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Nonrational del Pezzo fibrations

Ivan Cheltsov∗

(Communicated by A. Sommese)

Abstract. Let X be a general divisor in |3M + nL| on the rational scroll Proj(
L4

i=1OP1(di)),
where di and n are integers, M is the tautological line bundle, L is a fibre of the natural projection
to P1, and d1 > · · · > d4 = 0. We prove that X is rational ⇐⇒ d1 = 0 and n = 1.

1 Introduction

The rationality problem for threefolds1 splits in three cases: conic bundles, del Pezzo
fibrations, and Fano threefolds. The cases of conic bundles and Fano threefolds are well
studied.

Let ψ : X → P1 be a fibration into del Pezzo surfaces of degree k > 1 such that X is
smooth and rkPic(X) = 2. Then X is rational if k > 5. The following result is due to
[1] and [12].

Theorem 1.1. Suppose that fibres of ψ are normal and k = 4. Then X is rational if and
only if

χ(X) ∈ {0,−8,−4},

where χ(X) is the topological Euler characteristic.

The following result is due to [8].

Theorem 1.2. Suppose that K2
X 6∈ IntNE(X) and k 6 2. Then X is nonrational.

In the case when k 6 2 and K2
X ∈ IntNE(X), the threefold X belongs to finitely

many deformation families, whose general members are nonrational (see [13], [7], [5],
Proposition 1.5).

∗The author would like to thank A. Corti, M. Grinenko, V. Iskovskikh, V. Shokurov for fruitful conversations.
1All varieties are assumed to be projective, normal, and defined over C.
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Suppose that k = 3. Then X is a divisor in the linear system |3M + nL| on the scroll

Proj
( 4⊕

i=1

OP1(di)
)
,

where n and di are integers, M is the tautological line bundle, and L is a fibre of the
natural projection to P1. Suppose that d1 > d2 > d3 > d4 = 0.

Suppose that X is a general2 divisor in |3M +nL|. The following result is due to [8].

Theorem 1.3. Suppose that K2
X 6∈ IntNE(X). Then X is nonrational.

It follows from [4], [11], [2], [13], [3], [7] thatX is nonrational when (d1, d2, d3, n) ∈
{(0, 0, 0, 2), (1, 0, 0, 0), (2, 1, 1,−2), (1, 1, 1,−1)}.

We prove the following result in Section 3.

Theorem 1.4. The threefold X is rational ⇐⇒ d1 = 0 and n = 1.

Therefore, the threefold X is nonrational if χ(X) 6= −14. Indeed, we have

χ(X) = −4K3
X−54 = −4

(
18−6(d1+d2+d3)−8n

)
−54 = 18−24(d1+d2+d3)−32n,

and χ(X) = −14 implies (d1, d2, d3, n) = (0, 0, 0, 1) or (d1, d2, d3, n) = (2, 1, 1,−2).
The inequality 5n > 12−3(d1 +d2 +d3) holds when K2

X 6∈ IntNE(X). For n < 0,
the inequality

5n > 12− 3(d1 + d2 + d3)

implies that K2
X 6∈ IntNE(X) (see Lemma 36 in [3]). Hence, the threefold X does not

belong to finitely many deformation families in the case when K2
X ∈ IntNE(X) (see

Section 2).
Let us illustrate our methods by proving the following result.

Proposition 1.5. Let X be double cover of the scroll

Proj
(
OP1(2)⊕OP1(2)⊕OP1

)
that is branched over a general3divisor D ∈ |4M −2L|, where M is the tautological line
bundle, and L is a fibre of the natural projection to P1. Then X is nonrational.

Proof. Put V = Proj(OP1(2)⊕OP1(2)⊕OP1). The divisor D is given by the equation

α6x
4
1 + α1

6x
3
1x2 + α4x

3
1x3 + α2

6x
2
1x

2
2 + α1

4x
2
1x2x3 + α2x

2
1x

2
3 + α3

6x1x
3
2+

+ α2
4x1x

2
2x3 + α1

2x1x2x
2
3 + α0x1x

3
3 + α4

6x
4
2 + α3

4x
3
2x3 + α2

2x
2
2x

2
3 + α1

0x2x
3
3 = 0

in bihomogeneous coordinates on V (see § 2.2 in [10]), where αi
d = αi

d(t1, t2) is a
sufficiently general homogeneous polynomial of degree d > 0. Let

χ : Y −→ Proj
(
OP1(2)⊕OP1(2)⊕OP1

)
2,3A complement to a countable union of Zariski closed subsets.
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be a double cover branched over a divisor ∆ ⊂ V that is given by the same bihomoge-
neous equation as of divisor D with the only exception that α0 = α1

0 = 0. Then Y is
singular, because the divisor ∆ is singular along the curve Y3 ⊂ V that is given by the
equations x1 = x2 = 0.

The Bertini theorem implies the smoothness of ∆ outside of the curve Y3. Let C be a
curve on the threefold Y such that χ(C) = Y3. Then the threefold Y has singularities of
type A1 × C at general point of the curve C. We may assume that the system

α2(t1, t2) = α1
2(t1, t2) = α2

2(t1, t2) = 0

has no non-trivial solutions. Then Y has singularities of type A1 ×C at every point of C.
Let α : Ṽ → V be the blow up of Y3, and β : Ỹ → Y be the blow up of C. Then the

diagram

Ỹ

β

��

χ̃ // Ṽ

α

��
Y

χ // V

commutes, where χ̃ : Ỹ → Ṽ is a double cover. The threefold Ỹ is smooth.
LetE be the exceptional divisor of α, and ∆̃ be the proper transform of ∆ via α. Then

∆̃ ∼ α∗(4M − 2L)− 2E,

hence ∆̃ is nef and big, because the pencil |α∗(M − 2L)−E| does not have base points.
The morphism χ̃ is branched over ∆̃. Then rkPic(Ỹ ) = 3 by Theorem 2 in [9].

The linear system |g∗(M − L)−E| does not have base points and gives a P1-bundle

τ : Ṽ −→ Proj
(
OP1(2)⊕OP1(2)

) ∼= F0,

which induces a conic bundle τ̃ = τ ◦ χ̃ : Ỹ → F0. Let Y2 ⊂ V be the subscroll given by
x1 = 0, and S be a proper transform of Y2 via α. Then

Y2
∼= Proj

(
OP1(2)⊕OP1

) ∼= F2,

and S ∼= Y2. But τ maps S to the section of F0 that has trivial self-intersection.
Let S̃ be a surface in Ỹ such that χ̃(S̃) = S, and Z ⊂ Ỹ be a general fibre of the

natural projection to P1. Then −KZ is nef and big and K2
Z = 2. But the morphism

α ◦ χ̃|S̃ : S̃ −→ Y2

is a double cover branched over a divisor that is cut out by the equation

α4
6(t0, t1)x

2
2 + α3

4(t0, t1)x2x3 + α2
2(t0, t1)x

2
3 = 0.

Let Ξ ⊂ F0 be a degeneration divisor of the conic bundle τ̃ . Then

Ξ ∼ λτ̃(S̃) + µτ̃(Z),
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where λ and µ are integers. But λ = 6, because K2
Z = 2. We have τ̃(S̃) 6⊂ Ξ. Then

µ = τ̃(S̃) · Ξ = 8−K2
S̃
,

because µ is the number of reducible fibres of the conic bundle τ̃ |S̃ . These fibers are given
by (

α3
4(t0, t1)

)2 = 4α2
2(t0, t1)α

4
6(t0, t1),

which implies that µ = τ̃(S̃) ·Ξ = 8. Then Ỹ is nonruled by Theorem 10.2 in [11], which
implies the nonrationality of the threefold X by Theorem 1.8.3 in § IV of the book [6]. 2

2 Preliminaries

All results of this section follow from [3]. Take a scroll

V = Proj
( 4⊕

i=1

OP1(di)
)
,

where di is an integer, and d1 > d2 > d3 > d4 = 0. Let M and L be the tautological line
bundle and a fibre of the natural projection to P1, respectively. Then Pic(V ) = ZM⊕ZL.

Let (t1 : t2;x1 : x2 : x3 : xk) be bihomogeneous coordinates on V such that xi = 0
defines a divisor in |M − diL|, and L is given by t1 = 0. Then |aM + bL| is spanned by
divisors

ci1i2i3i4(t1, t2)x
i1
1 x

i2
2 x

i3
3 x

i4
k = 0,

where
∑4

j=1 ij = a and ci1i2i3i4(t1, t2) is a homogeneous polynomial of degree b +∑4
j=1 ijdj . Let Yj ⊆ V be a subscroll x1 = · · · = xj−1 = 0. The following result holds

(see § 2.8 in [10]).

Corollary 2.1. Take D ∈ |aM + bL| and q ∈ N, where a and b are integers. Then

multYj (D) > q ⇐⇒ adj + b+ (d1 − dj)(q − 1) < 0.

Let X be a general4 divisor in |3M + nL|, where n is an integer.

Lemma 2.2. Suppose X is smooth and rkPic(X) = 2. Then d1 > −n and 3d3 > −n.

Proof. We see that Y2 6⊂ X . Then Y3 6⊂ X , because rkPic(X) = 2. But multY4(X) 6
1, because the threefold X is smooth. The assertion of Corollary 2.1 concludes the
proof. 2

Lemma 2.3. Suppose X is smooth and rkPic(X) = 2. Then we have either d1 = −n
or d2 > −n.

4A complement to a Zariski closed subset in moduli.
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Proof. Suppose that r = d1 +n > 0 and d2 < −n. Then X can be given by the equation∑
i,j,k>0

i+j+k=2

γijk(t0, t2)xi
1x

j
2x

k
3x4 = αr(t1, t2)x1x

2
4 +

∑
i,j,k>0

i+j+k=3

βijk(t0, t2)xi
1x

j
2x

k
3 ,

where αr(t1, t2) is a homogeneous polynomial of degree r, βijk and γijk are homoge-
neous polynomial of degree n+ id1 + jd2 + kd3. Then every point of the intersection

x1 = x2 = x3 = αr(t1, t2) = 0

must be singular on the threefold X , which is a contradiction. 2

Lemma 2.4. SupposeX is smooth, d2 = d3, n < 0 and rkPic(X) = 2. Then 3d3 6= −n.

Proof. Suppose that 3d3 = −n. ThenX can be given by the the bihomogeneous equation∑
j,k,l>0

i+j+k=2

γjkl(t0, t2)x1x
j
2x

k
3x

l
4 = f3(x2, x3) + αr(t0, t2)x3

1 +
∑

j,k,l>0
j+k+l=1

βjkl(t0, t2)x2
1x

j
2x

k
3x

l
4,

where f3(x2, x3) is a homogeneous polynomial of degree 3, βjkl and γjkl are homoge-
neous polynomial of degree n+ 2d1 + jd2 + kd3 and n+ d1 + jd2 + kd3 respectively,
αr is a homogeneous polynomial of degree r = 3d1 + n. The threefold X contains 3
subscrolls given by the equations x1 = f3(x2, x3) = 0, which is impossible, because
rkPic(X) = 2. 2

The following result follows from Lemmas 2.2, 2.3 and 2.4.

Lemma 2.5. The threefold X is smooth and rkPic(X) = 2 whenever
(1) in the case when d1 = 0, the inequality n > 0 holds,
(2) either d1 = −n and 3d3 > −n, or d1 > −n, d2 > −n and 3d3 > −n,
(3) in the case when d2 = d3 and n < 0, the inequality 3d3 > −n holds.

Proof. Suppose that all these conditions are satisfied. We must show that X is smooth,
because the equality rkPic(X) = 2 holds by Proposition 32 in [3].

The linear system |3M + nL| does not have base points if n > 0. So, the threefold
X is smooth by the Bertini theorem in the case n > 0. Therefore, we may assume that
n < 0.

The base locus of |3M+nL| consists of the curve Y4, which implies thatX is smooth
outside of the curve Y4 and in a general point of Y4 by the Bertini theorem and Corol-
lary 2.1, respectively.

In the case when d1 = −n and d2 < −n, the bihomogeneous equation of the threefold
X is ∑

i,j,k>0
i+j+k=2

γijk(t0, t2)xi
1x

j
2x

k
3x4 = α0x1x

2
4 +

∑
i,j,k>0

i+j+k=3

βijk(t0, t2)xi
1x

j
2x

k
3 ,

where βijk and γijk are homogeneous polynomials of degree n+ id1 + jd2 +kd3 and α0

is a nonzero constant. The curve Y4 is given by x1 = x2 = x3 = 0, which implies that X
is smooth.
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In the case when d1 > −n and d2 > −n, the bihomogeneous equation of X is

∑
i,j,k>0

i+j+k=2

γijk(t0, t2)xi
1x

j
2x

k
3x4 =

3∑
i=1

αi(t0, t2)xix
2
4 +

∑
i,j,k>0

i+j+k=3

βijk(t0, t2)xi
1x

j
2x

k
3 ,

where αi is a homogeneous polynomial of degree di + n, and βijk and γijk are homoge-
neous polynomials of degree n+ id1 + jd2 + kd3. Therefore, either α1x1x

2
4 or α2x2x

2
4

does not vanish at any given point of the curve Y4, which implies that X is smooth. 2

Thus, there is an infinite series of quadruples (d1, d2, d3, n) such that the threefold X
is smooth, the equality rkPic(X) = 2 holds, the inequality 5n < 12 − 3(d1 + d2 + d3)
holds and n < 0.

3 Nonrationality

We use the notation of Section 2. Let X be a general5 divisor in |3M +nL|, and suppose
that the threefoldX is smooth, rkPic(X) = 2, andX is rational. Let us show that d1 = 0
and n = 1.

The threefold X is given by a bihomogeneous equation

3∑
l=0

αi(t0, t2)xi
3x

3−i
4 + x1F (t0, t1, x1, x2, x3, x4) + x2G(t0, t1, x1, x2, x3, x4) = 0,

where αi is a general homogeneous polynomial of degree n+ id3, and F and G stand for∑
i,j,k,l>0

i+j+k+l=2

βijkl(t0, t2)xi
1x

j
2x

k
3x

l
4 and

∑
i,j,k,l>0

i+j+k+l=2

γijkl(t0, t2)xi
1x

j
2x

k
3x

l
4

respectively, where βijkl is a general homogeneous polynomial of degree n+(i+1)d1 +
jd2 + kd3, and γijkl is a general homogeneous polynomial of degree n + id1 + (j +
1)d2 + kd3.

Let Y be a threefold given by x1F + x2G = 0. Then Y3 ⊂ Y , where Y3 is given by
x1 = x2 = 0.

Lemma 3.1. The threefold Y has 2d1 + 2d2 + 4d3 + 4n > 0 isolated ordinary double
points.

Proof. The threefold Y is singular exactly at the points of V where

x1 = x2 = F (t0, t1, x1, x2, x3, x4) = G(t0, t1, x1, x2, x3, x4) = 0

by the Bertini theorem. But Y3
∼= Proj(OP1(d3)⊕OP1) ∼= Fd3 , where (t0 : t1;x3 : x4)

can be considered as natural bihomogeneous coordinates on the surface Y3.

5A complement to a countable union of Zariski closed subsets.
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Let C and Z be the curves on Y3 that are cut out by the equations F = 0 and G = 0,
respectively. Then C and Z are given by the equations∑

k,l>0
k+l=2

βkl(t0, t2)xk
3x

l
4 = 0 and

∑
k,l>0
k+l=2

γkl(t0, t2)xk
3x

l
4 = 0

respectively, where βkl = β00kl and γkl = γ00kl. The degrees of βkl and γkl are n+d1 +
kd3 and n+ d2 + kd3, respectively.

Let O be a point of the scroll V such that the set

x1 = x2 = F (t0, t1, x1, x2, x3, x4) = G(t0, t1, x1, x2, x3, x4) = 0

contains the point O. Then O ∈ C ∩ Z and O ∈ Sing(Y ). It is easy to see that O is an
isolated ordinary double point of the threefold Y in the case when the curves C and Z are
smooth and intersect each other transversally at the point O.

Put M̄ = M |Y3 and L̄ = L|Y3 . Then C ∈ |2M̄ + (n + d1)L̄| and Z ∈ |2M̄ + (n +
d2)L̄|. But ∣∣2M̄ + (n+ d1)L̄

∣∣
does not have base points, because d1 +n > 0 by Lemma 2.2. So, the curve C is smooth.

The linear system |2M̄ + (n + d2)L̄| may have base components, and Z may not
be reduced or irreducible. We have to show that C intersects Z transversally at smooth
points of Z, because ∣∣C ∩ Z

∣∣ = C · Z = 2d1 + 2d2 + 4d3 + 4n,

where 2d1 + 2d2 + 4d3 + 4n > 0 by Lemmas 2.2, 2.3 and 2.4.
Suppose that d1 > −n. Then d2 > −n by Lemma 2.3. We see that |2M̄ +(n+d2)L̄|

does not have base points. Then Z is smooth and C intersects Z transversally at every
point of C ∩ Z.

We may assume that d1 = −n. Let Y4 ⊂ Y3 be a curve given by x3 = 0. Then

C ∩ Y4 = ∅,

and either the linear system |2M̄+(n+d2)L̄| does not have base points, or the base locus
of the linear system |2M̄ + (n+ d2)L̄| consist of the curve Y4. However, we have

C ∩ Z ⊂ Y3 \ Y4,

which implies that C intersects the curve Z transversally at smooth points of Z. 2

Let π : Ṽ → V be the blow up of Y3, and Ỹ be and the proper transforms of Y via π.
Then

Ỹ ∼ π∗(3M + nL)− E,

where E is and exceptional divisor of π. The threefold Ỹ is smooth.

Lemma 3.2. The equality rkPic(Ỹ ) = 3 holds.
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Proof. The linear system |π∗(M−d2L)−E| does not have base points. Thus, the divisor

Ỹ ∼ π∗(3M + nL)− E

is nef and big when n > 0 by Lemmas 2.2, 2.3 and 2.4. Hence, the equality rkPic(Ỹ ) = 3
holds in the case when n > 0 by Theorem 2 in [9]. So, we may assume that n < 0.

Let ω : Ỹ → P1 be the natural projection and S be the generic fibre of ω, which is
considered as a surface defined over the function field C(t). Then S is a smooth cubic
surface in P3, which contains a line in P3 defined over the field C(t), because Y3 ⊂ Y .
Then rkPic(S) > 2.

To conclude the proof we must prove that rkPic(S) = 2, because there is an exact
sequence

0 −→ Z
[
π∗(L)

]
−→ Pic(Ỹ ) −→ Pic(S) −→ 0,

because every fibre of τ is reduced and irreducible (see the proof of Proposition 32 in [3]).
Let S̆ be an example of the surface S that is given by the equation

x(q(t)x2 + p(t)w2) + y(r(t)y2 + s(t)z2) = 0 ⊂ Proj
(
C[x, y, z, t]

)
,

where q(t), p(t), r(t), s(t) are polynomials such that the inequalities

deg(q(t)) > 0, deg(p(t)) > 0, deg(r(t)) > 0, deg(q(t)) > 0

hold. The existence of the surface S̆ follows from the equation of the threefold Y .
Let K be an algebraic closure of the field C(t), let L be a line x = y = 0, and let

γ : S̆ → P1

be a projection from L. Then γ is a conic bundle defined over C(t). But γ has five
geometrically reducible fibres F1, F2, F3, F4, F5 defined over F such that
• Fi = F̃i ∪ F̄i, where F̃i and F̄i are geometrically irreducible curves,
• the curve L ∪ Fi is cut out on the surface S̆ by the equation

y = εi 3
√
q(t)/r(t)x,

where ε = −(1 +
√
−3)/2 and i ∈ {1, 2, 3},

• the curve F4 ∪ L is cut out on the surface S̆ by the equation x = 0,
• the curve F5 ∪ L is cut out on the surface S̆ by the equation y = 0.

The group Gal(K/C(t)) acts naturally on the set

Σ =
{
F̃1, F̃2, F̃3, F̃4, F̃5, F̄1, F̄2, F̄3, F̄4, F̄5

}
,

because the conic bundle γ is defined over C(t). The inequality rkPic(S̆) > 2 im-
plies the existence of a subset Γ ( Σ consisting of disjoint curves such that Γ ( Σ is
Gal(K/C(t))-invariant.

The action of Gal(K/C(t)) on the set Σ is easy to calculate explicitly. Putting

∆ =
{
F̃1, F̃2, F̃3, F̄1, F̄2, F̄3

}
, Λ =

{
F̃4, F̄4

}
, Ξ =

{
F̃5, F̄5

}
,
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we see that the group Gal(K/C(t)) acts transitively on each subset Λ, Ξ, ∆, because
we may assume that q(t), p(t), r(t), s(t) are sufficiently general. But each subset Λ, Ξ,
∆ does not consist of disjoint curves. Hence, the equality rkPic(S̆) = 2 holds, which
implies that rkPic(S) = 2. 2

The linear system |π∗(M − d2L) − E| does not have base points and induces a P2-
bundle

τ : Ṽ −→ Proj
(
OP1(d1)⊕OP1(d2)

) ∼= Fr,

where r = d1 − d2. Let l be a fibre of the natural projection Fr → P1, and s0 be an
irreducible curve on the surface Fr such that s20 = r, and s0 is a section of the projection
Fr → P1. Then

π∗(M − d2L)− E ∼ τ∗(s0)

and π∗(L) ∼ τ∗(l). The morphism τ induces a conic bundle τ̃ = τ |Ỹ : Ỹ → Fr.
Let ∆ be the degeneration divisor of the conic bundle τ̃ . Then

∆ ∼ 5s∞ + µl,

where µ is a natural number, and s∞ is the exceptional section of the surface Fr.
Let S be a surface in Ỹ and B be a threefold in Ṽ dominating the curve s0. Then

B ∼= Proj
(
OP1(d1)⊕OP1(d3)⊕OP1

)
and π(B) ∼= B. But π(B) ∩ Y = π(S) ∪ Y3.

The surface Y3 is cut out on π(B) by the equation x1 = 0, where π(B) ∈ |M −d2L|.
We have

S ∼ 2T + (d1 + n)F,

where T is a tautological line bundle on B, and F is a fibre of the projection B → P1.
Then

K2
S = −5d1 + 2d3 − 4d2 − 3n+ 8

and µ = s0 ·∆ = 5d1 − 2d3 + 4d2 + 3n.
It follows from the equivalence 2KFr + ∆ ∼ s∞+ (3d1− 2d3 + 6d2 + 3n− 4)l that∣∣2KFr

+ ∆
∣∣ 6= ∅ ⇐⇒ 3d1 − 2d3 + 6d2 + 3n > 4,

which implies that Y is nonrational by Theorem 10.2 in [11] if 3d1−2d3 +6d2 +3n > 4.
The threefold Y is nonruled if and only if it is nonrational, because the threefold Y is

rationally connected. So, the threefold X is nonrational by Theorem 1.8.3 in § IV of the
book [6] whenever

3d1 − 2d3 + 6d2 + 3n > 4,

which implies that 3d1 − 2d3 + 6d2 + 3n < 4, because we assume that X is rational.
We see that either d1 = 0 and n = 1 or d1 = 1 and d2 = n = 0 by Lemmas 2.2,

2.3 and 2.4, but the threefold X is birational to a smooth cubic threefold in the case when
d1 = 1 and d2 = n = 0, which is nonrational by [4]. Then d1 = 0 and n = 1. The
assertion of Theorem 1.4 is proved.
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