Related content

Extremal metrics on two Fano varieties

To cite this article: Ivan A Cheltsov 2009 Sb. Math. 20095

View the article online for updates and enhancements

On a Friedrichs-type inequality in a threedimensional domain aperiodically perforated along a part of the boundary Yulia O Koroleva
- More about a construction for modules over a polynomial ring O A Matevosyan

- Semirings which are the unions of a ring and a semifield
Evgenii M Vechtomov and Mikhail A Lukin

Recent citations

- Alpha-invariants and purely log terminal blow-ups
Ivan Cheltsov et al
Canonical and log canonical thresholds of Fano complete intersections
Aleksandr V. Pukhlikov
- On a new compactification of moduli of vector bundles on a surface. III: Functorial approach
Nadezhda V Timofeeva

Extremal metrics on two Fano varieties

I. A. Cheltsov

Abstract

We prove the existence of an orbifold Kähler-Einstein metric on a general hypersurface in $\mathbb{P}\left(1^{3}, 2,2\right)$ of degree 6 and a general hypersurface in $\mathbb{P}\left(1^{3}, 2,3\right)$ of degree 7 .

Bibliography: 50 titles.

Keywords: Fano varieties, Kähler-Einstein metric, log-canonical threshold, Tian alpha-invariant.

\S 1. Introduction

The multiplicity of a non-zero polynomial $\varphi \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ at the origin $O \in \mathbb{C}^{n}$ is

$$
m=\min \left\{m \in \mathbb{N} \cup\{0\} \left\lvert\, \frac{\partial^{m} \varphi\left(z_{1}, \ldots, z_{n}\right)}{\partial^{m_{1}} z_{1} \partial^{m_{2}} z_{2} \cdots \partial^{m_{n}} z_{n}}(O) \neq 0\right.\right\}
$$

which implies that $m \neq 0 \Longleftrightarrow \varphi(O)=0$. There is a similar invariant

$$
c_{0}(\varphi)=\sup \left\{\varepsilon \in \mathbb{Q} \mid \text { the function } \frac{1}{|\varphi|^{2 \varepsilon}} \text { is locally integrable near } O \in \mathbb{C}^{n}\right\} \in \mathbb{Q},
$$

which is called the complex singularity exponent of the polynomial φ at O.
Example 1.1. Let m_{1}, \ldots, m_{n} be positive integers. Let $\varphi=\sum_{i=1}^{n} z_{i}^{m_{i}}$. Then

$$
c_{0}(\varphi)=\min \left(1, \sum_{i=1}^{n} \frac{1}{m_{i}}\right) .
$$

Example 1.2. Let m_{1}, \ldots, m_{n} be positive integers. Let $\varphi=\prod_{i=1}^{n} z_{i}^{m_{i}}$. Then

$$
c_{0}(\varphi)=\min \left(\frac{1}{m_{1}}, \frac{1}{m_{2}}, \ldots, \frac{1}{m_{n}}\right) .
$$

Let X be a variety ${ }^{1}$ with at most log terminal singularities, let $Z \subseteq X$ be a closed subvariety, and let D be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor on the variety X. Then the number
$\operatorname{lct}_{Z}(X, D)=\sup \{\lambda \in \mathbb{Q} \mid$ the \log pair $(X, \lambda D)$ is \log canonical along $Z\} \in \mathbb{Q}$

[^0]is called a \log canonical threshold of the divisor D along Z. It follows from [1] that
$$
\operatorname{lct}_{O}\left(\mathbb{C}^{n},(\varphi=0)\right)=c_{0}(\varphi)
$$
so that $\operatorname{lct}_{Z}(X, D)$ is an algebraic counterpart of the number $c_{0}(\phi)$. One has
\[

$$
\begin{aligned}
\operatorname{lct}_{X}(X, D) & =\inf \left\{\operatorname{lct}_{P}(X, D) \mid P \in X\right\} \\
& =\sup \{\lambda \in \mathbb{Q} \mid \text { the log pair }(X, \lambda D) \text { is } \log \text { canonical }\}
\end{aligned}
$$
\]

and we put $\operatorname{lct}(X, D)=\operatorname{lct}_{X}(X, D)$ for simplicity. ${ }^{2}$
Example 1.3. Let $X=\mathbb{P}^{2}$ and $D \in\left|\mathscr{O}_{\mathbb{P}^{2}}(3)\right|$. Then

$$
\operatorname{lct}(X, D)=\left\{\begin{array}{cc}
1 & \text { if } D \text { is a curve with at most ordinary } \\
\text { double points, } \\
5 / 6 & \text { if } D \text { is a curve with one cuspidal point, } \\
3 / 4 & \text { if } D \text { consists of an irredicible conic } \\
\text { and a line that are tangent, } \\
2 / 3 & \text { if } D \text { consists of three lines intersecting } \\
\text { at one point, } \\
1 / 2 & \text { if } \operatorname{Supp}(D) \text { consists of two lines, } \\
1 / 3 & \text { if } \operatorname{Supp}(D) \text { consists of one line. }
\end{array}\right.
$$

Now suppose additionally that X is a Fano variety.
Definition 1.4. The global \log canonical threshold of the Fano variety X is the quantity

$$
\begin{gathered}
\operatorname{lct}(X)=\inf \{\operatorname{lct}(X, D) \mid D \text { is an effective } \mathbb{Q} \text {-divisor on } X \\
\text { such that } \left.D \equiv-K_{X}\right\} \geqslant 0
\end{gathered}
$$

The number $\operatorname{lct}(X)$ is an algebraic counterpart of the α-invariant of a variety X introduced in [3]. One easily sees that

$$
\begin{array}{r}
\operatorname{lct}(X)=\sup \{\lambda \in \mathbb{Q} \mid \text { the } \log \text { pair }(X, \lambda D) \text { is } \log \text { canonical } \\
\\
\text { for every effective } \left.\mathbb{Q} \text {-divisor } D \equiv-K_{X}\right\} .
\end{array}
$$

Example 1.5. Let X be a smooth hypersurface in \mathbb{P}^{n} of degree $m<n$. Then

$$
\operatorname{lct}(X)=\frac{1}{n+1-m}
$$

as shown in [4]. In particular, the equality $\operatorname{lct}\left(\mathbb{P}^{n}\right)=1 /(n+1)$ holds.
Example 1.6. Let X be a smooth hypersurface in $\mathbb{P}\left(1^{n+1}, d\right)$ of degree $2 d \geqslant 2$. Then

$$
\operatorname{lct}(X)=\frac{1}{n+1-d}
$$

in the case when $2 \leqslant d \leqslant n-1$ (see [5]).

[^1]Example 1.7. Let X be a rational homogeneous space such that

$$
\operatorname{Pic}(X)=\mathbb{Z}[D]
$$

where D is an ample divisor. We have

$$
-K_{X} \sim r D
$$

for some integer $r \geqslant 1$. Then $\operatorname{lct}(X)=1 / r($ see [6]).
In general the number $\operatorname{lct}(X)$ depends on small deformations of the variety X.
Example 1.8. Let X be a smooth hypersurface in $\mathbb{P}(1,1,1,1,3)$ of degree 6 . Then

$$
\operatorname{lct}(X) \in\left\{\frac{5}{6}, \frac{43}{50}, \frac{13}{15}, \frac{33}{38}, \frac{7}{8}, \frac{8}{9}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{15}{16}, \frac{17}{18}, \frac{19}{20}, \frac{21}{22}, \frac{29}{30}, 1\right\}
$$

by $[7]$ and $[8]$ and all these values of $\operatorname{lct}(X)$ are attained.
Example 1.9. Let X be a smooth hypersurface in $\mathbb{P}\left(1^{n+1}, n\right)$ of degree $2 n$. Then the inequalities

$$
1 \geqslant \operatorname{lct}(X) \geqslant \frac{2 n-1}{2 n}
$$

hold (see [8]). Moreover, the equality $\operatorname{lct}(X)=1$ holds if X is general and $n \geqslant 3$.
Example 1.10. Let X be a smooth hypersurface in \mathbb{P}^{n} of degree $n \geqslant 2$. Then the inequalities

$$
1 \geqslant \operatorname{lct}(X) \geqslant \frac{n-1}{n}
$$

hold (see [4]). Moreover, it follows from [7] and [8] that

$$
\operatorname{lct}(X) \geqslant \begin{cases}1 & \text { if } n \geqslant 6 \\ 22 / 25 & \text { if } n=5 \\ 16 / 21 & \text { if } n=4 \\ 3 / 4 & \text { if } n=3\end{cases}
$$

whenever X is general, but $\operatorname{lct}(X)=1-1 / n$ if X contains a cone of dimension $n-2$.

It is unknown in the general case whether $\operatorname{lct}(X) \in \mathbb{Q}$ or not, but many examples confirm that it is a rational number.

Example 1.11. Let X be a smooth del Pezzo surface. It follows from [9] that

$$
\operatorname{lct}(X)= \begin{cases}1 & \text { if } K_{X}^{2}=1 \text { and }\left|-K_{X}\right| \text { contains no cuspidal curves, } \\ 5 / 6 & \text { if } K_{X}^{2}=1 \text { and }\left|-K_{X}\right| \text { contains a cuspidal curve, } \\ 5 / 6 & \text { if } K_{X}^{2}=2 \text { and }\left|-K_{X}\right| \text { contains no tacnodal curves, } \\ 3 / 4 & \text { if } K_{X}^{2}=2 \text { and }\left|-K_{X}\right| \text { contains a tacnodal curve, } \\ 3 / 4 & \text { if } X \text { is a cubic in } \mathbb{P}^{3} \text { with no Eckardt point, } \\ 2 / 3 & \text { if } X \text { is a cubic in } \mathbb{P}^{3} \text { with Eckardt point, or } K_{X}^{2}=4, \\ 1 / 2 & \text { if } X \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \text { or } K_{X}^{2} \in\{5,6\} \\ 1 / 3 & \text { in the remaining cases. }\end{cases}
$$

Example 1.12. Let X be a singular cubic surface in \mathbb{P}^{3}. It follows from [10] that

$$
\operatorname{lct}(X)= \begin{cases}2 / 3 & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{A}_{1}\right\} \\ 1 / 3 & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{4}\right\} \\ 1 / 3 & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{D}_{4}\right\} \\ 1 / 3 & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\} \\ 1 / 4 & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{5}\right\} \\ 1 / 4 & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{D}_{5}\right\} \\ 1 / 6 & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{E}_{6}\right\} \\ 1 / 2 & \text { in the remaining cases }\end{cases}
$$

We expect that the following holds ${ }^{3}$ (cf. [11], Question 1).
Conjecture 1.13. There is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ on X such that

$$
\operatorname{lct}(X)=\operatorname{lct}(X, D) \in \mathbb{Q}
$$

The following deep result holds (see [3], [12], [13]).
Theorem 1.14. Suppose that X has at most quotient singularities. If

$$
\operatorname{lct}(X)>\frac{\operatorname{dim}(X)}{\operatorname{dim}(X)+1}
$$

then X admits an orbifold Kähler-Einstein metric.
If a variety with quotient singularities admits an orbifold Kähler-Einstein metric, then

- either its canonical divisor is numerically trivial;
- or its canonical divisor is ample (a variety of general type);
- or its canonical divisor is antiample (a Fano variety).

Remark 1.15. Every variety with at most quotient singularities that has numerically trivial or ample canonical divisor always admits an orbifold Kähler-Einstein metric (see [14]-[16]).

If $\operatorname{Sing}(X)=\varnothing$, then X does not admit a Kähler-Einstein metric if

- either the group $\operatorname{Aut}(X)$ is not reductive (see [17]);
- or the tangent bundle of X is not polystable with respect to $-K_{X}$ (see [18]);
- or the Futaki character of holomorphic vector fields on X does not vanish (see [19]).
Corollary 1.16. The following varieties admit no Kähler-Einstein metric:
- a blow up of \mathbb{P}^{2} at one or two distinct points (see [17]);
- a smooth Fano threefold $\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{2}} \oplus \mathscr{O}_{\mathbb{P}^{2}}(1)\right)$ (see [20]);
- a smooth Fano fourfold

$$
\mathbb{P}\left(\alpha^{*}\left(\mathscr{O}_{\mathbb{P}^{1}}(1)\right) \oplus \beta^{*}\left(\mathscr{O}_{\mathbb{P}^{2}}(1)\right)\right),
$$

where $\alpha: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ and $\beta: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ are natural projections (see [19]).

[^2]There are also more subtle obstructions to the existence of a Kähler-Einstein metric.

Example 1.17. Let X be a smooth Fano threefold such that

$$
\operatorname{Pic}(X)=\mathbb{Z}\left[-K_{X}\right]
$$

and $-K_{X}^{3}=22$. Then

- the tangent bundle of the threefold X is stable (see [20]);
- the group $\operatorname{Aut}(X)$ is trivial if the threefold X is general;
- there exists X such that $\operatorname{Aut}(X)$ is a trivial group, but X admits no KählerEinstein metric (see [21]);
- if $\operatorname{Aut}(X) \cong \operatorname{PSL}(2, \mathbb{C})$, then X has a Kähler-Einstein metric (see [22]).

The problem of the existence of Kähler-Einstein metrics on smooth toric Fano varieties is completely solved. Namely, the following result holds (see [23]-[26]).
Theorem 1.18. If X is smooth and toric, then the following conditions are equivalent:

- the Fano variety X admits a Kähler-Einstein metric;
- the Futaki character of holomorphic vector fields of X vanishes;
- the barycentre of the reflexive polytope of X is zero.

However, we do not know many smooth Fano varieties that admit a KählerEinstein metric.

Example 1.19. By [3], [12], [27] and [28] the following varieties admit KählerEinstein metrics:

- every smooth del Pezzo surface whose automorphism group is reductive;
- every Fermat hypersurface in \mathbb{P}^{n} of degree $d \leqslant n$ for $d \geqslant n / 2$;
- every double cover X of \mathbb{P}^{n} branched in a hypersurface of degree $2 d$ for $n \geqslant d>(n+1) / 2$;
- every smooth complete intersection in \mathbb{P}^{n} of two quadric hypersurfaces.

The problem of the existence of orbifold Kähler-Einstein metrics on singular Fano varieties that have quotient singularities is not well studied even in dimension 2.

Example 1.20. Let X be a cubic surface in \mathbb{P}^{3}. Then

- the surface X admits a Kähler-Einstein metric if $\operatorname{Sing}(X)=\varnothing$ (see [27]);
- the surface X does not admit an orbifold Kähler-Einstein metric if X has a singular point that is not of type \mathbb{A}_{1} or \mathbb{A}_{2} (see [29]);
- the cubic surface given by the equation

$$
x y z+x y t+x z t+y z t=0 \subseteq \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

admits a Kähler-Einstein metric and has four singular points of type \mathbb{A}_{1} (see [10]);

- the cubic surface given by the equation

$$
x y z=t^{3} \subseteq \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

admits a Kähler-Einstein metric and has three singular points of type \mathbb{A}_{2} (see [10]);

- it is unknown whether X admits a Kähler-Einstein metric in the remaining cases.

One can use Theorem 1.14 to construct many examples of Fano varieties with quotient singularities that admit an orbifold Kähler-Einstein metric.

Example 1.21. Let X be a quasismooth hypersurface in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of degree $\sum_{i=0}^{3} a_{i}-1$, where $a_{0} \leqslant a_{1} \leqslant a_{2} \leqslant a_{3}$. Then $\operatorname{lct}(X)>2 / 3$ if X is general and singular (see [13], [30]-[32]).

Example 1.22. Let X be a quasismooth hypersurface in $\mathbb{P}\left(a_{0}, \ldots, a_{4}\right)$ of degree $\sum_{i=0}^{4} a_{i}-1$, where $a_{0} \leqslant a_{1} \leqslant a_{2} \leqslant a_{3} \leqslant a_{4}$. Then it follows from [33] that

- $\operatorname{lct}(X)>3 / 4$ for at least 1936 values of the quintuple $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$;
- $\operatorname{lct}(X) \geqslant 1$ for at least 1605 values of the quintuple $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$.

It is clear from Examples $1.9-1.11,1.21$ and 1.22 that the number $\operatorname{lct}(X)$ is important in Kähler geometry. It also plays an important role in birational geometry.

Example 1.23. Let V and \bar{V} be varieties with at most terminal and \mathbb{Q}-factorial singularities and let Z be a smooth curve. Suppose that there is a commutative diagram

such that π and $\bar{\pi}$ are flat morphisms and ρ is a birational map inducing an isomorphism

$$
V \backslash X \cong \bar{V} \backslash \bar{X}
$$

where X and \bar{X} are scheme fibres of π and $\bar{\pi}$ over a point $O \in Z$, respectively. Suppose that

- the fibres X and \bar{X} are irreducible and reduced;
- the divisors $-K_{V}$ and $-K_{\bar{V}}$ are π-ample and $\bar{\pi}$-ample, respectively;
- the varieties X and \bar{X} have at most log terminal singularities;
and ρ is not an isomorphism. Then it follows from [34] and [10] that

$$
\begin{equation*}
\operatorname{lct}(X)+\operatorname{lct}(\bar{X}) \leqslant 1, \tag{*}
\end{equation*}
$$

where X and \bar{X} are Fano varieties by the adjunction formula.
In general inequality $(*)$ is easily seen to be sharp.
Example 1.24. Let $\pi: V \rightarrow Z$ be a surjective flat morphism such that

- the variety V is smooth and $\operatorname{dim}(V)=3$;
- the variety Z is a smooth curve;
- the divisor K_{V} is π-ample;
let X be a scheme fibre of the morphism π over a point $O \in Z$ such that X is a smooth cubic surface in \mathbb{P}^{3}, and let L_{1}, L_{2}, L_{3} be lines in X passing through
a point $P \in V$. Then it follows from [35] that there is a commutative diagram

such that α is a blow up of the point P, the map ψ is an antiflip in the proper transforms of the lines L_{1}, L_{2}, L_{3} and β is a contraction of the proper transform of the fibre X. Then
- the birational map ρ is not an isomorphism;
- the threefold \bar{V} has terminal and \mathbb{Q}-factorial singularities;
- the divisor $-K_{\bar{V}}$ is a Cartier $\bar{\pi}$-ample divisor;
- the map ρ induces an isomorphism $V \backslash X \cong \bar{V} \backslash \bar{X}$, where \bar{X} is a scheme fibre of $\bar{\pi}$ over the point O.
Then \bar{X} is a cubic surface with a singular point of type \mathbb{D}_{4}, which implies that $\operatorname{lct}(X)=2 / 3$ and $\operatorname{lct}(\bar{X})=1 / 3$ (see Examples 1.11 and 1.12).

We now describe another application of $\operatorname{lct}(X)$. Suppose additionally that X has at most \mathbb{Q}-factorial terminal singularities and $\operatorname{rk} \operatorname{Pic}(X)=1$.

Definition 1.25. The Fano variety X is said to be birationally superrigid ${ }^{4}$ if for every linear system \mathscr{M} on the variety X that has no fixed components the log pair (X, \mathscr{M}) has canonical singularities, where λ is a rational number such that $K_{X}+\lambda \mathscr{M} \equiv 0$.

If the variety X is birationally superrigid, then

- there is no rational dominant map $\rho: X \rightarrow Y$ such that the general fibre of the map ρ is rationally connected and $\operatorname{dim}(Y) \geqslant 1$;
- there is no non-biregular map $\rho: X \rightarrow Y$ such that Y has terminal \mathbb{Q} factorial singularities and $\operatorname{rk} \operatorname{Pic}(Y)=1$;
- the variety X is non-rational.

Example 1.26. The following smooth Fano varieties are birationally superrigid:

- a general hypersurface in \mathbb{P}^{n} of degree $n \geqslant 4$ (see [38], [39]);
- a smooth hypersurface in $\mathbb{P}\left(1^{n+1}, n\right)$ of degree $2 n \geqslant 6$ (see [40], [41]).

Let X_{1}, \ldots, X_{r} be Fano varieties with at most \mathbb{Q}-factorial terminal singularities such that $\operatorname{rk} \operatorname{Pic}\left(X_{i}\right)=1$ for every $i=1, \ldots, r$. The following result was proved in [7].

Theorem 1.27. If X_{i} is birationally superrigid and $\operatorname{lct}\left(X_{i}\right) \geqslant 1$ for all $i=1, \ldots, r$, then

$$
\operatorname{Bir}\left(X_{1} \times \cdots \times X_{r}\right)=\operatorname{Aut}\left(X_{1} \times \cdots \times X_{r}\right)
$$

[^3]the variety $X_{1} \times \cdots \times X_{r}$ is non-rational and for every rational dominant map $\rho: X_{1} \times \cdots \times X_{r} \rightarrow Y$ whose general fibre is rationally connected there is a commutative diagram
for some $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}$, where ξ is a birational map and π is the projection.

Fano varieties satisfying the hypotheses of Theorem 1.27 do exist (see Examples $1.9,1.10$ and 1.26).

Definition 1.28. The variety X is said to be birationally rigid ${ }^{5}$ if for every nonempty linear system \mathscr{M} on X that has no fixed components there exists $\xi \in \operatorname{Bir}(X)$ such that the log pair

$$
(X, \lambda \xi(\mathscr{M}))
$$

has canonical singularities, where λ is a rational number such that $K_{X}+\lambda \xi(\mathscr{M}) \equiv 0$.
If X is birationally rigid, then

- there is no rational dominant map $\rho: X \rightarrow Y$ such that a general fibre of the map ρ is rationally connected and $\operatorname{dim}(Y) \geqslant 1$;
- there is no birational map $\rho: X \rightarrow Y$ such that $Y \nsupseteq X$, the variety Y has terminal \mathbb{Q}-factorial singularities and $\operatorname{rk} \operatorname{Pic}(Y)=1$;
- the variety X is non-rational.

Example 1.29. The following Fano threefolds are birationally rigid, but not birationally superrigid:

- a general complete intersection of a quadric and a cubic in \mathbb{P}^{5} (see [42]);
- a smooth threefold that is a double cover of a smooth three-dimensional quadric in \mathbb{P}^{4} branched over a surface of degree 8 (see [40]).

One usually seeks the birational automorphism from Definition 1.28 among a given set of birational automorphisms. This leads to the following definition.

Definition 1.30. A subset Γ of $\operatorname{Bir}(X)$ untwists all maximal singularities on the variety X if for each linear system \mathscr{M} on X that has no fixed components there exists $\xi \in \Gamma$ such that the log pair

$$
(X, \lambda \xi(\mathscr{M}))
$$

has canonical singularities, where λ is a rational number such that $K_{X}+\lambda \xi(\mathscr{M}) \equiv 0$.
If there is a subset $\Gamma \subset \operatorname{Bir}(X)$ that untwists all maximal singularities, then the group $\operatorname{Bir}(X)$ is generated by Γ and the biregular automorphisms.

[^4]Example 1.31. Let X be a general hypersurface in \mathbb{P}^{n} of degree $n \geqslant 5$ that has one singular point O, which is an ordinary singular point of multiplicity $n-2$. Then the projection

$$
\psi: X \rightarrow \mathbb{P}^{n-1}
$$

from the point O induces an involution that untwists all maximal singularities (see [43]).

We now show how Theorem 1.27 can be generalized for birationally rigid Fano varieties.

Definition 1.32. The variety X is universally birationally rigid if for any variety U the variety

$$
X \otimes \operatorname{Spec}(\mathbb{C}(U))
$$

is birationally rigid over a field of rational functions $\mathbb{C}(U)$ of the variety U.
It should be pointed out that Definition 1.28 makes sense also for Fano varieties defined over an arbitrary perfect field.

Definition 1.33. A subset Γ of $\operatorname{Bir}(X)$ universally untwists all maximal singularities if for every variety U the induced subgroup

$$
\Gamma \subset \operatorname{Bir}(X) \subseteq \operatorname{Bir}(X \otimes \operatorname{Spec}(\mathbb{C}(U)))
$$

untwists all maximal singularities on the variety $X \otimes \operatorname{Spec}(\mathbb{C}(U))$ defined over the field of rational functions $\mathbb{C}(U)$ of U.

One can easily verify that any subset of $\operatorname{Aut}(X)$ universally untwists all maximal singularities if the Fano variety X is birationally superrigid.

Remark 1.34. As Kollár pointed out [44], if $\operatorname{dim}(X) \geqslant 2$, then a subset Γ of $\operatorname{Bir}(X)$ universally untwists all maximal singularities if and only if Γ untwists all maximal singularities and $\operatorname{Bir}(X)$ is countable.

Let X_{1}, \ldots, X_{r} be Fano varieties with terminal \mathbb{Q}-factorial singularities and assume that $\operatorname{rkPic}\left(X_{i}\right)=1$ for every $i=1, \ldots, r$. Consider the natural projection
$\pi_{i}: X_{1} \times \cdots \times X_{i-1} \times X_{i} \times X_{i+1} \times \cdots \times X_{r} \longrightarrow X_{1} \times \cdots \times X_{i-1} \times \widehat{X_{i}} \times X_{i+1} \times \cdots \times X_{r}$ and let \beth_{i} be a general fibre of π_{i} in the scheme sense.

Remark $1.35 . \beth_{i}$ is a Fano variety defined over the field of rational functions of the variety

$$
X_{1} \times \cdots \times X_{i-1} \times \widehat{X_{i}} \times X_{i+1} \times \cdots \times X_{r}
$$

There are natural embeddings of groups

$$
\prod_{i=1}^{r} \operatorname{Bir}\left(X_{i}\right) \subseteq\left\langle\operatorname{Bir}\left(\beth_{1}\right), \ldots, \operatorname{Bir}\left(\beth_{r}\right)\right\rangle \subseteq \operatorname{Bir}\left(X_{1} \times \cdots \times X_{r}\right)
$$

and the following result was proved in [45].

Theorem 1.36. If X_{1}, \ldots, X_{r} are universally birationally rigid and $\operatorname{lct}\left(X_{i}\right) \geqslant 1$ for all $i=1, \ldots, r$, then

$$
\operatorname{Bir}\left(X_{1} \times \cdots \times X_{r}\right)=\left\langle\operatorname{Bir}\left(\beth_{1}\right), \ldots, \operatorname{Bir}\left(\beth_{r}\right), \operatorname{Aut}\left(X_{1} \times \cdots \times X_{r}\right)\right\rangle
$$

the variety $X_{1} \times \cdots \times X_{r}$ is non-rational and for every map $\rho: X_{1} \times \cdots \times X_{r} \rightarrow Y$ whose general fibre is rationally connected there are a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}$ and a commutative diagram

where π is the natural projection and ξ and σ are birational maps.
Corollary 1.37. Suppose that there exist subgroups $\Gamma_{i} \subseteq \operatorname{Bir}\left(X_{i}\right)$ universally untwisting all maximal singularities and that $\operatorname{lct}\left(X_{i}\right) \geqslant 1$ for every $i=1, \ldots, r$. Then

$$
\operatorname{Bir}\left(X_{1} \times \cdots \times X_{r}\right)=\left\langle\prod_{i=1}^{r} \Gamma_{i}, \operatorname{Aut}\left(X_{1} \times \cdots \times X_{r}\right)\right\rangle
$$

Let X be a general well-formed quasismooth hypersurface in $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ of degree $\sum_{i=1}^{4} a_{i}$, that has at most terminal singularities, where $a_{1} \leqslant a_{2} \leqslant a_{3} \leqslant a_{4}$. Then

$$
-K_{X} \equiv \mathscr{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)}(1)
$$

and the group $\mathrm{Cl}(X)$ is generated by the divisor $-K_{X}$. We see that X is a Fano variety.

Remark 1.38. There are precisely 95 values of the quadruple $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ (see [33], [46]).

It follows from [47] that there are finitely many birational involutions $\tau_{1}, \ldots, \tau_{k} \in$ $\operatorname{Bir}(X)$ and that the following result holds.

Theorem 1.39. The group $\left\langle\tau_{1}, \ldots, \tau_{k}\right\rangle$ untwists universally maximal singularities.
Corollary 1.40. The variety X is universally birationally rigid.
The relations between $\tau_{1}, \ldots, \tau_{k}$ were found in [48]. By [14] there is an exact sequence of groups

$$
1 \longrightarrow\left\langle\tau_{1}, \ldots, \tau_{k}\right\rangle \longrightarrow \operatorname{Bir}(X) \longrightarrow \operatorname{Aut}(X) \longrightarrow 1
$$

and by [45] and [49] we have the following result.
Theorem 1.41. Suppose that $-K_{X}^{3} \leqslant 1$. Then $\operatorname{lct}(X)=1$.
In particular, there do exist varieties satisfying the hypotheses of Theorem 1.36 and Corollary 1.37 that are not birationally superrigid.

Example 1.42. Let X be a general hypersurface of degree 20 in $\mathbb{P}(1,1,4,5,10)$. Then there is an exact sequence of groups

$$
1 \longrightarrow \prod_{i=1}^{m}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \longrightarrow \operatorname{Bir}(\underbrace{X \times \cdots \times X}_{m \text { factors }}) \longrightarrow \mathrm{S}_{m} \longrightarrow 1
$$

where $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ is the infinite dihedral group.
The aim of this paper is to prove the following two results.
Theorem 1.43. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,2)$. Then $\operatorname{lct}(X) \geqslant 4 / 5$.
Theorem 1.44. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,3)$. Then $\operatorname{lct}(X) \geqslant 6 / 7$.
It follows from [49] that $\operatorname{lct}(X) \geqslant 7 / 9$ for $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,1,2)$, but

$$
\begin{gathered}
-K_{X}^{3}>1 \quad \Longleftrightarrow \quad\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in\{(1,1,1,1),(1,1,1,2),(1,1,1,3) \\
(1,1,2,2),(1,1,2,3)\}
\end{gathered}
$$

which, in particular, implies the following result (see Examples 1.10 and 1.9).
Corollary 1.45. General well-formed quasismooth hypersurfaces in $\mathbb{P}\left(1, a_{1}, \ldots, a_{4}\right)$ of degree $\sum_{i=1}^{4} a_{i}$ that have terminal singularities admit Kähler-Einstein metrics.

We prove Theorem 1.43 in $\S 3$ and Theorem 1.44 in $\S 4$.

§ 2. Preliminaries

Let V be a variety with at most quotient singularities.
Remark 2.1. Let H be a nef divisor on V and let B and $T, B \neq T$, be effective and irreducible divisors on V. Let $\operatorname{dim}(V)=3$ and let

$$
B \cdot T=\sum_{i=1}^{r} \varepsilon_{i} L_{i}+\Delta
$$

where L_{i} is an irreducible curve, ε_{i} is a non-negative integer and Δ is an effective cycle whose support does not contain the curves L_{1}, \ldots, L_{r}. Then

$$
\sum_{i=1}^{r} \varepsilon_{i} H \cdot L_{i} \leqslant B \cdot T \cdot H
$$

Let D be an effective \mathbb{Q}-divisor on V such that the \log pair (V, D) is not \log canonical.

Remark 2.2. Let B be an effective \mathbb{Q}-divisor on the variety V such that the singularities of the \log pair (V, B) are \log canonical. Then the singularities of the \log pair

$$
\left(V, \frac{1}{1-\alpha}(D-\alpha B)\right)
$$

are not \log canonical for all $\alpha \in \mathbb{Q}$ such that $0 \leqslant \alpha<1$.

Let P be a point in V such that the \log pair (V, D) is not \log canonical at P. Remark 2.3. Suppose that P is a singular point of V of type $\frac{1}{r}(1, a, r-a)$, where a and r are positive integers such that $(a, r)=1$ and $r>2 a$. Let $\alpha: U \rightarrow V$ be a weighted blow up of the point P with weights $(1, a, r-a)$. There exists a rational number μ such that

$$
\bar{D} \equiv \alpha^{*}(D)-\mu E
$$

where \bar{D} is the proper transform of the divisor D on the variety U and E is the α-exceptional divisor. Then $\mu>1 / r$ by [1], Lemma 8.12.

It is clear that $\operatorname{mult}_{P}(D)>1$ in the case when $P \notin \operatorname{Sing}(V)$.
Remark 2.4. Suppose that $P \notin \operatorname{Sing}(V)$ and $\operatorname{dim}(V)=2$. Let

$$
D=m C+\Omega
$$

for an irreducible curve C, a non-negative rational number m and an effective \mathbb{Q}-divisor Ω on the surface V whose support does not contain the curve C. Then

$$
C \cdot \Omega \geqslant \operatorname{mult}_{P}\left(\left.\Omega\right|_{C}\right)>1
$$

by [1], Theorem 7.5 in the case when $P \in C \backslash \operatorname{Sing}(C)$ and $m \leqslant 1$.
Suppose additionally that $\operatorname{dim}(V)=3$ and that P is a smooth point of the variety V. Let $\pi: U \rightarrow V$ be a blow up of the point P. Then

$$
\bar{D} \equiv \alpha^{*}(D)-\operatorname{mult}_{P}(D) E
$$

where E is the α-exceptional divisor and \bar{D} is the proper transform of D on U.
Lemma 2.5. Either $\operatorname{mult}_{P}(D)>2$, or there is a line $L \subset E \cong \mathbb{P}^{2}$ such that

$$
\operatorname{mult}_{L}(\bar{D})+\operatorname{mult}_{P}(D)>2
$$

Proof. Let H be a sufficiently general hyperplane section of the variety V passing through the point P and let \bar{H} be the proper transform of the divisor H on the variety U. Then

$$
\bar{H} \equiv \alpha^{*}(D)-E,
$$

and we can assume that \bar{H} is very ample. From

$$
K_{U}+\bar{D}+\left(\operatorname{mult}_{P}(D)-2\right) E \equiv \alpha^{*}\left(K_{V}+D\right)
$$

it follows that $\left(U, \bar{D}+\left(\operatorname{mult}_{P}(D)-2\right) E\right)$ is not \log canonical in a neighbourhood of E. The \log pair

$$
\left(U, \bar{D}+\left(\operatorname{mult}_{P}(D)-1\right) E\right)
$$

is not \log canonical in a neighbourhood of divisor E either. Finally, the log pair

$$
\left(U, \bar{D}+\left(\operatorname{mult}_{P}(D)-1\right) E+\bar{H}\right)
$$

is not \log canonical in a neighbourhood of E as well. We point out that $\operatorname{mult}_{P}(D)>1$.

Let $\beta=\left.\alpha\right|_{\bar{H}}: \bar{H} \rightarrow H$ and $\bar{E}=\left.E\right|_{\bar{H}}$. Then

$$
K_{\bar{H}}+\left.\bar{D}\right|_{\bar{H}}+\left(\operatorname{mult}_{P}(D)-1\right) \bar{E} \equiv \beta^{*}\left(K_{H}+\left.D\right|_{H}\right)
$$

and the support of the divisor $\left.\bar{D}\right|_{H}$ does not contain the curve \bar{E} because of the generality in the choice of H. Then

$$
\operatorname{mult}_{P}\left(\left.D\right|_{H}\right)=\operatorname{mult}_{P}(D)
$$

and the proper transform of the divisor $\left.D\right|_{H}$ on the surface \bar{H} is the divisor $\left.\bar{D}\right|_{H}$.
The \log pair $\left(H,\left.D\right|_{H}\right)$ is not \log canonical at the point P by [1], Theorem 7.5. Then

$$
\left(\bar{H},\left.\bar{D}\right|_{H}+\left(\operatorname{mult}_{P}(D)-1\right) \bar{E}\right)
$$

is not \log canonical in a neighbourhood of the curve \bar{E}.
Suppose that mult ${ }_{P}(D)<2$. Then it follows from the connectedness principle ([1], Theorem 7.5) that there is a unique point $Q_{\bar{H}} \in \bar{E}$ such that the log pair

$$
\left(\bar{H},\left.\bar{D}\right|_{H}+\left(\operatorname{mult}_{P}(D)-1\right) \bar{E}\right)
$$

is not \log terminal at $Q_{\bar{H}}$, but is log terminal outside $Q_{\bar{H}}$ in a neighbourhood of \bar{E}. By the generality of the surface H we may assume that \bar{H} is a general hyperplane section of U. Hence there is a curve $L \subset E$ such that $L \cap \bar{H}=Q_{\bar{H}}$, and the log pair

$$
\left(U, \bar{D}+\left(\operatorname{mult}_{P}(D)-1\right) E\right)
$$

is not \log terminal at a general point of the curve L, but is \log terminal outside L in a neighbourhood of $Q_{\bar{H}}$.

The curve L is a line in \mathbb{P}^{2} because the intersection $L \cap \bar{H}$ consists of a single point. Then

$$
\operatorname{mult}_{L}(\bar{D})+\left(\operatorname{mult}_{P}(D)-1\right) \operatorname{mult}_{L}(E) \geqslant 1
$$

which implies that $\operatorname{mult}_{L}(\bar{D})+\operatorname{mult}_{P}(D) \geqslant 2$.
Hence we see that either $\operatorname{mult}_{P}(D) \geqslant 2$ or there is a line $L \subset E$ such that

$$
\operatorname{mult}_{L}(\bar{D})+\operatorname{mult}_{P}(D) \geqslant 2
$$

but $(V, \lambda D)$ is not \log canonical at P for some positive rational number $\lambda<1$. Applying the last assertion to the \log pair $(V, \lambda D)$ we obtain the required strict inequality and complete the proof.

The assertion of Lemma 2.5 is an easy generalization of Corollary 3.5 in [36].

\S 3. Fano threefold of degree $3 / 2$

Let X be a general hypersurface in $\mathbb{P}(1,1,1,2,2)$ of degree 6 . Then X has three singular points O_{1}, O_{2}, O_{3}, which are singular points of type $\frac{1}{2}(1,1,1)$. Let D be an arbitrary divisor in the linear system $\left|-n K_{X}\right|$, where n is a positive integer. We set $\lambda=4 /(5 n)$.

Remark 3.1. To prove Theorem 1.43 it is sufficient to show that the log pair $(X, \lambda D)$ is \log canonical because D is an arbitrary divisor in $\left|-n K_{X}\right|$.

Suppose that the \log pair $(X, \lambda D)$ is not \log canonical. We shall show that this leads to a contradiction. We can assume that D is irreducible (see Remark 2.2).
Lemma 3.2. The inequality $n \neq 1$ holds.
Proof. Let $n=1$. Then the \log pair (X, D) is \log canonical at every singular point of the hypersurface X by [1], Lemma 8.12 and Proposition 8.14. We have $a_{1}=1$.

Suppose that the log pair (X, D) is not log canonical at some smooth point P of the hypersurface X. We shall show that this assumption leads to a contradiction.

Consider the set of pairs

$$
\mathscr{S}=\left\{(O, F) \mid O \in \mathbb{P}(1,1,1,2,2), F \in H^{0}\left(\mathbb{P}(1,1,1,2,2), \mathscr{O}_{\mathbb{P}(1,1,1,2,2)}(6)\right)\right\}
$$

with projections

$$
\pi: \mathscr{S} \rightarrow H^{0}\left(\mathbb{P}(1,1,1,2,2), \mathscr{O}_{\mathbb{P}(1,1,1,2,2)}(6)\right) \quad \text { and } \quad \zeta: \mathscr{S} \rightarrow \mathbb{P}(1,1,1,2,2)
$$

Let

$$
\mathscr{I}=\{(O, F) \in \mathscr{S} \mid F(O)=0, \text { the hypersurface } F=0 \text { is quasismooth }
$$ and is smooth at $O\}$.

Suppose that the point O is given by the equations $x=y=w=t=0$ in

$$
\mathbb{P}(1,1,1,2,2) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1$ and $\mathrm{wt}(t)=\mathrm{wt}(w)=2$. Then

$$
\begin{aligned}
F=z^{5} & q_{1}(x, y)+z^{4} q_{2}(x, y, t, w)+z^{3} q_{3}(x, y, t, w)+z^{2} q_{4}(x, y, t, w) \\
& +z q_{5}(x, y, t, w)+q_{6}(x, y, t, w)
\end{aligned}
$$

where $q_{i}(x, y, t, w)$ is a quasihomogeneous polynomial of degree i.
We say that O is a bad point of $F=0$ if $q_{2}(0,0, t, w)=0$ and the surface cut out on $F=0$ by the equation $q_{1}(x, y)=0$ has non-canonical singularities at O.

Let Q be a point in $\mathbb{P}(1,1,1,2,2)$ and let Ω be the fibre of π over the point Q. Then

$$
\operatorname{dim}(\Omega)=\operatorname{dim}\left(H^{0}\left(\mathbb{P}(1,1,1,2,2), \mathscr{O}_{\mathbb{P}}(1,1,1,2,2)(6)\right)\right)
$$

and we can put

$$
\mathscr{Y}=\{(O, F) \in \mathscr{I} \mid O \text { is a bad point of the hypersurface } F=0\} .
$$

The restriction $\left.\pi\right|_{\mathscr{Y}}: \mathscr{Y} \rightarrow \mathbb{P}(1,1,1,2,2)$ is surjective. Easy computations show that

$$
\operatorname{dim}(\Omega \cap \mathscr{Y}) \leqslant \operatorname{dim}(\Omega)-5
$$

which implies that the restriction

$$
\left.\zeta\right|_{\mathscr{Y}}: \mathscr{Y} \longrightarrow H^{0}\left(\mathbb{P}(1,1,1,2,2), \mathscr{O}_{\mathbb{P}(1,1,1,2,2)}(6)\right)
$$

is not surjective. Thus, a general hypersurface in $\mathbb{P}(1,1,1,2,2)$ of degree 6 has no bad points.

By assumption, the \log pair (X, D) is not \log canonical at the point P, which is a smooth point of the hypersurface X. In particular, the surface D is singular at the point P. However, we may assume that the surface D has canonical singularities at the point P.

Singularities of the surface D are not \log canonical at P by [1], Theorem 7.5, which is a contradiction because D has canonical singularities at the point P. The proof is complete.

It follows form [50] that there is a commutative diagram

where ξ_{1}, ψ and χ_{1} are projections, α_{1} is a blow up of O_{1} with weights $(1,1,1)$, β_{1} is a blow up with weights $(1,1,1)$ of the point dominating O_{2}, γ_{1} is a blow up with weights $(1,1,1)$ of the point dominating O_{3}, η is an elliptic fibration, ω_{1} is a double cover and σ_{1} is a birational morphism contracting 24 curves $\bar{C}_{1}^{1}, \ldots, \bar{C}_{24}^{1}$. Remark 3.3. The curves $\bar{C}_{1}^{1}, \ldots, \bar{C}_{24}^{1}$ are smooth, irreducible and rational.

We set $C_{i}^{1}=\alpha_{1}\left(\bar{C}_{i}^{1}\right)$ for every $i=1, \ldots, 24$. The rational map ξ_{1} is undefined only at the point O_{1} and contracts the curves $C_{1}^{1}, \ldots, C_{24}^{1}$. Note that ψ is a natural projection.
Remark 3.4. The fibre of the projection ψ over the point $\psi\left(C_{i}^{1}\right)$ consists of the smooth rational curve C_{i}^{1} and another irreducible smooth rational curve Z_{i}^{1} such that

$$
C_{i}^{1} \ni O_{1} \notin Z_{i}^{1}, \quad Z_{i}^{1} \ni O_{2} \notin C_{i}^{1}, \quad Z_{i}^{1} \ni O_{3} \notin C_{i}^{1}
$$

the curves C_{i}^{1} and Z_{i}^{1} intersect transversally at two points and

$$
-K_{X} \cdot Z_{i}^{1}=-2 K_{X} \cdot C_{i}^{1}=1
$$

In a similar way we can construct maps $\xi_{2}: X \rightarrow \mathbb{P}(1,1,1,2)$ and $\xi_{3}: X \rightarrow$ $\mathbb{P}(1,1,1,2)$, which are undefined only at the points O_{2} and O_{3}, respectively. These rational maps ξ_{2} and ξ_{3} contract precisely 48 curves $C_{1}^{2}, \ldots, C_{24}^{2}$ and $C_{1}^{3}, \ldots, C_{24}^{3}$, respectively.
Remark 3.5. Let Z be a curve on the variety X such that $-K_{X} \cdot Z=1 / 2$. Then

$$
Z \in\left\{C_{1}^{1}, \ldots, C_{24}^{1}, C_{1}^{2}, \ldots, C_{24}^{2}, C_{1}^{3}, \ldots, C_{24}^{3}\right\}
$$

In a similar way we see that there are smooth irreducible rational curves $Z_{1}^{2}, \ldots, Z_{24}^{2}$ and $Z_{1}^{3}, \ldots, Z_{24}^{3}$ that are components of the fibres of the rational map ψ over the points $\psi\left(C_{1}^{2}\right), \ldots, \psi\left(C_{24}^{2}\right)$ and $\psi\left(C_{1}^{3}\right), \ldots, \psi\left(C_{24}^{3}\right)$, respectively.

Remark 3.6. Let F be a reducible fibre of the map ψ. Then

$$
F \in\left\{C_{1}^{1} \cup Z_{1}^{1}, \ldots, C_{24}^{1} \cup Z_{24}^{1}, C_{1}^{2} \cup Z_{1}^{2}, \ldots, C_{24}^{2} \cup Z_{24}^{2}, C_{1}^{3} \cup Z_{1}^{3}, \ldots, C_{24}^{3} \cup Z_{24}^{3}\right\}
$$

Let P be a point in the variety V such that the \log pair $(X, \lambda D)$ is not \log canonical at P, and let F be a scheme fibre of the projection ψ that passes through the point P.

Remark 3.7. If $P \notin \operatorname{Sing}(X)$, then F is uniquely defined.
Note that F is reduced. Let S be a general surface in $\left|-K_{X}\right|$ such that $P \in S$.
Lemma 3.8. Suppose that $\operatorname{Sing}(X) \not \supset P \notin \operatorname{Sing}(F)$. Then F is reducible.
Proof. Suppose that F is irreducible. Let $\pi: \bar{X} \rightarrow X$ be a blow up of the point P. Then

$$
\bar{D} \equiv \pi^{*}(D)-\operatorname{mult}_{P}(D) E
$$

where E is the π-exceptional divisor and \bar{D} is the proper transform of the divisor D on \bar{X}.

We point out that $\operatorname{mult}_{P}(D)>n$. Suppose that $\operatorname{mult}_{P}(D)>3 n / 2$ and let

$$
\left.D\right|_{S}=m F+\Omega
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on S whose support does not contain the curve F. Then

$$
\frac{3 n}{2}=F \cdot(m F+\Omega)=\frac{3 m}{2}+F \cdot \Omega \geqslant \frac{3 m}{2}+\operatorname{mult}_{P}(\Omega)>\frac{3 m}{2}+\frac{3 n}{2}-m=\frac{3 n}{2}+\frac{m}{2}
$$

which is a contradiction. We see that $\operatorname{mult}_{P}(D) \leqslant 3 n / 2$.
It follows from Lemma 2.5 that there is a line $L \subset E \cong \mathbb{P}^{2}$ such that

$$
\operatorname{mult}_{L}(\bar{D})+\operatorname{mult}_{P}(D)>\frac{2}{\lambda}=\frac{5 n}{2} .
$$

It follows from the smoothness of the curve F at P that $\left|-K_{X}\right|$ does not contain surfaces singular at the point P. Hence we see that

$$
H^{0}\left(\mathscr{O}_{\bar{X}}\left(\pi^{*}\left(-2 K_{X}\right)-2 E\right)\right) \cong \mathbb{C}^{4}
$$

and it follows from the standard exact sequence

$$
\begin{aligned}
H^{0}\left(\mathscr{O}_{\bar{X}}\left(\pi^{*}\left(-2 K_{X}\right)-3 E\right)\right) & \longrightarrow H^{0}\left(\mathscr{O}_{\bar{X}}\left(\pi^{*}\left(-2 K_{X}\right)-2 E\right)\right) \\
\longrightarrow H^{0}\left(\mathscr{O}_{E}\left(-\left.2 E\right|_{E}\right)\right) & \cong \mathbb{C}^{5}
\end{aligned}
$$

that either there is a surface $T \in\left|-2 K_{X}\right|$ such that $\operatorname{mult}_{P}(T) \geqslant 3$ or there is a surface $R \in\left|-2 K_{X}\right|$ such that $\operatorname{mult}_{P}(R)=2$ and $L \subset \bar{R}$, where \bar{R} is the proper transform of the surface R on the variety \bar{X}. The parameter count (see the proof of Lemma 3.2) shows that the former case is impossible.

We see that there exists a (possibly reducible) surface $R \in\left|-2 K_{X}\right|$ such that $\operatorname{mult}_{P}(R)=2$ and $L \subset \bar{R}$, where \bar{R} is the proper transform of this surface R on the variety \bar{X}. Then $D \nsubseteq \operatorname{Supp}(R)$ because $\operatorname{mult}_{P}(D)>n$. We have

$$
\begin{aligned}
\operatorname{mult}_{P}(R \cdot D) & \geqslant \operatorname{mult}_{L}(\bar{D}) \operatorname{mult}_{L}(\bar{R})+\operatorname{mult}_{P}(D) \operatorname{mult}_{P}(R) \\
& \geqslant \operatorname{mult}_{L}(\bar{D})+2 \operatorname{mult}_{P}(D)>3 n
\end{aligned}
$$

Let $R \cdot D=\varepsilon F+\Delta$, where $\varepsilon \in \mathbb{Q}$ and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \not \subset \operatorname{Supp}(S)$ and $\operatorname{mult}_{P}(\Delta)>3 n-\varepsilon$. We have

$$
3 n=S \cdot R \cdot D=\frac{3 \varepsilon}{2}+S \cdot \Delta>\frac{3 \varepsilon}{2}-3 n-\varepsilon=3 n+\frac{\varepsilon}{2}
$$

which is a contradiction completing the proof.
Lemma 3.9. Suppose that $P \notin \operatorname{Sing}(X)$. Then F is reducible.
Proof. Suppose that F is irreducible. Then F is singular at the point P by Lemma 3.8, which implies that there is $T \in\left|-K_{X}\right|$ such that $\operatorname{mult}_{P}(T) \geqslant 2$. Then $T \neq D$ by Lemma 3.2. Now the generality of the hypersurface X implies that $\operatorname{mult}_{P}(F)=2$.

Now let $T \cdot D=\varepsilon F+\Delta$, where $\varepsilon \in \mathbb{Q}$ and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \not \subset \operatorname{Supp}(S)$ and $\operatorname{mult}_{P}(\Delta)>2 n-2 \varepsilon$. We have

$$
\frac{3 n}{2}=S \cdot T \cdot D=\frac{3 \varepsilon}{2}+S \cdot \Delta>\frac{3 \varepsilon}{2}+2 n-2 \varepsilon=2 n-\frac{\varepsilon}{2}
$$

which implies that $\varepsilon>n$, and this is impossible by Remark 2.1.
Lemma 3.10. P is a singular point of the hypersurface X.
Proof. Suppose that P is a smooth point of X. Then F is reducible by Lemma 3.9, and it follows from Remark 3.6 that

$$
F \in\left\{C_{1}^{1} \cup Z_{1}^{1}, \ldots, C_{24}^{1} \cup Z_{24}^{1}, C_{1}^{2} \cup Z_{1}^{2}, \ldots, C_{24}^{2} \cup Z_{24}^{2}, C_{1}^{3} \cup Z_{1}^{3}, \ldots, C_{24}^{3} \cup Z_{24}^{3}\right\}
$$

Without loss of generality we may assume that $F=C_{1}^{1} \cup Z_{1}^{1}$. Let

$$
\left.D\right|_{S}=m_{1} C_{1}^{1}+m_{2} Z_{1}^{1}+\Omega \equiv-\left.n K_{X}\right|_{S}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curves C_{1}^{1} and Z_{1}^{1}. Then the \log pair

$$
\left(S, \lambda m_{1} C_{1}^{1}+\lambda m_{2} Z_{1}^{1}+\lambda \Omega\right)
$$

is not \log canonical at the point P by [1], Theorem 7.5. We shall show that this contradicts the numerical equivalence $m_{1} C_{1}^{1}+m_{2} Z_{1}^{1}+\Omega \equiv-\left.n K_{X}\right|_{S}$.

The singularities of the \log pair $\left(S, C_{1}^{1}+Z_{1}^{1}\right)$ are \log canonical at the point P by the generality of the hypersurface X. Hence it follows from the numerical equivalence

$$
C_{1}^{1}+Z_{1}^{1} \equiv-\left.K_{X}\right|_{S}
$$

and Remark 2.2 that we may assume that either $m_{1}=0$ or $m_{2}=0$.
Let $m_{1}=0$. Then it follows from

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=2 m_{2}+C_{1}^{1} \cdot \Omega \geqslant 2 m_{2}
$$

that $m_{2} \leqslant n / 4$. We have $P \notin C_{1}^{1}$ because otherwise

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=2 m_{2}+C_{1}^{1} \cdot \Omega>2 m_{2}+\frac{1}{\lambda} \geqslant \frac{5 n}{4}
$$

by Remark 2.4. We see that $P \in Z_{1}^{1}$. Then

$$
n=Z_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=-m_{2}+Z_{1}^{1} \cdot \Omega>-m_{2}+\frac{1}{\lambda} \geqslant-m_{2}+\frac{5 n}{4}
$$

by Remark 2.4, so that $m_{2}>n / 4$, although we have $m_{2} \leqslant n / 4$, which is a contradiction.

Hence we see that $m_{2}=0$. Arguing as above we obtain

$$
n=Z_{1}^{1} \cdot\left(m_{1} C_{1}^{1}+\Omega\right)=2 m_{1}+Z_{1}^{1} \cdot \Omega \geqslant 2 m_{1}
$$

which implies that $m_{1} \leqslant n / 2$. Then $P \notin Z_{1}^{1}$ because otherwise

$$
n=Z_{1}^{1} \cdot\left(m_{1} C_{1}^{1}+\Omega\right)=2 m_{1}+Z_{1}^{1} \cdot \Omega>2 m_{1}+\frac{1}{\lambda} \geqslant \frac{5 n}{4}
$$

by Remark 2.4. We see that $P \in C_{1}^{1}$. Then

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{1} C_{1}^{1}+\Omega\right)=-\frac{3 m_{1}}{2}+C_{1}^{1} \cdot \Omega>-\frac{3 m_{1}}{2}+\frac{1}{\lambda} \geqslant-\frac{3 m_{1}}{2}+\frac{5 n}{4}
$$

by Remark 2.4. We see that $m_{1}>n / 2$, but $m_{1} \leqslant n / 2$, which is a contradiction completing the proof.

Without loss of generality we may assume that $P=O_{1}$. Then $-K_{U_{1}}^{3}=1$ and

$$
\bar{D} \equiv \alpha_{1}^{*}(D)-\mu E_{1},
$$

where E_{1} is the α_{1}-exceptional divisor, \bar{D} is the proper transform of the divisor D on the variety U_{1}, and $\mu \in \mathbb{Q}$. Then $\mu>n /(2 \lambda)$ by Remark 2.3. We have

$$
K_{U_{1}}+\lambda \bar{D}+\left(\lambda \mu-\frac{1}{2}\right) E_{1} \equiv \alpha_{1}^{*}\left(K_{X}+\lambda D\right)
$$

Lemma 3.11. $\mu \leqslant 3 n / 4$.
Proof. The point O_{1} can be given by $x=y=z=t=0$ and X can be given by

$$
w^{2} t+w f_{4}(x, y, z, t)+f_{6}(x, y, z, t)=0 \subset \mathbb{P}(1,1,1,2,2) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1, \mathrm{wt}(t)=\mathrm{wt}(w)=2$ and f_{4}, f_{6} are quasihomogeneous polynomials of degrees 4 and 6 , respectively. In these coordinates the curves $C_{1}^{1}, \ldots, C_{24}^{1}$ are cut out on the hypersurface X by the equations

$$
t=f_{4}(x, y, z, t)=f_{6}(x, y, z, t)=0
$$

Let R be a surface on X that is cut out by the equation $t=0$ and let \bar{R} be the proper transform of the surface R on the variety U_{1}. The surface R is irreducible and

$$
\bar{R} \equiv \alpha_{1}^{*}\left(-2 K_{X}\right)-2 E
$$

but $\left(X, \frac{1}{2} R\right)$ is \log canonical at the point O_{1} by [1], Lemma 8.12 and Proposition 8.14 because we may assume that the hypersurface X is sufficiently general.

The \log pair $(X, \lambda D)$, where $\lambda=4 / 5$, is not \log canonical at the point P. Hence $R \neq D$ and

$$
0 \leqslant-K_{U_{1}} \cdot \bar{R} \cdot \bar{D}=3 n-4 \mu
$$

because $-K_{U_{1}}$ is nef. Thus, $\mu \leqslant 3 n / 4$ and the proof is complete.

In particular, there is a point $Q \in E$ such that the log pair

$$
\left(U_{1}, \lambda \bar{D}+\left(\lambda \mu-\frac{1}{2}\right) E_{1}\right)
$$

is not \log canonical at Q. Let \bar{S} be a general surface in $\left|-K_{U_{1}}\right|$ such that $Q \in \bar{S}$.
Remark 3.12. The proper transform of the surface E_{1} on the variety W_{1} is a section of the elliptic fibration η. In particular, the surface \bar{S} is smooth at Q.

Let \bar{Z}_{i}^{k} be the proper transform of Z_{i}^{k} on the threefold U_{1}, where $k=1,2,3$ and $i=1, \ldots, 24$.

Lemma 3.13. The point Q is not contained in $\bigcup_{i=1}^{24} \bar{C}_{i}^{1}$.
Proof. Suppose that $Q \in \bigcup_{i=1}^{24} \bar{C}_{i}^{1}$. We can assume that $Q \in \bar{C}_{1}^{1}$. Let

$$
\left.\bar{D}\right|_{\bar{S}}+\left.\left(\mu-\frac{n}{2}\right) E\right|_{\bar{S}}=m_{1} \bar{C}_{1}^{1}+m_{2} \bar{Z}_{1}^{1}+\Omega \equiv-\left.n K_{U_{1}}\right|_{\bar{S}}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface \bar{S} whose support does not contain the curves \bar{C}_{1}^{1} and \bar{Z}_{1}^{1}. The \log pair

$$
\left(\bar{S}, \frac{m_{1}}{n} \bar{C}_{1}^{1}+\frac{m_{2}}{n} \bar{Z}_{1}^{1}+\frac{1}{n} \Omega\right)
$$

is not \log canonical at the point Q by [1], Theorem 7.5. We claim that this is impossible.

The log pair $\left(\bar{S}, \bar{C}_{1}^{1}+\bar{Z}_{1}^{1}\right)$ is log canonical at the point Q. Thus, it follows from the equivalence

$$
\bar{C}_{1}^{1}+\bar{Z}_{1}^{1} \equiv-\left.K_{U_{1}}\right|_{\bar{S}}
$$

and Remark 2.2 that we may assume that either $m_{1}=0$ or $m_{2}=0$.
It follows from Remark 2.4 that

$$
0=\bar{C}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+m_{2} \bar{Z}_{1}^{1}+\Omega\right)=2 m_{2}+\bar{C}_{1}^{1} \cdot \Omega>2 m_{2}+n \geqslant n
$$

in the case $m_{1}=0$. Hence we may assume that $m_{2}=0$. Then

$$
n=\bar{Z}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+\Omega\right)=2 m_{1}+\bar{Z}_{1}^{1} \cdot \Omega \geqslant 2 m_{1}
$$

which implies that $m_{1} \leqslant n / 2$. We see that

$$
0=\bar{C}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+\Omega\right)=-2 m_{1}+\bar{C}_{1}^{1} \cdot \Omega>-2 m_{1}+n \geqslant-2 m_{1}+n
$$

by Remark 2.4 , so that $m_{1}>n / 2$, although we have $m_{1} \leqslant n / 2$. This is a contradiction completing the proof.

Let \bar{C}_{i}^{k} be the proper transform of C_{i}^{k} on the threefold U_{1}, where $k=2,3$ and $i=1, \ldots, 24$.
Lemma 3.14. The point Q is not contained in $\bigcup_{i=1}^{24} \bar{Z}_{i}^{2}$ or $\bigcup_{i=1}^{24} \bar{Z}_{i}^{3}$.

Proof. Suppose that $Q \in \bigcup_{i=1}^{24} \bar{Z}_{i}^{2}$ or $Q \in \bigcup_{i=1}^{24} \bar{Z}_{i}^{3}$. We shall show that this leads to a contradiction. We may assume without loss of generality that $Q \in \bar{Z}_{1}^{2}$. Then $Q \notin \bar{C}_{1}^{2}$. Let

$$
\left.\bar{D}\right|_{\bar{S}}+\left.\left(\mu-\frac{n}{2}\right) E\right|_{\bar{S}}=m_{1} \bar{C}_{1}^{2}+m_{2} \bar{Z}_{1}^{2}+\Omega \equiv-\left.n K_{U_{1}}\right|_{\bar{S}}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface \bar{S} whose support does not contain the curves \bar{C}_{1}^{2} and \bar{Z}_{1}^{2}.

It follows from [1], Theorem 7.5 that the log pair

$$
\left(\bar{S}, \frac{m_{1}}{n} \bar{C}_{1}^{2}+\frac{m_{2}}{n} \bar{Z}_{1}^{2}+\frac{1}{n} \Omega\right)
$$

is not \log canonical at the point Q. We claim that this is impossible.
The log pair $\left(\bar{S}, \bar{C}_{1}^{2}+\bar{Z}_{1}^{2}\right)$ is \log canonical at Q, but

$$
\bar{C}_{1}^{2}+\bar{Z}_{1}^{2} \equiv-\left.K_{U_{1}}\right|_{\bar{S}}
$$

which implies that we can assume that either $m_{1}=0$ or $m_{2}=0$ (see Remark 2.2).
Let $m_{2}=0$. Then it follows from Remark 2.4 that

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot\left(m_{1} \bar{C}_{1}^{2}+\Omega\right)=2 m_{1}+\bar{Z}_{1}^{2} \cdot \Omega>2 m_{1}+n \geqslant \frac{5 n}{4}
$$

which is a contradiction. Hence we may assume that $m_{1}=0$. Then

$$
\frac{n}{2}=\bar{C}_{1}^{2} \cdot\left(m_{2} \bar{Z}_{1}^{2}+\Omega\right)=2 m_{2}+\bar{C}_{1}^{2} \cdot \Omega \geqslant 2 m_{2}
$$

which implies that $m_{2} \leqslant n / 4$. We see that

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot\left(m_{2} \bar{Z}_{1}^{2}+\Omega\right)=-\frac{3 m_{2}}{2}+\bar{Z}_{1}^{2} \cdot \Omega>-\frac{3 m_{2}}{2}+n
$$

by Remark 2.4 , so that $m_{2}>n / 3$, although we have $m_{2} \leqslant n / 4$. This is a contradiction completing the proof.

Let \bar{F} be a scheme fibre of $\psi \circ \alpha_{1}$ passing through the point Q. Then \bar{F} is irreducible and the fibre \bar{F} is smooth at the point Q. Let

$$
\left.\bar{D}\right|_{\bar{S}}+\left.\left(\mu-\frac{n}{2}\right) E\right|_{\bar{S}}=m \bar{F}+\Omega
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on \bar{S} whose support does not contain the curve \bar{F}. Then

$$
n=\bar{F} \cdot(m \bar{F}+\Omega)=m+\bar{F} \cdot \Omega \geqslant m+\operatorname{mult}_{Q}(\Omega)>m+n-m=n
$$

which is a contradiction. The proof of Theorem 1.43 is complete.

§ 4. Fano threefold of degree $7 / 6$

Let X be a general hypersurface in $\mathbb{P}(1,1,1,2,3)$ of degree 7 . Then X has two singular points O_{1} and O_{2}, which are singular points of type $\frac{1}{2}(1,1,1)$ and $\frac{1}{3}(1,1,2)$, respectively. There is a commutative diagram

where π, ψ and ζ are projections, α_{1} is a blow up of O_{1} with weights $(1,1,1)$, β_{1} is a blow up with weights $(1,1,2)$ of the singular point dominating O_{2}, γ_{1} is a blow up with weights $(1,1,1)$ of the singular point dominating O_{2}, η is an elliptic fibration, ω_{1} is a double cover and σ_{1} is a birational morphism contracting 35 curves $\bar{C}_{1}^{1}, \ldots, \bar{C}_{35}^{1}$.
Remark 4.1. The curves $\bar{C}_{1}^{1}, \ldots, \bar{C}_{35}^{1}$ are smooth, irreducible and rational.
It follows from [50] that there is a commutative diagram

where ξ, ψ and χ are projections, α_{2} is a blow up of O_{2} with weights $(1,1,2), \beta_{2}$ is a blow up with weights $(1,1,1)$ of the singular point of U_{2} dominating the point O_{2}, γ_{2} is the blow up with weights $(1,1,1)$ of the point dominating O_{1}, η is an elliptic fibration, ω_{2} is a double cover and σ_{2} is a birational morphism contracting 14 curves $\bar{C}_{1}^{2}, \ldots, \bar{C}_{14}^{2}$.
Remark 4.2. The curves $\bar{C}_{1}^{2}, \ldots, \bar{C}_{14}^{2}$ are smooth, irreducible and rational.
Let $C_{i}^{1}=\alpha_{1}\left(\bar{C}_{i}^{1}\right)$ for all $i=1, \ldots, 35$.
Remark 4.3. The fibre of the projection ψ over the point $\psi\left(C_{i}^{1}\right)$ consists of the smooth rational curve C_{i}^{1} and a smooth irreducible rational curve Z_{i}^{1} such that

$$
C_{i}^{1} \ni O_{1} \notin Z_{i}^{1} \quad \text { and } \quad Z_{i}^{1} \ni O_{2} \notin C_{i}^{1}
$$

where C_{i}^{1} and Z_{i}^{1} intersect transversally at two points, but $-K_{X} \cdot Z_{i}^{1}=2 / 3$ and $-K_{X} \cdot C_{i}^{1}=1 / 2$.

We set $C_{i}^{2}=\alpha_{2}\left(\bar{C}_{i}^{2}\right)$ for all $i=1, \ldots, 14$.
Remark 4.4. The fibre of the projection ψ over the point $\psi\left(C_{i}^{2}\right)$ consists of the smooth rational curve C_{i}^{2} and a smooth irreducible rational curve Z_{i}^{2} such that

$$
C_{i}^{2} \ni O_{2} \in Z_{i}^{1} \quad \text { and } \quad Z_{i}^{2} \ni O_{1} \notin C_{i}^{2}
$$

where C_{i}^{1} and Z_{i}^{1} intersect at O_{2}, the curves C_{i}^{1} and Z_{i}^{1} intersect transversally at a smooth point of X, and we have $-K_{X} \cdot Z_{i}^{1}=5 / 6$ and $-K_{X} \cdot C_{i}^{1}=1 / 3$.

Let D be a divisor in $\left|-n K_{X}\right|$, where $n \in \mathbb{N}$. We set $\mu=6 /(7 n)$ and $\lambda=1 / n$.
Remark 4.5. To prove Theorem 1.44 it is sufficient to show that the \log pair $(X, \mu D)$ has at most \log canonical singularities because D is an arbitrary divisor in $\left|-n K_{X}\right|$.

To prove Theorem 1.44 we describe reducible fibres of ψ first.
Lemma 4.6. Let F be a reducible fibre of the rational map ψ. Then

$$
F \in\left\{C_{1}^{1} \cup Z_{1}^{1}, \ldots, C_{35}^{1} \cup Z_{35}^{1}, C_{1}^{2} \cup Z_{1}^{2}, \ldots, C_{14}^{2} \cup Z_{14}^{2}\right\}
$$

Proof. Let C be an irreducible curve on the hypersurface X. Then

$$
C \in\left\{C_{1}^{1}, \ldots, C_{35}^{1}\right\}
$$

if $-K_{X} \cdot C=1 / 2$ because the proper transform of the curve C on the variety U_{1} has trivial intersection with $-K_{U_{1}}$ in the case when $-K_{X} \cdot C=1 / 2$.

Note that the equality $-K_{X} \cdot C=1 / 6$ is impossible because otherwise the proper transform of the curve C on the variety U_{1} has negative intersection with $-K_{U_{1}}$, which is nef.

Suppose that $-K_{X} \cdot C=1 / 3$. Let \bar{C} be the proper transform of the curve C on the variety U_{2}. Then

$$
0 \leqslant-K_{U_{2}} \cdot \bar{C}=\left(\alpha_{2}^{*}\left(-K_{X}\right)-\frac{1}{3} E\right) \cdot \bar{C}=\frac{1}{3}-\frac{1}{3} E_{2} \cdot \bar{C}
$$

where E_{2} is the exceptional divisor of α_{2}. On the other hand, $2 E_{2} \cdot \bar{C}$ is a positive integer, so that $E_{2} \cdot \bar{C}=1 / 2$ or $E_{2} \cdot \bar{C}=1$. The equality $E_{2} \cdot \bar{C}=1 / 2$ implies that

$$
-K_{U_{2}} \cdot \bar{C}=\left(\alpha_{2}^{*}\left(-K_{X}\right)-\frac{1}{3} E\right) \cdot \bar{C}=\frac{1}{3}-\frac{1}{3} E_{2} \cdot \bar{C}=\frac{1}{6},
$$

which is a contradiction because $-2 K_{U_{2}}$ is Cartier. Hence $E_{2} \cdot \bar{C}=1$, and therefore $-K_{U_{2}} \cdot \bar{C}=0$. Thus, we see that

$$
C \in\left\{C_{1}^{2}, \ldots, C_{14}^{2}\right\}
$$

because the irreducible rational curves $\bar{C}_{1}^{2}, \ldots, \bar{C}_{14}^{2}$ are the only curves on U_{1} that have trivial intersection with $-K_{U_{2}}$.

Note that $-K_{X} \cdot F=7 / 6$. Let C be an irreducible component of F such that $-K_{X} \cdot C$ is minimal. Then either $-K_{X} \cdot C=1 / 2$ or $-K_{X} \cdot C=1 / 3$ because $-6 K_{X} \cdot C \in \mathbb{N}$. Then we must have

$$
C \in\left\{C_{1}^{1}, \ldots, C_{35}^{1}, C_{1}^{2}, \ldots, C_{14}^{2}\right\}
$$

which immediately yields the required result.

Suppose that the \log pair $(X, \mu D)$ is not \log canonical. We shall show that this leads to a contradiction. We may assume that D is irreducible (see Remark 2.2).

Lemma 4.7. $n \neq 1$.
Proof. Arguing as in the proof of Lemma 3.2 we obtain the required result.
Let P be a point of the variety V such that the \log pair $(X, \mu D)$ is not \log canonical at P, and let F be a scheme fibre of the projection ψ that passes through the point P.

Remark 4.8. If $P \notin \operatorname{Sing}(X)$, then the fibre F is uniquely defined.
The fibre F is reduced. Let S be a general surface in $\left|-K_{X}\right|$ such that $P \in S$.
Lemma 4.9. Suppose that $\operatorname{Sing}(X) \not \supset P \notin \operatorname{Sing}(F)$. Then F is reducible.
Proof. Suppose that F is irreducible. Let $\pi: \bar{X} \rightarrow X$ be a blow up of the point P. Then

$$
\bar{D} \equiv \pi^{*}(D)-\operatorname{mult}_{P}(D) E
$$

where E is the π-exceptional divisor and \bar{D} is the proper transform of D on the threefold \bar{X}.

Note that $\operatorname{mult}_{P}(D)>1 / \mu=7 n / 6$. Let

$$
\left.D\right|_{S}=m F+\Omega
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curve F. Then
$\frac{7 n}{6}=F \cdot(m F+\Omega)=\frac{7 m}{6}+F \cdot \Omega \geqslant \frac{7 m}{6}+\operatorname{mult}_{P}(\Omega)>\frac{7 m}{6}+\frac{7 n}{6}-m=\frac{7 n}{6}+\frac{m}{6}$,
which is a contradiction completing the proof.
The \log pair $(X, \lambda D)$ is also not \log canonical at the point P. In the remaining part of this section we show that the last assumption also leads to a contradiction.

Lemma 4.10. Suppose that $P \notin \operatorname{Sing}(X)$. Then F is reducible.
Proof. Suppose that the fibre F is reducible. Then $\operatorname{mult}_{P}(F) \neq 1$ by Lemma 4.9 and it follows from the generality of the hypersurface X that mult ${ }_{P}(F)=2$.

One can easily see that there exists a surface $T \in\left|-K_{X}\right|$ such that mult $P_{P}(T) \geqslant 2$. Let

$$
T \cdot D=\varepsilon F+\Delta
$$

where ε is a non-negative rational number and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \nsubseteq \operatorname{Supp}(S)$ and $\operatorname{mult}_{P}(\Delta)>2 n-2 \varepsilon$. We have

$$
\frac{7 n}{6}=S \cdot T \cdot D=\frac{7 \varepsilon}{6}+S \cdot \Delta>\frac{7 \varepsilon}{6}+2 n-2 \varepsilon
$$

which implies that $\varepsilon>n$. However, this is impossible by Remark 2.1 and the proof is complete.

Lemma 4.11. P is a singular point of the hypersurface X.

Proof. Let P be a smooth point of X. Then F is reducible by Lemma 4.10, and it follows from Lemma 4.6 that

$$
F \in\left\{C_{1}^{1} \cup Z_{1}^{1}, \ldots, C_{35}^{1} \cup Z_{35}^{1}, C_{1}^{2} \cup Z_{1}^{2}, \ldots, C_{14}^{2} \cup Z_{14}^{2}\right\}
$$

Without loss of generality we may assume that either $F=C_{1}^{1} \cup Z_{1}^{1}$ or $F=C_{1}^{2} \cup Z_{1}^{2}$.
Let $F=C_{1}^{1} \cup Z_{1}^{1}$. Then

$$
C_{1}^{1} \cdot C_{1}^{1}=-\frac{3}{2}, \quad C_{1}^{1} \cdot Z_{1}^{1}=2, \quad Z_{1}^{1} \cdot Z_{1}^{1}=-\frac{4}{3}
$$

on the surface S. Let

$$
\left.D\right|_{S}=m_{1} C_{1}^{1}+m_{2} Z_{1}^{1}+\Omega \equiv-\left.n K_{X}\right|_{S}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curves C_{1}^{1} and Z_{1}^{1}. Then the \log pair

$$
\left(S, \lambda m_{1} C_{1}^{1}+\lambda m_{2} Z_{1}^{1}+\lambda \Omega\right)
$$

is not \log canonical at the point P by [1], Theorem 7.5. We claim that this contradicts the numerical effectiveness of

$$
m_{1} C_{1}^{1}+m_{2} Z_{1}^{1}+\Omega \equiv-\left.n K_{X}\right|_{S}
$$

bearing in mind that $C_{1}^{1}+Z_{1}^{1} \equiv-\left.K_{X}\right|_{S}$ on the surface S. The \log pair $\left(S, C_{1}^{1}+Z_{1}^{1}\right)$ is \log canonical at the point P in view of the generality of the choice of X. Thus, we may assume that $m_{1}=0$ or $m_{2}=0$ by Remark 2.2 .

Suppose that $m_{1}=0$. Then

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=2 m_{2}+C_{1}^{1} \cdot \Omega \geqslant 2 m_{2}
$$

which implies that $m_{2} \leqslant n / 4$. We have $P \notin C_{1}^{1}$ because otherwise

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=2 m_{2}+C_{1}^{1} \cdot \Omega>2 m_{2}+\frac{1}{\lambda} \geqslant n
$$

by Remark 2.4. Hence we see that $P \in Z_{1}^{1}$. Then

$$
\frac{2 n}{3}=Z_{1}^{1} \cdot\left(m_{2} Z_{1}^{1}+\Omega\right)=-\frac{4 m_{2}}{3}+Z_{1}^{1} \cdot \Omega>-\frac{4 m_{2}}{3}+\frac{1}{\lambda} \geqslant-\frac{4 m_{2}}{3}+n
$$

by Remark 2.4, so that $m_{2}>n / 4$. However, we have $m_{2} \leqslant n / 4$, which is a contradiction.

Suppose that $m_{2}=0$. Arguing as in the previous case we see that it follows from Remark 2.4 and the equality

$$
\frac{2 n}{3}=Z_{1}^{1} \cdot\left(m_{1} C_{1}^{1}+\Omega\right)=2 m_{1}+Z_{1}^{1} \cdot \Omega
$$

that $m_{1} \leqslant n / 3$ and $P \notin Z_{1}^{1}$. Then $P \in C_{1}^{1}$ and

$$
\frac{n}{2}=C_{1}^{1} \cdot\left(m_{1} C_{1}^{1}+\Omega\right)=-\frac{3 m_{1}}{2}+C_{1}^{1} \cdot \Omega>-\frac{3 m_{1}}{2}+\frac{1}{\lambda} \geqslant-\frac{3 m_{1}}{2+n}
$$

by Remark 2.4. We see that $m_{1}>n / 3$, although we have $m_{1} \leqslant n / 3$, which is a contradiction.

Thus, $F=C_{1}^{2} \cup Z_{1}^{2}$. Then

$$
C_{1}^{2} \cdot C_{1}^{2}=-\frac{4}{3}, \quad C_{1}^{2} \cdot Z_{1}^{2}=\frac{5}{3}, \quad Z_{1}^{2} \cdot Z_{1}^{2}=-\frac{5}{6}
$$

on the surface S. As in the previous case, let

$$
\left.D\right|_{S}=n_{1} C_{1}^{2}+n_{2} Z_{1}^{2}+\Delta \equiv-\left.n K_{X}\right|_{S}
$$

where n_{1} and n_{2} are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor on S whose support does not contain the curves C_{1}^{2} and Z_{1}^{2}. Then the singularities of the log pair

$$
\left(S, \lambda n_{1} C_{1}^{2}+\lambda n_{2} Z_{1}^{2}+\lambda \Delta\right)
$$

are not \log canonical at the point P by [1], Theorem 7.5. We claim that this contradicts the numerical effectiveness of

$$
n_{1} C_{1}^{2}+n_{2} Z_{1}^{2}+\Delta \equiv n\left(C_{1}^{2}+Z_{1}^{2}\right) \equiv-\left.n K_{X}\right|_{S}
$$

on S. We may assume that $n_{1} n_{2}=0$ by Remark 2.2 because the \log pair $\left(S, C_{1}^{2}+Z_{1}^{2}\right)$ is \log canonical at the point P.

Suppose that $n_{1}=0$. Then

$$
\frac{n}{3}=C_{1}^{2} \cdot\left(n_{2} Z_{1}^{2}+\Delta\right)=\frac{5 n_{2}}{3}+C_{1}^{2} \cdot \Delta \geqslant \frac{5 n_{2}}{3}
$$

which implies that $n_{2} \leqslant n / 5$. We have $P \notin C_{1}^{2}$ because otherwise

$$
\frac{n}{3}=C_{1}^{2} \cdot\left(n_{2} Z_{1}^{2}+\Delta\right)=\frac{5 n_{2}}{3}+C_{1}^{2} \cdot \Delta>\frac{5 n_{2}}{3}+\frac{1}{\lambda} \geqslant n
$$

by Remark 2.4. Hence we see that $P \in Z_{1}^{2}$. Then

$$
\frac{5 n}{6}=Z_{1}^{2} \cdot\left(n_{2} Z_{1}^{2}+\Delta\right)=-\frac{5 n_{2}}{6}+Z_{1}^{2} \cdot \Delta>-\frac{5 n_{2}}{6}+\frac{1}{\lambda} \geqslant-\frac{5 n_{2}}{6}+n
$$

by Remark 2.4. Thus, $n_{2}>n / 5$. However, we have $n_{2} \leqslant n / 5$, which is a contradiction.

Let $n_{2}=0$. Arguing as in the previous case, we see that it follows from Remark 2.4 and the equality

$$
\frac{5 n}{6}=Z_{1}^{1} \cdot\left(n_{1} C_{1}^{2}+\Delta\right)=\frac{5 n_{1}}{3}+Z_{1}^{2} \cdot \Delta
$$

that $n_{1} \leqslant n / 2$ and $P \notin Z_{1}^{2}$. Then $P \in C_{1}^{2}$ and

$$
\frac{n}{3}=C_{1}^{2} \cdot\left(n_{1} C_{1}^{2}+\Delta\right)=-\frac{4 n_{1}}{3}+C_{1}^{2} \cdot \Delta>-\frac{4 n_{1}}{3}+\frac{1}{\lambda} \geqslant-\frac{4 n_{1}}{3}+n
$$

by Remark 2.4. We see that $n_{1}>n / 2$. However, we have $n_{1} \leqslant n / 2$, which is a contradiction completing the proof.

Hence we see that either $P=O_{1}$ or $P=O_{2}$. Suppose that $P=O_{1}$. Then

$$
D_{1} \equiv \alpha_{1}^{*}(D)-\mu_{1} E_{1}
$$

where E_{1} is the α_{1}-exceptional divisor, D_{1} is the proper transform of the divisor D on the variety U_{1}, and μ_{1} is a rational number. Then $\mu_{1}>n / 2$ by Remark 2.3, and we have

$$
K_{U_{1}}+\lambda D_{1}+\left(\lambda \mu_{1}-\frac{1}{2}\right) E_{1} \equiv \alpha_{1}^{*}\left(K_{X}+\lambda D\right)
$$

Lemma 4.12. $\mu_{1} \leqslant 7 n / 10$.
Proof. The point O_{1} can be given by $x=y=z=w=0$, and X can be given by the equation

$$
t^{2} w+t f_{5}(x, y, z, w)+f_{7}(x, y, z, w)=0 \subset \mathbb{P}(1,1,1,2,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\operatorname{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1, \mathrm{wt}(t)=2, \mathrm{wt}(w)=2$, and f_{5}, f_{7} are quasihomogeneous polynomials of degrees 5 and 7 , respectively. In these coordinates the curves $C_{1}^{1}, \ldots, C_{35}^{1}$ are cut out on the hypersurface X by the equations $w=f_{5}(x, y, z, w)=f_{7}(x, y, z, w)=0$.

Let R be a surface on X cut out by the equation $w=0$, and let \bar{R} be the proper transform of R on the variety U_{1}. Then R is irreducible and

$$
\bar{R} \equiv \alpha_{1}^{*}\left(-3 K_{X}\right)-\frac{5}{2} E_{1},
$$

but $\left(X, \frac{1}{3} R\right)$ is \log canonical at O_{1} by [1], Lemma 8.12 and Proposition 8.14 because we may assume that X is sufficiently general.

The log pair $(X, \lambda D)$, where $\lambda=1 / n$, is not \log canonical at the point P. Then $R \neq D$ and

$$
0 \leqslant-K_{U_{1}} \cdot \bar{R} \cdot D_{1}=\frac{7 n}{2}-5 \mu_{1}
$$

because $-K_{U_{1}}$ is nef. Hence $\mu_{1} \leqslant 7 n / 10$.
In particular, there is a point $Q_{1} \in E_{1}$ such that the \log pair

$$
\left(U_{1}, \lambda D_{1}+\left(\lambda \mu_{1}-\frac{1}{2}\right) E_{1}\right)
$$

is not \log canonical at Q_{1}. Let S_{1} be a general surface in $\left|-K_{U_{1}}\right|$ such that $Q_{1} \in \bar{S}$.
Remark 4.13. The proper transform of the surface E_{1} on the variety W_{1} is a section of the elliptic fibration η. In particular, the surface S_{1} is smooth at the point Q_{1}.

Let \bar{Z}_{i}^{1} be the proper transform of the curve Z_{i}^{1} on the variety U_{1}, where $i=1, \ldots, 35$.

Lemma 4.14. The point Q_{1} is not contained in $\bigcup_{i=1}^{35} \bar{C}_{i}^{1}$.

Proof. Suppose that $Q_{1} \in \bigcup_{i=1}^{35} \bar{C}_{i}^{1}$. We may assume that $Q_{1} \in \bar{C}_{1}^{1}$. Let

$$
\left.D_{1}\right|_{S_{1}}+\left.\left(\mu_{1}-\frac{n}{2}\right) E_{1}\right|_{S_{1}}=m_{1} \bar{C}_{1}^{1}+m_{2} \bar{Z}_{1}^{1}+\Omega \equiv-\left.n K_{U_{1}}\right|_{S_{1}}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curves \bar{C}_{1}^{1} and \bar{Z}_{1}^{1}. Then the log pair

$$
\left(S_{1}, \lambda m_{1} \bar{C}_{1}^{1}+\lambda m_{2} \bar{Z}_{1}^{1}+\lambda \Omega\right)
$$

is not \log canonical at Q_{1} by [1], Theorem 7.5. We claim that this is impossible.
The log pair $\left(S_{1}, \bar{C}_{1}^{1}+\bar{Z}_{1}^{1}\right)$ is \log canonical at the point Q_{1}. It follows from Remark 2.2 that we may assume that either $m_{1}=0$ or $m_{2}=0$ because $\bar{C}_{1}^{1}+\bar{Z}_{1}^{1} \equiv-\left.K_{U_{1}}\right|_{S_{1}}$.

It follows from Remark 2.4 that

$$
0=\bar{C}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+m_{2} \bar{Z}_{1}^{1}+\Omega\right)=2 m_{2}+\bar{C}_{1}^{1} \cdot \Omega>2 m_{2}+n
$$

if $m_{1}=0$. Hence we may assume that $m_{2}=0$. Then

$$
\frac{2 n}{3}=\bar{Z}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+\Omega\right)=2 m_{1}+\bar{Z}_{1}^{1} \cdot \Omega \geqslant 2 m_{1}
$$

which implies that $m_{1} \leqslant n / 3$. We see that

$$
0=\bar{C}_{1}^{1} \cdot\left(m_{1} \bar{C}_{1}^{1}+\Omega\right)=-2 m_{1}+\bar{C}_{1}^{1} \cdot \Omega>-2 m_{1}+n
$$

by Remark 2.4. Hence $m_{1}>n / 2$. However, we have $m_{1} \leqslant n / 3$, which is a contradiction completing the proof.

Let \grave{C}_{i}^{2} and \grave{Z}_{i}^{2} be the proper transforms of C_{i}^{2} and Z_{i}^{2} on U_{1}, respectively, where $i=1, \ldots, 14$.
Lemma 4.15. The point Q_{1} is not contained in $\bigcup_{i=1}^{14} \grave{Z}_{i}^{2}$.
Proof. Suppose that Q_{1} is contained in $\bigcup_{i=1}^{14} \grave{Z}_{i}^{2}$. We shall show that this leads to a contradiction. We may assume that $Q_{1} \in \grave{Z}_{1}^{2}$. Then

$$
\grave{C}_{1}^{2} \cdot \grave{C}_{1}^{2}=\grave{Z}_{1}^{2} \cdot \grave{Z}_{1}^{2}=-\frac{4}{3}, \quad \grave{C}_{1}^{2} \cdot \grave{Z}_{1}^{2}=\frac{5}{3}
$$

on the surface S_{1}. Note that $Q_{1} \notin \grave{C}_{1}^{2}$. Let

$$
\left.D_{1}\right|_{S_{1}}+\left.\left(\mu_{1}-\frac{n}{2}\right) E_{1}\right|_{S_{1}}=m_{1} \grave{C}_{1}^{2}+m_{2} \grave{Z}_{1}^{2}+\Omega \equiv-\left.n K_{U_{1}}\right|_{S_{1}}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface S_{1} whose support does not contain the curves \grave{C}_{1}^{2} and \grave{Z}_{1}^{2}.

It follows from [1], Theorem 7.5 that the \log pair

$$
\left(S_{1}, \lambda m_{1} \grave{C}_{1}^{2}+\lambda m_{2} \grave{Z}_{1}^{2}+\lambda \Omega\right)
$$

is not \log canonical at the point Q_{1}. We claim that this is impossible.

The log pair $\left(S_{1}, \grave{C}_{1}^{2}+\grave{Z}_{1}^{2}\right)$ is log canonical at the point Q_{1}. By Remark 2.2 we may assume that either $m_{1}=0$ or $m_{2}=0$ because $\grave{C}_{1}^{2}+\grave{Z}_{1}^{2} \equiv-\left.K_{U_{1}}\right|_{S_{1}}$.

Suppose that $m_{2}=0$. Then it follows from Remark 2.4 that

$$
\frac{n}{3}=\grave{Z}_{1}^{2} \cdot\left(m_{1} \grave{C}_{1}^{2}+\Omega\right)=\frac{5 m_{1}}{3}+\grave{Z}_{1}^{2} \cdot \Omega>\frac{5 m_{1}}{3}+\frac{1}{\lambda} \geqslant n
$$

which is a contradiction. Hence we may assume that $m_{1}=0$. Then

$$
\frac{n}{3}=\grave{C}_{1}^{2} \cdot\left(m_{2} \grave{Z}_{1}^{2}+\Omega\right)=\frac{5 m_{2}}{3}+\grave{C}_{1}^{2} \cdot \Omega \geqslant \frac{5 m_{2}}{3}
$$

which implies that $m_{2} \leqslant n / 5$. We see that

$$
\frac{n}{3}=\grave{Z}_{1}^{2} \cdot\left(m_{2} \grave{Z}_{1}^{2}+\Omega\right)=-\frac{4 m_{2}}{3}+\grave{Z}_{1}^{2} \cdot \Omega>-\frac{4 m_{2}}{3}+\frac{1}{\lambda} \geqslant-\frac{4 m_{2}}{3}+n
$$

by Remark 2.4. We obtain $m_{2}>n / 2$. However, we have $m_{2} \leqslant n / 5$, which is a contradiction completing the proof.

Let F_{1} be the scheme fibre of the rational map $\psi \circ \alpha_{1}$ that passes through the point Q_{1}. Then F_{1} is irreducible by Lemmas 4.6, 4.14 and 4.15 (see Remark 4.13).

The curve F_{1} is smooth at the point Q_{1} by Remark 4.13. Let

$$
\left.D_{1}\right|_{S_{1}}+\left.\left(\mu_{1}-\frac{n}{2}\right) E_{1}\right|_{S_{1}}=m F_{1}+\Omega
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on S_{1} whose support does not contain the curve F_{1}. Then

$$
\frac{2 n}{3}=F_{1} \cdot\left(m F_{1}+\Omega\right)=\frac{2 m}{3}+F_{1} \cdot \Omega \geqslant \frac{2 m}{3}+\operatorname{mult}_{Q_{1}}(\Omega)>\frac{2 m}{3}+n-m
$$

which implies that $m>n$. This is impossible by Remark 2.1. We see that the assumption $P=O_{1}$ leads to a contradiction.
Remark 4.16. The equality $P=O_{2}$ holds.
Let D_{2} be the proper transform of the divisor D on the variety U_{2}. Then

$$
D_{2} \equiv \alpha_{2}^{*}(D)-\mu_{2} E_{2}
$$

where E_{2} is the α_{2}-exceptional divisor and μ_{2} is a rational number. We have

$$
K_{U_{2}}+\lambda D_{2}+\left(\lambda \mu-\frac{1}{3}\right) E_{2} \equiv \alpha_{2}^{*}\left(K_{X}+\lambda D\right)
$$

where $\lambda \mu-1 / 3>0$ by Remark 2.3.
The hypersurface X can be given by the equation

$$
w^{2} x+w f_{4}(x, y, z, t)+f_{7}(x, y, z, t)=0 \subset \mathbb{P}(1,1,1,2,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1, \mathrm{wt}(t)=2, \mathrm{wt}(w)=3$ and f_{4}, f_{7} are quasihomogeneous polynomials of degrees 4 and 7 , respectively. Then O_{2} is given by $x=y=z=t=0$.

Remark 4.17. The curves $C_{1}^{2}, \ldots, C_{14}^{2}$ are cut out on X by $x=f_{4}=f_{7}=0$.
Let R be a surface on X cut out by the equation $x=0$, and let \bar{R} be the proper transform of the surface R on the variety U_{2}. Then R is irreducible and the equivalence

$$
\bar{R} \equiv \alpha_{2}^{*}\left(-K_{X}\right)-\frac{4}{3} E_{2}
$$

holds. The surface \bar{R} is smooth in a neighbourhood of E_{2} because X is general.
Lemma 4.18. $\mu_{2} \leqslant 7 n / 12$.
Proof. By Lemma 4.7 we obtain $R \neq D$. Then

$$
0 \leqslant-K_{U_{2}} \cdot \bar{R} \cdot D_{2}=\frac{7 n}{6}-2 \mu_{2}
$$

because the divisor $-K_{U_{2}}$ is nef. Hence $\mu_{2} \leqslant 7 n / 12$.
In particular, there is a point $Q_{2} \in E_{2}$ such that the \log pair

$$
\left(U_{2}, \lambda D_{2}+\left(\lambda \mu_{2}-\frac{1}{3}\right) E_{2}\right)
$$

is not \log canonical at Q_{2}. Let S_{2} be a general surface in $\left|-K_{U_{2}}\right|$ such that $Q_{2} \in S_{2}$.
Remark 4.19. The map ψ is induced by the embedding of graded algebras

$$
\mathbb{C}[x, y, z] \subset \mathbb{C}[x, y, z, t, w]
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1, \mathrm{wt}(t)=2$ and $\mathrm{wt}(w)=3$. Both E_{2} and \bar{R} are contracted by

$$
\psi \circ \alpha_{2}: U_{2} \rightarrow \mathbb{P}^{2}
$$

to the line in $\mathbb{P}^{2} \cong \operatorname{Proj}(\mathbb{C}[x, y, z])$ given by the equation $x=0$.
Let \bar{Z}_{i}^{2} be the proper transform of the curve Z_{i}^{2} on the variety U_{2}, where $i=1, \ldots, 14$.

Lemma 4.20. The point Q_{2} is not contained in $\bigcup_{i=1}^{14} \bar{C}_{i}^{2}$ or $\bigcup_{i=1}^{14} \bar{Z}_{i}^{2}$.
Proof. Let $Q_{2} \in \bigcup_{i=1}^{14} \bar{C}_{i}^{2}$ or $Q_{2} \in \bigcup_{i=1}^{14} \bar{Z}_{i}^{2}$. Without loss of generality we may assume that $Q_{2} \in \bar{C}_{1}^{2} \cup \bar{Z}_{1}^{2}$. The surface \bar{R} contains the curves \bar{C}_{1}^{2} and \bar{Z}_{1}^{2}. Let

$$
\left.D_{1}\right|_{\bar{R}}+\left.\left(\mu_{2}-\frac{n}{3}\right) E_{2}\right|_{\bar{R}}=m_{1} \bar{C}_{1}^{2}+m_{2} \bar{Z}_{1}^{2}+\Omega \equiv-\left.n K_{U_{2}}\right|_{\bar{R}},
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface \bar{R} whose support does not contain the curves \bar{C}_{1}^{2} and \bar{Z}_{1}^{2}. The \log pair

$$
\left(\bar{R}, \lambda m_{1} \bar{C}_{1}^{2}+\lambda m_{2} \bar{Z}_{1}^{2}+\lambda \Omega\right)
$$

is not \log canonical at Q_{2} by [1], Theorem 7.5. We claim that this is impossible.

The log pair $\left(\bar{R}, \bar{C}_{1}^{2}+\bar{Z}_{1}^{2}\right)$ is \log canonical at the point Q_{2} and $\bar{C}_{1}^{2}+\bar{Z}_{1}^{2} \equiv-\left.K_{U_{2}}\right|_{\bar{R}}$, so we may assume that either $m_{1}=0$ or $m_{2}=0$ (see Remark 2.2).

On the surface \bar{R} we have

$$
\bar{C}_{1}^{2} \cdot \bar{C}_{1}^{2}=-1, \quad \bar{Z}_{1}^{2} \cdot \bar{C}_{1}^{2}=1, \quad \bar{Z}_{1}^{2} \cdot \bar{Z}_{1}^{2}=-\frac{1}{2}
$$

Let $m_{1}=0$. Then $m_{2}=0$ because

$$
0=\bar{C}_{1}^{2} \cdot\left(m_{2} \bar{Z}_{1}^{2}+\Omega\right)=m_{2}+\bar{C}_{1}^{2} \cdot \Omega \geqslant m_{2}
$$

and it follows from Remark 2.4 that $0=\bar{C}_{1}^{2} \cdot \Omega>n$ if $Q_{2} \in \bar{C}_{1}^{2}$. We see that $Q_{2} \in \bar{Z}_{1}^{2}$. Then

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot \Omega>\frac{1}{\lambda}=n
$$

by Remark 2.4. The contradiction obtained implies that $m_{1} \neq 0$.
Hence we may assume that $m_{2}=0$. Then

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot\left(m_{1} \bar{C}_{1}^{2}+\Omega\right)=m_{1}+\bar{Z}_{1}^{1} \cdot \Omega \geqslant m_{1}
$$

which implies that $m_{1} \leqslant n / 2$. By Remark 2.4 we obtain

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot\left(m_{1} \bar{C}_{1}^{2}+\Omega\right)=m_{1}+\bar{Z}_{1}^{1} \cdot \Omega>m_{1}+\frac{1}{\lambda} \geqslant n
$$

in the case when $Q_{2} \in \bar{Z}_{1}^{2}$, which shows that $Q_{2} \in \bar{C}_{1}^{2}$. Then

$$
0=\bar{C}_{1}^{2} \cdot\left(m_{1} \bar{C}_{1}^{1}+\Omega\right)=-m_{1}+\bar{C}_{1}^{1} \cdot \Omega>-m_{1}+n
$$

by Remark 2.4. We see that $m_{1}>n$. However, $m_{1} \leqslant n / 2$. which is a contradiction completing the proof.

Note that the surface \bar{R} does not contain the singular point of the surface E_{2}.
Lemma 4.21. The surface \bar{R} does not contain Q_{2}.
Proof. Suppose that $Q_{2} \in \bar{R}$. Then it follows from Lemma 4.20 that

$$
\left.S_{2}\right|_{\bar{R}}=Z \equiv-\left.K_{U_{2}}\right|_{\bar{R}},
$$

where Z is a smooth curve such that $Q_{2} \in Z$. Then $Z \cdot Z=1 / 2$ on the surface \bar{R}. Let

$$
\left.D_{1}\right|_{\bar{R}}+\left.\left(\mu_{2}-\frac{n}{3}\right) E_{2}\right|_{\bar{R}}=m Z+\Omega \equiv-\left.n K_{U_{2}}\right|_{\bar{R}}
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on \bar{R} whose support does not contain the curve Z. Then the \log pair

$$
(\bar{R}, \lambda m Z+\lambda \Omega)
$$

is not \log canonical at Q_{2} by [1], Theorem 7.5. We claim that this is impossible.
The log pair (\bar{R}, Z) is \log canonical at Q_{2}. By Remark 2.2 we may assume that $m=0$. Then $n / 2=Z \cdot \Omega>n$, which is a contradiction completing the proof.

Let O_{3} be the singular point of the surface $E_{2} \cong \mathbb{P}(1,1,2)$, let \grave{C}_{i}^{1} and \grave{Z}_{i}^{1} be the proper transforms of the curves C_{i}^{2} and Z_{i}^{2} on the variety U_{2}, respectively, where $i=1, \ldots, 14$. Then

$$
\grave{Z}_{1}^{2} \cap E_{2}=\cdots=\grave{Z}_{14}^{2} \cap E_{2}=O_{3}, \quad \grave{C}_{1}^{2} \cap E_{2}=\cdots=\grave{C}_{14}^{2} \cap E_{2}=\varnothing
$$

Lemma 4.22. $Q_{2}=O_{3}$.
Proof. Suppose that $Q_{2} \neq O_{3}$. Let F_{2} be the scheme fibre of the rational map $\psi \circ \alpha_{2}$ that passes through the point Q_{2}. Then either

$$
F_{2}=L+\bar{C}_{i}^{2}+\bar{Z}_{i}^{2}
$$

for some $i=1, \ldots, 14$ or $F_{1}=L+Z$, where L is an irreducible curve contained in the divisor E_{2} and Z is an irreducible curve not contained in the divisor E_{2}.

Suppose that $F_{1}=L+Z$. Then on the surface S_{2} we have

$$
L \cdot L=Z \cdot Z=-\frac{3}{2}, \quad L \cdot Z=2
$$

and it follows from Lemma 4.21 that $Q_{2} \in L$ and $Q_{2} \notin Z$ because $Z=\bar{R} \cap S_{2}$. Let

$$
\left.D_{2}\right|_{S_{2}}+\left.\left(\mu_{2}-\frac{n}{3}\right) E_{2}\right|_{S_{2}}=m_{1} L+m_{2} Z+\Omega \equiv-\left.n K_{U_{2}}\right|_{S_{2}}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface S_{2} whose support does not contain the curves L and Z.

By [1], Theorem 7.5 the \log pair

$$
\left(S_{2}, \lambda m_{1} L+\lambda m_{2} Z+\lambda \Omega\right)
$$

is not \log canonical at the point Q_{2}. We claim that this is impossible.
The \log pair $\left(S_{2}, L+Z\right)$ is \log canonical at the point Q_{2}. On the surface S_{2} we have

$$
L+Z \equiv-\left.K_{U_{2}}\right|_{S_{2}}
$$

which implies that we may assume that either $m_{1}=0$ or $m_{2}=0$ (see Remark 2.2).
Suppose that $m_{1}=0$. Then it follows from Remark 2.4 that

$$
\frac{n}{2}=L \cdot\left(m_{2} Z+\Omega\right)=2 m_{2}+L \cdot \Omega>2 m_{2}+\frac{1}{\lambda} \geqslant n
$$

which is a contradiction. Hence we may assume that $m_{2}=0$. Then

$$
\frac{n}{2}=Z \cdot\left(m_{1} L+\Omega\right)=2 m_{1}+Z \cdot \Omega \geqslant 2 m_{1}
$$

which implies that $m_{1} \leqslant n / 4$. We see that

$$
\frac{n}{2}=L \cdot\left(m_{1} L+\Omega\right)=-\frac{3 m_{1}}{2}+L \cdot \Omega>-\frac{3 m_{1}}{2}+\frac{1}{\lambda} \geqslant-\frac{3 m_{1}}{2}+n
$$

by Remark 2.4. Thus, $m_{1}>n / 3$. However, $m_{1} \leqslant n / 4$, which is a contradiction.

We see that $F_{2}=L+\bar{C}_{i}^{2}+\bar{Z}_{i}^{2}$ for some $i=1, \ldots, 14$, where L is an irreducible curve contained in the exceptional divisor E_{2} such that

$$
\left.\bar{R}\right|_{S_{2}}=L+\bar{C}_{i}^{2}+\bar{Z}_{i}^{2} \equiv-\left.K_{U_{2}}\right|_{S_{2}}
$$

We may assume that $F_{2}=L+\bar{C}_{1}^{2}+\bar{Z}_{1}^{2}$. Then

$$
L \cdot \bar{C}_{1}^{2}=L \cdot \bar{Z}_{1}^{2}=\bar{C}_{1}^{2} \cdot \bar{Z}_{1}^{2}=1, \quad \bar{C}_{1}^{2} \cdot \bar{C}_{1}^{2}=-2 \quad \text { and } \quad \bar{Z}_{1}^{2} \cdot \bar{Z}_{1}^{2}=L \cdot L=-\frac{3}{2}
$$

on the surface S_{2}. From Lemma 4.21 we see that $Q_{2} \in L$ and $\bar{C}_{1}^{2} \nexists Q_{2} \notin \bar{Z}_{1}^{2}$. Let

$$
\left.D_{2}\right|_{S_{2}}+\left.\left(\mu_{2}-\frac{n}{3}\right) E_{2}\right|_{S_{2}}=m_{1} L+m_{2} \bar{C}_{1}^{2}+m_{3} \bar{Z}_{1}^{2}+\Omega \equiv-\left.n K_{U_{2}}\right|_{S_{2}},
$$

where m_{1}, m_{2} and m_{3} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on S_{2} whose support does not contain the curves L, \bar{C}_{1}^{2} and \bar{Z}_{1}^{2}.

By [1], Theorem 7.5 the log pair

$$
\left(S_{2}, \lambda m_{1} L+\lambda m_{2} \bar{C}_{1}^{2}+\lambda \bar{Z}_{1}^{2}+\lambda \Omega\right)
$$

is not \log canonical at the point Q_{2}. We shall show that this leads to a contradiction.
The log pair $\left(S_{2}, L+\bar{C}_{1}^{2}+\bar{Z}_{1}^{2}\right)$ is log canonical at Q_{2}. In view of the equivalence

$$
L+\bar{C}_{1}^{2}+\bar{Z}_{1}^{2} \equiv-\left.K_{U_{2}}\right|_{S_{2}}
$$

and Remark 2.2, we may assume that $m_{1} m_{2} m_{3}=0$.
Suppose that $m_{1}=0$. Then it follows from Remark 2.4 that

$$
\frac{n}{2}=L \cdot\left(m_{2} \bar{C}_{1}^{2}+m_{2} \bar{Z}_{1}^{2}+\Omega\right)=m_{2}+m_{3}+L \cdot \Omega>m_{2}+m_{3}+\frac{1}{\lambda} \geqslant n
$$

which is a contradiction. Hence we may assume that $m_{1} \neq 0$.
Suppose that $m_{2}=0$. Then

$$
0=\bar{C}_{1}^{2} \cdot\left(m_{1} L+m_{3} \bar{Z}_{1}^{2}+\Omega\right)=m_{1}+m_{3}+\bar{C}_{1}^{2} \cdot \Omega \geqslant m_{1}+m_{3}
$$

which implies that $m_{1}=m_{3}=0$. However, we know that $m_{1} \neq 0$, which is a contradiction.

Hence we see that $m_{1} \neq 0$ and $m_{2} \neq 0$, which implies that $m_{3}=0$. Then

$$
\frac{n}{2}=\bar{Z}_{1}^{2} \cdot\left(m_{1} L+m_{2} \bar{C}_{1}^{2}+\Omega\right)=m_{1}+m_{2}+\bar{Z}_{1}^{2} \cdot \Omega \geqslant m_{1}+m_{2}
$$

because $\bar{Z}_{1}^{2} \cdot \Omega \geqslant 0$. On the other hand, it follows from Remark 2.4 that

$$
\frac{n}{2}=L \cdot\left(m_{1} L+m_{2} \bar{C}_{1}^{2}+\Omega\right)=-\frac{3 m_{1}}{2}+m_{2}+L \cdot \Omega>-\frac{3 m_{1}}{2}+m_{2}+n
$$

because $m_{1} \leqslant n / 2$. These relations are not yet contradictory, but

$$
0=\bar{C}_{1}^{2} \cdot\left(m_{1} L+m_{2} \bar{C}_{1}^{2}+\Omega\right)=m_{1}-2 m_{2}+\bar{C}_{1}^{2} \cdot \Omega \geqslant m_{1}-2 m_{2}
$$

which implies that $m_{2} \geqslant m_{1} / 2$. The inequalities obtained are inconsistent, which completes the proof.

We see that $Q_{2}=O_{3}$. Let \breve{D} be the proper transform of D on the variety Y_{2}. Then

$$
\breve{D} \equiv\left(\alpha_{2} \circ \beta_{2}\right)^{*}(D)-\mu_{2} \alpha_{2}^{*}\left(E_{2}\right)-\varepsilon G,
$$

where G is the β_{2}-exceptional divisor and ε is a rational number. Now,

$$
K_{Y_{2}}+\lambda \breve{D}+\left(\lambda \mu_{2}-\frac{n}{3}\right) \breve{E}_{2}+\left(\lambda \varepsilon+\frac{\lambda \mu_{2}}{2}-\frac{2}{3}\right) G \equiv\left(\alpha_{2} \circ \beta_{2}\right)^{*}\left(K_{X}+\lambda D\right) \equiv 0
$$

where \breve{E}_{2} is the proper transform of the surface E_{2} on the variety Y. Then

$$
\varepsilon+\frac{\mu_{2}}{2}>\frac{2 n}{3}
$$

by Remark 2.3. We now find an upper bound for $\varepsilon+\mu_{2} / 2$.
Lemma 4.23. $\varepsilon+\mu_{2} / 2 \leqslant 7 n / 6$.
Proof. Let F be a sufficiently general fibre of the map $\psi \circ \alpha_{2} \circ \beta_{2}$. Then

$$
0 \leqslant \breve{D} \cdot F=\left(\left(\alpha_{2} \circ \beta_{2}\right)^{*}(D)-\mu_{2} \breve{E}_{2}-\left(\varepsilon+\frac{\mu_{2}}{2}\right) G\right) \cdot F=\frac{7 n}{6}-\varepsilon-\frac{\mu_{2}}{2}
$$

which yields the required inequality and completes the proof.
Thus, there is a point $Q \in G$ such that the \log pair

$$
\left(Y_{2}, \lambda \breve{D}+\left(\lambda \mu_{2}-\frac{n}{3}\right) \breve{E}_{2}+\left(\lambda \varepsilon+\frac{\lambda \mu_{2}}{2}-\frac{2}{3}\right) G\right)
$$

is not \log canonical at Q. Let \breve{S} be a general surface in $\left|-K_{Y_{2}}\right|$ such that $Q \in \breve{S}$.
Remark 4.24. The surface \breve{S} is smooth at the point Q.
Let \breve{F} be the fibre of the map $\psi \circ \alpha_{2} \circ \beta_{2}$ passing through the point Q. Then $Q \notin \operatorname{Sing}(\breve{F})$.

Lemma 4.25. The fibre \breve{F} is reducible.
Proof. Suppose that \breve{F} is irreducible. Let

$$
\left.\bar{D}\right|_{\breve{S}}+\left.\left(\mu_{2}-\frac{n}{3}\right) \breve{E}_{2}\right|_{\breve{S}}+\left.\left(\varepsilon+\frac{\mu_{2}}{2}-\frac{2 n}{3}\right) G\right|_{\breve{S}}=m \breve{F}+\Omega \equiv-\left.n K_{Y_{2}}\right|_{\breve{S}}
$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor on \breve{S} whose support does not contain the curve \breve{F}.

By [1], Theorem 7.5 the log pair

$$
(\breve{S}, \lambda m \breve{F}+\lambda \Omega)
$$

is not \log canonical at the point Q_{2}. We claim that this is impossible.
Note that $m \leqslant n$ because

$$
m \breve{F}+\Omega \equiv n \breve{F} \equiv-\left.n K_{Y_{2}}\right|_{\breve{S}}
$$

on the surface \breve{S}. By Remark 2.2 we may assume that $m=0$. Then

$$
\frac{n}{2}=\breve{F} \cdot \Omega>\frac{1}{\lambda}=n
$$

by Remark 2.4, which is a contradiction. The proof is complete.
Let \breve{C}_{i}^{1} and \breve{Z}_{i}^{1} be the proper transforms of C_{i}^{1} and Z_{i}^{1} on Y_{2}, respectively, where $i=1, \ldots, 35$.

Lemma 4.26. The fibre \breve{F} does not contain any curve among

$$
\breve{C}_{1}^{1}, \ldots, \breve{C}_{35}^{1}, \breve{Z}_{1}^{1}, \ldots, \breve{Z}_{35}^{1}
$$

Proof. Suppose that the support of the curve \breve{F} contains one of the curves listed above. We shall show that this assumption leads to a contradiction.

Without loss of generality we may assume that the support of the curve \breve{F} contains either the curve \breve{C}_{1}^{1} or the curve \breve{Z}_{1}^{1}. Then $\breve{F}=\breve{C}_{1}^{1}+\breve{Z}_{1}^{1}$. On the surface \breve{S},

$$
\breve{C}_{1}^{1} \cdot \breve{Z}_{1}^{2}=2, \quad \breve{C}_{1}^{1} \cdot \breve{C}_{1}^{1}=-\frac{3}{2}, \quad \breve{Z}_{1}^{1} \cdot \breve{Z}_{1}^{1}=-2
$$

We have $\breve{C}_{1}^{1} \not \supset Q \in \breve{Z}_{1}^{1}$. As usual, let

$$
\left.\breve{D}\right|_{\breve{S}}+\left.\left(\mu_{2}-\frac{n}{3}\right) \breve{E}_{2}\right|_{\breve{S}}+\left.\left(\varepsilon+\frac{\mu_{2}}{2}-\frac{2 n}{3}\right) G\right|_{\breve{S}}=m_{1} \breve{C}_{1}^{1}+m_{2} \breve{Z}_{1}^{1}+\Omega \equiv n \breve{C}_{1}^{1}+n \breve{Z}_{1}^{1}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on \breve{S} whose support does not contain the curves \breve{C}_{1}^{1} and \breve{Z}_{1}^{1}.

By [1], Theorem 7.5 the \log pair

$$
\left(\breve{S}, \lambda m_{1} \breve{C}_{1}^{1}+\lambda m_{2} \breve{Z}_{1}^{1}+\lambda \Omega\right)
$$

is not \log canonical at the point Q. We shall show that this leads to a contradiction.
The \log pair $\left(\breve{S}, \breve{C}_{1}^{1}+\breve{Z}_{1}^{1}\right)$ is \log canonical at Q. Hence we may assume by Remark 2.2 that $m_{1}=0$ or $m_{2}=0$.

Suppose that $m_{1}=0$. Then

$$
\frac{n}{2}=\breve{C}_{1}^{1} \cdot\left(m_{2} \breve{Z}_{1}^{1}+\Omega\right)=2 m_{2}+\breve{C}_{1}^{1} \cdot \Omega \geqslant 2 m_{2}
$$

which implies that $m_{2} \leqslant n / 2$. By Remark 2.4 we obtain

$$
0=\breve{Z}_{1}^{1} \cdot\left(m_{2} \breve{Z}_{1}^{1}+\Omega\right)=-2 m_{2}+\breve{Z}_{1}^{1} \cdot \Omega>-2 m_{2}+n
$$

which implies that $m_{2}>n / 2$. This inequality contradicts the relation $m_{2} \leqslant n / 2$.
Thus, to complete the proof we may assume that $m_{1} \neq 0$ and $m_{2}=0$. Then

$$
0=\breve{Z}_{1}^{1} \cdot\left(m_{1} \breve{C}_{1}^{1}+\Omega\right)=2 m_{1}+\breve{Z}_{1}^{1} \cdot \Omega \geqslant 2 m_{1}
$$

which is impossible because $m_{1} \neq 0$. The proof is complete.
Let \breve{C}_{i}^{2} and \breve{Z}_{i}^{2} be the proper transforms of C_{i}^{2} and Z_{i}^{2} on Y_{2}, respectively, where $i=1, \ldots, 14$.

Lemma 4.27. The fibre \breve{F} does not contain any curve among

$$
\breve{C}_{1}^{2}, \ldots, \breve{C}_{14}^{2}, \breve{Z}_{1}^{2}, \ldots, \breve{Z}_{14}^{2}
$$

Proof. Suppose that the support of the curve \breve{F} contains one of the curves listed above. We shall show that this leads to a contradiction.

We may assume that \breve{F} contains \breve{C}_{1}^{2} or \breve{Z}_{1}^{2}. Then

$$
\breve{F}=\breve{L}+\breve{C}_{1}^{2}+\breve{Z}_{1}^{2},
$$

where \breve{L} is an irreducible curve such that $\breve{L} \subset \breve{E}_{2}$. Then

$$
\breve{L} \cdot \breve{C}_{1}^{2}=\breve{L} \cdot \breve{Z}_{1}^{2}=\breve{C}_{1}^{2} \cdot \breve{Z}_{1}^{2}=1, \quad \breve{C}_{1}^{2} \cdot \breve{C}_{1}^{2}=\breve{L} \cdot \breve{L}=-2, \quad \breve{Z}_{1}^{2} \cdot \breve{Z}_{1}^{2}=-\frac{3}{2}
$$

on the surface \breve{S}. We know that $Q \in \breve{L}$ and $\breve{C}_{1}^{2} \not \nexists Q \notin \breve{Z}_{1}^{2}$. Let

$$
\begin{aligned}
\left.\breve{D}\right|_{\breve{S}} & +\left.\left(\mu_{2}-\frac{n}{3}\right) \breve{E}_{2}\right|_{\breve{S}}+\left.\left(\varepsilon+\frac{\mu_{2}}{2}-\frac{2 n}{3}\right) G\right|_{\breve{S}} \\
& =m_{1} \breve{L}+m_{2} \breve{C}_{1}^{2}+m_{3} \breve{Z}_{1}^{2}+\Omega \equiv n \breve{L}+n \breve{C}_{1}^{2}+n \breve{Z}_{1}^{2}
\end{aligned}
$$

where m_{1}, m_{2} and m_{3} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on S whose support does not contain the curves $\breve{L}, \breve{C}_{1}^{2}$ or \breve{Z}_{1}^{2}.

By [1], Theorem 7.5 the \log pair

$$
\left(\breve{S}, \lambda m_{1} \breve{L}+\lambda m_{2} \breve{C}_{1}^{2}+\lambda m_{3} \breve{Z}_{1}^{2}+\lambda \Omega\right)
$$

is not \log canonical at Q. We shall show that this leads to a contradiction.
The \log pair $\left(\breve{S}, \breve{L}+\breve{C}_{1}^{2}+\breve{Z}_{1}^{2}\right)$ is \log canonical at Q, so we may assume that either $m_{1}=0$, or $m_{2}=0$, or $m_{3}=0$ (see Remark 2.2).

Suppose that $m_{1}=0$. Then it follows from Remark 2.4 that

$$
0=\breve{L} \cdot\left(m_{2} \breve{C}_{1}^{2}+m_{3} \breve{Z}_{1}^{2}+\Omega\right)=m_{2}+m_{3}+\breve{L} \cdot \Omega>m_{2}+m_{3}+n
$$

which is a contradiction. Thus, we may assume that $m_{1} \neq 0$.
Suppose that $m_{2}=0$. Then

$$
0=\breve{C}_{1}^{2} \cdot\left(m_{1} \breve{L}+m_{3} \breve{Z}_{1}^{2}+\Omega\right)=m_{1}+m_{3}+\breve{C}_{1}^{2} \cdot \Omega \geqslant m_{1}+m_{3},
$$

which implies that $m_{1}=m_{3}=0$. However, $m_{1} \neq 0$, which is a contradiction.
Hence we see that $m_{1} \neq 0$ and $m_{2} \neq 0$. We may assume that $m_{3}=0$. Then

$$
\frac{n}{2}=\breve{Z}_{1}^{2} \cdot\left(m_{1} \breve{L}+m_{2} \breve{C}_{1}^{2}+\Omega\right)=m_{1}+m_{2}+\breve{Z}_{1}^{2} \cdot \Omega \geqslant m_{1}+m_{2}
$$

which implies, in particular, that $m_{1} \leqslant n / 2$. By Remark 2.4 we obtain

$$
0=\breve{L} \cdot\left(m_{1} \breve{L}+m_{2} \breve{C}_{1}^{2}+\Omega\right)=-2 m_{1}+m_{2}+\breve{L} \cdot \Omega>-2 m_{1}+m_{2}+n
$$

which means that $m_{1}>n / 2$. This contradicts the inequality $m_{1} \leqslant n / 2$ and completes the proof.

By Lemmas 4.25-4.27 we have $\breve{F}=\breve{L}+\breve{Z}$, where \breve{L} and \breve{Z} are irreducible curves such that $\breve{L} \subset \breve{E}_{2}$ and $\breve{Z} \not \subset \breve{E}_{2}$. Note that $\breve{Z} \not \supset Q \in \breve{L}$ because $\breve{Z} \cap G=\varnothing$. Then

$$
\breve{L} \cdot \breve{Z}=2, \quad \breve{Z} \cdot \breve{Z}=-\frac{3}{2} \quad \text { and } \quad \breve{L} \cdot \breve{L}=-2
$$

on the surface \breve{S}. As usual, let

$$
\left.\breve{D}\right|_{\breve{S}}+\left.\left(\mu_{2}-\frac{n}{3}\right) \breve{E_{2}}\right|_{\breve{S}}+\left.\left(\varepsilon+\frac{\mu_{2}}{2}-\frac{2 n}{3}\right) G\right|_{\breve{S}}=m_{1} \breve{L}+m_{2} \breve{Z}+\Omega \equiv n \breve{L}+n \breve{Z}
$$

where m_{1} and m_{2} are non-negative rational numbers and Ω is an effective \mathbb{Q}-divisor on the surface \breve{S} whose support does not contain the curves \breve{L} and \breve{Z}.

By [1], Theorem 7.5 the log pair

$$
\left(\breve{S}, \lambda m_{1} \breve{L}+\lambda m_{2} \breve{Z}+\lambda \Omega\right)
$$

is not \log canonical at the point Q. We shall show that this leads to a contradiction.
By Remark 2.2 we may assume that $m_{1}=0$ or $m_{2}=0$ because the singularities of the log pair $(\breve{S}, \breve{L}+\breve{Z})$ are \log canonical at the point Q.

Suppose that $m_{1}=0$. Then it follows from Remark 2.4 that

$$
0=\breve{L} \cdot\left(m_{2} \breve{Z}+\Omega\right)=2 m_{2}+\breve{L} \cdot \Omega>2 m_{2}+n
$$

which is a contradiction. Hence we may assume that $m_{2}=0$. Then

$$
\frac{n}{2}=\breve{Z} \cdot\left(m_{1} \breve{L}+\Omega\right)=2 m_{1}+\breve{Z} \cdot \Omega \geqslant 2 m_{1}
$$

which implies that $m_{1} \leqslant n / 2$. By Remark 2.4 we obtain

$$
0=\breve{L} \cdot\left(m_{1} \breve{L}+\Omega\right)=-2 m_{1}+\breve{L} \cdot \Omega>-2 m_{1}+n
$$

which implies that $m_{1}>n / 2-$ a contradiction. The proof of Theorem 1.44 is complete.

Bibliography

[1] J. Kollár, "Singularities of pairs", Algebraic geometry (Santa Cruz, CA, USA 1995), Proceedings of the Summer Research Institute, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI 1997, pp. 221-287.
[2] V. V. Shokurov, "3-fold log flips", Izv. Ross. Akad. Nauk Ser. Mat. 56:1 (1992), 105-203; English transl. in Russian Acad. Sci. Izv. Math. 40:1 (1993), 95-202.
[3] G. Tian, "On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$ ", Invent. Math. 89:2 (1987), 225-246.
[4] I. A. Cheltsov, "Log canonical thresholds on hypersurfaces", Mat. Sb. 192:8 (2001), 155-172; English transl. in Sb. Math. 192:8 (2001), 1241-1257.
[5] I. A. Cheltsov, "Double spaces with isolated singularities", Mat. Sb. 199:2 (2008), 131-148; English transl. in Sb. Math. 199:2 (2008), 291-306.
[6] J.-M. Hwang, "Log canonical thresholds of divisors on Fano manifolds of Picard number 1", Compos. Math. 143:1 (2007), 89-94.
[7] A. V. Pukhlikov, "Birational geometry of Fano direct products", Izv. Ross. Akad. Nauk Ser. Mat. 69:6 (2005), 153-186; English transl. in Izv. Math. 69:6 (2005), 1225-1255.
[8] I. Cheltsov, J. Park and J. Won, Log canonical thresholds of certain Fano hypersurfaces, http://arxiv.org/abs/0706.0751.
[9] I. Cheltsov, "Log canonical thresholds of del Pezzo surfaces", Geom. Funct. Anal. 18:4 (2008), 1118-1144; arXiv: math/0703175.
[10] I. Cheltsov, "On singular cubic surfaces", Asian J. Math. (to appear); arXiv: abs/0706. 2666.
[11] G. Tian, "On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32:1 (1990), 99-130.
[12] A. M. Nadel, "Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature", Ann. of Math. (2) 132:3 (1990), 549-596.
[13] J.-P. Demailly and J. Kollár, "Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds", Ann. Sci. École Norm. Sup. (4) 34:4 (2001), 525-556.
[14] T. Aubin, "Équations du type Monge-Ampère sur les variétés kählériennes compactes", Bull. Sci. Math. (2) 102:1 (1978), 63-95.
[15] Sh.-T. Yau, "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I", Comm. Pure Appl. Math. 31:3 (1978), 339-411.
[16] Sh.-T. Yau, "Review on Kähler-Einstein metrics in algebraic geometry", Proceedings of the Hirzebruch 65 conference on algebraic geometry (Bar-Ilan University, Ramat Gan, Israel 1993), Israel Math. Conf. Proc., vol. 9, Ramat Gan, Bar-Ilan Univ. 1996, pp. 433-443.
[17] Y. Matsushima, "Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne", Nagoya Math. J. 11 (1957), 145-150.
[18] M. Lübke, "Stability of Einstein-Hermitian vector bundles", Manuscripta Math. 42:2-3 (1983), 245-257.
[19] A. Futaki, "An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73:3 (1983), 437-443.
[20] A. Steffens, "On the stability of the tangent bundle of Fano manifolds", Math. Ann. 304:1 (1996), 635-643.
[21] G. Tian, "Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130:1 (1997), 1-37.
[22] S. K. Donaldson, A note on the α-invariant of the Mukai-Umemura 3-fold, arXiv: abs/0711. 4357.
[23] T. Mabuchi, "Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties", Osaka J. Math. 24:4 (1987), 705-737.
[24] V. V. Batyrev and E. N. Selivanova, "Einstein-Kähler metrics on symmetric toric Fano manifolds", J. Reine Angew. Math. 512 (1999), 225-236.
[25] X.-J. Wang and X. Zhu, "Kähler-Ricci solitons on toric manifolds with positive first Chern class", Adv. Math. 188:1 (2004), 87-103.
[26] B. Nill, "Complete toric varieties with reductive automorphism group", Math. Z. 252:4 (2006), 767-786.
[27] G. Tian, "On Calabi's conjecture for complex surfaces with positive first Chern class", Invent. Math. 101:1 (1990), 101-172.
[28] C. Arezzo, A. Ghigi and G. P. Pirola, "Symmetries, quotients and Kähler-Einstein metrics", J. Reine Angew. Math. 591 (2006), 177-200.
[29] W. Ding and G. Tian, "Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110:1 (1992), 315-335.
[30] J. M. Johnson and J. Kollár, "Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces", Ann. Inst. Fourier (Grenoble) 51:1 (2001), 69-79.
[31] Ch. P. Boyer, K. Galicki and M. Nakamaye, "Sasakian-Einstein structures on $9 \#\left(S^{2} \times S^{3}\right)$ ", Trans. Amer. Math. Soc. 354:8 (2002), 2983-2996.
[32] C. Araujo, "Kähler-Einstein metrics for some quasi-smooth log del Pezzo surfaces", Trans. Amer. Math. Soc. 354:11 (2002), 4303-4312.
[33] J. M. Johnson and J. Kollár, "Fano hypersurfaces in weighted projective 4-spaces", Experiment. Math. 10:1 (2001), 151-158.
[34] J. Park, "Birational maps of del Pezzo fibrations", J. Reine Angew. Math. 538 (2001), 213-221.
[35] A. Corti, "Del Pezzo surfaces over Dedekind schemes", Ann. of Math. (2) 144:3 (1996), 641-683.
[36] A. Corti, "Singularities of linear systems and 3-fold birational geometry", Explicit birational geometry of 3 -folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 259-312.
[37] I. A. Cheltsov, "Birationally rigid Fano varieties", Uspekhi Mat. Nauk 60:5 (2005), 71-160; English transl. in Russian Math. Surveys 60:5 (2005), 875-965.
[38] V. A. Iskovskih (Iskovskikh) and Yu. I. Manin, "Three-dimensional quartics and counterexamples to the Lüroth problem", Mat. Sb. 86(128):1(9) (1971), 140-166; English transl. in Math. USSR-Sb. 15:1 (1971), 141-166.
[39] A. V. Pukhlikov, "Birational automorphisms of Fano hypersurfaces", Invent. Math. 134:2 (1998), 401-426.
[40] V. A. Iskovskikh, "Birational automorphisms of three-dimensional algebraic varieties", Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat., vol. 12, VINITI, Moscow 1979, pp. 159-236; English transl. in J. Soviet Math. 13:6 (1980), 815-868.
[41] A. V. Pukhlikov, "Birational automorphisms of a double space and double quadric", Izv. Akad. Nauk SSSR Ser. Mat. 52:1 (1988), 229-239; English transl. in Math. USSR-Izv. 32:1 (1988), 233-243.
[42] V. A. Iskovskikh and A. V. Pukhlikov, "Birational automorphisms of multidimensional algebraic manifolds", J. Math. Sci. 82:4 (1996), 3528-3613.
[43] A. V. Pukhlikov, "Birationally rigid Fano hypersurfaces with isolated singularities", Mat. Sb. 193:3 (2002), 135-160; English transl. in Sb. Math. 193:3 (2002), 445-471.
[44] J.Kollár, "Universal untwisting of birational maps", Trudy Math. Inst. Steklova (to appear).
[45] I. Cheltsov, "Fano varieties with many selfmaps", Adv. Math. 217:1 (2008), 97-124.
[46] A. R. Iano-Fletcher, "Working with weighted complete intersections", Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 101-173.
[47] A. Corti, A. Pukhlikov and M. Reid, "Fano 3-fold hypersurfaces", Explicit birational geometry of 3 -folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 175-258.
[48] I. Cheltsov and J. Park, "Weighted Fano threefold hypersurfaces", J. Reine Angew. Math. 600 (2006), 81-116.
[49] I. A. Cheltsov, "Log canonical thresholds of Fano threefold hypersurfaces", Izv. Ross. Akad. Nauk Ser. Mat. (to appear). (Russian)
[50] I. A. Cheltsov, "Elliptic structures on weighted three-dimensional Fano hypersurfaces", Izv. Ross. Akad. Nauk Ser. Mat. 71:4 (2007), 115-224; English transl. in Izv. Math. 71:4 (2007), 765-862.

I. A. Cheltsov

University of Edinburgh, UK
Received 7/FEB/08 and 4/APR/08
E-mail: cheltsov@yahoo.com

[^0]: This work was partially supported by the grant NSF DMS-0701465.
 ${ }^{1}$ All varieties are assumed to be complex, algebraic, projective and normal.
 AMS 2000 Mathematics Subject Classification. Primary 14J45, 32Q20; Secondary 14J17.

[^1]: ${ }^{2}$ Log canonical thresholds were introduced by Shokurov in [2].

[^2]: ${ }^{3}$ The assertion of Conjecture 1.13 is unknown even for del Pezzo surfaces.

[^3]: ${ }^{4}$ There are several definitions of birational superrigidity (see [36], [37]).

[^4]: ${ }^{5}$ There are several definitions of birational rigidity (see [36], [37]).

