POINTS IN PROJECTIVE SPACES AND APPLICATIONS

Ivan Cheltsov

Abstract

We prove the factoriality of a nodal hypersurface in \mathbb{P}^{4} of degree d that has at most $2(d-1)^{2} / 3$ singular points, and we prove the factoriality of a double cover of \mathbb{P}^{3} branched over a nodal surface of degree $2 r$ having less than $(2 r-1) r$ singular points.

1. Introduction

Let Σ be a finite subset in \mathbb{P}^{n} and $\xi \in \mathbb{N}$, where $n \geqslant 2$. Then the points of the set Σ impose independent linear conditions on homogeneous forms of degree ξ if and only if for every point $P \in \Sigma$ there is a homogeneous form of degree ξ that vanishes at every point of the set $\Sigma \backslash P$, and does not vanish at the point P. The latter is equivalent to the equality

$$
h^{1}\left(\mathcal{I}_{\Sigma} \otimes \mathcal{O}_{\mathbb{P}^{n}}(\xi)\right)=0
$$

where \mathcal{I}_{Σ} is the ideal sheaf of the subset $\Sigma \subset \mathbb{P}^{n}$.
In this paper we prove the following result (see Section 2).
Theorem 1. Suppose that there is a natural number $\lambda \geqslant 2$ such that at most λk points of the set Σ lie on a curve in \mathbb{P}^{n} of degree k. Then

$$
h^{1}\left(\mathcal{I}_{\Sigma} \otimes \mathcal{O}_{\mathbb{P}^{n}}(\xi)\right)=0
$$

in the case when one of the following conditions holds:

- $\xi=\lfloor 3 \lambda / 2-3\rfloor$ and $|\Sigma|<\lambda\lceil\lambda / 2\rceil$;
- $\xi=\lfloor 3 \mu-3\rfloor,|\Sigma| \leqslant \lambda \mu$ and $\lfloor 3 \mu\rfloor-\mu-2 \geqslant \lambda \geqslant \mu$ for some $\mu \in \mathbb{Q}$;
- $\xi=\lfloor n \mu\rfloor,|\Sigma| \leqslant \lambda \mu$ and $(n-1) \mu \geqslant \lambda$ for some $\mu \in \mathbb{Q}$.

Let us consider applications of Theorem 1.
Definition 2. An algebraic variety X is factorial if $\mathrm{Cl}(X)=\operatorname{Pic}(X)$.

[^0]Let $\pi: X \rightarrow \mathbb{P}^{3}$ be a double cover branched over a surface $S \subset \mathbb{P}^{3}$ of degree $2 r \geqslant 4$ such that the only singularities of the surface S are isolated ordinary double points. Then X is a hypersurface

$$
w^{2}=f_{2 r}(x, y, z, t) \subset \mathbb{P}(1,1,1,1, r) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\mathrm{wt}(x)=\cdots=\mathrm{wt}(t)=1, \mathrm{wt}(w)=r$, and $f_{2 r}(x, y, z, t)$ is a homogeneous polynomial of degree $2 r$ such that $S \subset \mathbb{P}^{3}$ is given by

$$
f_{2 r}(x, y, z, t)=0 \subset \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

The following conditions are equivalent (see [10] and [8]):

- the threefold X is factorial;
- the singularities of the threefold X are \mathbb{Q}-factorial ${ }^{1}$;
- the equality $\operatorname{rk} H_{4}(X, \mathbb{Z})=1$ holds;
- the ring

$$
\mathbb{C}[x, y, z, t, w] /\left\langle w^{2}-f_{2 r}(x, y, z, t)\right\rangle
$$

is a unique factorization domain;

- the points of the set $\operatorname{Sing}(S)$ impose independent linear conditions on homogeneous forms on \mathbb{P}^{3} of degree $3 r-4$.

Theorem 3. Suppose that the inequality

$$
|\operatorname{Sing}(S)|<(2 r-1) r
$$

holds. Then the threefold X is factorial.
Proof. The subset $\operatorname{Sing}(S) \subset \mathbb{P}^{3}$ is a set-theoretic intersection of surfaces of degree $2 r-1$. Then X is factorial by Theorem 1 . q.e.d.

The assertion of Theorem 3 is proved in [4] in the case when $r=3$.
Example 4. Suppose that the surface S is given by an equation

$$
\begin{equation*}
g_{r}^{2}(x, y, z, t)=g_{1}(x, y, z, t) g_{2 r-1}(x, y, z, t) \subset \mathbb{P}^{3} \tag{5}
\end{equation*}
$$

where g_{i} is a general homogeneous polynomial of degree i. Then

$$
|\operatorname{Sing}(S)|=(2 r-1) r
$$

and S has at most ordinary double points. But X is not factorial.
For $r=3$, the threefold X is non-rational if it is factorial (see [4]), but the threefold X is rational if the surface S is the Barth sextic (see [1]).

We prove the following generalization of Theorem 3 in Section 3.

[^1]Theorem 6. Suppose that the inequality

$$
|\operatorname{Sing}(S)| \leqslant(2 r-1) r+1
$$

holds. Then X is not factorial $\Longleftrightarrow S$ can be defined by equation 5 .
The assertion of Theorem 6 is proved in [11] in the case when $r=3$. Let V be a hypersurface in \mathbb{P}^{4} of degree d such that V has at most isolated ordinary double points. Then V can be given by the equation

$$
f_{d}(x, y, z, t, u)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u])
$$

where $f_{d}(x, y, z, t, u)$ is a homogeneous polynomial of degree d.
The following conditions are equivalent (see [10] and [8]):

- the threefold V is factorial;
- the threefold V has \mathbb{Q}-factorial singularities;
- the equality $\mathrm{rk} H_{4}(V, \mathbb{Z})=1$ holds;
- the ring

$$
\mathbb{C}[x, y, z, t, u] /\left\langle f_{d}(x, y, z, t, u)\right\rangle
$$

is a unique factorization domain;

- the points of the set $\operatorname{Sing}(V)$ impose independent linear conditions on homogeneous forms on \mathbb{P}^{4} of degree $2 d-5$.
The threefold V is not rational if it is factorial and $d=4$ (see [12]), but general determinantal quartic threefolds are known to be rational.

Conjecture 7. Suppose that the inequality

$$
|\operatorname{Sing}(V)|<(d-1)^{2}
$$

holds. Then the threefold V is factorial.
The assertion of Conjecture 7 is proved in [3] and [5] for $d \leqslant 7$.
Example 8. Suppose that V is given by the equation

$$
x g(x, y, z, t, u)+y f(x, y, z, t, u)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, u])
$$

where g and f are general homogeneous forms of degree $d-1$. Then

$$
|\operatorname{Sing}(V)|=(d-1)^{2}
$$

and V has at most ordinary double points. But V is not factorial.
The threefold V is factorial if $|\operatorname{Sing}(V)| \leqslant(d-1)^{2} / 4$ by [2].
Theorem 9. Suppose that the inequality

$$
|\operatorname{Sing}(V)| \leqslant \frac{2(d-1)^{2}}{3}
$$

holds. Then the threefold V is factorial.

Proof. The set $\operatorname{Sing}(V)$ is a set-theoretic intersection of hypersurfaces of degree $d-1$. Then V is factorial for $d \geqslant 7$ by Theorem 1 .

For $d \leqslant 6$, the threefold V is factorial by Theorem 2 in [9]. q.e.d.
Let Y be a complete intersection of hypersurfaces F and G in \mathbb{P}^{5} of degree m and k, respectively, such that $m \geqslant k$, and the complete intersection Y has at most isolated ordinary double points.

Example 10. Let F and G be general hypersurfaces that contain a two-dimensional linear subspace in \mathbb{P}^{5}. Then

$$
|\operatorname{Sing}(Y)|=(m+k-2)^{2}-(m-1)(k-1)
$$

and Y has at most ordinary double points. But Y is not factorial.
The threefold Y is factorial if G is smooth and singular points of Y impose independent linear conditions on homogeneous forms of degree $2 m+k-6$ (see [8]).

Theorem 11. Suppose that G is smooth, and the inequalities

$$
|\operatorname{Sing}(Y)| \leqslant(m+k-2)(2 m+k-6) / 5
$$

and $m \geqslant 7$ hold. Then the threefold Y is factorial.
Proof. The set $\operatorname{Sing}(Y)$ is a set-theoretic intersection of hypersurfaces of degree $m+k-2$. Then Y is factorial by Theorem 1 . q.e.d.

Arguing as in the proof of Theorem 11, we obtain the following result.
Theorem 12. Suppose that G is smooth, and the inequalities

$$
|\operatorname{Sing}(Y)| \leqslant(2 m+k-3)(m+k-2) / 3
$$

and $m \geqslant k+6$ hold. Then the threefold Y is factorial.
Let H be a smooth hypersurface in \mathbb{P}^{4} of degree $d \geqslant 2$, and let

$$
\eta: U \longrightarrow H
$$

be a double cover branched over a surface $R \subset H$ such that

$$
\left.R \sim \mathcal{O}_{\mathbb{P}^{4}}(2 r)\right|_{H}
$$

and $2 r \geqslant d$. Suppose that S has at most isolated ordinary double points.
Theorem 13. Suppose that the inequalities

$$
|\operatorname{Sing}(R)| \leqslant(2 r+d-2) r / 2
$$

and $r \geqslant d+7$ hold. Then the threefold U is factorial.
Proof. The subset $\operatorname{Sing}(R) \subset \mathbb{P}^{4}$ is a set-theoretic intersection of hypersurfaces of degree $2 r+d-2$. Then U is factorial by Theorem 1, because it is factorial if the points of $\operatorname{Sing}(R)$ impose independent linear conditions on homogeneous forms of degree $3 r+d-5$ (see [8]). q.e.d.

The author thanks I. Aliev, A. Corti, V. Iskovskikh, J. Park, Yu. Prokhorov, V. Shokurov, and K. Shramov for very useful comments.

2. Main result

Let Σ be a finite subset in \mathbb{P}^{n}, where $n \geqslant 2$. Now we prove the following special case of Theorem 1 , leaving the other cases to the reader.

Proposition 14. Let $r \geqslant 2$ be a natural number. Suppose that

$$
|\Sigma|<(2 r-1) r,
$$

and at most $(2 r-1) k$ points in Σ lie on a curve of degree k. Then

$$
h^{1}\left(\mathcal{I}_{\Sigma} \otimes \mathcal{O}_{\mathbb{P}^{n}}(3 r-4)\right)=0
$$

The following result is Corollary 4.3 in [$\mathbf{7}]$.
Theorem 15. Let $\pi: Y \rightarrow \mathbb{P}^{2}$ be a blow up of points $P_{1}, \ldots, P_{\delta} \in \mathbb{P}^{2}$, and let E_{i} be the π-exceptional divisor such that $\pi\left(E_{i}\right)=P_{i}$. Then

$$
\left|\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(\xi)\right)-\sum_{i=1}^{\delta} E_{i}\right|
$$

does not have base points if at most $k(\xi+3-k)-2$ points in $\left\{P_{1}, \ldots, P_{\delta}\right\}$ lie on a curve of degree k for every $k \leqslant(\xi+3) / 2$, and the inequality

$$
\delta \leqslant \max \left\{\left\lfloor\frac{\xi+3}{2}\right\rfloor\left(\xi+3-\left\lfloor\frac{\xi+3}{2}\right\rfloor\right)-1,\left\lfloor\frac{\xi+3}{2}\right\rfloor^{2}\right\}
$$

holds, where ξ is a natural number such that $\xi \geqslant 3$.
Therefore, it follows from Theorem 15 that to prove Proposition 14, we may assume that $n=3$ due to the following result.

Lemma 16. Let $\Pi \subset \mathbb{P}^{n}$ be an m-dimensional linear subspace, and let

$$
\psi: \mathbb{P}^{n} \rightarrow \Pi \cong \mathbb{P}^{m}
$$

be a projection from a linear subspace $\Omega \subset \mathbb{P}^{n}$ such that

- the subspace Ω is sufficiently general and $\operatorname{dim}(\Omega)=n-m-1$,
- there is a subset $\Lambda \subset \Sigma$ such that

$$
|\Lambda| \geqslant \lambda k+1,
$$

but the set $\psi(\Lambda)$ is contained in an irreducible curve of degree k, and $n>m \geqslant 2$. Let \mathcal{M} be the linear system that contains all hypersurfaces in \mathbb{P}^{n} of degree k that pass through all points in Λ. Then

$$
\operatorname{dim}(\operatorname{Bs}(\mathcal{M}))=0
$$

and either $m=2$, or $k>\lambda$.

Proof. Suppose that there is an irreducible curve Z such that

$$
Z \subset \operatorname{Bs}(\mathcal{M})
$$

and put $\Xi=Z \cap \Lambda$. We may assume that $\left.\psi\right|_{Z}$ is a birational morphism, and

$$
\psi(Z) \cap \psi(\Lambda \backslash \Xi)=\varnothing
$$

because Ω is general. Then $\operatorname{deg}(\psi(Z))=\operatorname{deg}(Z)$.
Let C be an irreducible curve in Π of degree k that contains $\psi(\Lambda)$, and let W be the cone in \mathbb{P}^{n} over the curve C and with vertex Ω. Then

$$
W \in \mathcal{M}
$$

which implies that W contains the curve Z. Thus, we have

$$
\psi(Z)=C
$$

which implies that $\Xi=\Lambda$ and $\operatorname{deg}(Z)=k$. But $|Z \cap \Sigma| \leqslant \lambda k$. We have

$$
\operatorname{dim}(\operatorname{Bs}(\mathcal{M}))=0
$$

Suppose that $m>2$ and $k \leqslant \lambda$. Let us show that the latter assumption leads to a contradiction. We may assume that $m=3$ and $n=4$, because ψ as a composition of $n-m$ projections from points.

Let \mathcal{Y} be the set of all irreducible reduced surfaces in \mathbb{P}^{4} of degree k that contains all points of the set Λ, and let Υ be a subset of \mathbb{P}^{4} consisting of points that are contained in every surface of \mathcal{Y}. Then

$$
\Lambda \subseteq \Upsilon
$$

but the previous arguments imply that Υ is a finite set.
Let \mathcal{S} be the set of all surfaces in \mathbb{P}^{3} of degree k such that

$$
S \in \mathcal{S} \Longleftrightarrow \exists Y \in \mathcal{Y} \mid \psi(Y)=S \text { and }\left.\psi\right|_{Y} \text { is a birational morphism, }
$$

and let Ψ be a subset of \mathbb{P}^{3} consisting of points that are contained in every surface of the set \mathcal{S}. Then $\mathcal{S} \neq \varnothing$ and

$$
\psi(\Lambda) \subseteq \psi(\Upsilon) \subseteq \Psi
$$

The generality of Ω implies that $\psi(\Upsilon)=\Psi$. Indeed, for every point

$$
O \in \Pi \backslash \Psi
$$

and for a general surface $Y \in \mathcal{Y}$, we may assume that the line passing through O and Ω does not intersect Y, but $\left.\psi\right|_{Y}$ is a birational morphism.

The set Ψ is a set-theoretic intersection of surfaces in Π of degree k, which implies that at most δk points in Ψ lie on a curve in Π of degree δ.

We see that at most k^{2} points in Ψ lie on a curve in Π of degree k, but the set $\psi(\Lambda)$ contains at least $\lambda k+1$ points that are contained in an irreducible curve in Π of degree k, which is a contradiction. q.e.d.

We have a finite subset $\Sigma \subset \mathbb{P}^{3}$ and a natural number $r \geqslant 2$ such that

$$
|\Sigma|<(2 r-1) r,
$$

and at most $(2 r-1) k$ points in Σ lie on a curve of degree k. Then

$$
|\Sigma|<(2 r-1)(r-\epsilon)
$$

for some integer $\epsilon \geqslant 0$. Let us prove the following result.
Proposition 17. The equality $h^{1}\left(\mathcal{I}_{\Sigma} \otimes \mathcal{O}_{\mathbb{P}^{3}}(3 r-4-\epsilon)\right)=0$ holds.
Fix a point $P \in \Sigma$. To prove Proposition 17, it is enough to construct a surface ${ }^{2}$ of degree $3 r-4-\epsilon$ that contains $\Sigma \backslash P$ and does not contain P.

We assume that $r \geqslant 3$ and $\epsilon \leqslant r-3$, because the assertion of Proposition 17 follows from Theorem 2 in $[\mathbf{9}]$ and Theorem 15 otherwise.

Lemma 18. Suppose that there is a hyperplane $\Pi \subset \mathbb{P}^{3}$ that contains the set Σ. Then there is a surface of degree $3 r-4-\epsilon$ that contains every point of the set $\Sigma \backslash P$ and does not contain the point P.

Proof. Suppose that $|\Sigma \backslash P|>\lfloor(3 r-1-\epsilon) / 2\rfloor^{2}$. Then

$$
(2 r-1)(r-\epsilon)-2 \geqslant|\Sigma \backslash P| \geqslant\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor^{2}+1 \geqslant \frac{(3 r-2-\epsilon)^{4}}{4}+1
$$

which implies that $(r-4)^{2}+2 \epsilon r+\epsilon^{2} \leqslant 0$. We have $r=4$ and $\epsilon=0$. Then

$$
|\Sigma \backslash P| \leqslant\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor\left(3 r-1-\epsilon-\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor\right) .
$$

Thus, in every possible case, the number $|\Sigma \backslash P|$ does not exceed

$$
\max \left(\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor\left(3 r-1-\epsilon-\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor\right),\left\lfloor\frac{3 r-1-\epsilon}{2}\right\rfloor^{2}\right)
$$

At most $3 r-4-\epsilon$ points of $\Sigma \backslash P$ lie on a line, because $3 r-4-\epsilon \geqslant 2 r-1$.
Let us prove that at most $k(3 r-1-\epsilon-k)-2$ points in $\Sigma \backslash P$ can lie on a curve of degree $k \leqslant(3 r-1-\epsilon) / 2$. It is enough to show that

$$
k(3 r-1-\epsilon-k)-2 \geqslant k(2 r-1)
$$

for all $k \leqslant(3 r-1-\epsilon) / 2$. We must prove this only for $k>1$ such that

$$
k(3 r-1-\epsilon-k)-2<|\Sigma \backslash P| \leqslant(2 r-1)(r-\epsilon)-2,
$$

because otherwise the condition that at most $k(3 r-1-k)-2$ points in the set $\Sigma \backslash P$ can lie on a curve of degree k is vacuous.

We may assume that $k<r-\epsilon$. But

$$
k(3 r-1-\epsilon-k)-2 \geqslant k(2 r-1) \Longleftrightarrow r>k-\epsilon,
$$

which immediately implies that at most $k(3 r-1-\epsilon-k)-2$ points in the set $\Sigma \backslash P$ can lie on a curve of degree k.

[^2]It follows from Theorem 15 that there is a curve

$$
C \subset \Pi \cong \mathbb{P}^{2}
$$

of degree $3 r-4-\epsilon$ that contains $\Sigma \backslash P$ and does not contain $P \in \Sigma$.
A general cone in \mathbb{P}^{3} over the curve C is the required surface. q.e.d.
Fix a general hyperplane $\Pi \subset \mathbb{P}^{3}$. Let $\psi: \mathbb{P}^{3} \rightarrow \Pi$ be a projection from a sufficiently general point $O \in \mathbb{P}^{3}$. Put $\Sigma^{\prime}=\psi(\Sigma)$ and $P^{\prime}=\psi(P)$.

Lemma 19. Suppose that at most $(2 r-1) k$ points in Σ^{\prime} lie on a curve of degree k. Then there is a surface in \mathbb{P}^{3} of degree $3 r-4-\epsilon$ that contains all points of the set $\Sigma \backslash P$ but does not contain the point $P \in \Sigma$.

Proof. Arguing as in the proof of Lemma 18, we obtain a curve

$$
C \subset \Pi \cong \mathbb{P}^{2}
$$

of degree $3 r-4-\epsilon$ that contains $\Sigma^{\prime} \backslash P^{\prime}$ and does not pass through P^{\prime}.
Let Y be the cone in \mathbb{P}^{3} over C whose vertex is O. Then Y is a surface of degree $3 r-4-\epsilon$ that contains all points of the set $\Sigma \backslash P$ but does not contain the point $P \in \Sigma$. q.e.d.

To conclude the proof of Proposition 14, we may assume that there is a natural number k such that at least $(2 r-1) k+1$ points of Σ^{\prime} lie on a curve of degree k, where k is the smallest number of such property.

Lemma 20. The inequality $k \geqslant 3$ holds.
Proof. The inequality $k \geqslant 2$ holds by Lemma 16 , which implies $r \geqslant 3$. Suppose that there is a subset $\Phi \subseteq \Sigma$ such that

$$
|\Phi|>2(2 r-1)
$$

but $\psi(\Phi)$ is contained in a conic $C \subset \Pi$. Then C is irreducible.
Let \mathcal{D} be a linear system of quadrics in \mathbb{P}^{3} containing Φ. Then

$$
\operatorname{dim}(\operatorname{Bs}(\mathcal{D}))=0
$$

by Lemma 16. Let W be a cone in \mathbb{P}^{3} over C with the vertex Ω. Then

$$
8=D_{1} \cdot D_{2} \cdot W \geqslant \sum_{\omega \in \Phi} \operatorname{mult}_{\omega}\left(D_{1}\right) \operatorname{mult}_{\omega}\left(D_{2}\right) \geqslant|\Phi|>2(2 r-1) \geqslant 8
$$

where D_{1} and D_{2} are general divisors in \mathcal{D}. q.e.d.
Therefore, there is a subset $\Lambda_{k}^{1} \subseteq \Sigma$ such that

$$
\left|\Lambda_{k}^{1}\right|>(2 r-1) k
$$

but the subset $\psi\left(\Lambda_{k}^{1}\right) \subset \Pi \cong \mathbb{P}^{2}$ is contained in an irreducible curve of degree $k \geqslant 3$. Similarly, we obtain a disjoint union

$$
\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i}
$$

where Λ_{j}^{i} is a subset in Σ such that

$$
\left|\Lambda_{j}^{i}\right|>(2 r-1) j,
$$

the subset $\psi\left(\Lambda_{j}^{i}\right)$ is contained in an irreducible reduced curve of degree j, and at most $(2 r-1) \zeta$ points of the subset

$$
\psi\left(\Sigma \backslash\left(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i}\right)\right) \subsetneq \Sigma^{\prime} \subset \Pi \cong \mathbb{P}^{2}
$$

lie on a curve in Π of degree ζ. Put $\Lambda=\cup_{j=k}^{l} \cup_{i=1}^{c_{j}} \Lambda_{j}^{i}$.
Let Ξ_{j}^{i} be the base locus of the linear system of surfaces of degree j that pass through the set Λ_{j}^{i}. Then Ξ_{j}^{i} is a finite set by Lemma 16, and

$$
\begin{equation*}
|\Sigma \backslash \Lambda|<(2 r-1)(r-\epsilon)-1-\sum_{i=k}^{l} c_{i}(2 r-1) i \tag{21}
\end{equation*}
$$

Corollary 22. The inequality $\sum_{i=k}^{l} i c_{i} \leqslant r-\epsilon-1$ holds.
We have $\Lambda_{j}^{i} \subseteq \Xi_{j}^{i}$. But the set Ξ_{j}^{i} imposes independent linear conditions on homogeneous forms of degree $3(j-1)$ by the following result.

Lemma 23. Let \mathcal{M} be a linear subsystem in $\left|\mathcal{O}_{\mathbb{P}^{n}}(\lambda)\right|$ such that

$$
\operatorname{dim}(\operatorname{Bs}(\mathcal{M}))=0
$$

where $\lambda \geqslant 2$. Then the points in $\operatorname{Bs}(\mathcal{M})$ impose independent linear conditions on homogeneous forms on \mathbb{P}^{n} of degree $n(\lambda-1)$.

Proof. See Lemma 22 in [2] or Theorem 3 in [6]. q.e.d.
Put $\Xi=\cup_{j=k}^{l} \cup_{i=1}^{c_{j}} \Xi_{j}^{i}$. Then $\Lambda \subseteq \Xi$.
Lemma 24. Suppose that Σ is contained in Ξ. Then there is a surface of degree $3 r-4-\epsilon$ that contains $\Sigma \backslash P$ and does not contain $P \in \Sigma$.

Proof. For every Ξ_{j}^{i} containing P there is a surface of degree $3(j-1)$ that contains the set $\Xi_{j}^{i} \backslash P$ and does not contain P by Lemma 23 .

For every Ξ_{j}^{i} not containing P there is a surface of degree j that contains Ξ_{j}^{i} and does not contain P by the definition of the set Ξ_{j}^{i}.

We have $j<3(j-1)$, because $k \geqslant 2$. For every Ξ_{j}^{i} there is a surface

$$
F_{i}^{j} \subset \mathbb{P}^{3}
$$

of degree $3(j-1)$ that contains the set $\Xi_{j}^{i} \backslash\left(\Xi_{j}^{i} \cap P\right)$ and does not contain the point P. The union $\cup_{j=k}^{l} \cup_{i=1}^{c_{j}} F_{j}^{i}$ is a surface of degree

$$
\sum_{i=k}^{l} 3(i-1) c_{i} \leqslant \sum_{i=k}^{l} 3 i c_{i}-3 c_{k} \leqslant 3 r-6-3 \epsilon \leqslant 3 r-4-\epsilon
$$

that contains the set $\Sigma \backslash P$ and does not contain the point P. q.e.d.

The proof of Lemma 24 implies that there is surface of degree

$$
\sum_{i=k}^{l} 3(i-1) c_{i}
$$

containing $(\Xi \cap \Sigma) \backslash(\Xi \cap P)$ and not containing P, and a surface of degree

$$
\sum_{i=k}^{l} i c_{i}
$$

containing $\Xi \cap \Sigma$ and not containing any point of the set $\Sigma \backslash(\Xi \cap \Sigma)$.
Lemma 25. Let Λ and Δ be disjoint finite subsets in \mathbb{P}^{n} such that

- there is a hypersurface in \mathbb{P}^{n} of degree ζ that contains all points in the set Λ and does not contain any point in the set Δ,
- the points of the sets Λ and Δ impose independent linear conditions on hypersurfaces in \mathbb{P}^{n} of degree ξ and $\xi-\zeta$, respectively,
where $\xi \geqslant \zeta$ are natural numbers. Then the points of the set $\Lambda \cup \Delta$ impose independent linear conditions on hypersurfaces in \mathbb{P}^{n} of degree ξ.

Proof. Let Q be a point in $\Lambda \cup \Delta$. To conclude the proof we must find a hypersurface of degree ξ that passes through the set $(\Lambda \cup \Delta) \backslash Q$ and does not contain the point Q. We may assume that $Q \in \Lambda$.

Let F be the homogenous form of degree ξ that vanishes at every point of the set $\Lambda \backslash Q$ and does not vanish at the point Q. Put

$$
\Delta=\left\{Q_{1}, \ldots, Q_{\delta}\right\}
$$

where Q_{i} is a point. There is a homogeneous form G_{i} of degree ξ that vanishes at every point in $(\Lambda \cup \Delta) \backslash Q_{i}$ and does not vanish at Q_{i}. Then

$$
F\left(Q_{i}\right)+\mu_{i} G_{i}\left(Q_{i}\right)=0
$$

for some $\mu_{i} \in \mathbb{C}$, because $g_{i}\left(Q_{i}\right) \neq 0$. Then the homogenous form

$$
F+\sum_{i=1}^{\delta} \mu_{i} G_{i}
$$

vanishes on set $(\Lambda \cup \Delta) \backslash Q$ and does not vanish at the point Q. q.e.d.
Put $d=3 r-4-\epsilon-\sum_{i=k}^{l} i c_{i}$ and

$$
\bar{\Sigma}=\psi(\Sigma \backslash(\Xi \cap \Sigma))
$$

To prove Proposition 17, we may assume that $\emptyset \neq \bar{\Sigma} \subsetneq \Sigma^{\prime}$.
It follows from Lemma 25 that to prove Proposition 17 it is enough to show that $\bar{\Sigma} \subset \Pi$ and d satisfy the hypotheses of Theorem 15 .

Lemma 26. The inequality $|\bar{\Sigma}| \leqslant\lfloor(d+3) / 2\rfloor^{2}$ holds.

Proof. Suppose that the inequality $|\bar{\Sigma}| \geqslant\lfloor(d+3) / 2\rfloor^{2}+1$ holds. Then

$$
(2 r-1)\left(r-\epsilon-\sum_{i=k}^{l} c_{i} i\right)-2 \geqslant|\bar{\Sigma}| \geqslant \frac{\left(3 r-2-\epsilon-\sum_{i=k}^{l} i c_{i}\right)^{2}}{4}+1
$$

by Corollary 22. Put $\Delta=\epsilon+\sum_{i=k}^{l} c_{i}$ i. Then $\Delta \geqslant k \geqslant 3$ and

$$
4(2 r-1)(r-\Delta)-12 \geqslant(3 r-2-\Delta)^{2}
$$

which implies that $0<r^{2}-8 r+16+2 r \Delta+\Delta^{2} \leqslant 0$. q.e.d.
The inequality $d \geqslant 3$ holds by Corollary 22, because $r \geqslant 3$.
Lemma 27. Suppose that at least $d+1$ points in the set $\bar{\Sigma}$ are contained in a line. Then there is a surface in \mathbb{P}^{3} of degree $3 r-4-\epsilon$ that contains all points of the set $\Sigma \backslash P$ and does not contains the point $P \in \Sigma$.

Proof. We have $|\bar{\Sigma}| \geqslant d+1$. It follows from inequality 21 that

$$
3 r-3-\epsilon-\sum_{i=k}^{l} i c_{i}<(2 r-1)(r-\epsilon)-1-\sum_{i=k}^{l} c_{i}(2 r-1) i,
$$

which gives $\sum_{i=k}^{l} i c_{i} \neq r-\epsilon-1$. Now it follows from Corollary 22 that

$$
\sum_{i=k}^{l} i c_{i} \leqslant r-\epsilon-2
$$

but $2 r-1 \geqslant 3 r-3-\epsilon-\sum_{i=k}^{l} i c_{i}$. Then $\sum_{i=k}^{l} i c_{i}=r-\epsilon-2$ and $d=2 r-2$.
We have a surface of degree $\sum_{i=k}^{l} 3(i-1) c_{i} \leqslant 3 r-4-\epsilon$ that contains

$$
(\Xi \cap \Sigma) \backslash(\Xi \cap P)
$$

and does not contain P. But we have a surface of degree $r-\epsilon-2$ that contains $\Xi \cap \Sigma$ and does not contain any point of the set $\Sigma \backslash(\Xi \cap \Sigma)$.

The set $\Sigma \backslash(\Xi \cap \Sigma)$ contains at most $4 r-4$ points, at most $2 r-1$ points of the set Σ lie on a line. It follows from Theorem 2 in $[\mathbf{9}]$ that the set

$$
\Sigma \backslash(\Xi \cap \Sigma)
$$

imposes independent linear conditions on homogeneous forms on \mathbb{P}^{3} of degree $2 r-2$. Applying Lemma 25, we complete the proof. q.e.d.

So, we may assume that at most d points in $\bar{\Sigma}$ lie on a line.
Lemma 28. For every $t \leqslant(d+3) / 2$, at most

$$
t(d+3-t)-2
$$

points in $\bar{\Sigma}$ lie on a curve of degree t in $\Pi \cong \mathbb{P}^{2}$.

Proof. At most $(2 r-1) t$ of the points in $\bar{\Sigma}$ lie on a curve of degree t, which implies that to conclude the proof it is enough to show that

$$
t(d+3-t)-2 \geqslant(2 r-1) t
$$

for every $t \leqslant(d+3) / 2$ such that $t>1$ and $t(d+3-t)-2<|\bar{\Sigma}|$. But

$$
t(d+3-t)-2 \geqslant t(2 r-1) \Longleftrightarrow r-\epsilon-\sum_{i=k}^{l} i c_{i}>t
$$

because $t>1$. Thus, we may assume that $t(d+3-t)-2<|\bar{\Sigma}|$ and

$$
r-\epsilon-\sum_{i=k}^{l} i c_{i} \leqslant t \leqslant \frac{d+3}{2}
$$

Let $g(x)=x(d+3-x)-2$. Then

$$
g(t) \geqslant g\left(r-\epsilon-\sum_{i=k}^{l} i c_{i}\right)
$$

because $g(x)$ is increasing for $x<(d+3) / 2$. Therefore, we have
$(2 r-1)\left(r-\epsilon-\sum_{i=k}^{l} i c_{i}\right)-2 \geqslant|\bar{\Sigma}|>g(t) \geqslant\left(r-\epsilon-\sum_{i=k}^{l} i c_{i}\right)(2 r-1)-2$,
because inequality 21 holds.
q.e.d.

We can apply Theorem 15 to the blow up of the plane Π at the points of the set $\bar{\Sigma}$ and to the integer d. Then applying Lemma 25 , we obtain a surface in \mathbb{P}^{3} of degree $3 r-4-\epsilon$ containing $\Sigma \backslash P$ and not containing P.

The assertion of Proposition 17 is completely proved, which implies the assertion of Proposition 14. The proof of Theorem 1 is similar.

3. Auxiliary result

Now we prove Theorem 6. Let $\pi: X \rightarrow \mathbb{P}^{3}$ be a double cover branched over a surface S of degree $2 r \geqslant 4$ with isolated ordinary double points.

Lemma 29. Let F be a hypersurface in \mathbb{P}^{n} of degree d that has isolated singularities, and let C be a curve in \mathbb{P}^{n} of degree k. Then

- the inequality $|\operatorname{Supp}(C) \cap \operatorname{Sing}(F)| \leqslant k(d-1)$ holds,
- the equality $|\operatorname{Supp}(C) \cap \operatorname{Sing}(F)|=k(d-1)$ implies that

$$
\operatorname{Sing}(C) \cap \operatorname{Sing}(F)=\varnothing
$$

Proof. Let $f\left(x_{0}, \ldots, x_{n}\right)$ be the homogeneous form of degree d such that $f\left(x_{0}, \ldots, x_{n}\right)=0$ defines $F \subset \mathbb{P}^{n}$, where $\left(x_{0}: \ldots: x_{n}\right)$ are homogeneous coordinates on \mathbb{P}^{n}. Put

$$
\mathcal{D}=\left|\sum_{i=0}^{n} \lambda_{i} \frac{\partial f}{\partial x_{i}}=0\right| \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(d-1)\right|
$$

where $\lambda_{0}, \ldots, \lambda_{n}$ are complex numbers. Then

$$
\operatorname{Bs}(\mathcal{D})=\operatorname{Sing}(F)
$$

which implies that the curve C intersects a generic member of the linear system \mathcal{D} at most $(d-1) k$ times, which implies the assertion. q.e.d.

Lemma 30. Let $\Pi \subset \mathbb{P}^{3}$ be a hyperplane, and let $C \subset \Pi$ be a reduced curve of degree r. Suppose that the equality

$$
\operatorname{Supp}(C) \cap \operatorname{Sing}(S)=(2 r-1) r
$$

holds. Then S can be defined by equation 5 .
Proof. Put

$$
\left.S\right|_{\Pi}=\sum_{i=1}^{\alpha} m_{i} C_{i}
$$

where C_{i} is an irreducible reduced curve, and m_{i} is a natural number.
We assume that $C_{i} \neq C_{j}$ for $i \neq j$, and $C=\sum_{i=1}^{\beta} C_{i}$, where $\beta \leqslant \alpha$.
It follows from Lemma 29 and from the equalities

$$
\begin{equation*}
\sum_{i=1}^{\beta} \operatorname{deg}\left(C_{i}\right)=r=\frac{\sum_{i=1}^{\alpha} m_{i} \operatorname{deg}\left(C_{i}\right)}{2} \tag{31}
\end{equation*}
$$

that $C_{i} \cap \operatorname{Sing}(S)=(2 r-1) \operatorname{deg}\left(C_{i}\right)$ if $i \leqslant \beta$, and

$$
\operatorname{Sing}(C) \cap \operatorname{Sing}(S)=\varnothing
$$

Suppose that $m_{\gamma}=1$ for some $\gamma \leqslant \beta$. Then

$$
C_{\gamma} \cap \operatorname{Sing}(S)=(2 r-1) \operatorname{deg}\left(C_{\gamma}\right)
$$

but the curve $\left.S\right|_{\Pi}=\sum_{i=1}^{\alpha} m_{i} C_{i}$ must be singular at every singular point of the surface S that is contained in C_{γ}. Thus, we have

$$
\operatorname{Sing}(S) \cap \operatorname{Supp}\left(C_{\gamma}\right) \subseteq \bigcup_{i \neq \gamma} C_{i} \cap C_{\gamma}
$$

but $\left|C_{i} \cap C_{\gamma}\right| \leqslant\left(C_{i} \cdot C_{\gamma}\right)_{\Pi}=\operatorname{deg}\left(C_{i}\right) \operatorname{deg}\left(C_{\gamma}\right)$ for $i \neq \gamma$. Hence, we have

$$
\sum_{i \neq \gamma} \operatorname{deg}\left(C_{i}\right) \operatorname{deg}\left(C_{\gamma}\right) \geqslant(2 r-1) \operatorname{deg}\left(C_{\gamma}\right),
$$

but on the plane Π we have the equalities

$$
\left(2 r-\operatorname{deg}\left(C_{\gamma}\right)\right) \operatorname{deg}\left(C_{\gamma}\right)=\left(\left.S\right|_{\Pi}-C_{\gamma}\right) \cdot C_{\gamma}=\sum_{i \neq \gamma} m_{i} \operatorname{deg}\left(C_{i}\right) \operatorname{deg}\left(C_{\gamma}\right)
$$

which implies that $\operatorname{deg}\left(C_{\gamma}\right)=1$ and $m_{i}=1$ for every i.
Now, equalities 31 imply that $\beta<\alpha$, but every singular point of the surface S that is contained in the curve C must lie in the set

$$
C \cap \bigcup_{i=\beta+1}^{\alpha} C_{i}
$$

that consists of at most r^{2} points, which is a contradiction.
Thus, we see that $m_{i} \geqslant 2$ for every $i \leqslant \beta$. Therefore, it follows from the equalities 31 that $\alpha=\beta$ and $m_{i}=2$ for every i.

Let $f(x, y, z, w)$ be the homogeneous form of degree $2 r$ such that

$$
f(x, y, z, w)=0
$$

defines the surface $S \subset \mathbb{P}^{3}$, where $(x: y: z: w)$ are homogeneous coordinates on \mathbb{P}^{3}. We may assume that Π is given by $x=0$. Then

$$
f(0, y, z, w)=g_{r}^{2}(y, z, w)
$$

where $g_{r}(y, z, w)$ is a form of degree r such that C is given by

$$
x=g_{r}(y, z, w)=0
$$

which implies that S can be defined by equation 5 .
q.e.d.

It follows from Lemma 29 that at most $(2 r-1) k$ singular points of the surface S can lie on a curve in \mathbb{P}^{3} of degree k.

Lemma 32. Let C be an irreducible reduced curve in \mathbb{P}^{3} of degree k that is not contained in a hyperplane. Then

$$
|C \cap \operatorname{Sing}(S)| \leqslant(2 r-1) k-2
$$

Proof. Suppose that the curve C contains at least $(2 r-1) k-1$ singular points of the surface S. Then $C \subset S$, because otherwise we have

$$
2 r k=\operatorname{deg}(C) \operatorname{deg}(S) \leqslant 2(2 r-1) k-2=4 r k-2 k-2
$$

which leads to $2 k(r-1) \leqslant 2$. But $r \geqslant 2$ and $k \geqslant 3$.
Let O be a sufficiently general point of the curve C, and let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi
$$

be a projection from O, where Π is a general plane in \mathbb{P}^{3}. Then

$$
\left.\psi\right|_{C}: C \rightarrow \psi(C)
$$

is a birational morphism, because C is not a plane curve.
Put $Z=\psi(C)$. Then Z has degree $k-1$.
Let Y be a cone in \mathbb{P}^{3} over Z with the vertex O. Then $C \subset Y$.
The point O is not contained in a hyperplane in \mathbb{P}^{3} that is tangent to the surface S at some point of the curve C, because C is not contained in a hyperplane. Then Y does not tangent S along the curve C. Put

$$
\left.S\right|_{Y}=C+R
$$

where R is a curve of degree $2 r k-k-2 r$. The generality in the choice of the point O implies that R does not contain rulings of the cone Y.

Let $\alpha: \bar{Z} \rightarrow Z$ be the normalization of Z. Then the diagram

commutes, where β is a birational morphism, the surface \bar{Y} is smooth, and π is a \mathbb{P}^{1}-bundle. Let L be a general fiber of π, and E be a section of the \mathbb{P}^{1}-bundle π such that $\beta(E)=O$. Then $E^{2}=-k+1$ on \bar{Y}.

Let Q be an arbitrary point of the set

$$
\operatorname{Sing}(S) \cap C
$$

and let \bar{C} and \bar{R} be proper transforms of the curves C and R on the surface \bar{Y}, respectively. Then there is a point $\bar{Q} \in \bar{Y}$ such that

$$
\bar{Q} \in \operatorname{Supp}(\bar{C} \cdot \bar{R})
$$

and $\beta(\bar{Q})=Q$. But we have

$$
\bar{R} \equiv(2 r-2) E+(2 r k-k-2 r) L
$$

and $\bar{C} \equiv E+k L$. Therefore, we have

$$
(2 r-1) k-2=\bar{C} \cdot \bar{R} \geqslant(2 r-1) k-1,
$$

which is a contradiction.
q.e.d.

Now we prove Theorem 6 by reductio ad absurdum, where we assume that $r \geqslant 4$, because the case $r=3$ is done in [11].

Put $\Sigma=\operatorname{Sing}(S)$, and suppose that the following conditions hold:

- the inequalities $|\Sigma| \leqslant(2 r-1) r+1$ and $r \geqslant 3$ hold;
- the surface S can not be defined by equation 5 ;
- the threefold X is not factorial.

There is a point $P \in \Sigma$ such that every surface in \mathbb{P}^{3} of degree $3 r-4$ that pass through the set $\Sigma \backslash P$ contains the point P as well.

Lemma 33. Let Π be a hyperplane in \mathbb{P}^{3}. Then $|\Pi \cap \Sigma| \leqslant 2 r$.
Proof. Suppose that the inequality $|\Pi \cap \Sigma|>2 r$ holds. Let us show that this assumption leads to a contradiction.

Let Γ be the subset of the set Σ that consists of all points that are not contained in the plane Π. Then Γ contains at most

$$
(2 r-1)(r-1)-1
$$

points, which impose independent linear conditions on homogeneous forms of degree $3 r-5$ by Proposition 17 .

Suppose that $P \notin \Pi$. There is a surface $F \subset \mathbb{P}^{3}$ of degree $3 r-5$ that contains the set $\Gamma \backslash P$ and does not contain the point P. Then

$$
F \cup \Pi \subset \mathbb{P}^{3}
$$

is the surface of degree $3 r-4$ that contains the set $\Sigma \backslash P$ and does not contain the point P, which is impossible. Therefore, we have $P \in \Pi$.

Arguing as in the proof of Lemma 29, we see that

$$
|\Pi \cap \Sigma| \leqslant(2 r-1) r,
$$

because $\left.S\right|_{\Pi}$ is singular in every point of the set $\Pi \cap \Sigma$.
It follows from Lemma 30 that $\Pi \cap \Sigma$ is not contained in a curve of degree r if $|\Pi \cap \Sigma|=(2 r-1) r$. Arguing as in the proof of Lemma 18, we see that there is a surface of degree $3 r-4$ that contains the set

$$
(\Pi \cap \Sigma) \backslash P
$$

and does not contain P, which concludes the proof by Lemma 25 . q.e.d.
The inequality $|\Sigma| \geqslant(2 r-1) r$ holds by Proposition 14.
Lemma 34. Let $L_{1} \neq L_{2}$ be lines in \mathbb{P}^{3}. Then

$$
\left|\left(L_{1} \cup L_{2}\right) \cap \Sigma\right|<4 r-2
$$

Proof. Suppose that $\left|\left(L_{1} \cup L_{2}\right) \cap \Sigma\right| \geqslant 4 r-2$. Then

$$
\left|L_{1} \cap \Sigma\right|=\left|L_{1} \cap \Sigma\right|=2 r-1
$$

by Lemma 29. Then $L_{1} \cap L_{2}=\varnothing$ by Lemma 33 .
Fix two points Q_{1} and Q_{2} in the set

$$
\Sigma \backslash\left(\left(L_{1} \cup L_{2}\right) \cap \Sigma\right)
$$

different from P such that $Q_{1} \neq Q_{2}$. Let Π_{i} be a hyperplane in \mathbb{P}^{3} that contains L_{i} and Q_{i}. Then $\left|\Pi_{i} \cap \Sigma\right|=2 r$ by Lemma 33 .

Suppose that $P \notin \Pi_{1} \cup \Pi_{2}$. There is a surface $F \subset \mathbb{P}^{3}$ of degree $3 r-6$ that does not contain the point P and contains all points of the set

$$
\left(\Sigma \backslash\left(\Sigma \cap\left(\Pi_{1} \cup \Pi_{2}\right)\right)\right) \backslash P
$$

by Proposition 17. Hence, the union

$$
F \cup \Pi_{1} \cup \Pi_{2}
$$

is a surface in \mathbb{P}^{3} of degree $3 r-4$ that contains $\Sigma \backslash P$ and does not contain P, which is impossible. Therefore, we have $P \in \Pi_{1} \cup \Pi_{2}$.

The set $\Sigma \cap\left(\Pi_{1} \cup \Pi_{2}\right)$ consists of $4 r$ points by Lemma 33. The points in

$$
\Sigma \cap\left(\Pi_{1} \cup \Pi_{2}\right)
$$

impose independent linear conditions on homogeneous forms \mathbb{P}^{3} of degree $3 r-4$ by Theorem 2 in [$\mathbf{9}]$. On the other hand, the inequality

$$
\left|\Sigma \backslash\left(\Sigma \cap\left(\Pi_{1} \cup \Pi_{2}\right)\right)\right|<(2 r-1)(r-2)
$$

holds. Then the points in $\Sigma \backslash\left(\Sigma \cap\left(\Pi_{1} \cup \Pi_{2}\right)\right)$ impose independent linear conditions homogeneous forms of degree $3 r-6$ by Proposition 17, which leads to a contradiction by applying Lemma 25.
q.e.d.

Lemma 35. Let C be a curve in \mathbb{P}^{3} of degree $k \geqslant 2$. Then

$$
|C \cap \Sigma|<(2 r-1) k .
$$

Proof. Suppose that $|C \cap \Sigma| \geqslant(2 r-1) k$. Then

$$
|C \cap \Sigma|=(2 r-1) k
$$

by Lemma 29, and C is not contained in a hyperplane by Lemma 33 .
The curve C must be reducible by Lemma 32. Put

$$
C=\sum_{i=1}^{\alpha} C_{i}
$$

where $\alpha \geqslant 2$ and C_{i} is an irreducible curve. Then

$$
k=\sum_{i=1}^{\alpha} d_{i},
$$

where $d_{i}=\operatorname{deg}\left(C_{i}\right)$. Then $\left|C_{i} \cap \Sigma\right|=(2 r-1) d_{i}$ by Lemma 29.
The curve C_{i} is contained in a hyperplane in \mathbb{P}^{3} by Lemma 32 . Then

$$
d_{1}=d_{2}=\cdots=d_{\alpha}=1
$$

and $\alpha=k \neq 1$ by Lemma 33, which contradicts Lemma 34. q.e.d.
Lemma 36. Let L be a line in \mathbb{P}^{3}. Then $|L \cap \Sigma| \leqslant 2 r-2$.
Proof. Suppose that the inequality $|L \cap \Sigma| \geqslant 2 r-1$ holds. Then

$$
|L \cap \Sigma|=2 r-1
$$

by Lemma 29. Let Φ be a hyperplane in \mathbb{P}^{3} such that Φ passes through the line L, and Φ contains a point of the set $\Sigma \backslash(L \cap \Sigma)$. Then

$$
|\Phi \cap \Sigma|=2 r
$$

by Lemma 33. Put $\Delta=\Sigma \backslash(\Phi \cap \Sigma)$. Then $|\Delta| \leqslant(2 r-1)(r-1)$.
The points in Δ impose dependent linear conditions on homogeneous forms of degree $3 r-5$, because otherwise the points in Σ impose independent linear conditions on forms of degree $3 r-4$ by Lemma 25 .

Therefore, we see that there is a point $Q \in \Delta$ such that every surface of degree $3 r-5$ containing $\Delta \backslash Q$ must pass through Q. Then

$$
|\Delta|=(2 r-1)(r-1)
$$

and $|\Sigma|=(2 r-1) r+1$ by Proposition 17 .

Fix sufficiently general hyperplane $\Pi \subset \mathbb{P}^{3}$ and a point $O \in \mathbb{P}^{3}$. Let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi
$$

be a projection from O. Put $\Delta^{\prime}=\psi(\Delta)$ and $Q^{\prime}=\psi(Q)$.
At most $2 r-2$ points in Δ^{\prime} lie on a line by Lemmas 16 and 34.
Suppose that at most $(2 r-1) k$ points in the set Δ^{\prime} lie on any curve of degree k for every k, and there is a curve $Z \subset \Pi$ of degree $r-1$ that contains the whole set Δ^{\prime}. Then

$$
h^{1}\left(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^{3}}(3 r-5)\right)=0
$$

by Lemmas 16, 23 and 35 in the case when Z is irreducible. So, we have

$$
Z=\sum_{i=1}^{\alpha} Z_{i}
$$

where $\alpha \geqslant 2$, and Z_{i} is an irreducible curve of degree d_{i}. Then

$$
\left|Z_{i} \cap \Delta^{\prime}\right|=(2 r-1) d_{i}
$$

because $r=\sum_{i=1}^{\alpha} d_{i}$. Then every point of the set Δ^{\prime} is contained in one irreducible component of the curve Z. We have $d_{i} \neq 1$ for every i.

Let Z_{β} be the unique component of the curve Z such that $Q^{\prime} \in Z_{\beta}$, and let $\Gamma \subset \Delta$ be a subset such that

$$
\psi(\Gamma)=\Delta^{\prime} \cap Z_{\beta} \subset \Pi \cong \mathbb{P}^{2}
$$

which implies that $Q \in \Gamma$. There is a surface $F_{\beta} \subset \mathbb{P}^{3}$ of degree $3\left(d_{\beta}-1\right)$ that contains $\Gamma \backslash Q$ and does not contain Q by Lemmas 16, 23 and 35 .

Let Y_{i} be a cone over Z_{i} whose vertex is the point O. Then

$$
F_{\beta} \cup \bigcup_{i \neq \beta} Y_{i}
$$

is a surface of degree $3 d_{i}-3+\sum_{i \neq \beta} d_{i}=2 d_{i}+r-4$ containing $\Delta \backslash Q$ and not containing Q, which is impossible, because $2 d_{i}+r-4 \leqslant 3 r-5$.

Hence, we proved that

- either at least $(2 r-1) k+1$ points in Δ^{\prime} lie on a curve of degree k;
- or there is no curve of degree $r-1$ that contains the set Δ^{\prime}.

Suppose that at most $(2 r-1) k$ points of the set Δ^{\prime} lie on every curve of degree k for every natural k. Then it follows from Theorem 15 that there is a curve in Π of degree $3 r-5$ that contains $\Delta^{\prime} \backslash Q^{\prime}$ and does not contain the point Q^{\prime}, which is a contradiction.

So, at least $(2 r-1) k+1$ points in Δ^{\prime} lie on some curve in Π of degree k, where $k \geqslant 3$ by Lemma 20. Thus, the proof of Proposition 17 implies the existence of a subset $\Xi \subseteq \Delta$ such that

- at most $(2 r-1) k$ points in $\psi(\Delta \backslash \Xi)$ lie on a curve of degree k,
- there is a surface in \mathbb{P}^{3} of degree $\mu \leqslant r-2$ that contains all points of the set Ξ and does not contain any point of the set $\Delta \backslash \Xi$,
- the inequality $|\Delta \backslash \Xi| \leqslant(2 r-1)(r-1-\mu)-1$ holds and

$$
h^{1}\left(\mathcal{I}_{\Xi} \otimes \mathcal{O}_{\mathbb{P}^{3}}(3 r-5)\right)=0
$$

Put $\bar{\Delta}=\psi(\Delta \backslash \Xi)$ and $d=3 r-5-\mu$. The points of $\bar{\Delta}$ impose dependent linear conditions on homogeneous forms of degree d by Lemma 25 , which implies that there is a point $\bar{Q} \in \bar{\Delta}$ such that $\bar{\Delta} \backslash \bar{Q}$ and d do not satisfy one of the hypotheses of Theorem 15.

We have $d \geqslant 3$, because $r \geqslant 4$. The proof of Lemma 26 gives

$$
|\bar{\Delta} \backslash \bar{Q}| \leqslant\left\lfloor\frac{d+3}{2}\right\rfloor^{2}
$$

which implies that at least $t(d+3-t)-1$ points of the finite set $\bar{\Delta} \backslash \bar{Q}$ lie on a curve of degree t for some natural number t such that $t \leqslant(d+3) / 2$.

Suppose that $t=1$. Then at least $d+1$ points of $\bar{\Delta}$ lie on a line, but at most $2 r-2$ points of Δ^{\prime} lie on a line by Lemmas 16 and 34, which implies that $d=2 r-3$ and $|\bar{\Delta}|=2 r-2$. Then the points in $\bar{\Delta}$ impose dependent linear conditions on homogeneous forms of degree d, which is impossible. Therefore, we see that $t \geqslant 2$.

At least $t(d+3-t)-1$ points in $\bar{\Delta} \backslash \bar{Q}$ lie on a curve of degree t. Then

$$
t(d+3-t)-1 \leqslant|\bar{\Delta} \backslash \bar{Q}| \leqslant(2 r-1)(r-1)-2-\mu(2 r-1) i
$$

but $t(d+3-t)-1 \leqslant(2 r-1) t$, because at most $(2 r-1) t$ points in $\bar{\Delta}$ lie on a curve of degree t. Hence, we have $t \geqslant r-1-\mu$, which gives $(2 r-1)(r-1-\mu)-2 \geqslant|\bar{\Delta} \backslash \bar{Q}| \geqslant t(d+3-t)-1 \geqslant(r-1-\mu)(2 r-1)-1$, which is a contradiction. q.e.d.

Corollary 37. Let C be any curve in \mathbb{P}^{3} of degree k. Then

$$
|C \cap \Sigma|<(2 r-1) k
$$

Fix a hyperplane $\Pi \subset \mathbb{P}^{3}$ and a general point $O \in \mathbb{P}^{3}$. Let

$$
\psi: \mathbb{P}^{3} \rightarrow \Pi \subset \mathbb{P}^{3}
$$

be a projection from O. Put $\Sigma^{\prime}=\psi(\Sigma)$ and $P^{\prime}=\psi(P)$.
Lemma 38. Let C be an irreducible curve in Π of degree r. Then

$$
\left|C \cap \Sigma^{\prime}\right|<(2 r-1) r .
$$

Proof. Suppose that $\left|C \cap \Sigma^{\prime}\right| \geqslant(2 r-1) r$. Let Ψ be a subset in Σ that contains all points mapped to the curve C by the projection ψ. Then

$$
|\Psi| \geqslant(2 r-1) r,
$$

but less than $(2 r-1) r$ points in Σ lie on a curve of degree r.
Let \mathcal{H} be a linear system of surfaces in \mathbb{P}^{3} of degree r that pass through the set Ψ, and let Φ be the base locus of \mathcal{H}. Then

$$
\operatorname{dim}(\Phi)=0
$$

is finite by Lemma 16. Put $\Upsilon=\Sigma \cap \Phi$. The points in Υ impose independent linear conditions on homogeneous forms of degree $3 r-3$ by Lemma 23 .

Let Γ be a subset in Υ such that $\Upsilon \backslash \Gamma$ consists of $4 r-6$ points. Then

$$
|\Gamma| \leqslant 2 r^{2}-5 r-5 \leqslant \frac{(r+2)(r+1) r}{6}-1,
$$

because $r \geqslant 4$. Therefore, there is a surface $F \subset \mathbb{P}^{3}$ of degree $r-1$ that contains all points of the set Γ.

Let Θ be a subset of the set Υ such that Θ consists of all points that are contained in the surface F. Then Θ imposes independent linear conditions on homogeneous forms of degree $3 r-4$ by Theorem 3 in [6].

Put $\Delta=\Upsilon \backslash \Theta$. Using Theorem 2 in [9], we easily see that the points of the set Δ impose independent linear conditions on homogeneous forms of degree $2 r-3$ by Lemmas 33 and 36. Then

$$
h^{1}\left(\mathcal{I}_{\Upsilon} \otimes \mathcal{O}_{\mathbb{P}^{3}}(3 r-4)\right)=0
$$

by Lemma 25, which also follows from Theorem 3 in [6].
We have $|\Sigma \backslash \Upsilon| \leqslant 1$. Thus, the points in Σ impose independent linear conditions on homogeneous forms of degree $3 r-4$ by Lemma 25 . q.e.d.

Lemma 39. There is a curve $Z \subset \Pi$ of degree k such that

$$
\left|Z \cap \Sigma^{\prime}\right| \geqslant(2 r-1) k+1
$$

Proof. Suppose that at most $(2 r-1) k$ points of the set Σ^{\prime} lie on a curve of degree k for every integer $k \geqslant 1$. Let us derive a contradiction.

The finite subset $\Sigma^{\prime} \backslash P^{\prime} \subset \Pi$ and the natural number $3 r-4$ do not satisfy at least one of the hypotheses of Theorem 15. But

$$
\left|\Sigma^{\prime} \backslash P^{\prime}\right| \leqslant \max \left(\left\lfloor\frac{3 r-1}{2}\right\rfloor\left(3 r-1-\left\lfloor\frac{3 r-1}{2}\right\rfloor\right),\left\lfloor\frac{3 r-1}{2}\right\rfloor^{2}\right),
$$

and at most $2 r-1 \leqslant 3 r-4$ points in $\Sigma^{\prime} \backslash P^{\prime}$ lie on a line by Lemma 16 .
We see that at least

$$
k(3 r-1-k)-1
$$

points in $\Sigma^{\prime} \backslash P^{\prime}$ lie on a curve of degree k such that $2 \leqslant k \leqslant(3 r-1) / 2$, which implies that $k=r$, because at most $k(2 r-1)$ points in Σ^{\prime} lie on a curve of degree k, and $\left|\Sigma^{\prime} \backslash P^{\prime}\right| \leqslant(2 r-1) r$.

Thus, there is a curve $C \subset \Pi$ of degree r such that

$$
\left|\operatorname{Supp}(C) \cap\left(\Sigma^{\prime} \backslash P^{\prime}\right)\right| \geqslant(2 r-1) r-1,
$$

which implies that $P^{\prime} \in C$, because otherwise there is a curve in Π of degree $3 r-4$ that contains $\Sigma^{\prime} \backslash P^{\prime}$ and does not contain P^{\prime}. Then

$$
\left|\operatorname{Supp}(C) \cap \Sigma^{\prime}\right| \geqslant(2 r-1) r,
$$

which implies that C is reducible by Lemma 38. Put

$$
C=\sum_{i=1}^{\alpha} C_{i}
$$

where C_{i} is an irreducible curve of degree $d_{i} \geqslant 1$ and $\alpha \geqslant 2$. Then

$$
(2 r-1) r \leqslant\left|C \cap \Sigma^{\prime}\right| \leqslant \sum_{i=1}^{\alpha}\left|C_{i} \cap \Sigma^{\prime}\right| \leqslant \sum_{i=1}^{\alpha}(2 r-1) \operatorname{deg}\left(C_{i}\right)=(2 r-1) r
$$

which implies that C_{i} contains $(2 r-1) d_{i}$ points of the set Σ, and every point of the set Σ is contained in at most one curve C_{i}.

Let C_{v} be the component of C that contains P^{\prime}, and let Υ be a subset of the set Σ that contains all points of the set Σ that are mapped to the curve C_{v} by the projection ψ. Then

$$
|\Upsilon|=(2 r-1) d_{v}
$$

but less than $(2 r-1) d_{v}$ points of the set Σ lie on a curve of degree d_{v}.
The points in Υ impose independent linear conditions on the homogeneous forms of degree $3\left(d_{v}-1\right)$ by Lemmas 16 and 23 .

There is a surface $F \subset \mathbb{P}^{3}$ of degree such that

$$
\Upsilon \backslash P \subset F \notin P
$$

and $\operatorname{deg}(F)=3\left(d_{v}-1\right)$. Let Y_{i} be a cone in \mathbb{P}^{3} over the curve C_{i} whose vertex is the point O. Then the surface

$$
F \cup \bigcup_{i \neq v} Y_{i} \in\left|\mathcal{O}_{\mathbb{P}^{3}}\left(2 d_{v}-3+r\right)\right|
$$

contains the set $\Sigma \backslash P$ and does not contain the point P. But

$$
2 d_{v}-3+r \leqslant 3 r-4
$$

which is a contradiction.

> q.e.d.

Arguing as in the proof of Theorem 1, we construct a disjoint union

$$
\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i} \subseteq \Sigma
$$

such that $\left|\Lambda_{j}^{i}\right|>(2 r-1) j$, the subset $\psi\left(\Lambda_{j}^{i}\right)$ is contained in an irreducible curve of degree j, and at most $(2 r-1) t$ points of the subset

$$
\psi\left(\Sigma \backslash\left(\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i}\right)\right) \subsetneq \Sigma^{\prime} \subset \Pi \cong \mathbb{P}^{2}
$$

lie on a curve in Π of degree t. Then $r>k \geqslant 3$ by Lemmas 20 and 38 .

Put $\Lambda=\cup_{j=k}^{l} \cup_{i=1}^{c_{j}} \Lambda_{j}^{i}$. Let Ξ_{j}^{i} be the base locus of the linear system of surfaces in \mathbb{P}^{3} of degree j that pass through Λ_{j}^{i}. Then

$$
\begin{equation*}
|\Sigma \backslash \Lambda| \leqslant(2 r-1) r+1-\sum_{i=k}^{l} c_{i}((2 r-1) i+1) \leqslant(2 r-1)\left(r-\sum_{i=k}^{l} i c_{i}\right) \tag{40}
\end{equation*}
$$

which implies that $\sum_{i=k}^{l} i c_{i} \leqslant r$. The set Ξ_{j}^{i} is finite by Lemma 16 .
Remark 41. We have $\sum_{i=k}^{l} i c_{i} \leqslant r-1$, because the equality

$$
\sum_{i=k}^{l} i c_{i}=r
$$

and inequalities 40 imply that $k=l=r$, but $k<r$ by Lemma 38.
It follows from Lemma 23 that the points of Ξ_{j}^{i} impose independent linear conditions on homogeneous forms on \mathbb{P}^{3} of degree $3(j-1)$.

Put $\Xi=\bigcup_{j=k}^{l} \bigcup_{i=1}^{c_{j}} \Xi_{j}^{i}$. Then

$$
\begin{equation*}
|\Sigma \backslash(\Xi \cap \Sigma)| \leqslant(2 r-1) r-\sum_{i=k}^{l} c_{i}(2 r-1) i \tag{42}
\end{equation*}
$$

Therefore, we can find surfaces F and G in \mathbb{P}^{3} of degree $\sum_{i=k}^{l} 3(i-1) c_{i}$ and $\sum_{i=k}^{l} i c_{i}$, respectively, such that

$$
(\Xi \cap \Sigma) \backslash P \subset F \not \supset P
$$

the surface G contains the set $\Xi \cap \Sigma$, and the surface G does not contain any point in $\Sigma \backslash(\Xi \cap \Sigma)$. In particular, we have $\Sigma \nsubseteq \Xi$, because

$$
\sum_{i=k}^{l} 3(i-1) c_{i} \leqslant \sum_{i=k}^{l} 3 i c_{i}-3 c_{k} \leqslant 3 r-6<3 r-4
$$

Put $\bar{\Sigma}=\psi(\Sigma \backslash(\Xi \cap \Sigma))$ and $d=3 r-4-\sum_{i=k}^{l} i c_{i}$.
It follows from Lemma 25 that there is a point $\bar{Q} \in \bar{\Sigma}$ such that every curve in Π of degree d that contains the set $\bar{\Sigma} \backslash \bar{Q}$ must pass through the point \bar{Q} as well. Therefore, we can not apply Theorem 15 to the points of the subset $\bar{\Sigma} \backslash \bar{Q} \subset \Pi$ and the natural number d.

The proof of Lemma 26 implies that the inequality

$$
|\bar{\Sigma} \backslash \bar{Q}| \leqslant(2 r-1)\left(r-\sum_{i=k}^{l} c_{i} i\right)-1 \leqslant\left\lfloor\frac{d+3}{2}\right\rfloor^{2}
$$

holds, but $d=3 r-4-\sum_{i=k}^{l} i c_{i} \geqslant 2 r-3 \geqslant 3$, because $\sum_{i=k}^{l} i c_{i} \leqslant r-1$, which implies that at least $t(d+3-t)-1$ points of the set $\bar{\Sigma} \backslash \bar{Q}$ lie on a curve in Π of degree $t \leqslant(d+3) / 2$.

Lemma 43. The inequality $t \neq 1$ holds.

Proof. Suppose that $t=1$. Then at least $d+1$ points in $\bar{\Sigma} \backslash \bar{Q}$ lie on a line, which implies that $d+1 \leqslant 2 r-2$ by Lemmas 16 and 36.

The inequality $d+1 \leqslant 2 r-2$ gives $\sum_{i=k}^{l} i c_{i}=r-1$ and $d=2 r-3$.
It follows from inequality 42 that

$$
|\Sigma \backslash(\Xi \cap \Sigma)| \leqslant 2 r-1
$$

which implies that the set $\Sigma \backslash(\Xi \cap \Sigma)$ imposes independent linear conditions on the homogeneous forms of degree $2 r-3$ by Theorem 2 in [$\mathbf{9}$], which is impossible by Lemma 25.
q.e.d.

There is a curve $C \subset \Pi$ of degree $t \geqslant 2$ that contains at least

$$
t(d+3-t)-1
$$

points of the set $\bar{\Sigma} \backslash \bar{Q}$, which implies that

$$
t(d+3-t)-1 \leqslant|\bar{\Sigma} \backslash \bar{Q}|
$$

and $t(d+3-t)-1 \leqslant(2 r-1) t$. Therefore, we see that

$$
t \geqslant r-\sum_{i=k}^{l} i c_{i}
$$

because $t \geqslant 2$. It follows from inequalities 40 that

$$
\begin{aligned}
(2 r-1)\left(r-\sum_{i=k}^{l} i c_{i}\right)-1 \geqslant|\bar{\Sigma} \backslash \bar{Q}| & \geqslant t(d+3-t)-1 \\
& \geqslant\left(r-\sum_{i=k}^{l} i c_{i}\right)(2 r-1)-1,
\end{aligned}
$$

which implies that $t=r-\sum_{i=k}^{l} i c_{i}$, the curve C contains $\bar{\Sigma} \backslash \bar{Q}$, and inequalities 40 are actually equalities. We have $\Sigma \cap \Xi=\Lambda$ and

$$
\begin{aligned}
|\Sigma \backslash \Lambda| & =(2 r-1) r+1-\sum_{i=k}^{l} c_{i}((2 r-1) i+1) \\
& =(2 r-1)\left(r-\sum_{i=k}^{l} i c_{i}\right)
\end{aligned}
$$

which implies that $l=k, c_{k}=1, d=3 r-4-k$ and $\sum_{i=k}^{l} i c_{i}=k$.
Lemma 44. The curve C contains the set $\bar{\Sigma}$.
Proof. Suppose that $\bar{\Sigma} \not \subset C$. Then $\bar{Q} \notin C$, which implies that there is a curve in Π of degree $r-k$ that contains the set $\bar{\Sigma} \backslash \bar{Q}$ but does not contain the point \bar{Q}. The latter is impossible, because $d \geqslant r-k$. q.e.d.

We have $\operatorname{deg}(C)=r-k$ and $\psi(\Sigma \backslash \Lambda) \subset C$. The equality

$$
|\psi(\Sigma \backslash \Lambda)|=(r-k)(2 r-1)
$$

holds. But there is an irreducible curve $Z \subset \Pi$ of degree k that contains all points of the set $\psi(\Lambda)$, which consists of $k(2 r-1)+1$. Then
$|\Sigma|=|\Sigma \backslash \Lambda|+|\Lambda|=(r-k)(2 r-1)+k(2 r-1)+1=(2 r-1) r+1$.
Lemma 45. The curve C is reducible.
Proof. Suppose that C is irreducible. Then $\Sigma \backslash \Lambda$ imposes independent linear conditions on forms of degree $3(r-k-1)$ by Lemmas 16, 23, and 35 , but the points in Λ impose independent linear conditions on forms of degree $3(k-1)$ by Lemmas 16 and 23 . Then Σ imposes independent linear conditions on forms of degree $3 r-4$ by Lemma 25 . q.e.d.

Put $C=\sum_{i=1}^{\alpha} C_{i}$, where C_{i} is an irreducible curve of degree d_{i}. Then

$$
r-k=\sum_{i=1}^{\alpha} d_{i}
$$

the curve C_{i} contains $(2 r-1) d_{i}$ points of the set $\bar{\Sigma}$, and every point of the set $\bar{\Sigma}$ is contained in a single irreducible component of the curve C.

Lemma 46. The curve Z contains the point P^{\prime}.
Proof. Suppose that $P^{\prime} \notin Z$. Let C_{v} be a component of C such that

$$
P^{\prime} \in C_{v}
$$

and let Υ be a subset of the set Σ that contains all points that are mapped to the curve C_{v} by the projection ψ. Then $|\Upsilon|=(2 r-1) d_{v}$.

The set Υ imposes independent linear conditions on the homogeneous forms of degree $3\left(d_{v}-1\right)$ by Lemmas 16, 23 and 35. There is a surface

$$
F \subset \mathbb{P}^{3}
$$

of degree $3\left(d_{v}-1\right)$ that contains $\Upsilon \backslash P$ and does not contain P.
Let Y_{i} and Y be the cones in \mathbb{P}^{3} over the curves C_{i} and Z, respectively, whose vertex is the point O. Then the union

$$
F \cup Y \cup \bigcup_{i \neq v} Y_{i}
$$

is a surface of degree $2 d_{v}-3+r \leqslant 3 r-4$ that contains the set $\Sigma \backslash P$ and does not contain the point P, which is a contradiction. q.e.d.

The proof of Lemma 46 implies that the set $\Sigma \backslash \Lambda$ imposes independent linear conditions on homogeneous forms on \mathbb{P}^{3} of degree $3 r-4-k$, but we already know that the set Λ imposes independent linear conditions on homogeneous forms of degree $3(k-1)$ by Lemmas 16 and 23 .

Applying Lemma 25, we obtain a contradiction.

References

[1] W. Barth, Two projective surfaces with many nodes, admitting the symmetries of the icosahedron, J. Algebr. Geom. 5 (1996) 173-186, MR 1358040, Zbl 0860.14032.
[2] I. Cheltsov, On factoriality of nodal threefolds, J. Algebr. Geom. 14 (2005) 663690, MR 2147353, Zbl 1084.14039.
[3] , Non-rational nodal quartic threefolds, Pacific J. Math. 226 (2006) 6582, MR 2247856, Zbl 1123.14010.
[4] I. Cheltsov \& J. Park, Sextic double solids, arXiv:math.AG/0404452, 2004.
[5] , Factorial hypersurfaces in \mathbb{P}^{4} with nodes, Geom. Dedicata 121 (2006) 205-219, MR 2276244, Zbl 1110.14031.
[6] E. Davis, A. Geramita, \& F. Orecchia, Gorenstein algebras and the CayleyBacharach theorem, Proc. Am. Math. Soc. 93 (1985) 593-597, MR 0776185, Zbl 0575.14040.
[7] E. Davis \& A. Geramita, Birational morphisms to \mathbb{P}^{2} : an ideal-theoretic perspective, Math. Ann. 279 (1988) 435-448, MR 0922427, Zbl 0657.14003.
[8] A. Dimca, Betti numbers of hypersufaces and defects of linear systems, Duke Math. J. 60 (1990) 285-298, MR 1047124, Zbl 0729.14017.
[9] D. Eisenbud \& J-H. Koh, Remarks on points in a projective space, MSRI Publications, 15, Springer, New York, 157-172, MR 0282977, Zbl 0736.14022.
[10] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer-Verlag, 1970, MR 0282977, Zbl 0208.48901.
[11] K. Hong \& J. Park, On factorial double solids with simple double points, J. Pure Appl. Algebra 208 (2007) 361-369, MR 2269850, Zbl 1127.14011.
[12] M. Mella, Birational geometry of quartic 3-folds II: the importance of being \mathbb{Q} factorial, Math. Ann. 330 (2004) 107-126, MR 2091681, Zbl 1058.14022.

School of Mathematics University of Edinburgh Edinburgh EH9 3JZ, UK
E-mail address: I.Cheltsov@ed.ac.uk

[^0]: We assume that all varieties are projective, normal, and defined over \mathbb{C}.
 Received 12/14/2006.

[^1]: ${ }^{1}$ A variety is \mathbb{Q}-factorial if some non-zero integral multiple of every Weil divisor on it is a Cartier divisor. This property is not local in the analytic topology, because ordinary double points of threefolds are not locally analytically \mathbb{Q}-factorial.

[^2]: ${ }^{2}$ For simplicity we consider homogeneous forms on \mathbb{P}^{n} as hypersurfaces.

