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 6. We may assume that the equivalences

$$-K_S \sim L_1 + L_2 + L_3 \sim L_4 + L_5 + L_6$$

hold. The log pairs $(S, lct_1(S)(L_1 + L_2 + L_3))$ and $(S, lct_1(S)(L_4 + L_5 + L_6))$ are log canonical.

Arguing as in the proof of Lemma 3.4, we see that

$$\operatorname{LCS}(S, \lambda D) = O.$$

Let \bar{H} be a proper transform on \bar{S} of a general hyperplane section that contains O. Then

$$0 \leqslant \bar{H} \cdot \bar{D} = 3 - a_1 - a_2, \ 2a_1 - a_2 = E_1 \cdot \bar{D} \ge 0, \ 2a_2 - a_1 = E_2 \cdot \bar{D} \ge 0,$$

which implies that $a_1 \leq 2$ and $a_2 \leq 2$. There is a point $Q \in E_1 \cup E_2$ such that the log pair

$$\left(\bar{S}, \ \lambda \left(\bar{D} + a_1 E_1 + a_2 E_2\right)\right)$$

is not log canonical at Q. We may assume that $Q \in E_1$, and

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_1 = \bar{L}_4 \cdot E_2 = \bar{L}_5 \cdot E_2 = \bar{L}_6 \cdot E_2 = 1,$$

which implies that $\bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_3 \cdot E_2 = \bar{L}_4 \cdot E_1 = \bar{L}_5 \cdot E_1 = \bar{L}_6 \cdot E_1 = 0.$ It follows from Remark 2.1 that we may assume that $\bar{L}_1 \not\subseteq \text{Supp}(D) \not\supseteq \bar{L}_4$. Then

$$\begin{cases} 1-a_1 = \bar{D} \cdot \bar{L}_1 \ge 0, \\ 1-a_2 = \bar{D} \cdot \bar{L}_4 \ge 0, \end{cases}$$

which implies that $a_1 \leq 1$ and $a_2 \leq 1$.

Suppose that $Q \notin E_2$. Then $(\bar{S}, \lambda \bar{D} + E_1)$ is not log canonical at Q. We have

$$2a_1 - a_2 = \overline{D} \cdot E_1 > 1/\lambda > 2,$$

by Lemma 2.5. Then $a_1 \ge 4/3$, which is impossible, because $a_1 \le 1$. Hence, we see that $Q \in E_2$.

The log pairs $(\bar{S}, \lambda \bar{D} + E_1 + a_2 E_2)$ and $(\bar{S}, \lambda \bar{D} + a_1 E_1 + E_2)$ are not log canonical at Q. Then

$$\begin{cases} 2a_1 - a_2 = \bar{D} \cdot E_1 > 1/\lambda - a_2 > 2 - a_2, \\ 2a_2 - a_1 = \bar{D} \cdot E_2 > 1/\lambda - a_1 > 2 - a_1, \end{cases}$$

by Lemma 2.5. Then $a_1 > 1$ and $a_2 > 1$. But $a_1 \leq 1$ and $a_2 \leq 1$, which is a contradiction. \Box

LEMMA 3.10. Suppose that $\Sigma = \{\mathbb{A}_3\}$. Then lct(S) = 1/2

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 5. We may assume that

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_4 \cdot E_3 = \bar{L}_5 \cdot E_3 = 1,$$

which implies that $\bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_2 = 0$ and

$$\bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_2 \cdot E_3 = \bar{L}_4 \cdot E_2 = \bar{L}_5 \cdot E_2 = \bar{L}_4 \cdot E_1 = \bar{L}_5 \cdot E_1 = 0.$$

The inequalities $\bar{L}_i^2 = -1$ and $\bar{L}_i \cdot \bar{L}_j = 0$ hold for $i \neq j$. We have $-K_S \sim L_1 + L_2 + L_3$.

Suppose that there are a line $L \subset S$ and a rational number $\mu \ge 1/\lambda$ such that $D = \mu L + \Omega$, where Ω is an effective \mathbb{Q} -divisor, whose support does not contain the line L. Then

$$2 = C \cdot D = \mu C \cdot L + C \cdot \Omega \ge \mu C \cdot L > 2C \cdot L,$$

where C is a general conic on the surface S such that the divisor C+L is a hyperplane section of the surface S. Then $|L \cap C| = 1$ and $C \cdot L < 1$, which implies that $L = L_3$. But $L_3 \cdot C = 1$.

Arguing as in the proof of Lemma 3.2, we see that $LCS(S, \lambda D) = O$ by Lemmas 2.2.

Let \bar{H} be a general curve in $|-K_{\bar{S}} - \sum_{i=1}^{3} E_i|$. Then

$$a_1 + a_3 \leqslant 3$$
, $2a_1 \geqslant a_2$, $2a_2 \geqslant a_1 + a_3$, $2a_3 \geqslant a_2$,

because $\overline{H} \cdot \overline{D} \ge 0$, $E_1 \cdot \overline{D} \ge 0$, $E_2 \cdot \overline{D} \ge 0$, $E_3 \cdot \overline{D} \ge 0$, respectively.

We may assume that either $L_1 \not\subseteq \text{Supp}(D)$ or $L_3 \not\subseteq \text{Supp}(D)$ by Remark 2.1. But

$$\bar{L}_1 \cdot \bar{D} = 1 - a_1, \ \bar{L}_3 \cdot \bar{D} = 1 - a_2,$$

which implies that either $a_1 \leq 1$ or $a_2 \leq 1$. Similarly, we assume that either $a_3 \leq 1$ or $a_2 \leq 1$.

We have $a_1 \leq 2, a_2 \leq 2, a_3 \leq 2$. There is a point $Q \in E_1 \cup E_2 \cup E_3$ such that the log pair

$$\left(\bar{S}, \lambda\left(\bar{D}+a_1E_1+a_2E_2+a_3E_3\right)\right)$$

is not log canonical at Q. We may assume that $Q \notin E_3$.

Suppose that $Q \notin E_2$. Then $(\bar{S}, \lambda \bar{D} + E_1)$ is not log canonical at Q, which implies that

$$2a_1 - a_2 = \bar{D} \cdot E_1 > 2$$

by Lemma 2.5. Then $a_1 > 3/2$ and $a_2 > 1$. But either $a_1 \leq 1$ or $a_2 \leq 1$.

Suppose that $Q \in E_2 \cap E_1$. Arguing as in the proof of Lemma 3.9, we see that

,

$$\begin{cases} 2a_1 - a_2 = \bar{D} \cdot E_1 > 1/\lambda - a_2 > 2 - a_2, \\ 2a_2 - a_1 - a_3 = \bar{D} \cdot E_2 > 1/\lambda - a_1 > 2 - a_1 \end{cases}$$

by Lemma 2.5. Then $a_1 > 1$ and $2a_2 > 2 + a_3$, which is impossible.

We see that $Q \in E_2$ and $Q \notin E_1$. Then $(\overline{S}, \lambda \overline{D} + E_2)$ is not log canonical at Q. We have

$$2a_2 - a_1 - a_3 = \bar{D} \cdot E_2 > 1/\lambda > 2,$$

which implies that $a_1 > 3/2$ and $a_2 > 2$. The obtained contradiction completes the proof. \Box

LEMMA 3.11. Suppose that $\Sigma = \{\mathbb{A}_4\}$. Then lct(S) = 1/3

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 4. We may assume that

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_3 = \bar{L}_4 \cdot E_4 = 1,$$

which implies that $\bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_3 \cdot E_4 = 0$ and

 $\bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_2 \cdot E_3 = \bar{L}_1 \cdot E_4 = \bar{L}_2 \cdot E_4 = \bar{L}_4 \cdot E_1 = \bar{L}_4 \cdot E_2 = \bar{L}_4 \cdot E_3 = 0.$

We have $LCS(S, \lambda D) = O$ by Lemma 3.1. Let \overline{H} be a general curve in $|-K_{\overline{S}} - \sum_{i=1}^{4} E_i|$. Then

$$3 \ge a_1 + a_4, \ 2a_1 \ge a_2, \ 2a_2 \ge a_1 + a_3, \ 2a_3 \ge a_2 + a_4, \ 2a_4 \ge a_3$$

because $\overline{H} \cdot \overline{D} \ge 0$, $E_1 \cdot \overline{D} \ge 0$, $E_2 \cdot \overline{D} \ge 0$, $E_3 \cdot \overline{D} \ge 0$, $E_4 \cdot \overline{D} \ge 0$, respectively. One can easily check that the equivalences

$$-K_S \sim L_1 + L_2 + L_3 \sim 2L_3 + L_4$$

hold. Therefore, we may assume that either

$$L_1 \not\subseteq \operatorname{Supp}(D) \not\supseteq L_4$$

or $L_3 \not\subseteq \text{Supp}(D)$ by Remark 2.1 and Lemma 3.1. But

$$\bar{L}_3 \cdot \bar{D} = 1 - a_3, \ \bar{L}_1 \cdot \bar{D} = 1 - a_1, \ \bar{L}_4 \cdot \bar{D} = 1 - a_4,$$

which implies that there is a point $Q \in \bigcup_{i=1}^{4} E_i$ such that the log pair

$$\left(\bar{S}, \ \lambda \left(\bar{D} + \sum_{i=1}^{4} a_i E_i\right)\right)$$

is not log canonical at the point Q. Arguing as in the proof of Lemma 3.10, we see that

$$\begin{cases} Q \in E_1 \setminus (E_1 \cap E_2) \Rightarrow 2a_1 > a_2 + 3, \\ Q \in E_1 \cap E_2 \Rightarrow 2a_1 > 3 \text{ and } 2a_2 > 3 + a_3, \\ Q \in E_2 \setminus \left((E_1 \cap E_2) \cup (E_2 \cap E_3) \right) \Rightarrow 2a_2 > a_1 + a_3 + 3, \\ Q \in E_2 \cap E_3 \Rightarrow 2a_2 > 3 + a_1 \text{ and } 2a_3 > 3 + a_4, \\ Q \in E_3 \setminus \left((E_2 \cap E_3) \cup (E_3 \cap E_4) \right) \Rightarrow 2a_3 > 3 + a_2 + a_4, \\ Q \in E_3 \cap E_4 \Rightarrow 2a_3 > 3 + a_2 \text{ and } 2a_4 > 3, \\ Q \in E_4 \setminus (E_4 \cap E_3) \Rightarrow 2a_4 > 3, \end{cases}$$

204

which leads to a contradiction, because either $a_3 \leq 1$ or $a_1 \leq 1$ and $a_4 \leq 1$.

LEMMA 3.12. Suppose that $\Sigma = \mathbb{A}_5$. Then lct(S) = 1/4.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 3. We may assume that $\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_4 = 1$ and

$$\bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_2 \cdot E_3 = \bar{L}_1 \cdot E_4 = \bar{L}_2 \cdot E_4 = \bar{L}_1 \cdot E_5 = \bar{L}_2 \cdot E_3 = 0$$

and $\bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_3 \cdot E_3 = \bar{L}_3 \cdot E_5 = 0$. Then LCS $(S, \lambda D) = O$ by Lemma 3.1. Let \bar{H} be a proper transform on \bar{S} of a general hyperplane section that contains O. Then

$$3 \ge a_1 + a_5, \ 2a_1 \ge a_2, \ 2a_2 \ge a_1 + a_3, \ 2a_3 \ge a_2 + a_4, \ 2a_4 \ge a_3 + a_5, \ 2a_5 \ge a_4, \ (3.13)$$

because $\overline{H} \cdot \overline{D} \ge 0$, $E_1 \cdot \overline{D} \ge 0$, $E_2 \cdot \overline{D} \ge 0$, $E_3 \cdot \overline{D} \ge 0$, $E_4 \cdot \overline{D} \ge 0$, $E_5 \cdot \overline{D} \ge 0$, respectively.

We have $-K_S \sim 3L_3$. Thus, we may assume that $L_3 \not\subseteq \text{Supp}(D)$ by Remark 2.1. Then

$$a_1 \leqslant 5/2, \ a_2 \leqslant 2, \ a_3 \leqslant 3/2, \ a_4 \leqslant 1, \ a_5 \leqslant 5/4,$$

because $1 - a_4 = \bar{L}_3 \cdot \bar{D} \ge 0$.

Arguing as in the proof of Lemma 3.10, we see that there is a point $Q \in \bigcup_{i=1}^{5} E_i$ such that

$$\begin{array}{l}
\left\{ \begin{array}{l}
Q \in E_1 \setminus (E_1 \cap E_2) \Rightarrow 2a_1 > a_2 + 4, \\
Q \in E_1 \cap E_2 \Rightarrow 2a_1 > 4 \text{ and } 2a_2 > 4 + a_3, \\
Q \in E_2 \setminus \left((E_1 \cap E_2) \cup (E_2 \cap E_3) \right) \Rightarrow 2a_2 > a_1 + a_3 + 4, \\
Q \in E_2 \cap E_3 \Rightarrow 2a_2 > 4 + a_1 \text{ and } 2a_3 > 4 + a_4, \\
Q \in E_3 \setminus \left((E_2 \cap E_3) \cup (E_3 \cap E_4) \right) \Rightarrow 2a_3 > 4 + a_2 + a_4, \\
Q \in E_3 \cap E_4 \Rightarrow 2a_3 > 4 + a_2 \text{ and } 2a_4 > 4 + a_5, \\
Q \in E_4 \setminus \left((E_3 \cap E_4) \cup (E_4 \cap E_5) \right) \Rightarrow 2a_4 > 4 + a_3 + a_5, \\
Q \in E_4 \cap E_5 \Rightarrow 2a_4 > 4 + a_3 \text{ and } 2a_5 > 4, \\
Q \in E_5 \setminus (E_4 \cap E_5) \Rightarrow 2a_5 > a_4 + 4.
\end{array}$$
(3.14)

The inequalities 3.13 and 3.14 imply that either $Q = E_3 \cap E_4$ or $Q = E_4 \cap E_5$, because $a_4 \leq 1$.

Let H_1 and H_3 be general divisors in $|-K_S|$ that contain L_1 and L_3 , respectively. Then

$$H_1 = L_1 + C_1, \ H_3 = L_3 + C_3,$$

where C_1 and C_3 are irreducible conics such that $C_1 \not\subseteq \text{Supp}(D) \not\supseteq C_3$.

Let \overline{C}_1 and \overline{C}_3 be the proper transforms of C_1 and C_3 on the surface \overline{S} , respectively. Then

$$\begin{cases} 2-a_5 = \bar{C}_1 \cdot \bar{D} \ge 0, \\ 2-a_2 = \bar{C}_3 \cdot \bar{D} \ge 0, \end{cases}$$

which is impossible due to the inequalities 3.13 and 3.14. \square

LEMMA 3.15. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_5\}$. Then lct(S) = 1/4.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 2. We have $LCS(S, \lambda D) \subseteq \Sigma$ by Lemma 3.1.

Let P be a point in Σ of type \mathbb{A}_1 . We may assume that $P \in L_1$. Then

$$\bar{L}_2 \cdot E_1 = \bar{L}_2 \cdot E_2 = \bar{L}_2 \cdot E_3 = \bar{L}_2 \cdot E_5 = \bar{L}_1 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_1 \cdot E_4 = \bar{L}_1 \cdot E_5 = 0,$$

and $\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_4 = 1$. The equivalence $-K_S \sim 3L_2$ holds.

Suppose that $(S, \lambda D)$ is not log canonical at P. Let $\beta \colon \tilde{S} \to S$ be a blow up of P. Then

$$\tilde{D} \equiv \beta^* \big(-K_S \big) - mF,$$

where F is the β -exceptional curve, \tilde{D} is the proper transform of the divisor D, and $m \in \mathbb{Q}$. Then

$$0 \leqslant \tilde{H} \cdot \tilde{D} = \left(\beta^* \left(-K_S\right) - mF\right) \cdot \left(\beta^* \left(-K_S\right) - F\right) = 3 - 2m$$

where \tilde{H} is general curve in $|-K_{\tilde{S}}-F|$. Thus, we have $m \leq 3/2$. But m > 2 by Lemma 2.7.

We see that $LCS(S, \lambda D) = O$. Let C_1 and C_2 be general conics on the surface S such that

$$L_1 + C_1 \sim L_2 + C_2 \sim -K_S$$

and let \bar{C}_1 and \bar{C}_2 be the proper transforms of C_1 and C_2 on the surface \bar{S} , respectively. Then

$$\begin{cases} 2 - a_1 = \bar{C}_1 \cdot \bar{D} \ge 0, \\ 2 - a_5 = \bar{C}_2 \cdot \bar{D} \ge 0, \end{cases}$$

because $C_1 \not\subseteq \operatorname{Supp}(D) \not\supseteq C_2$. We may assume that $L_2 \not\subseteq \operatorname{Supp}(D)$ due to Remark 2.1.

Arguing as in the proof of Lemma 3.12, we obtain the inequalities

$$3 \ge a_1 + a_5, \ 2a_1 \ge a_2, \ 2a_2 \ge a_1 + a_3, \ 2a_3 \ge a_2 + a_4,$$

 $2a_4 \ge a_3 + a_5, \ 2a_5 \ge a_4, \ 2 \ge a_2, \ 2 \ge a_5, \ 1 \ge a_4,$

which imply that there is a point $Q \in \bigcup_{i=1}^{5} E_i$ such that the log pair

$$\left(\bar{S}, \ \lambda \left(\bar{D} + \sum_{i=1}^{5} a_i E_i\right)\right)$$

is not log canonical at Q. Arguing as in the proof of Lemma 3.10, we obtain a contradiction. \Box

LEMMA 3.16. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_4\}$. Then lct(S) = 1/3.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

Let P be a point in Σ of type \mathbb{A}_1 . We may assume that $P \in L_1$. It follows from [1] that r = 3. Then

$$\bar{L}_1 \cdot E_1 = 1, \ \bar{L}_1 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_1 \cdot E_4 = 0$$

and we may assume that $\bar{L}_3 \cdot E_3 = \bar{L}_2 \cdot E_4 = 1$. Then $-K_S \sim L_2 + 2L_3$ and

$$\bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_3 \cdot E_4 = \bar{L}_2 \cdot E_1 = \bar{L}_2 \cdot E_2 = \bar{L}_2 \cdot E_3 = 0.$$

We may assume that either $L_3 \not\subseteq \operatorname{Supp}(D)$ or $L_1 \not\subseteq \operatorname{Supp}(D) \not\supseteq L_2$ (see Remark 2.1).

Arguing as in the proof of Lemma 3.15, we see that

$$\operatorname{LCS}(S, \lambda D) = O,$$

and arguing as in the proof of Lemma 3.11, we obtain a contradiction. \Box

LEMMA 3.17. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_3\}$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

Let P be a point in Σ of type \mathbb{A}_1 . We may assume that $P \in L_1$.

It follows from [1] that r = 4 and S contains lines L_5, L_6, L_7 such that

$$L_5 \ni P \in L_6, \ O \notin L_7 \not\supseteq P, \ L_3 \cap L_5 \neq \emptyset, \ L_4 \cap L_6 \neq \emptyset, L_7 \cap L_2 \neq \emptyset, \ L_7 \cap L_5 \neq \emptyset, \ L_7 \cap L_6 \neq \emptyset,$$

which implies that $L_7 \cap L_1 = L_7 \cap L_3 = L_7 \cap L_4 = \emptyset$. Then

 $L_1 + L_3 + L_5 \sim L_1 + L_4 + L_6 \sim L_5 + L_6 + L_7 \sim L_2 + 2L_1 \sim L_2 + L_3 + L_4 \sim 2L_2 + L_7$

and $-K_S \sim L_1 + L_3 + L_5$. Put

$$D = \mu_i L_i + \Omega_i,$$

where μ_i is a non-negative rational number, and Ω_i is an effective Q-divisor, whose support does not contain the line L_i . Let us show that that $\mu_i < 1/\lambda$ for $i = 1, \ldots, 7$.

Suppose that $\mu_2 \ge 1/\lambda$. We may assume that $L_1 \not\subseteq \text{Supp}(D)$ by Remark 2.1. Then

$$1 = L_1 \cdot D = L_1 \cdot (\mu_2 L_2 + \Omega_2) \ge \mu_2 L_1 \cdot L_2 = \mu_2/2 > 1,$$

which is a contradiction. Similarly, we see that $\mu_i < 1/\lambda$ for i = 1, ..., 7.

Arguing as in the proof of Lemma 3.4, we see that

$$\operatorname{LCS}(S, \lambda D) \subseteq \Sigma,$$

which implies that $LCS(S, \lambda D) = O$ or $LCS(S, \lambda D) = P$ by Lemma 2.2. Sup

pose that
$$LCS(S, \lambda D) = P$$
. Put

$$D = \mu_5 L_5 + \mu_6 L_6 + \Upsilon,$$

where Υ is an effective \mathbb{Q} -divisor such that $L_5 \not\subseteq \operatorname{Supp}(\Upsilon) \not\supseteq L_6$. Then $\mu_5 > 0$ and $\mu_6 > 0.$ But

$$1 = L_7 \cdot D = L_7 \cdot (\mu_5 L_5 + \mu_6 L_6 + \Upsilon) \ge L_7 \cdot (\mu_5 L_5 + \mu_6 L_6) = \mu_5 + \mu_6,$$

because we may assume that $L_7 \not\subseteq \text{Supp}(\Upsilon)$. Let $\beta \colon \tilde{S} \to S$ be a blow up of the point P. Then

$$\mu_5 \tilde{L}_5 + \mu_6 \tilde{L}_6 + \tilde{\Upsilon} \equiv \beta^* \left(\mu_5 L_5 + \mu_6 L_6 + \Upsilon \right) - \left(\mu_5 / 2 + \mu_6 / 2 + \epsilon \right) G,$$

where ϵ is a rational number, G is the exceptional curve of β , and \tilde{L}_5 , \tilde{L}_6 , $\tilde{\Upsilon}$ are proper transforms of the divisors L_5 , L_6 , Υ on the surface \tilde{S} , respectively. Then

$$0 \leqslant \left(\mu_5 \tilde{L}_5 + \mu_6 \tilde{L}_6 + \tilde{\Upsilon}\right) \tilde{H} = 3 - \mu_5 - \mu_6 - 2\epsilon$$

where \tilde{H} is a general curve in $|-K_{\tilde{S}}-G|$. There is a point $Q \in G$ such that the log pair

$$\left(\tilde{S}, \lambda\left(\mu_5\tilde{L}_5+\mu_6\tilde{L}_6+\tilde{\Upsilon}\right)+\lambda\left(\mu_5/2+\mu_6/2+\epsilon\right)G\right)$$

are not \log canonical at Q. We have

$$2 - 2\epsilon = \tilde{\Upsilon} \cdot (\tilde{L}_5 + \tilde{L}_6) \ge 0,$$

which implies that $\epsilon \leq 1$. Then it follows from Lemma 2.5 that

$$2\epsilon = \hat{\Omega} \cdot G > 2$$

if $Q \notin \tilde{L}_5 \cup \tilde{L}_6$, which implies that we may assume that $Q \in \tilde{L}_5$. Then

$$1 + \mu_5/2 - \mu_6 - \epsilon = \tilde{\Omega} \cdot \tilde{L}_5 > 2 - \mu_5/2 - \mu_6/2 - \epsilon,$$

by Lemma 2.5. Thus, we see that $\mu_5 > 1$. But

$$\mu_5 \leqslant \mu_5 + \mu_6 \leqslant 1,$$

which is a contradiction. The obtained contradiction shows that $LCS(S, \lambda D) \neq P$. We see that $LCS(S, \lambda D) = O$. We may assume that

 $\bar{L}_1 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_2 \cdot E_1 = \bar{L}_2 \cdot E_3 = \bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_4 \cdot E_1 = \bar{L}_4 \cdot E_2 = 0$

and $\overline{L}_1 \cdot E_1 = \overline{L}_2 \cdot E_2 = \overline{L}_3 \cdot E_3 = \overline{L}_4 \cdot E_3 = 1$. But the log pair

$$\left(S, \operatorname{lct}_1(S)(2L_1+L_2)\right)$$

has log canonical singularities. Similarly, the log pair

$$(S, \operatorname{lct}_1(S)(L_2 + L_3 + L_3))$$

is log canonical. By Remark 2.1 and Lemma 3.1, we may assume that either

$$L_1 \not\subseteq \operatorname{Supp}(D) \not\supseteq L_3$$

or $L_2 \not\subseteq \text{Supp}(D)$. Arguing as in the proof of Lemma 3.10, we obtain a contradiction.

LEMMA 3.18. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_2\}$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 5. We may assume that

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_4 \cdot E_2 = \bar{L}_5 \cdot E_2 = 1$$

and $\bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_3 \cdot E_1 = \bar{L}_4 \cdot E_1 = \bar{L}_5 \cdot E_1 = 0.$

Let P be a point in Σ of type \mathbb{A}_1 . We may assume that $P \in L_1$.

It follows from [1] that S contains lines $L_6, L_7, L_8, L_9, L_{10}, L_{11}$ such that

$$P = L_1 \cap L_6 \cap L_7 \cap L_8, \ L_9 \cap L_6 \neq \varnothing, \ L_9 \cap L_7 \neq \varnothing, L_9 \cap L_6 \neq \varnothing$$

and $L_9 \cap L_7 \neq \emptyset$, $L_{10} \cap L_7 \neq \emptyset$, $L_{10} \cap L_8 \neq \emptyset$, $L_{11} \cap L_6 \neq \emptyset$, $L_{11} \cap L_8 \neq \emptyset$. Then

which implies that $-K_S \sim L_3 + L_4 + L_5 \sim 2L_1 + L_2 \sim L_3 + L_4 + L_5$ and

$$-K_S \sim 2L_1 + L_2 \sim L_1 + L_3 + L_6 \sim L_1 + L_4 + L_7 \sim L_1 + L_5 + L_8 \sim L_6 + L_7 + L_9$$

and $-K_S \sim L_7 + L_8 + L_{10} \sim L_6 + L_8 + L_{11}$.

Arguing as in the proof of Lemma 3.17, we see that

$$\operatorname{LCS}(S, \lambda D) = O.$$

By Remark 2.1, we may assume that either $L_1 \not\subseteq \text{Supp}(D)$ or $L_2 \not\subseteq \text{Supp}(D)$, because

$$2L_1 + L_2 \sim -K_S$$

and the log pair $(S, \text{lct}_1(S)(2L_1 + L_2))$ has log canonical singularities. Similarly, we may assume that Supp(D) does not contain at least one of the lines L_3 , L_4 , L_5 , because the equivalence

$$L_3 + L_4 + L_5 \sim -K_S$$

holds. Arguing as in the proof of Lemma 3.9, we obtain a contradiction. \Box

LEMMA 3.19. Suppose that $\Sigma = \{\mathbb{A}_2, \dots, \mathbb{A}_2\}$ and $|\Sigma| \ge 2$. Then lct(S) = 1/3.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

Let P be a point in Σ such that $P \neq O$. We may assume that $P \in L_1$. Then

$$-K_S \sim 3L_1.$$

We may assume that $(S, \lambda D)$ is not log canonical at O by Lemma 3.1, and we assume that

$$L_1 \not\subseteq \operatorname{Supp}(D)$$

by Remark 2.1 and Lemma 3.1.

We may assume that $\bar{L}_1 \cap E_2 \neq \emptyset$. Then $a_2 \leq 1$, because $\bar{D} \cdot \bar{L}_1 \geq 0$.

Arguing as in the proof of Lemma 3.9, we see that $3 \ge a_1 + a_2, 2a_1 \ge a_2, 2a_2 \ge a_1, 1 \ge a_2$.

There is a point $Q \in E_1 \cup E_2$ such that the log pair

$$\left(\bar{S}, \lambda\left(\bar{D}+a_1E_1+a_2E_2\right)\right)$$

is not log canonical at the point Q. Arguing as in the proof of Lemma 3.9, we see that

$$\begin{cases} Q \in E_1 \setminus (E_1 \cap E_2) \Rightarrow 2a_1 > a_2 + 3, \\ Q \in E_1 \cap E_2 \Rightarrow 2a_1 > 3 \text{ and } 2a_2 > 3, \\ Q \in E_2 \setminus (E_2 \cap E_1) \Rightarrow 2a_2 > a_1 + 3, \end{cases}$$

which easily leads to a contradiction, because $3 \ge a_1 + a_2, 2a_1 \ge a_2, 2a_2 \ge a_1, 1 \ge a_2$.

LEMMA 3.20. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_2\}$. Then lct(S) = 1/3.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from Lemma 3.1 that $LCS(S, \lambda D) \subseteq \Sigma$.

Let $P \neq O$ be a point in Σ of type \mathbb{A}_2 . We may assume that $P \in L_1$. Then

$$-K_S \sim 3L_1,$$

which implies that we may assume that $L_1 \not\subseteq \text{Supp}(D)$ due to Remark 2.1 and Lemma 3.1.

Arguing as in the proof of Lemma 3.15, we see that

$$\operatorname{LCS}(S, \lambda D) \subseteq O \cup P,$$

which easily leads to a contradiction (see the proof of Lemma 3.19). \Box

LEMMA 3.21. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_1, \mathbb{A}_3\}$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 3.

Let P_1 and P_2 be points in Σ of type \mathbb{A}_1 . Then we may assume that $P_1 \in L_1$ and $P_2 \in L_2$.

It follows from [1] that S contains lines L_4 and L_5 such that

$$P_1 \in L_4 \ni P_2, \ O \notin L_4, \ P_1 \notin L_3 \not\supseteq P_2, \ L_5 \cap \Sigma = \emptyset,$$

which implies that $L_5 \cap L_3 \neq \emptyset$, $L_5 \cap L_4 \neq \emptyset$, $L_5 \cap L_1 = \emptyset$, $L_5 \cap L_2 = \emptyset$. Then

$$-K_S \sim L_1 + L_2 + L_4 \sim L_3 + 2L_1 \sim L_3 + 2L_2 \sim 2L_3 + L_5 \sim 2L_4 + L_5.$$
(3.22)

Let us show that $LCS(S, \lambda D)$ does not contain the lines L_1, \ldots, L_5 . Put

$$D = \mu_i L_i + \Omega_i,$$

where $\mu_i \in \mathbb{Q}$, and Ω_i is an effective \mathbb{Q} -divisor such that $L_i \not\subseteq \text{Supp}(\Omega_i)$.

Suppose that $\mu_1 \ge 1/\lambda$. Then it follows from the equivalence 3.22 and Remark 2.1 that we may assume that $L_3 \not\subseteq \text{Supp}(D)$. Therefore, we have

$$1 = L_3 \cdot D = L_3 \cdot (\mu_1 L_1 + \Omega_1) \ge \mu_1 L_3 \cdot L_1 = \mu_1/2 > 1,$$

210

which is a contradiction. Similarly, we see that $\mu_2 < 1/\lambda$, $\mu_3 < 1/\lambda$, $\mu_4 < 1/\lambda$, $\mu_5 < 1/\lambda$.

Arguing as in the proof of Lemma 3.4, we see that $|LCS(S, \lambda D)| = 1$ and

$$\operatorname{LCS}(S, \lambda D) \subsetneq \Sigma.$$

Suppose that $LCS(S, \lambda D) = P_1$. Let $\beta \colon \tilde{S} \to S$ be a blow up of the point P_1 . Then

$$\mu_4 \tilde{L}_4 + \tilde{\Omega} \equiv \beta^* \left(\mu_4 L_4 + \Omega \right) - \left(\mu_4 / 2 + \epsilon \right) G,$$

where G is the exceptional curve of the birational morphism β , \tilde{L}_4 and $\tilde{\Omega}$ are proper transforms of the divisors L_4 and Ω on the surface \tilde{S} , respectively, and ϵ is a positive rational number. Then

$$0 \leqslant \left(\mu_4 \tilde{L}_4 + \tilde{\Omega}\right) \tilde{H} = \left(\beta^* \left(\mu_4 L_4 + \Omega\right) - \left(\mu_4/2 + \epsilon\right) G\right) \cdot \left(\beta^* \left(-K_S\right) - G\right) = 3 - \mu_4 - 2\epsilon,$$

where \tilde{H} is a general curve in $|-K_{\tilde{S}}-G|$. Thus, there is a point $P \in G$ such that the log pair

$$\left(\tilde{S}, \ \mu_4 \tilde{L}_4 + \tilde{\Omega} + (\mu_4/2 + \epsilon)G\right)$$

is not log canonical at P. Then $1 - \epsilon = \tilde{\Omega} \cdot \tilde{L}_4 \ge 0$. It follows from Lemma 2.5 that

$$2\epsilon = \tilde{\Omega} \cdot G > 2$$

in the case when $P \notin \tilde{L}_4$. Therefore, we see that $P \in \tilde{L}_4$. Then

$$1 - \epsilon = \hat{\Omega} \cdot \hat{L}_4 > 2 - \mu_4/2 - \epsilon$$

by Lemma 2.5. Thus, we see that $\mu_4 > 2$, which is a contradiction.

Similarly, we see that $P_2 \notin LCS(S, \lambda D)$. Then $LCS(S, \lambda D) = O$. We may assume that

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_3 = \bar{L}_3 \cdot E_2 = 1, \ \bar{L}_1 \cdot E_2 = \bar{L}_1 \cdot E_3 = \bar{L}_2 \cdot E_1 = \bar{L}_2 \cdot E_2 = \bar{L}_3 \cdot E_1 = \bar{L}_3 \cdot E_3 = 0.$$

It follows from the equivalences 3.22 that we may assume that either $L_3 \not\subseteq \text{Supp}(D)$ or

$$L_1 \not\subseteq \operatorname{Supp}(D) \not\supseteq L_2$$

by Remark 2.1. Arguing as in the proof of Lemma 3.10, we obtain a contradiction. \Box

LEMMA 3.23. Suppose that $\Sigma = \{\mathbb{A}_1, \mathbb{A}_1, \mathbb{A}_2\}$. Then lct(S) = 1/2.

Proof. Suppose that the log pair $(X, \lambda D)$ is not log canonical. Let us derive a contradiction.

It follows from [1] that r = 4.

Let $P_1 \neq P_2$ be points in Σ of type \mathbb{A}_1 . Then we may assume that $P_1 \in L_1$ and $P_2 \in L_4$.

It follows from [1] that S contains lines L_5, L_6, L_7, L_8 such that

$$P_1 \in L_5, P_2 \in L_6, P_1 \in L_7 \ni P_2, O \notin L_8, P_1 \notin L_8 \not\supseteq P_2,$$

which implies that $L_8 \cap L_7 \neq \emptyset$, $L_8 \cap L_2 \neq \emptyset$, $L_8 \cap L_3 \neq \emptyset$, $L_2 \cap L_7 = \emptyset$, $L_3 \cap L_7 = \emptyset$. Then

$$L_1 + L_4 + L_7 \sim L_2 + 2L_1 \sim L_3 + 2L_4 \sim 2L_7 + L_8$$

$$\sim L_2 + L_3 + L_8 \sim L_1 + L_3 + L_5 \sim L_4 + L_2 + L_6,$$

and $-K_S \sim L_1 + L_4 + L_7$. Without loss of generality, we may assume that

$$\bar{L}_1 \cdot E_1 = \bar{L}_2 \cdot E_1 = \bar{L}_3 \cdot E_2 = \bar{L}_4 \cdot E_2 = 1, \ \bar{L}_1 \cdot E_2 = \bar{L}_2 \cdot E_2 = \bar{L}_3 \cdot E_1 = \bar{L}_4 \cdot E_1 = 0.$$

Arguing as in the proof of Lemma 3.21, we see that $LCS(S, \lambda D) = O$.

By Remark 2.1, we may assume that either $L_1 \not\subseteq \text{Supp}(D)$ or $L_2 \not\subseteq \text{Supp}(D)$, because

$$2L_1 + L_2 \sim -K_S \sim \mathcal{O}_{\mathbb{P}^3}(1)\Big|_S$$

and the log pair $(X, \operatorname{lct}_1(S)(2L_1+L_2))$ is log canonical, where $\operatorname{lct}_1(S) = 1/2$. Similarly, we may assume that either $L_3 \not\subseteq \operatorname{Supp}(D)$ or $L_4 \not\subseteq \operatorname{Supp}(D)$, because $-K_S \sim L_3 + 2L_4$.

Arguing as in the proof of Lemma 3.9, we obtain a contradiction. \Box

It follows from [1], that the equalities

$$\operatorname{lct}(S) = \operatorname{lct}_1(S) = \begin{cases} 2/3 \text{ when } \Sigma = \{\mathbb{A}_1\}, \\ 1/3 \text{ when } \Sigma \supseteq \{\mathbb{A}_4\}, \\ 1/3 \text{ when } \Sigma = \{\mathbb{D}_4\}, \\ 1/3 \text{ when } \Sigma \supseteq \{\mathbb{A}_2, \mathbb{A}_2\}, \\ 1/4 \text{ when } \Sigma \supseteq \{\mathbb{A}_5\}, \\ 1/4 \text{ when } \Sigma = \{\mathbb{D}_5\}, \\ 1/6 \text{ when } \Sigma = \{\mathbb{D}_5\}, \\ 1/2 \text{ in other cases.} \end{cases}$$

are proved for all possible values of the set Σ . Hence, the assertion of Theorem 1.4 is proved.

4. Fiberwise maps. Let us use the assumptions and notation of Theorem 1.5.

Proof of Theorem 1.5. Suppose that X is log terminal and $lct(X) \ge 1$, but ρ is not an isomorphism. Let D be a general very ample divisor on Z. Put

$$\Lambda = \left| -nK_V + \pi^*(nD) \right|, \ \Gamma = \left| -nK_{\bar{V}} + \bar{\pi}^*(nD) \right|, \ \bar{\Lambda} = \rho(\Lambda), \ \bar{\Gamma} = \rho^{-1}(\Gamma),$$

where n is a natural number such that Λ and Γ have no base points. Put

$$M_V = \frac{2\varepsilon}{n}\Lambda + \frac{1-\varepsilon}{n}\overline{\Gamma}, \ M_{\bar{V}} = \frac{2\varepsilon}{n}\overline{\Lambda} + \frac{1-\varepsilon}{n}\Gamma,$$

where ε is a positive rational number.

The log pairs (V, M_V) and $(\bar{V}, M_{\bar{V}})$ are birationally equivalent, and $K_V + M_V$ and $K_{\bar{V}} + M_{\bar{V}}$ are ample. The uniqueness of canonical model (see [3, Theorem 1.3.20]) implies that ρ is biregular if the singularities of both log pairs (V, M_V) and $(V, M_{\bar{V}})$ are canonical. The linear system Γ does not have base points. Thus, there is a rational number ε such that the log pair $(\bar{V}, M_{\bar{V}})$ is canonical. So, the log pair (V, M_V) is not canonical. Then the log pair

$$\left(V, X + \frac{1-\varepsilon}{n}\bar{\Gamma}\right)$$

is not log canonical, because Λ does not have not base points, and $\overline{\Gamma}$ does not have base points outside of the fiber X, which is a Cartier divisor on the variety V. The log pair

$$\left(X, \left.\frac{1-\varepsilon}{n}\,\bar{\Gamma}\right|_X\right)$$

is not log canonical by Theorem 17.6 in [9], which is impossible, because $lct(X) \ge 1$.

To conclude the proof we may assume that the varieties X and \bar{X} have log terminal singularities, the inequality $lct(X) + lct(\bar{X}) > 1$ holds, and ρ is not an isomorphism.

Let Λ , Γ , $\overline{\Lambda}$, $\overline{\Gamma}$ and n be the same as in the previous case. Put

$$M_V = \frac{\operatorname{lct}(\bar{X}) - \varepsilon}{n} \Lambda + \frac{\operatorname{lct}(X) - \varepsilon}{n} \overline{\Gamma}, \ M_{\bar{V}} = \frac{\operatorname{lct}(\bar{X}) - \varepsilon}{n} \overline{\Lambda} + \frac{\operatorname{lct}(X) - \varepsilon}{n} \Gamma,$$

where ε is a sufficiently small positive rational number. Then it follows from the uniqueness of canonical model that ρ is biregular if both log pair (V, M_V) and $(V, M_{\bar{V}})$ are canonical.

Without loss of generality, we may assume that the singularities of the log pair (V, M_V) are not canonical. Arguing as in the previous case, we see that the log pair

$$\left(X, \left.\frac{\operatorname{lct}(X) - \varepsilon}{n} \,\bar{\Gamma}\right|_X\right)$$

is not log canonical, which is impossible, because $\overline{\Gamma}|_X \equiv -nK_X$.

The assertion of Theorem 1.5 is a generalization of the Main Theorem in [10].

REFERENCES

- J.W. BRUCE AND C.T.C. WALL, On the classification of cubic surfaces, Journal of the London Mathematical Society, 19 (1979), pp. 245–256.
- [2] A. DEL CENTINA AND S. RECILLAS, Some projective geometry associated with unramified double covers of curves of genus 4, Annali di Matematica Pura ed Applicata, 133 (1983), pp. 125– 140.
- [3] I. CHELTSOV, Birationally rigid Fano varieties, Russian Mathematical Surveys, 60 (2005), pp. 875–965
- [4] I. CHELTSOV, Log canonical thresholds of del Pezzo surfaces, Geometric and Functional Analysis, 18 (2008), pp. 1118–1144.
- [5] I. CHELTSOV AND C. SHRAMOV, Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly, Russian Mathematical Surveys, 63 (2008), pp. 73–180.
- [6] J.-P. DEMAILLY AND J. KOLLÁR, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Annales Scientifiques de l'École Normale Supérieure, 34 (2001), pp. 525–556.
- [7] W. DING AND G. TIAN, Kähler-Einstein metrics and the generalized Futaki invariant, Inventiones Mathematicae, 110 (1992), pp. 315–335.
- [8] J. KOLLÁR, Singularities of pairs, Proceedings of Symposia in Pure Mathematics, 62 (1997), pp. 221–287.
- [9] J. KOLLÁR ET AL., Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).
- [10] J. PARK, Birational maps of del Pezzo fibrations, Journal fur die Reine und Angewandte Mathematik, 538 (2001), pp. 213–221.

I. CHELTSOV

- [11] G. TIAN, On Kähler-Einstein metrics on certain Kähler manifolds with c1(M) > 0, Inventiones Mathematicae, 89 (1987), pp. 225–246.
 [12] J. PARK AND J. WON, Log canonical thresholds on Gorenstein canonical del Pezzo surfaces, arXiv:0904.4513.