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Del Pezzo Surfaces With Nonrational Singularities

I. A. Chel'tsov UDC 512.774.42

ABSTRACT. Normal algebraic surfaces X with the property rk(Div(X)®Q/=) = 1, numerically ample canonical
classes, and nonrational singularities are classified. It is proved, in particular, that any such surface X is
a contraction of an exceptional section of a (possibly singular) relatively minimal ruled surface X with a
nonrational base. Moreover, X is uniquely determined by the surface X .

Key worDS: numerical del Pezzo surface, relatively minimal ruled surface, numerically ample Weil divisor,
normal algebraic surface.

Introduction

F. Sakai’s works naturally carry over questions on the classification of algebraic surfaces to the category
of normal algebraic surfaces. For a Weil divisor on such a surface, it is possible to formally define its
numerical inverse image, which has good functorial properties and allows the construction of intersections
of Weil Q-divisors over Q (see [1]). Numerical del Pezzo surfaces and relatively minimal ruled surfaces play
the same role in the Sakai classification as smooth surface with Kodaira dimension —co in the classification
of smooth algebraic surfaces.

Note that in (2] a narrower class of del Pezzo surfaces with nonrational singularities was classified.

We assume that all surfaces under consideration are normal, complex, and algebraic.

§1. Ruled surfaces

Theorem 1. Let X be a smooth surface, C a smooth curve, and 7: X—-Ca surjective morphism
whose fibers are isomorphic to P'. Then

(1) X = Pc(€), where € is a rank-2 locally free sheaf such that H°(€) # 0 and HY(€ ® F) =0 for
any F € Pic(X) with deg(F) < 0;

(2) e=—deg(€) is an invariant of the surface X ;

(3) there exists a section Cy of the ruled surface 7: X — C such that C? = —e¢;

(4) Pic(X) = ZCo @ 7* Pic(C);

(8) Kg ~ —2Co + ©*(Kc + A*E); in particular, Kg = —2Cy + (29(C) — 2 — €)F, where F is the
fiber of the morphism 7;

(6) if e > 2¢g(C) — 2, then the sheaf £ is decomposable;

(7) C% > —e for any section C» of the ruled surface 7: X-C.

The proof of Theorem 1 is given in [3].

Definition 1. A surface X is ruled if there exists a surjective morphism 7: X — C of X onto a
curve C such that the general fiber of 7 is isomorphic to P!.

Remark 1. The curve C in Definition 1 is smooth, because the surface X is normal.

Definition 2. A ruled surface 7: X — C is relatively minimal if each fiber of the morphism 7 is
irreducible (but possibly reduced).
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Lemma 1. For every ruled surface #: X — C, there exists a commutative diagram

®)
—
—

H

such that the morphism p: X — X is birational and #: X —» C is a relatively minimal ruled surface.

Proof. Let F be a reducible fiber of the morphism 7: X - C. Then

n 2 n n
MNE) <0 and A F i =0 < AF; = )AF,
2 ~

i=1

where F; are components of the fiber F and X;;A € Q (see [4]). Therefore, for any proper subset
{i1,...,%} C{1,...,n}, the intersection form of the divisors Fj; with j =1,...,k is negative definite;
hence all the divisors F;; are contractible (see [1]). This immediately implies the assertion of Lemma 1. O

Lemma 2. To a relatively minimal ruled surface =: )‘ii — C with a section Cy, there corresponds
canonically a smooth relatively minimal ruled surface 7°: X* — C such that the diagram

x-% X
| e
¢ = C

where ¢ is a birational morphism, is commutative.

Proof. Consider the commutative diagram

/\

-------------- ->X~’ (1)

where X is the minimal resolution of the singularities of X and X* is a smooth model of X relatively
minimal over C. To prove the lemma, we must show that the morphism ¢ can be selected canonically.
The fibers of the morphism p do not contain (—1)-curves, but the surface ¥ op: X — C is not relatively
minimal; therefore, each reducible fiber of the morphism 7 o p contains exactly one (—1)-curve, which is
the preimage of the corresponding fiber of 7. Let us select g so that g =¢; 0---0gx for some K € N>
(if K =0, then X = X = X*), where

(1) foreach i =1,..., K, the morphism g¢;: Xi o Xi-1 (XK X and X° = X") is the composition
of blow-ups in the ﬁber of the morphism Tog; o---0¢;—; over a point z; € C, and all z; are
pairwise different;

(2) foreach i =1,..., K, ¢/ (gio--- 0 qx(p™}(Co))) # ¢;* (gio---o ax(p~1(Co))) -
It is easy to see that conditions (1)-(2) determine the morphism g uniquely. O
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Remark 2. The proof of Lemma 2 yields an easy algorithm for constructing all relatively minimal
ruled surfaces. It is sufficient to take a smooth relatively minimal ruled surface and then reconstruct some
of its fibers as follows:

(1) blow up a point on the fiber;

(2) blow up the intersection point of the blown up curve and the preimage of the fiber (two (—1)-
curves);

(3) successively perform blow-ups of a point on the current (—1)-curve in such a way that the fiber
will contain only one (—1)-curve;

(4) contract all curves in the fiber except the unique (—1)-curve.

Note that nonuniqueness in the reverse passage from a singular surface to a smooth one consists in the
appearance of two (—1)-curves in the fiber of the nonsingular ruled surface when the first blow-up is
performed.

Theorem 2. If #: X — C is a relatively minimal ruled surface, then
(1) X is a projective surface;

(2) X has no singularities worse than rational;

(3) R'T.(Og)=0;

(4) all ﬁbers~W1'th reduced structures are smooth and isomorphic to P!;
(5) rk(Div(X)® Q/=) =2.

Proof. (1) See [5]. 5
(2) Consider the commutative diagram (1), where p is the minimal resolution of the singularities of X

and g is a birational morphism onto the relatively minimal smooth ruled surface 7°: X* > C. Itis well
known that

Rlij(oz,) =0, R"%:(of,) =0Oc¢ and qu,(O}?) =40, Roq*(Of) =0z,
The Leray spectral sequence implies that
R'(Fop)(0g)=0 and R’(Fop).(0Og)=Oc.

Suppose that F' = 3~ a;F;, where the F; are the irreducible components of the fiber F' and a; € N.
Then R'(7 o p).(Og) = 0 implies that H*(Of) = 0. Indeed, let Zr be the sheaf of the ideals of the

scheme F'; then the exact sequence
0—>IF—>O)?—->OF—>0
implies the exact sequence
0 H'(OF)
RY(% op)s(0g) — RY(Fop).(Or) — R*(7 op)«(ZF)

on the other hand, R%(% o p).(Zr) = 0 from dimension considerations. Therefore, all singularities of X

are rational (see [6]), as well as those of any surface obtained from X by contracting components of the
fibers of % o p.

(3) As proved above, all singularities of X are rational, i.e., in the notation introduced in (2), we have
R'p(0%)=0 and R°p(0g)=053.

The Leray spectral sequence implies that
R'7,(05)=0 and R'F(0g)=0c.
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(4) The argument from (2) and (3) shows that if ¥ is a reduced fiber of 7, then H*(Ofp) = 0 and
FxP.

Note that Remark 2 allows us to find fundamental cycles (see [6]) of singularities of the surface X . The
intersection of the only (—1)-curve in a given reducible fiber of T op with the corresponding fundamental
cycles equals one, which implies (4) (see {6]).

(5) See [1]. O

Remark 3. The proof of Theorem 2 implies that all singularities of a ruled surface are rational.

§2. Numerical del Pezzo surfaces

Definition 3. A Weil divisor D on a surface X is called numerically ample if for each curve C € X,
the inequalities DC > 0 and D? > 0 hold.

Definition 4. A surface X is said to be a numerical del Pezzo surface if —Kx is a numerically ample
Weil divisor.

Lemma 3. Let X be a numerical del Pezzo surface. Then
(1) Hi(Ox)=0 for i =1,2;
(2) X is a projective surface.

For the proof of (1), see [1], and for that of (2), see [5].

Lemma 4. Let X be a numerical del Pezzo surface and f: X — X a resolution of singularities of X .
Then

(1) B Og) = HO(R£(Og)) and H*(Og) = 0;
(2) kod(X) = —c0.

Proof. (1) Lemma 3, the normality of X, and the Leray spectral sequence imply the exact sequence
HY(Ox)=0 H?(Ox)=0
0 — H'Y(R%f.(0g)) — HYOg) — H°(R!'f.(0g)) — H*(R'f.(0O%))
— H?*(03) — 0
which proves the required assertion.

(2) If there exists an effective divisor D € |Kg|, then Kx = f,(D), which is impossible, because —D
is a numerically ample divisor on a projective surface (see Lemma 3). O

Corollary. A numerical del Pezzo surface is rational if and only if its singularities are rational.

§3. Numerical del Pezzo surfaces with nonrational singularities

Theorem 3. Let X be a numerical del Pezzo surface with nonrational singularities, and let f: XX
be its minimal resolution of singularities. Then

(1) there exists a morphism = such that #: X — C is a ruled surface and ¢(C) = HY(O3) #0;
(2) the morphism f contracts one smooth curve E not lying in the fibers of the morphism 7 ; moreover,
E is a section of the morphism T; R
(3) if ®*: X°* — C is a model of the ruled surface X and 7° is relatively minimal over C, then
R=Fop, K =Pc(E), ¢>20(C)-2 and pER =—e,

where £ is a decomposable locally free sheaf of rank 2 and e an invariant of Pc(£).
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Proof. (1) The assertion of the theorem immediately follows from Lemma 4 and the corollary.

(2) Note that the morphism f contracts at least one curve not lying in the fibers of 7, because otherwise,
all singularities of X would be rational by Remark 3. Let E;, where j = 1,..., k, be the irreducible
reduced curves not lying in the fibers of © and contracted by f. Then

n k
Kg=f"(Kx)~) aFi-) bEj,
=1 j=1
where F; are exceptional curves of f lying in the fibers of ¥ and a;,b; € Qo for « = 1,...,n and

J7=1,..., k. The adjunction formula gives (K¢ + E,)E, > Qg(E,.) ~2, where r € {1,...,k} and E, is
a normalization of the curve E,. By the Hurwitz formula, 2¢(E,) — 2 > 2¢(C) — 2 > 0; therefore,

n k

(1-b,)E% > (— Y aFi— Y biEj— (b~ l)E,) E,>0.
i=1 J=1,j#r

Thus, all the b; are greater than or equal to one. If L is a fiber of 7, then

n k k
~2=KgeL = (f*(Kx) - ZaiFi - Z bjEj)L < (_Z bjEj)L;
i=1

=1 =1
therefore, k=1, b=5b; <2,and E=FE, = E; is a section of the ruled surface 7': X-c.
(3) Let C; be a section of the ruled surface 7°: X* — C such that C2 = —e. Then
p(E)=Co+dF,

where F' is a fiber of the morphism 7° and d € N by Theorem 1. In the notation introduced in (2), we
have

p(z a;F,-) =aF, Kz, +p<Za,~Fi + bE) =(b-2)Co+ (29(C)~2—e+a+db)F,
i=1

i=1

where a € Q>¢. If Cy # p(E), then p(E)Co =d—e>0 and

bd —be +29(C)—2+e+a= (Kf, +P(Zai-Fi+bE))Co

=1

= (Kg+ D aih 438 (Co) = £ (Kx)p"(Co) <O
i=1
But if € > 0, then
bd —be +29(C)—2+e+a>bd—e) >0,
and if e < 0, then
bd —be+29(C)—2+e+a>e(l-0)>0.
Therefore, Cy = p(E). Similarly,

be +29(C)—2+e+a= (Kf, +p(Za.’Fi+bE)>Co

i=1

= (Kg + D wki+88)5"(Co) = £ (Kx)5"(Ch).
i=1

Note that if p~1(Cp) # p*(Co), then f*(Kx)p*(Co) < 0, because in this case, p*(Co) contains a (—1)-

curve that cannot be contracted by the morphism f. Suppose that CZ = —e > 0; then p~1(C)) # p*(Co)

and

0> f(Kx)p™(Co)=(1-0)e+29(C)—2+a>0.
Therefore, e > 0 and
0> F*(Kx)p"(Co) = (1 — b)e +29(C) — 2+ a 2 —e +24(C) - 2.
By Theorem 1, this implies that the sheaf £ is decomposable. O
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Theorem 4. Let the conditions of Theorem 3 be fulfilled, and let rk(Div(X) ® Q/=) = 1. Then X
is a contraction of a section of a relatively minimal ruled surface ¥: X — C, and h'(Og) = ¢(C) > 0.
Moreover, the surface X is uniquely determined by X .

Proof. Let f: X — X be the minimal resolution of the singularities of X. By Theorem 3, X is

then a ruled surface 7#: X — C such that g(C) > 0 and f contracts one section and the components of
reducible fibers of the morphism 7. Let

I
F*=>"a;F}, where A=1,...,N and g €N,
i=1

be the reducible fibers of 7. Then

N
rk(Div(X) @ Q/=) =2+ (jx—1).
A=1
On the other hand,

rk(Div(X) ® Q/=) = 1+ the number of curves contracted by f.

Therefore, f cannot contract only one component in each reducible fiber, and we have the commutative
diagram
LXxLx

o))

T )

H)
Q &

> C

where f = gop, 7: X5 Cisa relatively minimal ruled surface, and g is a morphism contracting a
section of 7.

Since h'(O%) = ¢(C) and all singularities of X are rational by Theorem 2, the Leray spectral sequence
implies that h'(Og) = g(C) > 0.

The uniqueness of the surface X follows from its construction. O

Theorem 5. Let the conditions of Theorem 4 be fulfilled. Then to the surface X there corresponds
canonically a smooth relatively minimal ruled surface 7*: X* — C such that X* = P¢(€), where £ is
a rank-2 locally free sheaf, e > 2¢g(C) — 2 (e is an invariant of the ruled surface Pc(£E)), the sheaf £ is

decomposable, and q(p‘l(E))2 = —e.

The proof of Theorem 5 follows from Theorems 3 and 4 and Lemma 2.

§4. The construction

Consider a pair (7: X -, Co), where T7: X - C is a smooth ruled surface and Cp its section.
We say that a pair (7': X' — C, Cj}) is obiained by an elementary transformation ¢ associated to a
point z € C from the pair (7: X — C, Cy) if there exists a commutative diagram

xr %
1;

|

¢ =2 C

=)

such that
1) = X' = C is a smooth ruled surface;
(2) ¢ is a birational morphism and a composition of blow-ups in the fiber of the morphism T over
the point z € C;
(3) the fiber of the morphism 7 over the point z € C is irreducible;
(4) the fiber of 7' over z contains exactly one (—1)-curve;

(8) Cy = ¢~ (Co) and ¢*(Co) # Cy-
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Definition 5. A sequence of pairs of integers (o} , a?) with i € N>; has property (*) if

(1) (aé,a%):(l,l);
(2) for > 4,

(alj,al_;+a?,), or
(a} ) a?) = (a%—l + a?—l ) a?—l)’ or
(0, 0‘}—1 + 0‘?—1)-

Consider a pair (7': X' — C, C}) obtained by an elementary transformation ¢ associated to a
point z € C from a pair (7: X — C, C)). Let us introduce the following notation:

(1) Xo X To = 7, and F is the fiber of the morphism Ty over the point z;

(2) x1,0¢ : X; — X, is a blow-up of the point F; NCy, T =7 ©X1,0,and F3 is an exceptional curve
of the morphism X1,03

(3) x2,1: X, — X, is a blow-up of the point Fj N F}, X2,0 = X1,0° X211 ®2 =T10Xz,,,and F3 is
an exceptlonal curve of the morphism x, ;;

(4) Xig1,i: Xiy1 — X; is a blow-up of a point on Fiyi, Xit1,j = Xj+1,j 0 Xy, for j <,
Tit1 = Wi 0 X; +1,i> and Fiy2 is an exceptional curve of the morphism x;4, ;;
(5) FT is a (p0551bly nonreduced) fiber of the morphism 7, over the point z;

(6) Xn=X' 7y =7, and Fyy; is a unique (— 1) -curve in FV,;
(7) C§ = XN,O(CO) a.nd F; = xN’,_l(F) fori=1,...,N-1.

Let us denote the number of all irreducible components in the fiber of 7’ over the point z € C by N +1
and put the surface X' in correspondence with the sequence

@(X",a¥(X"), i=3,...,N+1, 2)

of pairs of integers. Take 7 € {1,..., N — 1} and consider the surface Xiy1. We have
) i+1
F*l = aioFua+ ) aixih j-1(F);

j=1

Fi4, is the unique (—1)-curve in F**! and it intersects no more than two irreducible components of F*+!.
If Fi4, intersects x;:l, r—1(Fx) and X;}:-ll,l—l(ﬂ) so that X:‘—-:l,f—l(Fl) lies in a connected component of
F+1\ Fiy» meeting Xi_-:1,o(00)a where | # k and k,l € {1,...,7i+ 1}, then we put

(@h42(X"), 3345(X") = (ax, ).

Suppose that F;y, intersects only x::l, x—1(F%) among all components of F**! (k € {1,...,i+1}); then
k =i+ 1. In this case we put

(&}+2(5‘:'), 5‘?+2(X’)) = (Oa Gi+1)-
Lemma 5. The sequence (2) of pairs of integers has property (*).
Proof. We shall use the notation

(a}(X"),a}(X") = (al,a?) for i=3,...,N+1 3)
On the surface X, , the relation
F? = 2F; + x5 1(F2) + x5 5(F1)
holds. It can be verified directly that (&}, a3) =(1,1).
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Suppose that the sequence of pairs (&}, &?) has property (*) with : = 3,...,r. Let us prove that this
sequence has property (*) with ¢ =3,...,r +1.
On the surfaces X,_; and X, we have the relations

r—1 T
Frl=qF + Z ajx;ly j-1(Fj) and  Fr=arFrgg + Z aixr 1 (F5)-
Jj=1 j=1

Suppose that F, intersects xr__ll’ p—1(F&) and X:_ll’,_l(Fz), and Xr_-11, 1—1(F1) lies in a connected
component of F™~!\ F, intersecting x;; 4(Co), where I # k and k,l € {1,...,r —1}. By assumption,
(al,a?) = (ak, a;). Consider three cases.

(1) Let xp,p1: X, — X,_; be a blow-up of FrnX:_ll,k..l(Fk) . Then F;; intersects Xr_,lr—1 (Fy) and
Xy ' _1(F%), and X7 +—3 (Fr) lies in a connected component of F"\ Fry; meeting x;. L(Co). By definition,
(@lyq,82,,) = (ak,ar), where a, = ax + a;.

(2) Let xp p—1: X, — X,_1 be a blow-up of F, N x:_ll,,_l(Fz). Then Fr4 intersects x;,._;(F) and
Xr., ! _1(F&), and Xy, % —1(Fx) lies in a connected component of F"\ F,.;; meeting ;. 1(Co). By definition,
(&LH , 5‘2+1) = (a,, a1), where a, = ar +ay.

(3) Finally, let X, ,—;: X, > X,-1 bea blow-up of a point on F, not belonging to the union
x:_ll,k_l(Fk) U X:-1-1,1—1(F1)- Then F,4; intersects only x;:._,(Fr) among all components of F". By
definition, (&},,,a%,;) = (0, a,), where a, = ar +a;.

Suppose that F, intersects only X:_11,r..2(F —1) among all components of F™~!. By assumption,
(@,a?) = (0,ar-1). Note that x, ,_;: X, — X,_; is a blow-up of either F, N X7t rog(Fr1) or a

point on F). not belonging to xr‘_l o(Fr—1). Consider two cases.

1,r—

(1) Let Xr,r—1" X, - )?,-._1 be a blow-up of Fr- N x:_l_l,,_z(F —1). Then Fyy; intersects x:,lr_l(F,.)
and x7%_,(Fr—1), and X y_5(Fr—1) lies in a connected component of F™ \ Fr4; meeting x;4(Co). By
definition, (al,,, a%,,) = (ar, ar-1), where a, = a,_; .

(2) Now, let x, ,_;: X, — X,_1 be a blow-up of a point on F, not belonging to X721 r—2(Fro1).
Then Fy,; intersects only x; ,_;(Fr) among all components of F". By definition, (G741, @241) = (0, ar),
where a, = ay-1.

In all the cases, the sequence of pairs (&}, @?) has property (*) with ¢ =3,...,r + 1. The lemma is
proved. O

Lemma 6. Let a sequence of pairs (o, a?) of integers have property (*). Then there exists a unique
pair (7': X' — C, C}) that is obtained by an elementary transformation ¢ associated to a point z € C
from the pair (%: X — C, Co) and satisfies relations (3).

Proof. Let us find all such surfaces X, by induction. Suppose that we have already found the sur-
face X, for some r € {2,...,N}. Let us find X,4;.

Suppose that Fry; intersects X, ! _1(Fx) and Xr, ! _(F),and x:’ll_l(F,) lies in a connected component
of F7\ Fyy; intersecting x, 1(Co), where l # k and k,1 € {1,...,r}. Consider three cases.

(1) ¥ (adyy,02,,) = (0,al + o), then x,4, ,: X,41 — X, is a blow-up of a point on F,;; not
belonging to X:,lz..l (FyUx;, L (Fr).

(2) If (alyy,02yy) = (ef, 02 + a}), then X,y ,: Xr41 — X, is a blow-up of a point belonging to
Fr+1 n X:,lk_l(Fk)-

3) Finally, if (ely;,a?,;) = (e + o2,a2), then x4, ,: Xr41 — X, is a blow-up of a point on
Fraa N xp i (F).

Suppose that Fri; intersects only x,-"_,_ll,,_l(F,) among all irreducible components of F”. Consider
two cases.
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(1) If (af4q,024) =(0, a2), then X,y X;41 — X, is a blow-up of a point on Fri; not belonging
to x:’lr_l(F,.).
(2) If (alyy,a2,;) = (a2, a?), then x,4; ,: X.41 — X, is a blow-up of a point on Fry; ﬂx:,lr_l(Fr).
It is easy to see that the surface Xy = X' thus obtained is unique and satisfies relations (3). O
Definition 6. A sequence (B!,8?), i € N>3, of pairs of integers is dual to a sequence (a},a?),
i € N>3, of pairs of integers with property () if
(2) for ¢ > 4,
By, Biy + 821 +1) if (o}, 0f) = (af_y, iy + i y);
(B, 6])=q (Biy + B +1,8L,) if (ad,0f) = (i + 0, al,);
0,81+ 87, +1) if (ai,af) = (0, ej_; +af_)).

§5. Classification

Suppose we are given:

(1) a smooth relatively minimal ruled surface 7°: X°® — C with an invariant e for which we have
X% = Pc(Oc @ L), where L € Pic(C), Cs is a unique section of this ruled surface, CZ = —e, and
e = —deg(L) > 2¢9(C) - 2;

(2) a set of pairwise different points {z;,...,z2x} C C, possibly empty (for K = 0);

(3) smooth ruled surfaces 7¢: X? — C with sections Cy C X¢, where d = 1, ..., K, such that for
each d=1,..., K, the pair (x?: X% - C, C4) is obtained by an elementary transformation ¢4
associated to a point z4 € C from the pair (7?71: X471 = C, Cy-1).

If K > 1, then we apply the construction from the preceding section to put each of the surfaces X¢
(d=1,..., K) in correspondence with the sequence of pairs of integers

(@ (x?),a3(XY), i=3,...,N(d)+1,
and the dual sequence _ _
(B}(Xx?%), B3(X%), i=3,...,N(d)+1,

where N(d)+1 is the number of irreducible components in the fiber of the morphism 7
To the surface X we assign 2K sequences of pairs of integers: these are

(@(X¥,d),a}(x¥,q)) = (al(X%),al(x?")  (BHX"X,d), BE(X¥,d)) = (BI(X?), BI(X%)

with d=1,...,K and ¢ =3,..., N(d) + 1, where N(d)+1 is the number of irreducible components of
the fiber of #¥ over z4.

4 over the point z4.

Lemma 7. In the notation introduced in this section,

(1) the sequence (a}(XX,d),a?(X¥,d)) with i =3,..., N(d)+ 1 has property (*) for each d =
1,...,K;

(2) for any K sequences of pairs of integers
(e}(d), o¥(d)) with d=1,...,K and i=3,...,R(d)+1, where R(d)€ Ny,
having property (), there exists a unique smooth ruled surface 7¥: XX — C with section Cx
such that the pair (¥ : XK — C, Ck) is obtained from the pair (z°: X° — C, C,) with the
help of a sequence of elementary transformations associated to the points {zi,...,zx} C C and

(@} (x¥,d),a}(X¥,d)) = (e}(d), a?(d)) for d=1,...,K and i=3,...,R(d)+1,

K

where R(d)+1 is the number of irreducible components in the fiber of the morphism 7= over the

point z4.

This lemma follows from Lemmas 5 and 6.
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Lemma 8. In the notation introduced in this section, let F(d) be the (possibly nonreduced) fiber of
the morphism ©¥ over the point z4, where d =1...,K and K > 0. Suppose that on the surface X¥ ,

N(d)+1 . K N(d)+1
F(d)= Y aj(d)Fj(d) and Kxx=-2Ck+Y > bi(d)Fj(d)+(29(C)-2-e)F,
j=1 d=1 j=1

where the sets Fj(d) are the irreducible components of the fiber of ¥ over the point denoted by zq in
84 and F, the general fiber of 7. Then

BXK,d)+ (XK, d) = ai(d)  and  BXK,d)+ BXK, d)+1=bi(d)
for d=1,...,K and i=3,...,N(d)+1.

Proof. This lemma follows from elementary properties of blow-ups and the definition of the sequences
al(X¥,d) and BHX¥,d) with d=1,...,K and i =3,...,N(d)+1. O

Lemma 9. In the notation introduced in this section, let

i bn(a)+1(d)

<2-2¢(C)+e.
‘= an(ay+1(d) o0

Then
(1) there exist positive rationals Aj(d) and v such that

K N(d)+1
Kyx ==2Ck - Y > Aj(d)F;(d)-~F, (4)

d=1 j=1

where F(d) is an irreducible reduced component of the fiber of the morphism ¥ over the point z4
and F is the general fiber of 7K
(2) for i =3,..., N(d), we have
bi(d) < by(ay+1(d)
a;(d) = an(a)+1(d)’

(3) the intersection form of the curves Cx and Fy(k), where k=1,...,K and r=1,...,N(k), is
negative definite.

Proof. (1) Suppose that

K
2-—-2g(C)+e=Zad,

d=0

where €4 € Q>0 and €4 > by(a)+1(d)/an(a)+1(d) for d = 1,..., K. Then we have relation (4), where
F;(d) is an irreducible component of the fiber of 7X over z4, F is the general fiber of 7K, v =¢¢ > 0,
and

An(ay+1(d) = anay+1(d)ed —bnay+1(d) >0 for d=1,..., K.

Let us prove that A\j(d) >0 for d=1,...,K and j =1,...,N(d). If this were not so, then there would
exist k € {1,...,K} and J C {1,..., N(k)} such that {J;; F;(k) would be connected and A;(k) <0
for all j C J. There is no (—1)-curve among Fj(k) with j C J, and the intersection form of the curves
F;(k) is negative definite (see [4]). By the adjunction formula,

KXKF’]'(k) +Fj(k)2 > -2 for jCJ.
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Therefore, for all j C J, we have Kxx Fj(k) >0 and

02 Kxx @7 AR ) = (=20 - N;z:);“ ARER) (CZJ MBER)
- —(g A,-<k)ﬁ,-<k>)2 — 20k (;J YOLIOIE C(Z); YOL0) (;7 MBE®)
On the other hand, \
-(ZuwE®) 20
jCT
the equality holds if A;(k) =0 for all j € J. Clearly,
~2Ck (; ARF(R) 20 and - (Z(Z); ABE) (‘é ABE®) 20

Therefore, Aj(k) =0 and
N(k)+1
0< (Z F,-(k)) Kxx = (Z F,-(k)) <—2CK - > ,\,-(k)F,-(k)) <0
iCT jCT j=1
forall j C J. Hence Aj(d) >0 ford=1,...,K and j=1,...,N(d).
(2) We proved in (1) that if
K
2—2g(0)+e=Z€d, £d €Q>o, Ed>bN(d)+1(d)/aN(d)+1(d) ford = 1,...,K,
d=0
then we have relation (4), where Fj(d) is an irreducible component of the fiber of 7% over z4, F is the
general fiber of X, v = gy, and Aj(d) = aj(d)eq — bj(d) >0 for d=1,...,K and j =1,...,N(d).
The required expression is obtained by considering 4 — by(a)+1(d)/an(ay+1(d)-
(3) It follows from (1) and (2) that there exist positive rationals \;j(d) and ~ satisfying relation (4).

There is no (—1)-curve among Ck and Fy(k) with k=1,...,K and r =1,..., N(k), the intersection
form of the curves Fy (k) is negative definite (see [4]), and

C% <Cl=-e<2-29(C)<0.
By the adjunction formula,
Kx,Cxk+C%>0 and Kx,F.(k)+ F (k) > -2
Therefore,
KxxFr (k) >0 for k=1,...,K, r=1,...,N(k)), and KxxCkg >0.

Hence we have

K N(d)+1 K N(d)+1 _
0<EM(-20x-Y Y. MOB@-F),  0<0(-20x-3 3 AR -F)
d=1 j=1 d=1 j=1
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for k=1,...,K and r =1,..., N(k). This implies the inequalities

K N(d) K N(d)
0 < Fo(k) (—20K -3 ,\,-(d)iy(d)) and 0<Cx (—ZCK > Aj(d)Fj(d))
d=1 j=1 d=1 j=1

for k=1,...,K and r=1,...,N(k), and if F,.(k)ﬂF—’N(k)_,_l(k);é @, then

K N(d)
0< Fr(k)<-2cx -y )\,-(d)F’,-(d)).

d=1 j=1

Therefore, the intersection form of the curves Cx and Fy(k) with k=1,...,K and r=1,...,N(k) is
negative definite (see [6]). O

Lemma 10. In the notation introduced in this section,

K

b 1
Z__;l ——a’; ‘(Z)):]E‘g <2-29(C)+e (5)

if and only if there exists a morphism f: Xg — X such that
(1) X is a numerical del Pezzo surface;
(2) k(Div(X)® Q/=) =1; )
(3) f contracts the curves Cx and Fj(d) withd=1,...,K and j=1,...,N(d).

Proof. Necessity. Let (5) be fulfilled; then Lemma 9 implies that the intersection form of the curves Ck
and F.(k) with d=1,...,K and j=1,..., N(d) is negative definite on the surface Xx . There exists
a morphism f: Xx — X contracting the curves Cx and Fj(d) with d=1,...,K and j=1,...,N(d)
(see [1]), and we have

K
rk(Div(Xk) ® Q/=) =2+ » N(d);

d=1
therefore, rk(Div(X) ® Q/=) = 1. It is easy to see that on the surface X, the relation

K

Fu(Kxe) = Kx = (Z bv@nld) 5 _ 900y e) £.(F)

‘o an)+(d)

holds. The relations rk(Div(X) ® Q/=) =1 and

K

bn(ay+1(d)
E —_— -2 -29(C)+e<0
£~ an(a)+1(d) o(C)

imply that X is a numerical del Pezzo surface.

Sufficiency. Suppose that there exists a morphism f: Xx — X such that X is a numerical del Pezzo
surface, rk(Div(X) ® Q/=) = 1, and f contracts the curves Cx and Fj(d) with d = 1,..., K and
j=1,...,N(d). It is easy to see that on the surface X,

K
fi(Kxg)=Kx = (gzg))—':((c‘g—2—2g(0)+e)f*(lr).

By assumption, rk(Div(X)® Q/=) =1 and X is a numerical del Pezzo surface; therefore,

K

by(ay+1(d)
MDA 9 29(C)+e<0. O
Z; an(a)+1(d) o(%)
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Theorem 6. There exists a one-to-one correspondence between all numerical del Pezzo surfaces X with
nonrational singularities and with the property rk(Div(X)® Q/=) =1 and all triples each comprising
(1) a ruled surface n: Pc(Oc @ L) — C with an invariant e such that £ € Pic(C), g(C) > 1, and
e = —deg(L) > 2¢(C) - 2;
(2) a set of pairwise different points {z1,...,2x} C C, possibly empty (for K =0);
(3) K sequences of pairs of integers

(a}(d), Ol?(d)) with d=1,...,K and 1=3,... ,R(d) +1, where R(d) c sz,
that have property (*) and satisfy the relation
= 'B;l(d)ﬂ(d) + 'sz(d)-}-l(d) +1
o k@i + ok (D)

where (B}(d),p?(d)) with i = 3,...,R(d) + 1 is the sequence of pairs of integers dual to
(a}(d), a?(d)) foreachd=1,...,K.

<2-29(C)+e,

Theorem 6 is implied by Theorem 5 and Lemmas 7-10.

Remark 4. Theorem 6 not only classifies all numerical del Pezzo surfaces with nonrational singularities
and the property rk(Div(X)®Q/=) = 1; it also gives an effective algorithm for constructing such surfaces.
The algorithm is as follows:

(1) take a smooth relatively minimal ruled surface Pc(Oc¢ & £) with an invariant e and section Co
such that e —2¢(C)+2 > 0, £ € Pic(C), and C? = —e = deg(L) > 2¢(C) — 2;

(2) select a (possibly empty) set {z1,...,zx} C C of pairwise different points;

(3) perform an elementary transformation ¢: Xx — Pc(Oc @ L) in the fibers of the morphism =
over the points z;,...,zx so that the K sequences of pairs of integers

(e} (Xk,d),e}(Xk,d)) with d=1,...,K and i=3,...,R(d)+1
satisfy the inequality

K Bhray+1(D(Xk) + Bray 1 (d)(Xx) +1
5 @Ry (D(XK) + oy (D(Xk)

where (B}(d), 8?(d)) with i = 3,...,R(d) + 1 is the sequence of pairs of integers dual to
(a}(d), a?(d)) for each d =1,...,K and R(d) + 1 is the number of all irreducible components
in the fiber of the morphism 7 o ¢ over the point z4 € C;

(4) contract the preimage of Cp and all irreducible components of the fibers of 7 0 over the points
z1,...,zk except (—1)-curves.

<2-29(C)+e,

The author is very grateful to V. A. Iskovskikh and Yu. G. Prokhorov for fruitful and interesting
discussions.
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