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Double spaces with isolated singularities

I. A. Cheltsov

Abstract. The non-rationality is proved for double covers of Pn branched
over a hypersurface F ⊂ Pn of degree 2n > 8 with isolated singularities such
that the multiplicity of each singular point of F does not exceed 2(n − 2)
and the projectivization of its tangent cone is smooth.

Bibliography: 15 titles.

§ 1. Introduction

The main method of the proof of the non-rationality of rationally connected vari-
eties1 consists in the proof of the birational superrigidity of certain Fano varieties.

Definition 1. A terminal Q-factorial Fano variety X of Picard rank rkPic(X) = 1
is called birationally superrigid if the following conditions hold:

• there exists no rational dominant map ξ : X 99K Z, where Z is distinct from
a point, such that the general fibre of ξ is rationally connected;

• the variety X is not birational to a terminal Q-factorial Fano variety Y with
rk Pic(Y ) = 1 such that Y is not biregular to X;

• the groups Bir(V ) and Aut(V ) coincide.

Let π : X → Pn be a double cover branched over an irreducible reduced hyper-
surface F ⊂ Pn of degree 2n with isolated ordinary singularities2 each of multiplicity
2(n− 2), and assume that n > 3. Then

−KX ∼ π∗(OPn(1)),

and the variety X is terminal Q-factorial (see Lemma 22).
In the case when F is a general hypersurface, the non-rationality of X follows

from Theorem 5.13 in [1], Ch. V. We shall prove the next result3 in § 3.

Theorem 2. The variety X is birationally superrigid for n > 4.

It is known that |Sing(X)| does not exceed the number of points (a1, . . . , an)⊂Zn
such that

n2 − 2n+ 2 6
n∑
i=1

ai 6 n2,

1All the varieties throughout are projective, normal, and defined over C.
2A singular point O of a variety V is called an ordinary singular point if O is a hypersurface

singularity on V and the projectivization of the tangent cone to V at O is non-singular.
3The result of Theorem 2 was proved in [2] in the case when F has a unique isolated ordinary

singular point of even multiplicity not exceeding 2(n− 2). For n = 3 the birational superrigidity
of the variety X was proved in [3] under the assumption that X is factorial.

AMS 2000 Mathematics Subject Classification. Primary 14E08, 14J40; Secondary 14J45.
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where ai ∈ (0, 2n) (see [4]). For n = 3 the sharp bound is known: |Sing(X)| 6 65
(see [5], [6]).

Example 3. Let n = 2k for positive integer k and let X be the variety given by
an equation

y2 =
k∑
i=1

ai(x0, . . . , x2k+1)xi ⊂ P(12k+1, 2k) ∼= Proj
(
C[x0, . . . , x2k+1, y]

)
,

where ai is a general homogeneous polynomial of degree 4k − 1. Then X has
(4k− 1)k singular points, and X is birationally superrigid for k > 2 by Theorem 2.

Example 4. Let n = 2k + 1 for positive integer k and let F be a hypersurface
given by an equation

g2(x0, . . . , x2k+2) =
k∑
i=1

ai(x0, . . . , x2k+2)bi(x0, . . . , x2k+2)

⊂ Pn ∼= Proj
(
C[x0, . . . , x2k+2]

)
,

where g, the ai, and the bi are general homogeneous polynomials of degree 2k + 1.
Then F has (2k+1)2k+1 singular points, and X is birationally superrigid for k > 2
by Theorem 2.

The assumptions in Theorem 2 that multO(F ) 6 2(n− 2) and n > 4 cannot be
omitted.

Example 5. Let ξ : V → Pn be a double cover branched over a general hyper-
surface of degree 2n with singular point O of multiplicity 2(n− 1) and let

γ : Pn 99K Pn−1

be the projection from O. Then the normalization of the general fibre of γ ◦ π is
a rational curve.

Example 6. Let n = 3 and let F be a Barth sextic (see [5]). Then X is rational
(see [7]).

A birational classification of plane elliptic pencils was obtained in [8]. In the
present paper we prove the following result (see § 4).

Theorem 7. Let ρ : X 99K Z be a dominant map such that the normalization of
a general fibre of it is an elliptic curve. Assume that n > 4. Then the diagram

X

ρ

���
�
�

π // Pn

β

��
Z γ

//___ Pn−1

is commutative, where γ is a birational map and β is the projection from a point
O ∈ F such that multO(F ) = 2(n− 2).

The following result is a consequence of the proof of Theorem 7.
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Theorem 8. Assume that n > 4. Then X is not birational to a Fano variety with
canonical singularities distinct from X .

Theorems 7 and 8 fail for n = 3, even in the case of factorial X (see [3]).
The author is grateful to V. A. Iskovskikh, Yu.G. Prokhorov, and V. V. Shokurov

for fruitful conversations.

§ 2. Preliminary results

In this section we consider properties of log pairs (see [9], [10]). Throughout,
X is a variety.

Theorem 9 (see [11]). Let X be a terminal Q-factorial Fano variety with

rk Pic(X) = 1

such that a movable log pair (X,MX) has canonical singularities once KX+MX ≡ 0
and the boundary MX is effective. Then X is birationally superrigid.

Theorem 10 (see [10]). Let X be a terminal Q-factorial Fano variety with

rk Pic(X) = 1

and let
ρ : Y 99K X

be a birational map such that there exists an elliptic fibration τ : Y → Z . Consider
a linear system D = |τ∗(D)|, where D is a very ample divisor on Z . Let M = ρ(D).
Select a positive rational number γ such that KX + γM ≡ 0 and let MX = γM .
Then the log pair (X,MX) is not terminal.

Theorem 11 (see [10]). Let x be a terminal Q-factorial Fano variety with

rk Pic(X) = 1

and let
ρ : Y 99K X

be a non-biregular birational map such that Y is a Fano variety with canonical
singularities. Let

D = |−nKY |, M = ρ(D), MX = γM ,

for some sufficiently large positive number n and a positive rational number γ such
that KX +MX ≡ 0. Then the log pair (X,MX) is not terminal.

Consider an arbitrary divisor

BX =
r∑
i=1

aiBi

on X such that ai is a positive rational number and Bi a prime Weil divisor on X.
Assume that KX +BX be a Q-Cartier divisor.
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Definition 12. A proper irreducible subvariety Y of a variety X is called a centre
of canonical singularities of a log pair (X,BX) if there exists a birational morphism
π : X → X and a π-exceptional divisor E1 ⊂ X such that

KX +
r∑
i=1

aiBi ≡ π∗(KX +BX) +
k∑
i=1

a(X,BX , Ei)Ei,

where a(X,BX , Ei) is a rational number, Ei a π-exceptional divisor, Bi the proper
transform of Bi on X, π(E1) = Y , and a(X,MX , E1) 6 0.

Let CS(X,BX) be the set of centres of canonical singularities of a log pair
(X,BX).

Definition 13. An irreducible subvariety Y of a variety X is called a centre of log
canonical singularities of a log pair (X,BX) if one of the following holds:

• for some i ∈ {1, . . . , r} we have ai > 1 and Y = Bi;
• there exist a birational morphism π : X → X and a divisor E1 ⊂ X such

that

KW +
r∑
i=1

aiBi ≡ π∗(KX +BX) +
k∑
i=1

a(X,BX , Ei)Ei,

where a(X,BX , Ei) is a rational number, Ei a π-exceptional divisor, Bi the
proper transform of Bi on X, π(E1) = Y , and a(X,MX , E1) 6 −1.

We denote the set of centres of log canonical divisors of a log pair (X,BX) by
LCS(X,BX), and the union of centres of log canonical divisors, regarded as a subset
of the variety X, as LCS(X,BX).

Remark 14. We can introduce on the set LCS(X,BX) in a natural fashion the
structure of a subscheme (see [9]), which is usually denoted by L (X,BX).

The next result is Shokurov’s vanishing theorem.

Theorem 15 (see [9]). Let H be a nef and big divisor on X such that

KX +BX +H ≡ D,

where D is a Cartier divisor on X . Then

Hi
(
X, I (X,BX)⊗ OX(D)

)
= 0

for all i > 0, where I (X,BX) is the ideal sheaf of the subscheme L (X,BX).

Theorem 16 (see [9], Theorem 17.6). Let S be a simple Weil divisor on X such
that

KX + S +BX

is a Q-Cartier divisor. Assume that S ̸⊂ Supp(BX) and that ai < 1 for each
i ∈ {1, . . . , r}. Then the log pair (X, S + BX) is purely log terminal if and only if
the log pair (S,DiffS(BX)) is Kawamata log terminal 4.

4For the definitions of pure log terminality and Kawamata log terminality one can consult [9].
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Corollary 17. Let H be an effective Cartier divisor on X . Assume that there
exists a subvariety Z ⊂ H such that Z ∈ CS(X,BX), both X and H are smooth at
a generic point of Z , and H ̸⊂ Supp(BX). Then

LCS
(
H,BX

∣∣
H

)
̸= ∅.

We say that (X,BX) is movable if B1, . . . , Br are linear systems without fixed
components. Constructions applicable to usual log pairs can also be applied to
movable ones.

Theorem 18 (see [11]). Let (X,BX) be a movable log pair and assume that the
set CS(X,BX) contains a smooth point O of X and that dim(X) > 3. Then

multO(B2
X) = multO

(( r∑
i=1

aiB
′
i

)
·
( r∑
i=1

aiB
′′
i

))
> 4, (∗)

where B′i and B′′i are general divisors in Bi. Inequality (∗) is strict for dim(X) > 4.

Theorem 19. Assume that the set CS(X,BX) contains an ordinary double point O
of the variety X and that dim(X) > 3. Then

multO(BX) > 1, (∗∗)

where the rational number multO(BX) is defined by the numerical equivalence

r∑
i=1

aiBi ≡ π∗(BX)−multO(BX)E;

here π : X→X is the blow-up of the point O, E is a π-exceptional divisor, and Bi
the proper transform of the divisor Bi on X . Inequality (∗∗) is strict for dim(X)>4.

Proof. This follows from the proof of Theorem 3.10 of [11] and the application of
Theorem 16.

We now establish two results underlying the proof of Theorem 2.

Proposition 20. Let τ : V → Pk be a double cover ramified in a smooth hypersur-
face S ⊂ Pk of degree 2d and BV an effective divisor on V such that

BV ≡ τ∗(OPk(λ)),

where λ ∈ Q and the inequalities λ < 1 and 2 6 d 6 k − 1 hold. Then

LCS(V,BV ) = ∅.

Proof. Let C ⊂ V be a curve such that τ(C) ⊂ S and multC(BV ) > 1. Take a point
O ∈ τ(C) and a hypersurface Π ⊂ Pk tangent to S at O. Fix a line L ⊂ Π passing
through O. Let

L̂ = τ−1(L)

and let Ô = τ−1(O). Then the curve L̂ is singular at Ô and a component of L̂ lies
in Supp(BV ) since otherwise

2 > 2λ = L̂ ·BV > multÔ(L̂) multC(BV ) > 2,
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which is a contradiction. The hyperplane Π is tangent to S at finitely many points
(see [12]). Hence the curve L̂ spans the whole of V as O varies on the curve τ(C)
and the line L varies in Π, which is a contradiction.

Assume now that the set LCS(V,BV ) contains a subvariety R ⊂ V such that
dim(R) > 2. Then multR(BV ) > 1 and R contains a curve Ĉ such that

multĈ(BV ) > 1

and τ(Ĉ) ⊂ S. This is a contradiction. Hence the set LCS(V,BV ) contains only
curves and points.

Suppose that LCS(V,BV ) contains a curve. Let T be the union of all curves in
the set LCS(V,BV ). Let Y be a general divisor in the linear system |τ∗(OPk(1))|.
Let

γ = τ
∣∣
Y

: Y → Pk−1

and BY = BV
∣∣
Y

. Then the variety Y is smooth, Y ̸⊂ Supp(BV ), and γ is a double
cover branched over a smooth hypersurface of degree 2d.

It follows from the generality in the choice Y that the set LCS(Y,BY ) does not
contain subvarieties of positive dimension. The set LCS(Y,BY ) contains all points
of T ∩ Y .

Consider a Cartier divisor F on the variety Y such that

F ≡ KY +BY + (1− λ)H ∼ (d− k − 1)H,

where H = γ∗(OPk−1(1)). Then the sequence of groups

H0
(
OY (F )

)
→ H0

(
OL (Y,BY )(F )

)
→ 0

is exact by Theorem 15. On the other hand, Supp(L (Y,BY )) consists of all the
points in T ∩ Y , therefore

H0
(
OL (Y,BY )(F )

)
= H0

(
OL (Y,BY )

)
,

which is impossible for d < k − 1. In the case d = k − 1 we obtain |T ∩ Y | = 1.
Thus, it follows from the assumption that LCS(V,BV ) contains a curve that
• d = k − 1;
• the set LCS(V,BV ) contains a unique curve C ⊂ V ;
• the curve τ(C) ⊂ Pk is a line;
• the map τ

∣∣
C

is an isomorphism;
• the inequality multC(BV ) > 1 holds.

We observe that τ(C) ̸⊂ S. Therefore, there exists a curve C̃ ⊂ V such that
C ̸= C̃ and τ(C) = τ(C̃).

Let D1, . . . , Dk−2 be general divisors in |τ∗(OPk(1))| passing through the curves
C and C̃. Let

D =
k−2⋂
i=1

Di

and consider the curves C and C̃ on the smooth surface D. Then

C2 = C̃2 = 1− d < 0
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because d > 2 by assumption. Consider the divisor BD = BV
∣∣
D

. Then

BD = multC(BV )C + multC̃(BV )C̃ + ∆,

where ∆ is an effective divisor on D such that C ̸⊂ Supp(∆) ̸⊃ C̃. On the other
hand,

BD ≡ λ(C + C̃),

so that we have the equivalence(
λ−multC̃(BV )

)
C̃ ≡

(
multC(BV )− λ

)
C + ∆

and therefore multC̃(BV ) > λ because C̃2 < 0. Now, the equivalence

−∆ ≡
(
multC(BV )− λ

)
C +

(
multC̃(BV )− λ

)
C̃

yields ∆ = ∅ and the equalities

multC̃(BV ) = multC(BV ) = λ,

which is impossible because multC(BV ) > 1 and λ < 1. A contradiction.
Thus, we have shown that the set LCS(V,BV ) contains only points.
Assume that LCS(V,BV ) contains a point O ∈ V . Let E be a Cartier divisor

such that
E ≡ KV +BV + (1− λ)H,

whereH = τ∗(OPk(1)). ThenH0(OV (E)) = 0. The sequence of cohomology groups

H0(OV (E)) → H0
(
OL (V,BV )(E)

)
→ 0

is exact by Theorem 15, but on the other hand, Supp(L (V,BV )) consists of finitely
many points. Hence

0 = H0
(
OL (V,BV )(E)

)
= H0(OL (V,BV )) ̸= 0,

which is a contradiction. Thus, the set LCS(V,BV ) is empty.

Proposition 21. Let S be a smooth hypersurface of degree d in Pn and B an effect-
ive divisor on Pn such that B≡OPn(λ) for λ∈Q, where λ<1 and 26d62(n− 1).
Then LCS(Pn, B + 1

2S) = ∅.

Proof. Let Z be a variety of highest dimension in LCS(Pn, B + 1
2S). Then

λ+
1
2

> multZ(B) +
1
2

multZ(S) > multZ

(
B +

1
2
S

)
> 1,

which implies that Z ⊂ S and Z ̸= S. In particular, dim(Z) < n− 1.
Assume that Z is a point. Let E be the Cartier divisor such that

E = KPn +B +
1
2
S +

(
n− d

2
− λ

)
H,
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where H ∼ OPn(1). Then n > d/2+λ and E ∼ −H, so that H0(OPn(E)) = 0. The
sequence

H0(OPn(E)) → H0
(
OL (Pn, B+ 1

2S)(E)
)
→ 0

is exact by Theorem 15. However, Supp
(
L (Pn, B+ 1

2S)
)

consists of finitely many
points, therefore

H0
(
OL (Pn, B+ 1

2S)(E)
)

= H0(OL (Pn, B+ 1
2S)),

which is a contradiction. Thus, dim(Z) > 0.
Let B + 1

2S = D + βS, where D is an effective divisor and β a positive rational
number such that S ̸⊂ Supp(D). Then β < 1 and D ≡ µH for some positive
rational number µ < 1, where H ∼ OPn(1). In particular,

Z ∈ LCS(Pn, D + S),

so that LCS
(
S,D

∣∣
S

)
̸= ∅ by Theorem 16 because Z ⊂ S.

Theorem 16 ensures the existence of a proper subvariety T ⊂ S such that

T ∈ LCS
(
S,D

∣∣
S

)
and Z ⊆ T . We have dim(T ) > 1 and multT

(
D

∣∣
S

)
> 1, which is impossible

(see [12]).

§ 3. Proof of Theorem 2

Let X be a weighted complete intersection in P(a0, . . . , an) such that
• the complete intersection X ⊂ P(a0, . . . , an) is well formed (see [13]);
• the complete intersection X has at most isolated singularities;
• dim(X) > 4.

Let
L = OP(a0,...,an)(1)

∣∣
X
.

Lemma 22. The group Cl(X) is generated by the divisor L.

Proof. Consider a Weil divisor D on the variety X. For the proof it is sufficient to
show that D ∼ rL for some r ∈ Z.

Let H be a general divisor in |kL| for k ≫ 0. Then H is a smooth weighted
complete intersection (see [13]) in P(a0, . . . , an) such that H is well formed and
dim(H) > 3.

It is known that Pic(H) is generated by the divisor L
∣∣
H

(see [13]). Hence there
exists an integer r ∈ Z such that D

∣∣
H
∼ rL

∣∣
H

. Let ∆ = D − rL. The sequence of
sheaves

0 → OX(∆)⊗ OX(−H) → OX(∆) → OH → 0

is exact because the sheaf OX(∆) is locally free in the neighbourhood of H. There-
fore, the sequence of cohomology groups

0 → H0(OX(∆)) → H0(OH) → H1
(
OX(∆)⊗ OX(−H)

)
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is exact. On the other hand, the sheaf OX(∆) is reflexive (see [14]). Consequently,
there exists an exact sequence of sheaves

0 → OX(∆) → E → F → 0,

where E is a locally free sheaf and F is torsion free. Hence the sequence of groups

H0
(
F ⊗ OX(−H)

)
→ H1

(
OX(∆−H)

)
→ H1

(
E ⊗ OX(−H)

)
is exact. However, H0

(
F ⊗OX(−H)

)
is trivial because the sheaf F has no torsion

and H1
(
E ⊗OX(−H)

)
is trivial by the lemma of Enriques–Severi–Zariski (see [15])

since X is a normal variety. Thus, we have

H1
(
OX(∆)⊗ OX(−H)

)
= 0

and H0(OX(∆)) = C. The same method yields H0(OX(−∆)) = C, so that the
divisor ∆ is rationally equivalent to zero, that is, D ∼ rL.

Now let π : X → Pn be a double cover ramified in an irreducible reduced hyper-
surface F ⊂ Pn of degree 2n > 8 with isolated ordinary singular points of multi-
plicities at most 2(n− 2). Then

Cl(X) = Pic(X) = Z[−KX ]

by Lemma 22. Assuming that X is not birationally superrigid we shall bring our
assumptions to a contradiction.

On the Fano variety X there exists a movable log pair (X,MX) with effective
boundary MX such that

CS(X,MX) ̸= ∅
and MX ≡ −rKX for some positive rational number r < 1 (see Theorem 9).

Let Z ⊂ X be an element of the set CS(X,MX).

Lemma 23. The subvariety Z is not a smooth point of X .

Proof. Let Z be a smooth point of X. Then

multZ(M2
X) > 4

by Theorem 18. Let H1, . . . ,Hn−2 be general divisors in |π∗(OPn(1))| passing
through Z. Then

2 > M2
X ·H1 · · ·Hn−2 > multZ(M2

X) multZ(H1) · · ·multZ(Hn−2) > 4,

which is a contradiction.

Lemma 24. The subvariety Z is not a singular point of X .

Proof. Let Z ∈ Sing(X). Then O = π(Z) is a singular point of a hypersurface
F ⊂ Pn. There exist two possible cases: multO(F ) is either even or odd. We
handle these cases separately. In the first case the proof is based on Proposition 20
and in the second on Proposition 21.

We point out that X can be defined as a hypersurface

y2 = f2n(x0, . . . , xn) ⊂ P(1n+1, n) ∼= Proj
(
C[x0, . . . , xn, y]

)
,

where f2n is a homogeneous polynomial of degree 2n.
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Let multO(F ) = 2m > 2 for some m ∈ N. Then m 6 n − 2 and there exists
a weighted blow-up

β : U → P(1n+1, n)

of the point Z with weights (m, 1n) such that the proper transform V ⊂ U of the
variety X is non-singular in the neighbourhood of the β-exceptional divisor E. The
birational morphism β induces a birational morphism α : V → X with exceptional
divisor G ⊂ V .

We observe that E
∣∣
V

= G and G is a smooth hypersurface in E ∼= P(1n,m),
which can be given by the equation

z2 = g2m(t1, . . . , tn) ⊂ P(1n,m) ∼= Proj
(
C[t1, . . . , tn, z]

)
,

where g2m(t1, . . . , tn) is a homogeneous polynomial of degree 2m.
Let multZ(MX) be a positive rational number such that

MV ≡ α∗(MX)−multZ(MX)G,

where MV is the proper transform of MX on V . Then

KV +MV ≡ α∗(KX +MX) +
(
n− 1−m−multZ(MX)

)
G.

However, the linear system |α∗(−KX)−G| yields a morphism ψ : V → Pn−1 such
that the diagram

V

α

��

ψ // Pn−1

X π
// Pn

χ

<<y
y

y
y

is commutative, where χ is the projection from O. Let C be a general fibre of ψ.
Then

0 6 MV · C = 2
(
1−multZ(MX)

)
+ α∗(KX +MX) · C < 2

(
1−multZ(MX)

)
because −(KX +MX) is ample. Thus, multZ(MX) < 1.

By the inequality multZ(MX) < 1 and Theorem 19 we obtain m > 1. The
inequality

n− 1−m−multZ(MX) > 0

implies the existence of a proper subvariety ∆ ⊂ G that is a centre of canonical
singularities of the log pair (V,MV ). Hence

LCS
(
G,MV

∣∣
G

)
̸= ∅

by Corollary 17, which contradicts Proposition 20.
Thus, we have shown that multO(F ) = 2k+1 > 3 for k ∈ N such that k 6 n−3.
Let α : W → Pn be a blow-up of O, Λ the exceptional divisor of a birational

morphism α, and F̃ ⊂ W the proper transform of the hypersurface F . Then F̃ is
smooth in the neighbourhood of Λ because O is an ordinary singular point. Let
S = F̃ ∩ Λ. Then

S ⊂ Λ ∼= Pn−1

is a smooth hypersurface of degree 2k + 1.
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Let π̃ : X̃ →W be a double cover ramified in the divisor

F̃ ∪ Λ ∼ 2
(
α∗(OPn(n))− kΛ

)
,

which is smooth only in S. Let S̃ = π̃−1(S). Then W is smooth outside S̃ ⊂ W

and W has an ordinary double point along S̃.
Let Ξ be the proper transform of Λ on X̃. Then Ξ ∼= Pn−1 and there exists

a birational morphism ξ : X̃ → X contracting Ξ into the point Z so that the
diagram

V

ξ

��

π̃ // W
α

!!B
B

B
B

X π
// Pn

is commutative. It is easy to see that ξ is the restriction to X of the weighted
blow-up of the weighted projective space P(1n+1, n) at the smooth point Z with
weights (2k + 1, 2n).

Let multZ(MX) be a positive rational number such that

MX̃ ≡ ξ∗(MX)−multZ(MX)Ξ,

where MX̃ is the proper transform of the divisor MX on X̃. Then

KX̃ +MX̃ ≡ ξ∗(KX +MX) +
(
2(n− 1− k)−multZ(MX)

)
Ξ,

and the linear system |ξ∗(−KX) − 2Ξ| yields a fibration ω : X̃ → Pn−1 such that
the diagram

V

ξ

��

ω // Pn−1

X π
// Pn

χ

<<y
y

y
y

is commutative; here χ is the projection from O.
Intersecting MX̃ with a general fibre of ω we see that multZ(MX) < 2. Then

2(n− 1− k)−multZ(MX) > 0

which implies the existence of a centre of canonical singularities

∇ ∈ CS
(
X̃, MX̃ −

(
2(n− 1− k)−multZ(MX)

)
Ξ

)
such that ∇ ⊂ G. Thus,

∇ ∈ LCS
(
X̃, MX̃ −

(
2(n− 1− k)−multZ(MX)

)
Ξ + 2Ξ

)
because 2Ξ is a Cartier divisor. However,

LCS
(
X̃, MX̃ −

(
2(n− 2− k)−multZ(MX)

)
Ξ

)
⊂ LCS(X̃, MX̃ + Ξ)
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since 2k + 1 6 2(n− 2), which means that

LCS
(
Ξ,DiffΞ(MX̃)

)
= LCS

(
Ξ, MX̃

∣∣
Ξ

+ DiffΞ(0)
)
̸= ∅

by Theorem 16. In the present case DiffΞ(0) = 1
2 S̃ (see [9]) and

MX̃

∣∣
Ξ
≡ −multZ(MX)Ξ

∣∣
Ξ
≡ multZ(MX)

2
H,

where H is a hyperplane section of the hypersurface Ξ ∼= Pn−1. We now see that

LCS
(

Ξ, MX̃

∣∣
Ξ

+
1
2
S̃

)
̸= ∅,

which contradicts Proposition 21.

Lemma 25. codim(Z ⊂ X) = 2.

Proof. Assume that codim(Z ⊂ X) > 2. Then dim(Z) ̸= 0 by Lemmas 23 and 24,
but

multZ(M2
X) > 4

by Theorem 18. Take a generic point O on Z and sufficiently general divisors
H1, . . . ,Hn−2 in the linear system |π∗(OPn(1))| that pass through the point O.
Then

2 > M2
X ·H1 · · ·Hn−2 > multZ(M2

X) > 4,

which is a contradiction.

Let H1, . . . ,Hn−2 be general divisors in |π∗(OPn(1))|. Then

2 > M2
X ·H1 · · ·Hn−2 > mult2Z(MX)Z ·H1 · · ·Hn−2 > Z ·H1 · · ·Hn−2

because −(KX+MX) is ample, so that π(Z) is a linear subspace of Pn of dimension
n− 2, and π

∣∣
Z

: Z → π(Z) is an isomorphism.
Let V =

⋂n−3
i=1 Hi, C = Z ∩ V , MV = MX

∣∣
V

, and τ = π
∣∣
V

. Then
• V is a smooth 3-fold;
• C ⊂ V is an irreducible curve;
• MV is an effective movable boundary;
• τ : V → P3 is a double cover;
• τ is branched over a surface S ⊂ P3 of degree 2n;
• τ(C) is a line in P3;
• τ

∣∣
C

is an isomorphism;
• τ∗(OP3(1))−MV is an ample divisor;
• multC(MV ) = multZ(MX).

Assume that τ(C) ̸⊂ S. Then there exists a curve C̃ ⊂ V such that

τ(C) = τ(C̃)

and C ̸= C̃. Consider a general divisor D ∈ |τ∗(OP3(1))| passing through C. Then
D is a smooth surface, and C, C̃ are smooth rational curves on this surface. We
have

C2 = C̃2 = 1− n < 0
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on the surface D. Let MD = MV

∣∣
D

. Then

MD = multC(MV )C + multC̃(MV )C̃ + ∆,

where ∆ is a movable boundary on D. On the other hand, MV ≡ rD for a positive
rational number r < 1. Hence(

r −multC̃(MV )
)
C̃ ≡

(
multC(MV )− r

)
C + ∆,

and the inequality C̃2 < 0 implies that multC̃(MV ) > r. Let H be a sufficiently
general divisor in the linear system |τ∗(OP3(1))|. Then

2r2 = M2
V ·H > mult2C(MV ) + mult2

C̃
(MV ) > 1 + r2,

which contradicts the inequality r < 1. Thus, we have shown that τ(C) ⊂ S.
Let O be a general point on τ(C) and T a hyperplane in P3 tangent to S at O.

Let L̆ be an irreducible curve in V such that O ∈ τ(L̆) ⊂ T . Then

L̆ ⊂ Supp(MV )

because otherwise we have the incompatible inequalities

2 > L̆ ·MV > 2 multC(MV ) > 2

since L̆ is singular at the point dominating O.
The curve L̆ spans a divisor on V as the line τ(L̆) ⊂ T varies. This contradicts

the movability of MV , which completes the proof of Theorem 2.

§ 4. Proof of Theorems 7 and 8

Let π : X → Pn, n > 4, be a double cover branched over an irreducible reduced
hypersurface F ⊂ Pn of degree 2n that has only isolated ordinary singularities of
multiplicity at most 2(n− 2).

Let ρ : Y 99K X be a birational map such that Y carries the structure of an elliptic
fibration τ : Y → Z. Consider a general very ample divisor D on the variety Z and
the linear system D = |τ∗(D)|. Let M = ρ(D).

Remark 26. The linear system M is not composed of a pencil.

By Lemma 22 there exists a positive rational number r such that the rational
equivalence KX + rM ≡ 0 holds. Let MX = rM . Then

CS(X,MX) ̸= ∅

by Theorem 10. Let Z be an element of the set CS(X,MX) having the highest
dimension.

Lemma 27. The subvariety Z ⊂ X is not a smooth point of X .

Proof. See the proof of Lemma 23.
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Lemma 28. Let Z be a singular point of X . Then the diagram

X

τ◦ρ
���
�
�

π // Pn

χ

��
Z γ

//___ Pn−1

is commutative, where γ is a birational map and χ the projection from a point
π(Z) ∈ F such that multπ(Z)(F ) = 2(n− 2).

Proof. Let O = π(Z). Then O is an ordinary singular point of F ⊂ Pn such that
multO(F ) 6 2(n− 2).

Let multO(F ) = 2m > 2 for some positive integer m. The variety X is a hyper-
surface in P(1n+1, n) of degree 2n and there exists a weighted blow-up

β : U → P(1n+1, n)

of the point Z with weights (m, 1n) such that the proper transform V ⊂ U of X is
smooth in the neighbourhood of the exceptional divisor E of β.

The morphism β induces a birational morphism α : V → X. Let G be the
exceptional divisor of α. Then E

∣∣
V

= G and G is a double cover of Pn−1 branched
over a smooth hypersurface of degree 2m.

Let MV be the proper transform of MX on V . Then

MV ≡ α∗(MX)−multZ(MX)G,

where multZ(MX) is a positive rational number. We now have

KV +MV ≡ α∗(KX +MX) +
(
n− 1−m−multZ(MX)

)
G,

and on the other hand, the linear system |α∗(−KX)−G| defines a fibration

ψ : V → Pn−1

such that ψ = χ ◦ π ◦ α, where χ : Pn 99K Pn−1 is the projection from the point O.
Let C be a general fibre of ψ. Then

MV · C = 2
(
1−multZ(MZ)

)
and g(C) = n−m+ 1. Hence multZ(MX) 6 1.

The equality multZ(MX) = 1 implies that ψ and τ are birationally equivalent
fibrations, which is impossible in the case when m < n− 2 because then g(C) ̸= 1.
In the case when m = n − 2 the birational equivalence of the fibrations τ and ψ
yields the required result.

We can assume that multZ(MX) < 1. Proceeding as in the proof of Lemma 24
we now arrive at a contradiction.

Thus, we can assume that O is a singular point of odd multiplicity of the hyper-
surface F . In this case the above arguments in combination with the proof of
Lemma 24 bring us to a contradiction.

Lemma 29. codim(Z ⊂ X) = 2.

Proof. See the proof of Lemma 25.
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Lemma 30. The equality codim(Z ⊂ X) = 2 is impossible.

Proof. Let codim(Z ⊂ X) = 2. Consider sufficiently general divisors H1, . . . ,Hn−2

in |π∗(OPn(1))|. Then

2 = M2
X ·H1 · · ·Hn−2 > mult2Z(MX)Z ·H1 · · ·Hn−2 > Z ·H1 · · ·Hn−2,

and the integer k = Z ·H1 · · ·Hn−2 is equal to 1 or 2.
Let k = 2. Then for two sufficiently general divisors D1 and D2 in the linear

system M their intersection D1 ∩ D2 coincides with Z in the set-theoretic sense.
Let P be a sufficiently general point of X not lying in Z and let D be a linear
subsystem of M consisting of the divisors passing through P . Then D has no base
components because M is not composed of a pencil. Assume that both divisors D1

and D2 are from D . Then D1 ∩D2 = Z, which is a contradiction.
Thus, k = 1. That is, π(Z) is a linear subspace of Pn of dimension n−2 and π

∣∣
Z

is an isomorphism.
Assume that π(Z) ̸⊂ F . Then there exists a subvariety Z̃ ⊂ X of codimension 2

such that π(Z̃) = π(Z) and Z̃ ̸= Z. The proof of Theorem 2 now immediately
yields

multZ̃(MX) = multZ(MX) = 1,

and we can obtain a contradiction as in the case k = 2.
Thus, π(Z) ⊂ F . Consider the smooth 3-fold

V =
n−3⋂
i=1

Hi

and the curve C = Z ∩ V . Let MV = MX

∣∣
V

, D = M
∣∣
V

, and τ = π
∣∣
V

. Then

τ : V → P3

is a double cover branched over a smooth surface S ⊂ P3 of degree 2n.
The curve τ(C) is a line lying in S, and τ

∣∣
C

is an isomorphism. Moreover, we
have the equivalence

MV ≡ τ∗(OP3(1)),

and multC(MV ) = multZ(MX) > 1.
Let O be a general point on τ(C) and T a hyperplane in P3 tangent to the

hypersurface S at O. Let L̆ be an irreducible curve on V such that O ∈ τ(L̆) ⊂ T .
Then

2 > L̆ ·MV > 2 multC(MV ) > 2,

and therefore multC(MV ) = 1 because L̆ spans a divisor as the line τ(L̆) ⊂ T
varies.

Let ψ : U → V be the blow-up of C, G the ψ-exceptional divisor, D a general
divisor in ∣∣(τ ◦ ψ)∗(OP3(1))−G

∣∣,
and MU the proper transform of MV on the variety U . We set MD = MU

∣∣
D

. Then

MD = multC̃(MU )C̃ + ∆,
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where C̃ ⊂ G is a base curve of the linear system
∣∣(τ ◦ f)∗(OP3(1)) − G

∣∣ and ∆ is
a movable boundary on D. We now have C̃2 = 1− n, but on the other hand,

MD ≡ C̃,

which immediately implies that multC̃(MU ) = 1 and ∆ = ∅.
Blowing up the curve C̃ we see that the linear system D lies in the fibres of

the rational map given by the pencil
∣∣(τ ◦ f)∗(OP3(1)) − G

∣∣, which is impossible
because D is not composed of a pencil.

Thus, the proof of Theorem 7 is complete. The proof of Theorem 8 is almost
identical to the proof of Theorem 7. The only difference is the use of Theorem 11
instead of Theorem 10.
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