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Abstract. In this paper we study del Pezzo fibrations z : X → P
1 of degree 1 and 2

such that X is smooth, rk Pic(X) = 2 and K2
X �∈ NE(X). These are examples of smooth

birationally rigid 3-fold Mori fibre spaces. We describe all birational transformations of
the 3-fold X into elliptic fibrations, fibrations of surfaces of Kodaira dimension zero, and
canonical Fano 3-folds.

LetX be a smooth 3-fold1 of Picard rank 2 and τ : X → P
1 be a flat morphism

whose generic fiber is a del Pezzo surface of degree 1 or 2. The following result is
proved in [18].

Theorem 1. Suppose that K2
X �∈ Int(NE(X)). Then X is not birational to the fol-

lowing:

• a conic bundle;
• a fibration2 of rational surfaces that is not equivalent 3 to τ ;
• a Fano 3-fold of Picard rank 1 having terminal Q-factorial singularities.

The main purpose of this paper is to prove the following result.

Theorem 2. Suppose thatK2
X �∈ NE(X). ThenX is birational neither to a fibration

whose generic fiber is a surface of Kodaira dimension zero nor to a Fano 3-fold
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1 All varieties are assumed to be projective, normal, and defined over the field C.
2 For every fibrationπ :Y→Zwe assume that dim(Y )>dim(Z) �=0 andπ∗(OY )=OZ .
3 Fibrations τ : U → Z and τ̄ : Ū → Z̄ are called equivalent if there are birational

maps α : U ��� Ū and β : Z ��� Z̄ such that the diagram

U

π

��

α �������� Ū

π̄

��
Z

β
�������� Z̄

is commutative and α induces the birational isomorphism between the generic fibers of τ
and τ̄ .
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having canonical singularities. Let ρ : X ��� Y be a birational map, where Y is a
3-fold such that there is an elliptic fibration ψ : Y → P

2. Then there is a rational
map α : P

2 ��� P
1 such that the diagram

X

τ

��

ρ �������� Y

ψ

��
P

1 ��
α

������
P

2

is commutative.

The conditions of Theorem 2 cannot be weakened.

Example 3. Let λ : X → P
1 ×P

2 be a double cover branched over a smooth divisor
of bi-degree (k, 4) for k ≥ 4. Consider the projections pr1 : P

1 × P
2 → P

1 and
pr2 : P

1 × P
2 → P

2, and put τ = pr1 ◦ λ. Then X is smooth, τ : X → P
1 is a del

Pezzo fibration of degree 2, and rk Pic(X) = 2. Moreover it is easy to see that

K2
X �∈ NE(X) ⇐⇒ k ≥ 5

and K2
X ∈ ∂NE(X) in the case k = 4. Let ψ = pr2 ◦ λ. Then ψ : X → P

2 is an
elliptic fibration when k = 4 and there is no rational map α : P

2 ��� P
1 that makes

the diagram

X

τ

��

idX �� X

ψ

��
P

1 ��
α

������
P

2

commutative. Let β : P
2 ��� P

1 be a projection from a point and γ = β ◦ψ . Then
the generic fiber of γ is a K3 surface in the case k = 4 (cf. Theorem 27).

Remark 4. Suppose that the generic fiber of Z is a del Pezzo surface of degree 2.
Let C be a section of the fibration τ and HC ⊂ | − KX + τ ∗(OP1(n))| be the
linear system of surfaces passing through the section C for n 
 0. Then the
generic fiber of the rational map φHC

: X ��� ZC is an elliptic curve, the sur-
face ZC is rational, a resolution of indeterminacy of the map φHC

gives an elliptic
fibration with a section, and there is a natural rational projection αC : ZC ��� P

1

such that αC ◦ φHC
= τ .

The fibration τ always has a section due to the following result in [16].

Theorem 5. Let Y be a smooth geometrically irreducible surface over a C1-field F

such that Y is geometrically rational. Then the surface Y has a point in F.

On the other hand, the following result was proved in [15].

Theorem 6. Let Y be a projective variety and g : Y → R be a morphism with
a section onto a smooth curve R. Suppose that we have a set of closed points
{r1, . . . , rk} ∈ R such that each fiber Yi = g−1(ri) is smooth and separably ratio-
nally connected. Then for a set of closed points yi ∈ Yi there is a section C ⊂ Y of
the morphism g passing through each point yi .
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Therefore the fibration τ : X → P
1 has a huge set of sections. Moreover for

two general enough sections C1 and C2 of τ the corresponding rational maps φHC1
and φHC2

give two non-equivalent elliptic fibrations. Hence the part of Theorem 2
referring to models as elliptic fibrations cannot be improved, but it can be clarified
by means of the following result (see [4]).

Proposition 7. Let Y be a smooth del Pezzo surface of degree 1 or 2 defined over
a perfect field F such that rk Pic(Y ) = 1, let ρ : Y ��� V be a birational map and
ω : V → R be an elliptic fibration. Then there is a commutative diagram

Y

σ

���
�
� W

α��
φ|−nKW |

���������������

Y
ρ �������� V

ω �� R

for n 
 0, where σ is a birational map, and α is a birational morphism such that
K2
W = 0, the divisor −KW is nef, and the linear system | − nKW | is free.

Corollary 8. Let Y be a smooth del Pezzo surface of degree 1 of Picard rank 1
defined over a perfect field F, ρ : Y ��� V be a birational map, where V is a
smooth surface equipped with a morphism π : V → S such that π is a relatively
minimal elliptic fibration with connected fibers. Then the following holds:

• ρ is a blow up of the surface Y at some F-point P ∈ Y ;
• there is a curve C ∈ | −KY | such that P ∈ Ĉ, where Ĉ = C\Sing(C);
• the curve Ĉ is a group scheme with id

Ĉ
= O, where O = Bs | −KY |;

• there is n ∈ N such that Pn = id
Ĉ

in Ĉ;
• π = φ|−nKV |.

Birational transformations into elliptic fibrations were used in [2], [3], and [13]
in the proof of the following result.

Theorem 9. The set of rational points is potentially dense4 on all smooth Fano
3-folds defined over a number field F with a possible exception of a double cover
of P

3 ramified in a smooth sextic surface.

Remark 10. The possible exception appears in Theorem 9 because a smooth sextic
double solid is the only smooth Fano 3-fold that is not birationally equivalent to an
elliptic fibration (see [4]).

The results of [17], [11], and [12] together with Theorem 1 imply the following
result.

Theorem 11. Suppose that K2
X �∈ Int(NE(X)). Then the group of birational auto-

morphism of the 3-foldX is generated by Bertini involutions of the generic fiber of
τ and biregular automorphisms of X.

4 The set of rational points of a variety X defined over a number field F is potentially
dense if for some finite extension K of the field F the set of K-rational points of X is
Zariski dense in X.
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Corollary 12. In the conditions of Theorem 11 suppose that τ is a del Pezzo fibra-
tion of degree 1. Then Bir(X) = Aut(X).

In the rest of the paper we prove Theorem 2. We use methods of the paper [18]
in the form of Theorems 3.12 and 5.1 of the paper [8]. Suppose that K2

X �∈ NE(X)

and there is a birational map ρ : X ��� Y such that either

• Y is a Fano 3-fold with canonical singularities (the Fano 3-fold case) or
• π : Y → S is a fibration whose general fiber has a numerically trivial canon-

ical divisor (the fibration case).

Let

D =
{

| − tKY | for t 
 0 in the Fano 3-fold case

|π∗(D)| for some very ample divisor D on S in the fibration case

and put H = ρ−1(D). Then the linear system H has no fixed components and

KX + 1

n
H ∼Q rF

for some n ∈ N and r ∈ Q, where F is a fiber of τ .

Lemma 13. The rational number r is positive.

Proof. Suppose that r ≤ 0. Then

K2
X ≡ 1

n2 H2 − 2rKX · F ∈ NE(X),

which contradicts our initial assumption. ��

Consider the movable log pair5 (X, 1
n
H).

Proposition 14. The singularities of the log pair (X, 1
n
H) are not terminal.

Proof. Suppose that the singularities of the log pair (X, 1
n
H) are terminal. Then

the log pair (X, εH) is a canonical model for some ε ∈ Q> 1
n
. Thus κ(X, εH) = 3.

However

κ(X, εH) = κ(Y, εD) ≤ dim(S)

in the fibration case. In the Fano 3-fold case the log pair (Y, εD) is a canonical
model and the uniqueness of canonical model (see Theorem 2.9 in [5]) implies
X ∼= Y , which is impossible because K2

X �∈ NE(X). ��

5 For basic properties of movable log pairs see [1], [8], and [5].
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Lemma 15. Suppose that the singularities of the log pair (X, 1
n
H) are canonical.

Then the Fano 3-fold case is impossible, in the fibration case the generic fiber of π
is an elliptic curve, the surface S is rational and the following diagram

X

τ

��

ρ �������� Y

π

��
P

1 ��
α

������ S

commutates, where α is a dominant rational map.

Proof. In the Fano 3-fold case

1 = κ(X,
1

n
H) = κ(Y,

1

n
D) ∈ {−∞, 0, 3}

by construction of the linear system D, which is a contradiction.
In the fibration case consider the commutative diagram

U

h

����
��

��
�

g

���
��

��
��

X ρ
��������� Y

with U is a smooth 3-fold, and h and g birational morphisms. Then

KU + 1

n
R ∼Q h∗(rF )+

k∑
i=1

aiEi,

where Ei is a h-exceptional divisor, R is the proper transform of D on U , and
each ai is a non-negative rational number. Let C be the proper transform on U of
a sufficiently general curve lying in a fiber of π . Then KU ·C = 0 and R ·C = 0.
Thus, we have

(KU + 1

n
R) · C = h∗(εF ) · C +

k∑
i=1

aiEi · C ≥ rF · h(C),

which implies F · C = 0. Therefore the curve h(C) lies in a fiber of τ . Hence
there is a rational map α : S ��� P

1 such that α ◦ π ◦ ρ = τ and π is an elliptic
fibration. ��

The following result is due to [18] (see Step 1 in the proof of Theorem 5.1 in
[8]).

Lemma 16. Let C be a curve contained in a fiber of τ . Then multC(H) ≤ n.

Lemma 17. The singularities of the log pair (X, 1
n
H) are canonical in codimen-

sion one in the case when the generic fiber of the fibration τ is a del Pezzo surface
of degree 1.



390 I. Cheltsov

Proof. Suppose that multC(H) > n for some curve C ⊂ X. Let F be a general
enough fiber of the morphism τ . Then

n2 = H2 · F ≥ multC(H2)F · C > n2,

because F · C �= 0 by Lemma 16, which is a contradiction. ��

The following result is classical and due to [17] (see also [7] and [18]).

Proposition 18. Suppose that τ is a del Pezzo fibration of degree 2. Then there is
a composition σ of Bertini involutions of the generic fiber of τ such that the sin-
gularities of the movable log pair (X, 1

n̄
σ (H)) are canonical in codimension one,

where n̄ ∈ N such that KX + 1
n̄
σ (H) ∼Q r̄F for r̄ ∈ Q>0.

Remark 19. In the following we may assume that the singularities of the log pair
(X, 1

n
H) are canonical in codimension one. Indeed in the case when τ is a del Pezzo

fibration of degree 2 we may substitute ρ by ρ ◦σ−1 and use the fact that τ ◦σ = τ ,
where σ is the composition σ of Bertini involutions of the generic fiber of τ from
Proposition 18.

Consider a commutative diagram

U

h

����
��

��
�

g

���
��

��
��

X ρ
��������� Y

withU is smooth, and h and g birational morphisms. Let R be the proper transform
of the linear system H on U . Then

KU + 1

n
R ∼Q h∗(rF )+

k∑
i=1

aiEi,

where Ei is an h-exceptional divisor and ai ∈ Q. Now let us consider a (finite or
empty) subset J ⊂ P

1 that is defined as follows:

J = {λ ∈ P
1 | h(Ei) is a point on τ−1(λ) for some Ei with ai < 0}.

For every point λ in J we have

h∗(Fλ) ∼ h−1(Fλ)+
kλ∑
j=1

bjEj ,

where bi ∈ N and Fλ is a fiber of τ over λ. For every λ ∈ J let Iλ ⊂ {1, . . . , k}
be a finite subset such that i ∈ Iλ if and only if ai < 0 and h(Ei) ∈ Fλ is a point.
Put I = ∪λ∈J Iλ.
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In the following we assume that either Y is a Fano 3-fold with canonical sin-
gularities or there is no rational map α : S ��� P

1 that makes the diagram

X

τ

��

ρ �������� Y

π

��
P

1 ��
α

������ S

commutative. Let us show that this assumption leads to a contradiction.

Corollary 20. The set J is not empty.

The following result is known as the existence of the super-maximal singularity
in the notations of the paper [19].

Proposition 21. The inequality

r +
∑
λ∈J

min{ai
bi

| h(Ei) ∈ Fλ and ai < 0} ≤ 0

holds.

Proof. Suppose the claim is false. Then there are positive rationals ε and cλ such
that

cλ + min{ai
bi

| h(Ei) ∈ Fλ and ai < 0} > 0

and r = ε + ∑
λ∈J cλ. Then

KU + 1

n
R ∼Q h∗(εF )+

∑
λ∈J

(
h∗(cλFλ)+

∑
i∈Iλ

aiEi

)
+

∑
i �∈I

aiEi

and the divisor

h∗(cλFλ)+
∑
i∈Iλ

aiEi

is effective forλ ∈ J by the choice of cλ. The divisor
∑
i �∈I aiEi is effective because

the singularities of (X, 1
n
H) are canonical in codimension one. Thusκ(U, 1

n
R) = 1.

In the Fano 3-fold case we have

κ(Y,
1

n
D) ∈ {−∞, 0, 3},

which is a contradiction. Therefore there is a fibration π : Y → S whose suffi-
ciently general fiber has a numerically trivial canonical divisor. Let C ⊂ U be the
proper transform of a sufficiently general curve lying in a fiber of the fibration π .
Then

KU · C = R · C = 0
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and we have

(KU + 1

n
R) · C = h∗(εF ) · C +

∑
λ∈J

(
h∗(cλFλ)+

∑
i∈Iλ

aiEi

)
· C

+
∑
i �∈I

aiEi · C ≥ εF · h(C),

which implies that the curve h(C) lies in a fiber of the fibration τ . Therefore π is
an elliptic fibration and there is a rational map α : S ��� P

1 such that the diagram

X

τ

��

ρ �������� Y

π

��
P

1 ��
α

������ S

is commutative, which is impossible by our assumption. ��
Corollary 22. There are positive rational numbers cλ such that

∑
λ∈J cλ = r and

CS(X,
1

n
H − cλFλ) ∩ Fλ �= ∅,

where CS stands for a set of centers of canonical singularities of a log pair (see
[5]).

For every λ ∈ J the set CS(X, 1
n
H − cλFλ) ∩ Fλ consists of finite number of

points due to inclusion CS(X, 1
n
H) ⊂ CS(X, 1

n
H − cλFλ) and Remark 19.

Lemma 23. For every λ ∈ J the points in CS(X, 1
n
H − cλFλ) ∩ Fλ are smooth

on Fλ.

Proof. Let O be a point in CS(X, 1
n
H − cλFλ) ∩ Fλ that is singular on Fλ. Then

there is a pencil L ⊂ | − 2
d
KFλ | of curves singular at the point O. Therefore we

have

2n = H · L ≥ multO(H)multO(L) ≥ 2 multO(H),
but the inequality cλ > 0 implies multO(H) > n. This contradiction implies the
claim. ��

Consider two sufficiently general divisors D1 and D2 in H. Put d = K2
X · F

and

1

n2D1 ·D2 = Z +
∑
λ∈P1

Cλ,

where Z is an effective cycle whose components do not lie in fibers of τ and Cλ is
an effective cycle contained in the fiber Fλ of τ over the point λ ∈ P

1. Let C be a
curve in a fiber of τ with −KX · C = 1. Then Cλ ≡ βλC for some βλ ∈ Q≥0. Put
β = ∑

λ∈P1 βλ.
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Lemma 24. The inequality β ≤ 2rd holds.

Proof. Suppose that β > 2rd . Then the equivalence

Z + βC ≡ Z +
∑
λ∈P1

Cλ ≡ K2
X + 2rF ·KX ≡ K2

X + 2rdC

implies K2
X ≡ Z + (β − 2rd)C ∈ NE(X), which is a contradiction. ��

For every λ ∈ J let Oλ be a point in CS(X, 1
n
H − cλFλ) ∩ Fλ. Then

multOλ(Z)+ multOλ(Cλ) ≥ 4

due to [14] (see Corollary 7.3 in [19] or Theorem 3.1 in [8]), but Theorem 3.12 in
[8] implies the existence of a rational number tλ ∈ [0, 1] such that the inequality

multOλ(Z)+ tλ multOλ(Cλ) ≥ 4(1 + cλtλ)

holds. However multOλ(Z) ≤ Z · Fλ = d ≤ 2. In particular, tλ �= 0 and the
inequalities

multOλ(Cλ) ≥ 2 + 4cλtλ
tλ

> 4cλ

hold. On the other hand, multOλ(Cλ) ≤ 2
d
βλ. Therefore, we have

2rd ≥ β =
∑
λ∈P1

βλ ≥
∑
λ∈J

βλ > 2d
∑
λ∈J

cλ = 2dr,

which is a contradiction. Hence, Theorem 2 is proved.

Remark 25. There is a fibration τ : X → P
1 such that the generic fiber of τ is a

del Pezzo surface of degree 1 or 2, the 3-fold X is smooth, rk Pic(X) = 2, and
K2
X ∈ NE(X), but all claims of Theorem 2 hold for X.

Theorem 26. Let λ : X → Proj(OP1 ⊕OP1 ⊕OP1(2)) be a double cover ramified
in a smooth divisor R ∼ 4M + 2L and τ : X → P

1 be the natural projection,
where M is the tautological line bundle and L is a fiber of the projection to P

1.
Then the following holds:

• the 3-fold X is smooth;
• the generic fiber of τ is a del Pezzo surface of degree 2,
• rk Pic(X) = 2 and K2

X ∈ NE(X),
• the 3-fold X is not birational to a Fano 3-fold with canonical singularities;
• the 3-fold X is not birational to a fibration on surfaces of Kodaira dimension

zero;
• any dominant rational map γ : X ��� P

2 whose generic fiber is an elliptic
curve is induced by the corresponding rational map of the generic fiber of τ .
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Proof. Every step of the proof of Theorem 2 is valid in this case except for
Lemma 13, but the proof of Lemma 13 gives r ≥ 0. However in the case r = 0
every divisor in H has a negative intersection with curves whose images on V are
contracted by φ|M|. The latter implies that H has a fixed component in the case
r = 0. In the case when r > 0 we can proceed as in the proof of Theorem 2. ��

Our technique can be applied to del Pezzo fibrations studied in [9] and [10].

Theorem 27. In the conditions of Example 3, let k = 4. Then every claim of Theo-
rem 2 holds for the del Pezzo fibration τ : X → P

1 with the only exceptions of the
unique elliptic fibration and fibrations of K3 surfaces described in Example 3 up
to the action of Bir(X).

Proof. Every step of the proof of Theorem 2 is valid in this case except for
Lemma 13, but the proof of Lemma 13 gives r ≥ 0. Moreover

r = 0 ⇐⇒ H ⊂ | − nKX|,
but the linear system |−KX| is free and the morphism φ|−KX | is the elliptic fibration
described in Example 3. Thus in the case r = 0 the linear system H lies in fibers
of the fibration φ|−KX |, which implies the claim. In the case when r > 0 we can
proceed as in the proof of Theorem 2. ��
Theorem 28. Let λ : X → Proj(OP1 ⊕ OP1(1)⊕ OP1(1)) be a double cover ram-
ified in a smooth divisor R ∼ 4M + 2L and τ : X → P

1 be the natural projection,
where M is the tautological line bundle and L is a fiber of the projection to P

1.
Then the following holds:

• the 3-fold X is smooth;
• the generic fiber of τ is a del Pezzo surface;
• rk Pic(X) = 2 and K2

X ∈ NE(X),
• the 3-fold X is not birational to a Fano 3-fold with canonical singularities;
• the 3-fold X is not birational to a fibration on surfaces of Kodaira dimension

zero with the unique (up to the action of the group Bir(X)) exception of the
fibration of surfaces of Kodaira dimension zero given by the map φ|−KX |;

• any dominant rational map γ : X ��� P
2 whose generic fiber is an elliptic

curve is induced by the corresponding rational map of the generic fiber of τ .

Proof. Every step of the proof of Theorem 2 is valid in this case except for
Lemma 13, but the proof of Lemma 13 gives r ≥ 0. Moreover r = 0 if and
only if H ∼ −nKX.

Let T be the reduced curve on X such that λ(T ) is contracted by φ|M| and C
be a curve lying in a fiber of τ such that −KX · C = 1. Then K2

X = T and

NE(X) = R≥0T ⊕ R≥0C,

which implies Supp(H2) = T in the case r = 0.
Suppose that r = 0 and S �∼= P

1. Then the linear system H is not composed
from a pencil. There is a point P ∈ X\T such that the subsystem HP ⊂ H of
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surfaces passing through the point P has no fixed components. For two general
surfaces A and B in the linear system HP we have

P ∈ A ∩ B ⊂ T

in the set-theoretical sense, which is a contradiction.
In the case when r = 0 and S ∼= P

1 the previous arguments give π ◦ ρ =
φ|−KX |. In the case of r > 0 we can proceed as in the proof of Theorem 2 to get a
contradiction. ��

In the proof of Theorem 2 we use the method of [8]. Nevertheless we can use
the method of [18] as well. The latter way is longer than the former one. How-
ever there are cases when the method of [8] fails, but the method of [18] succeeds
(see [6]).
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