Nonrational del Pezzo fibrations

Ivan Cheltsov*
(Communicated by A. Sommese)

Abstract

Let X be a general divisor in $|3 M+n L|$ on the rational scroll $\operatorname{Proj}\left(\bigoplus_{i=1}^{4} \mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)\right)$, where d_{i} and n are integers, M is the tautological line bundle, L is a fibre of the natural projection to \mathbb{P}^{1}, and $d_{1} \geqslant \cdots \geqslant d_{4}=0$. We prove that X is rational $\Longleftrightarrow d_{1}=0$ and $n=1$.

1 Introduction

The rationality problem for threefolds ${ }^{1}$ splits in three cases: conic bundles, del Pezzo fibrations, and Fano threefolds. The cases of conic bundles and Fano threefolds are well studied.

Let $\psi: X \rightarrow \mathbb{P}^{1}$ be a fibration into del Pezzo surfaces of degree $k \geqslant 1$ such that X is smooth and $\operatorname{rkPic}(X)=2$. Then X is rational if $k \geqslant 5$. The following result is due to [1] and [12].

Theorem 1.1. Suppose that fibres of ψ are normal and $k=4$. Then X is rational if and only if

$$
\chi(X) \in\{0,-8,-4\}
$$

where $\chi(X)$ is the topological Euler characteristic.
The following result is due to [8].

Theorem 1.2. Suppose that $K_{X}^{2} \notin \operatorname{Int} \overline{\mathrm{NE}}(X)$ and $k \leqslant 2$. Then X is nonrational.
In the case when $k \leqslant 2$ and $K_{X}^{2} \in \operatorname{Int} \overline{\mathrm{NE}}(X)$, the threefold X belongs to finitely many deformation families, whose general members are nonrational (see [13], [7], [5], Proposition 1.5).

[^0]Suppose that $k=3$. Then X is a divisor in the linear system $|3 M+n L|$ on the scroll

$$
\operatorname{Proj}\left(\bigoplus_{i=1}^{4} \mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)\right)
$$

where n and d_{i} are integers, M is the tautological line bundle, and L is a fibre of the natural projection to \mathbb{P}^{1}. Suppose that $d_{1} \geqslant d_{2} \geqslant d_{3} \geqslant d_{4}=0$.

Suppose that X is a general ${ }^{2}$ divisor in $|3 M+n L|$. The following result is due to [8].
Theorem 1.3. Suppose that $K_{X}^{2} \notin \operatorname{Int} \overline{\mathrm{NE}}(X)$. Then X is nonrational.
It follows from [4], [11], [2], [13], [3], [7] that X is nonrational when $\left(d_{1}, d_{2}, d_{3}, n\right) \in$ $\{(0,0,0,2),(1,0,0,0),(2,1,1,-2),(1,1,1,-1)\}$.

We prove the following result in Section 3.
Theorem 1.4. The threefold X is rational $\Longleftrightarrow d_{1}=0$ and $n=1$.
Therefore, the threefold X is nonrational if $\chi(X) \neq-14$. Indeed, we have
$\chi(X)=-4 K_{X}^{3}-54=-4\left(18-6\left(d_{1}+d_{2}+d_{3}\right)-8 n\right)-54=18-24\left(d_{1}+d_{2}+d_{3}\right)-32 n$, and $\chi(X)=-14$ implies $\left(d_{1}, d_{2}, d_{3}, n\right)=(0,0,0,1)$ or $\left(d_{1}, d_{2}, d_{3}, n\right)=(2,1,1,-2)$.

The inequality $5 n \geqslant 12-3\left(d_{1}+d_{2}+d_{3}\right)$ holds when $K_{X}^{2} \notin \operatorname{Int} \overline{\mathrm{NE}}(X)$. For $n<0$, the inequality

$$
5 n \geqslant 12-3\left(d_{1}+d_{2}+d_{3}\right)
$$

implies that $K_{X}^{2} \notin \operatorname{Int} \overline{\mathrm{NE}}(X)$ (see Lemma 36 in [3]). Hence, the threefold X does not belong to finitely many deformation families in the case when $K_{X}^{2} \in \operatorname{Int} \overline{\mathrm{NE}}(X)$ (see Section 2).

Let us illustrate our methods by proving the following result.
Proposition 1.5. Let X be double cover of the scroll

$$
\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)
$$

that is branched over a general ${ }^{3}$ divisor $D \in|4 M-2 L|$, where M is the tautological line bundle, and L is a fibre of the natural projection to \mathbb{P}^{1}. Then X is nonrational.

Proof. Put $V=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$. The divisor D is given by the equation

$$
\begin{aligned}
& \alpha_{6} x_{1}^{4}+\alpha_{6}^{1} x_{1}^{3} x_{2}+\alpha_{4} x_{1}^{3} x_{3}+\alpha_{6}^{2} x_{1}^{2} x_{2}^{2}+\alpha_{4}^{1} x_{1}^{2} x_{2} x_{3}+\alpha_{2} x_{1}^{2} x_{3}^{2}+\alpha_{6}^{3} x_{1} x_{2}^{3}+ \\
& \quad+\alpha_{4}^{2} x_{1} x_{2}^{2} x_{3}+\alpha_{2}^{1} x_{1} x_{2} x_{3}^{2}+\alpha_{0} x_{1} x_{3}^{3}+\alpha_{6}^{4} x_{2}^{4}+\alpha_{4}^{3} x_{2}^{3} x_{3}+\alpha_{2}^{2} x_{2}^{2} x_{3}^{2}+\alpha_{0}^{1} x_{2} x_{3}^{3}=0
\end{aligned}
$$

in bihomogeneous coordinates on V (see $\S 2.2$ in [10]), where $\alpha_{d}^{i}=\alpha_{d}^{i}\left(t_{1}, t_{2}\right)$ is a sufficiently general homogeneous polynomial of degree $d \geqslant 0$. Let

$$
\chi: Y \longrightarrow \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)
$$

[^1]be a double cover branched over a divisor $\Delta \subset V$ that is given by the same bihomogeneous equation as of divisor D with the only exception that $\alpha_{0}=\alpha_{0}^{1}=0$. Then Y is singular, because the divisor Δ is singular along the curve $Y_{3} \subset V$ that is given by the equations $x_{1}=x_{2}=0$.

The Bertini theorem implies the smoothness of Δ outside of the curve Y_{3}. Let C be a curve on the threefold Y such that $\chi(C)=Y_{3}$. Then the threefold Y has singularities of type $\mathbb{A}_{1} \times \mathbb{C}$ at general point of the curve C. We may assume that the system

$$
\alpha_{2}\left(t_{1}, t_{2}\right)=\alpha_{2}^{1}\left(t_{1}, t_{2}\right)=\alpha_{2}^{2}\left(t_{1}, t_{2}\right)=0
$$

has no non-trivial solutions. Then Y has singularities of type $\mathbb{A}_{1} \times \mathbb{C}$ at every point of C.
Let $\alpha: \tilde{V} \rightarrow V$ be the blow up of Y_{3}, and $\beta: \tilde{Y} \rightarrow Y$ be the blow up of C. Then the diagram

commutes, where $\tilde{\chi}: \tilde{Y} \rightarrow \tilde{V}$ is a double cover. The threefold \tilde{Y} is smooth.
Let E be the exceptional divisor of α, and $\tilde{\Delta}$ be the proper transform of Δ via α. Then

$$
\tilde{\Delta} \sim \alpha^{*}(4 M-2 L)-2 E
$$

hence $\tilde{\Delta}$ is nef and big, because the pencil $\left|\alpha^{*}(M-2 L)-E\right|$ does not have base points. The morphism $\tilde{\chi}$ is branched over $\tilde{\Delta}$. Then $\operatorname{rk} \operatorname{Pic}(\tilde{Y})=3$ by Theorem 2 in [9].

The linear system $\left|g^{*}(M-L)-E\right|$ does not have base points and gives a \mathbb{P}^{1}-bundle

$$
\tau: \tilde{V} \longrightarrow \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)\right) \cong \mathbb{F}_{0}
$$

which induces a conic bundle $\tilde{\tau}=\tau \circ \tilde{\chi}: \tilde{Y} \rightarrow \mathbb{F}_{0}$. Let $Y_{2} \subset V$ be the subscroll given by $x_{1}=0$, and S be a proper transform of Y_{2} via α. Then

$$
Y_{2} \cong \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right) \cong \mathbb{F}_{2}
$$

and $S \cong Y_{2}$. But τ maps S to the section of \mathbb{F}_{0} that has trivial self-intersection.
Let \tilde{S} be a surface in \tilde{Y} such that $\tilde{\chi}(\tilde{S})=S$, and $Z \subset \tilde{Y}$ be a general fibre of the natural projection to \mathbb{P}^{1}. Then $-K_{Z}$ is nef and big and $K_{Z}^{2}=2$. But the morphism

$$
\left.\alpha \circ \tilde{\chi}\right|_{\tilde{S}}: \tilde{S} \longrightarrow Y_{2}
$$

is a double cover branched over a divisor that is cut out by the equation

$$
\alpha_{6}^{4}\left(t_{0}, t_{1}\right) x_{2}^{2}+\alpha_{4}^{3}\left(t_{0}, t_{1}\right) x_{2} x_{3}+\alpha_{2}^{2}\left(t_{0}, t_{1}\right) x_{3}^{2}=0
$$

Let $\Xi \subset \mathbb{F}_{0}$ be a degeneration divisor of the conic bundle $\tilde{\tau}$. Then

$$
\Xi \sim \lambda \tilde{\tau}(\tilde{S})+\mu \tilde{\tau}(Z)
$$

where λ and μ are integers. But $\lambda=6$, because $K_{Z}^{2}=2$. We have $\tilde{\tau}(\tilde{S}) \not \subset \Xi$. Then

$$
\mu=\tilde{\tau}(\tilde{S}) \cdot \Xi=8-K_{\tilde{S}}^{2}
$$

because μ is the number of reducible fibres of the conic bundle $\left.\tilde{\tau}\right|_{\tilde{S}}$. These fibers are given by

$$
\left(\alpha_{4}^{3}\left(t_{0}, t_{1}\right)\right)^{2}=4 \alpha_{2}^{2}\left(t_{0}, t_{1}\right) \alpha_{6}^{4}\left(t_{0}, t_{1}\right)
$$

which implies that $\mu=\tilde{\tau}(\tilde{S}) \cdot \Xi=8$. Then \tilde{Y} is nonruled by Theorem 10.2 in [11], which implies the nonrationality of the threefold X by Theorem 1.8.3 in § IV of the book [6].

2 Preliminaries

All results of this section follow from [3]. Take a scroll

$$
V=\operatorname{Proj}\left(\bigoplus_{i=1}^{4} \mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)\right)
$$

where d_{i} is an integer, and $d_{1} \geqslant d_{2} \geqslant d_{3} \geqslant d_{4}=0$. Let M and L be the tautological line bundle and a fibre of the natural projection to \mathbb{P}^{1}, respectively. Then $\operatorname{Pic}(V)=\mathbb{Z} M \oplus \mathbb{Z} L$.

Let $\left(t_{1}: t_{2} ; x_{1}: x_{2}: x_{3}: x_{k}\right)$ be bihomogeneous coordinates on V such that $x_{i}=0$ defines a divisor in $\left|M-d_{i} L\right|$, and L is given by $t_{1}=0$. Then $|a M+b L|$ is spanned by divisors

$$
c_{i_{1} i_{2} i_{3} i_{4}}\left(t_{1}, t_{2}\right) x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} x_{k}^{i_{4}}=0
$$

where $\sum_{j=1}^{4} i_{j}=a$ and $c_{i_{1} i_{2} i_{3} i_{4}}\left(t_{1}, t_{2}\right)$ is a homogeneous polynomial of degree $b+$ $\sum_{j=1}^{4} i_{j} d_{j}$. Let $Y_{j} \subseteq V$ be a subscroll $x_{1}=\cdots=x_{j-1}=0$. The following result holds (see § 2.8 in [10]).

Corollary 2.1. Take $D \in|a M+b L|$ and $q \in \mathbb{N}$, where a and b are integers. Then

$$
\operatorname{mult}_{Y_{j}}(D) \geqslant q \Longleftrightarrow a d_{j}+b+\left(d_{1}-d_{j}\right)(q-1)<0
$$

Let X be a general ${ }^{4}$ divisor in $|3 M+n L|$, where n is an integer.
Lemma 2.2. Suppose X is smooth and $\operatorname{rk} \operatorname{Pic}(X)=2$. Then $d_{1} \geqslant-n$ and $3 d_{3} \geqslant-n$.
Proof. We see that $Y_{2} \not \subset X$. Then $Y_{3} \not \subset X$, because rk $\operatorname{Pic}(X)=2$. But mult $Y_{4}(X) \leqslant$ 1, because the threefold X is smooth. The assertion of Corollary 2.1 concludes the proof.

Lemma 2.3. Suppose X is smooth and $\operatorname{rk} \operatorname{Pic}(X)=2$. Then we have either $d_{1}=-n$ or $d_{2} \geqslant-n$.

[^2]Proof. Suppose that $r=d_{1}+n>0$ and $d_{2}<-n$. Then X can be given by the equation

$$
\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=2}} \gamma_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k} x_{4}=\alpha_{r}\left(t_{1}, t_{2}\right) x_{1} x_{4}^{2}+\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=3}} \beta_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k}
$$

where $\alpha_{r}\left(t_{1}, t_{2}\right)$ is a homogeneous polynomial of degree $r, \beta_{i j k}$ and $\gamma_{i j k}$ are homogeneous polynomial of degree $n+i d_{1}+j d_{2}+k d_{3}$. Then every point of the intersection

$$
x_{1}=x_{2}=x_{3}=\alpha_{r}\left(t_{1}, t_{2}\right)=0
$$

must be singular on the threefold X, which is a contradiction.
Lemma 2.4. Suppose X is smooth, $d_{2}=d_{3}, n<0$ and $\operatorname{rk} \operatorname{Pic}(X)=2$. Then $3 d_{3} \neq-n$.
Proof. Suppose that $3 d_{3}=-n$. Then X can be given by the the bihomogeneous equation

$$
\sum_{\substack{j, k, l \geqslant 0 \\ i+j+k=2}} \gamma_{j k l}\left(t_{0}, t_{2}\right) x_{1} x_{2}^{j} x_{3}^{k} x_{4}^{l}=f_{3}\left(x_{2}, x_{3}\right)+\alpha_{r}\left(t_{0}, t_{2}\right) x_{1}^{3}+\sum_{\substack{j, k, l \geqslant 0 \\ j+k+l=1}} \beta_{j k l}\left(t_{0}, t_{2}\right) x_{1}^{2} x_{2}^{j} x_{3}^{k} x_{4}^{l}
$$

where $f_{3}\left(x_{2}, x_{3}\right)$ is a homogeneous polynomial of degree $3, \beta_{j k l}$ and $\gamma_{j k l}$ are homogeneous polynomial of degree $n+2 d_{1}+j d_{2}+k d_{3}$ and $n+d_{1}+j d_{2}+k d_{3}$ respectively, α_{r} is a homogeneous polynomial of degree $r=3 d_{1}+n$. The threefold X contains 3 subscrolls given by the equations $x_{1}=f_{3}\left(x_{2}, x_{3}\right)=0$, which is impossible, because $\operatorname{rk} \operatorname{Pic}(X)=2$.

The following result follows from Lemmas 2.2, 2.3 and 2.4.
Lemma 2.5. The threefold X is smooth and $\operatorname{rkic}(X)=2$ whenever
(1) in the case when $d_{1}=0$, the inequality $n>0$ holds,
(2) either $d_{1}=-n$ and $3 d_{3} \geqslant-n$, or $d_{1}>-n, d_{2} \geqslant-n$ and $3 d_{3} \geqslant-n$,
(3) in the case when $d_{2}=d_{3}$ and $n<0$, the inequality $3 d_{3}>-n$ holds.

Proof. Suppose that all these conditions are satisfied. We must show that X is smooth, because the equality $\mathrm{rk} \operatorname{Pic}(X)=2$ holds by Proposition 32 in [3].

The linear system $|3 M+n L|$ does not have base points if $n \geqslant 0$. So, the threefold X is smooth by the Bertini theorem in the case $n \geqslant 0$. Therefore, we may assume that $n<0$.

The base locus of $|3 M+n L|$ consists of the curve Y_{4}, which implies that X is smooth outside of the curve Y_{4} and in a general point of Y_{4} by the Bertini theorem and Corollary 2.1 , respectively.

In the case when $d_{1}=-n$ and $d_{2}<-n$, the bihomogeneous equation of the threefold X is

$$
\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=2}} \gamma_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k} x_{4}=\alpha_{0} x_{1} x_{4}^{2}+\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=3}} \beta_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k}
$$

where $\beta_{i j k}$ and $\gamma_{i j k}$ are homogeneous polynomials of degree $n+i d_{1}+j d_{2}+k d_{3}$ and α_{0} is a nonzero constant. The curve Y_{4} is given by $x_{1}=x_{2}=x_{3}=0$, which implies that X is smooth.

In the case when $d_{1}>-n$ and $d_{2} \geqslant-n$, the bihomogeneous equation of X is

$$
\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=2}} \gamma_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k} x_{4}=\sum_{i=1}^{3} \alpha_{i}\left(t_{0}, t_{2}\right) x_{i} x_{4}^{2}+\sum_{\substack{i, j, k \geqslant 0 \\ i+j+k=3}} \beta_{i j k}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k},
$$

where α_{i} is a homogeneous polynomial of degree $d_{i}+n$, and $\beta_{i j k}$ and $\gamma_{i j k}$ are homogeneous polynomials of degree $n+i d_{1}+j d_{2}+k d_{3}$. Therefore, either $\alpha_{1} x_{1} x_{4}^{2}$ or $\alpha_{2} x_{2} x_{4}^{2}$ does not vanish at any given point of the curve Y_{4}, which implies that X is smooth.

Thus, there is an infinite series of quadruples $\left(d_{1}, d_{2}, d_{3}, n\right)$ such that the threefold X is smooth, the equality $\operatorname{rk} \operatorname{Pic}(X)=2$ holds, the inequality $5 n<12-3\left(d_{1}+d_{2}+d_{3}\right)$ holds and $n<0$.

3 Nonrationality

We use the notation of Section 2. Let X be a general ${ }^{5}$ divisor in $|3 M+n L|$, and suppose that the threefold X is smooth, $\operatorname{rk} \operatorname{Pic}(X)=2$, and X is rational. Let us show that $d_{1}=0$ and $n=1$.

The threefold X is given by a bihomogeneous equation

$$
\sum_{l=0}^{3} \alpha_{i}\left(t_{0}, t_{2}\right) x_{3}^{i} x_{4}^{3-i}+x_{1} F\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)+x_{2} G\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

where α_{i} is a general homogeneous polynomial of degree $n+i d_{3}$, and F and G stand for

$$
\sum_{\substack{i, j, k, l \geqslant 0 \\ i+j+k+l=2}} \beta_{i j k l}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k} x_{4}^{l} \quad \text { and } \quad \sum_{\substack{i, j, k, l \geq 0 \\ i+j+k+l=2}} \gamma_{i j k l}\left(t_{0}, t_{2}\right) x_{1}^{i} x_{2}^{j} x_{3}^{k} x_{4}^{l}
$$

respectively, where $\beta_{i j k l}$ is a general homogeneous polynomial of degree $n+(i+1) d_{1}+$ $j d_{2}+k d_{3}$, and $\gamma_{i j k l}$ is a general homogeneous polynomial of degree $n+i d_{1}+(j+$ 1) $d_{2}+k d_{3}$.

Let Y be a threefold given by $x_{1} F+x_{2} G=0$. Then $Y_{3} \subset Y$, where Y_{3} is given by $x_{1}=x_{2}=0$.

Lemma 3.1. The threefold Y has $2 d_{1}+2 d_{2}+4 d_{3}+4 n>0$ isolated ordinary double points.

Proof. The threefold Y is singular exactly at the points of V where

$$
x_{1}=x_{2}=F\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)=G\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

by the Bertini theorem. But $Y_{3} \cong \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(d_{3}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right) \cong \mathbb{F}_{d_{3}}$, where $\left(t_{0}: t_{1} ; x_{3}: x_{4}\right)$ can be considered as natural bihomogeneous coordinates on the surface Y_{3}.

[^3]Let C and Z be the curves on Y_{3} that are cut out by the equations $F=0$ and $G=0$, respectively. Then C and Z are given by the equations

$$
\sum_{\substack{k, l \geqslant 0 \\ k+l=2}} \beta_{k l}\left(t_{0}, t_{2}\right) x_{3}^{k} x_{4}^{l}=0 \quad \text { and } \quad \sum_{\substack{k, l \geq 0 \\ k+l=2}} \gamma_{k l}\left(t_{0}, t_{2}\right) x_{3}^{k} x_{4}^{l}=0
$$

respectively, where $\beta_{k l}=\beta_{00 k l}$ and $\gamma_{k l}=\gamma_{00 k l}$. The degrees of $\beta_{k l}$ and $\gamma_{k l}$ are $n+d_{1}+$ $k d_{3}$ and $n+d_{2}+k d_{3}$, respectively.

Let O be a point of the scroll V such that the set

$$
x_{1}=x_{2}=F\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)=G\left(t_{0}, t_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

contains the point O. Then $O \in C \cap Z$ and $O \in \operatorname{Sing}(Y)$. It is easy to see that O is an isolated ordinary double point of the threefold Y in the case when the curves C and Z are smooth and intersect each other transversally at the point O.

Put $\bar{M}=\left.M\right|_{Y_{3}}$ and $\bar{L}=\left.L\right|_{Y_{3}}$. Then $C \in\left|2 \bar{M}+\left(n+d_{1}\right) \bar{L}\right|$ and $Z \in \mid 2 \bar{M}+(n+$ $\left.d_{2}\right) \bar{L} \mid$. But

$$
\left|2 \bar{M}+\left(n+d_{1}\right) \bar{L}\right|
$$

does not have base points, because $d_{1}+n \geqslant 0$ by Lemma 2.2. So, the curve C is smooth.
The linear system $\left|2 \bar{M}+\left(n+d_{2}\right) \bar{L}\right|$ may have base components, and Z may not be reduced or irreducible. We have to show that C intersects Z transversally at smooth points of Z, because

$$
|C \cap Z|=C \cdot Z=2 d_{1}+2 d_{2}+4 d_{3}+4 n
$$

where $2 d_{1}+2 d_{2}+4 d_{3}+4 n>0$ by Lemmas 2.2, 2.3 and 2.4.
Suppose that $d_{1}>-n$. Then $d_{2} \geqslant-n$ by Lemma 2.3. We see that $\left|2 \bar{M}+\left(n+d_{2}\right) \bar{L}\right|$ does not have base points. Then Z is smooth and C intersects Z transversally at every point of $C \cap Z$.

We may assume that $d_{1}=-n$. Let $Y_{4} \subset Y_{3}$ be a curve given by $x_{3}=0$. Then

$$
C \cap Y_{4}=\emptyset
$$

and either the linear system $\left|2 \bar{M}+\left(n+d_{2}\right) \bar{L}\right|$ does not have base points, or the base locus of the linear system $\left|2 \bar{M}+\left(n+d_{2}\right) \bar{L}\right|$ consist of the curve Y_{4}. However, we have

$$
C \cap Z \subset Y_{3} \backslash Y_{4},
$$

which implies that C intersects the curve Z transversally at smooth points of Z.
Let $\pi: \tilde{V} \rightarrow V$ be the blow up of Y_{3}, and \tilde{Y} be and the proper transforms of Y via π. Then

$$
\tilde{Y} \sim \pi^{*}(3 M+n L)-E
$$

where E is and exceptional divisor of π. The threefold \tilde{Y} is smooth.
Lemma 3.2. The equality $\operatorname{rk} \operatorname{Pic}(\tilde{Y})=3$ holds.

Proof. The linear system $\left|\pi^{*}\left(M-d_{2} L\right)-E\right|$ does not have base points. Thus, the divisor

$$
\tilde{Y} \sim \pi^{*}(3 M+n L)-E
$$

is nef and big when $n \geqslant 0$ by Lemmas 2.2,2.3 and 2.4. Hence, the equality $\operatorname{rk} \operatorname{Pic}(\tilde{Y})=3$ holds in the case when $n \geqslant 0$ by Theorem 2 in [9]. So, we may assume that $n<0$.

Let $\omega: \tilde{Y} \rightarrow \mathbb{P}^{1}$ be the natural projection and S be the generic fibre of ω, which is considered as a surface defined over the function field $\mathbb{C}(t)$. Then S is a smooth cubic surface in \mathbb{P}^{3}, which contains a line in \mathbb{P}^{3} defined over the field $\mathbb{C}(t)$, because $Y_{3} \subset Y$. Then $\operatorname{rk} \operatorname{Pic}(S) \geqslant 2$.

To conclude the proof we must prove that $\operatorname{rk} \operatorname{Pic}(S)=2$, because there is an exact sequence

$$
0 \longrightarrow \mathbb{Z}\left[\pi^{*}(L)\right] \longrightarrow \operatorname{Pic}(\tilde{Y}) \longrightarrow \operatorname{Pic}(S) \longrightarrow 0
$$

because every fibre of τ is reduced and irreducible (see the proof of Proposition 32 in [3]).
Let \breve{S} be an example of the surface S that is given by the equation

$$
x\left(q(t) x^{2}+p(t) w^{2}\right)+y\left(r(t) y^{2}+s(t) z^{2}\right)=0 \subset \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $q(t), p(t), r(t), s(t)$ are polynomials such that the inequalities

$$
\operatorname{deg}(q(t))>0, \quad \operatorname{deg}(p(t)) \geqslant 0, \quad \operatorname{deg}(r(t))>0, \quad \operatorname{deg}(q(t)) \geqslant 0
$$

hold. The existence of the surface \breve{S} follows from the equation of the threefold Y.
Let \mathbb{K} be an algebraic closure of the field $\mathbb{C}(t)$, let L be a line $x=y=0$, and let

$$
\gamma: \breve{S} \rightarrow \mathbb{P}^{1}
$$

be a projection from L. Then γ is a conic bundle defined over $\mathbb{C}(t)$. But γ has five geometrically reducible fibres $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ defined over \mathbb{F} such that

- $F_{i}=\tilde{F}_{i} \cup \bar{F}_{i}$, where \tilde{F}_{i} and \bar{F}_{i} are geometrically irreducible curves,
- the curve $L \cup F_{i}$ is cut out on the surface \breve{S} by the equation

$$
y=\varepsilon^{i} \sqrt[3]{q(t) / r(t)} x
$$

where $\varepsilon=-(1+\sqrt{-3}) / 2$ and $i \in\{1,2,3\}$,

- the curve $F_{4} \cup L$ is cut out on the surface \breve{S} by the equation $x=0$,
- the curve $F_{5} \cup L$ is cut out on the surface \breve{S} by the equation $y=0$.

The group $\operatorname{Gal}(\mathbb{K} / \mathbb{C}(t))$ acts naturally on the set

$$
\Sigma=\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}, \bar{F}_{1}, \bar{F}_{2}, \bar{F}_{3}, \bar{F}_{4}, \bar{F}_{5}\right\}
$$

because the conic bundle γ is defined over $\mathbb{C}(t)$. The inequality $\operatorname{rk} \operatorname{Pic}(\breve{S})>2 \mathrm{im}$ plies the existence of a subset $\Gamma \subsetneq \Sigma$ consisting of disjoint curves such that $\Gamma \subsetneq \Sigma$ is $\operatorname{Gal}(\mathbb{K} / \mathbb{C}(t))$-invariant.

The action of $\operatorname{Gal}(\mathbb{K} / \mathbb{C}(t))$ on the set Σ is easy to calculate explicitly. Putting

$$
\Delta=\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \bar{F}_{1}, \bar{F}_{2}, \bar{F}_{3}\right\}, \quad \Lambda=\left\{\tilde{F}_{4}, \bar{F}_{4}\right\}, \quad \Xi=\left\{\tilde{F}_{5}, \bar{F}_{5}\right\}
$$

we see that the group $\operatorname{Gal}(\mathbb{K} / \mathbb{C}(t))$ acts transitively on each subset Λ, Ξ, Δ, because we may assume that $q(t), p(t), r(t), s(t)$ are sufficiently general. But each subset Λ, Ξ, Δ does not consist of disjoint curves. Hence, the equality $\operatorname{rk} \operatorname{Pic}(\breve{S})=2$ holds, which implies that $\operatorname{rkPic}(S)=2$.

The linear system $\left|\pi^{*}\left(M-d_{2} L\right)-E\right|$ does not have base points and induces a \mathbb{P}^{2} bundle

$$
\tau: \tilde{V} \longrightarrow \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(d_{2}\right)\right) \cong \mathbb{F}_{r}
$$

where $r=d_{1}-d_{2}$. Let l be a fibre of the natural projection $\mathbb{F}_{r} \rightarrow \mathbb{P}^{1}$, and s_{0} be an irreducible curve on the surface \mathbb{F}_{r} such that $s_{0}^{2}=r$, and s_{0} is a section of the projection $\mathbb{F}_{r} \rightarrow \mathbb{P}^{1}$. Then

$$
\pi^{*}\left(M-d_{2} L\right)-E \sim \tau^{*}\left(s_{0}\right)
$$

and $\pi^{*}(L) \sim \tau^{*}(l)$. The morphism τ induces a conic bundle $\tilde{\tau}=\left.\tau\right|_{\tilde{Y}}: \tilde{Y} \rightarrow \mathbb{F}_{r}$.
Let Δ be the degeneration divisor of the conic bundle $\tilde{\tau}$. Then

$$
\Delta \sim 5 s_{\infty}+\mu l
$$

where μ is a natural number, and s_{∞} is the exceptional section of the surface \mathbb{F}_{r}.
Let S be a surface in \tilde{Y} and B be a threefold in \tilde{V} dominating the curve s_{0}. Then

$$
B \cong \operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(d_{3}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)
$$

and $\pi(B) \cong B$. But $\pi(B) \cap Y=\pi(S) \cup Y_{3}$.
The surface Y_{3} is cut out on $\pi(B)$ by the equation $x_{1}=0$, where $\pi(B) \in\left|M-d_{2} L\right|$. We have

$$
S \sim 2 T+\left(d_{1}+n\right) F
$$

where T is a tautological line bundle on B, and F is a fibre of the projection $B \rightarrow \mathbb{P}^{1}$. Then

$$
K_{S}^{2}=-5 d_{1}+2 d_{3}-4 d_{2}-3 n+8
$$

and $\mu=s_{0} \cdot \Delta=5 d_{1}-2 d_{3}+4 d_{2}+3 n$.
It follows from the equivalence $2 K_{\mathbb{F}_{r}}+\Delta \sim s_{\infty}+\left(3 d_{1}-2 d_{3}+6 d_{2}+3 n-4\right) l$ that

$$
\left|2 K_{\mathbb{F}_{r}}+\Delta\right| \neq \emptyset \Longleftrightarrow 3 d_{1}-2 d_{3}+6 d_{2}+3 n \geqslant 4
$$

which implies that Y is nonrational by Theorem 10.2 in [11] if $3 d_{1}-2 d_{3}+6 d_{2}+3 n \geqslant 4$.
The threefold Y is nonruled if and only if it is nonrational, because the threefold Y is rationally connected. So, the threefold X is nonrational by Theorem 1.8.3 in \S IV of the book [6] whenever

$$
3 d_{1}-2 d_{3}+6 d_{2}+3 n \geqslant 4
$$

which implies that $3 d_{1}-2 d_{3}+6 d_{2}+3 n<4$, because we assume that X is rational.
We see that either $d_{1}=0$ and $n=1$ or $d_{1}=1$ and $d_{2}=n=0$ by Lemmas 2.2, 2.3 and 2.4 , but the threefold X is birational to a smooth cubic threefold in the case when $d_{1}=1$ and $d_{2}=n=0$, which is nonrational by [4]. Then $d_{1}=0$ and $n=1$. The assertion of Theorem 1.4 is proved.

References

[1] V. A. Alekseev, On conditions for the rationality of three-folds with a pencil of del Pezzo surfaces of degree 4. Mat. Zametki 41 (1987), 724-730, 766. MR898133 (88j:14048) Zbl 0623.14019
[2] F. Bardelli, Polarized mixed Hodge structures: on irrationality of threefolds via degeneration. Ann. Mat. Pura Appl. (4) 137 (1984), 287-369. MR772264 (86m:14030) Zbl 0579.14033
[3] G. Brown, A. Corti, F. Zucconi, Birational geometry of 3-fold Mori fibre spaces. In: The Fano Conference, 235-275, Univ. Torino, Turin 2004. MR2112578 (2005k:14031) Zbl 1063.14019
[4] C. H. Clemens, P. A. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. of Math. (2) 95 (1972), 281-356. MR0302652 (46 \#1796) Zbl 0245.14010
[5] M. M. Grinenko, Fibrations into del Pezzo surfaces. Uspekhi Mat. Nauk 61 (2006), no. 2(368), 67-112. MR2261543 (2007g:14009) Zbl 1124.14020
[6] J. Kollár, Rational curves on algebraic varieties. Springer 1996. MR1440180 (98c:14001) Zbl 0877.14012
[7] V. V. Przhiyalkovskiŭ, I. A. Chel'tsov, K. A. Shramov, Hyperelliptic and trigonal Fano threefolds. Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), 145-204. MR2136260 (2006e:14059) Zbl 1081.14059
[8] A. V. Pukhlikov, Birational automorphisms of three-dimensional algebraic varieties with a pencil of del Pezzo surfaces. Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), 123-164. MR1622258 (99f:14016) Zbl 0948.14008
[9] G. V. Ravindra, V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties. J. Algebraic Geom. 15 (2006), 563-590. MR2219849 (2006m:14008) Zbl 1123.14004
[10] M. Reid, Chapters on algebraic surfaces. In: Complex algebraic geometry (Park City, UT, 1993), volume 3 of IAS/Park City Math. Ser., 3-159, Amer. Math. Soc. 1997. MR1442522 (98d:14049) Zbl 0910.14016
[11] V. V. Shokurov, Prym varieties: theory and applications. Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 785-855. MR712095 (85e:14040) Zbl 0572.14025
[12] K. A. Shramov, On the rationality of nonsingular threefolds with a pencil of del Pezzo surfaces of degree 4. Mat. Sb. 197 (2006), 133-144. MR2230135 (2007h:14015)
[13] C. Voisin, Sur la jacobienne intermédiaire du double solide d'indice deux. Duke Math. J. 57 (1988), 629-646. MR962523 (90f:14029) Zbl 0698.14049

Received 23 January, 2007; revised 25 June, 2007
I. Cheltsov, University of Edinburgh, School of Mathematics, Mayfield Road, Edinburgh EH9 3JZ, UK
Email: I.Cheltsov@ed.ac.uk

[^0]: *The author would like to thank A. Corti, M. Grinenko, V. Iskovskikh, V. Shokurov for fruitful conversations.
 ${ }^{1}$ All varieties are assumed to be projective, normal, and defined over \mathbb{C}.

[^1]: ${ }^{2,3} \mathrm{~A}$ complement to a countable union of Zariski closed subsets.

[^2]: ${ }^{4} \mathrm{~A}$ complement to a Zariski closed subset in moduli.

[^3]: ${ }^{5} \mathrm{~A}$ complement to a countable union of Zariski closed subsets.

