On nodal sextic fivefold

Ivan Cheltsov* ${ }^{* 1}$
${ }^{1}$ School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK

Received 15 June 2005, revised 24 November 2005, accepted 13 June 2007
Published online 7 August 2007
Key words Nonrational, hypersurface, Fano variety, birationally rigid, birational automorphisms MSC (2000) 14E05, 14E07, 14E08, 14J40, 14J45, 14J70

We prove birational superrigidity and nonrationality of every sextic fivefold with ordinary double points.
© 2007 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

All varieties are assumed to be projective, normal and defined over \mathbf{C}.
In many cases the only known way to prove the nonrationality of a given Fano variety is to prove its birational rigidity (cf. [16], [7] and [4]). Many counterexamples to the Lüroth problem are obtained in this way (see [13]).

Birational rigidity is proved in the following cases:

- for some smooth Fano threefolds (see [13], [12] and [14]);
- for many singular Fano threefolds (see [20], [22], [11], [9], [8] and [17]);
- for many smooth Fano n-folds (see [18], [23], [25], [2], [26], [27], [30], [10], [3] and [4]), where $n>3$;
- for some singular Fano n-folds (see [20], [22], [28], [29] and [4]), where $n>3$.

Let X be a hypersurface in \mathbf{P}^{6} of degree 6 that has at most isolated ordinary double points. Then

$$
-\left.K_{X} \sim \mathcal{O}_{\mathbf{P}^{6}}(1)\right|_{X}
$$

the variety X has \mathbf{Q}-factorial terminal singularities and $\operatorname{rk} \operatorname{Pic}(X)=1$ (see [1]). We prove the following result.
Theorem 1.1 The hypersurface X is birationally superrigid.
In the smooth case the assertion of Theorem 1.1 is proved in [2].
Example 1.2 The singularities of the hypersurface

$$
x_{0}^{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}\right)=x_{1}^{6}+x_{2}^{6}+x_{3}^{6}+x_{4}^{6}+x_{5}^{6}+x_{6}^{6} \subset \mathbf{P}^{6} \cong \operatorname{Proj}\left(\mathbf{C}\left[x_{0}, \ldots, x_{6}\right]\right)
$$

consist of a single ordinary double point, which implies that it is nonrational by Theorem 1.1.
Example 1.3 Let X be a hypersurface with 729 isolated ordinary double points

$$
\sum_{i=0}^{2} a_{i}\left(x_{0}, \ldots, x_{6}\right) b_{i}\left(x_{0}, \ldots, x_{6}\right)=0 \subset \mathbf{P}^{6} \cong \operatorname{Proj}\left(\mathbf{C}\left[x_{0}, \ldots, x_{6}\right]\right)
$$

where a_{i} and b_{i} are general homogeneous polynomials of degree 3 . Then X is nonrational by Theorem 1.1.
The assertion of Theorem 1.1 is a fivefold generalization of the birational rigidity of a nodal \mathbf{Q}-factorial quartic threefold (see [13], [20] and [17]). The assertion of Theorem 1.1 is relevant to the results obtained in [28] and [29], which cannot be used to produce explicit examples of nonrational Fano hypersurfaces.

[^0]
2 The Noether-Fano inequality

Let X be an arbitrary Fano variety having at most terminal and \mathbf{Q}-factorial singularities such that $\operatorname{rk} \operatorname{Pic}(X)=1$, and the variety X is not birationally superrigid. Then the following result holds (see [5]).

Theorem 2.1 There is a linear system \mathcal{M} on the variety X such that \mathcal{M} does not have fixed components, and the singularities of the log pair $(X, \gamma \mathcal{M})$ are not canonical, where $\gamma \in \mathbf{Q}$ is such that $K_{X}+\gamma \mathcal{M} \equiv 0$.

In the rest of the section we prove Theorem 2.1. Let $\rho: X \rightarrow Y$ be a birational map such that the rational map ρ is not biregular and one of the following holds:

- the variety Y has terminal \mathbf{Q}-factorial singularities and $\operatorname{rk} \operatorname{Pic}(Y)=1$ (the Fano case);
- the variety Y is smooth, and there is a surjective morphism $\tau: Y \rightarrow Z$ such that sufficiently general fiber of the morphism τ has negative Kodaira dimension, and $\operatorname{dim}(Y) \neq \operatorname{dim}(Z) \neq 0$ (the fibration case).

Let us consider a commutative diagram

such that the variety W is smooth, α and β are birational morphisms. In the Fano case let \mathcal{D} be the complete linear system $\left|-r K_{Y}\right|$ for $r \gg 0$, in the fibration case let \mathcal{D} be the linear system $\left|\tau^{*}(H)\right|$, where H is a very ample divisor on the variety Z. Let \mathcal{M} be a proper transform of \mathcal{D} on the variety X. Take a $\gamma \in \mathbf{Q}$ such that

$$
K_{X}+\gamma \mathcal{M} \equiv 0
$$

Suppose that the singularities of the \log pair $(X, \gamma \mathcal{M})$ are canonical. Let us show that this assumption leads to a contradiction. Let \mathcal{B} be a proper transform on W of the linear system \mathcal{M}. Then

$$
\sum_{i=1}^{k} a_{i} F_{i} \equiv \alpha^{*}\left(K_{X}+\gamma \mathcal{M}\right)+\sum_{i=1}^{k} a_{i} F_{i} \equiv K_{W}+\gamma \mathcal{B} \equiv \beta^{*}\left(K_{Y}+\gamma \mathcal{D}\right)+\sum_{i=1}^{l} b_{i} G_{i}
$$

where F_{j} is a β-exceptional divisor, G_{i} is an α-exceptional divisor, a_{i} is a nonnegative rational number, and b_{i} is a positive rational number. Let n be a sufficiently big and sufficiently divisible natural number. Then

$$
1=h^{0}\left(\mathcal{O}_{W}\left(\sum_{j=1}^{k} n a_{j} F_{j}\right)\right)=h^{0}\left(\mathcal{O}_{W}\left(\beta^{*}\left(n K_{Y}+n \gamma \mathcal{D}\right)+\sum_{i=1}^{l} n b_{i} G_{i}\right)\right)
$$

but $h^{0}\left(\mathcal{O}_{W}\left(\beta^{*}\left(n K_{Y}+\gamma \mathcal{D}\right)+\sum_{i=1}^{l} n b_{i} G_{i}\right)\right)=0$ in the fibration case. Hence, the fibration case is impossible.
In the Fano case the equality $h^{0}\left(\mathcal{O}_{W}\left(\beta^{*}\left(n K_{Y}+\gamma \mathcal{D}\right)+\sum_{i=1}^{l} n b_{i} G_{i}\right)\right)=1$ implies that $\gamma=1 / r$. Then

$$
\sum_{i=1}^{k} a_{i} F_{i} \equiv \sum_{i=1}^{l} b_{i} G_{i}
$$

and $\sum_{i=1}^{k} a_{i} F_{i}=\sum_{i=1}^{l} b_{i} G_{i}$ by [15, Lemma 2.19]. Thus, the \log pair $(X, \gamma \mathcal{M})$ has terminal singularities.
There is a rational number $\mu>\gamma$ such that $(X, \mu \mathcal{M})$ and $(X, \mu \mathcal{B})$ have terminal singularities. Then

$$
\alpha^{*}\left(K_{X}+\mu \mathcal{M}\right)+\sum_{i=1}^{k} a_{i}^{\prime} F_{i} \equiv K_{W}+\mu \mathcal{B} \equiv \beta^{*}\left(K_{Y}+\mu \mathcal{D}\right)+\sum_{i=1}^{l} b_{i}^{\prime} G_{i},
$$

where a_{i}^{\prime} and b_{i}^{\prime} are positive rational numbers.
Let n be a sufficiently big and divisible natural number, and let $\psi: W \rightarrow U$ be a rational map that is given by the linear system $\left|n K_{W}+n \mu \mathcal{B}\right|$. Then the map $\psi \circ \beta^{-1}$ is biregular, because the divisor $n\left(K_{Y}+\mu \mathcal{D}\right)$ is very ample. But the divisor $\sum_{i=1}^{l} n b_{i}^{\prime} G_{i}$ is effective and β-exceptional. Similarly, we see that $\psi \circ \alpha^{-1}$ is biregular, which implies that ρ is biregular. The latter is a contradiction. Thus, we proved Theorem 2.1.

3 The lemma of Corti

Let X be a variety with an ordinary double point $O \in X$, and let B_{X} be an effective Q-Cartier divisor on X. Let

$$
\pi: W \longrightarrow X
$$

be a blow up of the point O, E be a π-exceptional divisor, and B_{W} be a proper transform of B_{X} on W. Then

$$
\pi^{*}\left(B_{X}\right) \equiv B_{W}+\operatorname{mult}_{O}\left(B_{X}\right) E
$$

where mult $O_{O}\left(B_{X}\right)$ is a nonnegative rational number.
Suppose that $\operatorname{dim}(X) \geqslant 3$ and the \log pair $\left(X, B_{X}\right)$ is not canonical at the point O. Then mult $O\left(B_{X}\right)>1 / 2$. In the rest of the section we prove the following result, which is implied by [6, Theorem 3.10].
Lemma 3.1 The inequality mult $O_{O}\left(B_{X}\right)>1$ holds.
Suppose that mult $O_{O}\left(B_{X}\right) \leqslant 1$. Let us show that this assumption leads to a contradiction.
Replacing the divisor B_{X} by $(1-\epsilon) B_{X}$ for some positive sufficiently small rational number ϵ, we may assume that $\operatorname{mult}_{O}\left(B_{X}\right)<1$. Taking hyperplane sections, we may assume that $\operatorname{dim}(X)=3$ by [15, Theorem 17.6].

Lemma 3.2 Let S be a surface $\mathbf{P}^{1} \times \mathbf{P}^{1}$, and B_{S} be an effective divisor on the surface S of bi-degree (a, b), where a and b are rational numbers in $[0,1)$. Then the log pair $\left(S, B_{S}\right)$ has log-terminal singularities.

Proof. Suppose that the singularities of $\left(S, B_{S}\right)$ are not log-terminal. Then the locus of log canonical singularities $\operatorname{LCS}\left(S, B_{S}\right)$ is not empty and consists of points of the surface S. Then $\operatorname{LCS}\left(S, F+B_{S}\right)$ is not connected, where F is a general fiber of any projection of the surface S to \mathbf{P}^{1}. The later contradicts [15, Theorem 17.4].

The inequality mult $O\left(B_{X}\right)<1$ and the equivalence

$$
K_{W}+B_{W} \equiv \pi^{*}\left(K_{X}+B_{X}\right)+\left(1-\operatorname{mult}_{O}\left(B_{X}\right)\right) E,
$$

imply that there is a proper subvariety $Z \subset E$ such that the log pair $\left(W, B_{W}\right)$ is not canonical at general point of the variety Z. Then $\left(E,\left.B_{W}\right|_{E}\right)$ is not log terminal by [15, Theorem 17.6], which is impossible by Lemma 3.2.

4 Main inequalities

Let X be a variety with an ordinary double point $O \in X$, and let \mathcal{M} be a liner system on the variety X such that the linear system \mathcal{M} does not have fixed components. Put $r=\operatorname{dim}(X)$. Suppose that $r \geqslant 4$. Let

$$
\pi: V \longrightarrow X
$$

be a blow up of the variety X at the point O, and let E be a π-exceptional divisor. Let \mathcal{B} be a proper transform of the linear system \mathcal{M} on the variety V. The variety E can be identified with a smooth quadric in \mathbf{P}^{r}. Then

$$
\mathcal{B} \sim \pi^{*}(\mathcal{M})-\operatorname{mult}_{O}(\mathcal{M}) E
$$

where $\operatorname{mult}_{O}(\mathcal{M})$ is a natural number, which is different from the multiplicity of \mathcal{M} at the point O.
Let S_{1} and S_{2} be sufficiently general divisors in the linear system \mathcal{M}, and H_{i} be a sufficiently general hyperplane section of the variety X that passes through the point O, where $i=1, \ldots, r-2$. Put

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2}\right)=2 \operatorname{mult}_{O}^{2}\left(S_{i}\right)+\sum_{P \in E} \operatorname{mult}_{P}\left(\widehat{S}_{1} \cdot \widehat{S}_{2}\right) \operatorname{mult}_{P}\left(\widehat{H}_{1}\right) \ldots \operatorname{mult}_{P}\left(\widehat{H}_{r-2}\right)
$$

where mult $_{O}\left(S_{i}\right)$ and mult ${ }_{O}\left(H_{i}\right)$ are natural numbers that are defined in the same way as the number mult $O(\mathcal{M})$, and \widehat{S}_{i} and \widehat{H}_{i} are the proper transforms on the variety V of the divisors S_{i} and H_{i}, respectively.

Remark 4.1 It follows from elementary properties of blow ups that the inequality

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2}\right) \geqslant 2 \operatorname{mult}_{O}^{2}\left(S_{i}\right)+\operatorname{mult}_{Z}\left(\widehat{S}_{1} \cdot \widehat{S}_{2}\right)
$$

holds for any irreducible subvariety $Z \subset E$ of codimension one.

Example 4.2 Let X be a singular hypersurface in \mathbf{P}^{6} of degree 6 that has at most isolated ordinary double points, and let O be a singular point of the variety X. It follows from [1] that

$$
S_{i} \sim n H
$$

where H is a hyperplane section of the variety X, and $n \in \mathbf{N}$. Then mult $O\left(S_{1} \cdot S_{2}\right) \leqslant 6 n^{2}$.
Suppose that $\left(X, \frac{1}{n} \mathcal{M}\right)$ is canonical in a punctured neighborhood of O, and $\left(X, \frac{1}{n} \mathcal{M}\right)$ is not canonical at O.
Lemma 4.3 Suppose that $r>5$. Then mult $O\left(S_{1} \cdot S_{2}\right)>6 n^{2}$.
Proof. We may assume that $r=6$, because the proof in the case $r>6$ is similar. Then

$$
K_{V}+\frac{1}{n} \mathcal{B} \equiv \pi^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}\right)+\left(4-\frac{\operatorname{mult}_{O}(\mathcal{M})}{n}\right) E .
$$

Put $\check{X}=\bigcap_{i=1}^{3} H_{i}$ and $\check{\mathcal{M}}=\left.\mathcal{M}\right|_{\check{X}}$. The point O is an ordinary double point of the variety \check{X}, and the singularities of the \log pair $\left(\check{X}, \frac{1}{n} \mathcal{M}\right)$ are not \log canonical in the point O by [15, Theorem 17.6].

Let $\check{\pi}: \check{V} \rightarrow \check{X}$ be a blow up of the point O, and \check{E} be an exceptional divisor of $\check{\pi}$. Then the diagram

is commutative, where \check{V} is identified with a proper transform of \check{X} on the variety V. We have $\check{E}=E \cap \check{V}$. Then

$$
\operatorname{mult}_{O}(\check{\mathcal{M}})=\operatorname{mult}_{O}(\mathcal{M})
$$

and we may assume that mult $_{O}(\mathcal{M})<2 n$, because otherwise mult $O_{O}\left(S_{1} \cdot S_{2}\right)>6 n^{2}$.
Let \mathcal{B} be a proper transform of the linear system \mathcal{M} on the variety V, and $\mathscr{\mathcal { B }}$ be a proper transform of the linear system \mathcal{M} on the threefold V. Then $\breve{\mathcal{B}}=\left.\mathcal{B}\right|_{\check{V}}$ and we have

$$
K_{V}+\frac{1}{n} \mathcal{B}+\left(\frac{\operatorname{mult}_{O}(\mathcal{M})}{n}-1\right) E+\widehat{H}_{1}+\widehat{H}_{2}+\widehat{H}_{3} \equiv \pi^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}+H_{1}+H_{2}+H_{3}\right)
$$

and

$$
K_{\check{V}}+\frac{1}{n} \check{\mathcal{B}}+\left(\frac{\operatorname{mult}_{O}(\mathcal{M})}{n}-1\right) \check{E} \equiv \check{\pi}^{*}\left(K_{\check{X}}+\frac{1}{n} \check{\mathcal{M}}\right),
$$

but $\operatorname{mult}_{O}(\mathcal{M})<2 n$. Thus, there are irreducible subvarieties $\Omega \subsetneq E$ and $\check{\Omega} \subsetneq \check{E}$ such that

- the \log pair $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ is not \log canonical at general point of Ω,
- the $\log \operatorname{pair}\left(\check{V}, \frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)$ is not \log canonical at general point of $\check{\Omega}$, and $\check{\Omega} \subseteq \Omega \cap \check{V}$.

We may assume that Ω and $\check{\Omega}$ have the biggest dimensions among all subvarieties having such properties.
We have $\check{\Omega}=\Omega \cap \check{V}$ when $\operatorname{dim}(\check{\Omega})>0$. Let us show that $\check{\Omega}=\Omega \cap \check{V}$ when $\operatorname{dim}(\check{\Omega})=0$.
Applying [15, Theorem 17.4] to the \log pair $\left(\check{V}, \frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)$ and the morphism $\check{\pi}$, we see that in the case $\operatorname{dim}(\check{\Omega})=0$ the locus of log canonical singularities

$$
\operatorname{LCS}\left(\check{V}, \frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)
$$

consists of a single point $\check{\Omega}$ in the neighborhood of the divisor \check{E}. In particular, we have $\check{\Omega}=\Omega \cap \check{V}$.
Suppose that $\operatorname{dim}(\check{\Omega})=0$. Then $\check{\Omega}=\Omega \cap \check{V}$ implies that Ω is a linear subspace in \mathbf{P}^{6} of codimension 3 that is contained in the smooth quadric hypersurface $E \subset \mathbf{P}^{6}$. The latter is impossible by the Lefschetz theorem.

Hence, the inequality $\operatorname{dim}(\check{\Omega}) \geqslant 1$ holds, which implies $\operatorname{dim}(\Omega)=4$.

We see that the singularities of the $\log \operatorname{pair}\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ are not log canonical at general point of the irreducible subvariety $\Omega \subset E$ that has dimension 4. Therefore, we can apply [6, Theorem 3.1] to the \log pair $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ in the general point of the subvariety Ω. The latter gives

$$
\operatorname{mult}_{\Omega}\left(\widehat{S}_{1} \cdot \widehat{S}_{2}\right)>4\left(2 n^{2}-\operatorname{mult}_{O}(\mathcal{M})\right)
$$

where \widehat{S}_{i} is a proper transform of S_{i} on the variety V. Hence, the inequalities

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2}\right) \geqslant 2 \operatorname{mult}_{O}(\mathcal{M})^{2}+\operatorname{mult}_{\Omega}\left(\widehat{S}_{1} \cdot \widehat{S}_{2}\right)>6 n^{2}+2\left(n-\operatorname{mult}_{O}(\mathcal{M})\right)^{2} \geqslant 6 n^{2}
$$

hold, which is exactly what we need to proof.
Let Δ be an effective divisor on the variety X passing through the point O and $\hat{\Delta}$ be its proper transform on the variety V. Suppose that Δ does not contain irreducible components of the cycle $S_{1} \cdot S_{2}$, and $\hat{\Delta}$ does not contain irreducible components of the cycle $\widehat{S}_{1} \cdot \widehat{S}_{2}$. Then we can put

$$
\begin{aligned}
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2} \cdot \Delta\right)= & 2 \operatorname{mult}_{O}^{2}\left(S_{i}\right) \operatorname{mult}_{O}(\Delta) \\
& +\sum_{P \in E} \operatorname{mult}_{P}\left(\widehat{S}_{1} \cdot \widehat{S}_{2} \cdot \hat{\Delta}\right) \operatorname{mult}_{P}\left(\widehat{H}_{1}\right) \ldots \operatorname{mult}_{P}\left(\widehat{H}_{r-3}\right)
\end{aligned}
$$

which implies mult $\left(S_{1} \cdot S_{2} \cdot \Delta\right)=\operatorname{mult}_{O}\left(\left.\left.S_{1}\right|_{\Delta} \cdot S_{2}\right|_{\Delta}\right)$ if O is an isolated ordinary double point of Δ.
Lemma 4.4 Suppose that $r=4$. Then there is a line $\Lambda \subset E \subset \mathbf{P}^{4}$ such that

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2} \cdot \Delta\right)>6 n^{2}
$$

in the case when O is an ordinary double point of the divisor Δ, and $\Lambda \subset \hat{\Delta}$.
Proof. We have mult $O(\mathcal{M})>n$ by Lemma 3.1, but

$$
K_{V}+\frac{1}{n} \mathcal{B} \equiv \pi^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}\right)+\left(2-\frac{\operatorname{mult}_{O}(\mathcal{M})}{n}\right) E .
$$

Suppose that O is an ordinary double point on Δ. Put $\bar{S}_{i}=\left.S_{i}\right|_{\Delta}$ and $\overline{\mathcal{M}}=\left.\mathcal{M}\right|_{\Delta}$. Then the log pair $\left(\Delta, \frac{1}{n} \overline{\mathcal{M}}\right)$ is not \log canonical in the point O by [15, Theorem 17.6].

Let $\tilde{\pi}: \tilde{\Delta} \rightarrow \Delta$ be a blow up of O, and \widetilde{E} is a $\bar{\pi}$-exceptional divisor. Then the diagram

is commutative, where we can identify $\tilde{\Delta}$ with $\hat{\Delta}$, and $\widetilde{E}=E \cap \tilde{\Delta}$ can be considered as a nonsingular quadric hypersurface in \mathbf{P}^{3}. The inequality mult $o(\overline{\mathcal{M}}) \geqslant 2 n$ gives

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2} \cdot \Delta\right)=\operatorname{mult}_{O}\left(\bar{S}_{1} \cdot \bar{S}_{2}\right) \geqslant 8 n^{2}
$$

hence, we may assume that $\operatorname{mult}_{O}(\overline{\mathcal{M}})<2 n$.
Let $\widetilde{\mathcal{M}}$ be a proper transform of the linear system $\overline{\mathcal{M}}$ on the variety $\tilde{\Delta}$. Then mult ${ }_{O}(\overline{\mathcal{M}})<2 n$ implies that there is an irreducible subvariety $\Xi \subsetneq \widetilde{E}$ such that the singularities of the \log pair

$$
\left(\tilde{\Delta}, \frac{1}{n} \widetilde{\mathcal{M}}+\left(\operatorname{mult}_{O}(\overline{\mathcal{M}}) / n-1\right) \widetilde{E}\right)
$$

are not \log canonical in the general point of Ξ.

Suppose that Ξ is a curve. Let \widetilde{S}_{i} be a proper transform of \bar{S}_{i} on the variety $\tilde{\Delta}$. Then the inequality

$$
\operatorname{mult}_{O}\left(\bar{S}_{1} \cdot \bar{S}_{2}\right) \geqslant 2 \operatorname{mult}_{O}(\mathcal{M})^{2}+\operatorname{mult}_{\Xi}\left(\tilde{S}_{1} \cdot \tilde{S}_{2}\right)
$$

holds. Applying [6, Theorem 3.1] to $\left(\tilde{\Delta}, \frac{1}{n} \widetilde{\mathcal{M}}+\left(\operatorname{mult}_{O}(\overline{\mathcal{M}}) / n-1\right) \widetilde{E}\right)$ at the general point of Ξ, we see that

$$
\operatorname{mult}_{\Xi}\left(\widetilde{S}_{1} \cdot \widetilde{S}_{2}\right)>4\left(2 n^{2}-n \text { mult }_{O}(\overline{\mathcal{M}})\right)
$$

which immediately implies that

$$
\operatorname{mult}_{O}\left(\bar{S}_{1} \cdot \bar{S}_{2}\right)>2 \operatorname{mult}_{O}^{2}(\overline{\mathcal{M}})+4\left(2 n^{2}-n \operatorname{mult}_{O}(\overline{\mathcal{M}})\right) \geqslant 6 n^{2}
$$

To conclude the proof we may assume that Ξ is a point.
Suppose that Δ is a general hyperplane section of X such that $O \in \Delta$. We can apply [15, Theorem 17.4] to the morphism $\tilde{\pi}$ and the $\log \operatorname{pair}\left(\tilde{\Delta}, \frac{1}{n} \widetilde{\mathcal{M}}+\left(\operatorname{mult}_{O}(\overline{\mathcal{M}}) / n-1\right) \widetilde{E}\right)$. We see that

- either $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ is not \log canonical at general point of a surface contained in E,
- or $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ is not \log canonical at general point of a line $\Lambda \subset E$ and $\Xi=\Lambda \cap \hat{\Delta}$.

In the case when the \log pair $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ is not \log canonical at general point of a surface contained in E, the previous arguments implies the inequality mult ${ }_{O}\left(\bar{S}_{1} \cdot \bar{S}_{2}\right)>6 n^{2}$.

We may assume that there is a line $\Lambda \subset E$ such that $\Xi=\Lambda \cap \tilde{\Delta}$ and the singularities of the log pair

$$
\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)
$$

are not \log canonical at general point of the curve Λ.
The line Λ does not depend on the choice of Δ. So, we may assume that $\Lambda \subset \hat{\Delta}$, where $\hat{\Delta}=\tilde{\Delta}$. Then

$$
\left(\tilde{\Delta}, \frac{1}{n} \widetilde{\mathcal{M}}+\left(\operatorname{mult}_{O}(\overline{\mathcal{M}}) / n-1\right) \widetilde{E}\right)
$$

is not \log canonical at the general point of Λ by [15, Theorem 17.6], because mult $O(\mathcal{M})>n$.
Now we can apply [6, Theorem 3.1] to the $\log \operatorname{pair}\left(\tilde{\Delta}, \frac{1}{n} \widetilde{\mathcal{M}}+\left(\operatorname{mult}_{O}(\overline{\mathcal{M}}) / n-1\right) \widetilde{E}\right)$ at general point of the curve Λ to obtain the inequalities

$$
\operatorname{mult}_{O}\left(\bar{S}_{1} \cdot \bar{S}_{2}\right)>2 \operatorname{mult}_{O}^{2}(\overline{\mathcal{M}})+4\left(2 n^{2}-n \text { mult }_{O}(\overline{\mathcal{M}})\right) \geqslant 6 n^{2}
$$

which conclude the proof.
Finally, let us prove the following result.
Lemma 4.5 Suppose that $r=5$. Then mult $O\left(S_{1} \cdot S_{2}\right)>6 n^{2}$.
Proof. Put $\check{X}=H_{1} \cap H_{2}$ and $\check{\mathcal{M}}=\left.\mathcal{M}\right|_{\check{X}}$. Then $\left(\check{X}, \frac{1}{n} \check{\mathcal{M}}\right)$ is not log canonical at O by [15, Theorem 17.6], and O is an ordinary double point of the threefold \check{X}. Let $\check{\pi}: \check{V} \rightarrow \check{X}$ be a blow up of O, and \check{E} be an exceptional divisor of the morphism $\check{\pi}$. Then we can identify \check{V} with a proper transform of \check{X} on the variety V. Because

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2}\right) \geqslant 2 \operatorname{mult}_{O}^{2}(\mathcal{M})>6 n^{2}
$$

in the case when $\operatorname{mult}_{O}(\mathcal{M}) \geqslant 2 n$, we may assume that the inequality $\operatorname{mult}_{O}(\mathcal{M})<2 n$ holds.
Let $\check{\mathcal{B}}$ be a proper transform of the linear system $\check{\mathcal{M}}$ on the variety \check{V}. Then $\check{\mathcal{B}}=\left.\mathcal{B}\right|_{\check{V}}$. We have

$$
K_{V}+\frac{1}{n} \mathcal{B}+\left(\frac{\operatorname{mult}_{O}(\mathcal{M})}{n}-1\right) E+\widehat{H}_{1}+\widehat{H}_{2} \equiv \pi^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}+H_{1}+H_{2}\right)
$$

and $K_{\check{V}}+\frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E} \equiv \check{\pi}^{*}\left(K_{\check{X}}+\frac{1}{n} \check{\mathcal{M}}\right)$. So, there are subvarieties $\Omega \subsetneq E$ and $\check{\Omega} \subsetneq \check{E}$ such that

- both subvarieties Ω and $\check{\Omega}$ are irreducible and $\check{\Omega} \subseteq \Omega \cap \check{V}$,
- the log pair $\left(V, \frac{1}{n} \mathcal{B}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) E\right)$ is not \log canonical at general point of Ω;
- the log pair $\left(\check{V}, \frac{1}{n} \breve{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)$ is not \log canonical at general point of $\check{\Omega}$.

We may assume that the subvarieties Ω and Ω have the biggest dimensions among all subvarieties with such properties. Then $\check{\Omega}=\Omega \cap \check{V}$ in the case when $\operatorname{dim}(\check{\Omega}) \geqslant 1$.

Suppose that $\operatorname{dim}(\check{\Omega}) \geqslant 1$ holds. Then $\operatorname{dim}(\Omega)=3$. Therefore, the inequality

$$
\operatorname{mult}_{\Omega}\left(\hat{S}_{1} \cdot \hat{S}_{2}\right)>4\left(2 n^{2}-\text { mult }_{O}(\mathcal{M})\right)
$$

holds by [6, Theorem 3.1]. Therefore, the inequalities

$$
\operatorname{mult}_{O}\left(S_{1} \cdot S_{2}\right) \geqslant 2 \operatorname{mult}_{O}^{2}(\mathcal{M})+\operatorname{mult}_{\Omega}\left(\hat{S}_{1} \cdot \hat{S}_{2}\right)>6 n^{2}
$$

hold. Thus, we may assume that $\operatorname{dim}(\check{\Omega})=0$.
Applying [15, Theorem 17.4] to the \log pair $\left(\check{V}, \frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)$ and $\check{\pi}$, we see that the locus

$$
\operatorname{LCS}\left(\check{V}, \frac{1}{n} \check{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \check{E}\right)
$$

consists of a single point $\check{\Omega}$ in the neighborhood of the divisor \check{E}. Hence, the subvariety Ω is a plane in \mathbf{P}^{5}.
The referee pointed out to the author that Ω cannot be a plane. We follow the arguments of the referee to complete the proof. Let us use the arguments of the original proof of Lemma 3.1 (see [6, Theorem 3.10]).

Let \breve{X} be a general hyperplane section of X passing through the point O that is locally given as

$$
x y+z t=0 \subset \mathbf{C}^{5} \cong \operatorname{Spec}(\mathbf{C}[x, y, z, t, u])
$$

in the neighborhood of the point O, which is given by $x=y=z=t=u=0$. Then \breve{X} has non-isolated singularities. But we can apply the previous arguments to the variety \breve{X}.

Let \breve{V} be the proper transform of \breve{X} on the variety V, and let $\breve{\pi}: \breve{V} \rightarrow \bar{X}$ be the induced morphism. Then

$$
K_{\breve{V}}+\frac{1}{n} \breve{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-2\right) \breve{E} \equiv \breve{\pi}^{*}\left(K_{\breve{X}}+\left.\frac{1}{n} \mathcal{M}\right|_{\breve{X}}\right)
$$

where $\breve{\mathcal{B}}=\left.\mathcal{B}\right|_{\breve{V}}$, and \breve{E} is the exceptional divisor of the morphism $\breve{\pi}$, which is a cone over $\mathbf{P}^{1} \times \mathbf{P}^{1}$.
Let \breve{S}_{x} and \breve{S}_{y} be Weil divisors on \breve{X} that are given by the equations $x=t=0$ and $y=t=0$, respectively. Then \breve{S}_{x} and \breve{S}_{y} are not Q-Cartier divisors, but the divisor $\breve{S}_{x}+\breve{S}_{y}$ is Cartier. We have

$$
K_{\breve{V}}+\frac{1}{n} \breve{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \breve{E}+\breve{H}_{x}+\breve{H}_{y} \equiv \breve{\pi}^{*}\left(K_{\breve{X}}+\left.\frac{1}{n} \mathcal{M}\right|_{\breve{X}}+\breve{S}_{x}+\breve{S}_{y}\right),
$$

where \breve{H}_{x} and \breve{H}_{y} are proper transforms of the subvarieties \breve{S}_{x} and \breve{S}_{y} on the variety \breve{V}, respectively. Then

$$
\operatorname{LCS}\left(\breve{V}, \frac{1}{n} \breve{\mathcal{B}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \breve{E}\right)=\breve{\Omega}
$$

where $\breve{\Omega}=\left.\Omega\right|_{\breve{V}}$ is a line on $\breve{E} \subset \mathbf{P}^{4}$. Indeed, we can apply the previous arguments to ($\left.\breve{X},\left.\frac{1}{n} \mathcal{M}\right|_{\breve{X}}+\breve{S}_{x}+\breve{S}_{y}\right)$.
There are natural ways to desingularize the varieties \breve{X} and \breve{V}. There is a commutative diagram

where we use the following notation:

- $\breve{\phi}$ is a blow up of the ideal sheaf of the curve $x=y=z=t=0$;
- $\breve{\alpha}_{x}$ and $\breve{\alpha}_{y}$ are blow ups of the ideal sheaves of \breve{S}_{x} and \breve{S}_{y}, respectively;
- $\breve{\beta}_{x}$ and $\breve{\beta}_{y}$ are blow ups of the exceptional surfaces of $\breve{\alpha}_{x}$ and $\breve{\alpha}_{y}$, respectively;
- $\breve{\xi}, \breve{\beta}_{x}, \breve{\beta}_{y}$ are blow ups of the fibers of $\phi, \breve{\alpha}_{x}, \breve{\alpha}_{y}$ over the point O, respectively;
- $\breve{\psi}$ is a blow up of the ideal sheaf of the proper transform of $x=y=z=t=0$;
- $\breve{\gamma}_{x}$ and $\breve{\gamma}_{y}$ are blow ups of the ideal sheaves of \breve{H}_{x} and \breve{H}_{y}, respectively;
- $\breve{\delta}_{x}$ and $\breve{\delta}_{y}$ are blow ups of the exceptional surfaces of $\breve{\gamma}_{x}$ and $\breve{\gamma}_{y}$, respectively.

The varieties $\breve{W}, \breve{W}_{x}, \breve{W}_{y}, \breve{U}, \breve{U}_{x}, \breve{U}_{y}$ are smooth, the morphisms $\breve{\alpha}_{x}, \breve{\alpha}_{y}, \breve{\gamma}_{x}, \breve{\gamma}_{y}$ are small, and $\breve{\pi} \circ \breve{\psi}=\breve{\phi} \circ \breve{\xi}$. Let \breve{F} be the exceptional divisor of the birational morphism $\breve{\xi}$. Then

$$
\breve{F} \cong \mathbf{P}\left(\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}} \oplus \mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(1)\right)
$$

where $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(1)$ is a hyperplane section of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ with respect to the natural embedding into \mathbf{P}^{3}.
The morphism $\left.\breve{\xi}\right|_{\breve{F}}$ is a projection to $\mathbf{P}^{1} \times \mathbf{P}^{1}$, the morphisms $\left.\breve{\eta}_{x} \circ \breve{\delta}_{x}\right|_{\breve{F}}$ and $\left.\breve{\eta}_{y} \circ \breve{\delta}_{y}\right|_{\breve{F}}$ are projections to \mathbf{P}^{1}, the morphisms $\left.\breve{\delta}_{x}\right|_{\breve{F}}$ and $\left.\breve{\delta}_{y}\right|_{\breve{F}}$ are contractions of the exceptional section of \breve{F} to curves, and $\left.\breve{\psi}\right|_{\breve{F}}$ is the contraction of the exceptional section of the surface \breve{F} to the vertex of the cone \breve{E}, where $\breve{E}=\breve{\psi}(\breve{F})$.

The subvariety $\breve{\Omega}$ is a line on the cone $\breve{E} \subset \mathbf{P}^{4}$ that does not pass through its vertex. But $\left(\breve{H}_{x}+\breve{H}_{y}\right) \cdot \breve{\Omega}=1$, which implies that we may assume that $\breve{H}_{x} \cdot \breve{\Omega}=0$ and $\breve{H}_{y} \cdot \breve{\Omega}=1$.

Let \breve{D}_{x} and \breve{D}_{y} be the proper transforms of \breve{H}_{x} and \breve{H}_{y} on the variety \breve{U}_{y}, respectively, and $\breve{\Gamma}$ be the proper transform of $\breve{\Omega}$ on the variety \breve{U}_{y}. Then $\breve{D}_{x} \cdot \breve{\Gamma}=0$ and $\breve{D}_{y} \cdot \breve{\Gamma}=1$. Moreover, we have

$$
K_{\breve{U}_{y}}+\frac{1}{n} \breve{\mathcal{D}}+\left(\operatorname{mult}{ }_{O}(\mathcal{M}) / n-1\right) \breve{G}+\breve{D}_{x}+\breve{D}_{y} \equiv\left(\breve{\pi} \circ \breve{\gamma}_{y}\right)^{*}\left(K_{\breve{X}}+\left.\frac{1}{n} \mathcal{M}\right|_{\breve{X}}+\breve{S}_{x}+\breve{S}_{y}\right)
$$

where $\breve{\mathcal{D}}$ and \breve{G} are proper transforms of $\breve{\mathcal{B}}$ and \breve{E} on the variety \breve{U}_{y}, respectively.
The morphism $\breve{\eta}_{y}$ contracts the divisor \breve{G}. But the morphism $\left.\breve{\eta}_{y}\right|_{G}$ is a \mathbf{P}^{2}-bundle.
Let \breve{Y} be a general fiber of $\left.\breve{\eta}_{y}\right|_{\breve{G}}$. Then $\breve{Y} \cap \breve{D}_{x}$ is a line in $\breve{Y} \cong \mathbf{P}^{2}$, the intersection $\breve{\Gamma} \cap \breve{Y}$ is a point that is not contained in $\breve{Y} \cap \breve{D}_{x}$, and $\breve{Y} \cap \breve{D}_{y}=\varnothing$. So, in the neighborhood of the fiber Y of the morphism $\breve{\eta}_{y}$ the locus

$$
\operatorname{LCS}\left(\breve{U}_{y}, \frac{1}{n} \breve{\mathcal{D}}+\left(\operatorname{mult}_{O}(\mathcal{M}) / n-1\right) \breve{G}+\breve{D}_{x}+\breve{D}_{y}\right)
$$

consists of $\breve{\Gamma}$ and \breve{D}_{x}, which is impossible by [15, Theorem 17.4], because $\breve{\Gamma} \cap \breve{D}_{x}=\varnothing$.

5 Main result

Let X be a hypersurface in \mathbf{P}^{6} of degree 6 with isolated ordinary double points. Suppose that X is not birationally superrigid. Let us show that this assumption leads to a contradiction.

It follows from Theorem 2.1 that there is a linear system \mathcal{M} on the hypersurface X that does not have fixed components such that the \log pair $\left(X, \frac{1}{m} \mathcal{M}\right)$ is not canonical, where $m \in \mathbb{N}$ such that $\mathcal{M} \sim-m K_{X}$.

Let Z be a proper irreducible subvariety of X such that $\left(X, \frac{1}{m} \mathcal{M}\right)$ is not canonical at general point of Z, and the subvariety Z has the biggest dimension among such subvarieties. Then $\operatorname{dim}(Z) \leqslant 1$ by [21, Theorem 2].

Suppose that either $\operatorname{dim}(Z) \neq 0$ or Z is a smooth point of X. Let P be a general point of Z, and V be a general hyperplane section of X that contains P. Put $\mathcal{B}=\left.\mathcal{M}\right|_{V}$. Then V is a smooth hypersurface in \mathbf{P}^{5} of degree 6 , and the singularities of $\left(V, \frac{1}{m} \mathcal{B}\right)$ are not canonical at the point P by [15, Theorem 17.6].

Let S_{1} and S_{2} be sufficiently general divisors in \mathcal{B}, and $F=S_{1} \cdot S_{2}$. Then

$$
\operatorname{dim}\left\{O \in F \mid \operatorname{mult}_{O}(F)>m\right\} \leqslant 1
$$

by [27, Proposition 5]. Let Y be a general hyperplane section of V that contains P. Put $\mathcal{P}=\left.\mathcal{B}\right|_{Y}$. Then

$$
\begin{equation*}
\operatorname{dim}\left\{O \in F \cap Y \mid \operatorname{mult}_{O}\left(\left.F\right|_{Y}\right)>m\right\} \leqslant 0 \tag{5.1}
\end{equation*}
$$

by [10, Proposition 4.5], because Y is a smooth hypersurface in \mathbf{P}^{4} of degree 6.
The \log pair $\left(Y, \frac{1}{m} \mathcal{P}\right)$ is not \log canonical at P by [15, Theorem 17.6]. Let $\eta: \mathbf{P}^{4} \rightarrow \mathbf{P}^{2}$ be a general projection, and L be a general line in \mathbb{P}^{2}. Then it follows from [10, Theorem 1.1] that

$$
\eta(P) \in \operatorname{LCS}\left(\mathbf{P}^{2}, L+\frac{1}{4 m^{2}} \eta_{*}\left[\left.F\right|_{Y}\right]\right) \ni L
$$

but it follows from [10, Proposition 4.7] and the inequality 5.1 that the log pair $\left(\mathbf{P}^{2}, \frac{1}{4 m^{2}} \eta_{*}\left[\left.F\right|_{Y}\right]\right)$ is log terminal in a punctured neighborhood of the point $\eta(P)$. The latter is impossible by [15, Theorem 17.4], because

$$
K_{\mathbf{P}^{2}}+L+\frac{1}{4 m^{2}} \eta_{*}\left[\left.F\right|_{Y}\right] \equiv-\frac{1}{2} L .
$$

We see that Z is a singular point of the variety X. Let $\pi: U \rightarrow X$ be a blow up of Z, and E be a π-exceptional divisor. Then $\operatorname{mult}_{Z}(\mathcal{M})>m$ by Lemma 3.1. But

$$
K_{U}+\frac{1}{m} \mathcal{H} \equiv \pi^{*}\left(K_{X}+\frac{1}{m} \mathcal{M}\right)+\left(3-\frac{1}{m} \operatorname{mult}_{Z}(\mathcal{M})\right) E,
$$

where \mathcal{H} is a proper transform of \mathcal{M} on the variety U. Let M_{1} and M_{2} be general divisors in \mathcal{M}. Then

$$
\operatorname{mult}_{Z}\left(M_{1} \cdot M_{2}\right)>6 m^{2}
$$

by Lemma 4.5. Let H_{1}, H_{2}, H_{3} be general hyperplane sections of X that pass through the point Z. Then

$$
6 m^{2}=M_{1} \cdot M_{2} \cdot H_{1} \cdot H_{2} \cdot H_{3} \geqslant \operatorname{mult}_{Z}\left(M_{1} \cdot M_{2}\right)>6 m^{2}
$$

which is a contradiction. The obtained contradiction completes the proof of Theorem 1.1.

Acknowledgements The author would like to thank the referee who helped to improve the original assertion of Lemma 4.5.

References

[1] F. Call and G. Lyubeznik, A simple proof of Grothendieck's theorem on the parafactoriality of local rings, Contemp. Math. 159, 15-18 (1994).
[2] I. Cheltsov, On smooth quintic 4-fold, Mat. Sb. 191, 139-162 (2000).
[3] I. Cheltsov, Nonrationality of a four-dimensional smooth complete intersection of a quadric and a quartic not containing a plane, Mat. Sb. 194, 95-116 (2003).
[4] I. Cheltsov, Birationally superrigid cyclic triple spaces, Izv. Math. 68, 157-208 (2004).
[5] A. Corti, Factorizing birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4, 223-254 (1995).
[6] A. Corti, Singularities of linear systems and threefold birational geometry, London Math. Soc. Lecture Note Ser. 281, 259-312 (2000).
[7] A. Corti, J. Kollár, and K. Smith, Rational and Nearly Rational Varieties (Cambridge University Press, Cambridge, 2003).
[8] A. Corti and M. Mella, Birational geometry of terminal quartic threefolds I, Am. J. Math. 126, 739-761 (2004).
[9] A. Corti, A. Pukhlikov, and M. Reid, Fano threefold hypersurfaces, London Math. Soc. Lecture Note Ser. 281, 175-258 (2000).
[10] T. de Fernex, L. Ein, and M. Mustata, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. 10, 219-236 (2003).
[11] M. Grinenko, Birational automorphisms of a three-dimensional dual quadric with the simplest singularity, Mat. Sb. 189, 101-118 (1998).
[12] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, Soviet Math. 13, 815-868 (1980).
[13] V. Iskovskikh and Yu. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. 86, 140-166 (1971).
[14] V. Iskovskikh and A. Pukhlikov, Birational automorphisms of multidimensional algebraic manifolds, J. Math. Sci. (New York) 82, 3528-3613 (1996).
[15] J. Kollár et al., Flips and Abundance for Algebraic Threefolds, Astérisque 211 (1992).
[16] J. Kollár, Rational Curves on Algebraic Varieties (Springer-Verlag, Berlin, 1996).
[17] M. Mella, Birational geometry of quartic threefolds II: the importance of being Q-factorial, Math. Ann. 330, 107-126 (2004).
[18] A. Pukhlikov, Birational isomorphisms of four-dimensional quintics, Invent. Math. 87, 303-329 (1987).
[19] A. Pukhlikov, Birational automorphisms of a double space and a double quartic, Izv. Akad. Nauk SSSR Ser. Mat. 52, 229-239 (1988).
[20] A. Pukhlikov, Birational automorphisms of a three-dimensional quartic with a simple singularity, Mat. Sb. 177, 472-496 (1988).
[21] A. Pukhlikov, Notes on theorem of V. A. Iskovskikh and Yu. I. Manin about threefold quartic, Proceedings of Steklov Inst. Math. 208, 278-289 (1995).
[22] A. Pukhlikov, Birational automorphisms of double spaces with sigularities, J. Math. Sci. (New York) 85, 2128-2141 (1997).
[23] A. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134, 401-426 (1998).
[24] A. Pukhlikov, Essentials of the method of maximal singularities, London Math. Soc. Lecture Note Ser. 281, 73-100 (2000).
[25] A. Pukhlikov, Birationally rigid Fano double hypersurfaces, Sb. Math. 191, No. 6, 883-908 (2000).
[26] A. Pukhlikov, Birationally rigid Fano complete intersections, J. Reine Angew. Math. 541, 55-79 (2001).
[27] A. Pukhlikov, Birationally rigid Fano hypersurfaces, Izv. Math. 66, No. 6, 1243-1269 (2002).
[28] A. Pukhlikov, Birationally rigid Fano hypersurfaces with isolated singularities, Sb. Math. 193, 445-471 (2002).
[29] A. Pukhlikov, Birationally rigid singular Fano hypersurfaces, J. Math. Sci., New York 115, 2428-2436 (2003).
[30] A. Pukhlikov, Birationally rigid iterated Fano double covers, Izv. Math. 67, No. 3, 555-596 (2003).

[^0]: * e-mail: I.Cheltsov@ed.ac.uk, Phone: +44 131650 4881, Fax: +44 1316506553

