J. DIFFERENTIAL GEOMETRY 81 (2009) 575-599

POINTS IN PROJECTIVE SPACES AND APPLICATIONS

IVAN CHELTSOV

Abstract

We prove the factoriality of a nodal hypersurface in \mathbb{P}^4 of degree d that has at most $2(d-1)^2/3$ singular points, and we prove the factoriality of a double cover of \mathbb{P}^3 branched over a nodal surface of degree 2r having less than (2r-1)r singular points.

1. Introduction

Let Σ be a finite subset in \mathbb{P}^n and $\xi \in \mathbb{N}$, where $n \ge 2$. Then the points of the set Σ impose independent linear conditions on homogeneous forms of degree ξ if and only if for every point $P \in \Sigma$ there is a homogeneous form of degree ξ that vanishes at every point of the set $\Sigma \setminus P$, and does not vanish at the point P. The latter is equivalent to the equality

$$h^1(\mathcal{I}_{\Sigma}\otimes\mathcal{O}_{\mathbb{P}^n}(\xi))=0,$$

where \mathcal{I}_{Σ} is the ideal sheaf of the subset $\Sigma \subset \mathbb{P}^n$.

In this paper we prove the following result (see Section 2).

Theorem 1. Suppose that there is a natural number $\lambda \ge 2$ such that at most λk points of the set Σ lie on a curve in \mathbb{P}^n of degree k. Then

$$h^1(\mathcal{I}_{\Sigma}\otimes\mathcal{O}_{\mathbb{P}^n}(\xi))=0$$

in the case when one of the following conditions holds:

- $\xi = |3\lambda/2 3|$ and $|\Sigma| < \lambda \lceil \lambda/2 \rceil$;
- $\xi = \lfloor 3\mu 3 \rfloor$, $|\Sigma| \leq \lambda \mu$ and $\lfloor 3\mu \rfloor \mu 2 \geq \lambda \geq \mu$ for some $\mu \in \mathbb{Q}$;
- $\xi = |n\mu|, |\Sigma| \leq \lambda \mu \text{ and } (n-1)\mu \geq \lambda \text{ for some } \mu \in \mathbb{Q}.$

Let us consider applications of Theorem 1.

Definition 2. An algebraic variety X is factorial if Cl(X) = Pic(X).

We assume that all varieties are projective, normal, and defined over \mathbb{C} . Received 12/14/2006.

Let $\pi: X \to \mathbb{P}^3$ be a double cover branched over a surface $S \subset \mathbb{P}^3$ of degree $2r \ge 4$ such that the only singularities of the surface S are isolated ordinary double points. Then X is a hypersurface

$$w^{2} = f_{2r}(x, y, z, t) \subset \mathbb{P}(1, 1, 1, 1, r) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w]),$$

where $\operatorname{wt}(x) = \cdots = \operatorname{wt}(t) = 1$, $\operatorname{wt}(w) = r$, and $f_{2r}(x, y, z, t)$ is a homogeneous polynomial of degree 2r such that $S \subset \mathbb{P}^3$ is given by

$$f_{2r}(x, y, z, t) = 0 \subset \mathbb{P}^3 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t]).$$

The following conditions are equivalent (see [10] and [8]):

- the threefold X is factorial;
- the singularities of the threefold X are \mathbb{Q} -factorial¹;
- the equality $\operatorname{rk} H_4(X, \mathbb{Z}) = 1$ holds;
- the ring

$$\mathbb{C}[x,y,z,t,w]/\langle w^2 - f_{2r}(x,y,z,t) \rangle$$

is a unique factorization domain;

• the points of the set $\operatorname{Sing}(S)$ impose independent linear conditions on homogeneous forms on \mathbb{P}^3 of degree 3r - 4.

Theorem 3. Suppose that the inequality

$$\operatorname{Sing}(S) \Big| < (2r-1)r$$

holds. Then the threefold X is factorial.

Proof. The subset $\operatorname{Sing}(S) \subset \mathbb{P}^3$ is a set-theoretic intersection of surfaces of degree 2r - 1. Then X is factorial by Theorem 1. q.e.d.

The assertion of Theorem 3 is proved in [4] in the case when r = 3.

Example 4. Suppose that the surface S is given by an equation

(5)
$$g_r^2(x, y, z, t) = g_1(x, y, z, t)g_{2r-1}(x, y, z, t) \subset \mathbb{P}^3$$

where g_i is a general homogeneous polynomial of degree *i*. Then

$$\operatorname{Sing}(S) = (2r-1)r,$$

and S has at most ordinary double points. But X is not factorial.

For r = 3, the threefold X is non-rational if it is factorial (see [4]), but the threefold X is rational if the surface S is the Barth sextic (see [1]).

We prove the following generalization of Theorem 3 in Section 3.

¹A variety is \mathbb{Q} -factorial if some non-zero integral multiple of every Weil divisor on it is a Cartier divisor. This property is not local in the analytic topology, because ordinary double points of threefolds are not locally analytically \mathbb{Q} -factorial.

Theorem 6. Suppose that the inequality

$$\left|\operatorname{Sing}(S)\right| \leqslant (2r-1)r+1$$

holds. Then X is not factorial \iff S can be defined by equation 5.

The assertion of Theorem 6 is proved in [11] in the case when r = 3. Let V be a hypersurface in \mathbb{P}^4 of degree d such that V has at most isolated ordinary double points. Then V can be given by the equation

$$f_d(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \operatorname{Proj}\Big(\mathbb{C}[x, y, z, t, u]\Big),$$

where $f_d(x, y, z, t, u)$ is a homogeneous polynomial of degree d.

The following conditions are equivalent (see [10] and [8]):

- the threefold V is factorial;
- the threefold V has \mathbb{Q} -factorial singularities;
- the equality $\operatorname{rk} H_4(V, \mathbb{Z}) = 1$ holds;
- the ring

$$\mathbb{C}[x,y,z,t,u] / \langle f_d(x,y,z,t,u) \rangle$$

is a unique factorization domain;

• the points of the set $\operatorname{Sing}(V)$ impose independent linear conditions on homogeneous forms on \mathbb{P}^4 of degree 2d - 5.

The threefold V is not rational if it is factorial and d = 4 (see [12]), but general determinantal quartic threefolds are known to be rational.

Conjecture 7. Suppose that the inequality

$$\left|\operatorname{Sing}(V)\right| < (d-1)^2$$

holds. Then the threefold V is factorial.

The assertion of Conjecture 7 is proved in [3] and [5] for $d \leq 7$.

Example 8. Suppose that V is given by the equation

$$xg(x, y, z, t, u) + yf(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u]),$$

where g and f are general homogeneous forms of degree d-1. Then

$$\left|\operatorname{Sing}(V)\right| = (d-1)^2$$

and V has at most ordinary double points. But V is not factorial.

The threefold V is factorial if $|\operatorname{Sing}(V)| \leq (d-1)^2/4$ by [2].

Theorem 9. Suppose that the inequality

$$\left|\operatorname{Sing}(V)\right| \leq \frac{2(d-1)^2}{3}$$

holds. Then the threefold V is factorial.

Proof. The set Sing(V) is a set-theoretic intersection of hypersurfaces of degree d - 1. Then V is factorial for $d \ge 7$ by Theorem 1.

For $d \leq 6$, the threefold V is factorial by Theorem 2 in [9]. q.e.d.

Let Y be a complete intersection of hypersurfaces F and G in \mathbb{P}^5 of degree m and k, respectively, such that $m \ge k$, and the complete intersection Y has at most isolated ordinary double points.

Example 10. Let F and G be general hypersurfaces that contain a two-dimensional linear subspace in \mathbb{P}^5 . Then

$$\left| \operatorname{Sing}(Y) \right| = (m+k-2)^2 - (m-1)(k-1)$$

and Y has at most ordinary double points. But Y is not factorial.

The threefold Y is factorial if G is smooth and singular points of Y impose independent linear conditions on homogeneous forms of degree 2m + k - 6 (see [8]).

Theorem 11. Suppose that G is smooth, and the inequalities

 $\left|\operatorname{Sing}(Y)\right| \leq (m+k-2)(2m+k-6)/5$

and $m \ge 7$ hold. Then the threefold Y is factorial.

Proof. The set Sing(Y) is a set-theoretic intersection of hypersurfaces of degree m + k - 2. Then Y is factorial by Theorem 1. q.e.d.

Arguing as in the proof of Theorem 11, we obtain the following result.

Theorem 12. Suppose that G is smooth, and the inequalities

 $\left|\operatorname{Sing}(Y)\right| \leq (2m+k-3)(m+k-2)/3$

and $m \ge k + 6$ hold. Then the threefold Y is factorial.

Let H be a smooth hypersurface in \mathbb{P}^4 of degree $d \ge 2$, and let

$$\eta: U \longrightarrow H$$

be a double cover branched over a surface $R \subset H$ such that

$$R \sim \mathcal{O}_{\mathbb{P}^4}(2r)\Big|_H$$

and $2r \ge d$. Suppose that S has at most isolated ordinary double points.

Theorem 13. Suppose that the inequalities

$$\left|\operatorname{Sing}(R)\right| \leq (2r+d-2)r/2$$

and $r \ge d + 7$ hold. Then the threefold U is factorial.

Proof. The subset $\operatorname{Sing}(R) \subset \mathbb{P}^4$ is a set-theoretic intersection of hypersurfaces of degree 2r + d - 2. Then U is factorial by Theorem 1, because it is factorial if the points of $\operatorname{Sing}(R)$ impose independent linear conditions on homogeneous forms of degree 3r + d - 5 (see [8]). q.e.d.

The author thanks I. Aliev, A. Corti, V. Iskovskikh, J. Park, Yu. Prokhorov, V. Shokurov, and K. Shramov for very useful comments.

2. Main result

Let Σ be a finite subset in \mathbb{P}^n , where $n \ge 2$. Now we prove the following special case of Theorem 1, leaving the other cases to the reader.

Proposition 14. Let $r \ge 2$ be a natural number. Suppose that

$$\left|\Sigma\right| < \left(2r-1\right)r,$$

and at most (2r-1)k points in Σ lie on a curve of degree k. Then

$$h^1(\mathcal{I}_{\Sigma}\otimes\mathcal{O}_{\mathbb{P}^n}(3r-4))=0.$$

The following result is Corollary 4.3 in [7].

Theorem 15. Let $\pi: Y \to \mathbb{P}^2$ be a blow up of points $P_1, \ldots, P_{\delta} \in \mathbb{P}^2$, and let E_i be the π -exceptional divisor such that $\pi(E_i) = P_i$. Then

$$\left|\pi^*\left(\mathcal{O}_{\mathbb{P}^2}(\xi)\right) - \sum_{i=1}^{\delta} E_i\right|$$

does not have base points if at most $k(\xi+3-k)-2$ points in $\{P_1, \ldots, P_{\delta}\}$ lie on a curve of degree k for every $k \leq (\xi+3)/2$, and the inequality

$$\delta \leqslant \max\left\{ \left\lfloor \frac{\xi+3}{2} \right\rfloor \left(\xi+3 - \left\lfloor \frac{\xi+3}{2} \right\rfloor \right) - 1, \left\lfloor \frac{\xi+3}{2} \right\rfloor^2 \right\}$$

holds, where ξ is a natural number such that $\xi \ge 3$.

Therefore, it follows from Theorem 15 that to prove Proposition 14, we may assume that n = 3 due to the following result.

Lemma 16. Let $\Pi \subset \mathbb{P}^n$ be an m-dimensional linear subspace, and let

$$\psi \colon \mathbb{P}^n \dashrightarrow \Pi \cong \mathbb{P}^m$$

be a projection from a linear subspace $\Omega \subset \mathbb{P}^n$ such that

- the subspace Ω is sufficiently general and dim $(\Omega) = n m 1$,
- there is a subset $\Lambda \subset \Sigma$ such that

$$|\Lambda| \ge \lambda k + 1,$$

but the set $\psi(\Lambda)$ is contained in an irreducible curve of degree k, and $n > m \ge 2$. Let \mathcal{M} be the linear system that contains all hypersurfaces in \mathbb{P}^n of degree k that pass through all points in Λ . Then

$$\dim \left(\operatorname{Bs}(\mathcal{M}) \right) = 0,$$

and either m = 2, or $k > \lambda$.

Proof. Suppose that there is an irreducible curve Z such that

$$Z \subset \operatorname{Bs}(\mathcal{M}),$$

and put $\Xi = Z \cap \Lambda$. We may assume that $\psi|_Z$ is a birational morphism, and

$$\psi(Z) \cap \psi(\Lambda \setminus \Xi) = \emptyset,$$

because Ω is general. Then $\deg(\psi(Z)) = \deg(Z)$.

Let C be an irreducible curve in Π of degree k that contains $\psi(\Lambda)$, and let W be the cone in \mathbb{P}^n over the curve C and with vertex Ω . Then

$$W \in \mathcal{M},$$

which implies that W contains the curve Z. Thus, we have

$$\psi(Z) = C_{z}$$

which implies that $\Xi = \Lambda$ and $\deg(Z) = k$. But $|Z \cap \Sigma| \leq \lambda k$. We have

$$\dim\Big(\mathrm{Bs}\big(\mathcal{M}\big)\Big)=0.$$

Suppose that m > 2 and $k \leq \lambda$. Let us show that the latter assumption leads to a contradiction. We may assume that m = 3 and n = 4, because ψ as a composition of n - m projections from points.

Let \mathcal{Y} be the set of all irreducible reduced surfaces in \mathbb{P}^4 of degree k that contains all points of the set Λ , and let Υ be a subset of \mathbb{P}^4 consisting of points that are contained in every surface of \mathcal{Y} . Then

$$\Lambda \subseteq \Upsilon$$
,

but the previous arguments imply that Υ is a finite set.

Let \mathcal{S} be the set of all surfaces in \mathbb{P}^3 of degree k such that

$$S \in \mathcal{S} \iff \exists Y \in \mathcal{Y} \mid \psi(Y) = S \text{ and } \psi|_Y \text{ is a birational morphism,}$$

and let Ψ be a subset of \mathbb{P}^3 consisting of points that are contained in every surface of the set \mathcal{S} . Then $\mathcal{S} \neq \emptyset$ and

$$\psi(\Lambda) \subseteq \psi(\Upsilon) \subseteq \Psi.$$

The generality of Ω implies that $\psi(\Upsilon) = \Psi$. Indeed, for every point

$$O \in \Pi \setminus \Psi$$

and for a general surface $Y \in \mathcal{Y}$, we may assume that the line passing through O and Ω does not intersect Y, but $\psi|_Y$ is a birational morphism.

The set Ψ is a set-theoretic intersection of surfaces in Π of degree k, which implies that at most δk points in Ψ lie on a curve in Π of degree δ .

We see that at most k^2 points in Ψ lie on a curve in Π of degree k, but the set $\psi(\Lambda)$ contains at least $\lambda k + 1$ points that are contained in an irreducible curve in Π of degree k, which is a contradiction. q.e.d.

We have a finite subset $\Sigma \subset \mathbb{P}^3$ and a natural number $r \ge 2$ such that

$$\left|\Sigma\right| < (2r-1)r,$$

and at most (2r-1)k points in Σ lie on a curve of degree k. Then

$$\left|\Sigma\right| < \left(2r - 1\right)\left(r - \epsilon\right)$$

for some integer $\epsilon \ge 0$. Let us prove the following result.

Proposition 17. The equality $h^1(\mathcal{I}_{\Sigma} \otimes \mathcal{O}_{\mathbb{P}^3}(3r-4-\epsilon)) = 0$ holds.

Fix a point $P \in \Sigma$. To prove Proposition 17, it is enough to construct a surface² of degree $3r-4-\epsilon$ that contains $\Sigma \setminus P$ and does not contain P.

We assume that $r \ge 3$ and $\epsilon \le r-3$, because the assertion of Proposition 17 follows from Theorem 2 in [9] and Theorem 15 otherwise.

Lemma 18. Suppose that there is a hyperplane $\Pi \subset \mathbb{P}^3$ that contains the set Σ . Then there is a surface of degree $3r - 4 - \epsilon$ that contains every point of the set $\Sigma \setminus P$ and does not contain the point P.

Proof. Suppose that $|\Sigma \setminus P| > \lfloor (3r - 1 - \epsilon)/2 \rfloor^2$. Then

$$(2r-1)(r-\epsilon) - 2 \ge \left|\Sigma \setminus P\right| \ge \left\lfloor\frac{3r-1-\epsilon}{2}\right\rfloor^2 + 1 \ge \frac{(3r-2-\epsilon)^4}{4} + 1$$

which implies that $(r-4)^2 + 2\epsilon r + \epsilon^2 \leq 0$. We have r = 4 and $\epsilon = 0$. Then

$$\left|\Sigma \setminus P\right| \leqslant \left\lfloor \frac{3r - 1 - \epsilon}{2} \right\rfloor \left(3r - 1 - \epsilon - \left\lfloor \frac{3r - 1 - \epsilon}{2} \right\rfloor \right).$$

Thus, in every possible case, the number $|\Sigma \setminus P|$ does not exceed

$$\max\left(\left\lfloor\frac{3r-1-\epsilon}{2}\right\rfloor\left(3r-1-\epsilon-\left\lfloor\frac{3r-1-\epsilon}{2}\right\rfloor\right), \ \left\lfloor\frac{3r-1-\epsilon}{2}\right\rfloor^2\right).$$

At most $3r-4-\epsilon$ points of $\Sigma \setminus P$ lie on a line, because $3r-4-\epsilon \ge 2r-1$.

Let us prove that at most $k(3r-1-\epsilon-k)-2$ points in $\Sigma \setminus P$ can lie on a curve of degree $k \leq (3r-1-\epsilon)/2$. It is enough to show that

$$k(3r-1-\epsilon-k) - 2 \ge k(2r-1)$$

for all $k \leq (3r - 1 - \epsilon)/2$. We must prove this only for k > 1 such that

$$k(3r-1-\epsilon-k)-2 < |\Sigma \setminus P| \leq (2r-1)(r-\epsilon)-2,$$

because otherwise the condition that at most k(3r - 1 - k) - 2 points in the set $\Sigma \setminus P$ can lie on a curve of degree k is vacuous.

We may assume that $k < r - \epsilon$. But

$$k(3r-1-\epsilon-k)-2 \ge k(2r-1) \iff r > k-\epsilon,$$

which immediately implies that at most $k(3r - 1 - \epsilon - k) - 2$ points in the set $\Sigma \setminus P$ can lie on a curve of degree k.

²For simplicity we consider homogeneous forms on \mathbb{P}^n as hypersurfaces.

It follows from Theorem 15 that there is a curve

$$C \subset \Pi \cong \mathbb{P}^2$$

of degree $3r - 4 - \epsilon$ that contains $\Sigma \setminus P$ and does not contain $P \in \Sigma$. A general cone in \mathbb{P}^3 over the curve C is the required surface. q.e.d.

Fix a general hyperplane $\Pi \subset \mathbb{P}^3$. Let $\psi \colon \mathbb{P}^3 \dashrightarrow \Pi$ be a projection from a sufficiently general point $O \in \mathbb{P}^3$. Put $\Sigma' = \psi(\Sigma)$ and $P' = \psi(P)$.

Lemma 19. Suppose that at most (2r-1)k points in Σ' lie on a curve of degree k. Then there is a surface in \mathbb{P}^3 of degree $3r-4-\epsilon$ that contains all points of the set $\Sigma \setminus P$ but does not contain the point $P \in \Sigma$.

Proof. Arguing as in the proof of Lemma 18, we obtain a curve

 $C\subset\Pi\cong\mathbb{P}^2$

of degree $3r - 4 - \epsilon$ that contains $\Sigma' \setminus P'$ and does not pass through P'.

Let Y be the cone in \mathbb{P}^3 over C whose vertex is O. Then Y is a surface of degree $3r - 4 - \epsilon$ that contains all points of the set $\Sigma \setminus P$ but does not contain the point $P \in \Sigma$. q.e.d.

To conclude the proof of Proposition 14, we may assume that there is a natural number k such that at least (2r-1)k+1 points of Σ' lie on a curve of degree k, where k is the smallest number of such property.

Lemma 20. The inequality $k \ge 3$ holds.

Proof. The inequality $k \ge 2$ holds by Lemma 16, which implies $r \ge 3$. Suppose that there is a subset $\Phi \subseteq \Sigma$ such that

$$\Phi| > 2(2r-1),$$

but $\psi(\Phi)$ is contained in a conic $C \subset \Pi$. Then C is irreducible.

Let \mathcal{D} be a linear system of quadrics in \mathbb{P}^3 containing Φ . Then

$$\dim \Big(\mathrm{Bs}(\mathcal{D}) \Big) = 0$$

by Lemma 16. Let W be a cone in \mathbb{P}^3 over C with the vertex Ω . Then

$$8 = D_1 \cdot D_2 \cdot W \ge \sum_{\omega \in \Phi} \operatorname{mult}_{\omega}(D_1) \operatorname{mult}_{\omega}(D_2) \ge |\Phi| > 2(2r - 1) \ge 8,$$

where D_1 and D_2 are general divisors in \mathcal{D} .

Therefore, there is a subset $\Lambda^1_k \subseteq \Sigma$ such that

$$\left|\Lambda_{k}^{1}\right| > \left(2r-1\right)k,$$

but the subset $\psi(\Lambda_k^1) \subset \Pi \cong \mathbb{P}^2$ is contained in an irreducible curve of degree $k \ge 3$. Similarly, we obtain a disjoint union

$$\bigcup_{j=k}^{l}\bigcup_{i=1}^{c_j}\Lambda_j^i,$$

q.e.d.

where Λ_i^i is a subset in Σ such that

$$\left|\Lambda_{j}^{i}\right| > \left(2r-1\right)j,$$

the subset $\psi(\Lambda_j^i)$ is contained in an irreducible reduced curve of degree j, and at most $(2r-1)\zeta$ points of the subset

$$\psi\Big(\Sigma \setminus \Big(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i\Big)\Big) \subsetneq \Sigma' \subset \Pi \cong \mathbb{P}^2$$

lie on a curve in Π of degree ζ . Put $\Lambda = \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i$.

Let Ξ_j^i be the base locus of the linear system of surfaces of degree j that pass through the set Λ_j^i . Then Ξ_j^i is a finite set by Lemma 16, and

(21)
$$\left| \Sigma \setminus \Lambda \right| < (2r-1)(r-\epsilon) - 1 - \sum_{i=k}^{l} c_i (2r-1)i.$$

Corollary 22. The inequality $\sum_{i=k}^{l} ic_i \leq r - \epsilon - 1$ holds.

We have $\Lambda_j^i \subseteq \Xi_j^i$. But the set Ξ_j^i imposes independent linear conditions on homogeneous forms of degree 3(j-1) by the following result.

Lemma 23. Let \mathcal{M} be a linear subsystem in $|\mathcal{O}_{\mathbb{P}^n}(\lambda)|$ such that

$$\dim\Big(\mathrm{Bs}\big(\mathcal{M}\big)\Big)=0,$$

where $\lambda \ge 2$. Then the points in Bs(\mathcal{M}) impose independent linear conditions on homogeneous forms on \mathbb{P}^n of degree $n(\lambda - 1)$.

Proof. See Lemma 22 in [2] or Theorem 3 in [6]. q.e.d.

Put $\Xi = \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i$. Then $\Lambda \subseteq \Xi$.

Lemma 24. Suppose that Σ is contained in Ξ . Then there is a surface of degree $3r - 4 - \epsilon$ that contains $\Sigma \setminus P$ and does not contain $P \in \Sigma$.

Proof. For every Ξ_j^i containing P there is a surface of degree 3(j-1) that contains the set $\Xi_j^i \setminus P$ and does not contain P by Lemma 23.

For every Ξ_j^i not containing P there is a surface of degree j that contains Ξ_j^i and does not contain P by the definition of the set Ξ_j^i .

We have j < 3(j-1), because $k \ge 2$. For every Ξ_j^i there is a surface

$$F_i^j \subset \mathbb{P}^3$$

of degree 3(j-1) that contains the set $\Xi_j^i \setminus (\Xi_j^i \cap P)$ and does not contain the point P. The union $\bigcup_{j=k}^l \bigcup_{i=1}^{c_j} F_j^i$ is a surface of degree

$$\sum_{i=k}^{l} 3(i-1)c_i \leq \sum_{i=k}^{l} 3ic_i - 3c_k \leq 3r - 6 - 3\epsilon \leq 3r - 4 - \epsilon$$

that contains the set $\Sigma \setminus P$ and does not contain the point P. q.e.d.

The proof of Lemma 24 implies that there is surface of degree

$$\sum_{i=k}^{l} 3(i-1)c_i$$

containing $(\Xi \cap \Sigma) \setminus (\Xi \cap P)$ and not containing P, and a surface of degree

$$\sum_{i=k}^{l} ic_i$$

containing $\Xi \cap \Sigma$ and not containing any point of the set $\Sigma \setminus (\Xi \cap \Sigma)$.

Lemma 25. Let Λ and Δ be disjoint finite subsets in \mathbb{P}^n such that

- there is a hypersurface in Pⁿ of degree ζ that contains all points in the set Λ and does not contain any point in the set Δ,
- the points of the sets Λ and Δ impose independent linear conditions on hypersurfaces in Pⁿ of degree ξ and ξ − ζ, respectively,

where $\xi \ge \zeta$ are natural numbers. Then the points of the set $\Lambda \cup \Delta$ impose independent linear conditions on hypersurfaces in \mathbb{P}^n of degree ξ .

Proof. Let Q be a point in $\Lambda \cup \Delta$. To conclude the proof we must find a hypersurface of degree ξ that passes through the set $(\Lambda \cup \Delta) \setminus Q$ and does not contain the point Q. We may assume that $Q \in \Lambda$.

Let F be the homogenous form of degree ξ that vanishes at every point of the set $\Lambda \setminus Q$ and does not vanish at the point Q. Put

$$\Delta = \Big\{ Q_1, \dots, Q_\delta \Big\},\,$$

where Q_i is a point. There is a homogeneous form G_i of degree ξ that vanishes at every point in $(\Lambda \cup \Delta) \setminus Q_i$ and does not vanish at Q_i . Then

$$F(Q_i) + \mu_i G_i(Q_i) = 0$$

for some $\mu_i \in \mathbb{C}$, because $g_i(Q_i) \neq 0$. Then the homogenous form

$$F + \sum_{i=1}^{\delta} \mu_i G_i$$

vanishes on set $(\Lambda \cup \Delta) \setminus Q$ and does not vanish at the point Q. q.e.d.

Put
$$d = 3r - 4 - \epsilon - \sum_{i=k}^{l} ic_i$$
 and
 $\bar{\Sigma} = \psi \left(\Sigma \setminus (\Xi \cap \Sigma) \right).$

To prove Proposition 17, we may assume that $\emptyset \neq \overline{\Sigma} \subsetneq \Sigma'$.

It follows from Lemma 25 that to prove Proposition 17 it is enough to show that $\bar{\Sigma} \subset \Pi$ and d satisfy the hypotheses of Theorem 15.

Lemma 26. The inequality $|\bar{\Sigma}| \leq \lfloor (d+3)/2 \rfloor^2$ holds.

Proof. Suppose that the inequality $|\bar{\Sigma}| \ge \lfloor (d+3)/2 \rfloor^2 + 1$ holds. Then

$$(2r-1)\left(r-\epsilon-\sum_{i=k}^{l}c_{i}i\right)-2 \ge \left|\bar{\Sigma}\right| \ge \frac{\left(3r-2-\epsilon-\sum_{i=k}^{l}ic_{i}\right)^{2}}{4}+1$$

by Corollary 22. Put $\Delta = \epsilon + \sum_{i=k}^{l} c_i i$. Then $\Delta \ge k \ge 3$ and

$$4(2r-1)(r-\Delta) - 12 \ge (3r-2-\Delta)^2,$$

which implies that $0 < r^2 - 8r + 16 + 2r\Delta + \Delta^2 \leq 0.$

The inequality $d \ge 3$ holds by Corollary 22, because $r \ge 3$.

Lemma 27. Suppose that at least d + 1 points in the set $\overline{\Sigma}$ are contained in a line. Then there is a surface in \mathbb{P}^3 of degree $3r - 4 - \epsilon$ that contains all points of the set $\Sigma \setminus P$ and does not contains the point $P \in \Sigma$.

Proof. We have $|\bar{\Sigma}| \ge d+1$. It follows from inequality 21 that

$$3r - 3 - \epsilon - \sum_{i=k}^{l} ic_i < (2r - 1)(r - \epsilon) - 1 - \sum_{i=k}^{l} c_i(2r - 1)i_i$$

which gives $\sum_{i=k}^{l} ic_i \neq r - \epsilon - 1$. Now it follows from Corollary 22 that

$$\sum_{i=k}^{l} ic_i \leqslant r - \epsilon - 2,$$

but $2r-1 \ge 3r-3-\epsilon-\sum_{i=k}^{l} ic_i$. Then $\sum_{i=k}^{l} ic_i = r-\epsilon-2$ and d = 2r-2. We have a surface of degree $\sum_{i=k}^{l} 3(i-1)c_i \le 3r-4-\epsilon$ that contains

$$\left(\Xi\cap\Sigma\right)\setminus\left(\Xi\cap P\right)$$

and does not contain P. But we have a surface of degree $r - \epsilon - 2$ that contains $\Xi \cap \Sigma$ and does not contain any point of the set $\Sigma \setminus (\Xi \cap \Sigma)$.

The set $\Sigma \setminus (\Xi \cap \Sigma)$ contains at most 4r - 4 points, at most 2r - 1 points of the set Σ lie on a line. It follows from Theorem 2 in [9] that the set

$$\Sigma \setminus \left(\Xi \cap \Sigma\right)$$

imposes independent linear conditions on homogeneous forms on \mathbb{P}^3 of degree 2r - 2. Applying Lemma 25, we complete the proof. q.e.d.

So, we may assume that at most d points in $\overline{\Sigma}$ lie on a line.

Lemma 28. For every $t \leq (d+3)/2$, at most

$$t(d+3-t)-2$$

points in $\overline{\Sigma}$ lie on a curve of degree t in $\Pi \cong \mathbb{P}^2$.

q.e.d.

Proof. At most (2r-1)t of the points in $\overline{\Sigma}$ lie on a curve of degree t, which implies that to conclude the proof it is enough to show that

$$t(d+3-t) - 2 \ge (2r-1)t$$

for every $t \leq (d+3)/2$ such that t > 1 and $t(d+3-t) - 2 < |\overline{\Sigma}|$. But

$$t(d+3-t) - 2 \ge t(2r-1) \iff r - \epsilon - \sum_{i=k}^{l} ic_i > t$$

because t > 1. Thus, we may assume that $t(d+3-t) - 2 < |\bar{\Sigma}|$ and

$$r - \epsilon - \sum_{i=k}^{l} ic_i \leqslant t \leqslant \frac{d+3}{2}$$

Let q(x) = x(d+3-x) - 2. Then

$$g(t) \ge g\left(r - \epsilon - \sum_{i=k}^{l} ic_i\right),$$

because g(x) is increasing for x < (d+3)/2. Therefore, we have

$$(2r-1)\left(r-\epsilon-\sum_{i=k}^{l}ic_{i}\right)-2 \ge \left|\bar{\Sigma}\right| > g(t) \ge \left(r-\epsilon-\sum_{i=k}^{l}ic_{i}\right)(2r-1)-2,$$

because inequality 21 holds. q.e.d.

because inequality 21 holds.

We can apply Theorem 15 to the blow up of the plane Π at the points of the set $\overline{\Sigma}$ and to the integer d. Then applying Lemma 25, we obtain a surface in \mathbb{P}^3 of degree $3r - 4 - \epsilon$ containing $\Sigma \setminus P$ and not containing P.

The assertion of Proposition 17 is completely proved, which implies the assertion of Proposition 14. The proof of Theorem 1 is similar.

3. Auxiliary result

Now we prove Theorem 6. Let $\pi: X \to \mathbb{P}^3$ be a double cover branched over a surface S of degree $2r \ge 4$ with isolated ordinary double points.

Lemma 29. Let F be a hypersurface in \mathbb{P}^n of degree d that has isolated singularities, and let C be a curve in \mathbb{P}^n of degree k. Then

- the inequality $|\operatorname{Supp}(C) \cap \operatorname{Sing}(F)| \leq k(d-1)$ holds,
- the equality $|\operatorname{Supp}(C) \cap \operatorname{Sing}(F)| = k(d-1)$ implies that

$$\operatorname{Sing}(C)\cap\operatorname{Sing}(F)=arnothing.$$

Proof. Let $f(x_0, \ldots, x_n)$ be the homogeneous form of degree d such that $f(x_0, \ldots, x_n) = 0$ defines $F \subset \mathbb{P}^n$, where $(x_0 : \ldots : x_n)$ are homogeneous coordinates on \mathbb{P}^n . Put

$$\mathcal{D} = \left| \sum_{i=0}^{n} \lambda_i \frac{\partial f}{\partial x_i} = 0 \right| \subset \left| \mathcal{O}_{\mathbb{P}^n}(d-1) \right|,$$

where $\lambda_0, \ldots, \lambda_n$ are complex numbers. Then

$$\operatorname{Bs}(\mathcal{D}) = \operatorname{Sing}(F),$$

which implies that the curve C intersects a generic member of the linear system \mathcal{D} at most (d-1)k times, which implies the assertion. q.e.d.

Lemma 30. Let $\Pi \subset \mathbb{P}^3$ be a hyperplane, and let $C \subset \Pi$ be a reduced curve of degree r. Suppose that the equality

$$\operatorname{Supp}(C) \cap \operatorname{Sing}(S) = (2r-1)r$$

holds. Then S can be defined by equation 5.

Proof. Put

$$S\Big|_{\Pi} = \sum_{i=1}^{\alpha} m_i C_i,$$

where C_i is an irreducible reduced curve, and m_i is a natural number.

We assume that $C_i \neq C_j$ for $i \neq j$, and $C = \sum_{i=1}^{\beta} C_i$, where $\beta \leq \alpha$. It follows from Lemma 29 and from the equalities

(31)
$$\sum_{i=1}^{\beta} \deg(C_i) = r = \frac{\sum_{i=1}^{\alpha} m_i \deg(C_i)}{2}$$

that $C_i \cap \operatorname{Sing}(S) = (2r-1)\operatorname{deg}(C_i)$ if $i \leq \beta$, and

$$\operatorname{Sing}(C) \cap \operatorname{Sing}(S) = \emptyset$$

Suppose that $m_{\gamma} = 1$ for some $\gamma \leq \beta$. Then

$$C_{\gamma} \cap \operatorname{Sing}(S) = (2r-1)\operatorname{deg}(C_{\gamma}),$$

but the curve $S|_{\Pi} = \sum_{i=1}^{\alpha} m_i C_i$ must be singular at every singular point of the surface S that is contained in C_{γ} . Thus, we have

$$\operatorname{Sing}(S) \cap \operatorname{Supp}(C_{\gamma}) \subseteq \bigcup_{i \neq \gamma} C_i \cap C_{\gamma},$$

but $|C_i \cap C_\gamma| \leq (C_i \cdot C_\gamma)_{\Pi} = \deg(C_i) \deg(C_\gamma)$ for $i \neq \gamma$. Hence, we have

$$\sum_{i \neq \gamma} \deg(C_i) \deg(C_{\gamma}) \ge (2r - 1) \deg(C_{\gamma}),$$

but on the plane Π we have the equalities

$$(2r - \deg(C_{\gamma}))\deg(C_{\gamma}) = (S|_{\Pi} - C_{\gamma}) \cdot C_{\gamma} = \sum_{i \neq \gamma} m_i \deg(C_i)\deg(C_{\gamma}),$$

which implies that $\deg(C_{\gamma}) = 1$ and $m_i = 1$ for every *i*.

Now, equalities 31 imply that $\beta < \alpha$, but every singular point of the surface S that is contained in the curve C must lie in the set

$$C \cap \bigcup_{i=\beta+1}^{\alpha} C_i$$

that consists of at most r^2 points, which is a contradiction.

Thus, we see that $m_i \ge 2$ for every $i \le \beta$. Therefore, it follows from the equalities 31 that $\alpha = \beta$ and $m_i = 2$ for every *i*.

Let f(x, y, z, w) be the homogeneous form of degree 2r such that

f(x, y, z, w) = 0

defines the surface $S \subset \mathbb{P}^3$, where (x : y : z : w) are homogeneous coordinates on \mathbb{P}^3 . We may assume that Π is given by x = 0. Then

$$f(0, y, z, w) = g_r^2(y, z, w),$$

where $g_r(y, z, w)$ is a form of degree r such that C is given by

$$x = g_r(y, z, w) = 0,$$

which implies that S can be defined by equation 5. q.e.d.

It follows from Lemma 29 that at most (2r-1)k singular points of the surface S can lie on a curve in \mathbb{P}^3 of degree k.

Lemma 32. Let C be an irreducible reduced curve in \mathbb{P}^3 of degree k that is not contained in a hyperplane. Then

$$|C \cap \operatorname{Sing}(S)| \leq (2r-1)k-2.$$

Proof. Suppose that the curve C contains at least (2r-1)k-1 singular points of the surface S. Then $C \subset S$, because otherwise we have

$$2rk = \deg(C)\deg(S) \le 2(2r-1)k - 2 = 4rk - 2k - 2,$$

which leads to $2k(r-1) \leq 2$. But $r \geq 2$ and $k \geq 3$.

Let O be a sufficiently general point of the curve C, and let

$$\psi \colon \mathbb{P}^3 \dashrightarrow \Pi$$

be a projection from O, where Π is a general plane in \mathbb{P}^3 . Then

$$\psi\Big|_C \colon C \dashrightarrow \psi(C)$$

is a birational morphism, because C is not a plane curve.

Put $Z = \psi(C)$. Then Z has degree k - 1.

Let Y be a cone in \mathbb{P}^3 over Z with the vertex O. Then $C \subset Y$.

The point O is not contained in a hyperplane in \mathbb{P}^3 that is tangent to the surface S at some point of the curve C, because C is not contained in a hyperplane. Then Y does not tangent S along the curve C. Put

$$S\Big|_Y = C + R_s$$

where R is a curve of degree 2rk - k - 2r. The generality in the choice of the point O implies that R does not contain rulings of the cone Y.

Let $\alpha: \overline{Z} \to Z$ be the normalization of Z. Then the diagram

commutes, where β is a birational morphism, the surface \bar{Y} is smooth, and π is a \mathbb{P}^1 -bundle. Let L be a general fiber of π , and E be a section of the \mathbb{P}^1 -bundle π such that $\beta(E) = O$. Then $E^2 = -k + 1$ on \bar{Y} .

Let Q be an arbitrary point of the set

$$\operatorname{Sing}(S) \cap C$$
,

and let \overline{C} and \overline{R} be proper transforms of the curves C and R on the surface \overline{Y} , respectively. Then there is a point $\overline{Q} \in \overline{Y}$ such that

$$\bar{Q} \in \operatorname{Supp}\left(\bar{C} \cdot \bar{R}\right)$$

and $\beta(\bar{Q}) = Q$. But we have

$$\bar{R} \equiv (2r-2)E + (2rk - k - 2r)L$$

and $\bar{C} \equiv E + kL$. Therefore, we have

$$(2r-1)k-2 = \bar{C} \cdot \bar{R} \ge (2r-1)k-1,$$

which is a contradiction.

Now we prove Theorem 6 by reductio ad absurdum, where we assume that $r \ge 4$, because the case r = 3 is done in [11].

Put $\Sigma = \text{Sing}(S)$, and suppose that the following conditions hold:

- the inequalities $|\Sigma| \leq (2r-1)r+1$ and $r \geq 3$ hold;
- the surface S can not be defined by equation 5;
- the threefold X is not factorial.

There is a point $P \in \Sigma$ such that every surface in \mathbb{P}^3 of degree 3r - 4 that pass through the set $\Sigma \setminus P$ contains the point P as well.

Lemma 33. Let Π be a hyperplane in \mathbb{P}^3 . Then $|\Pi \cap \Sigma| \leq 2r$.

Proof. Suppose that the inequality $|\Pi \cap \Sigma| > 2r$ holds. Let us show that this assumption leads to a contradiction.

Let Γ be the subset of the set Σ that consists of all points that are not contained in the plane Π . Then Γ contains at most

$$(2r-1)(r-1)-1$$

points, which impose independent linear conditions on homogeneous forms of degree 3r - 5 by Proposition 17.

q.e.d.

Suppose that $P \notin \Pi$. There is a surface $F \subset \mathbb{P}^3$ of degree 3r - 5 that contains the set $\Gamma \setminus P$ and does not contain the point P. Then

$$F \cup \Pi \subset \mathbb{P}^3$$

is the surface of degree 3r - 4 that contains the set $\Sigma \setminus P$ and does not contain the point P, which is impossible. Therefore, we have $P \in \Pi$.

Arguing as in the proof of Lemma 29, we see that

$$\left|\Pi \cap \Sigma\right| \leqslant (2r-1)r,$$

because $S|_{\Pi}$ is singular in every point of the set $\Pi \cap \Sigma$.

It follows from Lemma 30 that $\Pi \cap \Sigma$ is not contained in a curve of degree r if $|\Pi \cap \Sigma| = (2r - 1)r$. Arguing as in the proof of Lemma 18, we see that there is a surface of degree 3r - 4 that contains the set

$$(\Pi \cap \Sigma) \setminus P$$

and does not contain P, which concludes the proof by Lemma 25. q.e.d.

The inequality $|\Sigma| \ge (2r-1)r$ holds by Proposition 14.

Lemma 34. Let $L_1 \neq L_2$ be lines in \mathbb{P}^3 . Then

 $\left| \left(L_1 \cup L_2 \right) \cap \Sigma \right| < 4r - 2.$

Proof. Suppose that $|(L_1 \cup L_2) \cap \Sigma| \ge 4r - 2$. Then

$$|L_1 \cap \Sigma| = |L_1 \cap \Sigma| = 2r - 1$$

by Lemma 29. Then $L_1 \cap L_2 = \emptyset$ by Lemma 33.

Fix two points Q_1 and Q_2 in the set

$$\Sigma \setminus \left(\left(L_1 \cup L_2 \right) \cap \Sigma \right)$$

different from P such that $Q_1 \neq Q_2$. Let Π_i be a hyperplane in \mathbb{P}^3 that contains L_i and Q_i . Then $|\Pi_i \cap \Sigma| = 2r$ by Lemma 33.

Suppose that $P \notin \Pi_1 \cup \Pi_2$. There is a surface $F \subset \mathbb{P}^3$ of degree 3r - 6 that does not contain the point P and contains all points of the set

$$\left(\Sigma \setminus \left(\Sigma \cap \left(\Pi_1 \cup \Pi_2\right)\right)\right) \setminus P$$

by Proposition 17. Hence, the union

 $F \cup \Pi_1 \cup \Pi_2$

is a surface in \mathbb{P}^3 of degree 3r - 4 that contains $\Sigma \setminus P$ and does not contain P, which is impossible. Therefore, we have $P \in \Pi_1 \cup \Pi_2$.

The set $\Sigma \cap (\Pi_1 \cup \Pi_2)$ consists of 4r points by Lemma 33. The points in

$$\Sigma \cap \left(\Pi_1 \cup \Pi_2\right)$$

impose independent linear conditions on homogeneous forms \mathbb{P}^3 of degree 3r - 4 by Theorem 2 in [9]. On the other hand, the inequality

$$\left|\Sigma\setminus\left(\Sigma\cap\left(\Pi_{1}\cup\Pi_{2}\right)\right)\right|<\left(2r-1\right)\left(r-2\right)$$

holds. Then the points in $\Sigma \setminus (\Sigma \cap (\Pi_1 \cup \Pi_2))$ impose independent linear conditions homogeneous forms of degree 3r - 6 by Proposition 17, which leads to a contradiction by applying Lemma 25. q.e.d.

Lemma 35. Let C be a curve in \mathbb{P}^3 of degree $k \ge 2$. Then

$$\left|C \cap \Sigma\right| < (2r-1)k$$

Proof. Suppose that $|C \cap \Sigma| \ge (2r-1)k$. Then

$$|C \cap \Sigma| = (2r - 1)k$$

by Lemma 29, and C is not contained in a hyperplane by Lemma 33.

The curve C must be reducible by Lemma 32. Put

$$C = \sum_{i=1}^{\alpha} C_i,$$

where $\alpha \ge 2$ and C_i is an irreducible curve. Then

$$k = \sum_{i=1}^{\alpha} d_i,$$

where $d_i = \deg(C_i)$. Then $|C_i \cap \Sigma| = (2r - 1)d_i$ by Lemma 29.

The curve C_i is contained in a hyperplane in \mathbb{P}^3 by Lemma 32. Then

$$d_1 = d_2 = \dots = d_\alpha = 1$$

and $\alpha = k \neq 1$ by Lemma 33, which contradicts Lemma 34. q.e.d.

Lemma 36. Let L be a line in \mathbb{P}^3 . Then $|L \cap \Sigma| \leq 2r - 2$.

Proof. Suppose that the inequality $|L \cap \Sigma| \ge 2r - 1$ holds. Then

$$|L \cap \Sigma| = 2r - 1$$

by Lemma 29. Let Φ be a hyperplane in \mathbb{P}^3 such that Φ passes through the line L, and Φ contains a point of the set $\Sigma \setminus (L \cap \Sigma)$. Then

$$\left|\Phi \cap \Sigma\right| = 2r$$

by Lemma 33. Put $\Delta = \Sigma \setminus (\Phi \cap \Sigma)$. Then $|\Delta| \leq (2r-1)(r-1)$.

The points in Δ impose dependent linear conditions on homogeneous forms of degree 3r - 5, because otherwise the points in Σ impose independent linear conditions on forms of degree 3r - 4 by Lemma 25.

Therefore, we see that there is a point $Q \in \Delta$ such that every surface of degree 3r - 5 containing $\Delta \setminus Q$ must pass through Q. Then

$$\Delta = (2r-1)(r-1)$$

and $|\Sigma| = (2r-1)r + 1$ by Proposition 17.

Fix sufficiently general hyperplane $\Pi \subset \mathbb{P}^3$ and a point $O \in \mathbb{P}^3$. Let

$$\psi \colon \mathbb{P}^3 \dashrightarrow \Pi$$

be a projection from O. Put $\Delta' = \psi(\Delta)$ and $Q' = \psi(Q)$.

At most 2r - 2 points in Δ' lie on a line by Lemmas 16 and 34.

Suppose that at most (2r-1)k points in the set Δ' lie on any curve of degree k for every k, and there is a curve $Z \subset \Pi$ of degree r-1 that contains the whole set Δ' . Then

$$h^1\Big(\mathcal{I}_\Delta\otimes\mathcal{O}_{\mathbb{P}^3}\big(3r-5\big)\Big)=0$$

by Lemmas 16, 23 and 35 in the case when Z is irreducible. So, we have

$$Z = \sum_{i=1}^{\alpha} Z_i,$$

where $\alpha \ge 2$, and Z_i is an irreducible curve of degree d_i . Then

$$\left|Z_i \cap \Delta'\right| = (2r-1)d_i$$

because $r = \sum_{i=1}^{\alpha} d_i$. Then every point of the set Δ' is contained in one irreducible component of the curve Z. We have $d_i \neq 1$ for every *i*.

Let Z_{β} be the unique component of the curve Z such that $Q' \in Z_{\beta}$, and let $\Gamma \subset \Delta$ be a subset such that

$$\psi(\Gamma) = \Delta' \cap Z_\beta \subset \Pi \cong \mathbb{P}^2,$$

which implies that $Q \in \Gamma$. There is a surface $F_{\beta} \subset \mathbb{P}^3$ of degree $3(d_{\beta}-1)$ that contains $\Gamma \setminus Q$ and does not contain Q by Lemmas 16, 23 and 35.

Let Y_i be a cone over Z_i whose vertex is the point O. Then

$$F_{\beta} \cup \bigcup_{i \neq \beta} Y_i$$

is a surface of degree $3d_i - 3 + \sum_{i \neq \beta} d_i = 2d_i + r - 4$ containing $\Delta \setminus Q$ and not containing Q, which is impossible, because $2d_i + r - 4 \leq 3r - 5$. Hence, we proved that

- either at least (2r-1)k+1 points in Δ' lie on a curve of degree k;
- or there is no curve of degree r-1 that contains the set Δ' .

Suppose that at most (2r-1)k points of the set Δ' lie on every curve of degree k for every natural k. Then it follows from Theorem 15 that there is a curve in Π of degree 3r-5 that contains $\Delta' \setminus Q'$ and does not contain the point Q', which is a contradiction.

So, at least (2r-1)k+1 points in Δ' lie on some curve in Π of degree k, where $k \ge 3$ by Lemma 20. Thus, the proof of Proposition 17 implies the existence of a subset $\Xi \subseteq \Delta$ such that

- at most (2r-1)k points in $\psi(\Delta \setminus \Xi)$ lie on a curve of degree k,
- there is a surface in \mathbb{P}^3 of degree $\mu \leq r-2$ that contains all points of the set Ξ and does not contain any point of the set $\Delta \setminus \Xi$,

• the inequality $|\Delta \setminus \Xi| \leq (2r-1)(r-1-\mu) - 1$ holds and

$$h^1\left(\mathcal{I}_{\Xi}\otimes\mathcal{O}_{\mathbb{P}^3}(3r-5)\right)=0.$$

Put $\overline{\Delta} = \psi(\Delta \setminus \Xi)$ and $d = 3r - 5 - \mu$. The points of $\overline{\Delta}$ impose dependent linear conditions on homogeneous forms of degree d by Lemma 25, which implies that there is a point $\overline{Q} \in \overline{\Delta}$ such that $\overline{\Delta} \setminus \overline{Q}$ and d do not satisfy one of the hypotheses of Theorem 15.

We have $d \ge 3$, because $r \ge 4$. The proof of Lemma 26 gives

$$\left|\bar{\Delta}\setminus\bar{Q}\right| \leqslant \left\lfloor\frac{d+3}{2}\right\rfloor^2,$$

which implies that at least t(d+3-t)-1 points of the finite set $\bar{\Delta} \setminus \bar{Q}$ lie on a curve of degree t for some natural number t such that $t \leq (d+3)/2$.

Suppose that t = 1. Then at least d + 1 points of Δ lie on a line, but at most 2r-2 points of Δ' lie on a line by Lemmas 16 and 34, which implies that d = 2r - 3 and $|\overline{\Delta}| = 2r - 2$. Then the points in $\overline{\Delta}$ impose dependent linear conditions on homogeneous forms of degree d, which is impossible. Therefore, we see that $t \ge 2$.

At least t(d+3-t)-1 points in $\Delta \setminus Q$ lie on a curve of degree t. Then

$$t(d+3-t) - 1 \leq |\bar{\Delta} \setminus \bar{Q}| \leq (2r-1)(r-1) - 2 - \mu(2r-1)i,$$

but $t(d+3-t)-1 \leq (2r-1)t$, because at most (2r-1)t points in Δ lie on a curve of degree t. Hence, we have $t \ge r - 1 - \mu$, which gives

$$(2r-1)\left(r-1-\mu\right)-2 \ge \left|\bar{\Delta}\setminus\bar{Q}\right| \ge t(d+3-t)-1 \ge \left(r-1-\mu\right)(2r-1)-1,$$
which is a contradiction. q.e.d.

Corollary 37. Let C be any curve in \mathbb{P}^3 of degree k. Then

$$\left|C \cap \Sigma\right| < (2r - 1)k.$$

Fix a hyperplane $\Pi \subset \mathbb{P}^3$ and a general point $O \in \mathbb{P}^3$. Let

$$\psi\colon \mathbb{P}^3 \dashrightarrow \Pi \subset \mathbb{P}^3$$

be a projection from O. Put $\Sigma' = \psi(\Sigma)$ and $P' = \psi(P)$.

Lemma 38. Let C be an irreducible curve in Π of degree r. Then

$$C \cap \Sigma' \big| < \big(2r - 1\big)r.$$

Proof. Suppose that $|C \cap \Sigma'| \ge (2r-1)r$. Let Ψ be a subset in Σ that contains all points mapped to the curve C by the projection ψ . Then

$$|\Psi| \geqslant (2r-1)r,$$

but less than (2r-1)r points in Σ lie on a curve of degree r.

Let \mathcal{H} be a linear system of surfaces in \mathbb{P}^3 of degree r that pass through the set Ψ , and let Φ be the base locus of \mathcal{H} . Then

$$\dim(\Phi) = 0$$

is finite by Lemma 16. Put $\Upsilon = \Sigma \cap \Phi$. The points in Υ impose independent linear conditions on homogeneous forms of degree 3r - 3by Lemma 23.

Let Γ be a subset in Υ such that $\Upsilon \setminus \Gamma$ consists of 4r - 6 points. Then

$$|\Gamma| \leq 2r^2 - 5r - 5 \leq \frac{(r+2)(r+1)r}{6} - 1,$$

because $r \ge 4$. Therefore, there is a surface $F \subset \mathbb{P}^3$ of degree r-1 that contains all points of the set Γ .

Let Θ be a subset of the set Υ such that Θ consists of all points that are contained in the surface F. Then Θ imposes independent linear conditions on homogeneous forms of degree 3r - 4 by Theorem 3 in [6].

Put $\Delta = \Upsilon \setminus \Theta$. Using Theorem 2 in [9], we easily see that the points of the set Δ impose independent linear conditions on homogeneous forms of degree 2r - 3 by Lemmas 33 and 36. Then

$$h^1\Big(\mathcal{I}_{\Upsilon}\otimes\mathcal{O}_{\mathbb{P}^3}\big(3r-4\big)\Big)=0$$

by Lemma 25, which also follows from Theorem 3 in [6].

We have $|\Sigma \setminus \Upsilon| \leq 1$. Thus, the points in Σ impose independent linear conditions on homogeneous forms of degree 3r - 4 by Lemma 25. q.e.d.

Lemma 39. There is a curve $Z \subset \Pi$ of degree k such that

$$\left|Z \cap \Sigma'\right| \ge (2r-1)k+1.$$

Proof. Suppose that at most (2r-1)k points of the set Σ' lie on a curve of degree k for every integer $k \ge 1$. Let us derive a contradiction.

The finite subset $\Sigma' \setminus P' \subset \Pi$ and the natural number 3r - 4 do not satisfy at least one of the hypotheses of Theorem 15. But

$$\left|\Sigma' \setminus P'\right| \leq \max\left(\left\lfloor \frac{3r-1}{2} \right\rfloor \left(3r-1-\left\lfloor \frac{3r-1}{2} \right\rfloor\right), \left\lfloor \frac{3r-1}{2} \right\rfloor^2\right),$$

and at most $2r - 1 \leq 3r - 4$ points in $\Sigma' \setminus P'$ lie on a line by Lemma 16. We see that at least

$$k(3r-1-k) - 1$$

points in $\Sigma' \setminus P'$ lie on a curve of degree k such that $2 \leq k \leq (3r-1)/2$, which implies that k = r, because at most k(2r-1) points in Σ' lie on a curve of degree k, and $|\Sigma' \setminus P'| \leq (2r-1)r$.

Thus, there is a curve $C \subset \Pi$ of degree r such that

$$\left|\operatorname{Supp}(C) \cap (\Sigma' \setminus P')\right| \ge (2r-1)r-1,$$

which implies that $P' \in C$, because otherwise there is a curve in Π of degree 3r - 4 that contains $\Sigma' \setminus P'$ and does not contain P'. Then

$$|\operatorname{Supp}(C) \cap \Sigma'| \ge (2r-1)r,$$

which implies that C is reducible by Lemma 38. Put

$$C = \sum_{i=1}^{\alpha} C_i,$$

where C_i is an irreducible curve of degree $d_i \ge 1$ and $\alpha \ge 2$. Then

$$(2r-1)r \leqslant \left|C \cap \Sigma'\right| \leqslant \sum_{i=1}^{\alpha} \left|C_i \cap \Sigma'\right| \leqslant \sum_{i=1}^{\alpha} (2r-1)\deg(C_i) = (2r-1)r,$$

which implies that C_i contains $(2r-1)d_i$ points of the set Σ , and every point of the set Σ is contained in at most one curve C_i .

Let C_v be the component of C that contains P', and let Υ be a subset of the set Σ that contains all points of the set Σ that are mapped to the curve C_v by the projection ψ . Then

$$|\Upsilon| = (2r - 1)d_{\upsilon},$$

but less than $(2r-1)d_v$ points of the set Σ lie on a curve of degree d_v .

The points in Υ impose independent linear conditions on the homogeneous forms of degree $3(d_v - 1)$ by Lemmas 16 and 23.

There is a surface $F \subset \mathbb{P}^3$ of degree such that

$$\Upsilon \setminus P \subset F \notin P$$

and deg(F) = 3($d_v - 1$). Let Y_i be a cone in \mathbb{P}^3 over the curve C_i whose vertex is the point O. Then the surface

$$F \cup \bigcup_{i \neq v} Y_i \in \left| \mathcal{O}_{\mathbb{P}^3} (2d_v - 3 + r) \right|$$

contains the set $\Sigma \setminus P$ and does not contain the point P. But

$$2d_{\upsilon} - 3 + r \leqslant 3r - 4,$$

which is a contradiction.

Arguing as in the proof of Theorem 1, we construct a disjoint union

$$\bigcup_{j=k}^{l}\bigcup_{i=1}^{c_{j}}\Lambda_{j}^{i}\subseteq\Sigma$$

such that $|\Lambda_j^i| > (2r-1)j$, the subset $\psi(\Lambda_j^i)$ is contained in an irreducible curve of degree j, and at most (2r-1)t points of the subset

$$\psi\Big(\Sigma\setminus\Big(\bigcup_{j=k}^{l}\bigcup_{i=1}^{c_{j}}\Lambda_{j}^{i}\Big)\Big)\subsetneq\Sigma'\subset\Pi\cong\mathbb{P}^{2}$$

lie on a curve in Π of degree t. Then $r > k \ge 3$ by Lemmas 20 and 38.

q.e.d.

Put $\Lambda = \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i$. Let Ξ_j^i be the base locus of the linear system of surfaces in \mathbb{P}^3 of degree j that pass through Λ_j^i . Then

(40)
$$|\Sigma \setminus \Lambda| \leq (2r-1)r+1-\sum_{i=k}^{l} c_i \left((2r-1)i+1\right) \leq (2r-1)\left(r-\sum_{i=k}^{l} ic_i\right),$$

which implies that $\sum_{i=k}^{l} ic_i \leq r$. The set Ξ_j^i is finite by Lemma 16.

Remark 41. We have $\sum_{i=k}^{l} ic_i \leq r-1$, because the equality

$$\sum_{i=k}^{l} ic_i = r$$

and inequalities 40 imply that k = l = r, but k < r by Lemma 38.

It follows from Lemma 23 that the points of Ξ_i^i impose independent linear conditions on homogeneous forms on \mathbb{P}^3 of degree 3(j-1).

1

Put $\Xi = \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i$. Then

(42)
$$\left| \Sigma \setminus \left(\Xi \cap \Sigma \right) \right| \leq (2r-1)r - \sum_{i=k}^{l} c_i (2r-1)i.$$

Therefore, we can find surfaces F and G in \mathbb{P}^3 of degree $\sum_{i=k}^l 3(i-1)c_i$ and $\sum_{i=k}^{l} ic_i$, respectively, such that

$$\left(\Xi \cap \Sigma\right) \setminus P \subset F \not\ni P,$$

the surface G contains the set $\Xi \cap \Sigma$, and the surface G does not contain any point in $\Sigma \setminus (\Xi \cap \Sigma)$. In particular, we have $\Sigma \not\subseteq \Xi$, because

$$\sum_{i=k}^{l} 3(i-1)c_i \leq \sum_{i=k}^{l} 3ic_i - 3c_k \leq 3r - 6 < 3r - 4.$$

Put $\bar{\Sigma} = \psi(\Sigma \setminus (\Xi \cap \Sigma))$ and $d = 3r - 4 - \sum_{i=k}^{l} ic_i$. It follows from Lemma 25 that there is a point $\bar{Q} \in \bar{\Sigma}$ such that every curve in Π of degree d that contains the set $\overline{\Sigma} \setminus \overline{Q}$ must pass through the point \overline{Q} as well. Therefore, we can not apply Theorem 15 to the points of the subset $\overline{\Sigma} \setminus \overline{Q} \subset \Pi$ and the natural number d.

The proof of Lemma 26 implies that the inequality

$$\left|\bar{\Sigma}\setminus\bar{Q}\right| \leq (2r-1)\left(r-\sum_{i=k}^{l}c_{i}i\right)-1 \leq \left\lfloor\frac{d+3}{2}\right\rfloor^{2}$$

holds, but $d = 3r - 4 - \sum_{i=k}^{l} ic_i \ge 2r - 3 \ge 3$, because $\sum_{i=k}^{l} ic_i \le r - 1$, which implies that at least t(d+3-t) - 1 points of the set $\overline{\Sigma} \setminus \overline{Q}$ lie on a curve in Π of degree $t \leq (d+3)/2$.

Lemma 43. The inequality $t \neq 1$ holds.

Proof. Suppose that t = 1. Then at least d + 1 points in $\overline{\Sigma} \setminus \overline{Q}$ lie on a line, which implies that $d + 1 \leq 2r - 2$ by Lemmas 16 and 36.

The inequality $d+1 \leq 2r-2$ gives $\sum_{i=k}^{l} ic_i = r-1$ and d = 2r-3. It follows from inequality 42 that

$$\left|\Sigma\setminus\left(\Xi\cap\Sigma\right)\right|\leqslant 2r-1,$$

which implies that the set $\Sigma \setminus (\Xi \cap \Sigma)$ imposes independent linear conditions on the homogeneous forms of degree 2r - 3 by Theorem 2 in [9], which is impossible by Lemma 25. q.e.d.

There is a curve $C \subset \Pi$ of degree $t \ge 2$ that contains at least

$$t(d+3-t) - 1$$

points of the set $\overline{\Sigma} \setminus \overline{Q}$, which implies that

$$t(d+3-t) - 1 \leqslant \left| \bar{\Sigma} \setminus \bar{Q} \right|$$

and $t(d+3-t) - 1 \leq (2r-1)t$. Therefore, we see that

$$t \ge r - \sum_{i=k}^{l} ic_i,$$

because $t \ge 2$. It follows from inequalities 40 that

$$(2r-1)\left(r-\sum_{i=k}^{l}ic_{i}\right)-1 \ge \left|\bar{\Sigma}\setminus\bar{Q}\right| \ge t\left(d+3-t\right)-1$$
$$\ge \left(r-\sum_{i=k}^{l}ic_{i}\right)(2r-1)-1,$$

which implies that $t = r - \sum_{i=k}^{l} ic_i$, the curve *C* contains $\overline{\Sigma} \setminus \overline{Q}$, and inequalities 40 are actually equalities. We have $\Sigma \cap \Xi = \Lambda$ and

$$|\Sigma \setminus \Lambda| = (2r-1)r + 1 - \sum_{i=k}^{l} c_i \left((2r-1)i + 1 \right)$$
$$= (2r-1) \left(r - \sum_{i=k}^{l} ic_i \right),$$

which implies that l = k, $c_k = 1$, d = 3r - 4 - k and $\sum_{i=k}^{l} ic_i = k$.

Lemma 44. The curve C contains the set $\overline{\Sigma}$.

Proof. Suppose that $\overline{\Sigma} \not\subset C$. Then $\overline{Q} \notin C$, which implies that there is a curve in Π of degree r - k that contains the set $\overline{\Sigma} \setminus \overline{Q}$ but does not contain the point \overline{Q} . The latter is impossible, because $d \ge r - k$. q.e.d.

We have $\deg(C) = r - k$ and $\psi(\Sigma \setminus \Lambda) \subset C$. The equality

$$\left|\psi(\Sigma\setminus\Lambda)\right| = (r-k)(2r-1)$$

holds. But there is an irreducible curve $Z \subset \Pi$ of degree k that contains all points of the set $\psi(\Lambda)$, which consists of k(2r-1) + 1. Then

$$|\Sigma| = |\Sigma \setminus \Lambda| + |\Lambda| = (r-k)(2r-1) + k(2r-1) + 1 = (2r-1)r + 1.$$

Lemma 45. The curve C is reducible.

Proof. Suppose that C is irreducible. Then $\Sigma \setminus \Lambda$ imposes independent linear conditions on forms of degree 3(r-k-1) by Lemmas 16, 23, and 35, but the points in Λ impose independent linear conditions on forms of degree 3(k-1) by Lemmas 16 and 23. Then Σ imposes independent linear conditions on forms of degree 3r - 4 by Lemma 25. q.e.d.

Put
$$C = \sum_{i=1}^{\alpha} C_i$$
, where C_i is an irreducible curve of degree d_i . Then
 $r - k = \sum_{i=1}^{\alpha} d_i$,

the curve C_i contains $(2r-1)d_i$ points of the set $\overline{\Sigma}$, and every point of the set $\overline{\Sigma}$ is contained in a single irreducible component of the curve C.

Lemma 46. The curve Z contains the point P'.

Proof. Suppose that $P' \notin Z$. Let C_v be a component of C such that $P' \in C_v$.

and let Υ be a subset of the set Σ that contains all points that are mapped to the curve C_v by the projection ψ . Then $|\Upsilon| = (2r-1)d_v$.

The set Υ imposes independent linear conditions on the homogeneous forms of degree $3(d_v - 1)$ by Lemmas 16, 23 and 35. There is a surface

$$F \subset \mathbb{P}^3$$

of degree $3(d_v - 1)$ that contains $\Upsilon \setminus P$ and does not contain P.

Let Y_i and Y be the cones in \mathbb{P}^3 over the curves C_i and Z, respectively, whose vertex is the point O. Then the union

$$F \cup Y \cup \bigcup_{i \neq v} Y_i$$

is a surface of degree $2d_v - 3 + r \leq 3r - 4$ that contains the set $\Sigma \setminus P$ and does not contain the point P, which is a contradiction. q.e.d.

The proof of Lemma 46 implies that the set $\Sigma \setminus \Lambda$ imposes independent linear conditions on homogeneous forms on \mathbb{P}^3 of degree 3r - 4 - k, but we already know that the set Λ imposes independent linear conditions on homogeneous forms of degree 3(k-1) by Lemmas 16 and 23.

Applying Lemma 25, we obtain a contradiction.

References

- W. Barth, Two projective surfaces with many nodes, admitting the symmetries of the icosahedron, J. Algebr. Geom. 5 (1996) 173–186, MR 1358040, Zbl 0860.14032.
- [2] I. Cheltsov, On factoriality of nodal threefolds, J. Algebr. Geom. 14 (2005) 663–690, MR 2147353, Zbl 1084.14039.
- [3] _____, Non-rational nodal quartic threefolds, Pacific J. Math. 226 (2006) 65– 82, MR 2247856, Zbl 1123.14010.
- [4] I. Cheltsov & J. Park, Sextic double solids, arXiv:math.AG/0404452, 2004.
- [5] _____, Factorial hypersurfaces in \mathbb{P}^4 with nodes, Geom. Dedicata **121** (2006) 205–219, MR 2276244, Zbl 1110.14031.
- [6] E. Davis, A. Geramita, & F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Am. Math. Soc. 93 (1985) 593–597, MR 0776185, Zbl 0575.14040.
- [7] E. Davis & A. Geramita, Birational morphisms to P²: an ideal-theoretic perspective, Math. Ann. 279 (1988) 435–448, MR 0922427, Zbl 0657.14003.
- [8] A. Dimca, Betti numbers of hypersufaces and defects of linear systems, Duke Math. J. 60 (1990) 285–298, MR 1047124, Zbl 0729.14017.
- [9] D. Eisenbud & J-H. Koh, *Remarks on points in a projective space*, MSRI Publications, 15, Springer, New York, 157–172, MR 0282977, Zbl 0736.14022.
- [10] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer-Verlag, 1970, MR 0282977, Zbl 0208.48901.
- [11] K. Hong & J. Park, On factorial double solids with simple double points, J. Pure Appl. Algebra 208 (2007) 361–369, MR 2269850, Zbl 1127.14011.
- [12] M. Mella, Birational geometry of quartic 3-folds II: the importance of being Qfactorial, Math. Ann. 330 (2004) 107–126, MR 2091681, Zbl 1058.14022.

School of Mathematics University of Edinburgh Edinburgh EH9 3JZ, UK

E-mail address: I.Cheltsov@ed.ac.uk