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Abstract
We prove that δ-invariants of smooth cubic surfaces are at least 6

5 .

Keywords Cubic surface · Fano variety · δ-Invariant · Stability threshold ·
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All varieties are assumed to be projective and defined over C.

1 Introduction

The existence of Kähler–Einstein metrics on Fano manifolds is an important problem
in complex geometry. By the Yau–Tian–Donaldson conjecture (confirmed in [4,21]),
we know that all K -stable Fano manifolds are Kähler–Einstein. Moreover, we also
know explicit criteria that can be used to verify K -stability in many cases. One such
criterion has been found by Tian in [19] and later generalized by Fujita in [10]. It is
the following

Theorem 1.1 ([10,19]) Let X be a Fano manifold of dimension n � 2. If α(X) � n
n+1 ,

then X is K -stable.
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Here, α(X) is the α-invariant defined in [19]. By [8, Theorem A.3], one has

α(X) = sup

{
λ ∈ Q

∣∣∣∣ the log pair (X , λD) is log canonical

for every effective Q-divisor D ∼Q −K X

}
.

In [5], the first author computed the α-invariants of two-dimensional Fano manifolds,
known as del Pezzo surfaces. Namely, if S be a smooth del Pezzo surface, then

α(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 if S ∼= F1 or K 2

S ∈ {7, 9},
1
2 if S ∼= P

1×P
1 or K 2

S ∈ {5, 6},
2
3 if K 2

S = 4,

2
3 if S is a cubic surface in P

3 with an Eckardt point,

3
4 if S is a cubic surface in P

3 without Eckardt points,

3
4 if K 2

S = 2 and |− KS| has a tacnodal curve,
5
6 if K 2

S = 2 and |− KS| has no tacnodal curves,

5
6 if K 2

S = 1 and |− KS| has a cuspidal curve,
1 if K 2

S = 1 and |− KS| has no cuspidal curves.

In particular, if K 2
S � 4, then S is K -stable by Theorem 1.1, so that it is Kähler–

Einstein. If K 2
S = 5, then S is unique andAut(S) ∼= S5. In this case,wehaveαS5(S) =

2 by [5], where αS5(S) is aS5-invariant α-invariant, which can be defined similarly to
α(S). Now using anS5-equivariant counterpart of Theorem 1.1 in [19], we conclude
that the surface S is also Kähler–Einstein. All remaining del Pezzo surfaces are toric,
so that they are Kähler–Einstein if and only if their Futaki characters vanish [22].
Together with Matsushima’s obstruction, this gives Tian’s celebrated theorem:

Theorem 1.2 ([20]) A smooth del Pezzo surface admits a Kähler–Einstein metric if
and only if it is not a blow-up of P2 at one or two points.

Note that smooth cubic surfaces form the hardest case in Tian’s original proof of this
result, which requires Cheeger–Gromov theory, Hörmander L2 estimates, partial C0

estimates and the lower semi-continuity of log canonical thresholds. In this paper,
we will give another proof of Theorem 1.2 in this case using a new criterion for K -
stability, which has been recently discovered by Fujita and Odaka in [12]. They stated
it in terms of the so-called δ-invariant, which we describe now.

Fix a Fano manifold X . For a sufficiently large and sufficiently divisible integer
k, consider a basis s1, . . . , sdk of the vector space H0(OX (−kK X )), where dk =
h0(OX (−kK X )). For this basis, consider the Q-divisor

1

kdk

dk∑
i=1

{si = 0} ∼Q −K X .
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Delta invariants of smooth cubic surfaces 731

Any Q-divisor obtained in this way is called a k-basis type (anticanonical) divisor.
Let

δk(X) = sup

{
λ ∈ Q

∣∣∣∣ the log pair (X , λD) is log canonical

for every k-basis type Q-divisor D ∼Q −K X

}
.

Then let

δ(X) = lim sup
k∈N

δk(X).

By [2, Theorem A], one has

dim(X) + 1

dim(X)
α(X) � δ(X) � (dim(X) + 1)α(X).

The number δ(X) is also referred to as the stability threshold (cf. [2,3]), because of

Theorem 1.3 ([2, Theorem B]) The following assertions hold:

• X is K -semistable if and only if δ(X) � 1;
• X is uniformly K -stable if and only if δ(X) > 1.

How to compute or at least estimate δ(X) effectively? In general this is not very easy.
In [17], Park and Won estimated the δ-invariants of all smooth del Pezzo surfaces,
which gave another proof of Tian’s Theorem 1.2. But it seems unclear to us how to
generalize their approach for higher-dimensional Fano manifolds. Motivated by this,
in our recent joint work with Yanir Rubinstein [7], we developed new geometric tools
to estimate δ-invariants of (log) del Pezzo surfaces, which enabled us to partially prove
a conjecture proposed in [6]. In this paper, we will use the same methods to give a
sharper estimate for the δ-invaraints of smooth cubic surfaces. To be precise, we prove

Theorem 1.4 Let S be a smooth cubic surface in P
3. Then δ(S) � 6

5 .

Corollary 1.5 ([17,20]) All smooth cubic surfaces in P
3 are uniformly K -stable, so

that they are Kähler–Einstein.

For a smooth cubic surface S, it follows from [17, Theorem 4.9] that

δ(S) � 36

31
.

Our bound δ(S) � 6
5 is slightly better. Moreover, the proof of Theorem 1.4 is com-

pletely different from the proof of [17, Theorem 4.9]. The essential ingredient in our
proof is a vanishing order estimate for basis type divisors (see Theorem 2.9). This
estimate combined with the techniques from [5] give us the desired lower bound for
δ(S).

This paper is organized as follows. In Sect. 2, we present known results about
divisors on smooth surfaces, and, as an illustration, we give a new proof of [17,
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732 I. Cheltsov, K. Zhang

Theorem 4.7]. In Sect. 3, we give various multiplicity estimates for basis type divisors
on smooth cubic surfaces, which will be important to bound their δ-invariants in the
proof of Theorem 1.4. These estimates also imply that δ-invariants of smooth cubic
surfaces are at least 18

17 . In Sect. 4, we prove Theorem 1.4.

2 Basic tools

In this section, we collect some basic notions and tools that will be used throughout
this article. Let S be a smooth surface, and let P be a point in S. Let D be an effective
divisor on S. Suppose that f = 0 is the local defining equation of D near the point P ,
then the multiplicity of D at P , is defined to be the vanishing order of f at P , which
we denote by multP (D). Let π : S̃ → S be the blow-up of the point P , and let E be
the exceptional curve of π . Denote by D̃ the proper transform of D via π . Then we
have

π∗(D) = D̃ + multP (D) ·E .

Definition 2.1 Let C1 and C2 be two irreducible curves on a surface S. Suppose that
C1 and C2 intersect at P . Let OP be the local ring of germs of holomorphic functions
defined in some neighborhood of P . Then the local intersection number of C1 and C2
at the point P is defined by

(C1 ·C2)P = dimC OP/〈 f1, f2〉,
where f1 = 0 and f2 = 0 are local defining functions of C1 and C2 around the point
P . The global intersection number C1 ·C2 is defined by

C1 ·C2 =
∑

P∈C1∩C2

(C1 ·C2)P .

This definition and the definition of multP (D) extend to R-divisors by linearity. For
instance, say we have a curve C and an R-divisor � = ∑

i ai Zi , where Zi ’s are
distinct prime divisors and ai ∈ R. Then

(C ·�)P =
∑

i

ai (C · Zi )P ,

where (C .Zi )P = 0 if Zi does not pass through the point P .
In the following, let D be an effective R-divisor on S. We will investigate how to

express the singularity of the log pair (S, D) at the point P in terms of multP ( ·) and
( ·)P .

Lemma 2.2 ([14]) If (S, D) is not log canonical at P, then multP (D) > 1.

Let C be an irreducible curve on S. Write

D = aC + �,
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Delta invariants of smooth cubic surfaces 733

where a is a non-negative real number that is also denoted as ordC (D), and � is an
effective R-divisor on S whose support does not contain the curve C .

Lemma 2.3 ([7, Proposition 3.3]) Suppose that a � 1, the curve C is smooth at the
point P, and multP (�) � 1. If (S, D) is not log canonical at P, then

(C ·�)P > 2 − a.

Corollary 2.4 If a � 1, the curve C is smooth at P, and the log pair (S, D) is not log
canonical at P, then

(C ·�)P > 1.

Let π : S̃ → S be the blow-up of the point P , and let E1 be the exceptional curve of
π . Denote by D̃ the proper transform of D via π . Then

KS̃ + D̃ + (multP (D) − 1)E1 ∼R π∗(KS + D).

This implies

Corollary 2.5 The log pair (S, D) is log canonical at P if and only if the log pair
(S̃, D̃ + (multP (D) − 1)E1) is log canonical along the curve E1.

Thus, using Lemma 2.2 and Corollary 2.5, we obtain the following simple criterion.

Corollary 2.6 Suppose that

multQ(π∗(D)) = multP (D) + multQ(D̃) � 2

for every point Q ∈ E1. Then (S, D) is log canonical at P.

If D is a Cartier divisor, then its volume is the number

vol(D) = lim sup
k∈N

h0(OS(k D))

k2/2! ,

where the lim sup can be replaced by a limit (see [15, Example 11.4.7]). Likewise, if
D is a Q-divisor, we can define its volume using the identity

vol(D) = vol(λD)

λ2

for an appropriate λ ∈ Q>0. Then the volume vol(D) only depends on the numerical
equivalence class of the divisor D. Moreover, the volume function can be extended
by continuity to R-divisors. Furthermore, it is log-concave:

√
vol(D1 + D2) �

√
vol(D1) + √

vol(D2). (2.1)
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734 I. Cheltsov, K. Zhang

for any pseudoeffectiveR-divisors D1 and D2 on the surface S. For more details about
volumes of R-divisors, we refer the reader to [15,16].

If D is not pseudoeffective, then vol(D) = 0. If the divisor D is nef, then

vol(D) = D2.

This follows from the asymptotic Riemann–Roch theorem [15]. If the divisor D is not
nef, its volume can be computed using its Zariski decomposition [13,18]. Namely, if
D is pseudoeffective, then there exists a nef R-divisor N on the surface S such that

D ∼R N +
r∑

i=1

ai Ci ,

where each Ci is an irreducible curve on S with N ·Ci = 0, each ai is a non-negative
real number, and the intersection form of the curves C1, . . . , Cr is negative definite.
Such decomposition is unique, and it follows from [1, Corollary 3.2] that

vol(D) = vol(N ) = N 2.

This immediately gives

Corollary 2.7 Let Z1, . . . , Zs be irreducible curves on S such that D · Zi � 0 for
every i , and the intersection form of the curves Z1, . . . , Zs is negative definite. Then

vol(D) = vol

(
D −

s∑
i=1

bi Zi

)
,

where b1, . . . , bs are (uniquely defined) non-negative real numbers such that

(
D −

s∑
i=1

bi Zi

)
· Zj = 0

for every j .

Corollary 2.8 Let Z be an irreducible curve on S such that Z2 < 0 and D · Z � 0.
Then

vol(D) = vol

(
D − D · Z

Z2 Z

)
.

Let η : Ŝ → S be a birational morphism (possibly an identity) such that Ŝ is smooth.
Fix a (not necessarily η-exceptional) irreducible curve F in the surface Ŝ. Let

τ(F) = sup

{
x ∈ R>0

∣∣∣∣ η∗(D) − x F is numerically equivalent

to an effective divisor

}
.

This is called the pseudo-effective threshold of F .
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Delta invariants of smooth cubic surfaces 735

Theorem 2.9 Suppose that S is a smooth del Pezzo surface, and D is a k-basis type
divisor with k 	 1. Then

ordF (η∗(D)) � 1

(−KS)2

∫ τ(F)

0
vol(η∗(−KS) − x F) dx + εk,

where εk is a small constant depending on k such that εk → 0 as k → ∞.

Proof This is a very special case of [12, Lemma 2.2]. ��
In [2,3], the quantity

S(F) = 1

(−KS)2

∫ τ(F)

0
vol(η∗(−KS) − x F) dx

is also called the expected vanishing order of anticanonical sections along the divi-
sor F .

Theorem 2.9 plays a crucial role in the proof of Theorem 1.4. As a warm up, let us
show how to use Theorem 2.9 to estimate δ-invariants of smooth del Pezzo surfaces
of degree 1.

Theorem 2.10 ([17, Theorem 4.7]) Let S be a smooth del Pezzo surface of degree 1.
Then δ(S) � 3

2 .

Proof Fix some rational number λ < 3
2 . Let D be a k-basis type divisor with k 	 1,

and let P be a point in S. We have to show that the log pair (S, λD) is log canonical
at P . By Lemma 2.2, it is enough to prove that

multP (D) � 1

λ
.

Applying Theorem 2.9 with Ŝ = S̃, η = π and F = E1, we see that

multP (D) �
∫ τ(E1)

0
vol(π∗(−KS) − x E1) dx + εk,

where εk is a constant depending on k such that εk → 0 as k → ∞.
Let us compute τ(E1). To do this, take a curve C ∈ |− KS| such that P ∈ C .

Denote by C̃ its proper transform on the surface S̃. If C is smooth at P , then

π∗(−KS) ∼Q C̃ + E1 and C̃2 = C2 − 1 = 0,

which implies that τ(E1) = 1. In this case, we have

multP (D) �
∫ 1

0
vol(η∗(−KS) − x E2) dx + εk

123
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=
∫ 1

0
(π∗(−KS) − x E1)

2dx + εk

=
∫ 1

0
(1 − x2)2dx + εk = 2

3
+ εk .

Therefore, if C is smooth at P , then the log pair (S, λD) is log canonical at P for
k 	 1.

To complete the proof, we may assume that C is singular at P . Then P is either
nodal or cuspidial, so we have multP (C) = 2 and

π∗(−KS) ∼ C̃ + 2E1,

so that τ(E1) = 2, since C̃2 = −3. Using Corollary 2.8, we see that

vol(π∗(−KS) − x E1) =

⎧⎪⎨
⎪⎩
1 − x2, 0 � x � 1

2
,

(x − 2)2

3
,

1

2
� x � 2,

so that multP (D) � 5
6 + εk . This gives δ(S) � 6

5 . To get δ(S) � 3
2 , we must work

harder.
Fix a point Q ∈ E1. By Corollary 2.6, to prove that (S, λD) is log canonical at P ,

it is enough to show that

multQ(π∗(D)) = multP (D) + multQ(D̃) � 2

λ
.

Let σ : Ŝ → S̃ be the blow-up of the point Q. Denote by E2 the exceptional curve of
σ . Let η = π ◦σ . Applying Theorem 2.9 with F = E1, we see that

multQ(π∗(D)) �
∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk .

Here, as above, the term εk is a constant that depends on k such that εk → 0 as k → ∞.
Let Ĉ and Ê1 be the proper transforms on Ŝ of the curves C and E1, respectively.

Then the intersection form of the curves Ĉ and Ê1 is negative definite. If Q ∈ C̃ , then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 3E2,

so that τ(E2) = 3. In this case, using Corollary 2.8, we see that

vol(η∗(−KS) − x E2) = vol

(
η∗(−KS) − x E2 − x

2
Ê1

)

=
(

η∗(−KS) − x E2 − x

2
Ê1

)2
= 1 − x2

2
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Delta invariants of smooth cubic surfaces 737

provided that 0 � x � 2
3 . Likewise, if

2
3 � x � 3, then Corollary 2.7 gives

vol(η∗(−KS) − x E2)

= vol

(
η∗(−KS) − x E2 − 5x − 1

7
Ê1 − 3x − 2

7
Ĉ

)

=
(

η∗(−KS) − x E2 − 5x − 1

7
, Ê1 − 3x − 2

7
Ĉ

)2

= (η∗(−KS) − x E2)

(
η∗(−KS) − x E2 − 5x − 1

7
Ê1 − 3x − 2

7
Ĉ

)

= (3 − x)2

7
.

Thus, if Q ∈ C̃ , then

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
1 − x2

2
, 0 � x � 2

3
,

(3 − x)2

7
,

2

3
� x � 3,

so that multQ(π∗(D)) � 2
λ
for k 	 1, because

∫ 3

0
vol(η∗(−KS) − x E2) dx = 11

9
<

2

λ
.

Likewise, if Q /∈ C̃ , then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 2E2,

so that τ(E2) = 2. In this case, using Corollary 2.7, we deduce that

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
1 − x2

2
, 0 � x � 1,

(2 − x)2

2
, 1 � x � 2,

which implies that

∫ 2

0
vol(η∗(−KS) − x E2) dx = 1,

so that multQ(π∗(D)) � 2
λ
for k 	 1. ��

Remark 2.11 In the proof of Theorem 2.10, there is another way to treat the case when
the curve C is singular at P , which relies on Lemma 2.3. Indeed, let S be a smooth

123
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del Pezzo surface of degree 1, let P be a point in S, and let C be a curve in |− KS|
that passes trough P . Suppose that

multP (C) = 2.

Let D be any k-basis type divisor such that D ∼ −KS with k 	 1, and let λ be a
positive real number such that λ < 3

2 . Let us show that (S, λD) is log canonical at P .
We argue by contradiction. Suppose that (S, λD) is not log canonical at P . Write

D = aC + �,

where a � 0 and � is an effective Q-divisor whose support does not contain C . Note
that

a �
∫ ∞

0
vol(−KS − xC) dx + εk = 1

3
+ εk,

where εk is a constant that depends on k such that εk → 0 as k → ∞. Let m =
multP (�). Then

1 = D ·C = (aC + �) · C � a + 2m,

so thatm � 1−a
2 . Letπ : S̃ → S be the blow-up of the point P . Let E be the exceptional

curve of π , and let C̃ and �̃ be the proper transforms of C and � on S̃, respectively.
Then the log pair

(
S̃, λaC̃ + λ�̃ + (λ(2a + m) − 1)E

)
is not log canonical at some point Q ∈ E . Note that λ(2a + m) − 1 < 1. But

E ·(λ�) = λm � λ
1 − a

2
<

3

2
· 1
2

< 1.

Thus, we have Q ∈ E ∩ C̃ by Corollary 2.4. On the other hand, for k 	 1, we have

multQ
(
λ�̃ + (λ(2a + m) − 1)E

)
� 2λ(a + m) − 1

� λ ·
(
1 + 1

3
+ εk

)
− 1 � 1,

so that we can apply Lemma 2.3 to our pair at Q. This gives

λC ·� − 2mλ + 2λ(2a + m) − 2 = C̃ ·(λ�̃ + (λ(2a + m) − 1)E
)

> 2 − λa,

so that λ(1 + 4a) > 4, and hence

3

2

(
1 + 4 · 1

3
+ εk

)
> 4,

123



Delta invariants of smooth cubic surfaces 739

which is absurd for εk � 1. This proves the desired log canonicity of our pair (S, λD).

The following (simple) result can be very handy.

Lemma 2.12 Under the assumptions and notations of Theorem 2.9, one has

∫ τ(F)

μ

vol(η∗(−KS) − x F) dx � (τ (F) − μ)vol(η∗(−KS) − μF)

for any μ ∈ [0, τ (F)].
Proof The assertion follows from the fact that vol(η∗(−KS)−x F) is a non-increasing
function on x ∈ [0, τ (F)]. ��
Using (2.1), this result can be improved as follows:

Lemma 2.13 Under the assumptions and notations of Theorem 2.9, one has

∫ τ(F)

μ

vol(η∗(−KS) − x F) dx � 2

3
(τ (F) − μ)vol(η∗(−KS) − μF)

for any μ ∈ [0, τ (F)].
Proof The required assertion follows from the proof of [11, Proposition 2.1]. ��
We will apply both Lemmas 2.12 and 2.13 to estimate the integral in Theorem 2.9 in
the cases when it is not easy to compute.

3 Multiplicity estimates

Let S be a smooth cubic surface in P3, and let D be a k-basis type divisor with k 	 1.
The goal of this section is to bound multiplicities of the divisor D using Theorem 2.9.
As in Theorem 2.9, we denote by εk a small number such that εk → 0 as k → ∞.

Lemma 3.1 Let L be a line on S. Then

ordL(D) � 5

9
+ εk .

Proof Let us use assumptions and notations of Theorem 2.9 with η = IdS and F = L .
Let H be a general hyperplane section of the surface S that contains L . Then H =
L + C , where C is an irreducible conic. Since C2= 0, we have τ(F) = 1, so that

ordL(D) � 1

3

∫ 1

0
vol(−KS − x L) dx + εk = 1

3

∫ 1

0
(−KS − x L)2dx + εk = 5

9
+ εk

by Theorem 2.9. ��

123



740 I. Cheltsov, K. Zhang

Fix a point P ∈ S. Let π : S̃ → S be the blow-up of this point. Denote by E1 the
exceptional divisor of π . Fix a point Q ∈ E1. Let σ : Ŝ → S̃ be the blow-up of this
point. Denote by E2 the exceptional curve of σ . Let η = π ◦σ , then

τ(E2) = sup

{
x ∈ R>0

∣∣∣∣ η∗(−KS) − x E2 is numerically equivalent

to an effective divisor

}
.

Applying Theorem 2.9, we get

multQ(π∗(D)) � 1

3

∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk . (3.1)

Let TP be the unique hyperplane section of the surface S that is singular at the point P .
Then we have the following four possibilities:

• TP = L1 + L2 + L3, where L1, L2 and L3 are lines such that P = L1 ∩ L2 ∩ L3;
• TP = L1 + L2 + L3, where L1, L2 and L3 are lines such that L3 �� P = L1 ∩ L2;
• TP = L + C , where L is a line and C is a conic such that P ∈ C ∩ L;
• TP is an irreducible cubic curve.

We plan to bound the integral in (3.1) depending on the type of the curve TP and on
the position of the point Q ∈ E1. First, we deal with the cases when Q is contained
in the proper transform of the curve TP . We start with

Lemma 3.2 Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing
through P. Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of the lines L1, L2 and
L3, respectively. Suppose that Q ∈ L̃1 ∩ L̃2 ∩ L̃3. Then

multQ(π∗(D)) � 17

9
+ εk .

Proof We may assume that Q = L̃1 ∩ E1. Denote by L̂1, L̂2, L̂3 and Ê1 the proper
transforms on Ŝ of the curves L̃1, L̃2, L̃3 and E1, respectively. Then the intersection
form of the curves L̂1, L̂2, L̂3 and Ê1 is negative definite. Moreover, we have

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 3Ê1 + 4E2.

Thus, we conclude that τ(E2) = 4. Now, using Corollary 2.7, we compute

vol(η∗(−KS) − x E2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − x2

2
, 0 � x � 1,

20 − 4x − x2

6
, 1 � x � 2,

(4 − x)2

3
, 2 � x � 4.

Then the required result follows from (3.1). ��
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Delta invariants of smooth cubic surfaces 741

Lemma 3.3 Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines such
that P = L1 ∩ L2 and P /∈ L3. Let L̃1 and L̃2 be the proper transforms on S̃ of the
lines L1 and L2, respectively. Suppose that Q = L̃1 ∩ E1 or L̃2 ∩ E1. Then

multQ(π∗(D)) � 49

27
+ εk .

Proof Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L1, L2,
L3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 2Ê1 + 3E2.

Since the intersection form of the curves L̂1, L̂2, L̂3 and Ê1 is semi-negative definite,
we conclude that τ(E2) = 3. Then, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − x2

2
, 0 � x � 1,

20 − 4x − x2

6
, 1 � x � 2,

12 − 4x

3
, 2 � x � 3.

Then the required result follows from (3.1). ��
Lemma 3.4 Suppose that TP = L + C, where L is a line, and C is an irreducible
conic. Suppose that L and C meet transversally at P. Denote by L̃ and C̃ the proper
transforms on S̃ of the curves L and C, respectively. Suppose that Q = L̃ ∩ E1. Then

multQ(π∗(D)) � 9

5
+ εk .

Proof Denote by L̂ , Ĉ and Ê1 the proper transforms on Ŝ of the curves L , C and E1,
respectively. Then

η∗(−KS) ∼Q L̂ + Ĉ + 2Ê1 + 3E2.

Since the intersection form of the curves L̂ , Ĉ and Ê1 is negative definite, we conclude
that τ(E2) = 3. Moreover, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 − x2

2
, 0 � x � 1,

20 − 4x − x2

6
, 1 � x � 14

5
,

4(3 − x)2,
14

5
� x � 3.

Now the required assertion follows from (3.1). ��
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Lemma 3.5 Suppose that TP = L + C, where L is a line, and C is an irreducible
conic. Suppose that L and C meet transversally at P. Denote by L̃ and C̃ the proper
transforms on S̃ of the curves L and C, respectively. Suppose that Q = C̃ ∩ E1. Then

multQ(π∗(D)) � 5

3
+ εk .

Proof Denote by L̂ , Ĉ and Ê1 the proper transforms on Ŝ of the curves L , C and E1,
respectively. Then

η∗(−KS) ∼Q L̂ + Ĉ + 2Ê1 + 3E2.

Since the intersection form of the curves L̂ , Ĉ and Ê1 is negative definite, we conclude
that τ(E2) = 3. Moreover, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =
⎧⎨
⎩ 3 − x2

2
, 0 � x � 2,

(3 − x)2, 2 � x � 3.

Now the required assertion follows from (3.1). ��
Lemma 3.6 Suppose that TP = L + C, where L is a line and C is an irreducible
conic. Suppose that L and C meet tangentially at P. Denote by L̃ and C̃ the proper
transforms on S̃ of the curves L and C, respectively. Suppose that Q = E1 ∩ L̃ ∩ C̃.
Then

multQ(π∗(D)) � 17

9
+ εk .

Proof Denote by L̂ , Ĉ and Ê1 the proper transforms on Ŝ of the curves L̃ , L̃ and E1,
respectively. Then

η∗(−KS) ∼Q L̂ + Ĉ + 2Ê1 + 4E2.

Since the intersection form of the curves L̂ , Ĉ and Ê1 is negative definite, we conclude
that τ(E2) = 4. Moreover, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − x2

2
, 0 � x � 1,

20 − 4x − x2

6
, 1 � x � 2,

(4 − x)2

3
, 2 � x � 4.

Then the required result follows from (3.1). ��
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Lemma 3.7 Suppose that TP is an irreducible cubic. Let C̃ be the proper transform of
the curve C on the surface S̃. Suppose that Q ∈ C̃. Then

multQ(π∗(D)) � 5

3
+ εk .

Proof Denote by Ĉ and Ê1 the proper transforms on Ŝ of the curves C̃ and E1,
respectively. Then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 3E2.

This gives τ(E2) = 3, because the intersection form of the curves Ĉ and Ê1 is negative
definite. Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =
⎧⎨
⎩ 3 − x2

2
, 0 � x � 2,

(3 − x)2, 2 � x � 3.

Then the required result follows from (3.1). ��
Now we consider the cases when Q is not contained in the proper transform of the
singular curve TP on the surface S̃. We start with

Lemma 3.8 Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing
through P. Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of the lines L1, L2 and
L3, respectively. Suppose that Q /∈ L̃1 ∪ L̃2 ∪ L̃3. Then

multQ(π∗(D)) � 5

3
+ εk .

Proof Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L̃1, L̃2,
L̃3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 3Ê1 + 3E2.

This gives τ(E2) = 3, because the intersection form of the curves L̂1, L̂2, L̂3 and Ê1
is negative definite. Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =
⎧⎨
⎩ 3 − x2

2
, 0 � x � 2,

(3 − x)2, 2 � x � 3.

Then the required result follows from (3.1). ��
In the remaining cases, the pseudoeffective threshold τ(E2) is not (always) easy to
compute. There is a (birational) reason for this. To explain it, recall from [9] that
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the linear system |− KS̃| is free from base points and gives a morphism φ : S̃ → P
2.

Taking its Stein factorization, we obtain a commutative diagram

S̃
φ

π

α
S

β

S
ρ

P
2

where α is a birational morphism, β is a double cover branched over a (possibly
singular) quartic curve, and ρ is a linear projection from the point P . Here, the surface
S is a (possibly singular) del Pezzo surface of degree 2. Note that the morphism α is
biregular if and only if the curve TP is irreducible. Moreover, if TP is reducible, then
α-exceptional curves are proper transforms of the lines on S that pass through P .

Let ι be the Galois involution of the double cover β. Then its action lifts to S̃. On the
other hand, this action does not always descent to a (biregular) action of the surface S.
Nevertheless, we can always consider ι as a birational involution of the surface S. This
involution is known as Geiser involution (see [9]). It is biregular if and only if P is an
Eckardt point of the surface. In this case, the curve E1 is ι-invariant. However, if P
is not an Eckardt point, then ι(E1) is the proper transform of the (unique) irreducible
component of the curve TP that is not a line passing through P . In both cases, there
exists a commutative diagram

S̃

π ν

S
ψ

S′

where S′ is a smooth cubic surface in P
3, which is isomorphic to the surface S via

the involution τ , the morphism ν is the contraction of the curve ι(E1), and ψ is
a birational map given by the linear subsystem in |−2KS| consisting of all curves
having multiplicity at least 3 at the point P .

Let Q′ = ν(Q) and P ′ = ν(ι(E1)). Denote by T ′
Q the unique hyperplane section

of the cubic surface S′ that is singular at Q′. If P is not an Eckardt point and Q is
not contained in the proper transform of the curve TP , then Q′ �= P ′. In this case, the
number τ(E2) can be computed using T ′

Q . This explains why the remaining cases are
(slightly) more complicated.

Lemma 3.9 Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines such
that P = L1 ∩ L2 and P /∈ L3. Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of
the lines L1, L2 and L3, respectively. Suppose that Q /∈ L̃1 ∪ L̃2. Then

multQ(π∗(D)) � 5

3
+ εk .
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Proof Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L1, L2,
L3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 2Ê1 + 2E2,

which implies that τ(E2) � 2. Using Corollary 2.8, we see that

vol(η∗(−KS) − x E2) = 3 − x2

2

provided that 0 � x � 2. However, we have τ(E2) > 2, because the intersection form
of the curves L̂1, L̂2, L̂3 and Ê1 is not semi-negative definite. This also follows from
the fact that vol(η∗(−KS) − 2E2) > 0.

Recall that ν : S̃ → S′ is the contraction of the curve L̃3. We let L ′
1 = ν(L̃1),

L ′
2 = ν(L̃2) and E ′

1 = ν(E1). Then L ′
1, L ′

2 and E ′
1 are coplanar lines on S′.

Since Q′ ∈ E ′
1, the line E ′

1 is an irreducible component of the curve T ′
Q . Thus,

either T ′
Q consists of three lines, or T ′

Q is a union of the line E ′
1 and an irreducible

conic.
Suppose thatT ′

Q = E ′
1+Z ′,where Z ′ is an irreducible conic on S′. Then Q′ ∈ E ′

1∩Z ′
and Z ′ ∼ L ′

1 + L ′
2, which implies that the conic Z ′ does not meet the lines L ′

1 and L ′
2.

Denote by Ẑ the proper transform of the conic Z ′ on the surface Ŝ. We have

η∗(−KS) ∼Q

1

2

(
Ẑ + L̂1 + L̂2

) + 2Ê1 + 5

2
E2.

This implies that τ(E2) = 5
2 , because the intersection form of the curves Ẑ , L̂1, L̂2

and Ê1 is semi-negative definite. Using thisQ-rational equivalence and Corollary 2.7,
we compute

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

5 − 2x, 2 � x � 5

2
.

Thus, a direct computation and (3.1) give

multQ(π∗(D)) � 59

36
+ εk <

5

3
+ εk,

which gives the required assertion.
To complete the proof, we may assume that T ′

Q = E ′
1 + M ′ + N ′, where M ′ and

N ′ are two lines on S′ such that Q′ = E ′
1 ∩ M ′. Then M ′ + N ′ ∼ L ′

1 + L ′
2, which

implies that the lines M ′ and N ′ do not meet the lines L ′
1 and L ′

2. Denote by M̂ and
N̂ the proper transforms on the surface Ŝ of the lines M ′ and N ′, respectively.
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Suppose that Q′ is also contained in the line N ′. This simply means that Q′ is an
Eckardt point of the surface S′. Then

η∗(−KS) ∼Q

1

2

(
M̂ + N̂ + L̂1 + L̂2

) + 2Ê1 + 3E2.

This gives τ(E2) � 3. In fact, we have τ(E2) = 3 here, because the intersection form
of the curves M̂ , N̂ , L̂1, L̂2, Ê1 is negative definite. Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =
⎧⎨
⎩ 3 − x2

2
, 0 � x � 2,

(3 − x)2 2 � x � 3.

Now, direct computations and (3.1) give the required inequality.
To complete the proof the lemma, we have to consider the case Q′ /∈ N ′. Then

η∗(−KS) ∼Q

1

2

(
M̂ + N̂ + L̂1 + L̂2

) + 2Ê1 + 5

2
E2.

In particular, we see that τ(E2) � 5
2 . Using this Q-rational equivalence and Corol-

lary 2.7, we compute

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

7 − 4x + x2

2
, 2 � x � 5

2
.

Thus, in particular, we have τ(E2) > 5
2 , since

vol

(
η∗(−KS) − 5

2
E2

)
= 1

8
.

As in the previous cases, we can find τ(E2) and compute vol(η∗(−KS) − x E2) for
x > 5

2 . However, we can avoid doing this. Namely, note that the divisor Ê1 +2N̂ + M̂
is nef and

(
Ê1 + 2N̂ + M̂

) · (η∗(−KS) − x E2) = 6 − 2x,

so that τ(E2) � 3. Therefore, using (3.1) and Lemma 2.12, we see that

multQ(π∗(D)) � 1

3

∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk

= 1

3

∫ 5/2

0
vol(η∗(−KS) − x E2) dx

+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk
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= 79

48
+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk

� 79

48
+ τ(E2) − 5/2

3
vol

(
η∗(−KS) − 5

2
E2

)
+ εk

= 79

48
+ τ(E2) − 5/2

24
+ εk � 79

48
+ 1

48
+ εk = 5

3
+ εk .

This finishes the proof of the lemma. ��

Lemma 3.10 Suppose that TP = L+C, where L is a line and C is an irreducible conic.
Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C, respectively.
Suppose that Q /∈ L̃ ∪ C̃. Then

multQ(π∗(D)) � 5

3
+ εk .

Proof Denote by L̂ , Ĉ and Ê1 the proper transforms on Ŝ of the curves L , C̃ and E1,
respectively. Then

η∗(−KS) ∼Q L̂ + Ĉ + 2Ê1 + 2E2,

so that τ(E2) � 2. Using Corollary 2.8, we see that

vol(η∗(−KS) − x E2) = 3 − x2

2

provided that 0 � x � 2. Since vol(η∗(−KS) − 2E2) > 0, we see that τ(E2) > 2.
Recall that ν : S̃ → S′ is the contraction of the curve C̃ . Let L ′ = ν(L̃) and

E ′
1 = ν(E1). Then L ′ is a line and E ′

1 is a conic on S′ such that P ′ ∈ L ′ ∩ E ′
1.

First, we suppose that T ′
Q is irreducible. Denote by T̂Q the proper transform of the

cubic T ′
Q on the surface Ŝ. Then T̂Q · Ê1 = 0 and

T̂Q · L̂ = Ê1 · L̂ = 1.

Since L̂2 = Ê2
1 = −2 and T̂ 2

Q = −1, we see that the intersection form of the curves

L̂ , T̂Q and Ê1 is negative definite. On the other hand, we have

η∗(−KS) ∼Q

1

2
(T̂Q + L̂) + 3

2
Ê1 + 5

2
E2.
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This shows that τ(E2) = 5
2 . Hence, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − x2

2
, 0 � x � 2,

44 − 8x − 4x2

12
, 2 � x � 17

7
,

4(5 − 2x)2,
17

7
� x � 5

2
.

Then a direct calculation and (3.1) give

multQ(π∗(D)) � 103

63
+ εk <

5

3
+ εk .

Now we suppose that T ′
Q = �′ + Z ′, where �′ is a line, and Z ′ is an irreducible conic.

Denote by �̂ and Ẑ the proper transforms on Ŝ of the curves �′ and Z ′, respectively.
We get

η∗(−KS) ∼Q

1

2

(
�̂ + Ẑ + L̂

) + 3

2
Ê1 + 5

2
E2

which implies that τ(E2) � 5
2 . Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

34 − 16x + x2

6
, 2 � x � 5

2
.

In particular, we have

vol

(
η∗(−KS) − 5

2
E2

)
= 1

24
,

which implies that τ(E2) > 5
2 . Observe that the divisor �̂ + 2Ẑ + L̂ is nef and

(
�̂ + 2Ẑ + L̂

) · (η∗(−KS) − x E2) = 9 − 3x,

which implies that τ(E2) � 3. Thus, using (3.1) and Lemma 2.12, we get

multQ(π∗(D)) � 1

3

∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk

= 1

3

∫ 5/2

0
vol(η∗(−KS) − x E2) dx

+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk
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= 709

432
+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk

� 709

432
+ τ(E2) − 5/2

3
vol

(
η∗(−KS) − 5

2
E2

)
+ εk

= 709

432
+ τ(E2) − 5/2

48
+ εk � 709

432
+ 1

96
+ εk

= 89

54
+ εk <

5

3
+ εk .

To complete the proof of the lemma, we may assume that T ′
Q = �′ + M ′ + N ′, where

�′, M ′ and N ′ are lines such that Q′ ∈ M ′ ∩ N ′. Since E ′
1 is a conic passing through

Q′, we conclude that Q′ is not contained in the line �′. Note that �′ �= L ′, and the lines
�′, M ′ and N ′ do not pass through P ′.

Denote by �̂, M̂ and N̂ the proper transforms on Ŝ of the lines �′, M ′ and N ′,
respectively. We get

η∗(−KS) ∼Q

1

2

(
�̂ + M̂ + N̂ + L̂

) + 3

2
Ê1 + 5

2
E2,

which implies that τ(E2) � 5
2 . In fact, we have τ(E2) > 5

2 , because the intersection
form of the curves �̂, M̂ , N̂ , L̂ and Ê1 is not semi-negative definite. Nevertheless, we
can use Corollary 2.7 to compute

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

92 − 56x + 8x2

12
, 2 � x � 5

2
,

so that, in particular, we have

vol

(
η∗(−KS) − 5

2
E2

)
= 1

6
.

Observe that the divisor 2�̂ + M̂ + N̂ is nef and

(
2�̂ + M̂ + N̂

) · (η∗(−KS) − x E2) = 6 − 2x,

which implies that τ(E2) � 3. Thus, using (3.1) and Lemma 2.13, we get

multQ(π∗(D)) � 1

3

∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk

= 1

3

∫ 5/2

0
vol(η∗(−KS) − x E2) dx

+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk
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= 89

54
+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk

� 89

54
+ 2

9

(
τ(E2) − 5

2

)
vol

(
η∗(−KS) − 5

2
E2

)
+ εk

= 89

54
+ 2

54

(
τ(E2) − 5

2

)
+ εk � 89

54
+ 1

54
+ εk = 5

3
+ εk .

The proof is complete. ��
Lemma 3.11 Suppose that TP is an irreducible cubic curve. Let C̃ be its proper trans-
form on the surface S̃. Suppose that Q /∈ C̃. Then

multQ(π∗(D)) � 5

3
+ εk .

Proof Denote by Ĉ and Ê1 the proper transforms on Ŝ of the curves C̃ and E1,
respectively. Then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 2E2.

Thus, using Corollary 2.8, we get vol(η∗(−KS) − x E2) = 3 − x2
2 provided that

0 � x � 2.
Recall that ν : S̃ → S′ is the contraction of the curve C̃ . Let E ′ = ν(E1). Then E ′

1
is an irreducible cubic curve that is singular at P ′. Thus, the curve E ′

1 is smooth at the
point Q′, so that T ′

Q �= E ′
1. One can easily check that T ′

Q does not contain P ′.
Suppose that T ′

Q is an irreducible cubic. Denote by T̂Q the proper transform of the

curve T ′
Q on the surface Ŝ. We get Ê2

1 = −2, T̂ 2
Q = −1, Ê1 · T̂Q = 1 and

η∗(−KS) ∼Q

1

2
T̂Q + 3

2
Ê1 + 5

2
E2,

which implies that τ(E2) = 5
2 . Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 12

5
,

3(5 − 2x)2,
12

5
� x � 5

2
.

Then (3.1) and direct calculations give

multQ(π∗(D)) � 49

30
+ εk <

5

3
+ εk .

Now we suppose that T ′
Q = �′ + Z ′, where �′ is a line and Z ′ is an irreducible conic.

Denote by �̂ and Ẑ the proper transforms on Ŝ of the curves �′
Q and Z ′, respectively.
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We get

η∗(−KS) ∼Q

1

2
(�̂ + Ẑ) + 3

2
Ê1 + 5

2
E2.

Since the intersection form of the curves �̂, Ẑ and Ê1 is semi-negative definite, we
conclude that τ(E2) = 5

2 . Using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

5 − 2x, 2 � x � 5

2
.

Hence, using (3.1), we see that

multQ(π∗(D)) � 59

36
+ εk <

5

3
+ εk .

To complete the proof, we may assume that T ′
Q = �′ + M ′ + N ′, where �′, M ′ and N ′

are lines such that Q′ ∈ M ′ ∩ N ′. Denote by �̂, M̂ and N̂ the proper transforms on Ŝ
of the lines �′, M ′ and N ′, respectively. If Q′ is contained in the line �′, then

η∗(−KS) ∼Q

1

2

(
�̂ + M̂ + N̂

) + 3

2
Ê1 + 3E2,

and the intersection form of the curves �̂, M̂ , N̂ and Ê1 is negative definite, which
implies that τ(E2) = 3. In this case, Corollary 2.7 gives

vol(η∗(−KS) − x E2) =
⎧⎨
⎩ 3 − x2

2
, 0 � x � 2,

(3 − x)2, 2 � x � 3,

which implies the required inequality by (3.1).
To complete the proof, we may assume that Q′ is not contained in �′. Then the

intersection form of the curves �̂, M̂ , N̂ and Ê1 is not semi-negative definite. Since

η∗(−KS) ∼Q

1

2

(
�̂ + M̂ + N̂

) + 3

2
Ê1 + 5

2
E2,

we conclude that τ(E2) > 5
2 . Moreover, using Corollary 2.7, we get

vol(η∗(−KS) − x E2) =

⎧⎪⎨
⎪⎩
3 − x2

2
, 0 � x � 2,

x2 − 8x + 14

2
, 2 � x � 5

2
.
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In particular, we have

vol

(
η∗(−KS) − 5

2
E2

)
= 1

8
.

Observe that the divisor 2�̂ + M̂ + N̂ is nef and

(
2�̂ + M̂ + N̂

) · (η∗(−KS) − x E2) = 6 − 2x,

which implies that τ(E2) � 3. Thus, using (3.1) and Lemma 2.12, we get

multQ(π∗(D)) � 1

3

∫ τ(E2)

0
vol(η∗(−KS) − x E2) dx + εk

= 1

3

∫ 5/2

0
vol(η∗(−KS) − x E2) dx

+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk

= 79

48
+ 1

3

∫ τ(E2)

5/2
vol(η∗(−KS) − x E2) dx + εk

� 79

48
+ τ(E2) − 5/2

3
vol

(
η∗(−KS) − 5

2
E2

)
+ εk

= 79

48
+ τ(E2) − 5/2

24
+ εk � 79

48
+ 1

48
+ εk = 5

3
+ εk .

This completes the proof of the lemma. ��

Using Corollary 2.6 and Lemmas 3.2–3.11, we immediately get

Corollary 3.12 We have δ(S) � 18
17 .

4 Proof of themain result

In this section, we prove Theorem 1.4. Let S be a smooth cubic surface. We have to
prove that δ(S) � 6

5 . Fix a positive rational number λ < 6
5 . Let D be a k-basis type

divisor. To prove Theorem 1.4, it is enough to show that, the log pair (S, λD) is log
canonical for k 	 1. Suppose that this is not the case. Then there exists a point P ∈ S
such that (S, λD) is not log canonical at P for k 	 1. Let us seek for a contradiction
using results obtained in Sect. 3.

Let π : S̃ → S be the blow-up of the point P , and let E1 be the exceptional divisor
of the blow-up π . Denote by D̃ the proper transform of D via π . Then

KS̃ + λD̃ + (λmultP (D) − 1)E1 ∼Q π∗(KS + λD).
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By Corollary 2.5, the log pair (S̃, λD̃ + (λmultP (D) − 1)E1) is not log canonical at
some point Q ∈ E1. Thus, using Lemma 2.2, we see that

multQ(π∗(D)) = multP (D) + multQ(D̃) >
2

λ
>

5

3
. (4.1)

Let σ : Ŝ → S̃ be the blow-up of the point Q, and let E2 be the exceptional curve of σ .
Denote by D̂ and Ê1 the proper transforms on Ŝ of the divisors D̃ and E1, respectively.
By Corollary 2.5, the log pair

(
Ŝ, λD̂ + (λmultP (D) − 1)Ê1 + (λmultP (D) + λmultQ(D̃) − 2)E2

)
is not log canonical at some point O ∈ E2.

Let TP be the hyperplane section of the surface S that is singular at P . Then TP

must be reducible. This follows from (4.1) and Lemmas 3.7 and 3.11.
Denote by T̃P the proper transform of the curve TP on the surface S̃. Then Q ∈ T̃P .

This follows from (4.1) and Lemmas 3.9 and 3.10.
In the remaining part of this section, we will deal with the following four cases:

1. TP is a union of three lines passing through P;
2. TP is a union of three lines and only two of them pass through P;
3. TP is a union of a line and a conic that intersect transversally at P;
4. TP is a union of a line and a conic that intersect tangentially at P .

We will treat each of them in a separate subsection. We start with

4.1 Case 1

We have TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing through the
point P . We write

λD = a1L1 + a2L2 + a3L3 + �,

where a1, a2 and a3 are non-negative rational numbers, and� is an effectiveQ-divisor
whose support does not contain L1, L2 or L3. Then

L1 ·� = λ + a1 − a2 − a3. (4.2)

Denote by L̃1, L̃2 and L̃3 the proper transforms on S̃ of the lines L1, L2 and L3,
respectively.Weknow that Q ∈ L̃1∪L̃2∪L̃3, so thatwemay assume that Q = L̃1∩E1.
Let �̃ be the proper transform of the divisor� on the surface S̃, and letm = multP (�).
Then the log pair

(
S̃, a1 L̃1 + �̃ + (a1 + a2 + a3 + m − 1)E1

)
is not log canonical at the point Q.
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By Lemma 3.1, we have

a1 �
(
5

9
+ εk

)
λ < 1, (4.3)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus,
applying Corollary 2.4, we see that

L1 ·� + a1 + a2 + a3 − 1 = L̃1 · (
�̃ + (a1 + a2 + a3 + m − 1)E1

)
> 1,

which gives L1 ·� > 2 − a1 − a2 − a3. Combining this with (4.2), we get

a1 >
2 − λ

2
. (4.4)

Let m̃ = multQ(�̃). Then by Lemma 3.2, we have

2a1 + a2 + a3 + m + m̃ �
(
17

9
+ εk

)
λ, (4.5)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Then
using (4.4) and m � m̃, we deduce that

m̃ <

(
13

9
+ εk

2

)
λ − 1 < 1. (4.6)

Denote by L̂1 and �̂ the proper transforms on Ŝ of the divisors L̃1 and �̃, respectively.
Then the log pair

(
Ŝ, a1 L̂1 + �̂ + (a1 + a2 + a3 + m − 1)Ê1 + (2a1 + a2 + a3 + m + m̃ − 2)E2

)
is not log canonical at the point O .

We claim that O ∈ L̂1 ∪ Ê1. Indeed, we have (2a1 + a2 + a3 + m + m̃ − 2) < 1
by (4.5). Thus, if O /∈ L̂1 ∪ Ê1, then Corollary 2.4 gives

m̃ = �̂ ·E2 � (�̂ ·E2)O > 1,

which is impossible by (4.6). Thus, we have O ∈ L̂1 ∪ Ê1.
If O ∈ Ê1, then the log pair

(
Ŝ, �̂ + (a1 + a2 + a3 + m − 1)Ê1 + (2a1 + a2 + a3 + m + m̃ − 2)E2

)
is not log canonical at the point O . Then Corollary 2.4 gives a1+a2+a3+m +m̃ > 2,
so that (4.4) and (4.5) give

(
17

9
+ εk

)
λ � 2a1 + a2 + a3 + m + m̃ > 2 + a1 > 3 − λ

2
,
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which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

Thus, we see that O ∈ L̂1. Then the log pair

(
Ŝ, a1 L̂1 + �̂ + (2a1 + a2 + a3 + m + m̃ − 2)E2

)
is not log canonical at the point O . Now, using (4.5) and (4.6), we have

multO
(
�̂ + (2a1 + a2 + a3 + m + m̃ − 2)E2

) = 2a1 + a2 + a3 + m + 2m̃ − 2

<

(
10

3
+ 3εk

2

)
λ − 3 < 1,

since λ < 6
5 and k 	 1. Thus, Lemma 2.3 gives

L1 ·� + 2a1 + a2 + a3 − 2 = L̂1 ·
(
�̂ + (2a1 + a2 + a3 + m + m̃ − 2)E2

)
> 2 − a1,

so that L1 ·� + 3a1 + a2 + a3 > 4. Using (4.2) we get λ + 4a1 > 4. Using (4.3), we
get

(
29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

4.2 Case 2

We have TP = L1 + L2 + L3, where L1, L2 and L3 are coplanar lines such that
P = L1 ∩ L2 and P /∈ L3. As in the previous case, we write

λD = a1L1 + a2L2 + �,

where a1 and a2 are non-negative rational numbers, and � is an effective Q-divisor
whose support does not contain the lines L1 and L2. Then

L1 ·� = λ + a1 − a2. (4.7)

Denote by L̃1 and L̃2 the proper transforms on S̃ of the lines L1 and L2, respectively.
We know that Q ∈ L̃1 ∪ L̃2, so that we may assume that Q = L̃1 ∩ E1. Let �̃ be the
proper transform of the divisor � on the surface S̃, and let m = multP (�). Then the
log pair

(
S̃, a1 L̃1 + �̃ + (a1 + a2 + a3 + m − 1)E1

)
is not log canonical at the point Q.
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By Lemma 3.1, we have

a1 �
(
5

9
+ εk

)
λ < 1, (4.8)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus, using
Corollary 2.4, we obtain L1 ·� > 2 − a1 − a2. Then, using (4.7), we deduce

a1 >
2 − λ

2
. (4.9)

Let m̃ = multQ(�̃). By Lemma 3.3, we have

2a1 + a2 + m + m̃ �
(
49

27
+ εk

)
λ, (4.10)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus,
using (4.9) and m̃ � m, we deduce

m̃ <

(
38

27
+ εk

2

)
λ − 1 < 1. (4.11)

Denote by L̂1 and �̂ the proper transforms on Ŝ of the divisors L̃1 and �̃, respectively.
Then the log pair

(
Ŝ, a1 L̂1 + �̂ + (a1 + a2 + m − 1)Ê1 + (2a1 + a2 + m + m̃ − 2)E2

)
is not log canonical at the point O . Then 2a1 + a2 + m + m̃ − 2 < 1 by (4.10). Thus,
using (4.11) and arguing as in Sect. 4.1, we see that O ∈ L̂1 ∪ Ê1.

If O ∈ Ê1, then the log pair

(
Ŝ, �̂ + (a1 + a2 + m − 1)Ê1 + (2a1 + a2 + m + m̃ − 2)E2

)
is not log canonical at the point O , so that a1 + a2 + m + m̃ > 2 by Corollary 2.4.
Hence, using (4.9) and (4.10), we get

(
49

27
+ εk

)
λ � 2a1 + a2 + m + m̃ > 2 + a1 > 3 − λ

2
,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

We see that O ∈ L̂1. Then the log pair

(
Ŝ, a1 L̂1 + �̂ + (2a1 + a2 + m + m̃ − 2)E2

)
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is not log canonical at the point O . Now, using (4.10) and (4.11), we deduce

multO
(
�̂ + (2a1 + a2 + m + m̃ − 2)E2

) = 2a1 + a2 + m + 2m̃ − 2

<

(
29

9
+ 3εk

2

)
λ − 3 < 1,

because λ < 6
5 and k 	 1. Then we may apply Lemma 2.3 to get

L1 ·� + 2a1 + a2 − 2 = L̂1 ·
(
�̂ + (2a1 + a2 + m + m̃ − 2)E2

)
> 2 − a1,

so that L1 ·� + 3a1 + a2 > 4. Using (4.7) we get λ + 4a1 > 4. Then, by (4.8), we
have (

29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

4.3 Case 3

We have TP = L + C , where L is a line and C is an irreducible conic such that they
intersect transversally at P . As in the previous cases, we write

λD = aL + bC + �,

where a and b are non-negative rational numbers, and � is an effective Q-divisor
whose support does not contain the curves L and C . Then Lemma 3.1 gives us

a �
(
5

9
+ εk

)
λ < 1, (4.12)

where εk is a small constant depending on k such that εk → 0 as k → ∞. And also,
we have

L ·� = λ + a − 2b. (4.13)

Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C , respectively. We
know that Q ∈ L̃ ∪C̃ . Moreover, using (4.1) and Lemma 3.5, we see that Q = L̃ ∩ E1.

Denote by �̃ the proper transforms on S̃ of the divisor�. Let m = multP (�). Then
the log pair

(
S̃, aL̃ + �̃ + (a + b + m − 1)E1

)
is not log canonical at Q. Since a < 1, we can apply Corollary 2.4 to this log pair
and the curve L̃ . This gives L ·� > 2 − a − b. Combining this with (4.13), we have
λ + 2a − b > 2, so that

a >
2 + b − λ

2
� 2 − λ

2
. (4.14)
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Let m̃ = multQ(�̃). Then Lemma 3.4 gives

2a + b + m + m̃ �
(
9

5
+ εk

)
λ, (4.15)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus,
using (4.14) and m̃ � m, we deduce that

m̃ <

(
7

5
+ εk

2

)
λ − 1 < 1. (4.16)

Denote by L̂ and �̂ the proper transforms on Ŝ of the divisors L̃ and �̃, respectively.
Then the log pair

(
Ŝ, aL̂ + �̂ + (a + b + m − 1)Ê1 + (2a + b + m + m̃ − 2)E2

)
is not log canonical at the point O . Note that 2a + b + m + m̃ − 2 < 1 by (4.15).
Thus, using (4.16) and arguing as in Sect. 4.1, we see that O ∈ L̂ ∪ Ê1.

If O ∈ Ê1, then the log pair

(
Ŝ, �̂ + (a + b + m − 1)Ê1 + (2a + b + m + m̃ − 2)E2

)
is not log canonical at O . Applying Corollary 2.4 again, we obtain a +b+m +m̃ > 2,
so that (4.14) and (4.15) give

(
9

5
+ εk

)
λ � 2a + b + m + m̃ > 2 + a > 3 − λ

2
,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

We see that O ∈ L̂ . Then the log pair

(
Ŝ, aL̂ + �̂ + (2a + b + m + m̃ − 2)E2

)
is not log canonical at the point O . Now using (4.15) and (4.16), we obtain

multO
(
�̂ + (2a + b + m + m̃ − 2)E2

) = 2a + b + m + 2m̃ − 2

<

(
12

5
+ 3εk

2

)
λ − 3 < 1,

because λ < 6
5 and εk → 0 as k → ∞. Thus, applying Lemma 2.3, we get

L ·� + 2a + b − 1 = L̂ ·(�̂ + (2a + b + m + m̃ − 2)E2
)

> 2 − a,
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which gives L ·� + 3a + b > 4. Using (4.13), we get λ + 4a > 4 + b � 4, so
that (4.12) implies

(
29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

4.4 Case 4

We have TP = L + C , where L is a line, and C is an irreducible conic that tangents
L at the point P . We write

λD = aL + bC + �,

where a and b are non-negative rational numbers, and � is an effective Q-divisor
whose support does not contain L and C . Let m = multP (�). Then

a + b + m > 1 (4.17)

by Lemma 2.2. Meanwhile, it follows from Lemma 3.1 that

a �
(
5

9
+ εk

)
λ < 1, (4.18)

where εk is a small constant depending on k such that εk → 0 as k → ∞. And also,
we have

L ·� = λ + a − 2b. (4.19)

Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C , respectively.
We know that Q = L̃ ∩ C̃ . Denote by �̃ the proper transforms on S̃ of the divisor �.
Then the log pair

(
S̃, aL̃ + bC̃ + �̃ + (a + b + m − 1)E1

)
is not log canonical at the point Q. Since a < 1 by (4.18), we may apply Corollary 2.4
to this log pair at Q with respect to the curve L̃ . This gives

L ·� > 2 − a − 2b.

Combining this with (4.19), we get λ + 2a > 2, so that

a >
2 − λ

2
. (4.20)
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Let m̃ = multQ(�̃). Then Lemma 3.6 gives

2a + 2b + m + m̃ = λ ·multQ(π∗(D)) �
(
17

9
+ εk

)
λ, (4.21)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus,
using (4.20) and m̃ � m, we deduce that

m̃ <

(
13

9
+ εk

2

)
λ − 1 < 1. (4.22)

Denote by L̂ , Ĉ and �̂ the proper transforms on Ŝ of the divisors L̃ , C̃ and �̃, respec-
tively. Then the log pair

(
Ŝ, aL̂ + bĈ + �̂ + (a + b + m − 1)Ê1 + (2a + 2b + m + m̃ − 2)E2

)
is not log canonical at O .Moreover, it follows from (4.21) that 2a+2b+m+m̃−2 < 1.
Thus, using (4.22) and arguing as in Sect. 4.1, we see that O ∈ L̂ ∪ Ĉ ∪ Ê1.

If O ∈ Ê1, then the log pair

(
Ŝ, �̂ + (a + b + m − 1)Ê1 + (2a + 2b + m + m̃ − 2)E2

)
is not log canonical at O . In this case, Corollary 2.4 applied to this log pair (and the
curve E2) gives a + b + m + m̃ > 2, so that (4.20) and (4.15) give

(
17

9
+ εk

)
λ � 2a + 2b + m + m̃ > 2 + a + b > 3 − λ

2
,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

If O ∈ Ĉ , then the log pair

(
Ŝ, bĈ + �̂ + (2a + 2b + m + m̃ − 2)E2

)
is not log canonical at O . In this case, if we apply Corollary 2.4 to this log pair with
respect to E2, we get b + m̃ > 1, so that (4.21) gives

2a + b + m + 1 <

(
17

9
+ εk

)
λ − 1.

Combining this with (4.17), we see that a <
( 17
9 + εk

)
λ − 2, so that (4.20) gives

(
43

18
+ εk

)
λ > 3,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.
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We see that O ∈ L̂ . Then the log pair

(
Ŝ, aL̂ + �̂ + (2a + 2b + m + m̃ − 2)E2

)
is not log canonical at the point O . Now using (4.21), (4.22) and λ < 6

5 , we deduce
that

multO
(
�̂ + (2a + 2b + m + m̃ − 2)E2

) = 2a + 2b + m + 2m̃ − 2

<

(
10

3
+ 3εk

2

)
λ − 3 < 1,

since λ < 6
5 and k → ∞. Then we may apply Lemma 2.3 to get

L ·� + 2a + 2b − 2 = L̂ ·(�̂ + (2a + 2b + m + m̃ − 2)E2
)

> 2 − a,

which gives L ·�+ 3a + 2b > 4. Using (4.19), we see that λ+ 4a > 4, so that (4.18)
gives

(
29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5 and εk → 0 as k → ∞.

The proof of Theorem 1.4 is complete.
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