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Abstract. We prove the absence of birational transformations into elliptic fibrations
of a general enough complete intersection ∩k

i=1Fi ⊂ PM , where Fi is a hypersurface of
degree di ≥ 2, relation

∑k
i=1 di = M > 3k holds and M 6= 4.

Let X = ∩k
i=1Fi ⊂ PM be a general complete intersection1, where Fi ⊂ PM is a hyper-

surface of degree di ≥ 2 and
∑k

i=1 di = M > 3k. Then −KX ∼ OPM (1)|X , Pic(X) = ZKX

and X is a Fano variety. We may assume d1 ≤ d2 ≤ · · · ≤ dk. Moreover, it is easy to see
that the inequality M > 3k implies dim(X) ≥ 3 and dk ≥ 4.

In the case k = 1 the variety X is a hypersurface of degree M ≥ 4 in PM , but the
dimension of X is at least 5 when k ≥ 2. In dimension 5 the variety X is either a
complete intersection of a quadric and a quntic in P7 or a complete intersection of a cubic
and a quartic in P7.

The purpose of this paper is to prove the following result.

Theorem 1. Let ρ : V 99K X be a birational map, τ : V → Z be a fibration whose general
fiber has Kodaira dimension zero, and M 6= 4. Then Z ∼= P1.

Corollary 2. Let M 6= 4. Then X is not birational to elliptic and K3 fibrations.

Birational transformations into elliptic fibrations were used in [2] and [12] in the proof
of potential density2 of rational points on smooth Fano 3-folds, where the following result
was proved.

Theorem 3. The set of rational points is potentially dense on all smooth Fano 3-folds
with a possible exception of a double cover of P3 ramified in a smooth sextic surface.

The possible exception appears in Theorem 3 because a smooth sextic double solid is
the only smooth Fano 3-fold that is not birational an elliptic fibration (see [3]). It should
be pointed out that a double cover of P3 branched over a sextic with one ordinary double
point is birational to a unique elliptic fibration (see [6]).

Remark 4. The condition M 6= 4 in Theorem 3 is crucial. Indeed, every smooth quartic
3-fold contains a line and the corresponding projection gives a birational transformation
into an elliptic fibration. The generality condition in Theorem 3 is crucial as well, because
a smooth quintic 4-fold can be birationally transformed into a K3 fibration if and only if
it contains a plane (see [4]). A smooth complete intersection of a quadric and a quartic
in P6 is birational to an elliptic fibration if and only if it contains a plane (see [9]).

The author is very grateful to M.Grinenko, V.Iskovskikh, Yu.Prokhorov, A.Pukhlikov and V.Shoku-
rov for fruitful conversations. The author would like to thank the referee for many useful remarks. All
varieties are assumed to be projective, normal and defined over C.

1The generality of X is considered in the sense of [17].
2The set of rational points of a variety V defined over a number field F is called potentially dense if

for a finite extension of fields K/F the set of K-rational points of the variety V is Zariski dense.
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Our methods also proves the following result.

Theorem 5. Let ρ : X 99K V be a birational map, where V is a Fano variety with
canonical singularities. Then ρ is an isomorphism.

Actually, the claims similar to Theorems 1 and 5 hold for many birationally rigid
varieties (see [3]). The birational rigidity of X was proved in [13], [15], [17]. Therefore,
the variety X is not birationally equivalent to a fibration whose general fiber has Kodaira
dimension −∞. In particular, X is not rational. However, X is always birational to a
fibration whose general fiber has Kodaira dimension zero.

Example 6. Let H ⊂ | −KX | be a pencil and ρ : V → X be a resolution of the indeter-
minacy of a rational map φH : X 99K P1. Then the general fiber of φH ◦ ρ has Kodaira
dimension zero.

The following claim was conjectured in [17].

Conjecture 7. Let ρ : V 99K X be a birational map, τ : V → Z be a fibration whose
general fiber has Kodaira dimension zero, and M 6= 4. Then there is a pencil H ⊂ |−KX |
such that τ = φH ◦ ρ.

Note, that in the case k = 1 both Theorems 1 and 5 and Conjecture 7 were proved in
the paper [5]. The similar claims for M = 4 were proved in [3] and [8].

Remark 8. The hardest part of the proof of Theorem 1 is implicitly contained in the proof
of the birational rigidity of X in [17]. Moreover, there is a very short sketch of the proof
of Theorem 1 in [17]. The given proof of Theorem 1 uses the main technical result of [17],
but it is more explicit and somehow simpler due to Lemma 13, whose proof is based on
constructions in [14], [15], [18].

In the rest of the paper we will prove Theorem 1 and 5.

Remark 9. We may assume k ≥ 2.

Let ρ : V 99K X be a non-biregular birational map such that one of the following holds:
there is a fibration τ : V → Z 6∼= P1 whose general fiber has Kodaira dimension zero; the
variety V is a canonical Fano variety. In the former case put MX = λρ(|τ ∗(H)|) for a
very ample divisor H on Z, in the latter case put MX = λ

n
ρ(| − nKV |) for some n ∈ Z�0,

where λ ∈ Q>0. Now choose such λ that KX + MX ∼Q 0.

Remark 10. The movable boundary MX is not contained in the fibers of any dominant
rational map γ : X 99K P1.

The proof of the birational rigidity of X in [17] implies the canonicity of the singularities
of the log pair (X, MX) (see [10]).

Claim 11. The singularities of (X, MX) are non-terminal.

Proof. Suppose (X,MX) is terminal. Then (X, εMX) is canonical model for some ε ∈ Q>1

and κ(X, εMX) = dim(X). In the fibration case we have κ(X, εMX) ≤ dim(Z), and in
the Fano case we have λ = 1. Hence, both log pairs (X, εMX) and (V, εMV ) are canonical
models. Thus, ρ must be an isomorphism, which contradicts the initial assumption. �

Therefore, the set of centers of canonical singularities CS(X,MX) is not empty. The
following result is a corollary of the main claim of [17] and the inequality of [13] in the
higher-dimensional form (see [15], [16] and [11]).
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Claim 12. The set of centers of canonical singularities CS(X,MX) does not contain
subvarieties of X of codimension greater than 3.

Proof. Suppose CS(X, MX) contains a subvariety Z ⊂ X whose codimension is greater
than 3. Let dim(Z) = d. Put Y = X ∩d

i=1 Hi and MY = MX |Y for sufficiently general
hyperplanes Hi ⊂ PM . Let O be a point in the intersection Z ∩d

i=1 Hi. Then O is an
element of the set CS(Y, MY ) and dim(Y ) ≥ 4.

Take a general hyperplane section H of Y passing through O. Then the connectedness
theorem of V.V.Shokurov (see [11]) implies O ∈ LCS(H, MY |H). The dimension of H is
at most 3 and we can iterate the above construction. We get a movable log pair (S, MY |S)
such that S is smooth surface containing the point O and the log-pair (S, MY |S) is not
log-canonical in the point O ∈ S.

Now Theorem 3.1 in [11] implies

multO(M2
X) = multO((MY |S)2) > 4,

but Proposition 2 in [17] implies multP (Y ) ≤ 4 dY

dX
for any subvariety Y ⊂ X of codi-

mension 2 and a point P ∈ Y , where dY and dX are degrees of Y and X in the given
embeddings respectively. Putting the components of M2

X in the latter inequality we get
a contradiction. �

The following result is a generalization of Theorem 2 in [14].

Lemma 13. Let V = ∩k
i=1Gi ⊂ PM be a smooth complete intersection, where Gi is a

hypersurface and M − k > 2. Then multS(D) ≤ n for any effective divisor D on V and
any irreducible subvariety S ⊂ V such that dim(S) ≥ k and codim(S) ≥ 2, where n ∈ N
such that D ≡ OPM (n)|V .

Proof. We may assume dim(S) = k < (M − 1)/2. Take a general enough point P ∈ PM

and a cone CS ∈ PM over S with a vertex P . Then CS ∩V = S ∪RS, where RS is a curve
on V . The latter holds in a scheme-theoretic sense due to the generality of P .

Let π : V → PM−1 be a projection from P and Dπ ⊂ V be a ramification locus of
the morphism π. We claim that in a set-theoretic sense RS ∩ S = Dπ ∩ S. Indeed, put
CS∩Gi = S∪Ri

S. Then we have Ri
S∩S = Di

π∩S for a ramification divisor Di
π ⊂ Gi of the

projection πi : Gi → PM−1 from P by Lemma 3 in [18]. On the other hand, RS = ∩k
i=1R

i
S

and Dπ = ∩k
i=1D

i
π, which implies RS ∩ S = Dπ ∩ S.

Let (z0 : . . . : zM) be homogeneous coordinates on PM such that the equation of the
hypersurface Gj is Fj = 0 and P = (p0 : . . . : pM). Then the subvariety Dπ is given by k

equations
∑M

i=0
∂Fj

∂zi
pi = 0 and linear systems |

∑M
i=0 λi

∂Fj

∂zi
= 0| are free on V due to the

smoothness of V . Hence, the intersection Dπ∩S consists of dS

∏k
i=1(di−1) different points,

where dS = deg(S ⊂ PM). On the other hand, we have deg(D|RS
) = ndS

∏k
i=1(di − 1),

which implies the claim. �

Claim 14. The set of centers of canonical singularities CS(X,MX) does not contain
subvarieties of X of codimension 3.

Proof. Suppose that the set of centers of canonical singularities CS(X,MX) contains a
subvariety Z ⊂ X of codimension 3. Then multZ(MX) > 1 and MX ≡ OPM (1)|X , but
the inequality dim(Z) < k holds by Lemma 13. Thus, M < 2k + 3. Therefore, k = 1 due
to M > 3k, which is impossible due to Remark 9. �
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Theorem 15. The set CS(X, MX) consists of a subvariety S ⊂ X of codimension 2 such
that deg(S) = deg(X), multS(MX) = 1 and M2

X = S.

Proof. The set CS(X, MX) is not empty, but CS(X, MX) does not contain subvarieties of
codimension greater than 2 by Claims 12 and 14. Thus, there is a subvariety S ⊂ X of
codimension 2 such that S ∈ CS(X,MX). In particular, we have multS(MX) ≥ 1. On the
other hand, the dimension of X is at least 5 due to Remark 9. Therefore, the Lefschetz
theorem and MX ∼Q −KX imply that the subvariety S ⊂ X is numerically equivalent to
the intersection of two hyperplane sections of X, multS(MX) = 1 and M2

X consists just
of the subvariety S. �

Actually, we never used the assumption Z 6∼= P1 except for Remark 10. Therefore, all
the claims proved till now hold in general case as well. Moreover, to prove Conjecture 7
modulo Theorem 15 one just need to show that S is the intersection of two hyperplane
section of X without using the assumption Z 6∼= P1. It seems to us that even the single
condition that S is numerically equivalent to the intersection of two hyperplane section
of X must imply that S the intersection of two hyperplane section of X (see [1]) perhaps
with some restrictions on dim(X).

Consider MX as 1
n
M, whereM⊂ |−nKX | is a linear system without fixed components

and n ∈ N. Then multS(M) = n by Theorem 15, Supp(M2) = S and the base set of M
consists just of S.

Claim 16. The linear system M is composed from a pencil.

Proof. Suppose dim(φM(X)) 6= 1. Let P ∈ X\S be a general enough point andMP ⊂M
be a linear subsystem of divisors passing through P . Then the linear system MP has no
fixed components. Thus, in a set-theoretic sense P ∈M2

P ⊂M2 = S. �

It is clear that Claim 16 contradicts Remark 10. Thus, Theorems 1 and 5 are proved.
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