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Del  P e z z o  Surfaces  W i t h  N o n r a t i o n a l  Singulari t ies  

I.  A.  C h e l ' t s o v  UDC 512.774.42 

ABSTI:tACT. Normal algebraic surfaces X with the property rk(Div(X) |  = 1, numerically ample canonical 
cl.asses, and nonrational singularities are classified. It is proved, in particular, that any such surface X is 
a contraction of an exceptional section of a (possibly singular) relatively minimal ruled surface A" with a 
nonrational base. Moreover, X is uniquely determined by the surface X .  
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Introduction 

F. Sakai's works naturally carry over questions on the classification of algebraic surfaces to the category 
of normal  algebraic surfaces. For a Weil divisor on such a surface, it is possible to formally define its 
numerical inverse image, which has good functorial properties and allows the construction of intersections 
of Weil Q-divisors over Q (see [1]). Numerical del Pezzo surfaces and relatively minimal ruled surfaces play 
the same role in the  Sakai classification as smooth surface with Kodaira dimension - o o  in the classification 
of smooth algebraic surfaces. 

Note that  in [2] a narrower class of del Pezzo surfaces with nonrational singularities was classified. 
We assume tha t  all surfaces under  consideration are normal, complex, and algebraic. 

w R u l e d  su r f aces  

T h e o r e m  1. Let X be a smooth surface, C a smooth curve, and ~: X --+ C a surjective morphism 
whose 6hers are isomorphic to p1. Then 

(1) .~ -~ Pc (E) ,  where E is a rank-2 1ocally free sheaf such that H~ • 0 and H~ | ~-) = 0 for 
any .T" e Pic(.X) with deg(.T') < O; 

(2) = - deg(E) is an in iant o f  the s - ace 2 ;  

(3) there exists a section Co of  the ruled surface ~: )~ ~ C such that Cg = - e ;  

(4) Pic(.Y) -- ZC0 �9 5" Pic(C);  
(5) g X ,~ - 2 C 0  + ~ * ( g c  + A2E); ha particular, g X = -2C0  + (2g(C) - 2 - e)F,  where F is the 

/~ber of  the morphism 5; 
(6) ff e > 2 g ( C ) -  2, then the sheaf  E is decomposable; 

(7) C 2 > - e  for any section Cx o[ the ruled surface ~: .Y --~ C .  

The  proof of Theorem 1 is given in [3]. 

D e f i n i t i o n  1. A surface .~ is ruled if there exists a surjective morphism ~: X --* C of X onto a 
curve C such tha t  the general fiber of ~ is isomorphic to p1. 

R e m a r k  1. The  curve C in Definition 1 is smooth, because the surface )~ is normal. 

Def in i t ion  2. A ruled surface 5 :  X --* C is relatively minimal if each fiber of the morphism ~ is 
irreducible (but  possibly reduced). 

Trarmlated from Matematichesk-/e Zame~k/, Vol. 62, No. 3, pp. 451-467, September, 1997. 
Original article submitted February 2, 1996. 

0001-4346/97/6234-0377 $18.00 (~)1998 Plenum Publishing Corporation 377 



L e m m a  1. For every ruled surface ~: X --* C,  there exists a commutat ive  diagram 

C ~ -- C 

such that  the morphism p: X -~ X is b/rational and ~: X -+ C is a relatively minimal  ruled surface. 

P r o o f .  Let F be a reducible fiber of the morphism ~: X --* C.  Then 

Ai _< 0 and Ai = 0 ~ AiFi = AF, 
"i-----1 - -  - -  i = 1  

where Fi are components  of the fiber F and Ai, A E Q (see [4]). Therefore, for any proper  subset 
{ i l , . . . ,  ik} C {1, . . . ,  n} ,  the  intersection form of the divisors Fij with j = 1 , . . . ,  k is negative definite; 
hence all the  divisors F~ are contractible (see [1]). This immediately implies the assertion of Lemma 1. [] 

L e m m a  2. To a relatively miv lmal  ruled surface ~ : X --* C with a section Co, there corresponds 
canonically a smooth  relatively minimal  ruled surface ~s : X ~ ._~ C such that the diagram 

--% 

�9 1 l 
6' ~ = 6 '  

where ~ is a birational morphism,  is commutative. 

P r o o f .  Consider  the commutat ive  diagram 

/ 

.............. 

\ A  
0 

(1) 

where X is the  minimal  resolution of the singularities of .~ and )~s is a smooth  model  of X relatively 
minimal  over C .  To prove the lemma, we must show that  the morphism q can be selected canonically. 
The fibers of the  morph i sm p do not  contain (-1)-curves,  but  the surface ~ o p:  X --. O is not  relatively 
minimal;  therefore, each reducible fiber of the morphism ~ o p contains exactly one ( -1)-curve,  which is 
the  preimage of the  corresponding fiber of ~.  Let us select q so that  q = qx o . . .  o qK for some K E N>_0 
(if K = 0, then  X ~ X - X S ) ,  where 

(1) for each i - 1 , . . . ,  K ,  the morphism qi: .~i ~ .~i-x (j~K __ _~ and d ~ = X~) is the composition 
of blow-ups in the  fiber of the morphism ~ o ql o .- .  o qi-x over a point  zi E C,  and all xi are 
pairwise different; 

(2) for each i = 1 , . . .  ,K,  q * ( q i o . . . o q K ( p - l ( C o ) ) )  # q ~ ' l ( q i o . . . o q K ( p - l ( C o ) ) ) .  

It is easy to see tha t  conditions (1)-(2) determine the morphism q uniquely. F1 
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R e m a r k  2. The proof of Lemma 2 yields an easy algorithm for constructing all relatively minimal 
ruled surfaces. It is sufficient to take a smooth relatively minimal ruled surface and then reconstruct some 
of its fibers as follows: 

(1) blow up a point on the fiber; 
(2) blow up the intersection point of the blown up curve and the preimage of the fiber (two (-1)-  

curves); 
(3) successively perform blow-ups of a point on the current ( -1)-curve in such a way that the fiber 

will contain only one (-1)-curve; 
(4) contract all curves in the fiber except the unique (-1)-curve. 

Note that nonuniqueness in the reverse passage from a singular surface to a smooth one consists in the 
appearance of two (-1)-curves in the fiber of the nonsingular ruled surface when the first blow-up is 
performed. 

T h e o r e m  2. I f  ~ : X --, C is a relatively rn~nlmal ruled surface, then 

(1) ~ is a projective s~-~ace; 
(2) X has no singularities worse than rational; 
(3) R ~ , ( O ~ )  = 0; 
(4) all/~bers with reduced structures are smooth and isomorphic to p1 ; 
(5) rk(Div(_~) | Q / = )  = 2. 

Proof .  (1) See [5]. 
(2) Consider the commutative diagram (1), where p is the minimal resolution of the singularities of -~ 

and q is a birational morphism onto the relatively minimal smooth ruled surface ~s : .~s __~ C.  It is well 
known that 

R ~ : ( o x , )  0, 0-, = R ~ . ( O x . ) = O c  and R 'q . (Ox)=0,  R~ 

The Leray spectral sequence implies that 

Rl(~op) . (O2. )=O and R ~  

Suppose that  F = ~ i = l  aiFi, where the Fi are the irreducible components of the fiber F and ai E N. 
Then RI(~ o p),(O2) = 0 implies that HI(OF) = 0. Indeed, let ZF be the sheaf of the ideals of the 
scheme F ;  then the exact sequence 

O -* I F -* O 2 -~ O F -* O 

implies the exact sequence 

o Hi(OF) 

n~(~op) . (ox)  ~ nl(~op) . (o~)~ R~(~op).(ZF) 

on the other hand, R2(~ o p).(ZF) = 0 from dimension considerations. Therefore, all singularities of 
are rational (see [6]), as wen as those of any surface obtained from .~ by contracting components of the 
fibers of ~ o p.  

(3) As proved above, all singularities of -~ are rational, i.e., in the notation introduced in (2), we have 

R l p , ( O x ) = O  and n ~  

The Leray spectral sequence implies that 

RI~.(OX) = o and R~ = oc .  
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(4) The  a rgument  from (2) and (3) shows that  if F is a reduced fiber of ~ ,  then  H i ( O F )  = 0 and 
F - p  ~ . 

Note that  Remark  2 allows us to find fundamental  cycles (see [6]) of singularities of the  surface X .  The 
intersection of the  only ( -1) -curve  in a given reducible fiber of ~ o p with the corresponding fundamental  
cycles equals one, which implies (4) (see [6]). 

(5) See [1]. [] 

R e m a r k  3. The  proof  of Theorem 2 implies that  all singularities of a ruled surface are rational. 

w N u m e r i c a l  de l  P e z z o  su r f aces  

Def in i t ion  3. A Well divisor D on a surface X is called numerically ample if for each curve C E X ,  
the inequalities D C  > 0 and D 2 > 0 hold. 

Def in i t ion  4. A surface X is said to be a numerical del Pezzo surface if - K x  is a numerically ample 
Well divisor. 

L e m m a  3. Let X be a numer /ca /de l  Pezzo surface. Then 

(1) Hi(Cgx) = 0 for i = 1, 2; 
(2) X is a projective surface. 

For the proof  of (1), see [1], and for that  of (2), see [5]. 

L e m m a  4. Let X be a numerical del Pezzo surface and f :  X -* X a resolution of  singularities of X .  
Then 

(1) H 1 ( 0 2 )  ~ H ~  and H ~ ( 0 2 ) = 0 ;  

(2) kod(2)=-co. 

P r o o f .  (1) L e m m a  3, the normali ty of X ,  and the Leray spectral sequence imply the exact sequence 

H l ( O x )  = 0  H (Ox) = 0 

II 
0 , t t l ( R ~  , t l 1 ( 0 2 )  , t t ~  , t t 2 ( R ~  

, H (ox) 

which proves the  required assertion. 

~0  

(2) If there exists an effective divisor D E IK~I, then K x  = f . ( D ) ,  which is impossible, because - D  
is a numerically ample  divisor on a projective surface (see Lemma 3). [] 

C o r o l l a r y .  A nunaerical del Pezzo surface is rational fraud onIy f l i t s  singularities are rational. 

w N u m e r i c a l  del  P e z z o  surfaces w i t h  nonrat ional  s ingular i t ies  

T h e o r e m  3. Let X be a numerical del Pezzo surface with nonratlonal slngtttarities, and let f :  X --* X 
be its m{n;mal resolution of  singularities. Then 

(1) there e, dsts a m o n ~ s m  ~ such that 3: X -~ C is a ruled s u r g e  and g(C) = n l ( o ~ )  # 0; 
(2) the morphism f contracts one smooth curve E not lying in the 6bets of  the morph/sm ~; moreover, 

E is a section of  the morphJsm 3 ;  
(3) is ~s : ~ s  _.. C is a model of the ruled surface X and "~" is relatively minimal over C ,  then 

= ~s o p, .~s ~_ PC(e) ,  e > 2g(C) - 2 and p(E) 2 = --e, 

where 8 is a decomposable locally free sheaf of  rank 2 and e an invariant of  Pc(E) .  
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P r o o f .  (1) The  assert ion of the  theorem immediately  follows from Lemma  4 and the  corollary. 
(2) Note tha t  the  morph i sm f contracts at least one curve not lying in the  fibers of ~ ,  because otherwise, 

all singularities of X would be rational by Remark  3. Let E j ,  where j = 1, . . . ,  k,  be the irreducible 
reduced curves not  lying in the fibers of ~ and contracted by f .  Then  

n k 

g 2 - f * ( g x ) -  ~ aiFi - ~-~biZ j , 
i = l  j = l  

where Fi are exceptional  curves of f lying in the fibers of ~ and ai, b i E Q>0 for i = 1, . . . ,  n and 

y = 1 , . . . ,  k. The  adjunct ion formula ~ves  ( g 2  + E,)Er > 2g(E~) - 2, where r e { 1 , . . . ,  k} and E r  is 

a normal izat ion of the  curve E~. By the Hurwitz formula, 2g(Er) - 2 _> 2g(C) - 2 > 0; therefore, 

( 1 - b r ) E ~ > _  ( - ~ - ~ a i F i -  ~ b j E i - ( b r - 1 ) E r ) E r _ > O .  
i =1  j = l  ,jet 

Thus, all the  b i are greater  than  or equal to one. If L is a fiber of ~ ,  then  
n k k 

-2:K 'xL= (f*(gx)-~-~@aiFi-~'~b'Zj)L <: j = l  

therefore, k = 1, b = bl < 2, and E = E1 ~ E1 is a section of the ruled surface ~:  )~ --~ C.  
(3) Let Co be a section of the  ruled surface ~s:  _~s __, C such that  Co 2 = - e .  Then  

p(Z) - Co + dR, 

where F is a fiber of the morphism ~s and d E N by Theorem 1. In the  nota t ion introduced in (2), we 
h a v e  

( )  p ~-~aiFi = a F ,  K 2 . +  p a iFi+bZ = ( b - 2 ) C o + ( 2 g ( C ) - 2 - e + a + d b ) F ,  
i = 1  

where a e Q>0.  If Co • p(E), then  p(E)Co = d -  e > 0 and 

bd - be + 2g(C) - 2 + e + a = o + p aiFi + bE Co 
" i = 1  

= K 2 + aiFi + bE p*(Co) = f*(Kx)p*(Co) < O. 
i = l  

But if e > 0, then  

and if e < 0, then  

b d -  be + 2 g ( C ) -  2 + e  + a  > b(d-  e) > O, 

b d -  be + 2 g ( C ) -  2 + e + a > e(1 - b) > 0. 

Therefore,  Co = p(E). Similarly, 

be + 2 g ( C ) -  2 + e + a = K 2 ,  + p aiFi + bE Co 
" i = 1  

( " ) = g +  iFi+bE o'(Co)=F(gx)p*(Co). 
i = 1  

Note tha t  if p-l(Co) r p*(Co), then  f*(Kx)p*(Co) < 0, because in this case, p'(Co) contains a ( - 1 ) -  
curve tha t  cannot  be cont rac ted  by the morphism f .  Suppose that  C0 2 = - e  >_ 0; then  p-l(Co) • p*(Co) 
and 

0 > f*(gx)p*(Co) = (1 - b)e + 2g(C) - 2 + a _> 0. 

Therefore,  e > 0 and  

0 > f*(gx)p*(Co) = (1 - b)e + 2g(C) - 2 + a > - e  + 2g(C) - 2. 

By Theorem 1, this implies tha t  the  sheaf C is decomposable. [] 
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T h e o r e m  4. Let the conditions of Theorem 3 be fulfilIed, and l e t r k ( D i v ( X )  | Q / = )  = 1. Then X 

is a contraction o r e  section of a relatively rninimal ruled surface ~: X ~ C,  and h~(02)  = g(C) > O. 

Moreover, the surface 2~ is uniquely determined by X .  

P r o o f .  Let f :  )~ --* X be the minimal  resolution of the singularities of X .  By Theorem 3, X is 
then a ruled surface ~: )~ --* C such that  g(C) > 0 and f contracts one section and the components of 
reducible fibers of the morph i sm ~.  Let 

ix 
= ~  

i = l  

be the reducible fibers of ~ .  Then  

On the other hand ,  

where A = I , . . . , N  and a i E N ,  

N 

rk(Div(X) |  = 2 + ~"~(j~ - 1). 
~,=1 

rk(Div(X) | Q / - )  = 1 + the n,,mber of curves contracted by f .  

Therefore, f c~.nnot contract  only one component  in each reducible fiber, and we have the commutative 
diagram 

C ~- C 

where f = 9 o p ,  ~: )~ --~ C is a relatively minimal ruled surface, and g is a morphism contracting a 
section of ~.  

Since h l (OX)  = g(C) and all singularities of )~ are rational by Theorem 2, the Lardy spectral sequence 
implies that  h l ( O ~ )  = g(C) > O. 

The uniqueness of the surface )(  follows from its construction. [] 

T h e o r e m  5. Let the conditions of Theorem 4 be fulfiBed. Then to the surface X there corresponds 
canonicM1y a smooth relatively mlnlmM ruled surface .~s : Ks _.  C such that .~s ~ Pc(g ) ,  where g is 
a rank-21ocally free sheaf, e > 2g(C) - 2 (e is an invariant of the ruled surface Pc(E)) ,  the sheaf g is 

decomposable, and = - e  

The proof of Theorem 5 follows from Theorems 3 and 4 and Lemma 2. 

w The construction 

Consider a pair  ( ~ : ) ~  --~ C,  Co), where ~: X --. C is a smooth  ruled surface and Co its section. 
We say that  a pair  (~':  .~' --~ C,  C~) is obtained by an elementary ~ran.~forma~ion ~o associated ~o a 
poin~ x E C f rom the pair  (~ : )~ --* C,  Co) if there exists a commutat ive  diagr~.m 

l 
C ~ = C 

such that  

(1) ~r: X '  ~ C is a smooth  ruled surface; 
(2) ~ is a birat ional  morph i sm and a composition of blow-ups in the  fiber of the morphism ~ over 

the po in t  x E C;  
(3) the fiber of the  morph i sm ~ over the  point x E C is irreducible; 
(4) the fiber of ~' over x contains exactly one (-1)-curve; 
(5) C~ = ~o-l(C0) and ~o*(C0) r C~. 

382  



Def in i t i on  5. A sequence of pairs of integers (a~, a,  2. ) with { 6 N_>3 has property (*)  if 

(2) for i k 4 ,  
1 (xl 2 ) ~ or  ( a i - 1 ,  i-1 + a i - x  

(o,~,,~) ~ ,~ ,~ = ( i--1 + i - - l '  i--1)' o r  

(0, 1 ai__ 1 -~- 0r 

Consider a pair (~':  X '  --~ C,  C~) obtained by an elementary transformation ~o associated to a 
point x 6 C from a pair (~: X --* C, Co). Let us introduce the following notation: 

(1) X0 = )~, ~0 = ~-, and F~ is the fiber of the morphism ~0 over the point x ; 
(2) X1,0 : )~1 -'* X0 is a blow-up of the point F~ f~ Co, ~1 = ~0 o X1,0, and F2 is an exceptional curve 

of the morphism X1,0 ; 

(3) X2,1 : -~2 --* )~1 is a blow-up of the point F~ N F2, X2,0 = X1,0 o X2j ,  ~'2 = ~1 o X2,1, and F3 is 
an exceptional curve of the morphism )/2,1 ; 

(4) Xi+l,i: -~i+l --* )~i is a blow-up of a point on Fi+l ,  Xi+l,j = Xj+l,j o . . .  o Xi+l,i for j < i ,  
9i+1 = ~i o Xi+l,i ,  and Fi+2 is an exceptional curve of the morphism Xi+l,i ; 

(5) F ~ is a (possibly nonreduced) fiber of the morphism ~ over the point x ; 
( 6 ) ) ~ N  = X ' ,  ~N = ~ ' ,  a n d  FN+I is a un ique  ( - - I ) - c u r v e  in FN; 
(7) c~ = xT~o(Co) and P~ = XT~_~(Fi) for i =  1, . . .  , N -  1. 

Let us denote the number of all irreducible components in the fiber of ~' over the point x 6 C by N + 1 
and put the surface X~ in correspondence with the sequence 

( ~ ( X ' ) ,  &~(2')) ; i = 3 , . . . ,  N + 1, (2) 

of pairs of integers. Take i 6 { 1 , . . . ,  N - 1} and consider the surface )~i+1- We have 

i+1 

F i+1 = ai+2Fi+2 + E ajxT~'l,i - I (Fi ) ;  
j = l  

Fi+2 is the unique ( -1)-curve  in F i+t , and it intersects no more than two irreducible components of F i+l . 
If Fi+2 i n t e r s e c t s  X~_l,k_l(Fk) and X~-_~Ij_I(Fi) so that  -1 Xi+l,t_l(Fi) lies in a connected component of 

F i+a \ Fi+2 meeting X[-~l,0(C0), where I # k and k, l 6 { 1 , . . . ,  i + 1}, then we put 

( a h ~ ( s  ^, = ,+ : (x  )) (ak, a,). 

Suppose that  Fi+2 intersects only X~l ,k - l (Fk)  among all components of F i+1 (k e { 1 , . . . ,  { + 1}); then 
k = i + 1. In this case we put 

- I  ^ !  -2 ~1 (,~,+~(x 1, ,~,+,(x 1) = (o, a,+~). 
Lemma 5. The sequence (2) of pairs of integers has property ( * ). 

P r o o f .  We shall use the notation 

( ~ ( 2 ' ) ,  a~(2' ) )  = ( ~ ,  af)  for i = 3 , . . . ,  N + 1. (3) 

On the surface )~2, the relation 

F 2 - 2F~ + X2,~(F2) + -1  X~,0(F1) 

holds. It can be verified directly that (&~, &~) = (1, 1). 
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Suppose that the sequence of pairs (&~, &~) has property ( , )  with i = 3 , . . . ,  r .  Let us prove that this 
sequence has property ( * ) with i = 3, . . . ,  r + 1. 

On the surfaces -~r-1 and )~r we have the relations 

r--1 

F ~-1 = a~Fr + ~ a~x21,~-1(F~) 
j = 1  

and 
r 

F ~ = a~+l F~+I + ~ -1 ~jx, ,~_I  ( FD. 
j = l  

Suppose that Fr intersects X;ZI,,-I(F~) and X;_~1,z_1(Ft), and X;_~1,t_1(Ft) lies in a connected 
component of F r-1 \ Fr intersecting Zr1_l,o(Co), where I # k and k, l  E {1, ... , r -  1}. By assumption, 

- I  (~, ~) = (ak, at). Consider three cases. 
--~ --1 (1) Let Xr,r-1: Xr )7~-i be a blow-~p of FrnX~-_~1,k_1(Fk). Then F~+~ intersects X~,~-1(~) and 

--1 --1 Xr,r_1 (Fr) lies a X~,k_l(Fk), and in connected component of F ~ \  Fr+l meeting X~lo(Co). By definition, 
- 1  - 2  (a~+l, a~+l) = (ak, a~), where a~ = ak + at. 

__4 --1 F,, (2) Let X~,r-1 : - ~  ) ~ - 1  be a blow-up of F~ n X~-_~l,t_l(Ft). Then F~+I intersects X~,~-1(r)  and 
--1 X~,o(Co). By definition, X~,k_~(Fk), and XT,~_I(Fk) lies in a connected component of F " \  F~+l meeting -1 

at+l) : (at ,  at), where ar -- ak "4- at. 
(3) Finally, let X~,~-I: -~  --* Xr-1 be a blow-up of a point on F,. not belonging to the union 

-1 F, X-~l_x,k_l(Fk) U X -lr-l,t-1 (Ft) . Then F~+I intersects only X ~ , ~ - l ( r )  among all components of F ~ . By 
definition, -1 -2 a~+x) = a,-) a,- = . (a,.+l , (0, , where ak + at 

--1 F, Suppose that F~ intersects only X~-1 ,~ -2 ( r - l )  among all components of F r-1 By assumption, 
._4 --1 (a~,aD = (0,a~_l). Note that X~,~_1: ) ~  Xr-1 is a blow-up ofe i ther  F~OX~_I,~_2(F~_I) o r a  

--1 point on F~ not belonging to X~-1,~-2(F,'-l) �9 Consider two cases. 
--1 (1) Let X r , r - - 1  : Z r  ~ -'Yr--1 be a blow-up of Fr N X~_l,~_2(Fr_l). Then F~+I intersects X~,~_I(F~)-I 

-i F, -i F, Xr,o(Co). By and X,-,,--2(,--1), and X~,,--2( r-1 ) lies in a connected component of F ~ \ F~+I meeting -1 
defi~;tion, (a~+l, a ~ l  ) = (a~, a~-l) ,  where a~ = a~-l .  

--1 (2) Now, let Xr,~-i : - ~  --* -~ -1  be a blow-up of a point on Fr not belonging to X~_x,~_2(F~_l). 
Then Fr+l intersects only -1 -2 a~+l) = a~) (a~+l, (0, , Xr,~-i (Fr) among all components of F ~ . By definition, -1 
where a r  ----- a t - 1  �9 

In all the cases, the sequence of pairs (&~, &2.) has property (* )  with i = 3 , . . . ,  r + 1. The lemma is 
proved. [] 

L e m m a  6. Let a sequence of pairs (a~, a~) of integers have property ( �9 ). Then there exists a ,mlque 
pail" (~':  .~' ~ C, C~) that  is obt~.~ned by an elementary transformation ~ associated to a point x 6 C 
~om the p ~  (~: 2 --, c ,  Co) = d  batistes ~elatio=s (3). 

Proof .  Let us fred all such surfaces X~ by induction. Suppose that we have already found the sur- 
face 2 r  for some r e { 2 , . . . ,  N}.  Let us find 2~+1. 

Suppose that  F~+I intersects X~-,~-I (Fk) and X~-J-1 (Fl), and X~-J-1 (Ft) lies in a connected component 

of F r \ F~+I intersecting X~,Xo(Co), where l # k and k, l E { 1 , . . . ,  r}. Consider three cases. 

(1) If 1 a2 1 a~), " X,.+x ~ X,  is a blow-up of a point on r , + l  not ( a t+ l ,  ~+1) = (0, a r + then Xr+l,r- 
belonging to XrJ_I( FI) U X'~J_I( FI~). 

(2) If (air+l, a l l  ) = (air, a~ + c~), then X~+i,~: X,+I ~ 2~ is a blow-up of a point belonging to 
F~+I n x;J,_I(F~). 

~ I  2 2 2 ~+I)  ( ~  + ~r, = a~), then " -~+1 --+ - ~  is a blow-up of a point on 3) Finally, if ( ~+1, X,-+I,~- 
F~+I n x~-J_l(~) .  

Suppose that  Fr+l intersects only X[~.I,,._I(F,.) among all irreducible components of F r . Consider 
two cases. 
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(1) If 1 2 a t + l )  = (0, azr), t hen  Xr+l ,r  -+ ( a t + l ,  : -Yr+l -~r is a blow-up of a po in t  on Fr+I  not  belonging 
--1 to 

(2) rf = then X,+l ,r  : 2 +1 -+ is a blow-up of a point  on F ,+ l  n xZb_I(F ). 

It is easy to  see tha t  the  surface -~N = X '  thus ob ta ined  is unique and satisfies relations (3). [] 

D e f i n i t i o n  6. A sequence (ill 2 2), , f l i  ) ,  i E N_>a, of pairs of integers is dual to  a sequence (a},  a i 
i 6 N_>3, of pa i rs  of integers wi th  p roper ty  ( �9 ) if 

(I) ( i l l ,  f12) = (0, - 1 ) ;  
(2) for i _ > 4 ,  

{ ( f l l - -1 ,~L1  2 1) +fli-1 + 
, , - I  + 1, ~--1) 

(o, = I )  +fl i-1 + 

1 1 
~--- (O~i__1, ai--1 -IV O~i__1) , 

i f  ( a ~ ,  oq?) a 1 a=  a = �9 ~" ( i--1 "~- i--1' i--1) '  
if (a~, a~) = (0, a I 2 i--1 -[" Off--l)" 

w C l a s s i f i c a t i o n  

Suppose we are given: 

(1) a s m o o t h  relatively min imal  ruled surface 7r~ Z ~ --+ C wi th  an invar iant  e for which we have 
X ~ ------- F c ( O c  $ L:), where  s E P ic (C) ,  Co is a unique section of this ru led  surface, C0 2 = - e ,  and 
e - -  - d e g ( s  > 2 g ( C ) -  2; 

(2) a set of  pairwise different poin ts  { x l , . . . ,  XK} C C, possibly emp ty  (for K -- 0); 
(3) s m o o t h  ruled surfaces rr d : X a --+ C with sections Ca C X a , where d : 1, . . . ,  K ,  such that  for 

each d : 1, . . . ,  K ,  the  pair  (rra: X a --+ C,  Ca) is obtained by an e lementa ry  t ransformat ion Sod 
associa ted to a po in t  xa E C f rom the pair  (rr a-1 : X d-1 ~ C, Ca-l) .  

If K _> 1, t h e n  we apply  the  cons t ruc t ion  f rom the preceding section to pu t  each of the  surfaces X a 
( d = 1 , . . . ,  K )  in correspondence  wi th  the sequence of pairs of integers 

(&~(Xd), ~ ( X a ) ) ,  i = 3 , . . . , N ( d ) + l ,  

and  the  dual  sequence 

where N(d)+ 1 is the  n u m b e r  of irreducible components  in the fiber of the  m o r p h i s m  7r a over the  point  xa. 
To the surface XK we assign 2 K  sequences of pairs of integers: these are 

(&I(XK,  d), &~(XK, d)) = (&}(Xa), 5~(Xa))  ( a 1 ( X g , d ) , Z ~ ( X K , d ) )  = ( a e ( x a ) ,  a/2(xa)) 

wi th  d = 1, . . . ,  K and  i = 3, . . . ,  N(d) + 1, where N(d) + 1 is the n u m b e r  of i rreducible components  of 
the  fiber of 71 "K over  xd. 

L e m m a  7.  /.n the notation introduced in this section, 

(1) the sequence ( ~ ] ( X K , d ) , & ~ ( X K , d ) )  with i = 3 , . . .  , g ( d )  + 1 has property (*) for each d = 
1 , . . . , K ;  

(2) for any K sequences of pairs of integers 

(a~(d),a~(d)) with d = l , . . . , g  and i = 3 , . . . , R ( d ) + l ,  where R(d)  eN_>2, 

having property ( �9 ), there  exists a unique smooth ruled surface ~r K : X K -+ C with section CI< 
such that the pair (w K : X K -* C, CK) is obtaioed from the pair Or ~ : X ~ --* C, Co) With the 
help of  a sequence of e lementa ry  transformations associated to the points { x x , . . . ,  XK} C C and 

(&~(XtC, d ) , & 2 ( x K , d ) ) = ( a } ( d ) , a 2 ( d ) )  for  d = l , . . . , K  and i = 3 , . . . , R ( d ) + l ,  

where  R(d)  + 1 is the number of irreducible components in the fiber of the morphism ~r g over the 
point xa. 

This  l e m m a  follows f rom L e m m a s  5 and 6. 
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L e m m a  8. In the notation introduced in this section, let F( d) be the (possibly nonreduced) fiber of 
the morphism 7r K over the point x4, where d=  1. . .  , K  and K >_ O. Suppose that on the surface X K , 

N(4)+1 K N(4)+I 

F(d) = E aj(d)~'J(d) and KxK -- -2C~: + E E bi(d)Fj(d) + ( 2 g ( C ) -  2 - e )F ,  
j = l  4=1 j = l  

where the sets f'i(d) are the irreducible components of the fiber of 7C K o v e r  the point denoted by xa in 
w and F,  the general fiber of ~r K . Then 

- 2  K -1 K &](X K, d) w a i ( X  ,d)  = ai(d) and f l i (X , d) + ~ ( X K , d ) +  I = bi(d) 

for d =  l , . . . , K  and i = 3 , . . . , N ( d ) +  l. 

P r o o f .  This lemma follows from elementary properties of blow-ups and the definition of the sequences 
- 1  K ~ i ( X  ,d)  and f l~(XK,d)  with d =  1 , . . . , g  and i = 3 , . . . , N ( d ) +  1. [ ]  

L e m m a  9. In the notation introduced in this section, let 

~ bN(d)+l(d) 
4=1 aN(d)+l(d) < 2 -- 2g(C) + e. 

Then 

(1) there exist positive rationals Ai(d) and 7 such that 

K N(4)+] 

K x K - - 2 C ~ ( - E  E Aj (d )Fj (d ) -TF,  (4) 
4=1 j = l  

where Fi( d) is an irreducible reduced component of the fiber of the morphism ~r K over the point x4 
and F is the general fiber of r K ; 

(2) for i = 3 , . . . ,  N(d),  we have 
bi(d___~) < bN(4)+l(d). 
a (d) - ' 

(3) the intersection form of the curves CK and Fr(k), where k = 1 , . . . ,  g and r = 1 , . . . ,  g(k ) ,  is 
negative de/~n/te. 

P r o o f .  (1) Suppose that  
K 

d=0 

where e4 6 Q>0 and e4 > bN(a)+l(d)/aN(4)+l(d) for d = 1 , . . . ,  K .  Then we have relation (4), where 
~'i(d) is an irreducible component of the fiber of ~r ~ over z4, F is the general fiber of ~r g , 7 = ~0 > 0, 
and 

Ag(4)+l(d) = aN(4)+l(d)ed -- bN(4)+l(d) > 0 for d = 1 , . . . ,  K. 

Let us prove that  Ai(d ) > 0 for d = 1 , . . . ,  K and j = 1 , . . . ,  N(d). If this were not so, then there would 
exist k e { 1 , . . . ,  K}  and J C { 1 , . . . ,  N(k)} such that  Ujcj ~'i(k) would be connected and Ai(k ) _< 0 
for all j C J .  There is no ( -1)-curve among $'i(k) with j C ,7, and the intersection form of the curves 
Pj(k)  is negative definite (see [4]). By the adjunction formula, 

Kx - Ik) + 6(k) 2 >_ -2 for j C J. 
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Therefore, for all j C J ,  we have KxK~'i(k ) >_ 0 and 

O > Kx~ ( i ~  hj(k)~j(k)) = (-2CK - g(k)+~ ( i ~  _ ~ h~(k)~j(k)) hj(k)~(k)) 
N(k)+ l  

-icy - -- -jcJ ( 

On the other hand, 
2 

the equality holds if hi(k ) = 0 for all j C J .  Clearly, 

-2CK(j~cjhJ(k)FJ(k)) ~- O 

Therefore, hi(k)= 0 and 

and 

>0; 

/ N(k)+1 \ 

~d 6 Q>0, ~d > bN(d)+l(d)/aN(d)+l(d) ford= l , . . . , K ,  

then we have relation (4), where T'j(d) is an irreducible component of the fiber of ?1 -K over Xd, F is the 
general fiber of r K,  7 = ~0, and hi(d ) = aj(d)ed -- bi(d ) > 0 for d = 1 , . . . , K  and j = 1 , . . . , N ( d ) .  
The required expression is obtained by considering ed --~ bg(d)+l (d)/ag(d)+l(d). 

(3) It follows from (1) and (2) that there exist positive rationals hi(d ) and 7 satisfying relation (4). 
There is no ( -1)-curve among Cg and Fr(k)  with k = 1 , . . . ,  K and r = 1 , . . . ,  g(k), the intersection 
form of the curves f 'r(k) is negative definite (see [4]), and 

c }  < Co ~ = - ~  < 2 -  2 g ( c )  < 0. 

By the adjunction formula, 

Therefore, 

KxK-~r(k ) >_ 0 for k --  1 , . . . , K ,  

Hence we have 

K N(d)+~ 

o_< - 

d=l j = l  

KXK CK + C~ >_ 0 and KxK['~(k) + _P.(k) 2 >_ -2. 

r =  1, . . . ,  N(k)) ,  and 

K N(d)+~ 

o< E 
d=l j=l 

KxKCK > O. 

hj(d)?j(d) --rE) 

K 

2 - 2 9 ( c )  + e = ~ ~d, 
d=0 
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N(k)+~ 



for k = 1, . . . ,  K and  r = 1, . . . ,  N(k).  This implies the inequalities 

0 < ~.(k) - 2 c ~ -  ~ ~ ~j(d)~(d) and o < c~ - 2 c ~ -  ~ ~ ~j(d)_~(d) 
d = l  j----1 d----1 j----I 

for k = 1, . . . ,  K and  r = 1, . . .  ,N(k) ,  and if ~',.(k)gl ~'N(k)+l(k) # ~ ,  then 

K N(d) 

d = l  j = l  

Therefore,  t he  intersect ion form of the  curves CK and ~'r(k) wi th  k = 1 , . . . ,  K and  r = 1 , . . . ,  N(k) is 
negative definite (see [6]). [] 

L e m m a  10.  ha the notation introduced in this section, 

-~ bN(d)+l(d) 
d = l  aN(d)+l(d) < 2 - 2g(C) + e (5) 

if and only if there exists a morphism f:  X K --> X such that 
(1) X is a numerical del Pezzo suneace; 
(2) r k ( D i v ( X )  | Q / n )  = 1; 
(3) f contracts the curves CK and $'j(d) with d = 1 , . . . ,  K and j = 1 , . . . ,  N(d).  

P r o o f .  Necessity. Let (5) be fulfiUed; then Lemma 9 implies tha t  the intersection form of the  curves C~c 
and _~r(k) wi th  d = 1 , . . . ,  K and j = 1 , . . . ,  N(d) is negative definite on the surface X K .  There exists 
a morphism f :  XK --* X contract ing the curves CK and $'i(d) wi th  d = 1 , . . . ,  K and  j = 1 , . . . ,  N(d) 
(see [1]), and  we have 

K 

rk(Div(XK) | Q/=)= ~ + ~ N(d); 
d = l  

therefore, r k ( D i v ( X )  | Q / - )  = 1. It is easy to see that  on the surface X ,  the relat ion 

(~-.1 bN(d)+l(d) 
f . (KxK)  = K x  -- _ aN(d)+l(d) 

bids. The relations rk(Div(X) | Q/_=) = 1 and 

K bN(d)+l(d) 
a~c,)+l(d) d----1 

imply tha t  X is a numerical  del Pezzo surface. 

2 - 2g(C) + e ) f . ( F )  

2 -  2 g ( C ) +  e < 0 

Sui6ciency. Suppose tha t  there  exists a morphism f :  XK -~ X such tha t  X is a numerical  del Pezzo 
surface, r k ( D i v ( X )  | Q / n )  = 1, and f contracts the curves CK and $'j(d) wi th  d = 1, . . .  , K  and 
j = 1 , . . . ,  N(d).  It is easy to see tha t  on the  surface X ,  

I~_1 bN(d)+l(d) 
f . (KxK)  = K x  = _ aN(d)+l(d) 2 -  29(c) + ~Ir 

By assumpt ion,  rk (Div(X)  | O / = )  = 1 and X is a numerical  del Pezzo surface; therefore,  

~ bN(d)+ffd) 2 - 2 g ( C ) +  e < 0. [] 
d-~l aN(d)+l(d) 
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T h e o r e m  6. There exists a one-to-one correspondence between all numerical  del Pezzo surfaces X with 
nonrational  singularities and  with  the property  rk(Div(X) @ Q / - )  = 1 and all triples each comprising 

(1) a ru/ed surface ~: P c ( O c  @ s  -* C with an invariant e such that L 6 Pic(C),  g(C) _> 1, and 
= - deg(L) > 2 g ( c ) -  2; 

(2) a set o fpa i rw i se  different points  { x l , . . . ,  x g }  C C,  possibly empty (for g = 0); 
(3) K sequences of pairs of integers 

(~](d),a,2-(d)) with  d = l , . . . , K  and i = 3 , . . . , R ( e ) + I ,  where  R(d) eN_>2, 

that have proper ty  ( �9 ) and satisfy the relation 

2 Z~r + ~R(d)+a(d) + 1 
~ ( , ) + l ( a )  + ~(~)+~(a)  < 9 -- 2g(C) + e, 

d=l  

where (/~(d),/~2(d)) with i = 3 , . . . , R ( d )  Jr 1 is the sequence o f  pairs of  integers dual to 
( ~ ( a ) ,  ~ ( a ) )  for e~ch a =  ~ , . . . ,  g .  

Theorem 6 is implied by Theorem 5 and Lemmas 7-10. 

R e m a r k  4. Theorem 6 not only classifies all numerical del Pezzo surfaces with non_rational singularities 
and the property r k ( D i v ( X ) |  = 1; it also gives an effective algorithm for constructing such surfaces. 
The algorithm is as follows: 

(1) take a smooth relatively minimal ruled surface P c ( O c  @/:) with an invariant e and section Co 
such that  e - 2g(C) + 2 > 0, /: e Pic(C), and Co 2 = - e  = deg(Z:) > 2g(C) - 2; 

(2) select a (possibly empty) set { x z , . . . ,  xg} C C of pairwise different points; 
(3) perform an elementary transformation q0 : X K  --* P'C(OC @ E.) in the fibers of the morphism 7r 

over the points x l ,  . . . ,  x g  so that the K sequences of pairs of integers 

( ~ ( X K ,  d), ~ a i ( X g  ,d))  with d = l , . . . , g  and i = 3 , . . . , R ( d ) + I  

satisfy the inequality 

.~131R(d)+1(d)(XK) Jr 192R(d)+l(d)(XR ") Jr 1 
a= l  aR(d)+l(d)(XI'~)Jr~ I (d ) (XK)  < 2 - 2 g ( V ) J r e ,  

where (Z~(d),Z,~(d)) with i = 3 , . . . ,R(d )  + 1 is the sequence of pairs of integers dual to 
( ~ ( d ) ,  , f ( d ) )  for each a =  1, . . .  , K  and R(a) + 1 is the number of all irreduCible components 
in the fiber of the morphism 7r o q0 over the point xd E C; 

(4) contract the preimage of Co and all irreducible components of the fibers of 7r o q0 over the points 
Xl , . . . , XK except (--1)-curves. 
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discussions. 
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