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ON FACTORIALITY OF NODAL THREEFOLDS

IVAN CHELTSOV

Abstract

We prove the Q-factoriality of a nodal hypersurface in P4 of degree n

with at most (n−1)2

4
nodes and the Q-factoriality of a double cover of P3

branched over a nodal surface of degree 2r with at most (2r−1)r
3

nodes.

1. Introduction

Nodal 3-folds1 arise naturally in many different topics of algebraic geom-
etry. For example, the non-rationality of many smooth rationally connected
3-folds is proved via the degeneration to nodal 3-folds (see [10], [5]). However,
the geometry can be very different in smooth and nodal cases: every surface
in a smooth hypersurface in P4 is a complete intersection by the Lefschetz
theorem, which is not the case if the hypersurface is nodal; the birational
automorphisms of a smooth quartic 3-fold in P4 form a finite group consisting
of projective automorphisms (see [20]), but for any non-smooth nodal quartic
3-fold this group is always infinite (see [24]). The simplest examples of nodal
3-folds are nodal hypersurfaces in P4 and double covers of P3 branched over
a nodal surface. The latter are called double solids (see [9]).

For a given nodal 3-fold X, one of the substantial questions is whether
X is Q-factorial2 or not. The global topological condition rkH2(X, Z) =
rk H4(X, Z) is equivalent to the Q-factoriality of X when it is a hypersurface
or a double solid. On the other hand, a three-dimensional ordinary double
point admits two small resolutions that differ by a simple flop (see [31]). Thus
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All varieties are assumed to be projective, normal, and defined over C.
1A 3-fold is called nodal if all its singular points are ordinary double points.
2A variety is called Q-factorial if a multiple of every Weil divisor on the variety is a

Cartier divisor.
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664 IVAN CHELTSOV

a nodal 3-fold with k nodes has 2k small resolutions. In particular, the Q-
factoriality of a nodal 3-fold implies that it has no projective small resolutions.

Remark 1. The Q-factoriality of a nodal 3-fold imposes strong geometrical
restrictions on its birational geometry. For example, Q-factorial nodal quartic
3-folds and nodal sextic double solids are non-rational, but there are rational
non-Q-factorial ones (see [24], [7]).

Consider a double cover π : X → P3 branched over a nodal hypersurface
S ⊂ P3 of degree 2r and a nodal hypersurface V ⊂ P4 of degree n. The proof
of the following result is due to [9], [31], [15], [13].

Proposition 2. The 3-folds X and V are Q-factorial if and only if their
nodes impose independent linear conditions on homogeneous forms of degree
3r − 4 and 2n − 5 respectively.

In particular, X and V are Q-factorial if |Sing(X)| ≤ 3r−3 and |Sing(V )| ≤
2n − 4 respectively. The Q-factoriality of X and V implies

Cl(X) ⊗ Q ∼= Pic(X) ⊗ Q ∼= Cl(V ) ⊗ Q ∼= Pic(V ) ⊗ Q ∼= Q

due to the Lefschetz theorem and [9]. Moreover, the groups Pic(X) and Pic(V )
have no torsion due to the Lefschetz theorem and [9]. On the other hand, the
local class group of an ordinary double point is Z (see [25]). Therefore, the
groups Cl(X) and Cl(V ) have no torsion as well. Hence, the Q-factoriality of
X and V is equivalent to the following two conditions respectively:

• Cl(X) and Pic(X) are generated by π∗(H), where H is a hyperplane
in P3;

• Cl(V ) and Pic(V ) are generated by the class of a hyperplane section.

The main purpose of this paper is to prove the following two results.
Theorem 3. Suppose that |Sing(X)| ≤ (2r−1)r

3 . Then X is Q-factorial.

Theorem 4. Suppose that |Sing(V )| ≤ (n−1)2

4 . Then V is Q-factorial.
The bounds in Theorems 3 and 4 may not be sharp in general. For example,

in the case r = 3 the 3-fold X is Q-factorial if |Sing(X)| ≤ 14 due to [7], and
in the case n = 4 the 3-fold V is Q-factorial if |Sing(V )| ≤ 8 due to [5].

Example 5. Consider a hypersurface X ⊂ P(14, r) given by the equation

u2 = g2
r (x, y, z, t) + h1(x, y, z, t)f2r−1(x, y, z, t)

⊂ P(14, r) ∼= Proj(C[x, y, z, t, u]),

where gi, hi, and fi are sufficiently general polynomials of degree i. Let
π : X → P3 be a restriction of the natural projection P(14, r) ��� P3, induced
by an embedding of the graded algebras C[x0, . . . , x2n] ⊂ C[x0, . . . , x2n, y].
Then π : X → P3 is a double cover branched over a nodal hypersurface



ON FACTORIALITY OF NODAL THREEFOLDS 665

g2
r + h1f2r−1 = 0 of degree 2r and |Sing(X)| = (2r − 1)r; the 3-fold X is not

Q-factorial, i.e., the divisor h1 = 0 splits into 2 non-Q-Cartier divisors.
Example 6. Let V ⊂ P4 be a hypersurface,

xgn−1(x, y, z, t, w) + yfn−1(x, y, z, t, w) ⊂ P4 ∼= Proj(C[x, y, z, t, w]),

where gn−1 and fn−1 are general polynomials of degree n−1. Then V is nodal
and contains the plane x = y = 0. Hence, the 3-fold V is not Q-factorial and
|Sing(V )| = (n − 1)2.

Therefore, asymptotically the bounds in Theorems 3 and 4 are not very far
from being sharp. On the other hand, the following result is proved in [8].

Proposition 7. Every smooth surface on V is a Cartier divisor if Sing(V )
< (n − 1)2.

We expect the following to be true.
Conjecture 8. The 3-fold X is Q-factorial whenever the inequality

|Sing(X)| < (2r − 1)r holds; the 3-fold V is Q-factorial whenever the in-
equality |Sing(V )| < (n − 1)2 holds.

The claim of Conjecture 8 is proved only for r ≤ 3 and n ≤ 4 (see [16], [7],
[5]), but for many r and n the bounds in Theorems 3 and 4 can be improved.
For example, we prove the following result.

Proposition 9. Suppose that the equalities r = 4 and n = 5 hold.3 Then
X is Q-factorial whenever |Sing(X)| < 25, and the 3-fold V is Q-factorial
whenever |Sing(V )| < 14.

The following result is proved in [8].
Theorem 10. Suppose that the subset Sing(V ) ⊂ P4 is a set-theoretic

intersection of hypersurfaces of degree l < n
2 and |Sing(V )| < (n−2l)(n−1)2

n .
Then V is Q-factorial.

The saturated ideal of a set of k points in general position in P4 is gener-
ated by polynomials of degree at most n

4 when k < (n − 1)2 and n > 72 by
[17]. Therefore, Theorem 10 implies the Q-factoriality of V having less than
1
2 (n − 1)2 nodes in assumption that the nodes of V are in general position.
However, the latter condition implies the Q-factoriality of V due to Proposi-
tion 2. We prove the following generalization of Theorem 10.

Theorem 11. Let H ⊂ |OP3(k)| and D ⊂ |OP4(l)| be linear subsystems
of hypersurfaces vanishing at Sing(S) and Sing(V ) respectively. Put Ĥ =
H|S and D̂ = D|V . Suppose that inequalities k < r and l < n

2 hold. Then
dim(Bs(Ĥ)) = 0 implies the Q-factoriality of the 3-fold X, and dim(Bs(D̂)) =
0 implies the Q-factoriality of the 3-fold V .

3Namely, the 3-folds X and V are nodal Calabi-Yau 3-folds.
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Corollary 12. Suppose Sing(S) ⊂ P3 and Sing(V ) ⊂ P4 are set-theoretic
intersections of hypersurfaces of degree k < r and l < n

2 respectively. Then X

and V are Q-factorial.
From the point of view of birational geometry the most important appli-

cation of Theorems 3 and 4 is the Q-factoriality condition for a nodal quartic
3-fold and a sextic double solid, i.e., the cases r = 3 and n = 4 respectively,
because in these cases the Q-factoriality implies the non-rationality (see [24],
[7]). However, it is possible to apply Theorems 3 and 4 to certain higher-
dimensional problems in birational algebraic geometry.

Theorem 13. Let τ : U → Ps be a double cover branched over a hyper-
surface F of degree 2r and D be a hyperplane in Ps such that D1 ∩ · · · ∩Ds−3

is a Q-factorial nodal 3-fold, where Di is a general divisor in |τ∗(D)|. Then
Cl(U) and Pic(U) are generated by τ∗(D).

Theorem 14. Let W ⊂ Pr be a hypersurface of degree n such that H1∩· · ·∩
Hr−4 is a Q-factorial nodal 3-fold, where Hi is a general enough hyperplane
section of W . Then the groups Cl(W ) and Pic(W ) are generated by the class
of a hyperplane section of W ⊂ Pr.

A priori Theorems 13 and 14 can be used to prove the non-rationality
of certain singular hypersurfaces of degree r in Pr and double covers of Ps

branched over singular hypersurfaces of degree 2s (see [6]). In the latter case
the application of Theorem 13 can be explicit. For example, we prove the
following result.

Proposition 15. Let ξ : Y → P4 be a double cover branched over a hyper-
surface F ⊂ P4 of degree 8 such that F is smooth outside of a smooth curve
C ⊂ F , the singularity of the hypersurface F in a sufficiently general point of
C is locally isomorphic to the singularity

x2
1 + x2

2 + x2
3 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

the singularities of F in other points of C are locally isomorphic to the sin-
gularity

x2
1 + x2

2 + x2
3x4 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

and a general 3-fold in the linear system | − KY | is Q-factorial. Then Y is
a birationally rigid4 terminal Q-factorial Fano 4-fold with Pic(Y ) ∼= Z and
Bir(Y ) is a finite group consisting of biregular automorphisms. In particular,
the 4-fold Y is non-rational.

Example 16. Let Y ⊂ P(15, 4) be a hypersurface

u2 =
3∑

i=1

fi(x, y, z, t, w)g2
i (x, y, z, t, w) ⊂ P(15, 4) ∼= Proj(C[x, y, z, t, w, u]),

4Namely, the 4-fold Y is a unique Mori fibration birational to Y (see [12]).
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where fi and gi are sufficiently general non-constant homogeneous polynomials
such that deg(fi)+ 2deg(gi) = 8. Then the natural projection P(15, 4) ��� P4

induces a double cover τ : Y → P4 branched over a hypersurface F ⊂ P4,
whose equation is

∑3
i=1 fig

2
i = 0 and which is smooth outside of a curve

g1 = g2 = g3 = 0. Therefore, the 4-fold X is not rational due to Proposition 15
and Theorems 3 and 11.

How many nodes can X and V have? The best known upper bounds (see
[29]) are the following: |Sing(X)| ≤ A3(2r) and |Sing(V )| ≤ A4(n), where
Ai(j) is the Arnold number, a number of points (a1, . . . , ai) ⊂ Zi such that
(i − 2) j

2 + 1 <
∑i

t=1 at ≤ ij
2 and at ∈ (0, j), which implies |Sing(X)| ≤ 68

and 180 when r = 3 and 4, and |Sing(V )| ≤ 45 and 135 when n = 4 and
5 respectively. This bound is sharp for n = 4 (see [21]). There is a sharp
bound |Sing(X)| ≤ 65 in the case r = 3 (see [2], [19], [30]). However, there
are no known example of a nodal quintic in P4 having more than 130 nodes
(see [28]).

2. Preliminaries

Let X be a variety and BX be a boundary5 on X, i.e., BX =
∑k

i=1 aiBi,
where Bi is a prime divisor on X and ai ∈ Q (see [22]). The log pair (X, BX)
is called movable when every component Bi is a linear system on X such that
the base locus of Bi has codimension at least 2 (see [12], [4]). We assume that
KX and BX are Q-Cartier divisors.

Definition 17. A log pair (V, BV ) is a log pull-back of the log pair (X, BX)
with respect to a birational morphism f : V → X if BV = f−1(BX) −∑n

i=1 a(X, BX , Ei)Ei such that the equivalence KV + BV ∼Q f∗(KX + BX)
holds, where Ei is an f -exceptional divisor and a(X, BX , Ei) ∈ Q. The num-
ber a(X, BX , Ei) is called a discrepancy of (X, BX) in the f -exceptional divi-
sor Ei.

Definition 18. A birational morphism f : V → X is called a log resolution
of the log pair (X, BX) if the variety V is smooth and the union of all proper
transforms of the divisors Bi and all f -exceptional divisors forms a divisor
with simple normal crossing.

Definition 19. A proper irreducible subvariety Y ⊂ X is called a center
of log canonical singularities of the log pair (X, BX) if there are a birational
morphism f : V → X together with a not necessarily f -exceptional divisor
E ⊂ V such that E is contained in the support of the effective part of the

5Usually boundaries are assumed to be effective (see [22]), but we do not assume this.
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divisor �BV 	 and f(E) = Y . The set of all the centers of log canonical
singularities of the log pair (X, BX) is denoted by LCS(X, BX).

Definition 20. For a log resolution f : V → X of (X, BX) the subscheme
L(X, BX) associated to the ideal sheaf I(X, BX) = f∗(OV (
−BV �)) is called
a log canonical singularity subscheme of the log pair (X, BX).

The support of the log canonical singularity subscheme L(X, BX) is a union
of all elements in the set LCS(X, BX). The following result is due to [27] (see
[23], [1], [4]).

Theorem 21. Suppose that BX is effective and for some nef and big divisor
H on X the divisor D = KX + BX + H is Cartier. Then

Hi(X, I(X, BX) ⊗OX(D)) = 0 for i > 0.

Consider the following application of Theorem 21.
Lemma 22. Let Σ ⊂ Pn be a finite subset, and M be a linear system of

hypersurfaces of degree k passing through all points of the set Σ. Suppose that
the base locus of the linear system M is zero-dimensional. Then the points of
the set Σ impose independent linear conditions on the homogeneous forms on
Pn of degree n(k − 1).

Proof. Let Λ ⊂ Pn be a base locus of the linear system M. Then Σ ⊆ Λ
and Λ is a finite subset in Pn. Now consider sufficiently general different
divisors H1, . . . , Hs in the linear system M for s  0. Let X = Pn and
BX = n

s

∑s
i=1 Hi. Then Supp(L(X, BX)) = Λ.

To prove the claim it is enough to prove that for every point P ∈ Σ there
is a hypersurface in Pn of degree n(k−1) that passes through all the points in
the set Σ\P and does not pass through the point P . Let Σ\P = {P1, . . . , Pk},
where Pi is a point of X = Pn, and let f : V → X be a blowup at the points
of Σ \ P . Then

KV + (BV +
k∑

i=1

(multPi
(BX) − n)Ei) + f∗(H) = f∗(n(k − 1)H) −

k∑

i=1

Ei,

where Ei = f−1(Pi), BV = f−1(BX) and H is a hyperplane in Pn. By
construction we have multPi

(BX) = nmultPi
(M) ≥ n and B̂V = BV +∑k

i=1(multPi
(BX) − n)Ei is effective.

Let P̄ = f−1(P ). Then P̄ ∈ LCS(V, B̂V ) and P̄ is an isolated center of log
canonical singularities of the log pair (V, B̂V ), because in the neighborhood of
the point P the birational morphism f : V → X is an isomorphism. On the
other hand, the map

H0(OV (f∗(n(k−1)H)−
k∑

i=1

Ei))→H0(OL(V,B̂V )⊗OV (f∗(n(k−1)H)−
k∑

i=1

Ei))
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is surjective by Theorem 21. However, in the neighborhood of the point P̄ the
support of the subscheme L(V, B̂V ) consists just of the point P̄ . The latter
implies the existence of a divisor D ∈ |f∗(n(k − 1)H) −

∑k
i=1 Ei| that does

not pass through P̄ . Thus, f(D) is a hypersurface in Pn of degree n(k − 1)
that passes through the points of Σ \ P and does not pass through the point
P ∈ Σ. �

Actually, arguing as in the proof of Lemma 22 we can prove Theorem 11.
Proof of Theorem 11. We have a double cover π : X → P3 branched over

a nodal hypersurface S ⊂ P3 of degree 2r, a linear subsystem H ⊂ |OP3(k)|
of hypersurfaces vanishing at Sing(S) for k < r such that dim(Bs(Ĥ)) = 0,
where Ĥ = H|S . We must show that the nodes of S impose independent
linear conditions on homogeneous forms of degree 3r−4 due to Proposition 2.
Suppose that dim(Bs(H)) = 0. Then Lemma 22 implies that the nodes of S

impose independent linear conditions on homogeneous forms of degree 3r −
4, which proves Corollary 12. In the general case we can repeat the proof
of Lemma 22 replacing 3

s

∑s
i=1 Hi by S + 1

s

∑s
i=1 Hi. The proof of the Q-

factoriality of the nodal hypersurface V ⊂ P4 is similar. �
Definition 23. A proper irreducible subvariety Y ⊂ X is called a center of

canonical singularities of (X, BX) if there is a birational morphism f : W → X

and an f -exceptional divisor E ⊂ W such that the discrepancy a(X, BX , E) ≤
0 and f(E) = Y . The set of all centers of canonical singularities of the log
pair (X, BX) is denoted by CS(X, BX).

The following result is a corollary of Theorem 17.6 in [23].
Proposition 24. Let H be an effective Cartier divisor on X and Z ∈

CS(X, BX). Suppose that X and H are smooth in the generic point of Z, Z ⊂
H, H �⊂ Supp(BX) and BX is an effective boundary. Then LCS(H, BX |H)
�= ∅.

The following result is Corollary 7.3 in [26] (see [20], [12]).
Theorem 25. Suppose that X is smooth, dim(X) ≥ 3, the boundary BX is

effective and movable, and the set CS(X, BX) contains a closed point O ∈ X.
Then multO(B2

X) ≥ 4 and the equality implies multO(BX) = 2 and dim(X)
= 3.

The following result is implied by Theorem 3.10 in [12] and Proposition 24.
Theorem 26. Suppose that dim(X) ≥ 3, BX is effective, and the set

CS(X, BX) contains an ordinary double point O of X. Then the equality
multO(BX) ≥ 1 holds;6 moreover, the equality multO(BX) = 1 implies that
dim(X) = 3.

The following result is an easy modification of Theorem 26.

6The rational number multO(BX ) is defined by the equivalence f∗(BX ) ∼Q f−1(BX)+

multO(BX)E, where f : W → X is a blowup of O and E is an f -exceptional divisor.
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Proposition 27. Suppose that dim(X) = 3, BX is effective, and the set
CS(X, BX) contains an isolated singular point O of the variety X, which
is locally isomorphic to the singularity y3 =

∑3
i=1 x2

i . Then the inequality
multO(BX) ≥ 1

2 holds.
Proof. The 3-fold W is smooth, E is isomorphic to a cone in P3 over a

smooth conic, the restriction −E|E is rationally equivalent to a hyperplane
section of E ⊂ P3, and

KW + BW ∼Q f∗(KX + BX) + (1 − multO(BX))E,

where BW = f−1(BX). Suppose that multO(BX) < 1
2 . Then

CS(W, BW ) ⊂ CS(W, BW + (multO(BX) − 1)E),

because multO(BX)−1<0. However, the log pair (W, BW+(multO(BX)−1)E)
is a log pull-back of (X, BX) and O ∈ CS(X, BX). Therefore, there is a
proper irreducible subvariety Z ⊂ E such that Z ∈ CS(W, BW ). Hence,
LCS(E, BW |E) �= ∅ by Proposition 24.

Let BE = BW |E . Then LCS(E, BE) does not contains curves on E, be-
cause otherwise the intersection of BE with the ruling of E is greater than
1
2 , which is impossible due to our assumption multO(BX) < 1

2 . Therefore,
dim(Supp(L(E, BE))) = 0.

Let H be a hyperplane section of E ⊂ P3. Then

KE + BE + (1 − multO(BX))H ∼Q −H

and H0(OE(−H)) = 0. On the other hand, the sequence of groups

H0(OE(−H)) → H0(OL(E,BE)) → H1(E, I(E, BE) ⊗OE(−H))

is exact and H1(E, I(E, BE)⊗OE(−H)) = 0 by Theorem 21. Therefore, the
latter implies the vanishing of H0(OL(E,BE)), which contradicts LCS(E, BE)
�= ∅. �

The following result is due to [11] (see [26], [4]).
Theorem 28. Let X be a Fano variety with Pic(X) ∼= Z with termi-

nal Q-factorial singularities such that either X is not birationally rigid or
Bir(X) �= Aut(X). Then there is a linear system M on X whose base locus
has codimension at least 2 such that the singularities of the log pair (X, µM)
are not canonical, where µ ∈ Q>0 such that µM ∼Q −KX .

The following result is due to [3].
Theorem 29. Let π : Y → P2 be the blowup at points P1, . . . , Ps on

P2, s ≤ d2+9d+10
6 , such that at most k(d + 3 − k) − 2 of the points Pi lie

on a curve of degree k ≤ d+3
2 , where d ≥ 3 is a natural number. Then

|π∗(OP2(d)) −
∑s

i=1 Ei| is free, where Ei = π−1(Pi).
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Corollary 30. Let Σ ⊂ P2 be a finite subset such that the inequality |Σ| ≤
d2+9d+16

6 holds and at most k(d+3−k)−2 points of Σ lie on a curve of degree
k ≤ d+3

2 , where d ≥ 3 is a natural number. Then for every point P ∈ Σ there
is a curve C ⊂ P2 of degree d that passes through all the points in Σ \ P and
does not pass through the point P .

In the case d = 3 the claim of Theorem 29 is nothing but the freeness of
the anticanonical linear system of a weak del Pezzo surface of degree 9−s ≥ 2
(see [14]).

3. Double solids

In this section we prove Theorem 3. Let π : X → P3 be a double cover
branched over a nodal hypersurface S ⊂ P3 of degree 2r such that |Sing(S)| ≤
(2r−1)r

3 . We must show that the nodes of S ⊂ P3 impose independent linear
conditions on homogeneous forms of degree 3r−4 on P3 due to Proposition 2.
Moreover, we may assume r ≥ 3, because in the case r ≤ 2 the required claim
is trivial.

Definition 31. The points of a subset Γ ⊂ Ps satisfy the property ∇ if at
most t(2r − 1) points of the set Γ can lie on a curve in Ps of degree t ∈ N.

Let Σ = Sing(S) ⊂ P3.
Proposition 32. The points of the subset Σ ⊂ P3 satisfy the property ∇.
Proof. Let F (x0, x1, x2, x3) = 0 be a homogeneous equation of degree 2r

that defines S ⊂ P3, where (x0 : x1 : x2 : x3) are homogeneous coordinates on
P3. Consider the linear system

L =

∣∣∣∣∣

3∑

i=0

λi
∂F

∂xi
= 0

∣∣∣∣∣ ⊂ |OP3(2r − 1)|,

where λi ∈ C. The base locus of L consists of singular points of S. A curve
in P3 of degree t intersects a generic member of L at most (2r − 1)t times,
which implies the claim. �

Fix a point P ∈ Σ. To prove that the points of Σ ⊂ P3 impose indepen-
dent linear conditions on homogeneous forms of degree 3r − 4 it is enough to
construct a hypersurface in P3 of degree 3r− 4 that passes through Σ \P and
does not pass through P ∈ Σ.

Lemma 33. Suppose Σ ⊂ Π for some hyperplane Π ⊂ P3. Then there is
a hypersurface in P3 of degree 3r − 4 that passes through Σ \ P and does not
pass through P ∈ Σ.

Proof. Let us apply Corollary 30 to Σ ⊂ Π and d = 3r − 4 ≥ 5. We must
check that all the conditions of Corollary 30 are satisfied, which is easy but



672 IVAN CHELTSOV

not obvious. First of all,

|Σ| ≤ (2r − 1)r
3

⇒ |Σ| ≤ d2 + 9d + 16
6

and at most d = 3r − 4 points of Σ can lie on a line in Π because r ≥ 3 and
the points of the subset Σ ⊂ Π satisfy the property ∇ due to Proposition 32.

Now we must prove that at most t(3r − 1 − t) − 2 points of Σ can lie on a
curve of degree t ≤ 3r−1

2 . The case t = 1 is already done. Moreover, at most
t(2r − 1) points of the set Σ can lie on a curve of degree t by Proposition 32.
Thus, we must show that

t(3r − 1 − t) − 2 ≥ t(2r − 1)

for all t ≤ 3r−1
2 . Moreover, we must prove the latter inequality only for such

t > 1 that the inequality t(3r − 1 − t) − 2 < |Σ| holds, because otherwise the
corresponding condition on the points of the set Σ is vacuous. Moreover, we
have

t(3r − 1 − t) − 2 ≥ t(2r − 1) ⇐⇒ r > t,

because t > 1. Suppose that the inequality r ≤ t holds for some natural
number t such that t ≤ 3r−1

2 and t(3r − 1 − t) − 2 < |Σ|. Let g(x) =
x(3r − 1 − x) − 2. Then g(x) is increasing for x < 3r−1

2 . Thus, we have
g(t) ≥ g(r), because 3r−1

2 ≥ t ≥ r. Hence,

(2r − 1)r
3

≥ |Σ| > g(t) ≥ g(r) = r(2r − 1) − 2,

which is impossible when r ≥ 3.
Therefore, there is a curve C ⊂ Π of degree 3r−4 that passes through Σ\P

and does not pass through P by Corollary 30. Let Y ⊂ P3 be a sufficiently
general cone over the curve C ⊂ Π ∼= P2. Then Y ⊂ P3 is a hypersurface of
degree 3r− 4 that passes through all the points of the set Σ \P and does not
pass through the point P ∈ Σ. �

Take a sufficiently general hyperplane Π ⊂ P3. Let ψ : P3 ��� Π be a
projection from a sufficiently general point O ∈ P3, Σ′ = ψ(Σ) ⊂ Π ∼= P2 and
P̂ = ψ(P ) ∈ Σ′.

Lemma 34. Suppose that the points of Σ′ ⊂ Π satisfy the property ∇.
Then there is a hypersurface in P3 of degree 3r − 4 containing Σ \ P and not
passing through P .

Proof. Arguing as in the proof of Lemma 33 we obtain a curve C ⊂ Π of
degree 3r − 4 that passes through Σ′ \ P̂ and does not pass through P̂ . Let
Y ⊂ P3 be a cone over the curve C with the vertex O. Then Y ⊂ P3 is a
hypersurface of degree 3r − 4 that passes through Σ \ P and does not pass
through the point P ∈ Σ. �
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Perhaps the points of the set Σ′ ⊂ Π always satisfy the property ∇, but
we are unable to prove it. We may assume that the points of Σ′ ⊂ Π do not
satisfy the property ∇.

Definition 35. The points of a subset Γ ⊂ Ps satisfy the property ∇k if
at most i(2r − 1) points of the set Γ can lie on a curve in Ps of degree i ∈ N

for all i ≤ k.
Therefore, there is a smallest k ∈ N such that the points of Σ′ ⊂ Π do not

satisfy the property ∇k, i.e., there is a subset Λ1
k ⊂ Σ such that |Λ1

k| > k(2r−1)
and all points of

Λ̃1
k = ψ(Λ1

k) ⊂ Σ′ ⊂ Π ∼= P2

lie on a curve C ⊂ Π of degree k. Moreover, the curve C is irreducible and
reduced due to the minimality of k. In the case when the points of the subset
Σ′ \ Λ̃1

k ⊂ Π do not satisfy the property ∇k we can find a subset Λ2
k ⊂ Σ \Λ1

k

such that |Λ2
k| > k(2r − 1) and all the points of the set Λ̃2

k = ψ(Λ2
k) lie on an

irreducible curve of degree k. Thus, we can iterate this construction ck times
and get ck > 0 disjoint subsets

Λi
k ⊂ Σ \

i−1⋃

j=1

Λj
k � Σ

such that |Λi
k| > k(2r − 1), all the points of the subset Λ̃i

k = ψ(Λi
k) ⊂ Σ′ lie

on an irreducible reduced curve on Π of degree k, and all the points of the
subset

Σ′ \
ck⋃

i=1

Λ̃i
k ⊂ Π ∼= P2

satisfy the property ∇k. Now we can repeat this construction for the property
∇k+1 and find ck+1 ≥ 0 disjoint subsets

Λi
k+1 ⊂ (Σ \

ck⋃

i=1

Λi
k) \

i−1⋃

j=1

Λj
k+1 ⊂ Σ \

ck⋃

i=1

Λi
k � Σ

such that |Λi
k+1| > (k + 1)(2r − 1), the points of Λ̃i

k+1 = ψ(Λi
k+1) ⊂ Σ′ lie

on an irreducible reduced curve on Π of degree k + 1, and the points of the
subset

Σ′ \
k+1⋃

j=k

cj⋃

i=1

Λ̃i
j � Σ′ ⊂ Π ∼= P2

satisfy the property ∇k+1. Now we can iterate this construction for ∇k+2, . . . ,

∇l and get disjoint subsets Λi
j ⊂ Σ for j = k, . . . , l ≥ k such that
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|Λi
j | > j(2r − 1), all the points of the subset Λ̃i

j = ψ(Λi
j) ⊂ Σ′ lie on an

irreducible reduced curve of degree j in Π, and all the points of the subset

Σ̄ = Σ′ \
l⋃

j=k

cj⋃

i=1

Λ̃i
j � Σ′ ⊂ Π ∼= P2

satisfy the property ∇, where cj ≥ 0 is the number of subsets Λ̃i
j . The subset

Λ1
k ⊂ Σ is non-empty, i.e., ck > 0, but every subset Λi

j ⊂ Σ can be empty when
j �= k or i �= 1, and the subset Σ̄ ⊂ Σ′ can be empty as well. Nevertheless, we
always have the inequality

(36) |Σ̄| <
(2r − 1)r

3
−

l∑

i=k

ci(2r − 1)i =
(2r − 1)

3
(r − 3

l∑

i=k

ici).

Corollary 37. The inequality
∑l

i=k ici < r
3 holds.

In particular, Λi
j �= ∅ implies j < r

3 .
Lemma 38. Suppose that Λi

j �= ∅. Let M be a linear system of hypersur-
faces of degree j in P3 passing through all the points in Λi

j. Then the base
locus of M is zero-dimensional.

Proof. By the construction of the set Λi
j all the points of the subset

Λ̃i
j = ψ(Λi

j) ⊂ Σ′ ⊂ Π ∼= P2

lie on an irreducible reduced curve C ⊂ Π of degree j. Let Y ⊂ P3 be a cone
over C with the vertex O. Then Y is a hypersurface in P3 of degree j that
contains all the points of the set Λi

j . Therefore, Y ∈ M.
Suppose that the base locus of the linear system M contains an irreducible

reduced curve Z ⊂ P3. Then Z ⊂ Y and ψ(Z) = C. Moreover, Λi
j ⊂ Z,

because Λi
j �⊂ Z implies that Λ̃i

j �⊂ C due to the generality of ψ. Finally, the
restriction ψ|Z : Z → C is a birational morphism, because the projection ψ

is general. Hence, deg(Z) = j and Z contains at least |Λi
j | > j(2r − 1) points

of Σ. The latter contradicts Proposition 32. �
Corollary 39. The inequality k ≥ 2 holds.
For every Λi

j �= ∅ let Ξi
j ⊂ P3 be a base locus of the linear system of

hypersurfaces of degree j in P3 passing through all the points in Λi
j . For

Λi
j = ∅ put Ξi

j = ∅. Then Ξi
j is a finite set by Lemma 38 and Λi

j ⊆ Ξi
j by

construction.
Lemma 40. Suppose that Ξi

j �= ∅. Then the points of the subset Ξi
j ⊂ P3

impose independent linear conditions on homogeneous forms on P3 of degree
3(j − 1).

Proof. The claim follows from Lemma 22. �
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Corollary 41. Suppose that Λi
j �= ∅. Then the points of the subset Λi

j ⊂ P3

impose independent linear conditions on homogeneous forms on P3 of degree
3(j − 1).

Lemma 42. Suppose that Σ̄ = ∅. Then there is a hypersurface in P3 of
degree 3r − 4 containing Σ \ P and not passing through the point P .

Proof. The set Σ is a disjoint union
⋃l

j=k

⋃cj

i=1 Λi
j , and there is a unique

set Λb
a containing the point P . In particular, P ∈ Ξb

a. On the other hand, the
union

⋃l
j=k

⋃cj

i=1 Ξi
j is not necessarily disjoint. Thus, a priori the point P can

be contained in many sets Ξi
j .

For every Ξi
j �= ∅ containing P there is a hypersurface of degree 3(j−1) that

passes through Ξi
j \ P and does not pass through P by Lemma 40. For every

Ξi
j �= ∅ not containing the point P there is a hypersurface of degree j that

passes through Ξi
j and does not pass through the point P by the definition of

the set Ξi
j . Moreover, j < 3(j−1), because k ≥ 2 by Corollary 39. Therefore,

for every Ξi
j �= ∅ there is a hypersurface F j

i ⊂ P3 of degree 3(j−1) that passes
through Ξi

j \ P and does not pass through the point P . Let

F =
l⋃

j=k

cj⋃

i=1

F i
j ⊂ P3

be a possibly reducible hypersurface of degree
∑l

i=k 3(i−1)ci. Then F passes
through all the points of the set Σ \ P and does not pass through the point
P . Moreover, we have

deg(F ) =
l∑

i=k

3(i − 1)ci <

l∑

i=k

3ici < r < 3r − 4

by Corollary 37, which implies the claim. �
Let Σ̂ =

⋃l
j=k

⋃cj

i=1 Λi
j and Σ̌ = Σ\Σ̂. Then Σ = Σ̂∪Σ̌ and ψ(Σ̌) = Σ̄ ⊂ Π.

Therefore, we proved Theorem 3 in the extreme cases: Σ̂ = ∅ and Σ̌ = ∅. Now
we must combine the proofs of the Lemmas 34 and 42 to prove Theorem 3 in
the case when Σ̂ �= ∅ and Σ̌ �= ∅.

Remark 43. Arguing as in the proof of Lemma 42 we obtain a hypersur-
face F ⊂ P3 of degree

∑l
i=k 3(i − 1)ci that passes through all the points of

the subset Σ̂ \ P � Σ and does not pass through the point P ∈ Σ.
Put d = 3r−4−

∑l
i=k 3(i−1)ci. Let us check that the subset Σ̄ ⊂ Π ∼= P2

and the number d satisfy all the hypotheses of Theorem 29. We may assume
that ∅ �= Σ̂ � Σ.

Lemma 44. The inequality d ≥ 6 holds.
Proof. The claim is implied by Corollary 37 and ck ≥ 1. �
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Lemma 45. The inequality |Σ̄| ≤ d2+9d+10
6 holds.

Proof. To prove the claim it is enough to show that

2(2r−1)(r−3
l∑

i=k

ici) ≤ (3r−4−
l∑

i=k

3(i−1)ci)2+9(3r−4−
l∑

i=k

3(i−1)ci)+10,

because |Σ̄| < (2r−1)
3 (r − 3

∑l
i=k ici) by the inequality 36. However, we have

(3r − 4 −
l∑

i=k

3(i − 1)ci)2 + 9(3r − 4 −
l∑

i=k

3(i − 1)ci) + 10

> (2r − 4 + 3ck)2 + 9(2r − 4 + 3ck) + 10,

because ck ≥ 1 and
∑l

i=k 3ici < r by Corollary 37. Thus, we have

(2r−4+3ck)2+9(2r−4+3ck)+10 ≥ (2r−1)2+9(2r−1)+10 = 4r2+14r+2,

which implies 4r2 + 14r + 2 > 4r2 − 2r > 2(2r − 1)(r − 3
∑l

i=k ici). �
Lemma 46. At most t(d + 3 − t) − 2 points of Σ̄ lie on a curve in P2 of

degree t ≤ d+3
2 .

Proof. In the case t = 1 the claim is implied by Proposition 32, Corollary 37
and the inequality ck ≥ 1. Hence, we may assume that t > 1.

The points of the subset Σ̄ ⊂ P2 satisfy the property ∇. Thus, at most
(2r − 1)t of the points of Σ̄ lie on a curve in P2 of degree t. Therefore, to
conclude the proof it is enough to show that t(d+3− t)−2 ≥ (2r−1)t for all
t ≤ d+3

2 . Moreover, it is enough to prove the latter inequality only for t > 1
such that t(d+3−t)−2 < |Σ̄|, because otherwise the corresponding condition
on the points of the set Σ̄ is vacuous.

Now we have

t(d + 3 − t) − 2 ≥ t(2r − 1) ⇐⇒ t(r −
l∑

i=k

3(i − 1)ci − t) ≥ 2

⇐⇒ r −
l∑

i=k

3(i − 1)ci > t,

because t > 1. We may assume that the inequalities t(d+3− t)−2 < |Σ̄| and

r −
l∑

i=k

3(i − 1)ci ≤ t ≤ d + 3
2
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hold. Let g(x) = x(d + 3 − x) − 2. Then g(x) is increasing for x < d+3
2 .

Therefore, the inequality g(t) ≥ g(r−
∑l

i=k 3(i− 1)ci) holds. Hence, we have

(2r − 1)
3

(r − 3
l∑

i=k

ici) > |Σ̄| > g(t) ≥ (r −
l∑

i=k

3(i − 1)ci)(2r − 1) − 2

and (2r − 1)(6
∑l

i=k ici − 2r) + 6 − 9
∑l

i=k ci(2r − 1) > 0. Now we have

(2r − 1)(6
l∑

i=k

ici − 2r) + 6 − 9
l∑

i=k

ci(2r − 1) < 6 − 9
l∑

i=k

ci(2r − 1)

< 6 − 9ck(2r − 1) < 0,

because
∑l

i=k 3ici < r by Corollary 37. The obtained contradiction implies
the claim. �

Therefore, we can apply Theorem 29 to the blowup of the hyperplane Π at
the points of the set Σ̄\ P̂ ⊂ Π due to Lemmas 44, 45 and 46. The application
of Theorem 29 gives a curve C ⊂ Π ∼= P2 of degree 3r − 4 −

∑l
i=k 3(i − 1)ci

that passes through all the points of the set Σ̄ \ P̂ and does not pass through
the point P̂ = ψ(P ). It should be pointed out that the subset Σ̄ ⊂ Σ′ may
not contain P̂ ∈ Σ′. Namely, P̂ ∈ Σ̄ if and only if P ∈ Σ̌.

Let G ⊂ P3 be a cone over the curve C with the vertex O, where O ∈ P3 is
the center of the projection ψ : P3 ��� Π. Then G is a hypersurface of degree
3r − 4 −

∑l
i=k 3(i − 1)ci that passes through the points of Σ̌ \ P and does

not pass through P . On the other hand, we already have the hypersurface
F ⊂ P3 of degree

∑l
i=k 3(i− 1)ci that passes through the points of Σ̂ \P and

does not pass through P . Therefore, F ∪ G ⊂ P3 is a hypersurface of degree
3r − 4 that passes through all the points of the set Σ \ P and does not pass
through the point P ∈ Σ. Hence, we proved Theorem 3.

4. Hypersurfaces in P4

In this section we prove Theorem 4. Let V ⊂ P4 be a nodal hypersurface
of degree n such that |Sing(V )| ≤ (n−1)2

4 . In order to prove Theorem 4 it
is enough to show that the nodes of the hypersurface V impose independent
linear conditions on homogeneous forms of degree 2n− 5 on P4 due to Propo-
sition 2. Moreover, we may always assume that n ≥ 4, because in the case
n ≤ 3 the required claim is trivial.

Definition 47. The points of a subset Γ ⊂ Pr satisfy the property � if at
most k(n − 1) points of the set Γ can lie on a curve in Pr of degree k ∈ N.
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Let Σ = Sing(V ) ⊂ P4. Then arguing as in the proof of Proposition 32 we
obtain the following result.

Proposition 48. The points of the subset Σ ⊂ P4 satisfy the property �.
Fix a point P ∈ Σ. To prove that the points of Σ ⊂ P4 impose independent

linear conditions on homogeneous forms on P4 of degree 2n − 5 it is enough
to construct a hypersurface in P4 of degree 2n − 5 that passes through the
points of the set Σ \ P and does not pass through P ∈ Σ. Arguing as in the
proof of Lemma 33 we obtain the following result.

Lemma 49. Suppose that the subset Σ ⊂ P4 is contained in some two-
dimensional linear subspace Π ⊂ P4. Then there is a hypersurface in P4 of
degree 2n− 5 that passes through the points of the set Σ \P and does not pass
through the point P ∈ Σ.

Fix a general two-dimensional linear subspace Π ⊂ P4. Let ψ : P4 ��� Π
be a projection from a general line L ⊂ P4, Σ′ = ψ(Σ) and P̂ = ψ(P ). Then
ψ|Σ : Σ → Σ′ is a bijection.

Lemma 50. Suppose that the points in Σ′ ⊂ Π satisfy the property �.
Then there is a hypersurface in P4 of degree 2n− 5 containing Σ \ P and not
passing through P ∈ Σ.

Proof. Arguing as in the proof of Lemma 33 we prove the existence of a
curve C ⊂ Π of degree 2n − 5 that passes through Σ′ \ P̂ and does not pass
through P̂ . Let Y ⊂ P4 be a three-dimensional cone over the curve C with
the vertex L ⊂ P4. Then Y ⊂ P4 is the required hypersurface. �

We may assume that the points of Σ′ ⊂ Π do not satisfy the property
�. Arguing as in the proof of Theorem 3 we can construct disjoint subsets
Λi

j ⊂ Σ for j = r, . . . , l ≥ r such that the inequality |Λi
j | > j(n − 1) holds, all

the points of the subset Λ̃i
j = ψ(Λi

j) ⊂ Σ′ lie on an irreducible reduced curve
in Π ∼= P2 of degree j, and all the points in the subset

Σ̄ = Σ′ \
l⋃

j=r

cj⋃

i=1

Λ̃i
j � Σ′ ⊂ Π ∼= P2

satisfy the property �, where cj ≥ 0 is a number of subsets Λ̃i
j and cr > 0.

In particular,

(51) 0 ≤ |Σ̄| <
(n − 1)2

4
−

l∑

i=r

ci(n − 1)i =
n − 1

4
(n − 1 − 4

l∑

i=r

ici).

Corollary 52. The inequality
∑l

i=r ici < n−1
4 holds.

For every Λi
j �= ∅ let Ξi

j ⊂ P4 be a base locus of the linear system of
hypersurfaces of degree j in P4 passing through all the points in Λi

j ; otherwise
put Ξi

j = ∅. Then Ξi
j is a finite set (see the proof of Lemma 38) and, in
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particular, r ≥ 2. Moreover, Λi
j ⊆ Ξi

j by definition of Ξi
j ⊂ P4. Therefore,

the points of the set Ξi
j ⊂ P4 impose independent linear conditions on the

homogeneous forms on P4 of degree 4(j − 1) by Lemma 22. In particular, the
points of the set Λi

j impose independent linear conditions on the homogeneous
forms on P4 of degree 4(j − 1).

Let Σ̂ =
⋃l

j=r

⋃cj

i=1 Λi
j and Σ̌ = Σ\Σ̂. Then Σ = Σ̂∪Σ̌ and ψ(Σ̌) = Σ̄ ⊂ Π.

Then arguing as in the proof of Lemma 42 we obtain a hypersurface in P4 of
degree 2n− 5 containing all points in Σ \P and not passing through P in the
case when Σ̄ = ∅. Actually, arguing as in the proof of Lemma 42 we prove
the existence of a hypersurface F ⊂ P4 of degree

∑l
i=r 4(i − 1)ci that passes

through all the points of the subset Σ̂ \ P � Σ and does not pass through
the point P ∈ Σ. Put d = 2n − 5 −

∑l
i=r 4(i − 1)ci. Let us check that the

subset Σ̄ ⊂ Π and the number d satisfy all hypotheses of Theorem 29. We
may assume Σ̂ �= ∅ and Σ̌ �= ∅.

Lemma 53. The inequality d ≥ 5 holds.
Proof. We have

∑l
i=r 4ici < n−1 by Corollary 52. Thus, d > n−4+4cr ≥

n ≥ 4. �
Lemma 54. The inequality |Σ̄| ≤ d2+9d+10

6 holds.
Proof. Suppose that |Σ̄| > d2+9d+10

6 . Then

3(n − 1)(n − 1 − 4
l∑

i=r

ici)

> 2(2n − 5 −
l∑

i=r

4(i − 1)ci)2 + 18(2n − 5 −
l∑

i=r

4(i − 1)ci) + 20,

because |Σ̄| < n−1
4 (n − 1 − 4

∑l
i=r ici). Let A =

∑l
i=r ici and B =

∑l
i=r ci.

Then

3(n−1)2−12(n−1)A > 2(2n−1)2−16A(2n−1)+32A2+18(2n−1)−72A+20,

because B ≥ cr ≥ 1. Thus, for n ≥ 4 we have

3(n−1)2 > 8n2 +28n+4+32A2 −A(20n+68) > 5n2 +12n+23 > 3(n−1)2,

because A < n−1
4 by Corollary 52. �

Lemma 55. At most k(d + 3 − k) − 2 points of Σ̄ lie on a curve in P2 of
degree k ≤ d+3

2 .
Proof. The case k = 1 follows from Corollary 52 and cr ≥ 1. Therefore, we

may assume that k > 1. The points of Σ̄ ⊂ P2 satisfy the property �. So, at
most k(n − 1) of the points of Σ̄ lie on a curve of degree k. To conclude the
proof it is enough to prove that

k(d + 3 − k) − 2 ≥ k(n − 1)
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for all k ≤ d+3
2 . Moreover, it is enough to prove the latter inequality only for

such natural numbers k > 1 that the inequality k(d + 3 − k) − 2 < |Σ̄| holds,
because otherwise the corresponding condition on the points of the set Σ̄ is
vacuous.

The inequality k(d + 3 − k) − 2 ≥ k(n − 1) holds if and only if n − 1 −∑l
i=r 4(i−1)ci > k, because k > 1. Thus, we may assume that the inequalities

k(d + 3 − k) − 2 < |Σ̄| and

n − 1 −
l∑

i=r

4(i − 1)ci ≤ k ≤ d + 3
2

hold. Let g(x) = x(d+3−x)− 2. Then g(x) is increasing for x < d+3
2 . Thus,

we have

(n − 1)
4

(n − 1 − 4
l∑

i=r

ici) > |Σ̄| > g(k) ≥ g(n − 1 −
l∑

i=r

4(i − 1)ci).

Let A =
∑l

i=r ici and B =
∑l

i=r ci. Then the inequality

(n − 1)
4

(n − 1 − 4A) > 4(n − 1 − 4A + 4B)(n − 1) − 2

holds. Therefore, we have

n − 1 − 4A > 4(n − 1) − 16A + 16B − 1 > 4(n − 1) − 16A,

because B ≥ cr ≥ 1. Thus, 4A > n − 1, but A < n−1
4 by Corollary 52. �

Now we can apply Corollary 30 to get a curve C ⊂ Π of degree 2n − 5 −∑l
i=r 4(i − 1)ci that passes through the points of the subset Σ̄ \ P̂ ⊂ Π ∼= P2

and does not pass through the point P̂ ⊂ Σ′. Let G ⊂ P4 be a cone over C

with the vertex in the center L of the projection ψ : P4 ��� Π. Then G ⊂ P4

is a hypersurface of degree 2n− 5−
∑l

i=r 4(i− 1)ci that passes through Σ̌ \P

and does not pass through P . However, we already have the hypersurface
F ⊂ P4 of degree

∑l
i=r 4(i−1)ci that passes through Σ̂\P and does not pass

through P . Therefore, F ∪ G ⊂ P4 is a hypersurface of degree 2n − 5 that
passes through Σ \ P and does not pass through P ∈ Σ. Thus, Theorem 4 is
proved.

5. Calabi-Yau 3-folds

In this section we prove Proposition 9. Let π : X → P3 be a double cover
branched over a nodal hypersurface S ⊂ P3 of degree 8 such that |Sing(S)| ≤
25, and let V ⊂ P4 be a nodal hypersurface of degree 5 such that |Sing(V )| ≤
14. Due to Proposition 2 it is enough to prove that the nodes of the surface
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S ⊂ P3 impose independent linear conditions on homogeneous forms of degree
8 on P3 and the nodes of the hypersurface V ⊂ P4 impose independent linear
conditions on homogeneous forms of degree 5 on P4.

Let Σ = Sing(S) ⊂ P3 and Λ = Sing(V ) ⊂ P4. Arguing as in the proof of
Proposition 32 we see that no more than 7k points of Σ and no more than 4k
points of Λ can lie on a curve of degree k = 1, 2, 3. Let us fix a point P ∈ Σ
and a point Q ∈ Λ. To prove Proposition 9 we must construct a hypersurface
in P3 of degree 8 that passes through Σ \P and does not pass through P and
a hypersurface in P4 of degree 5 that passes through Λ \Q and does not pass
through the point Q.

Take general two-dimensional linear subspaces Π ⊂ P3 and Ω ⊂ P4. Let
ψ : P3 ��� Π be a projection from a general point P ∈ P3, and ξ : P4 ��� Ω be
a projection from a general line L ⊂ P4. Put Σ′ = ψ(Σ), P̂ = ψ(P ), Λ′ = ξ(Λ)
and Q̂ = ξ(Q). Then no more than 7 points of the subset Σ′ ⊂ Π and no
more than 5 points of the subset Λ′ ⊂ Ω can lie on a line (see the proof of
Lemma 38).

Lemma 56. No more than 14 points of the subset Σ′ ⊂ Π and no more
than 10 points of the subset Λ′ ⊂ Ω can lie on a conic.

Proof. Let Φ ⊂ Λ be a subset with |Φ| > 10. Consider the projection ξ as
a composition of a projection α : P4 ��� P3 from some point A ∈ L and a
projection β : P3 ��� Ω from the point B = α(L). The generality in the choice
of the line L implies the generality of the projections α and β. We claim that
the points of the sets α(Φ) and ξ(Φ) do not lie on a conic in P3 and Ω ∼= P2

respectively.
Suppose that the points of α(Φ) lie on a conic C ⊂ P3. Then conic C is

irreducible. Let D be a linear system of quadric hypersurfaces in P4 passing
through the points of Φ. As in the proof of Lemma 38 we see that the base
locus of D is zero-dimensional, because the points of Φ ⊂ P4 do not lie on a
conic in P4. Take a cone W ⊂ P4 over the conic C with the vertex A. Then
Φ ⊂ W . Moreover, we have Φ ⊂ Bs(D|W ) and D|W has no base components.
Let D1 and D2 be general curves in D|W . Then

8 = D1 · D2 ≥
∑

ω∈Φ

multω(D1)multω(D2) ≥ |Φ| > 10,

which is a contradiction. Therefore, the points of α(Φ) do not lie on a conic
in P3.

Suppose that the points of ξ(Φ) lie on a conic C ⊂ Π. Then we can repeat
the previous arguments to get a contradiction. The rest of the claim can be
proved in a similar way. �
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Now we can apply Corollary 30 to the subset Λ′ \ Q̂ ⊂ P2 and point Q̂ to
prove the existence of a hypersurface in P4 of degree 5 that passes through
Λ\Q and does not pass through the point Q ∈ Λ (see the proof of Theorem 4).
Similarly, in the case when at most 22 points of the subset Σ′ ⊂ Π can lie on
a cubic curve in Π ∼= P2 we can construct a hypersurface in P3 of degree 8
that passes through the points of the set Σ\P and does not pass through the
point P ∈ Σ.

Lemma 57. Suppose that there is a subset Υ ⊂ Σ such that |Υ| > 22 and
all the points of the set ψ(Υ) lie on a cubic curve in Π ∼= P2. Then there is
a hypersurface in P3 of degree 8 that passes through the points of Σ \ P and
does not pass through the point P .

Proof. Let H be a linear system of cubic hypersurfaces in P3 passing
through the points of the set Υ. Then the base locus of H is zero-dimensional
by Lemma 38.

Suppose P ∈ Υ. Then there is a hypersurface F ⊂ P3 of degree 6 that
passes through the points of Υ \ P and does not pass through the point P

by Lemma 22. On the other hand, the subset Σ \ Υ ⊂ P3 contains at most
2 points. Hence, there is a quadric G ⊂ P3 that passes through the points of
Σ\Υ and does not pass through P . Thus, F ∪G is the required hypersurface.

In the case when P �∈ Υ and P ∈ Bs(H) we can repeat every step of the
proof of the previous case. In the case when P �∈ Υ and P �∈ Bs(H) there is
a cubic hypersurface in P3 that passes through the points of Υ and does not
pass through the point P , which easily implies the existence of the required
hypersurface. �

Hence, Proposition 9 is proved.

6. Non-isolated singularities

In this section we prove Theorem 13, but we omit the proof of Theorem 14,
because it is similar. Let τ : U → Ps be a double cover branched over a
hypersurface F ⊂ Ps of degree 2r such that D1 ∩ · · · ∩ Ds−3 is a Q-factorial
nodal 3-fold, where Di is a general divisor in |τ∗(OPs(1))| and s ≥ 4. Let D

be a general divisor in |τ∗(OPs(1))|. We must show that the group Cl(U) is
generated by D. Note that U is normal.

Lemma 58. The group H1(OU (−nD)) for n > 0 vanishes.

Proof. In the case when the singularities of the variety U are mild enough
the claim is implied by the Kawamata-Viehweg vanishing (see [22]). In general
let us prove the claim by induction on s. Suppose that s = 4. Then we have
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an exact sequence of sheaves

0 → OU (−(n + 1)D) → OU (−nD) → OD(−nD) → 0

for any n ∈ Z. Therefore, we have an exact sequence of the cohomology
groups

0 → H1(OU (−(n + 1)D)) → H1(OU (−nD)) → H1(OD(−nD)) → · · ·

for n > 0. However, the 3-fold D is nodal by assumption. Thus, the group
H1(OD(−nD)) vanishes by the Kawamata-Viehweg vanishing. Hence, we
have

H1(OU (−D)) ∼= H1(OU (−2D)) ∼= · · · ∼= H1(OU (−nD))

for every n > 0. On the other hand, the group H1(OU (−nD)) vanishes for
n  0 by the lemma of Enriques-Severi-Zariski (see [32]).

Suppose that s > 4. Then we have an exact sequence of sheaves

0 → OU (−(n + 1)D) → OU (−nD) → OD(−nD) → 0

for any n ∈ N. Therefore, we have an exact sequence of the cohomology
groups

0 → H1(OU (−(n + 1)D)) → H1(OU (−nD)) → H1(OD(−nD)) → · · ·

for n > 0. However, the group H1(OD(−nD)) vanishes by the induction.
Hence,

H1(OU (−D)) ∼= H1(OU (−2D)) ∼= · · · ∼= H1(OU (−nD))

for n > 0, but H1(OU (−nD)) = 0 for n  0 by the lemma of Enriques-Severi-
Zariski. �

Consider a Weil divisor G on U . Let us prove by induction on s that
G ∼ kD for some k ∈ Z. Suppose that s = 4. Then the 3-fold D is nodal and
Q-factorial by assumption. Moreover, the group Cl(D) is generated by the
class of the divisor R|D, where R is a general divisor in |D|. Thus, there is an
integer k such that we have the equivalence G|D ∼ kR|D. Let ∆ = G − kR.
We may assume that ∆ �∼ 0.

The sequence of sheaves

0 → OU (∆) ⊗OU (−D) → OU (∆) → OD → 0

is exact, because OU (∆) is locally free in the neighborhood of D.
Every section η ∈ H0(OU (∆) ⊗ OU (−D)) gives an effective Weil divisor

S different from the divisor D, because the divisor D is the pull-back of a
sufficiently general hyperplane on Ps. Thus, the divisor S ∩D is effective and
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S∩D∼−D|D, which is impossible. Hence, we have H0(OU (∆)⊗OU (−D))=0.
Therefore, the sequence

0 → H0(OU (∆)) → H0(OD) → H1(OU (∆) ⊗OU (−D))

is exact.
Lemma 59. The group H1(OU (∆)⊗OU (−nD)) vanishes for every n > 0.
Proof. The sheaf OU (∆) is reflexive (see [18]). Thus, there is an exact

sequence of sheaves
0 → OU (∆) → E → F → 0

where E is a locally free sheaf and F is a torsion free sheaf. Hence, the
sequence of groups

H0(F ⊗OU (−nD)) → H1(OD(∆) ⊗OD(−nD)) → H1(E ⊗ OU (−nD))

is exact. However, for n  0 the cohomology group H0(F ⊗OU (−nD)) van-
ishes because the sheaf F is torsion free, and the cohomology group
H1(E ⊗OU (−nD)) vanishes by the lemma of Enriques-Severi-Zariski. There-
fore, H1(OU (∆) ⊗OU (−nD)) = 0 for n  0.

Now consider an exact sequence of sheaves

0 → OU (∆) ⊗OU (−(n + 1)D) → OU (∆) ⊗OU (−nD) → OD(−nD) → 0

and the induced sequence of cohomology groups

0 → H1(OU (∆) ⊗OU (−(n + 1)D)) → H1(OU (∆) ⊗OU (−nD))

→ H1(OD(−nD)) → · · ·

for n > 0. Then the group H1(OD(−nD)) vanishes by Lemma 58. Hence, we
have

H1(OU (∆) ⊗OU (−D)) ∼= H1(OU (∆) ⊗OU (−2D)) ∼= · · ·
∼= H1(OU (∆) ⊗OU (−nD))

for n > 0, but we already proved that H1(OU (−nD)) vanishes for n  0. �
Therefore, H0(OU (∆)) ∼= C. Similarly H0(OU (−∆)) ∼= C. Thus, the Weil

divisor ∆ is rationally equivalent to zero and G ∼ kD in the case s = 4, which
contradicts our assumption ∆ �∼ 0. Thus, the case s = 4 is done.

Suppose that s > 4. By the induction we may assume that the group Cl(D)
is generated by the class of the divisor R|D, where R is a general divisor in
|D|. Thus, there is an integer k such that G|D ∼ kR|D. Put ∆ = G − kR.
Then the sequence of sheaves

0 → OU (∆) ⊗OU (−D)) → OU (∆) → OD → 0
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is exact, because OU (∆) is locally free in the neighborhood of D. Therefore,
the sequence

0 → H0(OU (∆)) → H0(OD) → H1(OU (∆) ⊗OU (−D))

is exact. However, the proof of Lemma 59 holds for s > 4. Thus, the cohomol-
ogy group H1(OU (∆) ⊗ OU (−D)) vanishes. Hence, H0(OU (∆)) ∼= C. The
same arguments prove that H0(OU (−∆)) ∼= C. Therefore, the Weil divisor ∆
is rationally equivalent to zero and G ∼ kD. Thus, we proved Theorem 13.

7. Birational rigidity

In this section we prove Proposition 15. Let ξ : Y → P4 be a double cover
branched over a hypersurface F ⊂ P4 of degree 8 such that the hypersurface F

is smooth outside of a smooth curve C ⊂ F , the singularity of the hypersurface
F in a sufficiently general point of the curve C is locally isomorphic to the
singularity

x2
1 + x2

2 + x2
3 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

the singularities of F in other points of C are locally isomorphic to the singu-
larity

x2
1 + x2

2 + x2
3x4 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

and a general 3-fold in | − KY | is Q-factorial. Then Y is a Fano 4-fold with
terminal singularities and −KY ∼ ξ∗(OP4(1)). Moreover, Cl(Y ) and Pic(Y )
are generated by the divisor −KY by Theorem 13. Hence, Y is a Mori fibra-
tion (see [22]). We must prove that the 4-fold Y is a unique Mori fibration
birational to Y and Bir(Y ) = Aut(Y ). It is well known that the latter implies
the finiteness of the group Bir(Y ).

Suppose that either Y is not birationally rigid or Bir(Y ) �= Aut(Y ). Then
Theorem 28 implies the existence of a linear system M on Y such that M
has no fixed components and the singularities of (X, 1

nM) are not canonical,
where M ∼ −nKY . Thus, there is a rational number µ < 1

n such that
(X, µM) is not canonical, i.e., CS(Y, µM) �= ∅.

Let Z be an element of the set CS(Y, µM). Then multZ(M) > n.
Lemma 60. The subvariety Z ⊂ Y is not a smooth point of Y .
Proof. Suppose Z is a smooth point of Y . Then multZ(M2) > 4n2 by

Theorem 25 and

2n2 = M2 · H1 · H2 ≥ multZ(M2)multZ(H1)multZ(H2) > 4n2

for general divisors H1 and H2 in | −KY | containing Z, which is a contradic-
tion. �
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Lemma 61. The subvariety Z ⊂ Y is not a singular point of Y .
Proof. Let ξ(Z) = O. Then O is a singular point of the hypersurface F ⊂

P4. Therefore, the point O is contained in the curve C ⊂ F by assumption.
There are two possible cases, i.e., either the singularity of F in the point O is
locally isomorphic to the singularity

x2
1 + x2

2 + x2
3 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

or the singularity of F in the point O is locally isomorphic to the singularity

x2
1 + x2

2 + x2
3x4 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]),

where x1 = x2 = x3 are local equations of the curve C ⊂ F . Let us call the
former case ordinary and the latter case non-ordinary.

Let X be a sufficiently general divisor in the linear system | −KY | passing
through the point Z. Then the double cover ξ induces the double cover
τ : X → P3 ramified along an octic surface. The singularities of X \ Z are
ordinary double points. Moreover, Z is an ordinary double point of X in the
ordinary case. In the non-ordinary case the singularity of the 3-fold X at the
point Z is locally isomorphic to

x2
1 + x2

2 + x2
3 + x3

4 = 0 ⊂ C4 ∼= Spec(C[x1, x2, x3, x4]).

Let D = M|X and H = −KY |X . Then D has no fixed components,
D ∼ nH and we have Z ∈ LCS(X, µD) by Proposition 24. In particular,
Z ∈ CS(X, µD).

Let f : V → X be a blowup of Z, E = f−1(Z) and H be a proper transform
of the linear system D on V . Then V is smooth in the neighborhood of E and
E is isomorphic to a quadric surface in P3. In the ordinary case E is smooth.
In the non-ordinary case the quadric surface E has one singular point P ∈ E,
i.e., the surface E is isomorphic to a quadric cone in P3. Note that KV ∼ E.

Let multZ(D) ∈ N such that H ∼ f∗(nH)−multZ(D)E. Then multZ(D) >

n in the ordinary case by Theorem 26. On the other hand, in the non-ordinary
case we have the inequality multZ(D) > n

2 due to Proposition 27.
By construction the linear system |f∗(H)−E| is free and gives a morphism

ψ : V → P2 such that ψ = φ ◦ τ ◦ f , where φ : P3 ��� P2 is a projection from
the point O. Moreover, the restriction ψ|E : E → P2 is a double cover. Let L

be a sufficiently general fiber of the morphism ψ. Then L is a smooth curve
of genus 2 and L · E = L · f∗(H) = 2. Thus,

L · H = L · f∗(nH) − multZ(D)L · E = 2n − 2multZ(D) ≥ 0,

because H has no base components. Hence, multZ(D) ≤ n. In particular, the
ordinary case is impossible and it remains to eliminate the non-ordinary case.
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The inequalities multZ(D) ≤ n and µ < 1
n , the equivalence

KV + µH ∼ f∗(KX + µD) + (1 − µmultZ(D))E

and Z ∈ CS(X, µD) imply the existence of a proper irreducible subvariety
S ⊂ E such that S ∈ CS(V, µH + (µmultZ(D) − 1)E). In particular, S ∈
CS(V, µH).

Suppose that S is a curve. Then multS(H) > n. Let Lω be a fiber of ψ

passing through a general point ω ∈ S. Then Lω describes a divisor in V

when we vary ω on S. Hence,

Lω · H = Lω · f∗(nH) − multZ(D)Lω · E = 2n − 2multZ(D)

≥ multω(Lω)multS(H) > n,

which contradicts the inequality multZ(D) > n
2 .

Therefore, S is a point on E. Then multS(H) > n and multS(H2) > 4n2

by Theorem 25, because S is smooth on V . It is easy to see that the point S

is not a vertex P of the quadric cone E, because the numerical intersection of
a general ruling of E with a general divisor in H is equal to multZ(D) ≤ n.
Let Γ be a fiber of the morphism ψ that passes through the point S, and let
D be a general divisor in the linear system |f∗(H) − E| that passes through
the point S. Then Γ ⊂ D. Note that Γ may be reducible and singular, but
we always have the inequality multS(Γ) ≤ 2, because τ ◦f(Γ) is a line passing
through the point O and τ |f(Γ) is a double cover.

Suppose that Γ is irreducible. Let H2 = λΓ + T , where λ ∈ N and T is a
one-cycle such that Γ �⊂ Supp(T ). Then the inequalities

multS(T ) > 4n2 − λmultS(Γ) ≥ 4n2 − 2λ

hold. On the other hand, the inequalities

multS(T ) ≤ multS(T )multS(D) ≤ T · D = H2 · D = 2n2 − mult2Z(D) <
7
4
n2

hold. Thus, we have λ > 9
8n2. Let D̃ be a general divisor in |f∗(H)|. Then

2n2 = D̃ · H2 ≥ λΓ · D̃ = 2λ >
9
4
n2,

which is a contradiction.
Therefore, the fiber Γ is reducible. Then Γ = Γ1∪Γ2, where Γi is a smooth

rational curve such that τ ◦ f(Γ1) = τ ◦ f(Γ2) is a line in P3 containing point
O. Let

H2 = λ1Γ1 + λ2Γ2 + T,
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where λi ∈ N and T is a one-cycle such that Γi �⊂ Supp(T ). Then the
inequalities

7
4
n2 > 2n2 − mult2Z(D) ≥ T · D ≥ multS(T ) > 4n2 − λ1 − λ2

hold. Thus, λ1 + λ2 > 9
4n2. Hence, we have

2n2 = D̃ · H2 ≥ λ1Γ1 · D̃ + λ2Γ2 · D̃ = λ1 + λ2 >
9
4
n2

for a general divisor D̃ ∈ |f∗(H)|, which is a contradiction. �
Lemma 62. The subvariety Z ⊂ Y is not a curve.
Proof. Suppose Z is a curve. Let X be a general divisor in | − KY | and P

be a point in the intersection Z ∩ X. Then X is a nodal Calabi-Yau 3-fold.
The point P is smooth on the 3-fold X if and only if Z �⊂ Sing(X). In the
case Z ⊂ Sing(X) the point P is an ordinary double point on X. Moreover,
P ∈ CS(X, µD), where D = M|X . In the case when the point P is smooth
on X we can proceed as in the proof of Lemma 60 to get a contradiction. In
the case when the point P is an ordinary double point on X we can proceed
as in the proof of Lemma 61 to get a contradiction. �

Lemma 63. The subvariety Z ⊂ Y is not a surface.
Proof. Suppose Z is a surface. Then multZ(M) > n. Let V be a general

divisor in the linear system | − KY |, S = Z ∩ V and D = M|V . Then V

is a nodal Calabi-Yau 3-fold, the linear system D has no base components,
S ⊂ V is an irreducible reduced curve and multS(D) > n. The double cover
ξ induces a double cover τ : V → P3 ramified along a nodal hypersurface
G ⊂ P3 of degree 8.

Take a sufficiently general divisor H in |τ∗(OP3(1))|. Then

2n2 = D2 · H ≥ mult2S(D)S · H > n2S · H,

which implies S ·H = 1. Hence, τ (S) is a line in P3 and τ |S is an isomorphism.
Suppose that τ (S) �⊂ G. Then there is a smooth rational curve S̃ ⊂ V

such that S �= S̃ and τ (S) = τ (S̃). Take a sufficiently general surface D ∈
|τ∗(OP3(1))| passing through the curve S. Then D is smooth outside of S∩ S̃.
Moreover, the surface D is smooth in every point of S∩S̃ that is smooth on V ,
and D has an ordinary double point in every point of S∩ S̃ that is an ordinary
double point on V . On the other hand, at most 4 nodes of the hypersurface
G ⊂ P3 can lie on the line τ (S), i.e., |Sing(D)| ≤ 4. The sub-adjunction
formula (see [22], [23]) implies

(KD + S̃)|S̃ = KS̃ + DiffS̃(0)

and deg(DiffS̃(0)) = k
2 , where k = |Sing(D)|. Thus, the self-intersection S̃2 is

negative on the surface D, because KD · S̃ = 1. Put H = D|D. A priori the
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linear system H can have a base component. However, the generality in the
choice of D implies

H = multS(D)S + multS̃(D)S̃ + B
where B is a linear system on D having no base components. Moreover, the
equivalence

(n − multS̃(D))S̃ ∼Q (multS(D) − n)S + B
holds, because S̃ +S ∼ D|D and H ∼ nD|D. Therefore, the inequality S̃2 < 0
implies the inequality multS̃(D) > n. Take a general divisor H in |τ∗(OP3(1))|.
Then

2n2 = D2 · H ≥ mult2S(D)S · H + mult2
S̃
(D)S̃ · H > n2S · H + n2S̃ · H = 2n2,

which is a contradiction.
Therefore, we have τ (S) ⊂ G. Let O be a general point on τ (S) and Π be a

hyperplane in P3 that is tangent to G at the point O. Consider a sufficiently
general line L ⊂ Π passing through O. Let L̂ = τ−1(L) and Ô = τ−1(O).
Then L̂ is singular at Ô. Therefore, the curve L̂ is contained in the base locus
of the linear system D, because otherwise

2n = L̂ · D ≥ multÔ(L̂)multÔ(D) ≥ 2multS(D) > 2n,

which is impossible. On the other hand, the curve L̂ describes a divisor in
V when we vary the line L in Π. The latter is impossible, because D has no
base components. �

Therefore, Proposition 15 is proved.
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