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Abstract We study a double cover ψ : X → V ⊂ P
n branched over a smooth

divisor R ⊂ V such that R is cut on V by a hypersurface of degree 2(n − deg(V )),
where n � 8 and V is a smooth hypersurface of degree 3 or 4. We prove that X is
nonrational and birationally superrigid.

1 Introduction

Let ψ : X → V ⊂ P
n be a double cover branched over a smooth divisor R ⊂ V ,

where n � 4 and V is a smooth hypersurface1. Then rk Pic(X) = 1 (see [4]) and

−K X ∼ ψ∗(OPn (d + r − 1 − n)|V ),
where d = deg V and r is a natural number such that R ∼ OPn (2r)|V . Therefore
X is nonrational in the case when d + r � n + 1. The variety X is rationally
connected if d + r � n, because it is a smooth Fano variety (see [8]). Moreover,
the following result is due to [11].

Theorem 1 The variety X is birationally superrigid 2 if it is general and d + r =
n � 5.

In this paper we prove the following result.

I. Cheltsov
Steklov Institute of Mathematics, 8 Gubkin street, Moscow 117966, Russia
School of Mathematics, University of Edinburgh, Kings Buildings, Mayfield Road,
Edinburgh EH9 3JZ, UK
E-mail: cheltsov@yahoo.com; I.Cheltsov@ed.ac.uk

1 All varieties are assumed to be projective, normal, and defined over C.
2 Namely, we have Bir(X) = Aut(X), and X is not birational to the following varieties: a

variety Y such that there is a morphism τ : Y → Z whose general fiber has negative Koda-
ira dimension and dim(Y ) �= dim(Z) �= 0; a Fano variety of Picard rank 1 having terminal
Q-factorial singularities that is not biregular to X .
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Theorem 2 The variety X is birationally superrigid if d + r = n � 8 and d = 3
or 4.

One can use Theorem 2 to construct explicit examples of nonrational Fano
varieties.

Example 3 The complete intersection

8∑

i=0

x4
i = z2 − x4

0 x4
1 + x4

2 x4
3 + x4

4 x4
5 + x4

6 x4
7

= 0 ⊂ P(19, 3) ∼= Proj(C[x0, . . . , x8, z])
is smooth. Hence, it is birationally superrigid and nonrational by Theorem 2.

In the case when d + r = n � 4 and d = 1 or 2 the birational superrigidity of
X is proved in [5] and [10]. In the case when d + r = n = 4 and d = 3 the variety
X is not birationally superrigid, but it is nonrational (see [6], [3]). In the case when
d + r < n the only known way to prove the nonrationality of X is the method of
§V in [8], which implies the following result.

Proposition 4 The variety X is nonrational if it is very general, n � 4 and r �
d+n+2

2 .

The author would like to thank A. Corti, M. Grinenko, V. Iskovskikh, J. Park,
Yu. Prokhorov and V. Shokurov for useful and fruitful conversations.

2 Preliminaries

Let X be a variety and BX = ∑ε
i=1 ai Bi be a boundary on X , where ai ∈ Q and Bi

is either a prime divisor on X or a linear system on X having no base components.
We say that BX is effective if every ai � 0, we say that BX is movable if every
Bi is a linear system having no fixed components3. In the rest of the section we
assume that all varieties are Q-factorial.

Remark 5 We can consider B2
X as an effective codimension-two cycle if BX is

movable.

The notions such as discrepancies, terminality, canonicity, log terminality and
log canonicity can be defined for the log pair (X, BX ) as for usual log pairs (see [7]).

Definition 6 The log pair (X, BX ) has canonical (terminal, respectively) singular-
ities if for every birational morphism f : W → X there is an equivalence

KW + BW ∼Q f ∗(K X + BX )+
n∑

i=1

a(X, BX , Ei )Ei

such that every number a(X, BX , Ei ) is non-negative (positive, respectively), where
BW is a proper transform of BX on W , and Ei is an f -exceptional divisor. The
number a(X, BX , Ei ) is called the discrepancy of the log pair (X, BX ) in the
divisor Ei .

3 Every effective movable log pair can be considered as a usual log pair (see [7]).
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The application of Log Minimal Model Program (see [7]) to an effective
movable log pair having canonical or terminal singularities preserves its canonicity
or terminality respectively.

Definition 7 An irreducible subvariety Y ⊂ X is a center of canonical singulari-
ties of the log pair (X, BX ) if there is a birational morphism f : W → X and an
f -exceptional divisor E such that f (E) = Y and the inequality a(X, BX , E) � 0
holds. The set of all centers of canonical singularities of the log pair (X, BX ) is
denoted as CS(X, BX ).

In particular, the log pair (X, BX ) has terminal singularities if and only if
CS(X, BX ) = ∅.

Remark 8 Let H be a general hyperplane section of X . Then every component of
Z ∩ H is contained in the set CS(H, BX |H ) for every subvariety Z ⊂ X contained
in CS(X, BX ).

Remark 9 Let Z ⊂ X be a proper irreducible subvariety such that X is smooth at
the generic point of Z . Suppose that BX is effective. Then Z ∈ CS(X, BX ) implies
multZ (BX ) � 1, but in the case codim(Z ⊂ X) = 2 the inequality multZ (BX ) � 1
implies Z ∈ CS(X, BX ).

The following result is Lemma 3.18 in [1].

Lemma 10 Suppose that X is a smooth complete intersection ∩k
i=1Gi ⊂ P

n, and
BX is effective such that BX ∼Q r H for some r ∈ Q, where Gi is a hypersurface in
P

n, and H is a hyperplane section of X. Then multZ (BX ) � r for every irreducible
subvariety Z ⊂ X such that dim(Z) � k.

The following result is well known (see [2], [3]).

Theorem 11 Let X be a Fano variety of Picard rank 1 having terminal Q-factorial
singularities that is not birationally superrigid. Then there is a linear system M
on the variety X whose base locus has codimension at least 2 such that the singu-
larities of the log pair (X, µM) are not canonical, where µ is a positive rational
number such that K X + µM ∼Q 0.

Let f : V → X be a birational morphism such that the union of ∪εi=1 f −1(Bi )
and all f -exceptional divisors forms a divisor with simple normal crossing. Then
f is called a log resolution of the log pair (X, BX ), and the log pair (V, BV ) is
called the log pull back of (X, BX ) if

BV = f −1(BX )−
n∑

i=1

a(X, BX , Ei )Ei

such that KV + BV ∼Q f ∗(K X + BX ), where Ei is an f -exceptional divisor and
a(X, BX , Ei ) ∈ Q.
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Definition 12 The log canonical singularity subschemeL(X, BX ) is the subscheme
associated to the ideal sheaf I(X, BX ) = f∗(OV (	−BV 
)). A proper irreducible
subvariety Y ⊂ X is called a center of log canonical singularities of the log pair
(X, BX ) if there is a divisor E ⊂ V that is contained in the effective part of the
support of �BV � and f (E) = Y . The set of all centers of log canonical singularities
of (X, BX ) is denoted as LCS(X, BX ), the set-theoretic union of the elements of
LCS(X, BX ) is denoted as LC S(X, BX ).

In particular, we have Supp(L(X, BX )) = LC S(X, BX ).

Remark 13 Let H be a general hyperplane section of X and Z ∈ LCS(X, BX ).
Then every component of the intersection Z ∩ H is contained in the set
LCS(H, BX |H ).

The following result is Theorem 17.4 in [9].

Theorem 14 Let g : X → Z be a morphism. Then LC S(X, BX ) is connected in
a neighborhood of every fiber of the morphism g ◦ f if the following conditions
hold:

• the morphism g has connected fibers;
• the divisor −(K X + BX ) is g-nef and g-big;
• the inequality codim(g(Bi ) ⊂ Z) � 2 holds if ai < 0;

The following corollary of Theorem 14 is Theorem 17.6 in [9].

Theorem 15 Let Z be an element of the set CS(X, BX ), and H be an effective
Cartier divisor on the variety X. Suppose that the boundary BX is effective, the
varieties X and H are smooth in the generic point of Z and Z ⊂ H �⊂ Supp(BX ).
Then LCS(H, BX |H ) �= ∅.

The following result is Theorem 3.1 in [3].

Theorem 16 Suppose that dim(X) = 2, the boundary BX is effective and movable,
and there is a smooth point O ∈ X such that O ∈ LCS(X, (1 − a1)�1 + (1 −
a2)�2 + MX ), where�1 and�2 are smooth curves on X intersecting normally at
O, and a1 and a2 are arbitrary non-negative rational numbers. Then we have

multO(B
2
X ) �

{
4a1a2 if a1 � 1 or a2 � 1

4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

3 Main local inequality

Let X be a variety, O be a smooth point on X , f : V → X be a blow up of the point
O , E be an exceptional divisor of f , BX = ∑ε

i=1 aiBi be a movable boundary
on X , and BV = f −1(BX ), where ai is a non-negative rational number and Bi is
a linear system on X having no base components. Suppose that O ∈ CS(X, BX ),
but the singularities of (X, BX ) are log terminal in some punctured neighborhood
of the point O . The following result is Corollary 3.5 in [3].
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Lemma 17 Suppose that dim(X) = 3 and multO(BX ) < 2. Then there is a line
L ⊂ E ∼= P

2 such that L ∈ LCS(V, BV + (multO(BX )− 1)E).

Suppose that dim(X) = 4 and multO(BX ) < 3. Then the proof of Lemma 17
and Theorem 14 implies the following result.

Proposition 18 One of the following possibilities holds:

• there is a surface S ⊂ E such that S ∈ LCS(V, BV + (multO(BX )− 2)E);
• there is a line L ⊂ E ∼= P

3 such that L ∈ LCS(V, BV + (multO(BX )− 2)E).

Now suppose that the set LCS(V, BV + (multO(BX )− 2)E) does not contain
surfaces that are contained in the divisor E and contains a line L ⊂ E ∼= P

3. Let
g : W → V be a blow up of in L , F = g−1(L), Ē = g−1(E), and BW = g−1(BV ).
Then

BW = BW + (multO(BX )− 3)Ē + (multO(BX )+ multL(BV )− 5)F.

Proposition 19 One of the following possibilities holds:

• the divisor F is contained in LCS(W, BW + Ē + 2F);
• there is a surface Z ⊂ F such that Z ∈ LCS(W, BW + Ē +2F) and g(Z) = L.

The following result is implied by Proposition 19.

Theorem 20 Let Y be a variety, dim(Y ) = 4, M be a linear system on the variety
Y having no base components, S1 and S2 be sufficiently general divisors in M,
P be a smooth point on the variety Y such that P ∈ CS(Y, 1

n M) for n ∈ N, but
the singularities of (Y, 1

n M) are canonical in some punctured neighborhood of the

point P, π : Ŷ → Y be a blow up of P, and � be an exceptional divisor of π .
Then there is a line C ⊂ � ∼= P

3 such that the inequality

multP(S1 · S2 ·�) � 8n2

holds for any divisor � on Y such that the following conditions hold:

• the divisor � contains the point P and � is smooth at P;
• the line C ⊂ � ∼= P

3 is contained in the divisor π−1(�);
• the divisor� does not contain subvarieties of dimension 2 contained in Bs(M).

Proof Let � be a divisor on Y such that P ∈ �, the divisor � is smooth at P ,
and� does not contain any surface that is contained in the base locus of M. Then
the base locus of the linear system M|� has codimension 2 in�. In particular, the
intersection S1 · S2 · � is an effective one-cycle. Let S̄1 = S1|� and S̄2 = S2|�.
Then we must prove that the inequality

multP(S̄1 · S̄2) � 8n2 (21)

holds, perhaps, under certain additional conditions on �. Put M̄ = M|�. Then

P ∈ LCS

(
�,

1

n
M̄

)
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by Theorem 15. Let π̄ : �̂ → � be a blow up of P and �̄ = π̄−1(P). Then the
diagram

�̂

π̄

��

� � �� Ŷ

π

��
�

� � �� Y

(22)

is commutative, where �̂ is identified with π−1(�) ⊂ Ŷ . We have �̄ = � ∩ �̂.
Let M̂ = π̄−1(M̄). The inequality 21 is obvious if multP(M̄) � 3n. Hence

we may assume that multP(M̄) < 3n. Then

�̄ �∈ LCS(�̂,
1

n
M̂ +

(
1

n
multP(M̄)− 2

)
�̄),

which implies the existence of a subvariety � ⊂ �̄ ∼= P
2 such that � is a center

of log canonical singularities of (�̂, 1
n M̂ + ( 1

n multP(M̄)− 2)�̄).

Suppose that � is a curve. Put Ŝi = π̄−1(Si ). Then

multP(S̄1 · S̄2) � multP(M̄)2 + mult�(Ŝ1 · Ŝ2),

but we can apply Theorem 16 to the log pair (�̂, 1
n M̂ + ( 1

n multP(M̄)− 2)�̄) in
the generic point of the curve �. The latter implies that the inequality

mult�(Ŝ1 · Ŝ2) � 4(3n2 − nmultP(M̄))

holds. Therefore we have

multP(S̄1 · S̄2) � multP(M̄)2 + 4(3n2 − nmultP(M̄)) � 8n2,

which implies the inequality 21.
Suppose now that the subvariety � ⊂ �̄ is a point. In this case Proposition 18

implies the existence of a line C ⊂ � ∼= P
3 such that

C ∈ LCS

(
Ŷ ,

1

n
π−1(M)+ (multP(M)/n − 2)�

)

and � = C ∩ �̂. The line C ⊂ � depends only on the properties of the log pair
(Y, 1

n M).
Suppose that initially we take � such that C ⊂ π−1(�). Then we can repeat

all the previous steps of our proof. Moreover, the geometrical meaning of Propo-
sition 19 is the following: the condition C ⊂ �̂ = π−1(�) implies that

C ∈ LCS

(
�̂,

1

n
M̂ + (multP(M̄)/n − 2)�̄

)

in the case when the set LCS(�̂, 1
n M̂ + ( 1

n multP(M̄) − 2)�̄) does not contain
any other curve in �̄. Thus we can apply the previous arguments to the divisor �
such that C ⊂ �̂ and obtain the proof of the inequality 21. ��
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In the rest of the section we prove Proposition 19. We may assume that X ∼= C
4.

Let H be a general hyperplane section of X such that L ⊂ f −1(H), T = f −1(H)
and S = g−1(T ). Then

KW + BW + Ē + 2F + S ∼Q ( f ◦ g)∗(K X + BX + H)

and

BW + Ē+2F = BW + (multO(BX )−2)Ē+(multO(BX )+ multL(BV )−3)F,

which implies that

F ∈ LCS(W, BW + Ē + 2F) ⇐⇒ multO(BX )+ multL(BV ) � 4

by Definition 12. Thus we may assume that multO(BX ) + multL(BV ) < 4. We
must prove that there is a surface Z ⊂ F such that Z ∈ LCS(W, BW + Ē + 2F)
and g(Z) = L .

Now let H̄ be a sufficiently general hyperplane section of the variety X passing
through the point O , T̄ = f −1(H̄) and S̄ = g−1(T̄ ). Then O ∈ LCS(H̄ , BX |H̄ )
by Theorem 15 and

KW + BW + Ē + F + S̄ ∼Q ( f ◦ g)∗(K X + BX + H),

which implies that the log pair (S̄, (BW + Ē + F)|S̄) is not log terminal. We can
apply Theorem 14 to the morphism f ◦ g : S̄ → H̄ . Therefore either the locus
LC S(S̄, (BW + Ē + F)|S̄) consists of a single isolated point in the fiber of the
morphism g|F : F → L over the point T̄ ∩ L or it contains a curve in the fiber of
the morphism g|F : F → L over the point T̄ ∩ L .

Remark 23 Every element of the set LCS(S̄, (BW + Ē + F)|S̄) that is contained
in the fiber of the P

2-bundle g|F : F → L over the point T̄ ∩ L is an intersection
of S̄ with some element of the set LCS(W, BW + Ē + F) due to the generality in
the choice of H̄ .

Therefore the generality of H̄ implies that either LCS(W, BW + Ē + F) con-
tains a surface in the divisor F dominating the curve L or the only center of log
canonical singularities of the log pair (W, BW + Ē + F) that is contained in the
divisor F and dominates the curve L is a section of the P

2-bundle g|F : F → L .
On the other hand, we have

LCS(W, BW + Ē + F) ⊆ LCS(W, BW + Ē + 2F),

which implies that in order to prove Proposition 19 we may assume that the divisor
F contains a curve C such that the following conditions hold:

• the curve C is a section of the P
2-bundle g|F : F → L;

• the curve C is the unique element of the set LCS(W, BW + Ē + 2F) that is
contained in the g-exceptional divisor F and dominates the curve L;

• the curve C is the unique element of the set LCS(W, BW + Ē + F) that is
contained in the g-exceptional divisor F and dominates the curve L .
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We have O ∈ LCS(H,MX |H ) by Theorem 15, but LCS(S, (BW + Ē +
2F)|S) �= ∅, where S is the proper transform of H on W . We can apply Theorem 14
to the log pair (S, (BW + Ē+2F)|S) and the birational morphism f ◦g|S : S → H ,
which implies that one of the following holds:

• the locus LC S(S, (BW + Ē + 2F)|S) consists of a single point;
• the locus LC S(S, (BW + Ē + 2F)|S) contains the curve C .

Corollary 24 Either C ⊂ S or S ∩ C consists of a single point.

By construction we have L ∼= C ∼= P
1 and

F ∼= Proj(OL(−1)⊕ OL(1)⊕ OL(1))

and S|F ∼ B + D, where B is the tautological line bundle on F and D is a fiber
of the natural projection g|F : F → L ∼= P

1.

Lemma 25 The group H1(OW (S − F)) vanishes.

Proof The intersection of the divisor −g∗(E) − F with every curve that is con-
tained in the divisor Ē is non-negative and (−g∗(E) − F)|F ∼ B + D. Hence
−4g∗(E)− 4F is h-big and h-nef, where h = f ◦ g. However, we have X ∼= C

4

and

KW − 4g∗(E)− 4F = S − F,

which implies H1(OW (S − F)) = 0 by the Kawamata–Viehweg vanishing (see
[7]). ��

Thus the restriction map

H0(OW (S)) → H0(OF (S|F ))

is surjective, but |S|F | has no base points (see §2.8 in [12]).

Corollary 26 The curve C is not contained in S.

Let τ = g|F and IC be an ideal sheaf of C on F . Then R1 τ∗(B ⊗ IC ) = 0
and the map

π : OL(−1)⊕ OL(1)⊕ OL(1) → OL(k)

is surjective, where k = B · C . The map π is given by a an element of the group

H0(OL(k + 1))⊕ H0(OL(k − 1))⊕ H0(OL(k − 1)),

which implies k � −1.

Lemma 27 The equality k = 0 is impossible.

Proof Suppose k = 0. Then the map π is given by matrix (ax +by, 0, 0), where a
and b are complex numbers and (x : y) are homogeneous coordinates on L ∼= P

1.
Thus the map π is not surjective over the point of L at which ax + by vanishes. ��
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Therefore the divisor B can not have trivial intersection with C . Hence the
intersection of the divisor S with the curve C is either trivial or consists of more
than one point, but we already proved that S∩C consists of one point. The obtained
contradiction proves Proposition 19.

The following result is a generalization of Theorem 20.

Theorem 28 Let Y be a variety of dimension r � 5, M be a linear system on
Y having no base components, S1 and S2 be general divisors in the linear system
M, P be a smooth point of the variety Y such that P ∈ CS(Y, 1

n M) for some
natural number n, but the singularities of the log pair (Y, 1

n M) are canonical in

some punctured neighborhood of P, π : Ŷ → Y be a blow up of the point P, and
� be a π-exceptional divisor. Then there is a linear subspace C ⊂ � ∼= P

r−1

having codimension 2 such that multP(S1 · S2 · �) > 8n2, where � is a divisor
on Y passing through P such that � is smooth at P, the divisor π−1(�) contains
C, the divisor � does not contain any subvarieties of Y of codimension 2 that are
contained in the base locus of M.

Proof We consider only the case r = 5. Let H1, H2, H3 be general hyperplane
sections of the variety Y passing through P . Put Ȳ = ∩3

i=1 Hi and M̄ = M|Ȳ .
Then Ȳ is a surface, which is smooth at P , and P ∈ LCS(Ȳ , 1

n M̄) by Theo-

rem 15. Let π : Ŷ → Y be a blow up of P , � be an exceptional divisor of π , and
M̂ = π−1(M). Then the set

LCS

(
Ŷ ,

1

n
M̂ + (multP(M)/n − 2)�

)

contains a subvariety Z ⊂ � such that dim(Z) � 2.
In the case dim(Z) = 4 the claim is obvious. In the case dim(Z) = 3 we can

proceed as in the proof of Theorem 20 to prove that

multP(S1 · S2 ·�) > 8n2

for any divisor � on Y such that the divisor � contains the point P , the divisor �
is smooth at the point P , the divisor � does not contain any subvariety � ⊂ Y of
codimension 2 that is contained in the base locus of the linear system M.

It should be pointed out that in the cases when dim(Z) � 3 we do not need to
fix any linear subspace C ⊂ � of codimension 2 such that π−1(�) contains C .
The latter condition is vacuous posteriori when dim(Z) � 3.

Suppose that dim(Z) = 2. Then the surface Z is a linear subspace of � ∼= P
4

having codimension 2 by Theorem 14. Moreover, the surface Z does not depend
on the choice of our divisors H1, H2, H3, because it depends only on the properties
of the log pair (Y, 1

n M).
Put C = Z . Let H be a sufficiently general hyperplane section of Y passing

through the point P , and � be a divisor on Y such that � contains point P , the
divisor � is smooth at the point P , the divisor π−1(�) contains C , the divisor �
does not contain any subvariety of Y of codimension 2 contained in the base locus
of the linear system M. Then

multP(S1 · S2 ·�) > 8n2 ⇐⇒ multP(S1|H · S2|H ·�|H ) > 8n2
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due to the generality of H . However, we have multP(S1|H · S2|H · �|H ) > 8n2

by Theorem 20, because P ∈ CS(H, µM|H ) for some positive rational number
µ < 1/n by Theorem 15. ��

4 Birational superrigidity

In this section we prove Theorem 2. Let ψ : X → V ⊂ P
n be a double cover

branched over a smooth divisor R ⊂ V such that n � 7. Then R ∼ OPn (2r)|V for
some r ∈ N, and

−K X ∼ ψ∗(OPn (d + r − 1 − n)|V ),
where d = deg V . Suppose that d + r = n and d = 3 or 4. Then the group Pic(X)
is generated by the divisor −K X , and (−K X )

2 = 2d � 8. Suppose that X is not
birationally superrigid. Then Theorem 11 implies the existence of a linear system
M whose base locus has codimension at least 2 and the singularities of the log pair
(X, 1

m M) are not canonical, where m is a natural number such that the equiva-
lence M ∼ −mK X holds. Hence the set CS(X, 1

m M) contains a proper irreducible
subvariety Z ⊂ X such that Z ∈ CS(X, µM) for some rational µ < 1/m.

Corollary 29 For a general S ∈ M the inequality multZ (S) > m holds.

A priori we have dim(Z) � dim(X)− 2 = n − 3. We may assume that Z has
maximal dimension among subvarieties of X such that the singularities of the log
pair (X, 1

m M) are not canonical in their generic points.

Lemma 30 The inequality dim(Z) �= 0 holds.

Proof Suppose that Z is a point. Let S1 and S2 be sufficiently general divisors in the
linear system M, f : U → X be a blow up of Z , and E be an f -exceptional divi-
sor. Then Theorem 28 implies the existence of a linear subspace � ⊂ E ∼= P

n−2

of codimension 2 such that

multZ (S1 · S2 · D) > 8m2

holds for any D ∈ | − K X | such that � ⊂ f −1(D), the divisor D is smooth at Z ,
and D does not contain any subvariety of X of codimension 2 that is contained in
the base locus of M.

Let H be a linear system of hyperplane sections of the hypersurface V such that
H ∈ H if and only if� ⊂ (ψ ◦ f )−1(H). Then there is a linear subspace	 ⊂ P

n

of dimension n − 3 such that the divisors in the linear system H is cut on V by
the hyperplanes in P

n that contains the linear subspace	. Hence the base locus of
the linear system H consists of the intersection	 ∩ V , but we have	 �⊂ V by the
Lefschetz theorem. In particular, dim(	 ∩ V ) = n − 4.

Let H be a general divisor in H and D = ψ−1(H). Then � ⊂ f −1(D), and
D is smooth at the point Z . Moreover, the divisor D does not contain any subva-
riety � ⊂ X of codimension 2 that is contained in the base locus of M, because
otherwise ψ(�) ⊂ 	 ∩ V , but dim(ψ(�)) = n − 3 and dim(	 ∩ V ) = n − 4. Let
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H1, H2, . . . , Hk be general divisors in |− K X | passing through the point Z , where
k = dim(Z)− 3. Then we have

2dm2 = H1 · · · · · Hk · S1 · S2 · D � multZ (S1 · S2 · D) > 8m2,

which is a contradiction. ��
Lemma 31 The inequality dim(Z) � dim(X)− 4 holds.

Proof Suppose that dim(Z)�dim(X)−5. Let H1, H2, . . . , Hk be sufficiently gen-
eral hyperplane sections of the hypersurface V ⊂P

n , where k =dim(Z) > 0. Put

V̄ = ∩k
i=1 Hi , X̄ = ψ−1(V̄ ), ψ̄ = ψ |X̄ : X̄ → V̄ ,

and M̄ = M|X̄ . Then V̄ is a smooth hypersurface of degree d in P
n−k , ψ̄ is a dou-

ble cover branched over a smooth divisor R∩V̄ , M̄ has no base components, and V̄
does not contains linear subspaces of P

n−k of dimension n −k −3 by the Lefschetz
theorem. Let P be any point of the intersection Z ∩ X̄ . Then P ∈ CS(X̄ , 1

m M̄)
and we can repeat the proof of Lemma 30 to get a contradiction. ��
Lemma 32 The inequality dim(Z) �= dim(X)− 2 holds.

Proof Suppose that dim(Z) = dim(X) − 2. Let S1 and S2 be sufficiently gen-
eral divisors in the linear system M, and H1, H2, . . . , Hn−3 be general divisors in
| − K X |. Then

2dm2 = H1 · · · · · Hn−3 · S1 · S2 � multZ (S1)multZ (S2)(−K X )
n−3 · Z

> m2(−K X )
n−3 · Z ,

because multZ (M) > m. Therefore (−K X )
n−3 · Z < 2d . On the other hand, we

have

(−K X )
n−3 · Z =

{
deg(ψ(Z) ⊂ P

n) when ψ |Z is birational,

2deg(ψ(Z) ⊂ P
n) when ψ |Z is not birational.

The Lefschetz theorem implies that deg(ψ(Z)) is a multiple of d . Therefore
ψ |Z is a birational morphism and deg(ψ(Z)) = d . Hence eitherψ(Z) is contained
in R, or the scheme-theoretic intersection ψ(Z) ∩ R is singular in every point.
However, we can apply the Lefschetz theorem to the smooth complete intersection
R ⊂ P

n , which gives a contradiction. ��
Lemma 33 The inequality dim(Z) � dim(X)− 5 holds.

Proof Suppose that dim(Z) � dim(X) − 4 � 3. Let S be a sufficiently general
divisor in the linear system M, Ŝ = ψ(S ∩ R) and Ẑ = ψ(Z ∩ R). Then Ŝ
is a divisor on the complete intersection R ⊂ P

n such that mult Ẑ (Ŝ) > m and

Ŝ ∼ OPn (m)|R , because R is a ramification divisor of ψ . Hence, the inequality
dim(Ẑ) � 2 is impossible by Lemma 10. ��

Therefore Theorem 2 is proved.
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