
Math. Nachr. 280, No. 12, 1344 – 1353 (2007) / DOI 10.1002/mana.200510550

On nodal sextic fivefold
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We prove birational superrigidity and nonrationality of every sextic fivefold with ordinary double points.
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1 Introduction

All varieties are assumed to be projective, normal and defined over C.
In many cases the only known way to prove the nonrationality of a given Fano variety is to prove its birational

rigidity (cf. [16], [7] and [4]). Many counterexamples to the Lüroth problem are obtained in this way (see [13]).
Birational rigidity is proved in the following cases:

• for some smooth Fano threefolds (see [13], [12] and [14]);

• for many singular Fano threefolds (see [20], [22], [11], [9], [8] and [17]);

• for many smooth Fano n-folds (see [18], [23], [25], [2], [26], [27], [30], [10], [3] and [4]), where n > 3;

• for some singular Fano n-folds (see [20], [22], [28], [29] and [4]), where n > 3.

Let X be a hypersurface in P6 of degree 6 that has at most isolated ordinary double points. Then

−KX ∼ OP6(1)
∣∣
X
,

the variety X has Q-factorial terminal singularities and rkPic(X) = 1 (see [1]). We prove the following result.

Theorem 1.1 The hypersurface X is birationally superrigid.

In the smooth case the assertion of Theorem 1.1 is proved in [2].

Example 1.2 The singularities of the hypersurface

x4
0

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)
= x6

1 + x6
2 + x6

3 + x6
4 + x6

5 + x6
6 ⊂ P6 ∼= Proj

(
C[x0, . . . , x6]

)
consist of a single ordinary double point, which implies that it is nonrational by Theorem 1.1.

Example 1.3 Let X be a hypersurface with 729 isolated ordinary double points

2∑
i=0

ai
(
x0, . . . , x6

)
bi
(
x0, . . . , x6

)
= 0 ⊂ P6 ∼= Proj

(
C[x0, . . . , x6]

)
,

where ai and bi are general homogeneous polynomials of degree 3. Then X is nonrational by Theorem 1.1.

The assertion of Theorem 1.1 is a fivefold generalization of the birational rigidity of a nodal Q-factorial quartic
threefold (see [13], [20] and [17]). The assertion of Theorem 1.1 is relevant to the results obtained in [28] and
[29], which cannot be used to produce explicit examples of nonrational Fano hypersurfaces.
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2 The Noether–Fano inequality

LetX be an arbitrary Fano variety having at most terminal and Q-factorial singularities such that rkPic(X) = 1,
and the variety X is not birationally superrigid. Then the following result holds (see [5]).

Theorem 2.1 There is a linear system M on the variety X such that M does not have fixed components, and
the singularities of the log pair (X, γM) are not canonical, where γ ∈ Q is such that KX + γM ≡ 0.

In the rest of the section we prove Theorem 2.1. Let ρ : X ��� Y be a birational map such that the rational
map ρ is not biregular and one of the following holds:

• the variety Y has terminal Q-factorial singularities and rkPic(Y ) = 1 (the Fano case);

• the variety Y is smooth, and there is a surjective morphism τ : Y → Z such that sufficiently general fiber
of the morphism τ has negative Kodaira dimension, and dim(Y ) �= dim(Z) �= 0 (the fibration case).

Let us consider a commutative diagram

W
α

����
��

��
�� β

���
��

��
��

�

X ρ
��������� Y,

such that the variety W is smooth, α and β are birational morphisms. In the Fano case let D be the complete
linear system | − rKY | for r � 0, in the fibration case let D be the linear system |τ∗(H)|, where H is a very
ample divisor on the variety Z . Let M be a proper transform of D on the variety X . Take a γ ∈ Q such that

KX + γM ≡ 0.

Suppose that the singularities of the log pair (X, γM) are canonical. Let us show that this assumption leads
to a contradiction. Let B be a proper transform on W of the linear system M. Then

k∑
i=1

aiFi ≡ α∗(KX + γM)
+

k∑
i=1

aiFi ≡ KW + γB ≡ β∗(KY + γD)+
l∑
i=1

biGi,

where Fj is a β-exceptional divisor,Gi is an α-exceptional divisor, ai is a nonnegative rational number, and bi is
a positive rational number. Let n be a sufficiently big and sufficiently divisible natural number. Then

1 = h0

(
OW

(
k∑
j=1

najFj

))
= h0

(
OW

(
β∗(nKY + nγD)+

l∑
i=1

nbiGi

))
,

but h0
(OW

(
β∗(nKY + γD) +

∑l
i=1 nbiGi

))
= 0 in the fibration case. Hence, the fibration case is impossible.

In the Fano case the equality h0
(OW

(
β∗(nKY + γD) +

∑l
i=1 nbiGi

))
= 1 implies that γ = 1/r. Then

k∑
i=1

aiFi ≡
l∑
i=1

biGi,

and
∑k

i=1 aiFi =
∑l
i=1 biGi by [15, Lemma 2.19]. Thus, the log pair (X, γM) has terminal singularities.

There is a rational number µ > γ such that (X,µM) and (X,µB) have terminal singularities. Then

α∗(KX + µM)
+

k∑
i=1

a′iFi ≡ KW + µB ≡ β∗(KY + µD)+
l∑
i=1

b′iGi,

where a′i and b′i are positive rational numbers.
Let n be a sufficiently big and divisible natural number, and let ψ : W ��� U be a rational map that is given by

the linear system |nKW + nµB|. Then the map ψ ◦ β−1 is biregular, because the divisor n(KY + µD) is very
ample. But the divisor

∑l
i=1 nb

′
iGi is effective and β-exceptional. Similarly, we see that ψ ◦ α−1 is biregular,

which implies that ρ is biregular. The latter is a contradiction. Thus, we proved Theorem 2.1.
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3 The lemma of Corti

Let X be a variety with an ordinary double pointO ∈ X , and let BX be an effective Q-Cartier divisor onX . Let

π : W −→ X

be a blow up of the point O, E be a π-exceptional divisor, and BW be a proper transform of BX on W . Then

π∗(BX) ≡ BW + multO
(
BX
)
E,

where multO(BX) is a nonnegative rational number.
Suppose that dim(X) � 3 and the log pair (X,BX) is not canonical at the pointO. Then multO(BX) > 1/2.
In the rest of the section we prove the following result, which is implied by [6, Theorem 3.10].

Lemma 3.1 The inequality multO(BX) > 1 holds.

Suppose that multO(BX) � 1. Let us show that this assumption leads to a contradiction.
Replacing the divisorBX by (1−ε)BX for some positive sufficiently small rational number ε, we may assume

that multO(BX) < 1. Taking hyperplane sections, we may assume that dim(X) = 3 by [15, Theorem 17.6].

Lemma 3.2 Let S be a surface P1 × P1, and BS be an effective divisor on the surface S of bi-degree (a, b),
where a and b are rational numbers in [0, 1). Then the log pair (S,BS) has log-terminal singularities.

P r o o f. Suppose that the singularities of (S,BS) are not log-terminal. Then the locus of log canonical singu-
larities LCS(S,BS) is not empty and consists of points of the surface S. Then LCS(S, F +BS) is not connected,
where F is a general fiber of any projection of the surface S to P1. The later contradicts [15, Theorem 17.4].

The inequality multO(BX) < 1 and the equivalence

KW +BW ≡ π∗(KX +BX
)

+
(
1 − multO

(
BX
))
E,

imply that there is a proper subvariety Z ⊂ E such that the log pair (W,BW ) is not canonical at general point of
the variety Z . Then (E,BW |E) is not log terminal by [15, Theorem 17.6], which is impossible by Lemma 3.2.

4 Main inequalities

Let X be a variety with an ordinary double point O ∈ X , and let M be a liner system on the variety X such that
the linear system M does not have fixed components. Put r = dim(X). Suppose that r � 4. Let

π : V −→ X

be a blow up of the varietyX at the point O, and let E be a π-exceptional divisor. Let B be a proper transform of
the linear system M on the variety V . The variety E can be identified with a smooth quadric in Pr. Then

B ∼ π∗(M) − multO(M)E,

where multO(M) is a natural number, which is different from the multiplicity of M at the point O.
Let S1 and S2 be sufficiently general divisors in the linear system M, and Hi be a sufficiently general hyper-

plane section of the variety X that passes through the point O, where i = 1, . . . , r − 2. Put

multO
(
S1 · S2

)
= 2mult2O

(
Si
)

+
∑
P∈E

multP
(
Ŝ1 · Ŝ2

)
multP

(
Ĥ1

)
. . .multP

(
Ĥr−2

)
,

where multO(Si) and multO(Hi) are natural numbers that are defined in the same way as the number multO(M),
and Ŝi and Ĥi are the proper transforms on the variety V of the divisors Si and Hi, respectively.

Remark 4.1 It follows from elementary properties of blow ups that the inequality

multO
(
S1 · S2

)
� 2mult2O

(
Si
)

+ multZ
(
Ŝ1 · Ŝ2

)
holds for any irreducible subvariety Z ⊂ E of codimension one.
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Example 4.2 Let X be a singular hypersurface in P6 of degree 6 that has at most isolated ordinary double
points, and let O be a singular point of the variety X . It follows from [1] that

Si ∼ nH

where H is a hyperplane section of the variety X , and n ∈ N. Then multO(S1 · S2) � 6n2.

Suppose that
(
X, 1

nM
)

is canonical in a punctured neighborhood of O, and
(
X, 1

nM
)

is not canonical at O.

Lemma 4.3 Suppose that r > 5. Then multO(S1 · S2) > 6n2.

P r o o f. We may assume that r = 6, because the proof in the case r > 6 is similar. Then

KV +
1
n
B ≡ π∗

(
KX +

1
n
M
)

+
(

4 − multO(M)
n

)
E.

Put X̌ =
⋂3
i=1Hi and M̌ = M|X̌ . The point O is an ordinary double point of the variety X̌ , and the singu-

larities of the log pair
(
X̌, 1

nM̌
)

are not log canonical in the pointO by [15, Theorem 17.6].
Let π̌ : V̌ → X̌ be a blow up of the point O, and Ě be an exceptional divisor of π̌. Then the diagram

V̌

π̌

��

� � �� V

π

��
X̌

� � �� X

is commutative, where V̌ is identified with a proper transform of X̌ on the variety V . We have Ě = E ∩ V̌ . Then

multO
(M̌)

= multO
(M)

,

and we may assume that multO(M) < 2n, because otherwise multO(S1 · S2) > 6n2.
Let B be a proper transform of the linear system M on the variety V , and B̌ be a proper transform of the linear

system M̌ on the threefold V̌ . Then B̌ = B|V̌ and we have

KV +
1
n
B +

(
multO(M)

n
− 1
)
E + Ĥ1 + Ĥ2 + Ĥ3 ≡ π∗

(
KX +

1
n
M +H1 +H2 +H3

)
and

KV̌ +
1
n
B̌ +

(
multO(M)

n
− 1
)
Ě ≡ π̌∗

(
KX̌ +

1
n
M̌
)
,

but multO(M) < 2n. Thus, there are irreducible subvarieties Ω � E and Ω̌ � Ě such that
• the log pair

(
V, 1

nB + (multO(M)/n− 1)E
)

is not log canonical at general point of Ω,
• the log pair

(
V̌ , 1

n B̌ + (multO(M)/n− 1)Ě
)

is not log canonical at general point of Ω̌, and Ω̌ ⊆ Ω ∩ V̌ .
We may assume that Ω and Ω̌ have the biggest dimensions among all subvarieties having such properties.
We have Ω̌ = Ω ∩ V̌ when dim(Ω̌) > 0. Let us show that Ω̌ = Ω ∩ V̌ when dim(Ω̌) = 0.
Applying [15, Theorem 17.4] to the log pair

(
V̌ , 1

n B̌ + (multO(M)/n− 1)Ě
)

and the morphism π̌, we see
that in the case dim(Ω̌) = 0 the locus of log canonical singularities

LCS
(
V̌ ,

1
n
B̌ +

(
multO(M)/n− 1

)
Ě

)
consists of a single point Ω̌ in the neighborhood of the divisor Ě. In particular, we have Ω̌ = Ω ∩ V̌ .

Suppose that dim(Ω̌) = 0. Then Ω̌ = Ω ∩ V̌ implies that Ω is a linear subspace in P6 of codimension 3 that
is contained in the smooth quadric hypersurfaceE ⊂ P6. The latter is impossible by the Lefschetz theorem.

Hence, the inequality dim(Ω̌) � 1 holds, which implies dim(Ω) = 4.
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1348 Cheltsov: On nodal sextic fivefold

We see that the singularities of the log pair (V, 1
nB + (multO(M)/n− 1)E) are not log canonical at general

point of the irreducible subvariety Ω ⊂ E that has dimension 4. Therefore, we can apply [6, Theorem 3.1] to
the log pair

(
V, 1

nB + (multO(M)/n− 1)E
)

in the general point of the subvariety Ω. The latter gives

multΩ
(
Ŝ1 · Ŝ2

)
> 4
(
2n2 − nmultO

(M))
,

where Ŝi is a proper transform of Si on the variety V . Hence, the inequalities

multO
(
S1 · S2

)
� 2multO

(M)2 + multΩ
(
Ŝ1 · Ŝ2

)
> 6n2 + 2

(
n− multO

(M))2 � 6n2

hold, which is exactly what we need to proof.

Let ∆ be an effective divisor on the variety X passing through the point O and ∆̂ be its proper transform on
the variety V . Suppose that ∆ does not contain irreducible components of the cycle S1 · S2, and ∆̂ does not
contain irreducible components of the cycle Ŝ1 · Ŝ2. Then we can put

multO
(
S1 · S2 · ∆

)
= 2mult2O(Si)multO(∆)

+
∑
P∈E

multP
(
Ŝ1 · Ŝ2 · ∆̂

)
multP

(
Ĥ1

)
. . .multP

(
Ĥr−3

)
,

which implies multO(S1 · S2 · ∆) = multO(S1|∆ · S2|∆) if O is an isolated ordinary double point of ∆.

Lemma 4.4 Suppose that r = 4. Then there is a line Λ ⊂ E ⊂ P4 such that

multO
(
S1 · S2 · ∆

)
> 6n2

in the case when O is an ordinary double point of the divisor ∆, and Λ ⊂ ∆̂.

P r o o f. We have multO(M) > n by Lemma 3.1, but

KV +
1
n
B ≡ π∗

(
KX +

1
n
M
)

+
(

2 − multO(M)
n

)
E.

Suppose thatO is an ordinary double point on ∆. Put S̄i = Si|∆ and M = M|∆. Then the log pair
(
∆, 1

nM
)

is not log canonical in the point O by [15, Theorem 17.6].
Let π̃ : ∆̃ → ∆ be a blow up of O, and Ẽ is a π̄-exceptional divisor. Then the diagram

∆̃

π̄

��

� � �� V

π

��
∆ � � �� X

is commutative, where we can identify ∆̃ with ∆̂, and Ẽ = E ∩ ∆̃ can be considered as a nonsingular quadric
hypersurface in P3. The inequality multO

(M )
� 2n gives

multO
(
S1 · S2 · ∆

)
= multO

(
S̄1 · S̄2

)
� 8n2,

hence, we may assume that multO
(M )

< 2n.

Let M̃ be a proper transform of the linear system M on the variety ∆̃. Then multO
(M)

< 2n implies that

there is an irreducible subvariety Ξ � Ẽ such that the singularities of the log pair(
∆̃,

1
n
M̃ +

(
multO

(M )
/n− 1

)
Ẽ

)
.

are not log canonical in the general point of Ξ.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Suppose that Ξ is a curve. Let S̃i be a proper transform of S̄i on the variety ∆̃. Then the inequality

multO
(
S̄1 · S̄2

)
� 2multO(M)2 + multΞ

(
S̃1 · S̃2

)
holds. Applying [6, Theorem 3.1] to

(
∆̃, 1

nM̃ +
(
multO

(M )
/n− 1

)
Ẽ
)

at the general point of Ξ, we see that

multΞ
(
S̃1 · S̃2

)
> 4
(
2n2 − nmultO

(M ))
,

which immediately implies that

multO
(
S̄1 · S̄2

)
> 2mult2O

(M )
+ 4
(
2n2 − nmultO

(M ))
� 6n2.

To conclude the proof we may assume that Ξ is a point.
Suppose that ∆ is a general hyperplane section of X such that O ∈ ∆. We can apply [15, Theorem 17.4] to

the morphism π̃ and the log pair
(
∆̃, 1

nM̃ +
(
multO

(M)
/n− 1

)
Ẽ
)
. We see that

• either
(
V, 1

nB + (multO(M)/n− 1)E
)

is not log canonical at general point of a surface contained in E,

• or
(
V, 1

nB + (multO(M)/n− 1)E
)

is not log canonical at general point of a line Λ ⊂ E and Ξ = Λ ∩ ∆̂.

In the case when the log pair
(
V, 1

nB+(multO(M)/n−1)E
)

is not log canonical at general point of a surface
contained in E, the previous arguments implies the inequality multO

(
S̄1 · S̄2

)
> 6n2.

We may assume that there is a line Λ ⊂ E such that Ξ = Λ ∩ ∆̃ and the singularities of the log pair(
V,

1
n
B +

(
multO(M)/n− 1

)
E

)
are not log canonical at general point of the curve Λ.

The line Λ does not depend on the choice of ∆. So, we may assume that Λ ⊂ ∆̂, where ∆̂ = ∆̃. Then(
∆̃,

1
n
M̃ +

(
multO

(M )
/n− 1

)
Ẽ

)
is not log canonical at the general point of Λ by [15, Theorem 17.6], because multO(M) > n.

Now we can apply [6, Theorem 3.1] to the log pair
(
∆̃, 1

nM̃ +
(
multO

(M )
/n − 1

)
Ẽ
)

at general point of
the curve Λ to obtain the inequalities

multO
(
S̄1 · S̄2

)
> 2mult2O

(M)
+ 4
(
2n2 − nmultO

(M))
� 6n2,

which conclude the proof.

Finally, let us prove the following result.

Lemma 4.5 Suppose that r = 5. Then multO
(
S1 · S2

)
> 6n2.

P r o o f. Put X̌ = H1∩H2 and M̌ = M|X̌ . Then
(
X̌, 1

nM̌
)

is not log canonical atO by [15, Theorem 17.6],
andO is an ordinary double point of the threefold X̌ . Let π̌ : V̌ → X̌ be a blow up ofO, and Ě be an exceptional
divisor of the morphism π̌. Then we can identify V̌ with a proper transform of X̌ on the variety V . Because

multO(S1 · S2) � 2mult2O(M) > 6n2

in the case when multO(M) � 2n, we may assume that the inequality multO(M) < 2n holds.
Let B̌ be a proper transform of the linear system M̌ on the variety V̌ . Then B̌ = B|V̌ . We have

KV +
1
n
B +

(
multO(M)

n
− 1
)
E + Ĥ1 + Ĥ2 ≡ π∗

(
KX +

1
n
M +H1 +H2

)
andKV̌ + 1

n B̌+(multO(M)/n−1)Ě ≡ π̌∗(KX̌+ 1
nM̌

)
. So, there are subvarieties Ω � E and Ω̌ � Ě such that

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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• both subvarieties Ω and Ω̌ are irreducible and Ω̌ ⊆ Ω ∩ V̌ ,
• the log pair

(
V, 1

nB + (multO(M)/n− 1)E
)

is not log canonical at general point of Ω;
• the log pair

(
V̌ , 1

n B̌ + (multO(M)/n− 1)Ě
)

is not log canonical at general point of Ω̌.
We may assume that the subvarieties Ω and Ω̌ have the biggest dimensions among all subvarieties with such

properties. Then Ω̌ = Ω ∩ V̌ in the case when dim(Ω̌) � 1.
Suppose that dim(Ω̌) � 1 holds. Then dim(Ω) = 3. Therefore, the inequality

multΩ
(
Ŝ1 · Ŝ2

)
> 4
(
2n2 − nmultO(M)

)
holds by [6, Theorem 3.1]. Therefore, the inequalities

multO(S1 · S2) � 2 mult2O(M) + multΩ
(
Ŝ1 · Ŝ2

)
> 6n2

hold. Thus, we may assume that dim
(
Ω̌
)

= 0.
Applying [15, Theorem 17.4] to the log pair

(
V̌ , 1

n B̌ + (multO(M)/n− 1)Ě
)

and π̌, we see that the locus

LCS
(
V̌ ,

1
n
B̌ +

(
multO(M)/n− 1

)
Ě

)
consists of a single point Ω̌ in the neighborhood of the divisor Ě. Hence, the subvariety Ω is a plane in P5.

The referee pointed out to the author that Ω cannot be a plane. We follow the arguments of the referee to
complete the proof. Let us use the arguments of the original proof of Lemma 3.1 (see [6, Theorem 3.10]).

Let X̆ be a general hyperplane section of X passing through the point O that is locally given as

xy + zt = 0 ⊂ C5 ∼= Spec
(
C[x, y, z, t, u]

)
in the neighborhood of the point O, which is given by x = y = z = t = u = 0. Then X̆ has non-isolated singu-
larities. But we can apply the previous arguments to the variety X̆ .

Let V̆ be the proper transform of X̆ on the variety V , and let π̆ : V̆ → X̆ be the induced morphism. Then

KV̆ +
1
n
B̆ +

(
multO(M)/n− 2

)
Ĕ ≡ π̆∗

(
KX̆ +

1
n
M
∣∣∣
X̆

)
,

where B̆ = B|V̆ , and Ĕ is the exceptional divisor of the morphism π̆, which is a cone over P1 × P1.
Let S̆x and S̆y be Weil divisors on X̆ that are given by the equations x = t = 0 and y = t = 0, respec-

tively. Then S̆x and S̆y are not Q-Cartier divisors, but the divisor S̆x + S̆y is Cartier. We have

KV̆ +
1
n
B̆ +

(
multO(M)/n− 1

)
Ĕ + H̆x + H̆y ≡ π̆∗

(
KX̆ +

1
n
M
∣∣∣
X̆

+ S̆x + S̆y

)
,

where H̆x and H̆y are proper transforms of the subvarieties S̆x and S̆y on the variety V̆ , respectively. Then

LCS
(
V̆ ,

1
n
B̆ +

(
multO(M)/n− 1

)
Ĕ

)
= Ω̆,

where Ω̆ = Ω|V̆ is a line on Ĕ ⊂ P4. Indeed, we can apply the previous arguments to
(
X̆, 1

nM
∣∣
X̆

+ S̆x + S̆y
)
.

There are natural ways to desingularize the varieties X̆ and V̆ . There is a commutative diagram

Ŭx
γ̆x

���������������
η̆x �� W̆x

ᾰx

���������������

V̆ Ŭ
ξ̆ ��ψ̆��

δ̆x

���������������

δ̆y		������������� W̆
φ̆ ��

β̆x



�������������

β̆y ��������������� X̆,

Ŭy

γ̆y

���������������

η̆y

�� W̆y

ᾰy



�������������

where we use the following notation:
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• φ̆ is a blow up of the ideal sheaf of the curve x = y = z = t = 0;

• ᾰx and ᾰy are blow ups of the ideal sheaves of S̆x and S̆y , respectively;

• β̆x and β̆y are blow ups of the exceptional surfaces of ᾰx and ᾰy , respectively;

• ξ̆, β̆x, β̆y are blow ups of the fibers of φ, ᾰx, ᾰy over the point O, respectively;

• ψ̆ is a blow up of the ideal sheaf of the proper transform of x = y = z = t = 0;

• γ̆x and γ̆y are blow ups of the ideal sheaves of H̆x and H̆y , respectively;

• δ̆x and δ̆y are blow ups of the exceptional surfaces of γ̆x and γ̆y , respectively.

The varieties W̆ , W̆x, W̆y , Ŭ , Ŭx, Ŭy are smooth, the morphisms ᾰx, ᾰy , γ̆x, γ̆y are small, and π̆ ◦ ψ̆ = φ̆ ◦ ξ̆.
Let F̆ be the exceptional divisor of the birational morphism ξ̆. Then

F̆ ∼= P
(OP1×P1 ⊕OP1×P1

(
1
))
,

where OP1×P1(1) is a hyperplane section of P1 × P1 with respect to the natural embedding into P3.
The morphism ξ̆

∣∣
F̆

is a projection to P1 ×P1, the morphisms η̆x ◦ δ̆x
∣∣
F̆

and η̆y ◦ δ̆y
∣∣
F̆

are projections to P1,

the morphisms δ̆x
∣∣
F̆

and δ̆y
∣∣
F̆

are contractions of the exceptional section of F̆ to curves, and ψ̆
∣∣
F̆

is the contrac-

tion of the exceptional section of the surface F̆ to the vertex of the cone Ĕ, where Ĕ = ψ̆
(
F̆
)
.

The subvariety Ω̆ is a line on the cone Ĕ ⊂ P4 that does not pass through its vertex. But
(
H̆x + H̆y

) · Ω̆ = 1,

which implies that we may assume that H̆x · Ω̆ = 0 and H̆y · Ω̆ = 1.
Let D̆x and D̆y be the proper transforms of H̆x and H̆y on the variety Ŭy, respectively, and Γ̆ be the proper

transform of Ω̆ on the variety Ŭy. Then D̆x · Γ̆ = 0 and D̆y · Γ̆ = 1. Moreover, we have

KŬy
+

1
n
D̆ +

(
multO(M)/n− 1

)
Ğ+ D̆x + D̆y ≡ (π̆ ◦ γ̆y

)∗(
KX̆ +

1
n
M
∣∣∣
X̆

+ S̆x + S̆y

)
,

where D̆ and Ğ are proper transforms of B̆ and Ĕ on the variety Ŭy, respectively.
The morphism η̆y contracts the divisor Ğ. But the morphism η̆y |Ğ is a P2-bundle.

Let Y̆ be a general fiber of η̆y
∣∣
Ğ

. Then Y̆ ∩ D̆x is a line in Y̆ ∼= P2, the intersection Γ̆ ∩ Y̆ is a point that is

not contained in Y̆ ∩ D̆x, and Y̆ ∩ D̆y = ∅. So, in the neighborhood of the fiber Y of the morphism η̆y the locus

LCS
(
Ŭy,

1
n
D̆ +

(
multO(M)/n− 1

)
Ğ+ D̆x + D̆y

)
consists of Γ̆ and D̆x, which is impossible by [15, Theorem 17.4], because Γ̆ ∩ D̆x = ∅.

5 Main result

LetX be a hypersurface in P6 of degree 6 with isolated ordinary double points. Suppose thatX is not birationally
superrigid. Let us show that this assumption leads to a contradiction.

It follows from Theorem 2.1 that there is a linear system M on the hypersurface X that does not have fixed
components such that the log pair

(
X, 1

mM)
is not canonical, where m ∈ N such that M ∼ −mKX .

Let Z be a proper irreducible subvariety of X such that
(
X, 1

mM)
is not canonical at general point of Z , and

the subvariety Z has the biggest dimension among such subvarieties. Then dim(Z) � 1 by [21, Theorem 2].
Suppose that either dim(Z) �= 0 orZ is a smooth point ofX . Let P be a general point ofZ , and V be a general

hyperplane section of X that contains P . Put B = M|V . Then V is a smooth hypersurface in P5 of degree 6,
and the singularities of

(
V, 1

mB) are not canonical at the point P by [15, Theorem 17.6].
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Let S1 and S2 be sufficiently general divisors in B, and F = S1 · S2. Then

dim
{
O ∈ F

∣∣ multO
(
F
)
> m

}
� 1

by [27, Proposition 5]. Let Y be a general hyperplane section of V that contains P . Put P = B|Y . Then

dim
{
O ∈ F ∩ Y ∣∣ multO

(
F |Y

)
> m

}
� 0 (5.1)

by [10, Proposition 4.5], because Y is a smooth hypersurface in P4 of degree 6.
The log pair

(
Y, 1

mP) is not log canonical at P by [15, Theorem 17.6]. Let η : P4 ��� P2 be a general
projection, and L be a general line in P2. Then it follows from [10, Theorem 1.1] that

η
(
P
) ∈ LCS

(
P2, L+

1
4m2

η∗
[
F
∣∣∣
Y

])
� L,

but it follows from [10, Proposition 4.7] and the inequality 5.1 that the log pair
(
P2, 1

4m2 η∗
[
F |Y

])
is log terminal

in a punctured neighborhood of the point η(P ). The latter is impossible by [15, Theorem 17.4], because

KP2 + L+
1

4m2
η∗
[
F
∣∣∣
Y

]
≡ −1

2
L.

We see thatZ is a singular point of the varietyX . Let π : U → X be a blow up ofZ , andE be a π-exceptional
divisor. Then multZ(M) > m by Lemma 3.1. But

KU +
1
m
H ≡ π∗

(
KX +

1
m
M
)

+
(

3 − 1
m

multZ(M)
)
E,

where H is a proper transform of M on the variety U . Let M1 and M2 be general divisors in M. Then

multZ
(
M1 ·M2

)
> 6m2

by Lemma 4.5. Let H1, H2, H3 be general hyperplane sections of X that pass through the point Z . Then

6m2 = M1 ·M2 ·H1 ·H2 ·H3 � multZ
(
M1 ·M2

)
> 6m2,

which is a contradiction. The obtained contradiction completes the proof of Theorem 1.1.

Acknowledgements The author would like to thank the referee who helped to improve the original assertion of Lemma 4.5.
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