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Abstract. We study birational transformations into elliptic fibrations and birational
automorphisms of quasismooth anticanonically embedded weighted Fano 3-fold hypersur-
faces with terminal singularities classified by A. R. Iano-Fletcher, J. Johnson, J. Kollár,
and M. Reid.

1. Introduction

Let S be a smooth cubic surface in P3 defined over a perfect field k with Picard
rank 1. For example, the equation 2x3 þ 3y3 þ 5z3 þ 7w3 ¼ 0 defines such a cubic in
ProjðQ½x; y; z;w�Þ (see [16] or [20]). The condition that the Picard rank is one simply means
that every curve on S defined over k is cut by some hypersurface in P3. The surface S is
proved to be birationally rigid and hence nonrational (see [15]).

Let P and Q be distinct k-rational points on the surface S. We then consider the pro-
jection f : S aP2 from the point P. Because the map f is a double cover generically
over P2, it induces a birational involution a of the surface S that interchanges two points
of a generic fiber of the rational map f. Traditionally, the involution a is called a Geiser
involution.

Meanwhile, we consider the line LHP3 passing through the points P and Q. Then
the line L meets the surface S at another k-rational point O. For a su‰ciently general hy-
perplane H in P3 passing through the line L, the intersection H XS is a smooth elliptic
curve E. Then the reflection of the elliptic curve E centered at the point O induces a bira-
tional involution b of the surface S that is called a Bertini involution.

Yu. Manin proved the group BirðSÞ of birational automorphisms of the surface S is
generated by the group AutðSÞ of biregular automorphisms and Bertini and Geiser involu-
tions of the surface S, more precisely, the sequence of groups

1! GS ! BirðSÞ ! AutðSÞ ! 1

is exact, where GS is the group generated by Bertini and Geiser involutions. Furthermore,
he also described all the relations among these involutions (see [16]). These properties men-
tioned so far remain true for smooth del Pezzo surfaces of degrees 1 and 2 with Picard rank 1.



Moreover, on a smooth del Pezzo surface of degree 2, the group GS is the free product of
involutions. But in the case of degree 1, every birational automorphism is biregular (see [15]).

Smooth del Pezzo surfaces of degree 1, 2 and 3 are the only smooth del Pezzo surfaces
that can be anticanonically embedded into weighted projective spaces as quasismooth hy-
persurfaces. Therefore, the properties described above can be naturally expected on antica-
nonically embedded quasismooth weighted Fano 3-fold hypersurfaces with terminal singu-
larities. The first step in this direction is done in [10], where the birational superrigidity of
smooth quartic 3-folds is proved.

Smooth quartic 3-folds are the first example of quasismooth anticanonically em-
bedded weighted Fano 3-fold hypersurfaces with terminal singularities that were com-
pletely classified into 95 families by A. R. Iano-Fletcher, J. Johnson, J. Kollár, and M.
Reid (see [9] and [11]) and which were studied quite extensively in [6] and [18].

Throughout this paper, we always let X HPð1; a2; a3; a4; a5Þ be a su‰ciently general
quasismooth anticanonically embedded Fano hypersurface of degree d and of type N with
terminal singularities1), where the notation N is the entry number in Table 1 of Appendix.

The hypersurface X is proved to be rationally connected (see [22]) and birationally
rigid (see [6]). Furthermore, it follows from [6] that the sequence of groups

1! GX ! BirðXÞ ! AutðXÞ ! 1

is exact, where the group GX is a subgroup of BirðXÞ generated by a finite set of distinct
birational involutions t1; . . . ; tl explicitly described in [6]. All the involutions here are either
an elliptic involution or a quadratic involution. The former is a generalization of a Bertini
involution and the latter is that of Geiser involution.

Even though the paper [6] describes the number of the birational involutions t1; . . . ; tl
and their explicit constructions, the relations among them have been in question. We show
that the group GX has exactly one of the following group presentations:

F0 ¼ the trivial group;

F1 ¼ ht1 j t2
1 ¼ 1i;

F2 ¼ ht1; t2 j t2
1 ¼ t2

2 ¼ 1i;

F3 ¼ ht1; t2; t3 j t2
1 ¼ t2

2 ¼ t2
3 ¼ 1i;

F̂F3 ¼ ht1; t2; t3 j t2
1 ¼ t2

2 ¼ t2
3 ¼ t1t2t3t1t2t3 ¼ 1i;

F5 ¼ ht1; t2; t3; t4; t5 j t2
1 ¼ t2

2 ¼ t2
3 ¼ t2

4 ¼ t2
5 ¼ 1i;

where the generator ti comes from an involution of X and the group operation from the
composition of maps. When the group GX is trivial, the 3-fold X is birationally superrigid.

1) The weighted projective space ProjðF½x1; x2; . . . ; xn�Þ defined over an arbitrary field F with wtðxiÞ ¼ ai is

denoted by PFða1; a2; . . . ; anÞ. The weights ai are always assumed that a1 e a2 e � � �e an. When the field of defi-

nition is clear, we use simply the notation Pða1; a2; . . . ; anÞ instead of PFða1; a2; . . . ; anÞ.
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Also, when X has a unique birational involution, the group GX has the presentation F1 that
is isomorphic to Z=2Z. Because the number of generators of GX is completely determined
in [6], in order to describe the group GX , it is enough to find their relations for lf 2. We
prove the following result:

Theorem 1.1. The group GX has the group presentation as follows:

� F5 if N ¼ 7,

� F̂F3 if N ¼ 4, 9, 17, 27,

� F3 if N ¼ 20,

� F2 if N ¼ 5, 6, 12, 13, 15, 23, 25, 30, 31, 33, 36, 38, 40, 41, 42, 44, 58, 61, 68, 76,

� F1 if N ¼ 2, 8, 16, 18, 24, 26, 32, 43, 45, 46, 47, 48, 54, 56, 60, 65, 69, 74, 79,

� F0 otherwise.

This theorem with the results of [6] can be considered as a 3-fold analogue of Yu.
Manin’s results on smooth del Pezzo surfaces of degreee 3.

The proof of Theorem 1.1 is based on the simple observation that except the cases
N ¼ 7; 20; 60, the involutions t1; . . . ; tl are actually elliptic and induced by a single elliptic
fibration. This shows that it is worth our while to study birational transformations of the
hypersurface X into elliptic fibrations. In particular, it is an interesting question when the
3-fold X is birational to an elliptic fibration. We prove the following result:

Theorem 1.2. The hypersurface X HPð1; a2; a3; a4; a5Þ can be birationally trans-

formed into an elliptic fibration if and only if N B f3; 60; 75; 84; 87; 93g.

We remark that the hypersurface X of N ¼ 3 is the only smooth Fano 3-fold that is
not birationally equivalent to an elliptic fibration. Many examples in the 95 families of
weighted Fano 3-folds have not so many ways in which we can transform them into an el-
liptic fibration. Naturally, they make us expect that the hypersurface X , in almost all cases,
has a single birational elliptic fibration structure (see Conjecture 2.15 and Proposition 2.16).

After the theorem above, it may be a next step to ask whether the hypersurface X can
be birationally transformed to a K3 fibration or not. To this question we give an a‰rmative
answer.

Proposition 1.3. The hypersurface X is birationally equivalent to a K3 fibration.

We should remark here that D. Ryder2) has studied birational transformations of
the hypersurface X into K3 and elliptic fibrations in his Ph.D. thesis (see [18]). His thesis

2) After the early version of this paper, he announced a paper to reinforce his thesis. In his paper, he clas-

sified birational transformations into K3 and elliptic fibrations for the cases N ¼ 34; 75; 88; 90 (see [19]).
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applied the techniques of the papers [3] and [6] to classify all birational transformations of
X into K3 and elliptic fibrations in the case N ¼ 5. In addition, he constructed various
kinds of birational transformations of the hypersurface X into K3 and elliptic fibrations
and obtained partial results on the existence of submaximal singularities on the hypersur-
face X in many cases.

Meanwhile, as far as we know, arithmetical properties on quasismooth antica-
nonically embedded weighted Fano 3-fold hypersurfaces with terminal singularities have
never been investigated. The papers [1], [2], and [8] give us a stimulating result that
rational points are potentially dense3) on smooth Fano 3-folds possibly except double
covers of P3 ramified along smooth sextic surfaces. In the case N ¼ 1, the potential den-
sity of rational points on the hypersurface X is proved in [8]. The hypersurface X of
N ¼ 2 is birational to a double cover of P3 ramified along a sextic surface with 15 nodes,
which implies the potential density of rational points (see [4]). Furthermore, we prove the
following:

Proposition 1.4. Suppose that X is defined over a number field. Then rational points

are potentially dense on the hypersurface X for

N ¼ 1; 2; 4; 5; 6; 7; 9; 11; 12; 13; 15; 17; 19; 20; 23; 25; 27;

30; 31; 33; 36; 38; 40; 41; 42; 44; 58; 61; 68; 76:

It immediately follows from Theorem 1.1 that the group GX is infinite if l > 1. In this
case, the constructions of the involutions t1; . . . ; tl easily imply that the hypersurface X

contains infinitely many rational surfaces, which implies Proposition 1.4 except the cases
N ¼ 1; 2; 11; 19.

Even though our main result is Theorem 1.1, for the convenience this paper starts
with the problem on existence of birational transformations of the hypersurface X into el-
liptic fibrations. In Section 2, we prove Theorem 1.2 and classify birational transformations
of the hypersurface X into elliptic fibrations in some cases. And then Proposition 1.3 is
proved in Section 3. We prove Theorem 1.1 in Section 4. Finally, we complete the proof
of Proposition 1.4 by proving the potential density of rational points on X in the cases
N ¼ 11 and N ¼ 19.

Acknowledgments. The authors would like to thank F. Bogomolov, A. Borisov,
A. Corti, M. Grinenko, V. Iskovskikh, Yu. Prokhorov, V. Shokurov, D. Stepanov, and
M. Verbitsky for helpful conversations. They also thank A. Pukhlikov and Yu. Tschinkel
for proposing them these problems. This work was initiated when the second author visited
University of Edinburgh and they almost finished the paper while the first author visited
POSTECH in Korea. The authors would like to thank University of Edinburgh and
POSTECH for their hospitality. The first author has been supported by CRDF grant
RUM1-2692MO-05 and the second author was supported by KOSEF Grant R01-2005-
000-10771-0 of Republic of Korea.

3) The set of rational points of a variety V defined over a number field F is called potentially dense if for

some finite field extension K of the field F the set of K-rational points of the variety V is Zariski dense.
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2. Elliptic fibrations

In this section we prove Theorem 1.2. We start with the simple results below that are
useful for this section.

Lemma 2.1. Let Y be a variety and M be a linear system without fixed components

on the variety Y. If the linear system M is not composed from a pencil, then there is no Zar-

iski closed proper subset SkY such that SuppðS1ÞX SuppðS2ÞHS, where S1 and S2 are

su‰ciently general divisors of the linear system M.

Proof. Suppose there is a proper Zariski closed subset SHY such that the set-
theoretic intersection of the su‰ciently general divisors S1 and S2 of the linear system M
is contained in the set S. Let r : Y aPn be the rational map induced by the linear system
M, where n is the dimension of the linear system M. Then there is a commutative diagram

W

 ��
�a

 ��
�
b

Y ��� !
r

Pn;

where W is a smooth variety, a is a birational morphism, and b is a morphism. Let Z be the
image of the morphism b. Then dimðZÞf 2 because M is not composed from a pencil.

Let L be a Zariski closed subvariety of the variety W such that the morphism

ajWnL : WnL! YnaðLÞ

is an isomorphism, and D be the union of the subset LHW and the closure of the proper
transform of the set SnaðLÞ on W . Then D is a Zariski closed proper subset of W .

Let B1 and B2 be general hyperplane sections of the variety Z, and D1 and D2 be the
proper transforms of the divisors B1 and B2 on the variety W respectively. Then aðD1Þ and
aðD2Þ are general divisors of the linear system M. Hence, in the set-theoretic sense we have

j3 b�1
�
SuppðB1ÞX SuppðB2Þ

�
¼ SuppðD1ÞX SuppðD2ÞHDkW

because dimðZÞf 2. However, this set-theoretic identity is absurd. r

The following result is implied by Lemma 0.3.3 in [13] and Lemma 2.1.

Corollary 2.2. Let Y be a three-dimensional variety with canonical singularities. Sup-

pose that a linear system M on Y without fixed components is not composed from a pencil.

For su‰ciently general surfaces S1 and S2 in the linear system M and a nef and big divisor D,
the inequality D � S1 � S2 > 0 holds.

In addition, the proof of Lemma 2.1 implies the following result.

Lemma 2.3. Let Y be a variety. For linear systems M and D on Y without fixed com-

ponents, if the linear system M is not composed from a pencil, then there is no Zariski closed
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proper subset SkY such that SuppðSÞXSuppðDÞHS, where S and D are general divisors

of the linear system M and D, respectively.

Before we proceed, we first observe that the following hold:

� for N ¼ 1, a general fiber of the projection of a smooth quartic 3-fold X HP4 from
a line contained in X is a smooth elliptic curve;

� for N ¼ 2, the 3-fold X is birational to a double cover of P3 ramified along a sin-
gular nodal sextic (see [4]), which is birationally equivalent to an elliptic fibration.

Lemma 2.4. Suppose that N B f1; 2; 3; 7; 11; 19; 60; 75; 84; 87; 93g. Then a su‰ciently

general fiber of the natural projection X aPð1; a2; a3Þ is a smooth elliptic curve.

Proof. Let C be a general fiber of the projection X aPð1; a2; a3Þ. Then C is not a
rational curve by [6] but C is a hypersurface of degree d in Pð1; a4; a5ÞGProjðC½x1; x4; x5�Þ,
where either bd=a4ce 3 or bd=a4ce 4 and 2a5 e d < 2a5 þ a4.

Let V HPð1; a4; a5Þ be the open subset given by x1 3 0. Then V GC2 and the
a‰ne curve V XC is either a cubic curve when bd=a4ce 3 or a double cover of C ramified
at most four points when bd=a4ce 4 and 2a5 e d < 2a5 þ a4. Therefore, the curve C is
elliptic. r

Remark 2.5. If N B f2; 7; 20; 36; 60g, each involution ti generating the group GX

gives the commutative diagram

X ������� !ti
X

c

 
�
�

 
�
�

c

Pð1; a2; a3Þ Pð1; a2; a3Þ;

where c is the natural projection.

Lemma 2.6. Suppose that N A f7; 11; 19g. Then X is birational to an elliptic fi-

bration.

Proof. We consider only the case N ¼ 19 because in the other cases the proofs are
similar.

When N ¼ 19, the hypersurface X in Pð1; 2; 3; 3; 4Þ can be given by the equation

x5 f8ðx1; x2; x3; x4; x5Þ þ x3 f9ðx3; x4Þ þ x2 f10ðx1; x2; x3; x4; x5Þ þ x1 f11ðx1; x2; x3; x4; x5Þ ¼ 0;

where fi is a quasi-homogeneous polynomial of degree i.

Let H be the pencil of surfaces on X cut by lx2
1 þ mx2 ¼ 0 and B the pencil of

surfaces cut on X by dx3
1 þ gx3 ¼ 0, where ðd : gÞ A P1 and ðl : mÞ A P1. Then H and B

give a map
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r : X aP1 � P1;

which is defined in the outside of BsðHÞWBsðBÞ.

Let C be a general fiber of r. Then C is a hypersurface in

Pð1; 3; 4ÞGProjðC½x1; x4; x5�Þ

containing the point ð0 : 1 : 0Þ. Thus, the a‰ne piece of the curve C given by x1 3 0 is a
cubic curve in C2, but C is not rational (see [6]). Hence, the fiber C is elliptic. r

Therefore, we have obtained

Corollary 2.7. If N B f3; 60; 75; 84; 87; 93g, then X is birational to an elliptic fibration.

To complete the proof of Theorem 1.2, we need to show that the 3-fold X is not bira-
tionally equivalent to an elliptic fibration when N A f3; 60; 75; 84; 87; 93g. However, the
paper [3] shows that the 3-fold X of N ¼ 3 is not birationally equivalent to an elliptic
fibration. Therefore, it is enough to consider the cases of N ¼ 60; 75; 84; 87; 93. Suppose
that for these five cases there are a birational map r : X aV and a morphism n : V ! P2

such that V is smooth and a general fiber of the morphism n is a smooth elliptic curve. We
must show that these assumptions lead us to a contradiction.

Let D ¼
��n��OP2ð1Þ

��� and M ¼ r�1ðDÞ. Then M@�nKX for some natural number
n because the group ClðXÞ is generated by �KX (see [7]). An irreducible subvariety Z kX

is called a center of canonical singularities of X ;
1

n
M

� �
if there is a birational morphism

f : W ! X and an f -exceptional divisor E1 HW such that

KW þ
1

n
f �1ðMÞ@Q f � KX þ

1

n
M

� �
þ

Pm
i¼1

ciEi;

where Ei is an f -exceptional divisor, c1 e 0, and f ðE1Þ ¼ Z. The exceptional divisor E1 is

called a submaximal singularity of the log pair X ;
1

n
M

� �
. The set of all centers of canon-

ical singularities of the log pair X ;
1

n
M

� �
is denoted by CS X ;

1

n
M

� �
.

We first show that the set CS X ;
1

n
M

� �
is not empty. A member of the set, a priori,

can be a smooth point, a singular point, or a curve on X . And then we show that all these
cases are excluded, which gives us a contradiction.

In what follows, we may assume that the singularities of X ;
1

n
M

� �
are canonical be-

cause X is birationally rigid by [6].

Proposition 2.8. The singularities of X ;
1

n
M

� �
are not terminal.
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Proof. Suppose that the singularities of X ;
1

n
M

� �
are terminal. Then ðX ; �MÞ is

terminal and KX þ �M is ample for some rational number � >
1

n
. Consider the commuta-

tive diagram

W

 ��
�a

 ��
�
b

X ��� !
r

V ���!
n

P2;

where a and b are birational morphisms and W is smooth. Then we have

a�ðKX þ �MÞ þ
Pm
j¼1

ajFj @Q KW þ �H@Q b�ðKV þ �DÞ þ
Pl

i¼1

biGi;

where Gi is a b-exceptional divisor, Fj is an a-exceptional divisor, aj and bi are rational
numbers, and H ¼ a�1ðMÞ. Let C be a general fiber of n � b. Then

0 < C � a�ðKX þ �MÞeC �
�
a�ðKX þ �MÞ þ

Pm
j¼1

ajFj

�
¼ bðCÞ � ðKV þ �DÞ ¼ 0

because C is an elliptic curve, while the divisor
Pm
j¼1

ajFj is e¤ective by our assumption. r

Consequently, the set of centers of canonical singularities CS X ;
1

n
M

� �
is not empty.

However, in the sequel we will show that it is empty.

Lemma 2.9. The set CS X ;
1

n
M

� �
does not contain any smooth point of X.

Proof. See [5], Theorem 3.1, and [6], Theorem 5.6.2. r

Lemma 2.10. The set CS X ;
1

n
M

� �
contains no curves on X.

Proof. See [18], Lemmas 3.2 and 3.5. r

Therefore, the nonempty set CS X ;
1

n
M

� �
can contain only singular points of X . In

particular, there is a point P A SingðXÞ such that P is a center of canonical singularities of

the log pair X ;
1

n
M

� �
. Let p : Y ! X be the Kawamata blow up at the point P, E be the

exceptional divisor of p, and B ¼ p�1ðMÞ. Then B@Q�nKY by [12].

Suppose that �K 3
Y < 0. Let NEðYÞHR2 be the cone of e¤ective curves of Y . Then

the class of �E � E generates an extremal ray of the cone NEðYÞ.

Lemma 2.11. There are integer numbers b > 0 and cf 0 such that

�KY � ð�bKY þ cEÞ is numerically equivalent to an e¤ective irreducible reduced curve
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GHY and generates an extremal ray of the cone NEðYÞ di¤erent from the ray generated by

�E � E.

Proof. See [6], Corollary 5.4.6. r

Let S1 and S2 be two di¤erent surfaces in B. Then S1 � S2 A NEðYÞ but

S1 � S2 1 n2K 2
Y ;

which implies that the class of S1 � S2 generates the extremal ray of the cone NEðY Þ that
contains the curve G. However, the support of every e¤ective cycle C A RþG is contained
in SuppðS1 � S2Þ because S1 � G < 0 and S2 � G < 0. Similarly, we have SuppðS1 � S2Þ ¼ G,
which contradicts Lemma 2.1 because the linear system M is not composed from a
pencil.

Corollary 2.12. The inequality �K 3
Y f 0 holds.

Corollary 2.13. When N ¼ 75; 84; 87; 93, the hypersurface X is not birationally equi-

valent to an elliptic fibration.

Proof. The result immediately follows from the fact that the intersection number
�K 3

Y is indeed negative if N ¼ 75; 84; 87; 93 (see [6]). r

From now on we consider the case N ¼ 60. First of all, we can conclude that the set

CS X ;
1

n
M

� �
must consist of the unique singular point O of type

1

9
ð1; 4; 5Þ on X because

the Kawamata blow ups at the other singular points again give us negative �K 3
Y (see [6]). It

should be pointed out that the hypersurface X can be birationally transformed into a Fano
3-fold with canonical singularities.

Let p : Y ! X be the Kawamata blow up at the point O and B be the proper trans-
form of the linear system M on the variety Y . Also let P and Q be the singular points of the
variety Y contained in the exceptional divisor E GPð1; 4; 5Þ of the morphism p that are

quotient singularities of types
1

4
ð1; 1; 3Þ and

1

5
ð1; 1; 4Þ respectively.

Lemma 2.14. The set CS Y ;
1

n
B

� �
contains the point P.

Proof. It follows from [12] that the equivalence B@Q�nKY holds. Therefore, we

can use the same proof of Proposition 2.8 with nef and big �KY to obtain CS Y ;
1

n
B

� �
3j.

We first claim that CS Y ;
1

n
B

� �
contains at least one of the points P and Q. Let L be

the curve on E corresponding to the unique curve of the linear system jOPð1;4;5Þð1Þj. Then
the curve L passes through the points P and Q. Since B@Q�nKY we obtain BjE @Q nL.

Let Z be an element of the set CS Y ;
1

n
B

� �
.
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Suppose that Z be a smooth point of Y . It then implies multZ B > n. Let C be the
curve on E corresponding to a general curve in the linear system jOPð1;4;5Þð20Þj passing
through the point Z. The curve C cannot be contained in the base locus of the linear system
B. Therefore, we obtain a contradictory inequality

n ¼ C �BfmultZðCÞmultZðBÞ > n:

Suppose that Z be a curve. Then multZðBÞf n. Let C be the curve on E correspond-
ing to a general curve in the linear system jOPð1;4;5Þð20Þj. We then have

n ¼ C �BfmultZðBÞC � Z f nC � Z;

which implies C � Z ¼ 1 on E. Hence, the curve Z must be the curve L.

It follows from [12] that if the curve L belongs to the set CS Y ;
1

n
B

� �
, then a singular

point of the threefold Y on the curve L also belongs to the set CS Y ;
1

n
B

� �
. It proves our

claim.

For now, we suppose that the set CS Y ;
1

n
B

� �
contains the point Q.

Let a : U ! Y be the Kawamata blow up at the point Q and D be the proper trans-
form of the linear system M on the variety U . We then see that D@Q�nKU . The com-
plete linear system j�4KU j is the proper transform of the pencil j�4KX j, the base locus of
which consists of a curve ZU such that p � aðZUÞ is the base curve of the pencil j�4KX j.

Let H be a su‰ciently general surface of the pencil j�4KU j. Then the equality

Z2
U ¼ �K 3

U ¼ �
1

30

holds on the surface H but DjH @Q nZ. Therefore, it follows that

SuppðDÞX SuppðHÞ ¼ SuppðZUÞ;

where D is a general surface of the linear system D, which is impossible by Lemma 2.3.

Consequently, the set CS Y ;
1

n
B

� �
contains the point P. r

The hypersurface X can be given by a quasihomogeneous equation of degree 24

x2
5x4 þ x5 f15ðx1; x2; x3; x4Þ þ f24ðx1; x2; x3; x4Þ ¼ 0HPð1; 4; 5; 6; 9Þ;

where fiðx1; x2; x3; x4Þ is a quasihomogeneous polynomial of degree i. Let D be a general
surface of the linear system j�5KX j and S be the unique surface of the linear system j�KX j.
Then D is cut on X by the equation
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lx5
1 þ dx1x2 þ mx3 ¼ 0;

where ðl : d : mÞ A P2, and S is cut by the equation x1 ¼ 0. Moreover, the base locus of the
linear system j�5KX j consists of the single irreducible curve C that is cut on the hypersur-
face X by the equations x1 ¼ x3 ¼ 0. In particular, we have D � S ¼ C.

In a neighborhood of the point O the monomials x1, x2, and x3 can be considered as
weighted local coordinates on X such that wtðx1Þ ¼ 1, wtðx2Þ ¼ 4 and wtðx3Þ ¼ 5. In a
neighborhood of the point P the birational morphism p can be given by the equations

x1 ¼ ~xx1~xx
1
9

2; x2 ¼ ~xx
4
9

2; x3 ¼ ~xx3~xx
5
9

2;

where ~xx1, ~xx2 and ~xx3 are weighted local coordinates on the variety Y in a neighborhood of
the point P such that wtð~xx1Þ ¼ 1, wtð~xx2Þ ¼ 3 and wtð~xx3Þ ¼ 1. Let ~DD, ~SS, and ~CC be the proper
transforms of the surface D, the surface S, and the curve C on the variety Y respectively,
and E be the exceptional divisor of p. Then in a neighborhood of P the surface E is given
by the equation ~xx2 ¼ 0, the surface ~DD is given by the equation

l~xx5
1 þ d~xx1 þ m~xx3 ¼ 0;

and the surface ~SS is given by the equation ~xx1 ¼ 0. Hence, we see that

~DD@Q p�ð�5KX Þ �
5

9
E @Q 5 ~SS @Q�5KY ;

the curve ~CC is the intersection of the surfaces ~DD and ~SS; the linear system j�5KY j is the
proper transform of j�5KX j; the base locus of j�5KY j consists of the curve ~CC.

Let b : W ! Y be the Kawamata blow up of the point P. And let D, S, and C be the
proper transforms on the variety W of the surface D, the surface S, and the curve C re-
spectively and F be the exceptional divisor of the morphism b. Then the surface F is the
weighted projective space Pð1; 1; 3Þ and in a neighborhood of the singular point of the sur-
face F the birational morphism b can be given by the equations

~xx1 ¼ x1x
1
4

2; ~xx2 ¼ x
3
4

2; ~xx3 ¼ x3x
1
4

2;

where x1, x2 and x3 are weighted local coordinates on the variety W in a neighborhood of
the singular point of F such that wtðx1Þ ¼ 1, wtðx2Þ ¼ 2 and wtðx3Þ ¼ 1. In particular, the
exceptional divisor F is given by the equation x2 ¼ 0, the surface D is given by the equation

lx5
1x2 þ dx1 þ mx3 ¼ 0;

and the surface S is given by the equation x1 ¼ 0. Therefore,

D@Q b�ð ~DDÞ � 1

4
F @Q ðp � bÞ�ð�5KX Þ �

5

9
b�ðEÞ � 1

4
F ;

S @Q b�ðSÞ � 1

4
F @Q�KW ;
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and the curve C is the intersection of the surfaces D and S. Let P be the proper transform
of the linear system j�5KX j on W . Then D is a general surface of P, the base locus of the
linear system P consists of the curve C, and the equalities

D � C ¼ D �D � S ¼ 1

3

hold. Thus, the divisor D is nef and big because D3 ¼ 2.

Let B1 and B2 be general divisors of D. Then

D � B1 � B2 ¼ b�ð�5KY Þ �
1

4
F

� �
� b�ð�nKY Þ �

n

4
F

� �2

¼ 0;

which contradicts Lemma 2.2. Hence, we have proved Theorem 1.2.

One can easily check that the hypersurface X can be birationally transformed into
elliptic fibrations in several distinct ways in the case when

N A W ¼ f1; 2; 7; 9; 11; 17; 19; 20; 26; 30; 36; 44; 49; 51; 64g:

In other words, in the case when N A W there are rational maps a : X aP2 and baP2

such that the normalizations of general fibers of a and b are elliptic curves but they cannot
make the diagram

X ��� !s
X

a

 
�
�

 
�
�

b

P2 ��� !
z

P2;

commute for any birational maps s and z.

Conjecture 2.15. Let r : X aP2 be a rational map such that the normalization of a

general fiber of r is an elliptic curve. Then there is a commutative diagram

X

 �
��
��c

 
��

�
r

Pð1; a2; a3Þ � � � ����!
f

P2;

if N B f3; 60; 75; 84; 87; 93gWW, where c is the natural projection and f is a birational map.

In the case N ¼ 5, Conjecture 2.15 has been verified in [18].

Proposition 2.16. Conjecture 2.15 holds for

N ¼ 14; 22; 28; 34; 37; 39; 52; 53; 57; 59; 66; 70; 72; 73; 78; 81; 86; 88; 89; 90; 92; 94; 95:
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Proof. In the proof of Theorem 1.2, we see that there is a point P A SingðX Þ that

belongs to CS X ;
1

n
M

� �
. Let p : Y ! X be the Kawamata blow up at the point P, E be

the exceptional divisor of p, and B be the proper transform on Y of M. Then B@Q�nKY

by [12].

There is exactly one singular point Q of the hypersurface X , such that we have
�K 3

Y ¼ 0 if P ¼ Q, and �K 3
Y < 0 if P3Q. In the case when P3Q we can proceed as in

the proof of Theorem 1.2 to derive a contradiction. Thus, we have P ¼ Q.

The linear system j�rKY j is free for some r A N and induces a morphism

f : Y ! Pð1; a2; a3Þ

such that f ¼ c � p. However, for a general surface S A B and a general fiber C of the
morphism f we have S � C ¼ 0. Hence, B lies in the fibers of the elliptic fibration f, which
implies the claim. r

Therefore, in many cases, the hypersurface X can be birationally transformed into an
elliptic fibration in a unique way.

3. Fibrations into K3 surfaces

In this section, we prove Proposition 1.3. Before we proceed, we should remark here
that X is not birational to a fibration into ruled surfaces because X is birationally rigid by [6].

Lemma 3.1. Suppose that N A f18; 22; 28g. Then X is birational to a K3 fibration.

Proof. Let H be the pencil in j�a3KX j of surfaces passing through the singular

points of the hypersurface X of type
1

a3
ð1;�1; 1Þ. Then a general surface in H is a compac-

tification of a quartic in C3, which implies that X is birational to a K3 fibration. r

Suppose that N B f18; 22; 28g. Let c : X aP1 be the map induced by the pro-
jection

Pð1; a2; a3; a4; a5ÞaPð1; a2Þ

and S be a general fiber of c. Then the surface S is a hypersurface of degree d in
Pð1; a3; a4; a5Þ that is not uniruled because X is birationally rigid by [6]. Therefore, we
may assume in the following that a2 3 1. Let us show that S is birational to a K3 surface.

Lemma 3.2. Suppose that bd=a3ce 4. Then S is birational to a K3 surface.

Proof. The surface S is a compactification of a quartic in C3. r

Lemma 3.3. Suppose that 2a5 þ a3 > d and bd=a3ce 6. Then the surface S is bira-

tionally equivalent to a K3 surface.
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Proof. The surface S is a compactification of a double cover of C2 ramified along a
sextic curve, which implies that S is birational to a K3 surface. r

Lemma 3.4. Suppose that 2a5 þ 2a3 > d, 3a5 > d, and d e 5a3. Then the surface S is

birationally equivalent to a K3 surface.

Proof. The surface S is a compactification of a double cover of C2nL ramified along
a quintic curve, where L is a line in C2, which implies the statement. r

Consequently, we may consider the 3-fold X only when

N A f27; 33; 48; 55; 56; 58; 63; 65; 68; 72; 74; 79; 80; 83; 85; 89; 90; 91; 92; 94; 95g:

Lemma 3.5. Suppose that N B f27; 56; 65; 68; 83g. Then the surface S is birationally

equivalent to a K3 surface.

Proof. In the case N ¼ 91, the rational map c is studied in [18], Example 2.5, which
implies that the surface S is birational to a K3 surface. We use the same approach for the
others. We consider only the case N ¼ 72, because the proofs are similar in other cases.

Let X be a general hypersurface in Pð1; 2; 3; 10; 15Þ of degree 30. Let G be the curve
on the hypersurface X given by the equation x1 ¼ x2 ¼ 0 and B be the pencil of surfaces on
the hypersurface X that are cut by the equations

lx2
1 þ mx2 ¼ 0;

where ðl : mÞ A P1. Then S belongs to B, the curve C is the base locus of the pencil B, and
the projection c is the rational map given by B. Moreover, it follows from the generality of
the hypersurface X that the curve G is reduced, irreducible, and rational.

Let P be a singular point of X of type
1

3
ð1; 2; 1Þ and p : V ! X be the Kawamata

blow up at the point P with the exceptional divisor E GPð1; 1; 2Þ. Let M, ĜG, ŜS, and ŶY be
the proper transforms on V of the pencil B, the curve G, the fiber S, and the surface Y cut
by the equation x1 ¼ 0 on the hypersurface X , respectively. Then

�4K 3
V ¼ ŜS � ĜG < 0;

where ŜS A M, the curve ĜG is the base locus of the pencil M, and the equivalences

ŜS @ 2ŶY @�2KV @Q p�ð�2KX Þ �
2

3
E

hold (see [6], Proposition 3.4.6). The surface ŶY has canonical singularities.

Let NEðVÞHR2 be the cone of e¤ective curves of V . Then the class of �E � E gen-
erates one extremal ray of the cone NEðVÞ, while the curve ĜG generates another extremal
ray of the cone NEðVÞ because ŜS � ĜG < 0 and ĜG is the only base curve of the pencil M,
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which implies that the curve ĜG is the only curve contained in the extremal ray generated
by ĜG.

The log pair ðV ; ŶY Þ has log terminal singularities by [14], Theorem 17.4, which im-
plies that the singularities of ðV ; ŶY Þ are canonical because ŶY @�KV . Hence, for a su‰-
ciently small rational number � > 1 the singularities of the log pair ðV ; �ŶY Þ are still log
terminal but the inequality ðKV þ �ŶYÞ � ĜG < 0 holds. There is a log flip a : V aU along
the curve ĜG by [21].

Let P ¼ aðMÞ, Y ¼ aðŶYÞ, S ¼ aðŜSÞ, and G be the flipped curve on U , namely, a pos-
sibly reducible curve such that VnĜGGUnG. Then the surface S is a member of the pencil
P, the log pair ðU ; �YÞ has log terminal singularities, S � G ¼ 2Y � G < 0, and the equiva-
lences �KU @Y and S @�2KU hold. Therefore, the log pair ðU ;Y Þ has canonical singu-
larities. In particular, the singularities of the variety U are canonical.

Suppose BsðPÞ3j. Then BsðPÞ consists of a possibly reducible curve Z that is nu-
merically equivalent to G. Hence, every surface in P is nef. Let H be a general very ample
divisor on V and H ¼ aðHÞ. Then H � Z < 0, which implies Z HH. The inequality

H � S1 � S2 < 0

holds for general surfaces S1 and S2 in P, which contradicts the numerical e¤ectiveness of
the surface S2 because H � S1 is e¤ective. Consequently, the pencil P has no base points,
and hence the surface S has canonical singularities.

Let f : U ! P1 be the morphism given by the pencil P. Then S is a su‰ciently gen-
eral fiber of f and 2Y is a fiber of f. Moreover, we have K

S
@ 0 by the adjunction formula

because the equivalences �KU @Y and Y j
S
@ 0 hold. Therefore, the surface S is either an

abelian surface or a K3 surface.

Let C ¼ E X ŜS. Then S contains aðCÞ because C 3 ĜG and a is an isomorphism in the
outside of ĜG. However, a component of C must be rational because C is a hypersurface of
degree 2 in Pð1; 1; 2Þ, which implies that S cannot be an abelian surface. r

Therefore, it is enough to check the cases N A f27; 56; 65; 68; 83g to conclude the
proof of Proposition 1.3. We prove that S is birational to a K3 surface case by case.

Case N ¼ 27 or 65. Because the methods for N ¼ 27 and 65 are the same, we only
consider the case N ¼ 27.

The surface S HProjðC½x1; x3; x4; x5�ÞGPð1; 3; 5; 5Þ can be given by the equation

x2
5 f5ðx1; x3; x4Þ þ x5 f10ðx1; x3; x4Þ þ f15ðx1; x3; x4Þ ¼ 0;

where fi is a quasi-homogeneous polynomial of degree i. Introducing a variable
y ¼ x5 f5ðx1; x3; x4Þ of weight 10, we obtain the hypersurface
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~SS HPð1; 3; 5; 10ÞGProjðC½x1; x3; x4; y�Þ

of degree 20 given by the equation

y2 þ yf10ðx1; x3; x4Þ f5ðx1; x3; x4Þ þ f15ðx1; x3; x4Þ f5ðx1; x3; x4Þ ¼ 0

and birational to S. The surface ~SS is a compactification of a double cover of C2 ramified
along a sextic curve. Therefore, the surface S is birational to a K3 surface.

Case N ¼ 56. The surface S is a hypersurface of degree 24 in Pð1; 3; 8; 11Þ given by
the equation

x2
5x2

1 þ x5x1 f12ðx1; x3; x4Þ þ f24ðx1; x3; x4Þ ¼ 0HProjðC½x1; x3; x4; x5�Þ;

where fi is a quasi-homogeneous polynomial of degree i. Introducing a new variable
y ¼ x1x5 of weight 12, we obtain the hypersurface ~SS of degree 24 in Pð1; 3; 8; 12Þ given by
the equation

y2 þ yf12ðx1; x3; x4Þ þ f24ðx1; x3; x4Þ ¼ 0HProjðC½x1; x3; x4; y�Þ

which is birational to S. We have K ~SS @ 0, which implies the claim.

Case N ¼ 68. The surface S is a general quasismooth hypersurface of degree 28 in
ProjðC½x1; x3; x4; x5�Þ, where wtðx1Þ ¼ 1, wtðx3Þ ¼ 4, wtðx4Þ ¼ 7, wtðx5Þ ¼ 14. The surface
S has a canonical singular point Q of type A1 and two singular points P1 and P2 of type
1

7
ð1; 4Þ.

Let P be the pencil of curves on S given by

lx4
1 þ mx3 ¼ 0;

where ðl : mÞ A P1. Then the pencil P gives a rational map f : S aP1 whose general
fiber is an elliptic curve. Let t : Y ! S be the minimal resolution of singularities, Z be
the proper transform on the surface Y of the irreducible curve that is cut on the surface
S by the equation x1 ¼ 0, and c ¼ f � t. Then c is a morphism and Z lies in a fiber
of c.

Consider t-exceptional curves E, ÊE1, �EE1, ÊE2, and �EE2, where tðEÞ ¼ Q, tðÊEiÞ ¼ Pi,

tð �EEiÞ ¼ Pi, �EE2
i ¼ �4, and E2 ¼ ÊE

2

i ¼ �2. Let L be the fiber of c over the point cðZÞ. Then
Z G tðZÞGP1, the curve Z is a component of L of multiplicity 4, the fiber L contains the
curve E, and either the surface Y is a minimal model or Z2 ¼ �1. Taking into account all
possibilities for the fiber L to be a blow up of a reducible fiber of minimal smooth elliptic
fibration, we see that the equality Z2 ¼ �1 holds, the curves ÊE1 and ÊE1 are sections of
the elliptic fibration c, but �EE1 and �EE2 are contained in the fiber L. On the other hand, the
equivalences

KY @Q t�
�
OPð1;4;7;14Þð2ÞjS

�
� 2

7
ÊE1 �

4

7
�EE1 �

2

7
ÊE2 �

4

7
�EE2 @Q 2Z þ E
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hold. Let g : Y ! Y be the contraction of the curves Z and E. Then Y is smooth, the curve
gðLÞ is a fiber of type III of the relatively minimal elliptic fibration c � g�1, and the equi-
valence KY @ 0 holds. Therefore, the surface S is birational to a K3 surface.

Case N ¼ 83. The surface S is a hypersurface of degree 36 in

Pð1; 4; 11; 18ÞGProjðC½x1; x3; x4; x5�Þ;

where wtðx1Þ ¼ 1, wtðx3Þ ¼ 4, wtðx4Þ ¼ 11, and wtðx5Þ ¼ 18. Therefore, the surface S has
a canonical singular point Q of type A1 given by the equations x1 ¼ x4 ¼ 0 and an isolated
singular point P at ð0 : 0 : 1 : 0Þ. The surface S is not quasismooth at the point P which is
not a rational singular point of S, a posteriori.

Let P be the pencil of curves on S given by the equations

lx4
1 þ mx3 ¼ 0;

where ðl : mÞ A P1, C be a general curve in P, and n : ĈC ! C be the normalization of the
curve C. Then the base locus of the pencil P consists of the point P and P gives a rational
map f : S aP1 whose general fiber is C. On the other hand, the curve C is a hypersurface
of degree 36 in Pð1; 11; 18Þ. Therefore, the curve ĈC is an elliptic curve, and the birational
map n is a bijection because C is a compactification of the a‰ne curve

C X fx1 3 0gHC2;

which is a double cover of C ramified at three points. In particular, we have kðSÞe 1.

Let t : Y ! S be the minimal resolution of singularities of S. Then we have an ellip-
tic fibration c : Y ! P1 such that c ¼ f � t. We can identify a general fiber of c with the
curve ĈC and the normalization n with the restriction tjĈC . Therefore, there is exactly one
exceptional curve Z of the resolution t not contained in a fiber of c. The curve Z must be
a section of c.

Let F be the proper transform of the smooth rational curve in the pencil P that is
given by the equation x1 ¼ 0, E be the exceptional curve of the morphism t that is mapped
to the point Q, and E1; . . . ;Em be the exceptional curves of the birational morphism t that
are di¤erent from the curves Z and E. Then tðEiÞ ¼ tðZÞ ¼ P and the union

F WE WE1 W � � �WEm

lies in a single fiber L of c. Moreover, the smooth rational curve F is a component of the
fiber L of multiplicity 4, the curve E is rational, and E2 ¼ �2. We have

KY @Q 2F þ aE þ
Pm
i¼1

ciEi;

where a, b, ci are rational numbers. The elliptic fibration c is not relatively minimal, but
the curve F is the only curve in the fiber L whose self-intersection is �1.
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Let x : Y ! Y be the birational morphism such that the surface Y is the minimal
model of the surface Y and h ¼ c � x�1. Then h : Y ! P1 is a relatively minimal elliptic
fibration.

Let L ¼ xðLÞ. Then KY @Q gL for some rational number gf 0. Hence, we have

KY @Q x�ðgLÞ þ aF þ bE þ
Pm
i¼1

diEi;

where a, b, di are non-negative integer numbers. Because the birational morphism x must
contract the curves F and E, we see that af 2, bf 1. Also, the inequality di 3 0 holds if
and only if the curve Ei is contracted by x. Moreover, the equality a ¼ 2 implies that the
only curves contracted by x are F and E. Hence, the inequality gf 0 and the equivalence

2F þ aE þ
Pm
i¼1

ciEi @Q x�ðgLÞ þ aF þ bE þ
Pm
i¼1

diEi

imply that g ¼ 0, a ¼ 2, and m > 0. In particular, the surface Y is either a K3 surface or an
Enriques surface. On the other hand, the only possible multiple fiber of the elliptic fibration
h is the fiber L, which implies that Y is a K3 surface.

Therefore, we have proved Theorem 1.3. In addition, we have shown that X is bira-
tional to a fibration whose general fiber is an elliptic K3 surface if N B f3; 60; 75; 87; 93g.

We conclude the section with one remark.

Remark 3.6. In the proof of Case N ¼ 83 the equality a ¼ 2 and the fact that F is a
component of L of multiplicity 4 imply that L is an elliptic fiber of type I�r , while the bira-
tional morphism x is the composition of the blow up at a point of the component of the
fiber L of multiplicity 2 and the blow up at the intersection point of the proper transform
of the component of multiplicity 2 with the exceptional curve on the first blow up.

It was pointed out to us by D. Stepanov that one can explicitly resolve the singularity
of the surface S at the point P to prove that the surface S is birationally equivalent to a
smooth K3 surface. Indeed, the surface S can be locally given near P by the equation

x2 þ y3 þ z9 ¼ 0HC3=Z11ð7; 4; 1Þ

where P ¼ ð0; 0; 0Þ.

Let s1 be the weighted blow up of C3=Z11ð7; 4; 1Þ at the singular point P with

weights
1

11
ð10; 3; 1Þ. Then the blown up variety is covered by 3 a‰ne charts, the first chart

is isomorphic to C3=Z10ð1;�3;�1Þ, and in the first chart s1 is given by

x ¼ x10=11; y ¼ x3=11y; z ¼ x1=11z;

where we denote the coordinates on C3=Z10ð1;�3;�1Þ by the same letters x, y, z as the
coordinates on C3=Z11ð7; 4; 1Þ. The full transform of S is given by the equation
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x20=11 þ x9=11y3 þ x9=11z9 ¼ 0;

but the strict transform S of the surface S is given by the equation

xþ y3 þ z9 ¼ 0HC3=Z10ð1;�3;�1Þ;

and the exceptional divisor

x ¼ 0 ¼ y3 þ z9 ¼
Q3
i¼1

ðyþ e iz9Þ

consists of 3 smooth rational curves E1, E2, E3 that intersect at the singular point ð0; 0; 0Þ,
where e is a primitive cubic root of unity. Moreover, the surface S has quotient singularity

of type
1

10
ð�3;�1Þ at the singular point ð0; 0; 0Þ.

In the second chart that is isomorphic to C3=Z3ð�1; 2;�1Þ, the strict transform of S

is given by the equation x2yþ 1þ z9 ¼ 0, and in the third chart that is isomorphic to C3,
the strict transform of the surface S is given by x2zþ y3 þ 1 ¼ 0, which imply that they are
nonsingular.

We have a surface S that is locally isomorphic to C2=Z10ð�3;�1Þ and we have 3
smooth rational curves on S given by the equation

Q3
i¼1

ðxþ e iy3Þ ¼ 0;

where x and y are local coordinates on C2=Z10ð�3;�1Þ.

Let s2 be the weighted blow up of the surface S at the point ð0; 0Þ with weights
1

10
ð1; 7Þ. The blown up variety is covered by 2 charts. The first chart is C2 and it does

not contain the strict transforms of the curve Ei. The second chart is isomorphic to
C2=Z7ð�1; 3Þ and in this chart the weighted blow up s2 is given by the formulas

x ¼ y1=10x, y ¼ y7=10 but the strict transform of the curve Ei is given by the equation
xþ e iy2 ¼ 0, where the exceptional divisor Z of the weighted blow up s2 is given by
y ¼ 0.

Now let s3 be the weighted blow up at the origin of the last considered chart with

weights
1

7
ð2; 1Þ. In the first chart C2=Z2ð1; 1Þ, the equation of the proper transform of the

curve Ei is 1þ e iy2 ¼ 0, the equation of the proper transform of Z is y ¼ 0, and the
exceptional divisor E4 of s3 is given by x ¼ 0, but the second chart of s3 is nonsingular.

Let s4 be the blow up of C2=Z2ð1; 1Þ with weights
1

2
ð1; 1Þ and let E5 be the excep-

tional divisor of s4. Then s4 resolves the singularity of S in a neighborhood of the point P

and after blowing up the point Q of S we get our minimal resolution t : Y ! S.
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Let Ei and Z be the proper transforms of the irreducible curves Ei and Z on the non-
singular surface Y , respectively. Then E2

4 ¼ �4, Z2 ¼ E2
i34 ¼ E2 ¼ �2, where

� � �
�

� �

� �

Z E5

E1

F E

E4

E3 E2

is the dual graph of the rational curves Z, E1; . . . ;E5, F , and E. In particular, the fiber L is
of type I�0 .

4. Birational automorphisms

The group BirðXÞ of birational automorphisms is generated by biregular automor-
phisms and a finite set of birational involutions t1; . . . ; tl that are described in [6]. To be
precise, we have an exact sequence of groups

1! GX ! BirðX Þ ! AutðXÞ ! 1;

where the group GX is the subgroup of BirðX Þ generated by a finite set of distinct birational
involutions t1; . . . ; tl.

In this section we describe the group GX with group presentations. When the number
l of generators of GX is 0, namely, the group GX is trivial, BirðX Þ ¼ AutðXÞ, and hence the
3-fold X is birationally superrigid. When the number l of generators of GX is 1, the group
GX is the group of order 2, i.e., Z=2Z. Therefore, we may assume that lf 2 to prove The-
orem 1.1. Throughout this section, a relation of involutions means one di¤erent from the
trivial relation, i.e., t2

i ¼ 1.

First of all, we present the following important observation:

Lemma 4.1. Suppose that the set CSðX ; lMÞ contains at most one element, where M
is a linear system without fixed components on X and l is a positive rational number such that

the divisor �ðKX þ lMÞ is ample. Then there is no relation among t1; . . . ; tl.

Proof. See [17], Proposition 2.2 and Lemma 2.3. They show the condition implies a
given birational automorphism is untwisted4) by the involutions t1; . . . ; tl in a unique way
(see also [6]). r

4) Fix a very ample linear system H on X . Let f : X aX be a birational automorphism such that

f�1ðHÞH j�rKX j. We say that an involution t of X untwists the map f if ðf � tÞ�1ðHÞH j�r 0KX j for some

r 0 < r. More generally, for a log pair X ;
1

r
M

� �
with M@Q�KX that is not terminal we also say that an

involution t of X untwists a maximal singularity of X ;
1

r
M

� �
if tðMÞ@Q�r 0KX for some r 0 < r. For more

generalized detail, refer to [6].

100 Cheltsov and Park, Weighted Fano threefold hypersurfaces



Note that the assumption lf 2 implies that

N A f4; 5; 6; 7; 9; 12; 13; 15; 17; 20; 23; 25; 27; 30; 31; 33; 36; 38; 40; 41; 42; 44; 58; 61; 68; 76g:

Lemma 4.2. Suppose that N A f6; 15; 23; 30; 36; 40; 41; 42; 44; 61; 68; 76g. Then GX is

the free product of two involutions t1 and t2.

Proof. Suppose that N ¼ 36. Then the hypersurface X is a su‰ciently general hy-
persurface in Pð1; 1; 4; 6; 7Þ of degree 18 with �K 3

X ¼ 3=28. It has three singular points,

namely, the point P1 that is a quotient singularity of type
1

2
ð1; 1; 1Þ, the point P2 that is a

quotient singularity of type
1

4
ð1; 1; 3Þ, and the point P3 that is a quotient singularity of type

1

7
ð1; 1; 6Þ.

Suppose that the group GX is not the free product of the involutions t1 and t2. Then
there is a linear system M without fixed components on the hypersurface X such that the
set CSðX ; lMÞ contains at least two subvarieties of the hypersurface X , where l is a posi-
tive rational number such that the divisor �ðKX þ lMÞ is ample. Therefore, it follows from
[6] that CSðX ; lMÞ ¼ fP2;P3g.

The hypersurface X can be given by the quasihomogeneous equation of degree 18

x3
3x4 þ x2

3gðx1; x2; x4; x5Þ þ x3hðx1; x2; x4; x5Þ þ qðx1; x2; x4; x5Þ ¼ 0HPð1; 1; 4; 6; 7Þ;

where f , g, h, and q are quasihomogeneous polynomials. Then the point P2 is located at
ð0 : 0 : 1 : 0 : 0Þ and the point P3 at ð0 : 0 : 0 : 0 : 1Þ.

Let x : X aP7 be the rational map that is given by the linear subsystem of the linear
system j�6KX j consisting of the divisors

mx4 þ
P6

i¼0

lix
i
1x6�i

2 ¼ 0;

where ðm : l0 : l1 : l2 : l3 : l4 : l5 : l6Þ A P7. Then the rational map x is not defined at the
points P2 and P3, the closure of the image of the rational map x is the surface Pð1; 1; 6Þ,
and a general fiber of the map x is an elliptic curve. There is a commutative diagram

W

 ��
���

 ��
���b3 b2

U2 U3 Pð1; 1; 6Þ;

 ��
���

 ��
���

a2 a3

X

����������������������������!

����
����

����
����

!

o

x

where a2 is the Kawamata blow up at the singular point P2, a3 is the Kawamata blow up at
the point P3, b2 is the Kawamata blow up at the point a�1

3 ðP2Þ, b3 is the Kawamata blow
up at the point a�1

2 ðP3Þ, and o is an elliptic fibration.
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Let S be the proper transform on the 3-fold W of a general surface of the linear sys-
tem M and C be a general fiber of the fibration o. The inequality S � C < 0 follows from
[12]. However, it is a contradiction because o is an elliptic fibration.

Suppose that N ¼ 44. Then X is a general hypersurface in Pð1; 2; 5; 6; 7Þ of degree 20
with �K 3

X ¼ 1=21. The singularities of the hypersurface X consist of the points P1, P2, P3

that are quotient singularities of type
1

2
ð1; 1; 1Þ, the point P4 that is a quotient singularity of

type
1

6
ð1; 1; 5Þ, and the point P5 that is a quotient singularity of type

1

7
ð1; 2; 5Þ. Moreover,

there is a commutative diagram

Y

 ��
���

 ��
���b5 b4

U4 U5 Pð1; 2; 5Þ;

 ��
���

 ��
���

a4 a5

X

����������������������������!

����
����

����
����

!

h

c

where c is the natural projection, a4 is the weighted blow up at the singular point P4 with
weights ð1; 1; 5Þ, a5 is the weighted blow up at the point P5 with weights ð1; 2; 5Þ, b4 is the
weighted blow up with weights ð1; 1; 5Þ at the point a�1

5 ðP4Þ, b5 is the weighted blow up
with weights ð1; 2; 5Þ at the point a�1

4 ðP5Þ, and h is an elliptic fibration. It follows from [6]
that

CSðX ; lMÞ ¼ fP4;P5g;

and we can proceed as in the previous case to obtain a contradiction.

In the case when N A f6; 15; 23; 30; 40; 41; 42; 61; 68; 76g we can obtain a contradic-
tion in the same way as in the case N ¼ 44. r

Lemma 4.3. Suppose that N A f4; 9; 17; 27g. Then t1 � t2 � t3 ¼ t3 � t2 � t1 is the

only relation among the birational involutions t1, t2, and t3.

Proof. It follows from [6] that l ¼ 3, a4 ¼ a5, and d ¼ 3a4. A general fiber of the
projection c : X aPð1; a2; a3Þ is a smooth elliptic curve. Moreover, the hypersurface X

has singular points P1, P2, P3 of index a4 which are the points of the indeterminacy of the
map c.

Let p : V ! X be the Kawamata blow up at the points P1, P2, P3. We also let Ei be
the exceptional divisor of p dominating Pi and f ¼ c � p. Then p is a resolution of indeter-
minacy of the rational map c, the divisors E1, E2, E3 are sections of f, the equivalence

�KV @Q p�ð�KX Þ �
1

a4
E1 �

1

a4
E2 �

1

a4
E3

holds, the linear system j�a3a4a5KV j is free and lies in the fibers of f.
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Let F be the field of rational functions on Pð1; a2; a3Þ and C be a generic fiber of the
elliptic fibration f considered as an elliptic curve over F. Then the section Ej of the elliptic
fibration f can be considered as an F-rational point of the elliptic curve C.

One can show using Lemma 4.7 that F-rational points E1, E2, E3 are Z-linearly inde-
pendent in the group PicðCÞ.

By our construction, the curve C is a hypersurface of degree 3a4 in Pð1; a4; a4ÞGP2,
which implies that the curve C can be naturally identified with a cubic curve in P2 such that
the points E1, E2, E3 lie on a single line in P2.

Let si be the involution of the curve C that interchanges the fibers of the projection of
the curve C from the point Ei. Then si can also be considered as a birational involution of
the 3-fold V such that

si ¼ p�1 � ti � p A BirðVÞ:

Consider the curve C as a group scheme. Let Qk be the point ðEi þ EjÞ=2 on the el-
liptic curve C, where fi; jg ¼ f1; 2; 3gnfkg. Then the involution sk is the reflection of the
elliptic curve C at the point Qk because the points E1, E2, E3 are Z-linearly independent,
which implies that Q1, Q2, Q3 are Z-linearly independent and the compositions

s2 � s1 � s3; s1 � s2 � s3; s1 � s3 � s2

are reflections at E1, E2, E3 respectively. Thus, we have the identity

t1 � t2 � t3 ¼ t3 � t2 � t1;

which implies the similar identities that can be obtained from t1 � t2 � t3 ¼ t3 � t2 � t1 by a
permutation of the elements in the set f1; 2; 3g.

It follows from [6] that for any linear system M on the hypersurface X having no

fixed components, the singularities of the log pair X ;
1

r
M

� �
are canonical in the outside of

the points P1, P2, P3, where r is the natural number such that M@Q�rKX . Moreover,

when the singularities of the log pair X ;
1

r
M

� �
are not canonical at the point Pi, we have

1

r
B@Q p�

1

r
M

� �
�m1E1 �m2E2 �m3E3;

where B is the proper transform of M on V and mi > 1=a4. We have the inequality

m1 þm2 þm3 e
3

a4
;

which implies that the linear system B lies in the fibers of the elliptic fibration f if the equal-
ity m1 þm2 þm3 ¼ 3=a4 holds.
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When the inequality mi > 1=a4 holds, the birational involution ti untwists the maxi-

mal singularity of the log pair X ;
1

r
M

� �
at the point Pi, namely, the equivalence

tiðMÞ@Q�r 0KX

holds for some natural number r 0 < r. Similarly, the involution ti � tk � tj untwists the max-

imal singularities of the log pair X ;
1

r
M

� �
at the points Pi and Pj simultaneously when the

inequalities mi > 1=a4 and mj > 1=a4 hold for i3 j, where k A f1; 2; 3gnfi; jg.

Now we can use the arguments of the proof of Theorem 7.8 in [16], Section V, to
prove that the identity t1 � t2 � t3 ¼ t3 � t2 � t1 is the only relation among our birational
involutions t1, t2, and t3. However, it should be pointed out that the arguments of the
proof of Theorem 7.8 in [16], Section V, are too sophisticated for our purposes5). r

Lemma 4.4. Suppose that N ¼ 7. Then there are no relations among t1; . . . ; t5.

Proof. The 3-fold X is a general hypersurface in Pð1; 1; 2; 2; 3Þ of degree 8 which has

singular points P1; . . . ;P4 of type
1

2
ð1; 1; 1Þ and a singular point Q of type

1

3
ð1; 2; 1Þ.

Let ai : Vi ! X be the weighted blow up of X at the singular points Pi and Q with

weights
1

2
ð1; 1; 1Þ and

1

3
ð1; 2; 1Þ, respectively. Then

KVi
@Q a�i ðKX Þ þ

1

2
Ei þ

1

3
Fi;

where Ei and Fi are the exceptional divisors of the birational morphism ai dominating
the singular points Pi and Q, respectively. The linear system j�2KVi

j induces the mor-
phism

ci : Vi ! Pð1; 1; 2Þ;

which is an elliptic fibration. Moreover, the divisor Ei is a 2-section of the fibration ci, while
the divisor Fi is a section of ci. Up to relabelling, the birational involutions t1; . . . ; t5 can
be constructed as follows: the involution ti is induced by the reflection of a general fiber of
the morphism ci at the section Fi but the involution t5 is induced by the natural projection
X aPð1; 1; 2; 2Þ.

5) The following arguments are due to A. Borisov. Let W be a composition of s1, s2, s3 such that W is the

identity map of the elliptic curve C and W does not contain squares of si. Then we can show that W has even

number of entries and each entry appears the same number of times in the even and the odd positions, and we can

use the identity s1 � s2 � s3 ¼ s3 � s2 � s1 to make s3 jump 2 spots left or right. Shifting the last s3 in the odd

position in W that is followed not right away by s3 in the even position, we can collapse them and get a compo-

sition of s1, s2, s3 having a smaller number of entries. Therefore, the only relation among the involutions s1, s2,

s3 is the identity s1 � s2 � s3 ¼ s3 � s2 � s1.
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Let M be a linear system on X without fixed components such that M@Q�rKX for

some natural number r. Then the singularities of the log pair X ;
1

r
M

� �
are canonical in

the outside of the points P1; . . . ;P4, Q due to [6].

Let Bi be the proper transform of M on Vi. Then

Bi @Q a�i ðMÞ �miEi �mFi;

where mi and m are positive rational numbers. Moreover, the log pair X ;
1

r
M

� �
is not

canonical at the point Pi if and only if mi > r=2. On the other hand, the singularities of the

log pair X ;
1

r
M

� �
are not canonical at Q if and only if m > r=3. Now intersecting the

linear system Bi with a su‰ciently general fiber of ci, we see that

2mi þme
4r

3
:

The equivalence tiðMÞ@Q�r 0KX holds for some natural number r 0. Moreover, the
inequality r 0 < r holds if mi > r=2 when i ¼ 1; . . . ; 4 or if m > r=3 when i ¼ 5, namely, the

involutions t1; . . . ; t5 untwist the maximal singularities of the log pair X ;
1

r
M

� �
.

In order to prove that the involutions t1; . . . ; t5 do not have any relation, it is enough

to prove that the singularities of the log pair X ;
1

r
M

� �
are not canonical at at most one

point by Lemma 4.1. However, the inequality 2mi þme 4r=3 implies that the log pair

X ;
1

r
M

� �
is canonical at one of the singular points Pi and Q. To conclude the proof,

therefore, we must show that for i3 j the singularities of the log pair X ;
1

r
M

� �
are canon-

ical at one of the points Pi and Pj.

Suppose that the log pair X ;
1

r
M

� �
is not canonical at the points P1 and P2. Let S

be a general surface in j�KX j and C be the base curve of j�KX j. Then S is a K3 surface
whose singular points are the singular points of X . Moreover, the point Pi is a singular
point of type A1 on the surface S and the point Q is a singular point of type A2 on S.

The curve C is a smooth curve passing through the points P1; . . . ;P4, and Q. We have

MjS ¼ PþmultCðMÞC;

where P is a linear system without fixed components. The inequality multCðMÞe r holds;

otherwise the log pair X ;
1

r
M

� �
would not be canonical at the point Q by [12].

Let p : Y ! S be the composition of blow ups of the singular points P1 and P2, Gi be
the exceptional divisor of p dominating Pi, C be the proper transform on the surface Y
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of the curve C, and H be the proper transform on the surface Y of the linear system P.
Then

HþmultCðMÞC @Q p�ð�rKX jSÞ �m1G1 �m2G2;

where mi fmi > r=2. However, we have C2 ¼ �1=3 on the surface Y and we see that

� r

3
e

�
HþmultCðMÞC

�
� C e

2r

3
�m1 �m2 < � r

3
;

which is a contradiction. r

Lemma 4.5. Suppose that N ¼ 20. Then there are no relations among t1, t2, t3.

Proof. We have a general hypersurface X HPð1; 1; 3; 4; 5Þ given by

x4
3 f1ðx1; x2Þ þ x3

3 f4ðx1; x2; x4Þ þ x2
3 f7ðx1; x2; x4; x5Þ

þ x3 f10ðx1; x2; x4; x5Þ þ f13ðx1; x2; x4; x5Þ ¼ 0;

where fi is a general quasihomogeneous polynomial of degree i. The 3-fold X has 3 singu-
lar points at P ¼ ð0 : 0 : 1 : 0 : 0Þ, Q ¼ ð0 : 0 : 0 : 1 : 0Þ, O ¼ ð0 : 0 : 0 : 0 : 1Þ and a general
fiber of the natural projection of X to Pð1; 1; 3Þ is an elliptic curve. However, a general fiber
of the natural projection of X to Pð1; 1; 4Þ may not be an elliptic curve.

Let us take t ¼ x3 f1ðx1; x2Þ þ f4ðx1; x2; x4Þ as a homogeneous variable of weight 4
instead of the homogeneous variable x4. Then the hypersurface X is given by the equa-
tion

x3
3 tþ x2

3g7ðx1; x2; t; x5Þ þ x3g10ðx1; x2; t; x5Þ þ g13ðx1; x2; t; x5Þ ¼ 0;

where gi is a su‰ciently general quasihomogeneous polynomial of degree i. A general fiber
of the natural projection of X to Pð1; 1; 4Þ is an elliptic curve.

Up to relabelling, the involutions t1, t2, t3 can be constructed as follows:

� the birational involution t1 is induced by the reflection of a general fiber of the
natural projection X aPð1; 1; 4Þ at the point O;

� the birational involution t2 is induced by the reflection of a general fiber of the
natural projection X aPð1; 1; 3Þ at the point O;

� the birational involution t3 is induced by the reflection of a general fiber of the
natural projection X aPð1; 1; 3Þ at the point Q but the involution t3 is also induced by
the natural projection X aPð1; 1; 3; 4Þ.

Let M be a linear system on X without fixed components such that M@Q�rKX

for some natural number r. Then the singularities of the log pair X ;
1

r
M

� �
are canonical
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in the outside of the points P, Q, O due to [6], and the equivalence tiðMÞ@Q�r 0KX holds
for some natural number r 0 < r in the following cases:

� the log pair X ;
1

r
M

� �
is not canonical at the point P and i ¼ 1;

� the log pair X ;
1

r
M

� �
is not canonical at the point Q and i ¼ 2;

� the log pair X ;
1

r
M

� �
is not canonical at the point O and i ¼ 3.

In order to prove that the involutions t1, t2, t3 are not related by any relation, by

Lemma 4.1 it is enough to show that the singularities of X ;
1

r
M

� �
are not canonical at

at most one point.

Suppose that X ;
1

r
M

� �
is not canonical at the points P and O. Let a : V ! X be the

Kawamata blow up at the points P and O. Then

KV @Q a�ðKX Þ þ
1

3
E þ 1

5
F ;

where E and F are the exceptional divisors of the birational morphism a dominating the
singular points P and O, respectively. The linear system j�4KV j does not have base points
and induces the morphism c : V ! Pð1; 1; 4Þ which is an elliptic fibration. The divisor F is
a section of c and the divisor E is a 2-section of c. Let B be the proper transform of the
linear system M on the 3-fold V . Then

B@Q a�ðMÞ � aE � bF ;

where a and b are rational numbers such that a > r=3 and b > r=5. Intersecting the linear
system B with a su‰ciently general fiber of c, we see that

2aþ be
52r

60
;

which is impossible because a > r=3 and b > r=5.

We next suppose that the singularities of the log pair X ;
1

r
M

� �
are not canonical at

the singular points Q and O. Let g : W ! X be the composition of the weighted blow ups
at the points Q and O with weights ð1; 1; 3Þ and ð1; 1; 4Þ, respectively. Then

KW @Q g�ðKX Þ þ
1

4
G þ 1

5
H;

where G and H are the g-exceptional divisors dominating the singular points Q and O, re-
spectively. Moreover, there is a commutative diagram
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W

 ��
��g

 �
�� f

X ���� !
c

Pð1; 1; 3Þ;

where c is the natural projection and f is the rational map given by j�3KW j.

Let D be the proper transform of M on W . Then

D@Q g�ðMÞ � cG � dH;

where c > r=4 and d > r=5 by [12].

The natural projection c has a one-dimensional family of fibers that have a singular-
ity at the singular point O. Let C be the proper transform on the variety W of a su‰ciently
general fiber of the projection c that is singular at the point O. Intersecting a general sur-
face of the linear system D with the curve C, we obtain the inequality

cþ 2d e
13r

20
;

which is impossible because c > r=4 and d > r=5.

Let S be a su‰ciently general surface in the linear system j�KX j and L be the curve
on the hypersurface X cut by the equations x1 ¼ x2 ¼ 0. Then S is a K3 surface whose sin-
gular points are the singular points of the hypersurface X . Moreover, one can easily show
that the point P is a singular point of type A2 on the surface S, the point Q is a singular
point of type A3 on the surface S, and the point O is a singular point of type A4 on the
surface S. The curve L is a smooth rational curve passing through P, Q, and O. We have

MjS ¼ PþmultLðMÞL;

where P is a linear system on S without fixed components. Moreover, it immediately fol-
lows from [12] that the inequality multLðMÞe r holds because we already proved that the

singularities of X ;
1

r
M

� �
are canonical at least at one of the points P, Q, and O.

Finally, we suppose that the singularities of the log pair X ;
1

r
M

� �
are not canonical

at the singular points Q and P. Let p : Y ! S be the composition of the weighted blow ups
at the points P and Q that are induced by the Kawamata blow ups of the hypersurface X at
the singular points P and Q. Then

HþmultLðMÞL@Q p�ð�rKX jSÞ �m1E1 �m2E2;

where E1 and E2 are the p-exceptional divisors dominating P and Q, respectively, L is the
proper transform on the surface Y of the curve L, H is the proper transform on Y of the
linear system P, m1 and m2 are rational numbers. Then L2 ¼ �1=30, but it follows from
the paper [12] that the inequalities m1 > r=3 and m2 > r=4 hold.
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The curve L intersects the curves E1 and E2 at singular points of types A1 and A2

respectively. Therefore, the inequalities L � E1 f 1=2 and L � E2 f 1=3 hold. Consequently,
we obtain

� r

30
e

�
HþmultLðMÞL

�
� Le

13r

60
�m1

2
�m2

3
< � r

30
;

which is a contradiction. r

Therefore, to conclude the proof of Theorem 1.1, it is enough to consider the cases

N A f5; 12; 13; 25; 31; 33; 38; 58g:

In these cases the group GX is generated by two involutions t1 and t2. We must show that
the group GX is the free product of the groups ht1i and ht2i.

Perhaps, the simplest possible way to prove the required claim is to use the arguments
of the proofs of Lemmas 4.4 and 4.5. For example, the arguments used during the elimina-
tion of the points Q and O in the proof of Lemma 4.5 immediately imply the required claim
in the case N ¼ 5. However, we choose an alternative approach.

Let c : X aPð1; a2; a3Þ be the natural projection.

Lemma 4.6. There are only finitely many reducible fibers of c.

Proof. We consider only the case N ¼ 58 because the other cases are similar. Then
X is a su‰ciently general hypersurface of degree 24 in Pð1; 3; 4; 7; 10Þ. It is enough to show
that the fiber C of the projection c over a point ðp1 : p2 : p3Þ A Pð1; 3; 4Þ is irreducible if
p1 3 0 and ðp1 : p2 : p3Þ belongs to the complement to a finite set.

By construction, the fiber C is a curve of degree 24=70 in

Pð1; 7; 10Þ ¼ ProjðC½x1; x4; x5�Þ;

where wtðx1Þ ¼ 1, wtðx4Þ ¼ 7, and wtðx5Þ ¼ 10. If the curve C is reducible, it must contain
a curve of degree 1=70, 1=10, or 1=7. However, we have a unique curve of degree 1=70 in
Pð1; 7; 10Þ, namely, the curve defined by x1 ¼ 0. Hence, the fiber C cannot contain the
curve of degree 1=70 by the generality of the hypersurface X .

Let X ¼ jOPð1;3;4;7;10Þð24Þj and C1=7 be the set of curves in Pð1; 3; 4; 7; 10Þ given by

lx3
1 þ x2 ¼ mx4

1 þ x3 ¼ n0x10
1 þ n1x5 þ n2x3

1x4 ¼ 0;

where ðn0 : n1 : n2Þ A P2 and ðl; mÞ A C2. Put

G ¼ fðX ;CÞ A X� C1=7 jC HXg

and consider the natural projections f : G! X and g : G! C1=7. Then the projection g is
surjective, dim

�
g�1ðx2 ¼ x3 ¼ x5 ¼ 0Þ

�
¼ dimðXÞ � 4, and dimðC1=7Þ ¼ 4. Thus, we have
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dimðXÞf dimðGÞ;

which implies that X contains finitely many curves of degree 1=7. Similarly, it is impossible
to have infinitely many curves of degree 1=10 on X . Therefore, the fiber C is irreducible
whenever the point P is in the outside of the finitely many points in Pð1; 3; 4Þ and not in
the hyperplane x1 ¼ 0. Consequently, the statement for the case N ¼ 58 is true. r

The rational map c is not defined at two distinct points of the hypersurface X , which
we denote by P and Q. Let C be a very general fiber of the map c. Then C is a smooth
elliptic curve passing through the points P and Q. Moreover, the following well known re-
sult implies that the divisor P�Q is not a torsion in PicðCÞ.

Lemma 4.7. Let t : S ! P1 be an elliptic fibration such that the surface S is normal

and all fibers of the elliptic fibration t are irreducible. Suppose that there are distinct disjoint

sections C1 and C2 of the elliptic fibration t such that C2
1 < 0 and C2

2 < 0. Then for a very

general fiber L of the elliptic fibration t the divisor ðC1 � C2ÞjL is not a torsion in PicðLÞ.

Proof. For every natural number n we have

nðC1 � C2ÞjL @ 0) C1 � C2 1S;

where S is a Q-divisor on the surface S whose support is contained in the fibers of the ellip-
tic fibration t. On the other hand, because all fibers of t are irreducible, the curves C1, C2,
and L are linearly dependent in the group DivðSÞnQ=1. However,

C2
1 C1 � C2 C1 � L

C1 � C2 C2
2 C2 � L

C1 � L C2 � L L2

�������

�������¼ �C2
1 � C2

2 3 0;

which contradicts the linear dependence of the curves C1, C2, and L. r

The curve C is invariant under the action of the birational involutions t1 and t2.
Moreover, up to relabelling the involutions t1 and t2 act on the elliptic curve C by reflec-
tions with respect to the points Q and P, respectively. Hence, the composition t1 � t2 acts
on the smooth elliptic curve C by the translation by 2ðP�QÞ. Therefore, the composition
ðt1 � t2Þn never acts identically on the curve C for any natural number n3 0 because
the divisor P�Q on the curve C is not a torsion in PicðCÞ. Hence, the group GX is the
free product of the groups ht1i and ht2i, which concludes the proof of Theorem 1.1.

5. Potential density

Suppose that the hypersurface X is defined over a number field F. The purpose of this
section is to complete the proof of Proposition 1.4 by proving the potential density of the
set of rational points of the hypersurface X in the cases N ¼ 11 and 19.

Lemma 5.1. Suppose that N ¼ 19. Then rational points on X are potentially dense.
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Proof. The 3-fold X is a general hypersurface in PFð1; 2; 3; 3; 4Þ given by the equa-
tion

P
i; j;k; l;mf0

iþa2 jþa3kþa4lþa5m¼12

aijklmxi
1x

j
2xk

3 xl
4xm

5 ¼ 0;

where aijklm A F and we may assume that a00040 ¼ 0 and a00003 ¼ 1 possibly after replacing
the field F by its finite extension. Let P ¼ ð0 : 0 : 0 : 1 : 0Þ. Then X has a cyclic quotient

singularity of type
1

3
ð1; 2; 1Þ at the point P.

Let a : V ! X be the Kawamata blow up at P. Then the equality �K 3
V ¼ 0 holds, the

linear system j�6KV j has no base point, and

KV @Q a�ðKX Þ þ
1

3
E;

where E ¼ a�1ðPÞGPð1; 1; 2Þ. Let c : V ! Pð1; 2; 3Þ be the morphism given by the linear
system j�6KV j. Then c is an elliptic fibration (see the proof of Lemma 2.6).

The restriction cjE : E ! Pð1; 2; 3Þ is a triple cover, namely, the divisor E is a 3-
section of the elliptic fibration c. In the case when cjE is branched at a point contained in
a smooth fiber of c, the set of rational points on V is potentially dense (see [1]) because E is
a rational surface. Therefore, it is enough to find a smooth fiber C of the fibration c such
that the intersection C XE consists of at most two points.

Let Z be the curve on X given by the equations x2 ¼ lx2
1 and x3 ¼ mx3

1, where
l; m A F, and ẐZ ¼ a�1ðZÞ. Then ẐZ is a fiber of c. The intersection ẐZ XE consists of three
di¤erent points if and only if Z has an ordinary triple point at P. However, the curve Z has
an ordinary triple point at the point P if and only if the homogeneous polynomial

f ðx1; x5Þ ¼ x3
5 þ a10012x1x2

5 þ x5x2
1ða20021 þ la01021Þ þ x3

1ðma00130 þ la10030 þ a30030Þ

has three distinct roots. Now if we put

l ¼ a2
10012 � 4a20021

4a01021
and m ¼ � la10030 þ a30030

a00130
;

then the generality of the hypersurface X together with the Bertini theorem implies that the
curve ẐZ is smooth but the intersection ẐZ XE consists of only two di¤erent points. r

To prove the potential density of the case N ¼ 11, we first consider a general surface
in j�KX j.

Lemma 5.2. Let Y be a general surface in j�KX j. Suppose that at least one singular

point of Y is defined over the field F. Then the set of F-rational points of Y is Zariski dense.

Proof. We have a hypersurface Y HPð1; 2; 2; 5Þ which can be given by the equation
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x2
4 ¼ x2

1 f4ðx2; x3Þ þ x4
1 f3ðx2; x3Þ þ x6

1 f2ðx2; x3Þ þ x8
1 f1ðx2; x3Þ þ x10

1 þ x3g4ðx2; x3Þ;

where fi and gi are general homogeneous polynomials of degree i.

Let P be the point ð0 : 1 : 0 : 0Þ and H be the pencil of curves on Y given by the
equations lx2

1 þ mx3 ¼ 0, ðl : mÞ A P1
F. Then Y has a singularity of type A1 at the point P

which is a unique base point of the pencil H.

Let C be the curve in H corresponding to the point ðl : mÞ A P1
F and

f4ðx2; x3Þ ¼
P4

i¼0

aix
i
2x4�i

3 ; g4ðx2; x3Þ ¼
P4

i¼0

bix
i
2x4�i

3 ;

where ai and bi are su‰ciently general constants. Then the curve C has an ordinary double
point at the point P when ðl : mÞ3 ð1 : 0Þ and ðl : mÞ3 ða4 : b4Þ. Let F be the curve in the
pencil H corresponding to the point ðl : mÞ ¼ ða4 : b4Þ and L be the curve on the surface Y

given by the equation x1 ¼ 0. Then F is smooth in the outside of P and has an ordinary
cusp at P, while L is a smooth rational curve.

Let p : W ! Y be the blow up at the point P, E be the p-exceptional divisor, and B
be the proper transform of the pencil H on the surface W . Then B has no base point and
induces an elliptic fibration c : W ! P1. The proper transform F̂F of F by p is a smooth
elliptic fiber of the fibration c. Moreover, the restriction pjE : E ! P1 is a double cover
branched at the point F̂F XE. Because the set of all F-rational points of the curve E is Zar-
iski dense, it follows from [1] that the set of F-rational points of the surface S is Zariski
dense. r

Because we may assume that the singular points of X are F-rational by replacing F

by its finite extension, one can easily prove the density of F-rational points on X with the
lemma above.

6. Appendix

The list of quasismooth anticanonically embedded weighted Fano 3-fold hypersur-
faces is found in [9]. The completeness of the list is proved in [11].

Table 1. Weighted Fano hypersurfaces of degree d in P(1, a2, a3, a4, a5).

N d a2 a3 a4 a5 �K 3
X SingðXÞ GX

1 4 1 1 1 1 4 j F0

2 5 1 1 1 2 5=2 1
2
ð1; 1; 1Þ F1

3 6 1 1 1 3 2 j F0

4 6 1 1 2 2 3=2 3� 1
2
ð1; 1; 2Þ F̂F3

5 7 1 1 2 3 7=6 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ F2

6 8 1 1 2 4 1 2� 1
2
ð1; 1; 1Þ F2
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Table 1. Continued

N d a2 a3 a4 a5 �K 3
X SingðXÞ GX

7 8 1 2 2 3 2=3 4� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ F5

8 9 1 1 3 4 3=4 1
4
ð1; 1; 3Þ F1

9 9 1 2 3 3 1=2 1
2
ð1; 1; 1Þ, 3� 1

3
ð1; 1; 2Þ F̂F3

10 10 1 1 3 5 2=3 1
3
ð1; 1; 2Þ F0

11 10 1 2 2 5 1=2 5� 1
2
ð1; 1; 1Þ F0

12 10 1 2 3 4 5=12 2� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ F2

13 11 1 2 3 5 11=30 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

5
ð1; 2; 3Þ F2

14 12 1 1 4 6 1=2 1
2
ð1; 1; 1Þ F0

15 12 1 2 3 6 1=3 2� 1
2
ð1; 1; 1Þ, 2� 1

3
ð1; 1; 2Þ F2

16 12 1 2 4 5 3=10 3� 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ F1

17 12 1 3 4 4 1=4 3� 1
4
ð1; 1; 3Þ F̂F3

18 12 2 2 3 5 1=5 6� 1
2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ F1

19 12 2 3 3 4 1=6 3� 1
2
ð1; 1; 1Þ, 4� 1

3
ð1; 1; 2Þ F0

20 13 1 3 4 5 13=60 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

5
ð1; 1; 4Þ F3

21 14 1 2 4 7 1=4 3� 1
2
ð1; 1; 1Þ, 1

4
ð1; 1; 3Þ F0

22 14 2 2 3 7 1=6 7� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ F0

23 14 2 3 4 5 7=60 3� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

5
ð1; 2; 3Þ F2

24 15 1 2 5 7 3=14 1
2
ð1; 1; 1Þ, 1

7
ð1; 2; 5Þ F1

25 15 1 3 4 7 5=28 1
4
ð1; 1; 3Þ, 1

7
ð1; 3; 4Þ F2

26 15 1 3 5 6 1=6 2� 1
3
ð1; 1; 2Þ, 1

6
ð1; 1; 5Þ F1

27 15 2 3 5 5 1=10 1
2
ð1; 1; 1Þ, 3� 1

5
ð1; 2; 3Þ F̂F3

28 15 3 3 4 5 1=12 5� 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ F0

29 16 1 2 5 8 1=5 2� 1
2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ F0

30 16 1 3 4 8 1=6 1
3
ð1; 1; 2Þ, 2� 1

4
ð1; 1; 3Þ F2

31 16 1 4 5 6 2=15 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ, 1

6
ð1; 1; 5Þ F2

32 16 2 3 4 7 2=21 4� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

7
ð1; 3; 4Þ F1

33 17 2 3 5 7 17=210 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

5
ð1; 2; 3Þ, 1

7
ð1; 2; 5Þ F2

34 18 1 2 6 9 1=6 3� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ F0

35 18 1 3 5 9 2=15 2� 1
3
ð1; 1; 2Þ, 1

5
ð1; 1; 4Þ F0

36 18 1 4 6 7 3=28 1
4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

7
ð1; 1; 6Þ F2
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Table 1. Continued

N d a2 a3 a4 a5 �K 3
X SingðXÞ GX

37 18 2 3 4 9 1=12 4� 1
2
ð1; 1; 1Þ, 2� 1

3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ F0

38 18 2 3 5 8 3=40 2� 1
2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ, 1

8
ð1; 3; 5Þ F2

39 18 3 4 5 6 1=20 3� 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ F0

40 19 3 4 5 7 19=420 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

5
ð1; 2; 3Þ, 1

7
ð1; 3; 4Þ F2

41 20 1 4 5 10 1=10 1
2
ð1; 1; 1Þ, 2� 1

5
ð1; 1; 4Þ F2

42 20 2 3 5 10 1=15 2� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 2� 1

5
ð1; 2; 3Þ F2

43 20 2 4 5 9 1=18 5� 1
2
ð1; 1; 1Þ, 1

9
ð1; 4; 5Þ F1

44 20 2 5 6 7 1=21 3� 1
2
ð1; 1; 1Þ, 1

6
ð1; 1; 5Þ, 1

7
ð1; 2; 5Þ F2

45 20 3 4 5 8 1=24 1
3
ð1; 1; 2Þ, 2� 1

4
ð1; 1; 3Þ, 1

8
ð1; 3; 5Þ F1

46 21 1 3 7 10 1=10 1
10
ð1; 3; 7Þ F1

47 21 1 5 7 8 3=40 1
5
ð1; 2; 3Þ, 1

8
ð1; 1; 7Þ F1

48 21 2 3 7 9 1=18 1
2
ð1; 1; 1Þ, 2� 1

3
ð1; 1; 2Þ, 1

9
ð1; 2; 7Þ F1

49 21 3 5 6 7 1=30 3� 1
3
ð1; 1; 2Þ, 1

5
ð1; 2; 3Þ, 1

6
ð1; 1; 5Þ F0

50 22 1 3 7 11 2=21 1
3
ð1; 1; 2Þ, 1

7
ð1; 3; 4Þ F0

51 22 1 4 6 11 1=12 1
4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

6
ð1; 1; 5Þ F0

52 22 2 4 5 11 1=20 5� 1
2
ð1; 1; 1Þ, 1

4
ð1; 1; 3Þ, 1

5
ð1; 1; 4Þ F0

53 24 1 3 8 12 1=12 2� 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ F0

54 24 1 6 8 9 1=18 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

9
ð1; 1; 8Þ F1

55 24 2 3 7 12 1=21 2� 1
2
ð1; 1; 1Þ, 2� 1

3
ð1; 1; 2Þ, 1

7
ð1; 2; 5Þ F0

56 24 2 3 8 11 1=22 3� 1
2
ð1; 1; 1Þ, 1

11
ð1; 3; 8Þ F1

57 24 3 4 5 12 1=30 2� 1
3
ð1; 1; 2Þ, 2� 1

4
ð1; 1; 3Þ, 1

5
ð1; 2; 3Þ F0

58 24 3 4 7 10 1=35 1
2
ð1; 1; 1Þ, 1

7
ð1; 3; 4Þ, 1

10
ð1; 3; 7Þ F2

59 24 3 6 7 8 1=42 4� 1
3
ð1; 1; 2Þ, 1

2
ð1; 1; 1Þ, 1

7
ð1; 1; 6Þ F0

60 24 4 5 6 9 1=45 2� 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ, 1

3
ð1; 1; 2Þ, 1

9
ð1; 4; 5Þ F1

61 25 4 5 7 9 5=252 1
4
ð1; 1; 3Þ, 1

7
ð1; 2; 5Þ, 1

9
ð1; 4; 5Þ F2

62 26 1 5 7 13 2=35 1
5
ð1; 2; 3Þ, 1

7
ð1; 1; 6Þ F0

63 26 2 3 8 13 1=24 3� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

8
ð1; 3; 5Þ F0

64 26 2 5 6 13 1=30 4� 1
2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ, 1

6
ð1; 1; 5Þ F0

65 27 2 5 9 11 3=110 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ, 1

11
ð1; 2; 9Þ F1

66 27 5 6 7 9 1=70 1
5
ð1; 1; 4Þ, 1

6
ð1; 1; 5Þ, 1

3
ð1; 1; 2Þ, 1

7
ð1; 2; 5Þ F0
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Table 1. Continued

N d a2 a3 a4 a5 �K 3
X SingðXÞ GX

67 28 1 4 9 14 1=18 1
2
ð1; 1; 1Þ, 1

9
ð1; 4; 5Þ F0

68 28 3 4 7 14 1=42 1
3
ð1; 1; 2Þ, 1

2
ð1; 1; 1Þ, 2� 1

7
ð1; 3; 4Þ F2

69 28 4 6 7 11 1=66 2� 1
2
ð1; 1; 1Þ, 1

6
ð1; 1; 5Þ, 1

11
ð1; 4; 7Þ F1

70 30 1 4 10 15 1=20 1
4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ F0

71 30 1 6 8 15 1=24 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

8
ð1; 1; 7Þ F0

72 30 2 3 10 15 1=30 3� 1
2
ð1; 1; 1Þ, 2� 1

3
ð1; 1; 2Þ, 1

5
ð1; 2; 3Þ F0

73 30 2 6 7 15 1=42 5� 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

7
ð1; 1; 6Þ F0

74 30 3 4 10 13 1=52 1
4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

13
ð1; 3; 10Þ F1

75 30 4 5 6 15 1=60 1
4
ð1; 1; 3Þ, 2� 1

2
ð1; 1; 1Þ, 2� 1

5
ð1; 1; 4Þ,

1
3
ð1; 1; 2Þ

F0

76 30 5 6 8 11 1=88 1
2
ð1; 1; 1Þ, 1

8
ð1; 3; 5Þ, 1

11
ð1; 5; 6Þ F2

77 32 2 5 9 16 1=45 2� 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ, 1

9
ð1; 2; 7Þ F0

78 32 4 5 7 16 1=70 2� 1
4
ð1; 1; 3Þ, 1

5
ð1; 1; 4Þ, 1

7
ð1; 5; 2Þ F0

79 33 3 5 11 14 1=70 1
5
ð1; 1; 4Þ, 1

14
ð1; 3; 11Þ F1

80 34 3 4 10 17 1=60 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

10
ð1; 3; 7Þ F0

81 34 4 6 7 17 1=84 1
4
ð1; 1; 3Þ, 2� 1

2
ð1; 1; 1Þ, 1

6
ð1; 1; 5Þ, 1

7
ð1; 4; 3Þ F0

82 36 1 5 12 18 1=30 1
5
ð1; 2; 3Þ, 1

6
ð1; 1; 5Þ F0

83 36 3 4 11 18 1=66 2� 1
3
ð1; 1; 2Þ, 1

2
ð1; 1; 1Þ, 1

11
ð1; 4; 7Þ F0

84 36 7 8 9 12 1=168 1
7
ð1; 2; 5Þ, 1

8
ð1; 1; 7Þ, 1

4
ð1; 1; 3Þ, 1

3
ð1; 1; 2Þ F0

85 38 3 5 11 19 2=165 1
3
ð1; 1; 2Þ, 1

5
ð1; 1; 4Þ, 1

11
ð1; 3; 8Þ F0

86 38 5 6 8 19 1=120 1
5
ð1; 1; 4Þ, 1

6
ð1; 1; 5Þ, 1

2
ð1; 1; 1Þ, 1

8
ð1; 3; 5Þ F0

87 40 5 7 8 20 1=140 2� 1
5
ð1; 2; 3Þ, 1

7
ð1; 1; 6Þ, 1

4
ð1; 1; 3Þ F0

88 42 1 6 14 21 1=42 1
2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

7
ð1; 1; 6Þ F0

89 42 2 5 14 21 1=70 3� 1
2
ð1; 1; 1Þ, 1

5
ð1; 1; 4Þ, 1

7
ð1; 2; 5Þ F0

90 42 3 4 14 21 1=84 2� 1
3
ð1; 1; 2Þ, 1

4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

7
ð1; 3; 4Þ F0

91 44 4 5 13 22 1=130 1
2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ, 1

13
ð1; 4; 9Þ F0

92 48 3 5 16 24 1=120 2� 1
3
ð1; 1; 2Þ, 1

5
ð1; 1; 4Þ, 1

8
ð1; 3; 5Þ F0

93 50 7 8 10 25 1=280 1
7
ð1; 3; 4Þ, 1

8
ð1; 1; 7Þ, 1

2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ F0

94 54 4 5 18 27 1=180 1
4
ð1; 1; 3Þ, 1

2
ð1; 1; 1Þ, 1

5
ð1; 2; 3Þ, 1

9
ð1; 4; 5Þ F0

95 66 5 6 22 33 1=330 1
5
ð1; 2; 3Þ, 1

2
ð1; 1; 1Þ, 1

3
ð1; 1; 2Þ, 1

11
ð1; 5; 6Þ F0
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