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1 Introduction

The multiplicity of a nonzero polynomial f ∈ C[z1, . . . , zn] at a point P ∈ C
n can be

defined by derivatives. Indeed, the multiplicity of f at the point P is the nonnegative
integer

multP (f ) = min

{
m

∣∣∣ ∂mf

∂m1z1∂m2z2 · · · ∂mnzn

(P ) �= 0

}
.

On the other hand, we have a similar invariant that is defined by integrations. This
invariant, which is called the complex singularity exponent of f at the point P , is
given by

cP (f ) = sup
{
c

∣∣∣ |f |−c is locally L2 near the point P ∈ C
n
}

.

In algebraic geometry this invariant is usually called a log canonical threshold. Let X

be a variety with at most log canonical singularities, let Z ⊆ X be a closed subvariety,
and let D be an effective Q-Cartier Q-divisor on the variety X. Then the number

lctZ
(
X,D

) = sup
{
λ ∈ Q

∣∣∣ the log pair
(
X,λD

)
is log canonical along Z

}

is called a log canonical threshold of D along Z. For simplicity, we put lct(X,D) =
lctX(X,D). It follows from [13] that

lctP
(
C

n,
(
f = 0

)) = cP

(
f

)
.

Now we suppose that X is a Fano variety with at most log terminal singularities.

Definition 1.1 The global log canonical threshold of the Fano variety X is the num-
ber

lct
(
X

) = inf
{

lct
(
X,D

) ∣∣∣ D is an effective Q-divisor on X with D ∼Q −KX

}
.

The number lct(X) is an algebraic counterpart of the α-invariant of Tian (see [5, 22]).

Example 1.2 ([5]) Suppose that P(a0, a1, . . . , an) is a well-formed (see [11, Defini-
tion 5.11]) weighted projective space with a0 � a1 � · · · � an. Then lct(P(a0, a1, . . . ,

an)) = a0∑n
i=0 ai

.

Example 1.3 Let X be a general quasismooth well-formed (see [11, Definitions 6.3
and 6.9]) hypersurface in P(1, a1, a2, a3, a4) of degree

∑4
i=1 ai with at most terminal

singularities, where a1 � · · · � a4. Then lct(X) = 1 if −K3
X � 1 by [3].

So far we have not seen any single variety whose global log canonical thresh-
old is irrational. In general, it is unknown whether global log canonical thresholds
are rational numbers or not (cf. [24, Question 1]). Even for del Pezzo surfaces with
log terminal singularities the rationality of their global log canonical thresholds is
unknown. However, we expect more than this as follows:
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Conjecture 1.4 There is an effective Q-divisor D on the variety X such that it is
Q-linearly equivalent to −KX and lct(X) = lct(X,D).

The following definition is due to [21] (cf. [17, 19]).

Definition 1.5 The Fano variety X is exceptional (resp. weakly exceptional, strongly
exceptional) if for every effective Q-divisor D on the variety X such that D ∼Q −KX

and the pair (X,D) is log terminal (resp. lct(X) � 1, lct(X) > 1).

It is easy to see the implications

strongly exceptional =⇒ exceptional =⇒ weakly exceptional.

However, if Conjecture 1.4 holds for X, then we see that X is exceptional if and
only if X is strongly exceptional. Exceptional del Pezzo surfaces, which are called
del Pezzo surfaces without tigers in [14], lie in finitely many families (see [19, 21]).
We expect that strongly exceptional Fano varieties enjoy very interesting geometrical
properties (cf. [20, Theorem 3.3]).

The main motivation for this paper is that the global log canonical threshold turns
out to play important roles both in birational geometry and in complex geometry.
We have two significant applications of the global log canonical threshold of a Fano
variety X. The first one is for the case when lct(X) � 1. This inequality has seri-
ous applications to rationality problems for Fano varieties in birational geometry.
The other is for the case when lct(X) >

dim(X)
1+dim(X)

. This has important applications to
Kähler-Einstein metrics on Fano varieties in complex geometry.

For a simple application of the first inequality, we can mention the following.

Example 1.6 ([3]) Let Xi be a threefold satisfying hypotheses of Example 1.3 with
lct(Xi) = 1 for each i = 1, . . . , r . Then the variety X1 × · · · × Xr is non-rational and

Bir
(
X1 × . . . × Xr

)
=

〈 r∏
i=1

Bir(Xi), Aut
(
X1 × · · · × Xr

)〉
.

The following result that gives strong connection between global log canonical
thresholds and Kähler-Einstein metrics was proved in [8, 18, 22] (see [5, Appen-
dix A]).

Theorem 1.7 Suppose that X is a Fano variety with at most quotient singularities.
Then it admits an orbifold Kähler-Einstein metric if

lct
(
X

)
>

dim(X)

dim(X) + 1
.

There are many known obstructions for the existence of orbifold Kähler-Einstein
metrics on Fano varieties with quotient singularities (see [9, 25]).
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Example 1.8 ([10]) Let X be a quasismooth hypersurface in P(a0, . . . , an) of degree
d <

∑n
i=0 ai , where a0 � · · · � an. Suppose that X is well-formed and has a Kähler-

Einstein metric. Then
∑n

i=0 ai � d + na0.

The problem of existence of Kähler-Einstein metrics on smooth del Pezzo surfaces
is completely solved by [23] as follows:

Theorem 1.9 If X is a smooth del Pezzo surface, then the following conditions are
equivalent:

• the automorphism group Aut(X) is reductive;
• the surface X admits a Kähler-Einstein metric;
• the surface X is not a blow up of P

2 at one or two points.

Let Xd be a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) of de-
gree d , where a0 � a1 � a2 � a3. Then the hypersurface Xd is given by a quasihomo-
geneous polynomial equation f (x, y, z, t) = 0 of degree d . The quasihomogeneous
equation

f
(
x, y, z, t

) = 0 ⊂ C
4 ∼= Spec

(
C

[
x, y, z, t

])
,

defines an isolated quasihomogeneous singularity (V ,O) with the Milnor number∏n
i=0(

d
ai

− 1), where O is the origin of C
4. It is well-known (see [13]) that the

following conditions are equivalent:

• the inequality d �
∑3

i=0 ai − 1 holds;
• the surface Xd is a del Pezzo surface;
• the singularity (V ,O) is rational;
• the singularity (V ,O) is canonical.

Blowing up C
4 at the origin O with weights (a0, a1, a2, a3), we get a purely log

terminal blow up of the singularity (V ,O) (see [19]). It follows from [19, Proposi-
tion 4.5.5] that the following conditions are equivalent:

• the surface Xd is exceptional (weakly exceptional, respectively);
• the singularity (V ,O) is exceptional1 (weakly exceptional, respectively).

From now on we suppose that d �
∑3

i=0 ai − 1. Then Xd is a del Pezzo surface.
Put I = ∑3

i=0 ai − d . In the case I = 1 the set of possible values of (a0, a1, a2, a3, d)

is found in [12]. The global log canonical thresholds of such del Pezzo surfaces have
been considered either implicitly or explicitly in [1, 4, 8, 12]. For example, the pa-
pers [1, 8] and [12] give us lower bounds for global log canonical thresholds of sin-
gular del Pezzo surfaces with I = 1. Meanwhile, all possible values of the global
log canonical thresholds of smooth del Pezzo surfaces are found in the paper [4].
However, for singular del Pezzo surfaces, the exact values of global log canonical
thresholds have not been considered seriously.

A singular del Pezzo hypersurface Xd ⊂ P(a0, a1, a2, a3) must satisfy exclusively
one of the following properties:

1For notions of exceptional and weakly exceptional singularities see [21] and [19].
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(1) 2I � 3a0.
(2) 2I < 3a0 and (a0, a1, a2, a3, d) = (I − k, I + k, a, a + k,2a + k + I ) for some

non-negative integer k < I and some positive integer a � I + k.
(3) 2I < 3a0 but (a0, a1, a2, a3, d) �= (I − k, I + k, a, a + k,2a + k + I ) for some

non-negative integer k < I and some positive integer a � I + k.

For the first two cases one can check that lct(Xd) � 2
3 (see [2, 6]). All the values

of (a0, a1, a2, a3, d) such that the hypersurface Xd is singular and satisfies the last
condition are listed in Sect. 6. These values are found in [2] and [6]. The completeness
of this list is proved in [6] by using [26].

We already know the global log canonical thresholds of smooth del Pezzo sur-
faces (see [4]). For del Pezzo surfaces satisfying one of the first two conditions, their
global log canonical thresholds are relatively too small to enjoy the condition of The-
orem 1.7. However, the global log canonical thresholds of del Pezzo surfaces satisfy-
ing the last condition have not been investigated sufficiently. In the present paper we
compute all of them and obtain the following result.

Theorem 1.10 Let Xd be a singular quasismooth well-formed del Pezzo surface in
the weighted projective space Proj(C[x, y, z, t]) with weights wt(x) = a0 � wt(y) =
a1 � wt(z) = a2 � wt(t) = a3 such that 2I < 3a0 but (a0, a1, a2, a3, d) �= (I −k, I +
k, a, a +k,2a +k + I ) for some non-negative integer k < I and some positive integer
a � I + k, where I = ∑3

i=0 ai − d . Then if a0 �= a1, then

lct(Xd) = min

{
lct

(
Xd,

I

a0
Cx

)
, lct

(
Xd,

I

a1
Cy

)
, lct

(
Xd,

I

a2
Cz

)}
,

where Cx (resp. Cy , Cz) is the divisor on Xd defined by x = 0 (resp. y = 0, z = 0). If
a0 = a1, then

lct(Xd) = lct
(
Xd,

I

a0
C

)
,

where C is a reducible divisor in |OXd
(a0)|.

In particular, we obtain the value of lct(Xd) for every del Pezzo surface Xd listed
in Sect. 6. As a result, we obtain the following corollaries.

Corollary 1.11 The following assertions are equivalent:

• the surface Xd is exceptional;
• lct(Xd) > 1;
• the quintuple (a0, a1, a2, a3, d) lies in the set

{(2,3,5,9,18), (3,3,5,5,15), (3,5,7,11,25), (3,5,7,14,28),

(3,5,11,18,36), (5,14,17,21,56), (5,19,27,31,81), (5,19,27,50,100),

(7,11,27,37,81), (7,11,27,44,88), (9,15,17,20,60), (9,15,23,23,69),

(11,29,39,49,127), (11,49,69,128,256), (13,23,35,57,127),
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(13,35,81,128,256), (3,4,5,10,20), (3,4,10,15,30), (5,13,19,22,57),

(5,13,19,35,70), (6,9,10,13,36), (7,8,19,25,57), (7,8,19,32,64),

(9,12,13,16,48), (9,12,19,19,57), (9,19,24,31,81), (10,19,35,43,105),

(11,21,28,47,105), (11,25,32,41,107), (11,25,34,43,111),

(11,43,61,113,226), (13,18,45,61,135), (13,20,29,47,107),

(13,20,31,49,111), (13,31,71,113,226), (14,17,29,41,99),

(5,7,11,13,33), (5,7,11,20,40), (11,21,29,37,95), (11,37,53,98,196),

(13,17,27,41,95), (13,27,61,98,196), (15,19,43,74,148),

(9,11,12,17,45), (10,13,25,31,75), (11,17,20,27,71), (11,17,24,31,79),

(11,31,45,83,166), (13,14,19,29,71), (13,14,23,33,79),

(13,23,51,83,166), (11,13,19,25,63), (11,25,37,68,136),

(13,19,41,68,136), (11,19,29,53,106), (13,15,31,53,106),

(11,13,21,38,76)}.

Corollary 1.12 The following assertions are equivalent:

• the surface Xd is weakly exceptional and not exceptional;
• lct(Xd) = 1;
• one of the following holds

– the quintuple (a0, a1, a2, a3, d) lies in the set

{(2,2n + 1,2n + 1,4n + 1,8n + 4),

(3,3n,3n + 1,3n + 1,9n + 3), (3,3n + 1,3n + 2,3n + 2,9n + 6),

(3,3n + 1,3n + 2,6n + 1,12n + 5), (3,3n + 1,6n + 1,9n,18n + 3),

(3,3n + 1,6n + 1,9n + 3,18n + 6), (4,2n + 1,4n + 2,6n + 1,12n + 6),

(4,2n + 3,2n + 3,4n + 4,8n + 12), (6,6n + 3,6n + 5,6n + 5,18n + 15),

(6,6n + 5,12n + 8,18n + 9,36n + 24),

(6,6n + 5,12n + 8,18n + 15,36n + 30),

(8,4n + 5,4n + 7,4n + 9,12n + 23),

(9,3n + 8,3n + 11,6n + 13,12n + 35), (1,3,5,8,16), (2,3,4,7,14),

(5,6,8,9,24), (5,6,8,15,30)}.
where n is a positive integer,

– (a0, a1, a2, a3, d) = (1,1,2,3,6) and the pencil | − KX| does not have cuspidal
curves,

– (a0, a1, a2, a3, d) = (1,2,3,5,10) and Cx = {x = 0} has an ordinary double
point,
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– (a0, a1, a2, a3, d) = (1,3,5,7,15) and the defining equation of X contains yzt ,
– (a0, a1, a2, a3, d) = (2,3,4,5,12) and the defining equation of X contains yzt .

Corollary 1.13 In the notation and assumptions of Theorem 1.10, the surface
Xd has an orbifold Kähler-Einstein metric with the following possible excep-
tions: X45 ⊂ P(7,10,15,19), X81 ⊂ P(7,18,27,37), X64 ⊂ P(7,15,19,32), X82 ⊂
P(7,19,25,41), X117 ⊂ P(7,26,39,55), X15 ⊂ P(1,3,5,7) whose defining equa-
tion does not contain yzt , and X12 ⊂ P(2,3,4,5) whose defining equation does not
contain yzt .

Corollary 1.11 illustrates the fact that exceptional del Pezzo surfaces lie in fi-
nitely many families (see [19, 21]). On the other hand, Corollary 1.11 shows that
weakly-exceptional del Pezzo surfaces do not enjoy this property. Note also that
Corollary 1.11 follows from [15].

The plan of the paper is as follows. In Sect. 2 we recall the necessary background
on the surfaces with quotient singularities. In Sect. 3 we briefly explain the pattern
that is used to compute the global log-canonical thresholds of the surfaces Xd ap-
pearing in Theorem 1.10. In Sect. 4 we provide details of these computations for a
sample of infinite series of such surfaces, and in Sect. 5 we do the same for a sam-
ple of sporadic cases, referring the reader to [7] and [6] for detailed computations in
the remaining cases. In Sect. 6 we present the exact values of global log-canonical
thresholds for the surfaces Xd appearing in Theorem 1.10.

2 Preliminaries

Let X be a surface with at most quotient singularities, i.e., a two-dimensional orb-
ifold, let D be an effective Q-divisor on X, and let P ∈ X be a point that is a singu-
larity of type 1

r
(a, b). Then there is an orbifold chart π : Ũ → U for some neighbor-

hood P ∈ U ⊂ X such that Ũ is smooth, and π is a cyclic cover of degree r that is
unramified over U \ P . Put DU = D|U and D

Ũ
= π−1(DU). Let P̃ ∈ Ũ be a point

such that π(P̃ ) = P . Note that P is smooth if r = 1.

Lemma 2.1 The log pair (U,DU) is log canonical at P if and only if (Ũ ,D
Ũ

) is log

canonical at P̃ .

Proof See [13]. �

We put multP (D) = mult
P̃
(D

Ũ
), and refer to this quantity as the multiplicity of D

at P . Let B be another effective Q-divisor on X. Put BU = B|U and B
Ũ

= π−1(BU).
Put

multP
(
D · B

)
= mult

P̃

(
D

Ũ
· B

Ũ

)

in the case when no component of B is contained in Supp(D). For every point Q ∈ X,
let rQ ∈ Z�1 such that Q is a singular point of type 1

rQ
(aQ,bQ).
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Lemma 2.2 Suppose that no component of B is contained in Supp(D). Then

B · D =
∑
Q∈X

multQ(D · B)

rQ
�

∑
Q∈X

multQ(D)multQ(B)

rQ
� 0.

Proof This is an orbifold version of the usual Bezout theorem. �

Suppose that (X,D) is not log canonical at P .

Lemma 2.3 The inequality multP (D) > 1 holds.

Proof The inequality multP (D) > 1 follows from Lemma 2.1. �

Let C be a reduced irreducible curve on the surface X. Suppose that P ∈ C \
Sing(C). Put

D = mC + �,

where m ∈ Q such that m � 0, and � is an effective Q-divisor such that C �⊆
Supp(�).

Lemma 2.4 Suppose that m � 1. Then multP (C · �) > 1.

Proof Applying Lemma 2.1 and [5, Lemma 2.20], we get multP (C · �) > 1. �

Lemma 2.5 Suppose that m � 1. Then C · � > 1/r and r(C · D − mC2) > 1.

Proof The inequality C · � > 1/r follows from Lemmas 2.2 and 2.4. Then

1

r
< � · C = C · (D − mC),

which gives r(C · D − mC2) > 1. �

Suppose that B ∼Q D, and (X,B) is log canonical at P .

Lemma 2.6 There is an effective Q-divisor D′ on X such that D′ ∼Q B , at least one
irreducible component of B is not contained in the support of D′, and (X,D′) is not
log canonical at the point P .

Proof See [5, Remark 2.22]. �

Suppose, in addition, that X is a quasismooth well-formed hypersurface in P =
P(a0, a1, a2, a3) of degree d , and suppose that D ∼Q OP(I )|X for some I ∈ Z�1.

Lemma 2.7 Let k be a positive integer. Suppose that H 0(P, OP(k)) contains

• at least two different monomials of the form xαyβ ,
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• at least two different monomials of the form xγ zδ ,

suppose that X is smooth at P , and suppose that P �∈ Cx . Then

multP
(
D

)
� Ikd

a0a1a2a3

if either H 0(P, OP(k)) contains at least two different monomials of the form xμtν

or the point P is not contained in a curve contracted by the projection ψ : X ���
P(a0, a1, a2). Here, α, β , γ , δ, μ, and ν are non-negative integers.

Proof The first case follows from [1, Lemma 3.3]. Arguing as in the proof of
[1, Corollary 3.4], we can also obtain the second case. �

Note that most of results of this section remain valid in much more general situa-
tions.

3 The Scheme of the Proof

We reserve the following notation that will be used throughout the paper:

• P(a0, a1, a2, a3) denotes the well-formed weighted projective space Proj(C[x, y,

z, t]) with weights wt(x) = a0, wt(y) = a1, wt(z) = a2, wt(t) = a3, where we
always assume the inequalities a0 � a1 � a2 � a3. We may use simply P instead
of P(a0, a1, a2, a3) when this does not lead to confusion.

• X denotes a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) (see
Definitions 6.3 and 6.9 in [11], respectively).

• Ox is the point in P(a0, a1, a2, a3) defined by y = z = t = 0. The points Oy , Oz,
and Ot are defined in a similar way.

• Cx is the curve on X cut by the equation x = 0. The curves Cy , Cz, and Ct are
defined in a similar way.

• Lxy is the one-dimensional stratum on P(a0, a1, a2, a3) defined by x = y = 0 and
the other one-dimensional strata are labeled similarly.

• Let D be a divisor on X and P ∈ X. Choose an orbifold chart π : Ũ → U for some
neighborhood P ∈ U ⊂ X. We put multP (D) = multQ(π∗D), where Q is a point
on Ũ with π(Q) = P , and refer to this quantity as the multiplicity of D at P .

We have 83 families2 of del Pezzo hypersurfaces in Sect. 6. Our computations to
evaluate the global log canonical thresholds of these families are too huge. Moreover,
these computations are based on the same methods. In the present section we explain
the methods to compute the global log canonical thresholds of the del Pezzo hyper-
surfaces in Sect. 6. In the following sections, we show how to apply the methods to
several families of del Pezzo hypersurfaces. These methods work for all the fami-
lies of the del Pezzo hypersurfaces in Sect. 6. For details the reader is referred to [7]

2By family we mean either a one-parameter series (which actually gives rise to an infinite number of
deformation families) or a sporadic case. We hope that this would not lead to confusion.
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where 82 families have been dealt with, and to [6], where one infinite series has been
treated.

Let X ⊂ P(a0, a1, a2, a3) be a del Pezzo surface of degree d in one of the 83
families. Set I = a0 + a1 + a2 + a3 − d . There are two exceptional cases where
a0 = a1. The method for these two cases is a bit different from the other cases. Both
cases will be individually dealt with (Lemmas 4.1 and 5.1).

If a0 �= a1, then we will take steps as follows:

Step 1. Using Lemma 2.1, we compute the log canonical thresholds lct(X, I
a0

Cx),

lct(X, I
a1

Cy), lct(X, I
a2

Cz), and lct(X, I
a3

Ct). Set

λ = min

{
lct

(
X,

I

a0
Cx

)
, lct

(
X,

I

a1
Cy

)
, lct

(
X,

I

a2
Cz

)
, lct

(
X,

I

a3
Ct

)}
.

Then the global log canonical threshold lct(X) is at most λ. In fact, the result of this
article shows that λ can be attained by the minimum of the first three log canonical
thresholds.

Step 2. We claim that the global log canonical threshold lct(X) is equal to λ. To
prove this assertion, we suppose lct(X) < λ. Then there is an effective Q-divisor D

equivalent to the anticanonical divisor −KX of X such that the log pair (X,λD) is
not log canonical at some point P ∈ X. In particular, we obtain multP (λD) > 1 by
Lemma 2.3.

Step 3. We show that the point P cannot be a singular point of X using the following
methods.

Method 3.1 (Multiplicity) We may assume that a suitable irreducible component C

of Cx , Cy , Cz, and Ct is not contained in the support of the divisor D. We derive a
possible contradiction from the inequality

C · D � multP (C) · multP (D)

r
>

multP (C)

rλ
,

where r is the index of the quotient singular point P . The last inequality follows from
the assumption that (X,λD) is not log canonical at P . This method can be applied to
exclude a smooth point.

Method 3.2 (Inversion of Adjunction) We consider a suitable irreducible curve C

smooth at P . We then write D = μC + �, where � is an effective Q-divisor whose
support does not contain C. We check that λμ � 1. If so, then the log pair (X,C +
λ�) is not log canonical at the point P either. By Lemma 2.5 we have

λ(D − μC) · C = λC · � >
1

r
.

We try to derive a contradiction from this inequality. The curve C is taken usually
from an irreducible component of Cx , Cy , Cz, or Ct . This method can be applied to
exclude a smooth point.
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Method 3.3 (Weighted Blow Up) Sometimes we cannot exclude a singular point P

only with the previous two methods. In such a case, we take a suitable weighted blow
up π : Y → X at the point P . We can write

KY + DY ∼Q π∗(KX + λD),

where DY is the log pull-back of λD by π . Using Method 3.1 we obtain that DY is
effective. Then we apply the previous two methods to the pair (Y,DY ), or repeat this
method until we get a contradictory inequality.

Step 4. We show that the point P cannot be a smooth point of X. To do so, we first
apply Lemma 2.7. However, this method does not always work. If the method fails,
then we try to find a suitable pencil L on X. The pencil has a member F which passes
through the point P . We show that the pair (X,λF) is log canonical at the point P .
Then, we may assume that the support of D does not contain at least one irreducible
component of F . If the divisor D itself is irreducible, then we use Method 3.1 to
exclude the point P . If F is reducible, then we use Method 3.2.

4 Infinite Series

Lemma 4.1 Let X be a quasismooth hypersurface of degree 12 in P(3,3,4,4). Then
lct(X) = 1.

Proof The surface X can be defined by the quasihomogeneous equation

4∏
i=1

(αix + βiy) =
3∏

j=1

(γj z + δj t),

where [αi : βi] define four distinct points and [γj : δj ] define three distinct points
in P

1.
Let Pi be the point in X given by z = t = αix +βiy = 0. These are singular points

of X of type 1
3 (1,1). Let Qj be the point in X that is given by x = y = γj z+ δj t = 0.

Then each of them is a singular point of X of type 1
4 (1,1).

Let Lij be the curve in X defined by αix+βiy = γj z+δj t = 0, where i = 1, . . . ,4
and j = 1, . . . ,3.

The divisor Ci cut by the equation αix + βiy = 0 consists of three smooth curves
Li1, Li2, Li3. These divisors Ci , i = 1,2,3,4, are the only reducible members in
the linear system |OX(3)|. Meanwhile, the divisor Bj cut by γj z + δj t = 0 consists
of four smooth curves L1j , L2j , L3j , L4j . Note that Li1 ∩ Li2 ∩ Li3 = {Pi} and
L1j ∩ L2j ∩ L3j ∩ L4j = {Qj }. We have Lij · Lik = 1

3 and Lji · Lki = 1
4 if k �= j .

But L2
ij = − 5

12 .

Since lct(X, 2
3Ci) = lct(X, 2

4Bj ) = 1, we have lct(X) � 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such

that the pair (X,D) is not log canonical at some point P . For every i = 1, . . . ,4,
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we may assume that the support of the divisor D does not contain at least one curve
among Li1,Li2,Li3. Suppose Lik �⊂ Supp (D). Then the inequality

multPi
(D) � 3D · Lik = 1

2

implies that none of the points Pi can be the point P . For every j = 1,2,3, we may
also assume that the support of the divisor D does not contain at least one curve
among L1j ,L2j ,L3j ,L4j . Suppose Llj �⊂ Supp (D). Then the inequality

multQj
(D) � 4D · Lik = 2

3

implies that none of the points Qj can be the point P . Therefore, the point must be a
smooth point of X.

Write D = μLij + �, where � is an effective Q-divisor whose support does not
contain Lij . If μ > 0, then we have μLij · Lik � D · Lik , and hence μ � 1

2 . Since

� · Lij = 2 + 5μ

12
< 1,

Lemma 2.4 implies the point P cannot be on the curve Lij . Consequently, P �∈⋃4
i=1

⋃3
j=1 Lij .

There is a unique curve C ⊂ X cut out by λx+μy = 0, where [λ : μ] ∈ P
1, passing

through the point P . Then the curve C is irreducible and quasismooth. Thus, we may
assume that C is not contained in the support of D. Then

1 < multP (D) � D · C = 1

2
.

This is a contradiction. �

Lemma 4.2 Let X be a quasismooth hypersurface of degree 9n + 3 in P(3,3n,3n +
1,3n + 1) for n � 2. Then lct(X) = 1.

Proof We may assume that the surface X is defined by the equation

xy(y − axn)(y − bxn) + zt (z − ct) = 0,

where a, b, c are non-zero constants and b �= c. The point Oy is a singular point
of index 3n on X. The three points Ox , Pa = [1 : a : 0 : 0], Pb = [1 : b : 0 : 0] are
singular points of index 3 on X. Also, X has three singular points Oz, Ot , Pc = [0 :
0 : c : 1] of index 3n + 1 on Lxy .

The curve Cx consists of three irreducible components Lxz, Lxt , and Lc = {x =
z − ct = 0}. These three components intersect each other at Oy . It is easy to check
that lct(X, 2

3Cx) = 1. Thus, lct(X) � 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such

that the log pair (X,D) is not log canonical at some point P ∈ X.
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By Lemma 2.6 we may assume that at least one of the components of Cx is not
contained in Supp (D). Then, the inequality

3nLxz · D = 3nLxt · D = 3nLc · D = 2

3n + 1
< 1

implies that the point P cannot be the point Oy .
Put D = μLxz + �, where � is an effective Q-divisor whose support does not

contain the curve Lxz. We claim that μ � 2
3n+1 . Indeed, if the inequality fails, one of

the curves Lxt and Lc is not contained in Supp (D). Then either

μ

3n
= μLxz · Lxt � D · Lxt = 2

3n(3n + 1)
, or

μ

3n
= μLxz · Lc � D · Lc = 2

3n(3n + 1)

holds. This is a contradiction. Note that

L2
xz = − 6n − 1

3n(3n + 1)
.

The inequality

� · Lxz = 2 + (6n − 1)μ

3n(3n + 1)
<

1

3n + 1

holds for all n � 2. Therefore, Lemma 2.5 implies the point P cannot belong to Lxz.
By the same way, we can show that P cannot be located in either Lxt or Lc.

Let C be the curve on X cut out by the equation z − αt = 0, where α is
non-zero constant different from c. Then the curve C is quasismooth and hence
lct(X, 2

3n+1C) � 1. Therefore, we may assume that the support of D does not contain
the curve C. Then

multOx (D),multPa (D),multPb
(D) � 3D · C = 2

n
� 1

for n � 2. Therefore, P cannot be a singular point of X. Hence P is a smooth point
of X \ Cx . However, applying Lemma 2.7, we get an absurd inequality

1 < multP (D) � 2(9n + 3)2

3 · 3n(3n + 1)(3n + 1)
� 1

for n � 2 since H 0(P, OP(9n + 3)) contains x3n+1, xy3, and z3. The obtained con-
tradiction completes the proof. �

Lemma 4.3 Let X be a quasismooth hypersurface of degree 36n + 24 in P(6,6n +
5,12n + 8,18n + 9) for n � 1. Then lct(X) = 1.

Proof We may assume that the surface X is defined by the equation

z3 + y3t + xt2 − x6n+4 + ax2n+1y2z = 0,
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where a is a constant. The only singularities of X are a singular point Oy of index
6n + 5, a singular point Ot of index 18n + 9, a singular point Q = [1 : 0 : 0 : 1] of
index 3, and a singular point Q′ = [1 : 0 : 1 : 0] of index 2.

The curve Cx is reduced and irreducible with multOt (Cx) = 3. Clearly,
lct(X, 2

3Cx) = 1, and hence lct(X) � 1. The curve Cy is quasismooth, and hence
the log pair (X, 4

6n+5Cy) is log canonical.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such

that the log pair (X,D) is not log canonical at some point P ∈ X.
Since H 0(P, OP(36n + 30)) contains x6n+5, y6, and z3x, Lemma 2.7 implies

multP (D) � 4(36n + 24)(36n + 30)

6(6n + 5)(12n + 8)(18n + 9)
< 1.

Therefore, the point P cannot be a smooth point in the outside of Cx .
By Lemma 2.6 we may assume that neither Cx nor Cy is contained in Supp (D).

Then the inequality

3D · Cy = 2

6n + 3
� 1

implies that the point P is neither Q nor Q′. One the other hand, the inequality

(6n + 5)D · Cx = 4

6n + 3
< 1

shows that the point P can be neither a smooth point on Cx nor the point Oy . There-
fore, it must be Ot . However, this is a contradiction since

multOt (D) = multOt (D)multOt (Cx)

3
� 18n + 9

3
D · Cx = 4

6n + 5
< 1.

The obtained contradiction completes the proof. �

Lemma 4.4 Let X be a quasismooth hypersurface of degree 12n + 35 in P(9,3n +
8,3n + 11,6n + 13) for n � 1. Then lct(X) = 1.

Proof The surface X can be defined by the equation

z2t + y3z + xt2 + xn+3y = 0.

It is singular only at the points Ox , Oy , Oz, and Ot .
The curve Cx (resp. Cy , Cz, Ct ) consists of two irreducible and reduced curves

Lxz (resp. Lyt , Lxz, Lyt ) and Rx = {x = zt + y3 = 0} (resp. Ry = {y = z2 + xt = 0},
Rz = {z = t2 + xn+2y = 0}, Rt = {t = y2z + xn+3 = 0}). These two curves intersect
at the point Ot (resp. Ox , Oy , Oz).

It follows from [16] that

lct

(
X,

2

3
Cx

)
= 1 < lct

(
X,

6

3n + 8
Cy

)
, lct

(
X,

6

3n + 11
Cz

)
, lct

(
X,

6

6n + 13
Ct

)
.
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We have the following intersection numbers.

− Lxz · KX = 6

(3n + 8)(6n + 13)
, −Lyt · KX = 2

3(3n + 11)
,

− Rx · KX = 18

(3n + 11)(6n + 13)
, −Ry · KX = 4

3(6n + 13)
,

− Rz · KX = 4

3(3n + 8)
, −Rt · KX = 6(n + 3)

(3n + 8)(3n + 11)
,

Lxz · Rx = 3

6n + 13
, Lyt · Ry = 2

9
, Lxz · Rz = 2

3n + 8
,

Lyt · Rt = n + 3

3n + 11
, L2

xz = − 9n + 15

(3n + 8)(6n + 13)
,

L2
yt = − 3n + 14

9(3n + 11)
, R2

x = − 9n + 6

(3n + 11)(6n + 13)
,

R2
y = − 6n + 10

9(6n + 13)
, R2

z = 6n + 4

9(3n + 8)
, R2

t = (n + 3)(3n + 5)

(3n + 8)(3n + 11)
.

Now we suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX

such that the log pair (X,D) is not log canonical at some point P ∈ X.
By Lemma 2.6 we may assume that Supp (D) does not contain both the curve Lyt

and the curve Ry . Since these two curves intersect at the point Ox , the inequalities

Lyt · D = 2

3(3n + 11)
<

1

9
,

Ry · D = 4

3(6n + 13)
<

1

9

show that the point P cannot be the point Ox .
By Lemma 2.6 we may assume that Supp (D) does not contain both the curve Lxz

and the curve Rz. Therefore, one of the following inequalities must hold:

multOy D � (3n + 8)Lxz · D = 6

6n + 13
< 1,

multOy D � 3n + 8

2
Rz · D = 2

3
.

Therefore, the point P cannot be the point Oy .
Suppose that P = Oz. If Lyt �⊂ Supp (D), then we get an absurd inequality

6

9(3n + 11)
= Lyt · D >

1

3n + 11
.
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Therefore Supp (D) must contain the curve Lyt . By Lemma 2.6 we may assume that
Mt �⊂ Supp (D). Put D = μLyt +�, where � is an effective Q-divisor whose support
does not contain the curve Lyt . Then

6(n + 3)

(3n + 8)(3n + 11)
= D · Rt � μLyt · Rt + (multP (D) − μ)multP (Rt )

3n + 11

>
μ(n + 3)

3n + 11
+ 2(1 − μ)

3n + 11
,

and hence μ < 2
(3n+8)(n+1)

. On the other hand, Lemma 2.5 shows

1

3n + 11
< � · Lyt = D · Lyt − μL2

yt = 6 + μ(3n + 14)

9(3n + 11)
.

It implies 3
3n+14 < μ. Consequently, the point P cannot be the point Oz.

Suppose that P = Ot . Since Lxz · D < 1
6n+13 , the curve Lxz must be contained in

Supp (D). Then, we may assume that Rx �⊂ Supp (D). Put D = μLxz + �, assume
that Rx �⊂ Supp (D). Put D = μLxz + �, does not contain the curve Lxz. Then

18

(3n + 11)(6n + 13)
= D · Rx � μLxz · Rx + multP (D) − μ

6n + 13
>

1 + 2μ

6n + 13
,

and hence μ < 7−3n
6n+22 . However, Lemma 2.5 implies

1

6n + 13
< � · Lxz = D · Lxz − μL2

xz = 6 + (9n + 15)μ

(3n + 8)(6n + 13)
,

and hence 3n+2
9n+15 < μ. This is a contradiction. Therefore, the point P cannot be the

point Ot .
Write D = aLxz + bRx + �, where � is an effective Q-divisor whose support

contains neither Lxz nor Rx . Since the log pair (X,D) is log canonical at the point
Ot , we have 0 � a, b � 1. Then by Lemma 2.5 the following two inequalities

(bRx + �) · Lxz = (D − aLxz) · Lxz = 6 + a(9n + 15)

(3n + 8)(6n + 13)
< 1,

(aLxz + �) · Rx = (D − bRx) · Rx = 18 + b(9n + 6)

(3n + 11)(6n + 13)
< 1

show that P �∈ Cx . By the same way, we can show P �∈ Cy ∪ Cz ∪ Ct .
Consider the pencil L defined by the equations λxt + μz2 = 0, [λ : μ] ∈ P

1. Note
that the curve Lxz is the only base component of the pencil L. There is a unique
divisor Cα in L passing through the point P . This divisor must be defined by an
equation xt +αz2 = 0, where α is a non-zero constant, since the point P is located in
the outside of Cx ∪ Cz ∪ Ct . Note that the curve Ct does not contain any component
of Cα . Therefore, to see all the irreducible components of Cα , it is enough to see the
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affine curve
{

x + αz2 = 0

z2 + y3z + x + xn+3y = 0

}
⊂ C

3 ∼= Spec
(
C

[
x, y, z

])
.

This is isomorphic to the plane affine curve defined by the equation

z{(1 − α)z + y3 + (−α)n+3yz2n+5} = 0 ⊂ C
2 ∼= Spec

(
C

[
y, z

])
.

Thus, if α �= 1, then the divisor Cα consists of two reduced and irreducible curves
Lxz and Zα . If α = 1, then it consists of three reduced and irreducible curves Lxz,
Ry , R. Moreover, Zα and R are smooth at the point P .

Suppose that α �= 1. Then we have

D · Zα = 2(24n + 61)

3(3n + 8)(6n + 13)
.

Since Zα is different from Rx ,

Z2
α = Cα · Zα − Lxz · Zα � Cα · Zα − (Lxz + Rx) · Zα = 6n + 13

6
D · Zα > 0.

Put D = εZα + �, where � is an effective Q-divisor such that Zα �⊂ Supp(�).
Since the pair (X,D) is log canonical at the point Ot and the curve Zα passes through
the point Ot , we have ε � 1. But

(D − εZα) · Zα � D · Zα = 2(24n + 61)

3(3n + 8)(6n + 13)
< 1

and hence Lemma 2.5 implies that the point P cannot belong to the curve Zα .
Suppose that α = 1. We have

D · R = 6(2n + 5)

(3n + 8)(6n + 13)
.

Since R is different from Rx and Lyt ,

R2 = Cα · R − Lxz · R − Ry · R � Cα · R − (Lxz + Rx) · R − (Lyt + Ry) · R

= 3n + 5

6
D · D > 0.

Put D = ε1R +�′, where �′ is an effective Q-divisor such that R �⊂ Supp(�′). Since
the curve R passes through the point Ot at which the pair (X,D) is log canonical,
ε1 � 1. Since

(D − ε1R) · R � D · R = 6(2n + 5)

(3n + 8)(6n + 13)
< 1.

Lemma 2.5 implies that the point P cannot belong to R. �
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5 Sporadic Cases

Lemma 5.1 Let X be a quasismooth hypersurface of degree 15 in P(3,3,5,5). Then
lct(X) = 2.

Proof The surface X has five singular points O1, . . . ,O5 of type 1
3 (1,1). They are cut

out by the equations z = t = 0. The surface also has three singular points Q1,Q2,Q3

of type 1
5 (1,1). These three points are cut out by the equations x = y = 0.

Let Ci be the curve in the pencil | − 3KX| passing through the point Oi , where
i = 1, . . . ,5. The curve Ci consists of three reduced and irreducible smooth rational
curves

Ci = Li
1 + Li

2 + Li
3.

The curve Li
j contains the point Qj . Furthermore, Li

1 ∩ Li
2 ∩ Li

3 = {Oi}. We see that

−KX · Li
j = 1

15
,

(
Li

j

)2 = − 7

15
, Li

j · Li
k = 1

3

where j �= k.
Note that lct(X,Ci) = 2

3 . Thus lct(X) � 2.
Suppose that lct(X) < 2. Then there is an effective Q-divisor D ∼Q −KX

such that the log pair (X,2D) is not log canonical at some point P ∈ X. Then,
multP (D) > 1

2 .
Suppose that P �∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. Then P is a smooth point of X. There

is a unique curve C ∈ |−3KX| passing through point P . Then C is different from the
curves C1, . . . ,C5 and hence C is irreducible. Furthermore, the log pair (X,C) is log
canonical. Thus, it follows from Lemma 2.6 that we may assume that C �⊂ Supp(D).
Then we obtain an absurd inequality

1

5
= D · C � multP

(
D

)
>

1

2
,

since the log pair (X,2D) is not log canonical at the point P . Therefore, P ∈ C1 ∪
C2 ∪C3 ∪C4 ∪C5. However, we may assume that P ∈ C1 without loss of generality.
Furthermore, by Lemma 2.6, we may assume that L1

i �⊂ Supp(D) for some i = 1,2,3.
Since

1

5
= 3D · L1

i � multO1

(
D

)
,

the point P cannot be the point O1.
Without loss of generality, we may assume that P ∈ L1

1.
Let Z be the curve in the pencil | − 5KX| passing through the point Q1. Then

Z = Z1 + Z2 + Z3 + Z4 + Z5,

where Zi is a reduced and irreducible smooth rational curve. The curve Zi contains
the point Oi . Moreover, Z1 ∩ Z2 ∩ Z3 ∩ Z4 ∩ Z5 = {Q1}. It is easy to check that
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lct(X,Z) = 2
5 . By Lemma 2.6, we may assume that Zk �⊂ Supp(D) for some k =

1, . . . ,5. Then

1

3
= 5D · Zk � multQ1

(
D

)
,

and hence the point P cannot be the point Q1.
Thus, the point P is a smooth point on L1

1. Put

D = mL1
1 + �,

where � is an effective Q-divisor such that L1
1 �⊂ Supp(�). If m �= 0, then

1

15
= D · L1

i = (
mL1

1 + �
) · L1

i � mL1
1 · L1

i = m

3
,

and hence m � 1
5 . Then it follows from Lemma 2.5 that

1 + 7m

15
= (

D − mL1
1

) · L1
1 = � · L1

1 >
1

2
.

This implies that m > 13
14 . But m � 1

5 . The obtained contradiction completes the
proof. �

Lemma 5.2 Let X be a quasismooth hypersurface of degree 127 in P(11,29,39,49).
Then lct(X) = 33

4 .

Proof We may assume that the hypersurface X is defined by the equation

z2t + yt2 + xy4 + x8z = 0.

The singularities of X consist of a singular point of type 1
11 (7,5) at Ox , a singular

point of type 1
29 (1,2) at Oy , a singular point of type 1

39 (11,29) at Oz, and a singular
point of type 1

49 (11,39) at Ot .
The curve Cx (resp. Cy , Cz, Ct ) consists of two irreducible curves Lxt (resp. Lyz,

Lyz, Lxt ) and Rx = {x = z2 + yt = 0} (resp. Ry = {y = x8 + zt = 0}, Rz = {z =
t2 + xy3 = 0}, Rt = {t = y4 + x7z = 0}). We can see that

Lxt ∩ Rx = {Oy}, Lyz ∩ Ry = {Ot },
Lyz ∩ Rz = {Ox}, Lxt ∩ Rt = {Oz}.

It is easy to check that lct(X, 1
11Cx) = 33

4 . The log pairs (X, 33
4·29Cy), (X, 33

4·39Cz)

and (X, 33
4·49Ct) are log canonical.

Suppose that lct(X) < 33
4 . Then there is an effective Q-divisor D ∼Q −KX such

that the log pair (X, 33
4 D) is not log canonical at some point P ∈ X.
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By Lemma 2.6, we may assume that the support of D does not contain Lxt or Rx .
Then one of the following two inequalities must hold:

4

33
>

1

39
= 29Lxt · D � multOy (D);

4

33
>

2

49
= 29Rx · D � multOy (D).

Therefore, the point P cannot be the point Oy . For the same reason, one of two
inequalities

4

33
>

1

49
= 11Lyz · D � multOx (D),

4

33
>

2

29
= 11Rz · D � multOx (D)

must hold, and hence the point P cannot be the point Ox . Since Rt is singular at the
point Oz with multiplicity 4, we can apply the same method to Ct , i.e., one of the
following inequalities must be satisfied:

4

33
>

1

29
= 39Lxt · D � multOz(D);

4

33
>

1

11
= 39

4
Rt · D � 1

4
multOz(D)multOz(Rt ) = multOz(D).

Thus, the point P cannot be Oz.
Write D = μRx + �, where � is an effective Q-divisor such that Rx �⊂ Supp (�).

If μ > 0, then Lxt is not contained in the support of D. Thus,

2

29
μ = μRx · Lxt � D · Lxt = 1

29 · 39
,

and hence μ � 1
78 . We have

49� · Rx = 49(D · Rx − μR2
x) = 2 + 76μ

29
<

4

33
.

Then Lemma 2.5 shows that the point P cannot belong to Rx . In particular, the point
P cannot be Ot .

Put D = εLxt + �, where � is an effective Q-divisor such that Lxt �⊂ Supp (�).
Since (X, 33

4 D) is log canonical at the point Oy , ε � 4
33 and hence

� · Lxt = D · Lxt − εL2
xt = 1 + 67ε

29 · 39
<

4

33
.

Then Lemma 2.5 implies that the point P cannot belong to Lxt .
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Consequently, the point P must be a smooth point in the outside of Cx . Then an
absurd inequality

4

33
< multP (D) � 539 · 127

11 · 29 · 39 · 49
<

4

33

follows from Lemma 2.7 since H 0(P, OP(539)) contains x20y11, x49, x10z11,
and t11. The obtained contradiction completes the proof. �

Lemma 5.3 Let X be a quasismooth hypersurface of degree 57 in P(5,13,19,22).
Then lct(X) = 25

12 .

Proof The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy4 + x7t + εx5yz = 0,

where ε ∈ C. The surface X is singular only at the points Ox , Oy , and Ot .
The curves Cx and Cy are irreducible. Moreover, we have

25

12
= lct

(
X,

2

5
Cx

)
< lct

(
X,

2

13
Cy

)
= 65

21
.

Suppose that lct(X) < 25
12 . Then there is an effective Q-divisor D ∼Q −KX such

that the pair (X, 25
12D) is not log canonical at some point P . By Lemma 2.6, we may

assume that the support of the divisor D contains neither Cx nor Cy .
Since H 0(P, OP(110)) contains the monomials x9y5, x22, and t5, it follows from

Lemma 2.7 that the point P is either a singular point of X or a smooth point on Cx .
However, this is impossible since 22D · Cx = 6

13 < 12
25 and 5D · Cy = 3

11 < 12
25 . �

Lemma 5.4 Let X be a quasismooth hypersurface of degree 48 in P(9,12,13,16).
Then lct(X) = 63

24 .

Proof The surface X can be defined by the quasihomogeneous equation

t3 − y4 + xz3 + x4y = 0.

The surface X is singular at the points Ox , Oz, Q4 = [0 : 1 : 0 : 1] and Q3 = [1 : 1 :
0 : 0].

The curves Cx , Cy , Cz, and Ct are irreducible and reduced. We have

63

24
= lct

(
X,

2

9
Cx

)
< lct

(
X,

2

12
Cy

)
= 4 < lct

(
X,

2

13
Cz

)

= 13

2
< lct

(
X,

2

16
Ct

)
= 16

2
.

Therefore, lct(X) � 63
24 .
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Suppose that lct(X) < 63
24 . Then there is an effective Q-divisor D ∼Q −KX such

that the pair (X, 63
24D) is not log canonical at some point P . By Lemma 2.6, we may

assume that the support of the divisor D contains none of the curves Cx , Cy , Cz,
and Ct .

Note that the curve Cx is singular at Oz with multiplicity 3 and the curve Cy is
singular at Ox with multiplicity 3. Then the inequalities

13

3
D · Cx = 1

6
<

24

63
,

9

3
D · Cy = 2

13
<

24

63
,

3D · Cz = 1

6
<

24

63
, D · Ct = 8

9 · 13
<

24

63

show that the point P must be located in the outside of Cx ∪ Cy ∪ Cz ∪ Ct .
Consider the pencil L on X defined by the equations λxt + μyz = 0, [μ,λ] ∈ P

1.
Then there is a unique curve Z in the pencil L passing through the point P . Then the
curve Z is defined by an equation of the form xt − αyz = 0, where α is a non-zero
constant. We see that Cx �⊂ Supp(Z). But the open subset Z \ Cx of the curve Z is a
Z9-quotient of the affine curve

t − αyz = t3 + y4 + z3 + y = 0 ⊂ C
3 ∼= Spec

(
C

[
y, z, t

])
,

which is isomorphic to the plane affine curve given by the equation

α3y3z3 + y4 + z3 + y = 0 ⊂ C
2 ∼= Spec

(
C

[
y, z

])
.

Then, it is easy to see that the curve Z is irreducible and multP (Z) � 4. Thus, we
may assume that Supp(D) does not contain the curve Z by Lemma 2.6. However,

25

18 · 13
= D · Z � multP

(
D

)
>

24

63
.

Consequently, lct(X) = 63
24 . �

Lemma 5.5 Let X be a quasismooth hypersurface of degree 79 in P(13,14,23,33).
Then lct(X) = 65

32 .

Proof The surface X can be defined by the quasihomogeneous equation

z2t + y4z + xt2 + x5y = 0.

The surface X is singular at Ox , Oy , Oz, and Ot . We have

lct

(
X,

4

13
Cx

)
= 65

32
< lct

(
X,

4

13
Cx

)
= 21

8
< lct

(
X,

5

25
Ct

)

= 33

10
< lct

(
X,

4

23
Cz

)
= 69

20
.

In particular, lct(X) � 65
32 .
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Each of the divisors Cx , Cy , Cz, and Ct consists of two irreducible and reduced
components. The divisor Cx (resp. Cy , Cz, Ct ) consists of Lxz (resp. Lyt , Lxz, Lyt )
and Rx = {x = y4 + zt = 0} (resp. Ry = {y = z2 +xt = 0}, Rz = {z = x4y + t2 = 0},
Rt = {t = x5 + y3z = 0}). The curve Lxz intersects Rx (resp. Rz) only at the point
Ot (resp. Oy ). The curve Lyt intersects Ry (resp. Rt ) only at the point Ox (resp. Oz).

We suppose that lct(X) < 65
32 . Then there is an effective Q-divisor D ∼Q −KX

such that the log pair (X, 65
32D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxz, Lyt , Rx , Ry , Rz, Rt are as
follows:

L2
xz = − 43

14 · 33
, R2

x = − 40

23 · 33
, Lxz · Rx = 4

33
,

D · Lxz = 4

14 · 33
, D · Rx = 16

23 · 33
, L2

yt = − 32

13 · 23
,

R2
y = − 38

13 · 33
, Lyt · Ry = 2

13
, D · Lyt = 4

13 · 23
, D · Ry = 8

13 · 33
,

R2
z = 20

13 · 14
, Lxz · Rz = 2

14
, D · Rz = 8

13 · 14
,

R2
t = 95

14 · 13
, Lyt · Rt = 5

23
, D · Rt = 20

14 · 23
.

By Lemma 2.6 we may assume that the support of D does not contain at least one
component of each divisor Cx , Cy , Cz, Ct . Since the curve Rt is singular at the point
Oz with multiplicity 3 and the curve Rz is singular at the point Oy , in each of the
following pairs of inequalities, at least one of two must hold:

multOx (D) � 13D · Lyt = 4

23
<

32

65
, multOx (D) � 13D · Ry = 8

33
<

32

65
;

multOy (D) � 14D · Lxz = 4

33
<

32

65
, multOy (D) � 14

2
D · Rz = 4

13
<

32

65
;

multOz(D) � 23D · Lyt = 4

13
<

32

65
, multOz(D) � 23

3
D · Rt = 10

21
<

32

65
.

Therefore, the point P can be none of Ox , Oy , Oz.
Put D = m0Lxz + m1Lyt + m2Rx + m3Ry + m4Rz + m5Rt + �, where � is an

effective Q-divisor whose support contains none of Lxz, Lyt , Rx , Ry , Rz, Rt . Since
the pair (X, 65

32D) is log canonical at the points Ox , Oy , Oz, we have mi � 32
65 for

each i. Since

(D − m0Lxz) · Lxz = 4 + 43m0

14 · 33
� 32

65
, (D − m1Lyt ) · Lyt = 4 + 32m1

13 · 23
� 32

65
,

(D − m2Rx) · Rx = 16 + 40m2

23 · 33
� 32

65
, (D − m3Ry) · Ry = 8 + 38m3

13 · 33
� 32

65
,
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(D − m4Rz) · Rz = 8 − 20m4

13 · 14
� 32

65
, (D − m5Rt) · Rt = 20 − 95m5

14 · 23
� 32

65

Lemma 2.5 implies that the point P cannot be a smooth point of X on Cx ∪ Cy ∪
Cz ∪ Ct . Therefore, the point P is either a point in the outside of Cx ∪ Cy ∪ Cz ∪ Ct

or the point Ot .
Suppose that P �∈ Cx ∪Cy ∪Cz ∪Ct . Then we consider the pencil L on X defined

by the equations λxt + μz2 = 0, [λ : μ] ∈ P
1. There is a unique curve Zα in the

pencil passing through the point P . This curve is cut out by xt + αz2 = 0, where α is
a non-zero constant.

The curve Zα is reduced. But it is always reducible. Indeed, one can check that
Zα = Cα + Lxz, where Cα is a reduced curve whose support contains no Lxy . Let us
prove that Cα is irreducible if α �= 1.

Any component of the curve Ct is not contained in the curve Zα . The open subset
Zα \ Ct of the curve Zα is a Z33-quotient of the affine curve

x + αz2 = z2 + y4z + x + x5y = 0 ⊂ C
3 ∼= Spec

(
C

[
x, y, z

])
,

which is isomorphic to a plane affine curve defined by the equation

z
(
(α − 1)z + y4 − α5yz9

)
= 0 ⊂ C

2 ∼= Spec
(
C

[
y, z

])
.

Thus, if α �= 1, then the curve Zα consists of two irreducible and reduced curves Lxz

and Cα . If α = 1, then the curve Zα consists of three irreducible and reduced curves
Lxz, Ry , and C1. In both the cases, the curve Cα (including α = 1) is smooth at the
point P . By Lemma 2.6, we may assume that Supp(D) does not contain at least one
irreducible component of the curve Zα .

If α �= 1, then

D · Cα = 8

13 · 14
,

C2
α = Zα · Cα − Lxz · Cα � Zα · Cα − (Rx + Lxz) · Cα = 33

4
D · Cα > 0.

If α = 1, then

D · C1 = 152

13 · 14 · 33
,

C2
1 = Z1 · C1 − (Lxz + Ry) · C1 � Z1 · C1 − (Rx + Lxz) · C1 − (Lyt + Ry) · C1

= 19

4
D · C1 > 0.

We put D = mCα + �α , where �α is an effective Q-divisor such that Cα �⊂
Supp(�α). Since Cα intersects the curve Ct and the pair (X, 65

32D) is log canoni-
cal along the curve Ct , we obtain m � 32

65 . Then, the inequality

(D − mCα) · Cα � D · Cα <
32

65
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implies that the pair (X, 65
32D) is log canonical at the point P by Lemma 2.5. The

obtained contradiction concludes that the point P must be the point Ot .
If the irreducible component Lxz is not contained in the support of D, then the

inequality

multOt (D) � 33D · Lxz = 2

7
<

32

65

is a contradiction. Therefore, the irreducible component Lxz must be contained in
the support of D, and hence the curve Rx is not contained in the support of D. Put
D = aLxz + bRy + �, where � is an effective Q-divisor whose support contains
neither Lxz nor Ry . Then

16

23 · 33
= D · Rx � aLxz · Rx + multOt (D) − a

33
>

3a

33
+ 32

33 · 65

and hence a < 304
3·23·65 . If b �= 0, then Lyt is not contained in the support of D. There-

fore,

4

13 · 23
= D · Lyt � bRy · Lyt = 2b

13
,

and hence b � 2
23 .

Let π : X̄ → X be the weighted blow up at the point Ot with weights (13,19)

and let F be the exceptional curve of the morphism π . Then F contains two singular
points Q13 and Q19 of X̄ such that Q13 is a singular point of type 1

13 (1,1), and Q19

is a singular point of type 1
19 (3,7). Then

KX̄ ∼Q π∗(KX) − 1

33
F, L̄xz ∼Q π∗(Lxz) − 19

33
F,

R̄y ∼Q π∗(Ry) − 13

33
F, �̄ ∼Q π∗(�) − c

33
F,

where L̄xz, R̄y , and �̄ are the proper transforms of Lxz, Ry , and � by π , respectively,
and c is a non-negative rational number. Note that F ∩ R̄y = {Q19} and F ∩ L̄xz =
{Q13}.

The log pull-back of the log pair (X, 65
32D) by π is the log pair

(
X̄,

65a

32
L̄xz + 65b

32
R̄y + 65

32
�̄ + θ1F

)
,

where

θ1 = 32 + 65(19a + 13b + c)

32 · 33
.

This is not log canonical at some point Q ∈ F . We have

0 � �̄ · L̄xz = 4 + 43a

14 · 33
− b

33
− c

13 · 33
.
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This inequality shows 13b + c � 13
14 (4 + 43a). Since a � 304

3·23·65 , we obtain

θ1 = 32 + 1235a

32 · 33
+ 65(13b + c)

32 · 33
� 32 + 1235a

32 · 33
+ 13 · 65(4 + 43a)

14 · 32 · 33
< 1.

Suppose that the point Q is neither Q13 nor Q19. Then, the point Q is not in
L̄xz ∪ R̄y . Therefore, the pair (X̄, 65

32�̄ + F) is not log canonical at the point Q, and
hence

1 <
65

32
�̄ · F = 65c

13 · 19 · 32
.

But c � 13b + c � 13
14 (4 + 43a) < 13·19·32

65 since a � 304
3·23·65 . Therefore, the point Q

is either Q13 or Q19.
Suppose that the point Q is Q13. Then the point Q is in L̄xz but not in R̄y . There-

fore, the pair (X̄, L̄xz + 65
32�̄ + θ1F) is not log canonical at the point Q. However,

this is impossible since

13

(
65

32
�̄ + θ1F

)
· L̄xz = 13 · 65

32

(
4 + 43a

14 · 33
− b

33
− c

13 · 33

)
+ θ1

= 32 + 1235a

32 · 33
+ 13 · 65(4 + 43a)

14 · 32 · 33
< 1.

Therefore, the point Q must be the point Q19.
Let ψ : X̃ → X̄ be the weighted blow up at the point Q19 with weights (3,7) and

let E be the exceptional curve of the morphism ψ . The exceptional curve E contains
two singular points O3 and O7 of X̃. The point O3 is of type 1

3 (1,2) and the point
O7 is of type 1

7 (4,5). Then

K
X̃

∼Q ψ∗(KX̄) − 9

19
E, R̃y ∼Q ψ∗(R̄y) − 3

19
E,

F̃ ∼Q ψ∗(F ) − 7

19
E, �̃ ∼Q ψ∗(�̄) − d

19
E,

where R̃y , F̃ , and �̃ are the proper transforms of R̄y , F , and �̄ by ψ , respectively,
and d is a non-negative rational number.

The log pull-back of the log pair (X, 65
32D) by π ◦ ψ is the log pair

(
X̃,

65a

32
L̃xz + 65b

32
R̃y + 65

32
�̃ + θ1F̃ + θ2E

)
,

where L̃xz is the proper transform of L̄xz by ψ and

θ2 = 65(3b + d)

19 · 32
+ 7

19
θ1 + 9

19
= 9728 + 65(133a + 190b + 7c + 33d)

19 · 32 · 33
.

This is not log canonical at some point O ∈ E.
We have

0 � �̃ · R̃y = �̄ · R̄y − d

7 · 19
= 8 + 38b

13 · 33
− 19a + c

19 · 33
− d

7 · 19
,
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and hence 133a + 7c + 33d � 133
13 (8 + 38b). Therefore, this inequality together with

b < 2
23 gives us

θ2 = 9728 + 65 · 190b

19 · 32 · 33
+ 65(133a + 7c + 33d)

19 · 32 · 33

� 9728 + 65 · 190b

19 · 32 · 33
+ 65 · 7(8 + 38b)

13 · 32 · 33
< 1.

Suppose that the point O is in the outside of R̃y and F̃ . Then the log pair
(E, 65

32�̃|E) is not log canonical at the point O and hence

1 <
65

32
�̃ · E = 65d

3 · 7 · 32
.

However,

d � 1

33
(133a + 7c + 33d) � 133

13 · 33
(8 + 38b) <

3 · 7 · 32

65

since b � 2
23 . This is a contradiction.

Suppose that the point O belongs to R̃y . Then the log pair (X̃, 65b
32 R̃y + 65

32�̃ +
θ2E) is not log canonical at the point O and hence

1 < 7

(
65

32
�̃ + θ2E

)
· R̃x = 7 · 65

32

(
8 + 38b

13 · 33
− 19a + c

19 · 33
− d

7 · 19

)
+ θ2.

However,

7 · 65

32

(
8 + 38b

13 · 33
− 19a + c

19 · 33
− d

7 · 19

)
+ θ2 = 9728 + 65 · 190b

19 · 32 · 33
+ 65 · 7(8 + 38b)

13 · 32 · 33

< 1.

This is a contradiction. Therefore, the point O is the point O3.
Suppose that the point O belongs to F̃ . Then the log pair (X̃, 65

32�̃ + θ1F̃ + θ2E)

is not log canonical at the point O and hence

1 < 3

(
65

32
�̃ + θ2E

)
· F̃ = 3 · 65

32

(
c

13 · 19
− d

3 · 19

)
+ θ2.

However,

3 · 65

32

(
c

13 · 19
− d

3 · 19

)
+ θ2 = 3 · 65c

13 · 19 · 32
+ 9728 + 65(133a + 190b + 7c)

19 · 32 · 33

= 512 + 455a

32 · 33
+ 65 · 190(13b + c)

13 · 19 · 32 · 33

� 512 + 455a

32 · 33
+ 65 · 190(4 + 43a)

14 · 19 · 32 · 33
< 1

since 13b + c � 13
14 (4 + 43a) and a � 304

3·23·65 . This is a contradiction. �
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6 Tables

Log del Pezzo surfaces with I = 1

Weights Degree lct

(2,2n + 1,2n + 1,4n + 1) 8n + 4 1

(1,2,3,5) 10
1a

7
10

b

(1,3,5,7) 15
1c

8
15

d

(1,3,5,8) 16 1

(2,3,5,9) 18
2e

11
6

f

(3,3,5,5) 15 2
(3,5,7,11) 25 21

10

(3,5,7,14) 28 9
4

(3,5,11,18) 36 21
10

(5,14,17,21) 56 25
8

(5,19,27,31) 81 25
6

(5,19,27,50) 100 25
6

(7,11,27,37) 81 49
12

(7,11,27,44) 88 35
8

(9,15,17,20) 60 21
4

(9,15,23,23) 69 6
(11,29,39,49) 127 33

4

(11,49,69,128) 256 55
6

(13,23,35,57) 127 65
8

(13,35,81,128) 256 91
10

aif Cx has an ordinary double point
bif Cx has a non-ordinary double point
cif the defining equation of X contains yzt
dif the defining equation of X contains no yzt
eif Cy has a tacnodal point
fif Cy has no tacnodal points

Log del Pezzo surfaces with I = 3

Weights Degree lct

(5,7,11,13) 33 49
36

(5,7,11,20) 40 25
18

(11,21,29,37) 95 11
4

(11,37,53,98) 196 55
18

(13,17,27,41) 95 65
24

(13,27,61,98) 196 91
30

(15,19,43,74) 148 57
14

Log del Pezzo surfaces with I = 2

Weights Degree lct

(3,3n,3n + 1,3n + 1) 9n + 3 1
(3,3n + 1,3n + 2,3n + 2) 9n + 6 1
(3,3n + 1,3n + 2,6n + 1) 12n + 5 1
(3,3n + 1,6n + 1,9n) 18n + 3 1
(3,3n + 1,6n + 1,9n + 3) 18n + 6 1
(4,2n + 1,4n + 2,6n + 1) 12n + 6 1
(4,2n + 3,2n + 3,4n + 4) 8n + 12 1

(2,3,4,5) 12
1a

7
12

b

(2,3,4,7) 14 1
(3,4,5,10) 20 3

2

(3,4,10,15) 30 3
2

(5,13,19,22) 57 25
12

(5,13,19,35) 70 25
12

(6,9,10,13) 36 25
12

(7,8,19,25) 57 49
24

(7,8,19,32) 64 35
16

(9,12,13,16) 48 63
24

(9,12,19,19) 57 3
(9,19,24,31) 81 3
(10,19,35,43) 105 57

14

(11,21,28,47) 105 77
30

(11,25,32,41) 107 11
3

(11,25,34,43) 111 33
8

(11,43,61,113) 226 55
12

(13,18,45,61) 135 91
30

(13,20,29,47) 107 65
18

(13,20,31,49) 111 65
16

(13,31,71,113) 226 91
20

(14,17,29,41) 99 51
10

aif the defining equation of X contains yzt
bif the defining equation of X contains no yzt

Log del Pezzo surfaces with I = 4

Weights Degree lct

(6,6n + 3,6n + 5,6n + 5) 18n + 15 1
(6,6n + 5,12n + 8,18n + 9) 36n + 24 1
(6,6n + 5,12n + 8,18n + 15) 36n + 30 1
(5,6,8,9) 24 1
(5,6,8,15) 30 1
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Log del Pezzo surfaces with I = 4

Weights Degree lct

(9,11,12,17) 45 77
60

(10,13,25,31) 75 91
60

(11,17,20,27) 71 11
6

(11,17,24,31) 79 33
16

(11,31,45,83) 166 55
24

(13,14,19,29) 71 65
36

(13,14,23,33) 79 65
32

(13,23,51,83) 166 91
40

Log del Pezzo surfaces with I = 5

Weights Degree lct

(11,13,19,25) 63 13
8

(11,25,37,68) 136 11
6

(13,19,41,68) 136 91
50

Log del Pezzo surfaces with I = 6

Weights Degree lct

(8,4n + 5,4n + 7,4n + 9) 12n + 23 1

(9,3n + 8,3n + 11,6n + 13) 12n + 35 1

(7,10,15,19) 45 35
54

(11,19,29,53) 106 55
36

(13,15,31,53) 106 91
60

Log del Pezzo surfaces with I = 7

Weights Degree lct

(11,13,21,38) 76 13
10

Log del Pezzo surfaces with I = 8

Weights Degree lct

(7,11,13,23) 46 35
48

(7,18,27,37) 81 35
72

Log del Pezzo surfaces with I = 9

Weights Degree lct

(7,15,19,32) 64 35
54

Log del Pezzo surfaces with I = 10

Weights Degree lct

(7,19,25,41) 82 7
12

(7,26,39,55) 117 7
18
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