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KÄHLER–EINSTEIN FANO THREEFOLDS
OF DEGREE 22

IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Abstract

We study the problem of existence of Kähler–Einstein metrics on smooth
Fano threefolds of Picard rank one and anticanonical degree 22 that
admit a faithful action of the multiplicative group C∗. We prove that,
with the possible exception of two explicitly described cases, all such
smooth Fano threefolds are Kähler–Einstein.

All varieties are assumed to be projective and are defined over the field of

complex numbers.

1. Introduction

Smooth Fano threefolds of Picard rank 1 have been classified by Iskovskikh

in [I77, I78]. Among them, he found a family missing in the original works by

Fano. Threefolds in this family have the same cohomology groups as P3 does.

Their anticanonical degree is 22, hence they are called threefolds of type V22.

In fact, Iskovskikh himself missed one threefold in this family, which was

later recovered by Mukai and Umemura in [MU83]. This threefold, usually

called the Mukai–Umemura threefold, is an equivariant compactification of

SL2(C)/I, where I denotes the icosahedral group. Its automorphism group is

isomorphic to the group PGL2(C).

The automorphism groups of threefolds of type V22 have been studied by

Prokhorov in [P90]. He proved that this group is finite except for a unique

threefold for which the connected component of identity of the automorphism
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group is isomorphic to the additive group C+; and a one-parameter family of

threefolds that admit a faithful action of the multiplicative group C∗, which

includes the Mukai–Umemura threefold as a special member. We refer to the

latter varieties as threefolds of type V ∗
22.

In [Ti97], Tian showed that there are threefolds of type V22 with triv-

ial automorphism group that do not admit Kähler–Einstein metrics, which

disproved a folklore conjecture that all smooth Fano varieties without holo-

morphic vector fields are Kähler–Einstein. On the other hand, Donaldson

proved

Theorem 1.1 ([D08, Theorem 3]). Let X be the Mukai–Umemura three-

fold, and G be its automorphism group. Then

αG

(
X
)
=

5

6
.

Here αG(X) is the G-equivariant α-invariant defined by Tian in [Ti87]. If

X is a smooth Fano variety, and G is a reductive subgroup in Aut(X), then

Demailly’s [CS08, Theorem A.3] gives

(1.2) αG(X) = sup

⎧⎪⎪⎨⎪⎪⎩ε ∈ Q

∣∣∣∣∣∣∣∣
the log pair

(
X,

ε

n
D
)

is log canonical

for any n ∈ Z>0 and every

G-invariant linear system D ⊂
∣∣− nKX

∣∣
⎫⎪⎪⎬⎪⎪⎭ .

Donaldson’s Theorem 1.1 implies the existence of a Kähler–Einstein metric

on the Mukai–Umemura threefold by famous Tian’s criterion:

Theorem 1.3 ([Ti87]). Let X be a smooth Fano variety of dimension n,

and G be a reductive subgroup in Aut(X). Suppose that

αG

(
X
)
>

n

n+ 1
.

Then X admits a Kähler–Einstein metric.

An example of a Kähler–Einstein threefold of type V22 with finite automor-

phism group has been constructed in [CS12]. On the other hand, there exist

threefolds of this type that are not Kähler–Einstein.

Example 1.4. Let Xa be the unique threefold of type V22 such that the

connected component of identity of its automorphism group is isomorphic to

the additive group C+. By the Matsushima obstruction, the variety Xa is

not Kähler–Einstein. It is interesting to point out that Xa is K-semistable.

Indeed, it follows from [KPS18, Proposition 5.4.4] and the Mukai construction

of varieties of type V22 (cf. [KPS18, Remark 5.4.8]) that the Mukai–Umemura

threefold is a degeneration of Xa. Since the Mukai–Umemura threefold is

Kähler–Einstein, it is K-polystable by [CDS15], so that in particular it is
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K-semistable. On the other hand, K-semistability is an open condition, see

[X19, Theorem 1.4] or [BLX19, Corollary 1.2]. Hence Xa is K-semistable.

The problem of existence of Kähler–Einstein metrics on threefolds of type

V ∗
22 was addressed by Donaldson in [D08,D18], by Rollin, Simanca and Tipler

in [RST13], and by Dinew, Kapustka and Kapustka in [DKK17]. In particular,

they proved that the set of such threefolds that are Kähler–Einstein is open

in moduli in the Euclidean topology. Donaldson suggested that in fact all

threefolds of type V ∗
22 are Kähler–Einstein. In [D08], he wrote

The Mukai–Umemura manifold has τ = 1. When τ is close

to 1 we have seen that the corresponding manifold admits a

Kähler–Einstein metric. It seems likely that this true for all

τ but, as far as the author is aware, this is not known. It

seems an interesting test case for future developments in the

existence theory.

Here τ is a parameter in the moduli space of threefolds of type V ∗
22 that is

used in [D08]. The Mukai–Umemura threefold corresponds to τ = 1.

In [D18, §4.1], Donaldson made a more precise suggestion about which

threefolds of type V22 are Kähler–Einstein metric and which are not. It also

predicts that each threefold of type V ∗
22 must admit a Kähler–Einstein metric.

To verify Donaldson’s suggestion, Dinew, Kapustka and Kapustka esti-

mated the αC∗ -invariants of threefolds of type V ∗
22. It appeared that they do

not exceed 1
2 , so that Tian’s Theorem 1.3 cannot be applied. However, the

automorphism groups of all threefolds of type V ∗
22 are actually larger than C∗.

It was pointed out in [RST13,DKK17] that there exists an additional involu-

tion that anticommutes with the C∗-action, so that together they generate a

subgroup isomorphic to C∗ � μ2. Here μ2 denotes the group of order 2. In

fact, by [KP17, Theorem 1.3], one has

Aut
(
X
) ∼= C∗ � μ2

for every threefold X of type V ∗
22 that is not the Mukai–Umemura threefold.

Dinew, Kapustka and Kapustka posed

Problem 1.5 ([DKK17, Problem 7.1]). Let X be a smooth Fano threefold

of type V ∗
22, and let G be a subgroup in Aut(X) that is isomorphic to C∗�μ2.

Compute αG(X).

In this paper we completely solve this problem using the description of

smooth Fano threefolds of type V ∗
22 obtained recently by Kuznetsov and

Prokhorov in [KP17].

Kuznetsov and Prokhorov proved that the isomorphisms classes of Fano

threefolds of type V ∗
22 are naturally parameterized by u ∈ C \ {0, 1}. In §2,

we present their construction in details. Note that the parameter u used by
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388 IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Kuznetsov and Prokhorov in [KP17] differs from the parameter τ used by

Donaldson in [D08].

To state our main result, we denote by Vu the smooth Fano threefold of type

V ∗
22 that corresponds to the parameter u in the construction of [KP17]. Then

the Mukai–Umemura threefold is Vu for u = − 1
4 by [KP17, Theorem 1.3]. Let

G be a subgroup in Aut(Vu) such that

G ∼= C∗ � μ2.

The main result of our paper is

Theorem 1.6. One has

αG(Vu) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4

5
if u �= 3

4
and u �= 2,

3

4
if u =

3

4
,

2

3
if u = 2.

Applying Tian’s Theorem 1.3, we obtain

Corollary 1.7. If u �= 3
4 and u �= 2, then Vu is Kähler–Einstein.

Remark 1.8. If u = 3
4 or u = 2, then Vu is also Kähler–Einstein. This

has been recently proved by Fujita in [Fu21]. Note also that Theorem 1.6 and

[ACCF+, Theorem 1.4.10] imply that Vu is Kähler–Einstein for u = 3
4 .

Let us describe the scheme of the proof of Theorem 1.6. To estimate

αG(Vu), one has to describe irreducible G-invariant subvarieties of small de-

gree in Vu. Since G acts on Vu without fixed points, we have to deal with

irreducible G-invariant curves of small degree, and G-invariant anticanonical

surfaces in Vu. However, the geometry of the threefold Vu is rather compli-

cated, and it is hard to complete these tasks in a straightforward way. Instead,

we use a construction of the threefold Vu as a G-equivariant birational im-

age of a smooth quadric hypersurface in P4 found recently by Kuznetsov and

Prokhorov in [KP17], see the diagram (2.5) for more details. This allows to

describe irreducible G-invariant curves of small degree in Vu and G-invariant

surfaces in | − KVu
| in terms of the quadric, whose G-equivariant geometry

is much easier to control. In particular, this description gives us an upper

bound on αG(Vu). To show that the latter bound is sharp, we have to study

G-equivariant birational geometry of the threefold Vu. We do this using three

explicit G-equivariant Sarkisov links that start from Vu. As a result, we obtain

the formula for αG(Vu) in Theorem 1.6.

Let us describe the structure of this paper. In §2, we recall from [KP17]

the explicit construction of the threefold Vu using a birational map from a

three-dimensional quadric. In this section, we also describe this birational

map explicitly in coordinates. In §3, we start an explicit classification of
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irreducible G-invariant curves of small degree in the threefold Vu, which will

be used in the proof of Theorem 1.6. In §4, we complete this classification, see

Proposition 4.12. In §5, we study the pencil in the linear system |−KVu
| that

consists of all G-invariant surfaces and describe singularities of surfaces in this

pencil. In §6, we describe one Sarkisov link that plays a crucial role in the

proof of Theorem 1.6. In this section, we also describe two special birational

transformations of the threefold Vu, which are known as bad Sarkisov links.

They are also used in the proof of our Theorem 1.6. Finally, in §7, we prove

Theorem 1.6.

2. Kuznetsov–Prokhorov construction

Consider the projective space P4 with homogeneous coordinates x, y, z, t,

and w. Suppose that the group C∗ acts on P4 by

(2.1) λ : (x : y : z : t : w) �→ (x : λy : λ3z : λ5t : λ6w).

Furthermore, consider the involution ι acting on P4 by

(2.2) ι : (x : y : z : t : w) �→ (w : t : z : y : x).

This defines the action of the group G ∼= C∗ � μ2 on P4.

Let the quadric Qu, where u ∈ C, be given by equation

(2.3) u(xw − z2) + (z2 − yt) = 0.

Then the quadric Qu is G-invariant. Note that Qu is smooth provided that

u �∈ {0, 1}. Therefore, until the end of the paper (with the only exception of

Remark 2.12), we will always assume that neither u = 0 nor u = 1.

Let Γ be the image of P1 with homogeneous coordinates (s0 : s1) embedded

into P4 by

(s0 : s1) �→ (s60 : s50s1 : s30s
3
1 : s0s

5
1 : s61).

Then Γ is a G-invariant curve contained in the quadric Qu. It is the closure of

the G-orbit of the point (1 : 1 : 1 : 1 : 1). One easily checks that deg(Γ) = 6,

cf. Lemma 3.1.

Let S be the complete intersection in P4 that is given by{
xw − z2 = 0,

z2 − yt = 0.

Then the surface S is G-invariant, and Γ ⊂ S ⊂ Qu.

Remark 2.4. The surface S is a toric singular del Pezzo surface of degree

4 that has 4 ordinary double points. These points are (1 : 0 : 0 : 0 : 0),
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390 IVAN CHELTSOV AND CONSTANTIN SHRAMOV

(0 : 0 : 0 : 0 : 1), (0 : 1 : 0 : 0 : 0) and (0 : 0 : 0 : 1 : 0). The first two of them

are contained in the curve Γ.

It was proved in [KP17, Theorem 2.2] (cf. [Ta89, (2.13.2)]) that there exists

the following G-equivariant commutative diagram

(2.5) Q̃u
χ ���������

π

����
��
��
��
��
��
��
�

α

���
��

��
��

�
Ṽu

β

����
��
��
��

φ

���
��
��
��
��
��
��
��

Yu

Qu
ζ ������������������

γ

����������
Vu

ω

��� � � � � � � �

Here Vu is a smooth Fano threefold of type V ∗
22, the morphism π is the

blowup of the quadric Qu along the curve Γ, the morphism φ is the blowup of

the threefold Vu along a (unique) G-invariant smooth rational curve C2 with

−KVu
·C2 = 2, the map χ is a flop in two smooth rational curves, which we will

describe later in Remark 2.11. The morphisms α and β in (2.5) are small bira-

tional morphisms that are given by the linear systems |−nK
˜Qu

| and |−nK
˜Vu
|

for n � 0, respectively. By construction, the threefold Yu is a non-Q-factorial

Fano threefold with terminal singularities such that −K3
Yu

= 16.

Remark 2.6. Kuznetsov and Prokhorov showed in [KP17] that every

smooth Fano threefold of type V ∗
22 can be obtained via diagram (2.5) for

some u ∈ C \ {0, 1}. Moreover, they proved that for distinct u the result-

ing varieties Vu are not isomorphic. Furthermore, if u = − 1
4 , then Vu is the

Mukai–Umemura threefold by [KP17, Theorem 1.3]. For other descriptions

of threefolds of type V ∗
22, see [D08, §5.3], [DKK17, §2.2] and [KPS18, §5.3].

Recall from [IP99, Proposition 4.1.11] that the divisor −KVu
is very ample,

and the linear system |−KVu
| gives an embedding Vu ↪→ P13. In particular, the

curve C2 is a conic in this embedding. Let us identify Vu with its anticalonical

image in P13 and fix the following notation.

• We denote by HQu
a hyperplane section of the quadric Qu in P4.

• We denote by HVu
a hyperplane section of the threefold Vu in P13.

• We denote by S̃ the proper transform of the surface S on the threefold

Q̃u.

• We denote by EQu
the exceptional surface of the blowup π.

• We denote by EVu
the exceptional surface of the blowup φ.

Then S̃ is the proper transform of EVu
on Q̃u, which is the unique divisor in

the linear system |2π∗(HQu
)− EQu

|. Similarly, the proper transform of EQu
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on Ṽu is the unique surface in the linear system |2φ∗(HVu
)− 5EVu

|. Thus, we
also fix the following notation.

• We denote by R̃ the unique surface in the linear system |2φ∗(HVu
)−

5EVu
|.

• We denote byR the proper transform of the surface R̃ on the threefold

Vu.

Corollary 2.7. One has αG(Vu) � 4
5 .

Proof. Let D = 1
2R. Then D ∼Q −KVu

. Moreover, since R ∼ −2KVu
and

multC2
(R) = 5, the log pair (Vu,

4
5D) is not Kawamata log terminal. Indeed,

we have

K
˜Vu

+
4

5
D̃ + EVu

∼Q φ∗
(
KVu

+
4

5
D
)
.

This shows that αG(Vu) � 4
5 . �

Using the information about the classes of the exceptional divisors EQu
and

EVu
, one can easily check that the rational map φ ◦ χ : Q̃u ��� Vu is given by

the linear system |5π∗(HQu
)−2EQu

|, and the rational map π◦χ−1 : Ṽu ��� Qu

is given by the linear system |φ∗(HVu
)− 2EVu

|.
Remark 2.8. By [IP99, Proposition 4.1.12(iii)], the threefold Vu is a

scheme-theoretic intersection of quadrics in P13. Thus since−K
˜Vu

∼φ∗(HVu
)−

EVu
and h0(O

˜Vu
(−K

˜Vu
)) = 11, the linear system | −K

˜Vu
| gives a morphism

Vu → P10 that is birational on its image. Hence, there is a commutative

diagram

Ṽu

				
		
		
		 φ



















P10 Vu
��� � � � � � �

such that the dashed arrow is a linear projection from the conic C2. This

implies that we can assume that the morphism β in (2.5) is given by the

linear system | − K
˜Vu
|. Hence, we can also assume that the morphism α is

given by the linear system | − K
˜Qu
|. Thus, the threefold Yu is a (singular)

Fano threefold anticanonically embedded into P10.

Let L1 and L2 be the tangent lines in P4 to the curve Γ at the points

(1 : 0 : 0 : 0 : 0) and (0 : 0 : 0 : 0 : 1), respectively. Then L1 is given by

(2.9) z = t = w = 0,

and the line L2 is given by

(2.10) x = y = z = 0.
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Thus, both lines L1 and L2 are contained in the surface S. Denote by L̃1

and L̃2 the proper transforms of the lines L1 and L2 on the threefold Q̃u,

respectively.

Remark 2.11. By [KP17, Remark 5.3], the curves L̃1 and L̃2 are the

flopping curves of the map χ. The flopping curves of χ−1 are described in

[KP17, Proposition 5.1]. Namely, the threefold Vu contains exactly two lines

that intersect the conic C2. Denote them by �1 and �2, and denote their proper

transforms on Ṽu by �̃1 and �̃2, respectively. The lines �1 and �2 intersect the

conic C2 transversally, because Vu is an intersection of quadrics. Moreover,

the lines �1 and �2 are contained in the surface R, since R ∼ −2KVu
and

multC2
(R) = 5. By [KP17, Remark 5.3], the curves �̃1 and �̃2 are exactly the

flopping curves of the map χ−1. Thus, the birational map ζ in (2.5) induces

an isomorphism

Qv \ S ∼= Vu \ R.

Without loss of generality, we may assume that β(�̃1) = α(L̃1) and β(�̃2) =

α(L̃2). Note that the lines �1 and �2 on the Fano threefold Vu are special,

i.e., their normal bundles in Vu are isomorphic to OP1(1)⊕OP1(−2); see the

proof of [KP17, Proposition 5.1]. This implies that the normal bundles of the

curves �̃1 and �̃2 in Ṽu are isomorphic to OP1 ⊕OP1(−2), so that the flop χ−1

is given by Reid’s pagoda [R83, §5].
Remark 2.12. It follows from Theorem 1.6 and Remark 1.8 that Vu is

K-polystable for every u �∈ {0, 1}. It would be interesting to find the K-

polystable limits of the threefolds Vu when u → 0, u → 1 and u → ∞. In

fact, we have a candidate for the limit in the case when u → 1. Namely, if

u = 1, then the quadric threefold Qu is singular at the point (0 : 0 : 1 : 0 : 0).

This point is not contained in the surface S, and it is not contained in the

curve Γ. Thus, the commutative diagram (2.5) still makes sense in this case.

The threefold V1 is a Fano threefold with one ordinary double point such that

−K3
V1

= 22. By [KP17, Proposition 5.4], one has Pic(V1) ∼= Z and Cl(V1) ∼=
Z2, so that V1 is one of the threefolds described in [P16, Theorem 1.2]. Note

also that Cl(V1)
G ∼= Z2. We expect that V1 is K-polystable, so that it is the

K-polystable limit of our threefolds Vu when u → 1.

The commutative diagram (2.5) is a Sarkisov link (that starts at Qu and

ends at Vu). It plays a crucial role in the proof of our Theorem 1.6. In §6,
we describe another G-equivariant Sarkisov link that starts at Vu and ends

at another threefold of type V ∗
22 (possibly isomorphic to Vu). This link also

helps to prove Theorem 1.6.

Remark 2.13 (cf. [CS12, CS14, CS15, CS16, CS19]). It would be inter-

esting to study other G-Sarkisov links that start at the threefold Vu or the

quadric Qu. Such links usually arise from G-irreducible curves of small degree
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or G-orbits of small length. For example, the inverse of the link (2.5) arises

from the conic C2, which is irreducible and G-invariant. The curve �1 + �2
from Remark 2.11 also gives rise to a G-Sarkisov link. Namely, one can show

that there exists a G-equivariant commutative diagram

(2.14) V u

 ���������

υ

				
		
		
		 ς

���
��

��
��

� W

ϕ

����
��
��
��

ν

���
��

��
��

�

Vu U W

Here υ is a blowup of the lines �1 and �2, the morphisms ς and ϕ are small and

birational, the map � flops the curves contracted by ς, the threefold U is a

Fano threefold with terminal singularities such that −K3
U = 14, the threefold

W is a smooth Fano threefold such that Pic(W ) ∼= Z2 and −K3
W = 28, and

ν is a birational morphism that contracts the proper transform of the unique

surface in | − KVu
| which is singular along the lines �1 and �2 to a smooth

rational curve of (anticanonical) degree 6. Note that Pic(W )G ∼= Z, and W

is the threefold No. (1.2.3) in [P13, Theorem 1.2]. It can be realized as the

blow-up of a smooth quadric in P4 along a twisted quartic curve. Note that

unlike (2.5) the diagram (2.14) is not a Sarkisov link in the usual sense [C95],

because the curve �1 + �2 is reducible.

Now we describe the birational maps γ and ζ in the diagram (2.5) explicitly

using coordinates on P4. To describe the map γ, recall that this map is

given by the restriction of the linear system of all cubic hypersurfaces in P4

that pass through the curve Γ to the quadric Qu. Since γ is G-equivariant

and, in particular, C∗-equivariant, we are in position to choose C∗-invariant

generators of this linear system. To start with, set

f = xw − yt,

so that the equation f = 0 cuts out the surface S on the quadric Qu. Then

we set

(2.15) h3 = y3 − x2z, h5 = x2t− y2z, h6 = xf, h7 = yf,

h8 = y2w − xzt, h9 = zf, h10 = xt2 − yzw, h11 = tf,

h12 = wf, h13 = yw2 − zt2, h15 = t3 − zw2.

Then the involution ι swaps the polynomials hi and h18−i for 3 � i � 8, and

it preserves the polynomial h9. Observe also that these 11 cubic polynomials

all vanish on the curve Γ. Moreover, the corresponding surfaces in Qu cut

out by hi = 0 are smooth at a general point of the curve Γ, so that their

proper transforms on Q̃u are all contained in the linear system | − K
˜Qu
| =

|3π∗(HQu
)− EQu

|.
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394 IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Every polynomial hi is semi-invariant with respect to the C∗-action (2.1).

Moreover, the weight of the polynomial hi equals i. This implies, in par-

ticular, that they define linearly independent sections in H0(OQu
(3HQu

)).

Since h0(O
˜Qu
(−K

˜Qu
)) = 11 by the Riemann–Roch formula and Kawamata–

Viehweg vanishing theorem, we conclude that the birational map γ in (2.5) is

given by

(2.16)

(x : y : z : t : w) �→
(
h3 : h5 : h6 : h7 : h8 : h9 : h10 : h11 : h12 : h13 : h15

)
.

Thus, using (2.9) and (2.10), we see that γ(L1) = (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :

0 : 0 : 0 : 0) and γ(L2) = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

Now let us describe the map ζ in (2.5). To do this, we set

(2.17) gi+6 = f · hi

for i ∈ {3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15}. Let

(2.18) g10 = (u− 1)x2yzw − 3xy2zt+ (2− u)xyz3 + y4w + x3t2,

g20 = (u− 1)xztw2 − 3yzt2w + (2− u)z3tw + xt4 + y2w3,

g′15 = (u−1)x2t3+(u−1)y3w2−(u+4)y2zt2+(3u+2)xyztw+(4−4u)yz3t.

Note that the involution ι swaps the polynomials gi and g30−i for 9 � i � 14,

and it preserves both polynomials g15 and g′15. Observe that all polynomials gi
and the polynomial g′15 are semi-invariant with respect to the C∗-action (2.1).

Moreover, the weight of the polynomial gi equals i, and the weight of the

polynomial g′15 equals 15. Also observe that

g′15(0, 1, 0, 0, 1) = 1 �= 0 = g15(0, 1, 0, 0, 1),

and the point (0 : 1 : 0 : 0 : 1) is contained in the quadric Qu. This implies,

in particular, that these 14 quintic polynomials define linearly independent

sections in H0(OQu
(5HQu

)).

For every i ∈ {9, . . . , 21}, denote by Mi the surface in the quadric Qu that

is cut out by the equation gi = 0. Similarly, denote by M ′
15 the surface in Qu

that is cut out by the equation g′15 = 0. It is easy to see that all these surfaces

pass through the curve Γ.

Lemma 2.19. The surfaces Mi and M ′
15 are singular along Γ.

Proof. For i ∈ {3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15} this follows from the fact

that the polynomials hi and f vanish along Γ. To check the assertion for the

surfaces M10, M20 and M ′
15, one can just write down the partial derivatives of

g10, g20 and g′15 at the point (1 : 1 : 1 : 1 : 1), compare them with the partial

derivatives of the left hand side of (2.3), and then use the fact that Γ is the

closure of the orbit of the latter point. �
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One can check that the multiplicities of the surfaces Mi and M ′
15 along the

curve Γ equal 2. This also follows from the fact that the surfaces EQu
and

S̃ generate the cone of effective divisors of the threefold Q̃u. We conclude

that the proper transforms of the surfaces Mi and M ′
15 on the threefold Q̃u

generate the linear system |5HQu
− 2EQu

|. Hence, the birational map ζ in

(2.5) is given by(
x : y : z : t : w

)
�→

(
g9 : g10 : g11 : g12 : g13 : g14 : g15

: g′15 : g16 : g17 : g18 : g19 : g20 : g21
)
.

(2.20)

In particular, this reproves [DKK17, Proposition 4.1].

Denote by Ti and T ′
15 the proper transforms of the surfaces Mi and M ′

15

on the threefold Vu, respectively. Then

Ti ∼ T ′
15 ∼ −KVu

∼ HVu
.

This implies that all surfaces Ti and T ′
15 are irreducible, because the group

Pic(Vu) is generated by the divisor HVu
. This implies that the surface M ′

15 is

irreducible, since the surface T ′
15 is irreducible and M ′

15 does not contain the

surface S. Similarly, the surfaces M10 and M20 are also irreducible. However,

the remaining surfaces Mi are reducible. Namely, let N3, N5, N8, N10, N13

and N15 be the surfaces in Qu that are cut out by the equations h3 = 0,

h5 = 0, h8 = 0, h10 = 0 and h15 = 0, respectively. Similarly, let Hx, Hy, Hz,

Ht and Hw be the hyperplane sections of the quadric Qu that are cut out by

x = 0, y = 0, z = 0, t = 0 and w = 0, respectively. Then we see from (2.15)

that

M9 = N3 + S, M11 = N5 + S, M12 = Hx + 2S, M13 = Hy + 2S,
M14 = N8 + S, M15 = Hz + 2S, M16 = N10 + S, M17 = Ht + 2S,

M18 = Hw + 2S, M19 = N13 + S, M21 = N15 + S.

Thus, the surfaces T9, T11, T14, T16, T19 and T21 are actually the proper

transforms on the threefold Vu of the surfaces N3, N5, N8, N10, N13 and

N15, respectively. Similarly, the surfaces T12, T13, T15, T17 and T18 are the

proper transforms on the threefold Vu of the surfaces Hx, Hy, Hz, Ht and

Hw, respectively.

Remark 2.21. It follows from (2.20) that the conic C2 is contained in the

surfaces T9, T11, T12, T13, T14, T15, T16, T17, T18, T19 and T21, and it is not

contained in the surfaces T10, T20 and T ′
15.

Lemma 2.22. The line �1 is contained in the surfaces T11, T12, T13, T14,

T15, T
′
15, T16, T17, T18, T19, T20, T21, and it is not contained in the surfaces

T9 and T10. Similarly, the line �2 is contained in the surfaces T9, T10, T11,
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T12, T13, T14, T15, T ′
15, T16, T17, T18, T19, and it is not contained in the

surfaces T20 and T21.

Proof. Let Pλ ∈ P4 be the point(λ(uλ− λ+ 1)

u
: λ : λ : 1 : 1

)
,

where λ ∈ C. Let C be the (closure of the) curve swept out by Pλ. Then C

is contained in the quadric Qu, and

C ∩ L2 = P0 =
(
0 : 0 : 0 : 1 : 1

)
.

Note that the point P0 is not contained in the curve Γ, so that the proper

transforms of the curves C and L2 on the threefold Q̃u still meet at the

preimage of the point P0. This implies that the proper transform CVu
of the

curve C on the threefold Vu intersects the line �2. Substitute the coordinates

of the point Pλ into (2.20), multiply the coordinates of the resulting point

by u
λ , and let λ = 0. This gives the point

CVu
∩ �2 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1− u).

Using the C∗-action on P13, we immediately obtain the equations of the line �2.

The equations for the line �1 are obtained in a similar way. Now the required

assertion follows from (2.20). �
Let us conclude this section by Lemma 2.23.

Lemma 2.23. There are no G-fixed points in Qu and Vu.

Proof. It follows from (2.1) that the only C∗-fixed points in the quadric

Qu are the points (1 : 0 : 0 : 0 : 0), (0 : 0 : 0 : 0 : 1), (0 : 1 : 0 : 0 : 0)

and (0 : 0 : 0 : 1 : 0). Note that ι swaps the points (1 : 0 : 0 : 0 : 0) and

(0 : 0 : 0 : 0 : 1), and it also swaps the remaining two C∗-fixed points, so that

there are no G-fixed points in Qu. This also implies that there are no G-fixed

points in Q̃u.

By Remark 2.11, the flopping curves of χ are disjoint and swapped by the

involution ι. Hence, there are no G-fixed points in Ṽu. Thus, if Vu contains a

G-fixed point, then it must be contained in the conic C2.
Let Π ∼= P2 be the linear span of the conic C2 in P13. Then Π is G-invariant.

The action of G on Π is not faithful (indeed, it contains all elements of order

5 in C∗). However, the kernel is finite, and the automorphism ι acts faithfully

on Π. This implies that there is a faithful action of a quotient of G that

is isomorphic to G on Π and thus on C2. Therefore, the conic C2 does not

contain G-fixed points, so that there are no G-fixed points in Vu. �
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3. Invariant curves

In this section, we make the first steps needed for a description of irreducible

G-invariant curves in Qu and Vu. We start with

Lemma 3.1. Fix a point (a0 : . . . : an) ∈ Pn, and fix positive integers

r0 � . . . � rn. Let Z be the curve in Pn that is the closure of the subset{
(λr0a0 : . . . : λrnan) | λ ∈ C∗

}
⊂ Pn.

Denote by Σ the set of indices i such that ai �= 0. Set

rk = min{ri | i ∈ Σ}, rK = max{ri | i ∈ Σ}.

Denote by d the greatest common divisor of the numbers ri − rk for i ∈ Σ.

Then

deg(Z) =
rK − rk

d
.

Furthermore, let s be the maximal number of indices i in Σ with distinct ri.

Then Z is a rational normal curve if and only if deg(Z) = s.

Proof. Cancelling a common factor in the homogeneous coordinates if nec-

essary, we may assume that rk = 0. To compute the degree of Z, note that

the intersection points of Z with a general hyperplane Λ in Pn correspond to

the roots of a polynomial PΛ(λ) of degree rK in λ. Since PΛ is actually a

polynomial of degree rK/d in λd, the rK roots of PΛ produce rK/d points of

Λ∩Z. Thus, the degree of Z equals rK/d. It remains to notice that the linear

span of Z has dimension s, so that Z is a rational normal curve if and only if

deg(Z) = s. �
There are no G-fixed points in Qu by Lemma 2.23. This implies, in partic-

ular, that every irreducible G-invariant curve in Qu is rational and contains at

least one ι-fixed point. Hence, every irreducible G-invariant curve is a closure

of the C∗-orbit of any of its ι-fixed points.

Lemma 3.2. All ι-fixed points in Qu are the points

P± = (1 : ±
√
u : 0 : ∓

√
u : −1)

and the points

(3.3)
(
b2 − (1− u)(a− b)2 : u(a2 − b2)− a2 :

a2 − u(a− b)2 : u(a2 − b2)− a2 : b2 − (1− u)(a− b)2
)
,

where (a : b) ∈ P1.
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Proof. Using (2.2), one can see that the ι-fixed points in P4 are the points

of the line ⎧⎪⎨⎪⎩
x+ w = 0,

y + t = 0,

z = 0,

and the points of the plane {
x− w = 0,

y − t = 0.

Intersecting the line with Qu, we obtain the points P±. Similarly, intersecting

the plane with the quadricQu, we obtain the conic parameterized by (3.3). �
Observe that the C∗-orbit of the point P+ is the same as the C∗-orbit of

the point P−. We denote its closure by Θ±. Similarly, we denote the closure

of the C∗-orbit of the point (3.3) by Θa,b. By construction, the curves Θ±
and Θa,b are all irreducible G-invariant curves contained in the quadric Qu.

Lemma 3.4. The only irreducible G-invariant curves in S are

Γ = Θ0,1 = Θu,u−1

and Θ1,0 = Θ1,1. The degree of the curve γ(Θ1,0) in P10 is 12.

Proof. Recall from §2 that the surface S is cut out on the quadric Qu by

the equation f = 0, where f = xw− yt. Substituting x = 1, y = ±
√
u, z = 0,

t = ∓
√
u and w = −1 into the polynomial f , we get u− 1, so that the curve

Θ± is not contained in S. Similarly, substituting the coordinates of the point

(3.3) into f , we obtain

4(1− u)ab(a− b)(u(a− b)− a),

and the first assertion follows.

The curve Θ1,0 is the closure of the C∗-orbit of the point P = (1 : 1 : −1 :

1 : 1). Thus, by (2.16), the curve γ(Θ1,0) is the closure of the C∗-orbit of the

point

γ(P ) = (1 : 1 : 0 : 0 : 1 : 0 : 1 : 0 : 0 : 1 : 1),

so that the degree of the curve γ(Θ0,1) is 12 by Lemma 3.1. �
Let Δ be the conic in Qu that is cut out by

(3.5) y = t = 0.

Then Δ is G-invariant. One can check that

Δ = Θ√
u,

√
u−1 = Θ−

√
u,

√
u−1.

Similarly, let Υ be the conic in Qu that is cut out by

(3.6) x = w = 0.
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Then Υ is G-invariant. One can check that

Υ = Θ√
1−u+1,

√
1−u = Θ√

1−u−1,
√
1−u.

Lemma 3.7. The following assertions hold.

(i) The curve ζ(Θ±) is a curve of degree 12. One has ζ(Θ±) ⊂ T15∩T ′
15.

(ii) The curve ζ(Δ) is a rational normal curve of degree 4. One has

ζ(Δ) ⊂ T10 ∩ T20.

(iii) The curve ζ(Υ) is a rational normal curve of degree 6. One has

ζ(Υ) ⊂ T10 ∩ T20.

(iv) For every curve Θa,b not contained in the surface S and different from

Δ and Υ, the degree of ζ(Θa,b) is either 10 or 12.

(v) If Θa,b is not contained in the surface S, then the degree of the curve

ζ(Θa,b) equals 10 if and only if the curve Θa,b is contained in N3∩N15.

Proof. By (2.20), the curve ζ(Θ±) is the closure of the C
∗-orbit of the point

ζ(P+) that is(
u
√
u : −u : −

√
u : u− 1 :

√
u(u− 1) :

− u : 0 : 0 : u : −
√
u(u− 1) : −u+ 1 :

√
u : u : −u

√
u
)
,

which is contained in T15 ∩ T ′
15. Then ζ(Θ±) is a curve of degree 12 by

Lemma 3.1, and it is contained in T15 ∩ T ′
15. This proves assertion (i).

To prove assertions (ii), (iii) and (iv), we need some auxiliary computations.

Define the polynomial

q0 = (u−1)2a4−2(u−1)2a3b+2(u−1)(u−2)a2b2−6u(u−1)ab3+u(3u−2)b4.

Furthermore, define the polynomials

q1 = (u− 1)a2 − ub2,

q2 = (u− 1)a2 − (2u− 2)ab+ ub2,

q3 = (u− 1)a2 + 2ab− (u+ 2)b2,

q4 = (u− 1)a2 − (2u− 2)ab+ (u− 2)b2,

q5 = (u− 1)a2 − 2uab+ ub2,

q6 = (u− 1)a2 − (2u− 4)ab+ (u− 4)b2.

Recall that u �= 0 and u �= 1. Observe that qi is coprime to qj for 0 � i < j � 6

with the following exceptions:

• q0 is divisible by q6 provided that u2 − 2u+ 2 = 0;

• q1 = q6 provided that u = 2;

• q3 = q5 provided that u = −1;

• q2 and q3 have a common linear factor provided that u = −1±
√
5

2 .
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Substituting the coordinates of the point (3.3) into the polynomials gi and

g′15, we obtain the polynomials pi and p′15 (in a and b), respectively. We

compute

p9 = p21 = −8(u− 1)a2b(a− b)((u− 1)a− ub)2q0,

p10 = p20 = 4a2((u− 1)a− ub)2q1q2q3,

p11 = p19 = −8(u− 1)a2b(a− b)((u− 1)a− ub)2q1q4,

p12 = p18 = 16(u− 1)2a2b2(a− b)2((u− 1)a− ub)2q2,

p13 = p17 = 16(u− 1)2a2b2(a− b)2((u− 1)a− ub)2q1,

p14 = p16 = −8(u− 1)a2b(a− b)((u− 1)a− ub)2q1q2,

p15 = −16(u− 1)2a2b2(a− b)2((u− 1)a− ub)2q5,

p′15 = 4(u− 1)a2((u− 1)a− ub)2q21q6.

Let us consider the curve Θa,b not contained in the surface S. By Lemma 3.4

this means that a �= 0, b �= 0, a−b �= 0 and (u−1)a−ub �= 0. These conditions

imply that

• the polynomials p9 and p21 vanish if and only if q0 does,

• the polynomials p10 and p20 vanish if and only if one of q1, q2, or q3
does,

• the polynomials p11 and p19 vanish if and only if either q1 or q4 does,

• the polynomials p12 and p18 vanish if and only if q2 does,

• the polynomials p13 and p17 vanish if and only if q1 does,

• the polynomials p14 and p16 vanish if and only if either q1 or q2 does,

• the polynomial p15 vanishes if and only if q5 does,

• the polynomial p′15 vanishes if and only if either q1 or q6 does.

Note that q1 = 0 if and only if Θa,b = Δ, and q2 = 0 if and only if Θa,b = Υ.

Suppose that Θa,b = Δ. Then q1 = 0, so that

(3.8) p10 = p11 = p13 = p14 = p′15 = p16 = p17 = p19 = p20 = 0.

The coprimeness properties of the polynomials qi imply that p9, p12, p15, p18
and p21 do not vanish. Therefore, ζ(Δ) is a rational normal curve of degree 4

by (2.20) and Lemma 3.1, which proves assertion (ii).

Suppose that Θa,b = Υ. Then q2 = 0, so that

(3.9) p10 = p12 = p14 = p16 = p18 = p20 = 0.

The coprimeness properties of the polynomials qi imply that p9, p11, p13, p15,

p17, p19 and p21 do not vanish. Therefore, we see that ζ(Υ) is a rational

normal curve of degree 6 by (2.20) and Lemma 3.1, which proves assertion

(iii).
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Now suppose that Θa,b is different from Δ and Υ. This means that q1 �= 0

and q2 �= 0, so that in particular p12 and p13 do not vanish. If q0 �= 0, then

p9 and p21 do not vanish as well, so that the degree of the curve ζ(Θa,b) is 12

by (2.20) and Lemma 3.1. Thus, we may assume that q0 = 0, so that

p9 = p21 = 0.

The coprimeness properties of the polynomials qi imply that p10, p11 and

p20 do not vanish, so that the degree of the curve ζ(Θa,b) is 10 by (2.20)

and Lemma 3.1. This proves assertion (iv). The condition p9 = p21 = 0

means that the curve Θa,b is contained in M9 and M21. Since M9 = N3 + S
and M21 = N15 + S, we see that Θa,b is contained in N3 and N15, because

we assume that Θa,b is not contained in S. This proves assertion (v) and

completes the proof of the lemma. �
Taking a more careful look at the proof of Lemma 3.7, one can deduce that

there are only a finite number of curves among ζ(Θa,b) that are not rational

normal curves of degree 12. Moreover, one can explicitly describe all such

curves for any given u.

Remark 3.10. By Lemma 3.7(i), the intersection T15 ∩ T ′
15 contains the

curve ζ(Θ±), which is a curve of degree 12. Moreover, it follows from Lemma

2.22 that T15 ∩ T ′
15 contains both lines �1 and �2. Thus, the intersection

T15 ∩ T ′
15 does not contain irreducible G-invariant curves of degree greater

than 8 that are different from the curve ζ(Θ±). Note that T15 ∩ T ′
15 does not

contain the conic C2 by Remark 2.21. Using (3.5), we see that T15 ∩ T ′
15 does

not contain the curve C4. Similarly, using (3.6), we see that T15 ∩ T ′
15 does

not contain the curve C6.
Let us describe explicitly the curves Θa,b in the case when ζ(Θa,b) is a

curve of degree 10. If u �= − 1
3 , let ϑ be one of the roots

√
(3u+ 1)(1− u). If

u = − 1
3 , let ϑ = 0. If u = 2

3 , then

(3u+ 1)(1− u) = 1.

In this case, we assume that ϑ = 1. Observe that the quadric Qu contains the

point

(3.11)
(
1 : 1 : 1 :

(u− 1)(ϑ− u− 1)

2u2
:
(u− 1)(2u2 + ϑ− u− 1)

2u3

)
.

Similarly, the quadric Qu contains the point

(3.12)
(
1 : 1 : 1 :

(u− 1)(−ϑ− u− 1)

2u2
:
(u− 1)(2u2 − ϑ− u− 1)

2u3

)
.

Let Ψ be the closure of the C∗-orbit of the point (3.11), and let Ψ′ be the

closure of the C∗-orbit of the point (3.12). Then the curve Ψ is G-invariant,
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since the C∗-orbit of the point (3.11) contains the image of this point via the

involution ι, because(
1 : λ : λ3 : λ5 (u− 1)(ϑ− u− 1)

2u2
: λ6 (u− 1)(2u2 + ϑ− u− 1)

2u3

)
=

( (u− 1)(2u2 + ϑ− u− 1)

2u3
:
(u− 1)(ϑ− u− 1)

2u2
: 1 : 1 : 1

)
for λ = u(ϑ−u−1)

(2u2+ϑ−u−1) ∈ C∗. Similarly, we see that the curve Ψ′ is G-invariant.

Of course, the curves Ψ and Ψ′ are of the form Θa,b for certain a and b, but

we will never use the values of these parameters.

It is straightforward to check that Ψ = Ψ′ if and only if u = − 1
3 . Moreover,

if u = 2
3 , then Ψ �= Γ and Ψ′ = Γ. This explains why we let ϑ = 1 in this case.

Lemma 3.13. The following assertions hold.

(i) Both curves Ψ and Ψ′ are contained in the intersection N3 ∩N15.

(ii) The curve Ψ is not contained in S. If u �= 2
3 , then Ψ′ is not contained

in S.
(iii) The curve ζ(Ψ) is a curve of degree 10.

(iv) If u �= 2
3 , then ζ(Ψ′) is a curve of degree 10.

(v) If Θa,b �⊂ S and ζ(Θa,b) is a curve of degree 10, then Θa,b = Ψ or

Θa,b = Ψ′.

(vi) The surfaces N3 and N15 are tangent along Γ if and only if u = 2
3 .

(vii) If u = 2
3 , then N3 and N15 do not tangent S at a general point of the

curve Γ.

(viii) If u = − 1
3 , then N3 and N15 are tangent along Ψ = Ψ′.

Proof. Using (2.3), we see that the intersection N3 ∩N15 is given in P4 by

(3.14)

⎧⎪⎪⎨⎪⎪⎩
y3 − x2z = 0,

t3 − zw2 = 0,

u(xw − z2) + (z2 − yt) = 0.

In fact, this system of equation defines an effective one-cycle in Qu of degree

18, which contains the curve Γ.

Let us show that N3 ∩ N15 contains the curves Ψ and Ψ′. To do this, we

may consider the subset where x �= 0, so that we let x = 1. Substituting

z = y3 and

w =
yt

u
+

u− 1

u
z2

into t3 − zw2 = 0, we obtain the equation(
t− y5

)(
t2u2 + (u2 − 1)ty5 + (u− 1)2y10

)
= 0.
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If t = y5, we get the curve Γ. Thus, the remaining part of the subset (3.14)

consists of the C∗-orbits of the points(
1 : 1 : 1 : t :

t+ u− 1

u

)
,

where t is a solution of the quadratic equation

u2t2 + (u2 − 1)t+ (u− 1)2 = 0.

Solving this equation, we obtain exactly the points (3.11) and (3.12). This

shows that (3.14) contains the curves Ψ and Ψ′. This proves assertion (i).

Observe that the intersection S ∩ N3 consists of the curve Γ, the line L2,

and the line y = z = w = 0. Similarly, the intersection S ∩ N15 consists of

the curve Γ, the line L1, and the line x = z = t = 0. Thus, the curve Ψ is

contained in S if and only if Ψ = Γ. Since S is cut out on Qu by the equation

xw = yt, we see that if Ψ is contained in S, then
(u− 1)(ϑ− u− 1)

2u2
=

(u− 1)(2u2 + ϑ− u− 1)

2u3
.

Simplifying this equation, we get ϑ = 3u2−1
u−1 , which implies that u = 2

3 , so

that ϑ = 1 by assumption, which implies that the point (3.11) is not contained

in S. Hence, we see that Ψ is not contained in S. Similarly, we see that Ψ′ is

contained in S if and only if u = 2
3 . This proves assertion (ii).

Since Ψ is not contained in S, we see that ζ(Ψ) is a curve of degree 10 by

Lemma 3.7(v). Similarly, if u �= 2
3 , then Ψ′ is not contained in S, so that

ζ(Ψ′) is a curve of degree 10 by Lemma 3.7(v) as well. This proves assertions

(iii) and (iv).

If Θa,b is not contained in the surface S and ζ(Θa,b) is a curve of degree 10,

then Θa,b is contained in N3 ∩N15 by Lemma 3.7(v). On the other hand, the

intersection N3 ∩ N15 is given by (3.14). We just proved that this system of

equation defines the union Γ ∪Ψ ∪Ψ′, so that either Θa,b = Ψ or Θa,b = Ψ′.

This proves assertion (v).

To prove assertions (vi) and (vii), let us find the local equations of the

surfaces N3, N15 and S at the point (1 : 1 : 1 : 1 : 1). We may work in a chart

x �= 0, so that we let x = 1. Substituting w = yt
u + u−1

u z2 into the equation

t3 − w2z = 0 and multiplying the resulting equation by u2, we obtain the

equation

t3u2 − t2y2z + 2(1− u)tyz3 − (u− 1)2z5 = 0.

Similarly, the surface S is given by ty = z2, and the surface N3 is given by

z = y3. Now introducing new coordinates ȳ = y − 1, z̄ = z − 1 and t̄ = t− 1,

we see that N15 is given by

2ȳ + (5u− 4)z̄ + (2− 3u)t̄+ higher order terms = 0.
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Similarly, the surface S is given by

(3.15) ȳ − 2z̄ + t̄+ higher order terms = 0,

while the linear term of the defining equation of the surfaceN3 is 3ȳ−z̄. Hence,

the surface N3 is not tangent to S at the point (1 : 1 : 1 : 1 : 1). Similarly, we

see that the surface N3 is tangent to N15 at the point (1 : 1 : 1 : 1 : 1) if and

only if u = 2
3 . This proves assertions (vi) and (vii).

To prove assertion (viii), we assume that u = − 1
3 . Then Ψ = Ψ′, and the

point (3.11) is the point (1 : 1 : 1 : 4 : −8). Arguing as above, we see that

the local equations of the surfaces N3 and N15 at the point (1 : 1 : 1 : 4 : −8)

have the same linear part (in coordinates ȳ = y− 1, z̄ = z − 1 and t̄ = t− 4).

Hence, the surface N3 is tangent to N15 at the point (1 : 1 : 1 : 4 : −8). This

proves assertion (viii) and completes the proof of the lemma. �
Recall from Remark 2.11 that the birational map ζ in (2.5) induces an

isomorphism

Qv \ S ∼= Vu \ R.

Therefore, from (2.20) and Lemmas 3.7 and 3.13, we obtain an explicit de-

scription of all irreducible G-invariant curves in the Fano threefold Vu that

are not contained in the surface R. Thus, to classify all such curves in Vu, we

need to describe those of them that are contained in R. This will be done in

the next section.

4. Invariant curves in the surface R

In this section we describe irreducible G-invariant curves in the surface R,

and complete the classification of irreducible G-invariant curves in the three-

fold Vu (see Proposition 4.12). We will show that R contains exactly two

irreducible G-invariant curves, one of which is the conic C2. To describe the

other curve, we analyze all irreducible G-invariant curves in surface EQu
. We

start with

Remark 4.1. Recall from Remark 2.4 that the surface S is smooth at every

point of the curve Γ except for the points (1 : 0 : 0 : 0 : 0) and (0 : 0 : 0 : 0 : 1),

which are isolated ordinary double singularities. This implies that

S̃
∣∣
EQu

= Γ̃ + l1 + l2

for some section Γ̃ of the projection EQu
→ Γ, where l1 and l2 are the fibers

of this projection over the points (1 : 0 : 0 : 0 : 0) and (0 : 0 : 0 : 0 : 1),

respectively. The curve Γ̃ is irreducible and G-invariant. Since Γ̃ is contained

in S̃, its image in Vu is the conic C2.
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Now let us show that EQu
contains exactly two irreducible G-invariant

curves.

Lemma 4.2. The surface EQu
contains exactly two irreducible G-invariant

curves. One of them is the curve Γ̃ from Remark 4.1. The second one is also

a section of the projection EQu
→ Γ.

Proof. Let l be the fiber of the natural projection EQu
→ Γ over the point

(1 : 1 : 1 : 1 : 1). Then l ∼= P1 and the curve l is ι-invariant. Thus, either ι

fixes every point in l or ι fixes exactly two points in l. Let us show that the

former case is impossible. To do this, recall from §2 that

Γ ⊂ N3 ∩N5 ∩N8 ∩N10 ∩N13 ∩N15,

and the surfaces N3, N5, N8, N10, N13, N15 are smooth at a general point of

the curve Γ. Denote by Ñ3, Ñ5, Ñ8, Ñ10, Ñ13 and Ñ15 the proper transforms

of the surfacesN3, N5, N8, N10, N13 andN15 on the threefold Q̃u, respectively.

Then each intersection

Ñ3 ∩ l, Ñ5 ∩ l, Ñ8 ∩ l, Ñ10 ∩ l, Ñ13 ∩ l, Ñ15 ∩ l

consists of a single point. Moreover, if u �= 2
3 , then N3 is not tangent to N15

at a general point of Γ by Lemma 3.13(vi). Hence, in this case, we have

Ñ3 ∩ l �= Ñ15 ∩ l,

so that the involution ι swaps these two points, since ι(N3) = N15. Thus, if

u �= 2
3 , then the involution ι acts on the curve l nontrivially.

Recall that ι(N5) = N13, the surface N5 is cut out on Qu by x2t− y2z = 0,

and the surface N5 is cut out on Qu by yw2 − zt2 = 0. Let us find out when

N5 is tangent to N13 at a general point of Γ. To do this, let us describe the

local equations of the surfaces N5 and N13 at the point (1 : 1 : 1 : 1 : 1). We

may work in a chart x �= 0, so that we let x = 1. Substituting

w =
yt

u
+

u− 1

u
z2

into yw2 − zt2 = 0 and multiplying the resulting equation by u2, we obtain

the equation

t2y3 − u2t2z + 2(u− 1)ty2z2 + (u− 1)2yz4 = 0.

This is the equation of N13. The equation of the surface N5 is simply t = y2z.
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Now introducing new coordinates ȳ = y − 1, z̄ = z − 1 and t̄ = t − 1, we see

that N13 is given by

(u+ 2)ȳ + (3u− 4)z̄ + 2(1− u)t̄+ higher order terms = 0.

Similarly, the surface N13 is given by

2ȳ + z̄ − t̄+ higher order terms = 0.

This implies that N5 is tangent to N13 at the point (1 : 1 : 1 : 1 : 1) if and

only if u = 2.

Recall from Lemma 3.13(vi) that N3 is tangent to N15 at a general point of

the curve Γ if and only if u = 2
3 . We see that N5 is tangent to the surface N13

at a general point of the curve Γ if and only if u = 2. The same arguments

imply that N8 is never tangent to N10 at a general point of the curve Γ.

Arguing as above, we see that ι acts on l nontrivially as claimed.

Since ι acts nontrivially on the fiber l, it fixes two points in l. One of them

is the point l∩ S̃. It is contained in Γ̃, so that Γ̃ is the closure of the C∗-orbit

of the point l ∩ S̃. Similarly, the closure of the C∗-orbit of the second fixed

point of the involution ι is another irreducible G-invariant curve in EQu
. Then

every irreducible G-invariant curve in EQu
must be one of these two curves.

Indeed, an irreducible G-invariant curve in EQu
cannot be contracted by π,

since Qu does not have G-fixed points. Moreover, since all C∗-orbits in EQu

that are not contained in the fibers of the projection EQu
→ Γ are its sections,

we conclude that an intersection of any irreducible G-invariant curve in EQu

with l must consist of a ι-invariant point, which in turn uniquely determines

this curve. Since we proved that l contains exactly two ι-fixed points, an

irreducible G-invariant curve in EQu
must be the closure of the C∗-orbit of

one of these two points. This completes the proof of the lemma. �
Thus, the surface EQu

contains exactly two irreducible G-invariant curves.

One of them is the curve Γ̃ from Remark 4.1. The second curve can be

described rather explicitly.

Remark 4.3. Let us use the notation of the proof of Lemma 4.2. Recall

from this proof that ι fixes exactly two points in l. One of them is the point

l ∩ S̃. To describe the second ι-fixed point in l, denote by Mμ
15 the surface in

Qu that is cut out by the equation

g′15 + μg15 = 0,

where μ ∈ C. Denote by M̃μ
15 the proper transform of the surface Mμ

15 on

the threefold Q̃u. Then Mμ
15 is singular along Γ by Lemma 2.19. Moreover,

it has a double point at a general point of Γ. To determine its type, let us

describe the local equation of the surface Mμ
15 at the point (1 : 1 : 1 : 1 : 1).

We may work in the chart x �= 0, so that we let x = 1. Substituting x = 1 and
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w = yt
u + u−1

u z2 into g′15 + μg15 and multiplying the result by u2, we obtain

the polynomial

u2t3 + t2y5 + (u2μ− 2uμ+ μ+ u− 4)t2y2z

+ 2(u− 1)ty4z2 + (8− 2u2μ+ 4uμ− 3u2 − 2μ− 4u)tyz3

+ (u− 1)2y3z4 + (u2μ− 2uμ+ u2 + μ+ 3u− 4)z5.

Then introducing new coordinates ȳ = y − 1, z̄ = z − 1 and t̄ = t − 1, we

rewrite this polynomial as

(4.4) (μu2 − 2μu+ 3u2 + μ+ u− 3)t̄2

+ (2μu2 − 4μu− 3u2 +2μ+8u− 6)t̄ȳ+ (12− 4μu2 +8μu− 9u2 − 4μ− 6u)t̄z̄

+ (μu2 − 2μu+ 3u2 + μ+ 7u− 3)ȳ2 + (12− 4μu2 + 8μu+ 3u2 − 4μ− 18u)ȳz̄

+ (4μu2 − 8μu+ 7u2 + 4μ+ 8u− 12)z̄2 + higher order terms.

If μ �= − 3u2+16u−16
4(u−1)2 , then the surface Mμ

15 has a nonisolated ordinary double

point at a general point of Γ. Vice versa, if μ = − 3u2+16u−16
4(u−1)2 , then the

quadratic part of the polynomial (4.4) simplifies as

1

4

(
(2 + 3u)ȳ + 4(u− 1)z̄ + (2− 3u)t̄

)2

.

Comparing it with (3.15), we see that the intersection M̃μ
15 ∩ l consists of a

single point that is not contained in S̃. This is the second point fixed in l by

the involution ι.

Remark 4.5. Suppose that u = 2
3 . Let Z̃ be an irreducible G-invariant

curve contained in the surface EQu
that is different from the curve Γ̃. Denote

by Ψ̃ the proper transform of the curve Ψ on the threefold Q̃u. Let us use the

notation from the proof of Lemma 4.2 and Remark 4.3. Then

Ñ3 ∩ Ñ15 = Z̃ ∪ Ψ̃

by Lemma 3.13(vi), because N3 is smooth at the point (1 : 0 : 0 : 0 : 0), and

N15 is smooth at the point (0 : 0 : 0 : 0 : 1). Observe also that the curve L̃1

is contained in Ñ3, and it is not contained in Ñ15. Similarly, the curve L̃2 is

contained in Ñ15, and it is not contained in Ñ3. Thus, since Ñ15 · L̃1 = 0 and

Ñ3 · L̃2 = 0, we see that L̃1 is disjoint from Ñ15, and L̃2 is disjoint from Ñ3.

Using (2.5) and (2.20), we see that

T9 ∩ T21 = C2 ∪ ζ
(
Ψ
)
∪ φ ◦ χ

(
Z̃
)
.

Moreover, the surfaces T9 and T21 intersect transversally at a general point

of the conic C2, since the surface S̃ does not contain the curves Z̃ and Ψ̃.
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Furthermore, the curve ζ(Ψ) has degree 10 by Lemma 3.13(iii). Thus φ◦χ(Z̃)
is also a curve of degree 10.

Remark 4.6. Suppose that u = 2. Let Z̃ be an irreducible G-invariant

curve contained in the surface EQu
that is different from the curve Γ̃. Let us

use the notation from the proof of Lemma 4.2 and Remark 4.3. In the proof

of Lemma 4.2, we showed that both surfaces Ñ5 and Ñ13 contain the curve

Z̃. On the other hand, we have

N5 ∩N13 = Γ ∪Δ ∪ L1 ∪ L2.

Moreover, the surfaces N5 and N13 are not tangent at a general point of

the conic Δ. This can be checked, for example, using local equations of the

surfaces N5 and N13 at the point (1 : 0 : 2 : 0 : 2). Observe also that the

surface N5 is smooth at the point (0 : 0 : 0 : 0 : 1), and the surface N13 is

smooth at the point (1 : 0 : 0 : 0 : 0). Hence, we deduce that

Ñ5 ∩ Ñ13 = Z̃ ∪ Δ̃ ∪ L̃1 ∪ L̃2,

where Δ̃ is the proper transform of the conic Δ. Moreover, the surfaces Ñ5

and Ñ13 intersect transversally at a general point of the curve Z̃. Indeed,

otherwise the curve Γ would be contained in the one-cycle N5 · N13 with

multiplicity at least 3, which is impossible, since HQu
·N5 ·N13 = 18, and the

one-cycle N5 ·N13 also contains the conic Δ and the lines L1 and L2. Thus,

keeping in mind that the curves L̃1 and L̃2 are contracted by α, we conclude

that

α
(
Ñ5

)
∩ α

(
Ñ13

)
= α(Z̃) ∪ γ(Δ).

On the other hand, the degree of the curve γ(Δ) is 4, one has −K3
Yu

= 16 and

α
(
Ñ5

)
∼ α

(
Ñ13

)
∼ −KYu

.

This implies that α(Z̃) is a curve of degree 12, because α(Ñ5) and α(Ñ13)

intersect transversally at general points of the curves α(Z̃) and γ(Δ). Denote

by C̃ the proper transform of the curve Z̃ on the threefold Ṽu. Then

12 = deg
(
α(Z̃)

)
= −K

˜Qu
· Z̃ = −KYu

· α(Z̃) = −KYu
· β(C̃) = −K

˜Vu
· C̃

=
(
φ∗(HVu

)
− EVu

)
· C̃ � φ∗(HVu

)
· C̃ = HVu

· C̃ = deg
(
φ(C̃)

)
.

We conclude our investigation of irreducible G-invariant curves in EQu
by

the following result, which also completes the description of irreducible G-

invariant curves in Vu of degree 10 started in Lemma 3.13 and Remark 4.5.

Lemma 4.7. Let Z̃ be an irreducible G-invariant curve contained in the

surface EQu
. Then one of the following two possibilities holds.

• The curve Z̃ is the curve Γ̃ from Remark 4.1. The curve φ ◦ χ(Z̃) is

the conic C2. The degree of the curve α(Z̃) is at least 12.
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• The curve Z̃ is the unique irreducible G-invariant curve in EQu
not

contained in S̃. If u �= 2
3 , then deg(φ ◦ χ(Z̃)) � 12. If u = 2

3 , then

deg(φ ◦ χ(Z̃)) = 10, and the curve φ ◦ χ(Z̃) is contained in T9 ∩ T21.

Proof. The normal bundle of the smooth rational curve Γ in Qu is iso-

morphic to OP1(p) ⊕ OP1(q) for some integers p and q such that p � q and

p+ q = 16. Thus, the exceptional surface EQu
is a Hirzebruch surface Fn for

n = p − q � 0. Denote by s the section of the natural projection EQu
→ Γ

such that s2 = −n. Then −EQu
|EQu

∼ s+ κl for some integer κ. One has

−16 = E3
Qu

=
(
s+ κl

)2

= −n+ 2κ,

so that κ = n−16
2 . This implies that S̃|EQu

∼ s + n+8
2 l. On the other hand,

it follows from Remark 4.1 that S̃|EQu
= Γ̃ + l1 + l2, where l1 and l2 are the

fibers of the natural projection EQu
→ Γ over the points (1 : 0 : 0 : 0 : 0)

and (0 : 0 : 0 : 0 : 1), respectively. This gives Γ̃ ∼ s + n+4
2 l, which implies, in

particular, that Γ̃ �= s. Hence, we have

0 � Γ̃ · s =
(
s+

n+ 4

2
l
)
· s = 4− n

2
,

which implies that n � 4. Thus, we compute

(4.8) deg
(
α(Z̃)

)
= −K

˜Qu
· Z̃ =

(
3π∗(HQu

)
−EQu

)
· Z̃ =

(
s+

n+ 20

2
l
)
· Z̃.

In particular, if Z̃ = Γ̃, then (4.8) gives

deg
(
α(Z̃)

)
=

(
s+

n+ 20

2
l
)
·
(
s+

n+ 4

2
l
)
= 12.

Let C̃ be the proper transform of the curve Z̃ on the threefold Ṽu, and let

C = φ(C̃). If Z̃ �= Γ̃, then

deg
(
α(Z̃)

)
= −K

˜Qu
· Z̃ = −KYu

· α(Z̃) = −KYu
· β(C̃) = −K

˜Vu
· C̃

=
(
φ∗(HVu

)
− EVu

)
· C̃ � φ∗(HVu

)
· C̃ = HVu

· C̃ = deg(C).

(4.9)

Now let us use the notation from the proof of Lemma 4.2 and Remark 4.3.

To complete the proof, we may assume that Z̃ is the closure of the C∗-orbit

of the point M̃μ
15∩ l. Then Z̃ is contained in M̃μ

15, it is a section of the natural

projection EQu
→ Γ, and it is not contained in S̃. In particular, we have

Z̃ �= Γ̃.

By Remarks 4.5 and 4.6, we may assume that u �= 2
3 and u �= 2. This

implies that n = 0, cf. Remark 4.10. Indeed, suppose that n > 0. Then
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Z̃ = s by Lemma 4.2, because the curve s is clearly G-invariant. Then it

follows from (4.8) that

deg
(
α(Z̃)

)
= −K

˜Qu
· Z̃ =

20− n

2
< 10.

Hence, at least one surface among Ñ3, Ñ5, Ñ8, Ñ10, Ñ13 and Ñ15 contains

the curve Z̃. Since ι(Ñ3) = Ñ15, ι(Ñ5) = Ñ13 and ι(Ñ8) = Ñ10, this implies

that Z̃ is contained in at least one of the intersections Ñ3 ∩ Ñ15, Ñ5 ∩ Ñ13,

Ñ8 ∩ Ñ10. On the other hand, it follows from Lemma 3.13(vi) that N3 is

tangent to N15 at a general point of the curve Γ if and only if u = 2
3 . Since

we assumed that u �= 2
3 , we see that

Z̃ �⊂ Ñ3 ∩ Ñ15.

Likewise, the surface N5 is tangent to the surface N13 at a general point of

the curve Γ if and only if u = 2. We showed this in the proof of Lemma 4.2.

Similar computations imply that the surface N8 is not tangent to N10 at a

general point of the curve Γ. Therefore, the curve Z̃ is contained neither in

Ñ5 ∩ Ñ13 nor in Ñ8 ∩ Ñ10. The obtained contradiction shows that the case

n > 0 is impossible, so that n = 0.

Since n = 0, one has EQu
∼= P1 × P1. By (4.8), we have

−K
˜Qu

· Z̃ =
(
s+ 10l

)
· Z̃ �

(
s+ 10l

)
· s = 10.

This also shows that −K
˜Qu

· Z̃ = 10 if and only if Z̃ ∼ s. However, this

case is impossible. Indeed, if Z̃ ∼ s, then the linear system |s| contains

at least two irreducible G-invariant curves. On the other hand, we already

know from Lemma 4.2 that Z̃ and Γ̃ ∼ s + 2l are the only irreducible G-

invariant curves in the surface EQu
. Hence, using (4.9) we conclude that

deg(C) � −K
˜Qu

· Z̃ � 11.

Using Lemma 3.7, we see that Vu does not contain irreducible G-invariant

curves of degrees 1, 3, 5, 7, 8 and 9. In particular, the threefold Vu does not

contain G-invariant lines, which also follows from [KP17, Lemma 4.1(i)].

By Remark 3.10, there exists a unique surface in the pencil generated by

T15 and T ′
15 that contains C. In fact, we know this surface from Remark 4.3.

It is the image of the surface M̃μ
15 from Remark 4.3, where μ = − 3u2+16u−16

4(u−1)2 .

Thus, if deg(C) = 11, there should be at least one surface among T9, T10,

T11, T12, T13, T14, T16, T17, T18, T19, T20, T21 that also contains C. But we

proved above that none of the surfaces Ñ3, Ñ5, Ñ8, Ñ10, Ñ13, Ñ15 contains

the curve Z̃, so that the surfaces T9, T11, T14, T16, T19 and T21 do not contain

C either. Similarly, the surfaces T12, T13, T17 and T18 do not contain the

curve C, because the surfaces Hx, Hy, Hz, Ht and Hw do not contain the
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curve Γ. Thus, to complete the proof, we may assume that either T10 or T20

contains the curve C. Actually, this assumption implies that both surfaces

T10 and T20 contain the curve C, since ι(T10) = T20. Note that this case is

indeed possible when u = −2 by Remark 4.11.

By Lemma 3.7, both surfaces T10 and T20 contain the curves ζ(Δ) and

ζ(Υ), the degree of the curve ζ(Δ) is 4, and the degree of the curve ζ(Υ) is

6. Since we already know that deg(C) � 11, we see that the G-invariant one-

cycle T10 ·T20 consists of the curves ζ(Δ), ζ(Υ), C and a G-invariant curve of

degree 12− deg(C). Since Vu does not contain G-invariant lines, we see that

T10 · T20 = ζ(Δ) + ζ(Υ) + C,

so that deg(C) = 12. This completes the proof of the lemma. �
Remark 4.10. If u �= 2

3 and u �= 2, then EQu
∼= P1×P1, so that the normal

bundle of the curve Γ in the quadric Qu is isomorphic to OP1(8)⊕OP1(8). We

showed this in the proof of Lemma 4.7. Vice versa, if u = 2
3 or u = 2, then,

arguing as in the proof of Lemma 4.7, one can show that EQu
∼= F4, so that

the normal bundle of the curve Γ is OP1(6)⊕OP1(10) in this case. However,

we will not use this information in the sequel.

Remark 4.11. Denote by M̃10 and M̃20 the proper transform of the sur-

faces M10 and M20 on the threefold Q̃u, respectively. Recall that both M10

and M20 have quadratic singularity at the point (1 : 1 : 1 : 1 : 1). Substituting

x = 1 and w = yt
u + u−1

u z2 into the polynomial ug10, we obtain the polynomial

ut2 + ty5 − (2u+ 1)y2zt+ (u− 1)y4z2 + yz3. The quadratic part of its local

expansion at the point (1 : 1 : 1 : 1 : 1) is

ut̄2 + (3− 4u)ȳt̄− (2u+ 1)t̄z̄ + (4u+ 3)ȳ2 + (4u− 7)ȳz̄ + (u+ 2)z̄2,

where ȳ = y − 1, z̄ = z − 1 and t̄ = t − 1. Similarly, substituting x = 1 and

w = yt
u + u−1

u z2 into the polynomial u3g20, we obtain the polynomial

u3t4 + t3y5 − (2u2 + u)t3y2z + (3u− 3)t2y4z2 + (−2u3 + u2 + 2u)t2yz3

+ (3u2 − 6u+ 3)ty3z4 + (u2 − u)tz5 + (u3 − 3u2 + 3u− 1)y2z6.

Then the quadratic part of the local expansion of the polynomial u2g20 is

(4u2 − 5u+ 2)t̄2 + (4− 4u2 − u)ȳt̄− (12u2 − 17u+ 8)t̄z̄

+ (u2 + 4u+ 2)ȳ2 + (6u2 − u− 8)ȳz̄ + (9u2 − 14u+ 8)z̄2.

Both these quadric forms are degenerate, so that they define reducible conics

in P2
ȳ,z̄,t̄. If u �= −2, then these conics do not have common components.

However, if u = −2, then the former quadratic form is (t̄ − 5ȳ)(ȳ + 3z̄ − 2t̄),

and the latter quadratic form is 4(ȳ − 12z̄ + 7t̄)(ȳ + 3z̄ − 2t̄). Note that the

quadratic part of the polynomial (4.4) is a multiple of (ȳ + 3z̄ − 2t̄)2. Thus,
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if u = −2, then M̃10 ∩ M̃20 contains the irreducible G-invariant curve in EQu

that is different from the curve Γ̃, see Remark 4.1.

Recall that ζ(S) = C2. Denote the curves ζ(Δ) and ζ(Υ) by C4 and C6,
respectively. Similarly, if u �= 2

3 , let C10 = ζ(Ψ) and C′
10 = ζ(Ψ′). Finally,

if u = 2
3 , let C10 = ζ(Ψ) and let C′

10 = φ ◦ χ(Z̃), where Z̃ is the irreducible

G-invariant curve in EQu
that is different from the curve Γ̃.

Proposition 4.12. Let C be an irreducible G-invariant curve in Vu with

deg(C) < 12. Then one of the following holds: C = C2, C = C4, C = C6,
C = C10, or C = C′

10.

Proof. We may assume that C �= C2. Denote by C̃ the proper transform of

the curve C on the threefold Ṽu. By Remark 2.11, the curve C̃ is not flopped

by χ−1. Denote by Z̃ the proper transform of the curve C̃ on the threefold

Q̃u. Then Z̃ is not contracted by π, since Qu does not have G-fixed points by

Lemma 2.23.

Let Z = π(Z̃). Then Z is an irreducible G-invariant curve. Hence, the

curve Z is either the curve Θ± or the curve Θa,b for some (a : b) ∈ P1.

Therefore, if Z is not contained in S, the required assertion follows from

Lemmas 3.7 and 3.13. Thus, we may assume that Z ⊂ S, which implies that

Z = Γ, because C �= C2 by assumption. This simply means that Z̃ is contained

in the exceptional surface EQu
. Then u = 2

3 and Z = C′
10 by Lemma 4.7. �

Using Remark 2.21 and Lemmas 3.13 and 4.7, we see that

(4.13) T9 · T21 = C10 + C′
10 + C2.

5. Anticanonical pencil

Let PQu
be the pencil of surfaces in |5HQu

| that are cut out on Qu by

μ0g15 + μ1g
′
15 = 0,

where (μ0 : μ1) ∈ P1. Here g15 is the polynomial of weight 15 in (2.17), and

g′15 is the polynomial of weight 15 in (2.18). Then the pencil PQu
is free from

base components.

Denote by PVu
the proper transform of the pencil PQu

on the threefold

Vu. Then PVu
is generated by the irreducible surfaces T15 and T ′

15, and it

contains all G-invariant surfaces in the linear system | − KVu
|. This follows

from (2.20).

By Lemma 2.22, the base locus of the pencil PVu
contains the lines �1 and

�2 from Remark 2.11. Similarly, we know from Lemma 3.7(i) that the base

locus of the pencil PVu
contains the curve ζ(Θ±). Thus, using Remark 3.10

and Proposition 4.12, we obtain
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Corollary 5.1. The curve ζ(Θ±) is the only irreducible G-invariant curve

in Vu which is contained in the base locus of the pencil PVu
.

Therefore, for every irreducible G-invariant curve in Vu that is different

from ζ(Θ±), there exists a unique surface in the pencil PVu
that contains this

curve. In particular, the pencil PVu
contains a unique surface that passes

through C4, and it contains a unique surface that passes through C6. Below

we describe both of them.

Lemma 5.2. The curve C6 is not contained in T ′
15. On the other hand,

the curve C4 is contained in T ′
15. Moreover, the surface T ′

15 is singular along

the curve C4. If u �= 2, then T ′
15 has a nonisolated ordinary double point at a

general point of the curve C4. If u = 2, then T ′
15 has a nonisolated ordinary

triple point at general point of the curve C4.
Proof. Recall from (2.18) that

g′15 = (u−1)x2t3+(u−1)y3w2− (u+4)y2zt2+(3u+2)xyztw+(4−4u)yz3t.

Substituting (3.6) into g′15, we see that Υ is not contained in M ′
15, so that C6

is not contained in T ′
15. Similarly, substituting (3.5) into g′15, we see that Δ

is contained in M ′
15, so that C4 is contained in T ′

15.

To describe the singularity of the surface T ′
15 at a general point of the

curve C4, it is enough to describe the singularity of the surfaceM ′
15 at a general

point of the curve Δ. The latter point has the form (u−1
u τ2 : 0 : τ : 0 : 1) with

τ ∈ C∗. Substituting w = 1 and x = z2 + ty−z2

u into g′15 = 0 and multiplying

the resulting equation by u2

u−1 , we obtain

(5.3)

−u(u−2)tyz3+u2y3+(u−1)2t3z4−u(u+2)t2y2z+2(u−1)t4yz2+ t5y2 = 0.

Thus, at a general point of the curve C4, the surfaceM ′
15 has singularity locally

isomorphic to the product of C and the germ of the curve singularity given

by

−u(u− 2)ty + u2y3 + (u− 1)2t3 − u(u+ 2)t2y2 + 2(u− 1)t4y + t5y2 = 0.

If u �= 2, the quadratic part −u(u−2)ty of the left hand side is nondegenerate,

so that M ′
15 has a nonisolated ordinary double point at P . If u = 2, the above

equation becomes t3+4y3−8t2y2+2t4y+t5y2 = 0, which defines an ordinary

triple point (also known as curve singularity of type D4), and the assertion

follows. �
Corollary 5.4. If u = 2, then αG(Vu) � 2

3 .

Let g′′15 = ug15 + g′15. Then

g′′15 = (u−1)x2t3+(u−1)y3w2−4y2zt2+(u+2)xyztw−4(u−1)yz3t+ux2zw2.
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Denote by M ′′
15 the surface in the quadric Qu that is cut out by g′′15 = 0. Let

T ′′
15 be its proper transform on the threefold Vu. Then T ′′

15 is an irreducible

surface in PVu
.

Lemma 5.5. The curve C4 is not contained in T ′′
15. On the other hand,

the curve C6 is contained in T ′′
15. Moreover, the surface T ′′

15 is singular along

the curve C6. If u �= 3
4 , then T ′′

15 has a nonisolated ordinary double point at a

general point of the curve C6. If u = 3
4 , then T ′′

15 has a nonisolated tacnodal

singularity at a general point of the curve C6.
Proof. Substituting (3.5) into g′′15, we see that Δ �⊂ M ′′

15, so that C4 �⊂ T ′′
15.

Similarly, substituting (3.6) into g′′15, we see that Υ ⊂ M ′′
15, so that C6 ⊂ T ′′

15.

To describe the singularity of the surface T ′′
15 at a general point of the

curve C6, it is enough to describe the singularity of the surfaceM ′′
15 at a general

point of the curve Υ. The latter point has the form P = (0 : (1 − u)τ2 : τ :

1 : 0) with τ ∈ C∗.

Substituting t = 1 and y = z2 + u(wx− z2) into g′′15 = 0 and dividing the

resulting equation by (u− 1), we obtain

x2 + (3u− 2)z3xw − (u− 1)3w2z6 + 3u(u− 1)2z4xw3

− 3uw2x2z − 3u2(u− 1)z2x2w4 + u3w5x3 = 0.

Thus, at a general point of the curve C6, the surfaceM ′′
15 has singularity locally

isomorphic to the product of C and the germ of the curve singularity given

by

x2 + (3u− 2)xw − (u− 1)3w2 + 3u(u− 1)2xw3

− 3uw2x2 − 3u2(u− 1)x2w4 + u3w5x3 = 0.

If u �= 3
4 , the quadratic part x

2+(3u−2)xw− (u−1)3w2 of the left hand side

is nondegenerate, so that M ′′
15 has a nonisolated ordinary double point at P .

If u = 3
4 , the above equation becomes w2 +16wx+64x2 +9w3x− 144w2x2 +

27w4x2 +27w5x3 = 0. So, introducing new auxiliary coordinates w = v− 8x,

we get

v2 − 13824x4 + 4032vx3 + 110592x6 − 360v2x2

+ 9v3x− 55296vx5 + 10368v2x4 − 884736x8 + 552960vx7 − 864v3x3

+ 27v4x2 − 138240v2x6 + 17280v3x5 − 1080v4x4 + 27v5x3 = 0.

This equation defines a tacnodal point (also known as curve singularity of

type A3), and the assertion follows. �
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Corollary 5.6. If u = 3
4 , then αG(Vu) � 3

4 .

Proof. Suppose that u = 3
4 . Recall that T ′′

15 ∼ −KVu
. Since T ′′

15 has a

tacnodal singularity at a general point of the curve C6 by Lemma 5.5, the log

pair (Vu,
3
4T

′′
15) is not Kawamata log terminal. Hence αG(Vu) � 3

4 . �

6. Sarkisov links

Let C be one of the irreducible G-invariant curves C4 or C6 in the threefold

Vu, let σ : V̂u → Vu be the blowup of the curve C, and let Eσ be the exceptional

surface of σ. Denote by T̂i, T̂
′
15, T̂

′′
15 the proper transforms on V̂u of the surfaces

Ti, T
′
15, T

′′
15, respectively.

Remark 6.1. Suppose that C = C4. Then T̂ ′
15 ∼ σ∗(HVu

)−m′Eσ, where

m′ = multC(T
′
15). By Lemma 5.2, one has

m′ =

{
2 if u �= 2,

3 if u = 2.

Moreover, if u �= 2, then T ′
15 has a nonisolated ordinary double point at a

general point of the curve C. In this case, one has

T̂ ′
15

∣∣
Eσ

= Ĉ + κ
(
l1 + l2

)
,

where Ĉ is a 2-section of the natural projection Eσ → C4, the curves l1 and l2
are the fibers of this projection over two C∗-fixed points in C4, respectively,
and κ is a nonnegative integer. Moreover, it can be seen from (5.3) that

the curve Ĉ is reducible, so that it consists of two sections of the projection

Eσ → C. However, the curve Ĉ is G-irreducible. This follows from (2.2) and

(5.3).

Let us show that the divisor −K
̂Vu

∼ σ∗(HVu
)− Eσ is nef.

Lemma 6.2. Suppose that C = C4. Then σ∗(HVu
)− Eσ is nef.

Proof. Recall from (3.5) that the conic Δ is the scheme-theoretic intersec-

tion of the surfaces Hy and Ht. Moreover, it follows from (3.8) that C4 is

contained in the intersection

(6.3) T10 ∩ T11 ∩ T13 ∩ T14 ∩ T ′
15 ∩ T16 ∩ T17 ∩ T19 ∩ T20.

Recall also that T13 is the proper transform on Vu of the surface Hy, and

the surface T17 is the proper transform on Vu of the surface Ht. Thus, using

Remark 2.21 and Lemma 2.22, we see that the intersection T13 ∩ T17 consists

of the curve C4, the conic C2, the lines �1 and �2 from Remark 2.11, and the

proper transform on Vu of the fibers of π over the points (1 : 0 : 0 : 0 : 0) and

(0 : 0 : 0 : 0 : 1).
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Recall that T11 is the proper transform on Vu of the surface N5, and the

surface T19 is the proper transform on Vu of the surfaceN13. Since N5 contains

Γ and is smooth at the point (1 : 0 : 0 : 0 : 0), the surface Ñ5 does not contain

the fiber of π over this point. Similarly, the surface Ñ13 does not contain the

fiber of π over the point (0 : 0 : 0 : 0 : 1). Hence, using Remark 2.21 again,

we see that the only curves contained in the intersection T11 ∩ T13 ∩ T17 ∩ T19

are the conic C2, the curve C4, and the lines �1 and �2.

By Remark 2.21, the surface T ′
15 does not contain the conic C2. Similarly,

it follows from Lemma 2.22 that the intersection T10 ∩T20 contains neither �1
nor �2. Thus, we see that C4 is the only curve contained in the intersection

(6.3).

The base locus of the linear system |σ∗(HVu
) − Eσ| does not contain any

curves outside the exceptional surface Eσ. Moreover, the surfaces T13 and T17

intersect transversally at a general point of the curve C4, because the surfaces
Hy and Ht intersect transversally at every point of the conic Δ. Hence, the

base locus of the linear system |σ∗(HVu
)− Eσ| does not contain curves, with

the only possible exception of finitely many fibers of the projection Eσ → C4.
This implies the required assertion. �

Lemma 6.4. Suppose that C = C6. Then σ∗(HVu
)− Eσ is nef.

Proof. Recall from (3.6) that the conic Υ is the scheme-theoretic intersec-

tion of the surfaces Hx and Hw. Moreover, it follows from (3.9) that C6 is

contained in the intersection

(6.5) T10 ∩ T12 ∩ T14 ∩ T ′′
15 ∩ T16 ∩ T18 ∩ T20.

Recall also that T12 is the proper transform on Vu of the surface Hx, and

the surface T18 is the proper transform on Vu of the surface Hw. Moreover,

the surface Hx does not contain the point (1 : 0 : 0 : 0 : 0), and the surface

Hw does not contain the point (0 : 0 : 0 : 0 : 1). Thus, using Remark 2.21 and

Lemma 2.22, we see that the intersection T12 ∩ T18 consists of the curve C6,
the conic C2, and the lines �1 and �2 from Remark 2.11.

By Remark 2.21, the surface T ′′
15 does not contain the conic C2. Similarly,

it follows from Lemma 2.22 that the intersection T10 ∩ T20 contains neither

�1 nor �2. Thus, the curve C6 is the only curve contained in the intersection

(6.5).

The base locus of the linear system |σ∗(HVu
) − Eσ| does not contain any

curves outside the exceptional surface Eσ. Moreover, the surfaces T13 and T18

intersect transversally at a general point of the curve C6, because the surfaces
Hx and Hw intersect transversally at every point of the conic Υ. Therefore,

the base locus of the linear system |σ∗(HVu
)−Eσ| does not contain curves with
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KÄHLER–EINSTEIN FANO THREEFOLDS OF DEGREE 22 417

the only possible exception of finitely many fibers of the projection Eσ → C6.
This implies the required assertion. �

We see that −K
̂Vu

is nef. Since E3
σ = −deg(C) + 2 and σ∗(HVu

) · E2 =

−deg(C), we compute

−K3
̂Vu

=

{
12 if C = C4,
8 if C = C6.

Therefore, the divisor −K
̂Vu

is also big. Thus, it follows from Basepoint-free

Theorem that the linear system |−nK
̂Vu
| is free from base points for n � 0, see

[KM98, Theorem 3.3]. This linear system gives a crepant birational morphism

η : V̂u → Y , so that Y is a Fano threefold with at most canonical singularities

such that −K3
Y = −K3

̂Vu
. Observe that according to the classification of

smooth Fano threefolds with Picard rank 2, the threefold V̂u is not Fano. In

other words, η is not an isomorphism, and Y is indeed singular.

Lemma 6.6. Suppose that C = C4. Then η is small if and only if u �= 2.

Proof. If u = 2, then multC(T
′
15) = 3 by Lemma 5.2, so that

0 � −K2
̂Vu

· T̂ ′
15 =

(
σ∗(HVu

)− Eσ

)2

·
(
σ∗(HVu

)− 3Eσ

)
= 22 + 3σ∗(HVu

) · E2
σ + 4σ∗(HVu

) · E2
σ − 3E3

σ = 0,

which implies that T̂ ′
15 is contracted by η.

We may assume that u �= 2. Then multC(T
′
15) = 2 by Lemma 5.2. Let F

be an irreducible surface in V̂u. Then F ∼ σ∗(nHVu
)−mEσ for some integers

n and m. We compute

−K2
̂Vu

· F =
(
σ∗(HVu

)− Eσ

)2

·
(
σ∗(nHVu

)−mEσ

)
= 22n+ nσ∗(HVu

) · E2
σ + 2mσ∗(HVu

) · E2
σ −mE3

σ = 18n− 6m,

so that F is contracted by η if and only if m = 3n. In particular, the surface

T̂ ′
15 is not contracted by η. On the other hand, if F �= T̂ ′

15, then

0 �
(
σ∗(HVu

)− Eσ

)
· F · T̂ ′

15

=
(
σ∗(HVu

)− Eσ

)
·
(
σ∗(nHVu

)−mEσ

)
·
(
σ∗(HVu

)− 2Eσ

)
= 22n+ 2nσ∗(HVu

) · E2
σ + 3mσ∗(HVu

) · E2
σ − 2mE3

σ = 14n− 8m,

so that m �= 3n, which implies that F is also not contracted by η. �
Therefore, if C = C4 and u �= 2, then it follows from standard computations

as in [IP99, §4.1] or [Ta89,ACM17,CM13] that there exists a G-equivariant
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commutative diagram

(6.7) V̂u
ρ ���������

σ

����
��
��
��

η
















 V̂u′

η′
����
��
��
�� σ′

��







Vu Y Vu′

where ρ is the flop in the curves contracted by η, and the variety Vu′ is a

smooth Fano threefold of type V ∗
22 that corresponds to (some) parameter u′,

which is possibly different from u. Here the map σ′ is a birational morphism

that contracts the proper transform of the surface T̂ ′
15 to a unique irreducible

G-invariant (rational normal) curve C′
4 of degree 4 in Vu′ . The diagram (6.7)

is Sarkisov link No. 104 in [CM13].

Remark 6.8. It would be interesting to know whether the threefold Vu′

in (6.7) is isomorphic to the threefold Vu or not, that is, whether u = u′ or

not.

Lemma 6.9. Suppose that C = C4 and u �= 2. Then η does not contract

curves in Eσ.

Proof. The normal bundle of the curve C4 in Vu is isomorphic to OP1(p)⊕
OP1(q) for some integers p and q such that p � q and p + q = 2. Thus, the

exceptional surface Eσ is a Hirzebruch surface Fn for n = p− q � 0. Denote

by s a section of the natural projection Eσ → C4 such that s2 = −n, and

denote by l a fiber of this projection. Then −Eσ|Eσ
∼ s+ κl for some integer

κ. One has

−2 = E3
σ =

(
s+ κl

)2

= −n+ 2κ,

so that κ = n−2
2 . By Remark 6.1, one has

T̂ ′
15

∣∣
Eσ

= Ĉ + κ
(
l1 + l2

)
,

where Ĉ is a reducible G-irreducible 2-section of the projection Eσ → C4, the
curves l1 and l2 are the fibers of this projection over two C∗-fixed points in

C4, respectively, and κ is a nonnegative integer. This gives

Ĉ ∼ 2s+ (n+ 2− 2κ)l.

Since Ĉ �= s, we have 0 � Ĉ · s = 2− n− 2κ, which gives n � 2. This implies

that the divisor

−K
̂Vu
|Eσ

∼ s+
n+ 6

2
l

is ample, and the assertion follows. �
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If C = C6, then the morphism η is never small, since it contracts the surface

T̂ ′′
15. Indeed, in this case, we have T̂ ′′

15 ∼ σ∗(HVu
)−2Eσ by Lemma 5.5, which

implies that

K2
̂Vu
·T̂ ′′

15 =
(
σ∗(HVu

)−Eσ

)2

·
(
σ∗(HVu

)−2Eσ

)
= 22+5σ∗(HVu

)·E2
σ−2E3

σ = 0.

This is a so-called bad link (cf. Sarkisov link No. 93 in [ACM17]).

7. The proof

In this section, we prove Theorem 1.6. Let

ε(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4

5
if u �= 3

4
and u �= 2,

3

4
if u =

3

4
,

2

3
if u = 2.

By Corollaries 2.7, 5.4 and 5.6, we know that αG(Vu) � ε(u). Thus, by (1.2),

to prove Theorem 1.6, we have to show that the log pair (Vu,
ε(u)
n D) has log

canonical singularities for every G-invariant linear system D ⊂ |− nKVu
| and

for every positive integer n. For basic properties of singularities of such log

pairs, we refer the reader to [Ko97, Theorem 4.8].

Remark 7.1. Let D be a nonempty G-invariant linear subsystem in

| − nKVu
| for some n ∈ Z>0. Fix a positive rational number ε. Suppose

that the log pair (Vu,
ε
nD) is strictly log canonical, i.e., log canonical but not

Kawamata log terminal. Let Z be a center of log canonical singularities of the

log pair (Vu,
ε
nD) (see [Ka97, Definition 1.3]). Then Z is C∗-invariant. This

follows from the existence of an equivariant strong resolution of singularities

(see [RY02,Ko07]).

Remark 7.2. In the assumptions of Remark 7.1, let F be the fixed part

of the linear system D, and let M be its mobile part, so that

D = F +M.

Since Pic(Vu) = Z[−KVu
], one has F ∼ −n1KVu

and M ∼ −n2KVu
for

some nonnegative integers n1 and n2 such that n1 + n2 = n. Then Z is

a center of log canonical singularities of either (Vu,
ε
n1
F) or (Vu,

ε
n2

M), see

[CS09, Remark 2.9] and the proof of [CS09, Lemma 2.10].

Remark 7.3. In the assumptions of Remark 7.2, there is a C∗-invariant

divisor D ∈ D. Then Z is a center of log canonical singularities of the log pair

(Vu,
ε
2n (D + ι(D))).
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Hence, to prove Theorem 1.6, it is enough to show that the log pair

(Vu, ε(u)D) is log canonical for every G-invariant effective Q-divisor D on

the threefold Vu such that

D ∼Q −KVu
.

Moreover, if necessary, we may assume that D = 1
nS for some irreducible

surface S in the linear system | − nKVu
|. This follows from

Remark 7.4. LetD be a G-invariant effectiveQ-divisorD on the threefold

Vu such that D ∼Q −KVu
, and let Z be an irreducible subvariety in Vu such

that Z is a center of log canonical singularities of the log pair (Vu, εD), where

ε is a positive rational number. Suppose that

D = D1 +D2

for two nonzero effective G-invariant Q-divisors D1 ∼Q −ε1KVu
and D2 ∼Q

−ε2KVu
. Here ε1 and ε2 are positive rational numbers such that ε1 + ε2 =

1. Then either Z is a center of log canonical singularities of the log pair

(Vu,
ε
ε1
D1) or Z is a center of log canonical singularities of the log pair

(Vu,
ε
ε2
D2) (or both). This is well known and easy to prove. See, for instance,

[CS08, Remark 2.22] or [CP16, Lemma 2.2].

The key point in the proof of Theorem 1.6 is the following

Proposition 7.5. Let D be a G-invariant effective Q-divisor on Vu such

that D ∼Q −KVu
. Suppose that (Vu, ε(u)D) is not log canonical. Then

(Vu, ε(u)D) is not log canonical at a general point of one of the curves C2,
C4 or C6.

Proof. Let ε be a positive rational number such that (Vu, εD) is strictly

log canonical. Then ε < ε(u). Let Z be a minimal center of log canonical

singularities of the log pair (Vu, εD). Since Pic(Vu) is generated by −KVu
and

ε < 1, the center Z is either a point or a curve. Recall from Remark 7.1 that

Z is C∗-invariant. Observe that ι(Z) is also a minimal center of log canonical

singularities of the log pair (Vu,
ε
nD).

Now we will use the so-called perturbation trick. For details, see [CS16,

Lemma 2.4.10], and the proofs of [Ka97, Theorem 1.10] and [Ka98, Theo-

rem 1]. Observe that there exists a mobile G-invariant linear system B on the

threefold Vu, and there are rational numbers 1 � ε1 � 0 and 1 � ε2 � 0 such

that (
ε− ε1

)
D + ε2B ∼Q −θKVu

,

for some positive rational number θ < ε(u), the log pair

(7.6)
(
Vu,

(
ε− ε1

)
D + ε2B

)
has strictly log canonical singularities, and the only centers of log canonical

singularities of the log pair (7.6) are Z and ι(Z).
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Observe that the divisor −(KVu
+(ε−ε1)D+ε2B) is ample, since θ < ε(u) <

1. Thus, the locus of log canonical singularities of the pair (7.6) is connected by

the Kollár–Shokurov connectedness principle [KM98, Corollary 5.49]. Since

there are no G-fixed points on Vu by Lemma 2.23, the center Z is not a point,

so that Z is a curve.

By [Ka97, Proposition 1.5], either Z = ι(Z) or the centers Z and ι(Z) are

disjoint. Using the Kollár–Shokurov connectedness, we see that Z = ι(Z), so

that Z is G-invariant.

Since (θ− ε(u))KVu
is an ample Q-divisor, using Kawamata subadjunction

theorem [Ka98, Theorem 1], we see that Z is smooth and

(1− ε(u))KVu

∣∣∣
Z
∼Q

(
KVu

+(ε− ε1)D+ ε2B+(θ− ε(u))KVu

)∣∣∣
Z
∼Q KZ +DZ

for some ample divisor DZ on the curve Z. In particular, we see that Z is

rational and

(ε(u)− 1)deg
(
Z
)
> −2,

which implies that deg(Z) < 2
1−ε(u) � 10, so that deg(Z) � 9. Thus, by

Proposition 4.12, the curve Z is one of the curves C2, C4 or C6, which is

exactly what we need. �
In the remaining part of this section, we will show that (Vu, ε(u)D) is log

canonical at general points of the curves C2, C4 or C6 for every G-invariant

effective Q-divisor D on the threefold Vu such that D ∼Q −KVu
. We start

with the conic C2.
Lemma 7.7. Let D be a G-invariant effective Q-divisor on Vu such that

D ∼Q −KVu
. Then the log pair (Vu,

4
5D) is log canonical at a general point

of the curve C2.
Proof. The normal bundle of the conic C2 in Vu is either isomorphic to

OP1 ⊕OP1 or isomorphic to OP1(−1)⊕OP1(1). Thus, the exceptional surface

EVu
is either P1 × P1 or the Hirzebruch surface F2.

If EVu
∼= P1 × P1, we denote by s the section of the natural projection

EVu
→ C2 such that s2 = 0. Similarly, if EVu

∼= F2, we denote by s the

section of the projection EVu
→ C2 such that s2 = −2. If EVu

∼= P1×P1, then

−EVu
|EVu

∼ s. Similarly, if EVu
∼= F2, then

−EVu

∣∣
EVu

∼ s+ l,

where l is the fiber of the natural projection EVu
→ C2.

Denote by D̃ the proper transform of the divisor D on the threefold Ṽu.

Then

D̃ ∼Q φ∗(HVu

)
−mEVu

,
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where m = multC2
(D). One the other hand, we know that R ∼ 2φ∗(HVu

) −
5EVu

, so that

D̃ ∼Q

1

2
R+

(5
2
−m

)
EVu

,

which implies that m � 5
2 , because EQu

is the proper transform of the surface

R on the threefold Q̃u.

Suppose that the log pair (Vu,
4
5D) is not log canonical at a general point of

the curve C2. Thenm > 5
4 . Moreover, the surface EVu

contains aG-irreducible

curve C̃ such that φ(C̃) = C2, and the log pair

(7.8)

(
Ṽu,

4

5
D̃ +

(4m
5

− 1
)
EVu

)

is not log canonical at a general point of the curve C̃. Furthermore, since we

know that m � 5
2 , the curve C̃ must be a section of the natural projection

EVu
→ C2. This fact is well-known. See for instance [CP16, Remark 2.5].

Thus, the curve C̃ is irreducible.

When we apply [KM98, Theorem 5.50] to (7.8), we see that the log pair

(EVu
, 4
5D̃|EVu

) is also not log canonical at a general point of the curve C̃. This

simply means that

4

5
D̃
∣∣
EVu

= θC̃ +Ω

for some rational number θ > 1 and some effective Q-divisor Ω on the surface

EVu
.

One has C̃ ∼ s+κl for some nonnegative integer κ. If EVu
∼= P1×P1, then

θs+ θκl+Ω ∼Q θC̃ +Ω =
4

5
D̃
∣∣
EVu

∼Q

4m

5
s+

8

5
l,

so that either κ = 0 or κ = 1. Thus, in this case we have

−K
˜Vu

· C̃ = −K
˜Vu

∣∣
EVu

· C̃ =
(
s+ 2l

)
·
(
s+ κl

)
= 2 + κ � 3.

Similarly, if EVu
∼= F2, then

θs+ θκl+Ω ∼Q θC̃ +Ω =
4

5
D̃
∣∣
EVu

∼Q

4m

5
s+

8 + 4m

5
l,

so that κ � 3, which gives

−K
˜Vu

· C̃ = −K
˜Vu

∣∣
EVu

· C̃ =
(
s+ 3l

)
·
(
s+ κl

)
= 1 + κ � 4.

We proved that −K
˜Vu

· C̃ � 4. Then the degree of the curve β(C̃) is

−K
˜Vu

· C̃ � 4. This is impossible by Lemmas 3.4 and 4.7. �
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Now we deal with the curve C6.
Lemma 7.9. Let D be an effective Q-divisor on the threefold Vu such that

D ∼Q −KVu
. Suppose that Supp(D) does not contain T ′′

15. Then the log pair

(Vu, D) is log canonical at a general point of the curve C6.
Proof. Let us use the notation of §6 with C = C6. Denote by T̂ ′′

15 the proper

transform of the surface T ′′
15 on the threefold V̂u. Then

T̂ ′′
15 ∼ σ∗(HVu

)− 2Eσ

by Lemma 5.5.

Denote by D̂ the proper transform on V̂u of the divisor D. We also let

m = multC6
(D). Using E3

σ = −4 and σ∗(HVu
) · E2 = −6, we compute(

σ∗(HVu
)− Eσ

)
· D̂ · T̂ ′′

15

=
(
σ∗(HVu

)− Eσ

)
·
(
σ∗(HVu

)−mEσ

)
·
(
σ∗(HVu

)− 2Eσ

)
= 22 + 2σ∗(HVu

) · E2
σ + 3mσ∗(HVu

) · E2
σ − 2mE3

σ = 10− 10m.

On the other hand, the divisor σ∗(HVu
)−Eσ is nef by Lemma 6.4. Thus, we

have m � 1, and the assertion follows. �
Corollary 7.10. Let D be an effective Q-divisor on Vu such that

D ∼Q −KVu
. If u = 3

4 , then the log pair (Vu,
3
4D) is log canonical at a general

point of the curve C6. If u �= 3
4 , then the log pair (Vu, D) is log canonical at a

general point of the curve C6.
Proof. If u = 3

4 , then (Vu,
3
4T

′′
15) is log canonical at a general point of C6

by Lemma 5.5. Likewise, if u �= 3
4 , then the pair (Vu, T

′′
15) is log canonical at

a general point of the curve C6. Thus, by Remark 7.4, we may assume that

Supp(D) does not contain the surface T ′′
15. Now the assertion follows from

Lemma 7.9. �
Combining Proposition 7.5, Lemma 7.7 and Corollary 7.10, we obtain

Corollary 7.11. Let D be a G-invariant effective Q-divisor on Vu such

that D ∼Q −KVu
. Suppose that the log pair (Vu, ε(u)D) is log canonical at a

general point of the curve C4. Then the log pair (Vu, ε(u)D) is log canonical.

Finally, we deal with the curve C4 using Corollary 7.11.

Lemma 7.12. Let D be a G-invariant effective Q-divisor on Vu such that

D ∼Q −KVu
. Suppose that Supp(D) does not contain T ′

15. Then the log pair

(Vu,
5
6D) is log canonical at a general point of the curve C4.

Proof. Let us use the notation of §6 with C = C4. Then σ∗(HVu
) − Eσ is

nef by Lemma 6.2. Denote by D̂ the proper transform on V̂u of the divisor D.

We also let m = multC4
(D). If u = 2, then multC4

(T ′
15) = 3 by Remark 6.1,
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so that

0 �
(
σ∗(HVu

)− Eσ

)
· D̂ · T̂ ′

15

=
(
σ∗(HVu

)− Eσ

)
·
(
σ∗(HVu

)−mEσ

)
·
(
σ∗(HVu

)− 3Eσ

)
= 22 + 3σ∗(HVu

) · E2
σ + 4mσ∗(HVu

) · E2
σ − 3mE3

σ = 10− 10m,

so that m � 1, which implies that the log pair (Vu, D) is log canonical at a

general point of the curve C4.
Hence, we may assume that u �= 2, so that multC4

(T ′
15) = 2 by Remark 6.1.

Then

0 �
(
σ∗(HVu

)− Eσ

)
· D̂ · T̂ ′

15

=
(
σ∗(HVu

)− Eσ

)
·
(
σ∗(HVu

)−mEσ

)
·
(
σ∗(HVu

)− 2Eσ

)
= 22 + 2σ∗(HVu

) · E2
σ + 3mσ∗(HVu

) · E2
σ − 2mE3

σ = 14− 8m,

which givesm � 7
4 . Let us show that this implies that (Vu,

5
6D) is log canonical

at a general point of the curve C4.
Let ε = 5

6 . Suppose that (Vu, εD) is not log canonical at a general point

of the curve C4. Then the surface Eσ contains a G-irreducible curve Ẑ such

that σ(Ẑ) = C4, and the log pair

(7.13)

(
V̂u, εD̂ +

(
εm− 1

)
Eσ

)
is not log canonical at a general point of the curve Ẑ. Moreover, since εm =
5m
6 � 35

24 < 2, the curve Ẑ must be a section of the natural projection Eσ → C4.
This is well-known. See for instance [CP16, Remark 2.5].

We see that Ẑ is irreducible. Thus, the curve Ẑ is not contained in T̂ ′
15

by Remark 6.1. Moreover, it follows from Lemma 6.9 that the curve Ẑ is not

contracted by η, so that Ẑ is not flopped by ρ.

Denote by D′ the proper transform of the divisor D on the threefold Vu′ ,

and denote by T ′ the proper transform of the exceptional surface Eσ on the

threefold Vu′ . Then the log pair

(7.14)
(
Vu′ , εD′ +

(
εm− 1

)
T ′

)
is not log canonical, because the log pair (7.13) is not log canonical at a general

point of the curve Ẑ.

Let us compute the class of the divisor D′ in the group Pic(Vu′), and the

multiplicity of the divisor D′ at a general point of the curve C′
4. Recall from
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(6.7) that C′
4 is the unique irreducible G-invariant curve of degree 4 in the

threefold Vu′ . We have

D̂ +
(
m− 1

)
Eσ ∼Q −K

̂Vu
.

This implies that D′ +
(
m− 1

)
T ′ ∼Q −KVu′ , where T ′ is the unique surface

in the linear system | − KVu′ | that is singular along the curve C′
4. Thus, we

have

D′ ∼Q −
(
2−m

)
KVu′ .

Similar arguments applied to the divisor 1
2−mD′ give

− 1

2−m
KV ∼Q

1

2−m
D ∼Q −

(
2−

multC′
4

(
D′)

2−m

)
KV ,

so that multC′
4
(D′) = 3− 2m.

Observe that multC′
4
(T ′) = 2. Thus, we have

multC′
4

(
εD′ +

(
εm− 1

)
T ′

)
= 3ε− 2 < 1,

so that (7.14) is log canonical at a general point of the curve C′
4. On the other

hand, we have

εD′ +
(
εm− 1

)
T ′ ∼Q −

(
2ε− 1

)
KVu′

and 2ε − 1 = 2
3 � ε(u). Thus, the log pair (7.14) must be log canonical by

Corollary 7.11 applied to Vu′ . The obtained contradiction completes the proof

of the lemma. �
Corollary 7.15. Let D be an effective Q-divisor on Vu such that D ∼Q

−KVu
. If u = 2, then the log pair (Vu,

2
3D) is log canonical at a general point

of the curve C4. If u �= 2, then the log pair (Vu,
5
6D) is log canonical at a

general point of the curve C4.
Proof. If u = 2, then (Vu,

2
3T

′
15) is log canonical at a general point of C4

by Lemma 5.2. Similarly, if u �= 2, then the pair (Vu, T
′
15) is log canonical at

a general point of the curve C4. Thus, by Remark 7.4, we may assume that

Supp(D) does not contain the surface T ′
15. Now the assertion follows from

Lemma 7.12. �
Combining Corollaries 7.11 and 7.15, we obtain the assertion of Theo-

rem 1.6. Indeed, let D be an effective Q-divisor on the threefold Vu such that

D ∼Q −KVu
. As we already mentioned, we have to show that the log pair

(Vu, ε(u)D) is log canonical. But the log pair (Vu, ε(u)D) is log canonical at

a general point of the curve C4 by Corollary 7.15, so that it is log canonical

everywhere by Corollary 7.11.
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