KÄHLER-EINSTEIN FANO THREEFOLDS OF DEGREE 22

IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Abstract

We study the problem of existence of Kähler-Einstein metrics on smooth Fano threefolds of Picard rank one and anticanonical degree 22 that admit a faithful action of the multiplicative group \mathbb{C}^{*}. We prove that, with the possible exception of two explicitly described cases, all such smooth Fano threefolds are Kähler-Einstein.

All varieties are assumed to be projective and are defined over the field of complex numbers.

1. Introduction

Smooth Fano threefolds of Picard rank 1 have been classified by Iskovskikh in [777,I78]. Among them, he found a family missing in the original works by Fano. Threefolds in this family have the same cohomology groups as \mathbb{P}^{3} does. Their anticanonical degree is 22 , hence they are called threefolds of type V_{22}. In fact, Iskovskikh himself missed one threefold in this family, which was later recovered by Mukai and Umemura in [MU83]. This threefold, usually called the Mukai-Umemura threefold, is an equivariant compactification of $\mathrm{SL}_{2}(\mathbb{C}) / \mathbf{I}$, where \mathbf{I} denotes the icosahedral group. Its automorphism group is isomorphic to the group $\mathrm{PGL}_{2}(\mathbb{C})$.

The automorphism groups of threefolds of type V_{22} have been studied by Prokhorov in [P90. He proved that this group is finite except for a unique threefold for which the connected component of identity of the automorphism

[^0]group is isomorphic to the additive group \mathbb{C}^{+}; and a one-parameter family of threefolds that admit a faithful action of the multiplicative group \mathbb{C}^{*}, which includes the Mukai-Umemura threefold as a special member. We refer to the latter varieties as threefolds of type V_{22}^{*}.

In Ti97, Tian showed that there are threefolds of type V_{22} with trivial automorphism group that do not admit Kähler-Einstein metrics, which disproved a folklore conjecture that all smooth Fano varieties without holomorphic vector fields are Kähler-Einstein. On the other hand, Donaldson proved

Theorem 1.1 ([D08, Theorem 3]). Let X be the Mukai-Umemura threefold, and G be its automorphism group. Then

$$
\alpha_{G}(X)=\frac{5}{6} .
$$

Here $\alpha_{G}(X)$ is the G-equivariant α-invariant defined by Tian in Ti87. If X is a smooth Fano variety, and G is a reductive subgroup in $\operatorname{Aut}(X)$, then Demailly's CS08, Theorem A.3] gives

$$
\alpha_{G}(X)=\sup \left\{\begin{array}{l|l}
\epsilon \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }\left(X, \frac{\epsilon}{n} \mathcal{D}\right) \text { is log canonical } \\
\text { for any } n \in \mathbb{Z}_{>0} \text { and every } \\
G \text {-invariant linear system } \mathcal{D} \subset\left|-n K_{X}\right|
\end{array} \tag{1.2}
\end{array}\right\}
$$

Donaldson's Theorem 1.1 implies the existence of a Kähler-Einstein metric on the Mukai-Umemura threefold by famous Tian's criterion:

Theorem 1.3 (Ti87]). Let X be a smooth Fano variety of dimension n, and G be a reductive subgroup in $\operatorname{Aut}(X)$. Suppose that

$$
\alpha_{G}(X)>\frac{n}{n+1} .
$$

Then X admits a Kähler-Einstein metric.
An example of a Kähler-Einstein threefold of type V_{22} with finite automorphism group has been constructed in CS12. On the other hand, there exist threefolds of this type that are not Kähler-Einstein.

Example 1.4. Let $X^{\text {a }}$ be the unique threefold of type V_{22} such that the connected component of identity of its automorphism group is isomorphic to the additive group \mathbb{C}^{+}. By the Matsushima obstruction, the variety $X^{\text {a }}$ is not Kähler-Einstein. It is interesting to point out that $X^{\text {a }}$ is K-semistable. Indeed, it follows from KPS18, Proposition 5.4.4] and the Mukai construction of varieties of type V_{22} (cf. [KPS18, Remark 5.4.8]) that the Mukai-Umemura threefold is a degeneration of X^{a}. Since the Mukai-Umemura threefold is Kähler-Einstein, it is K-polystable by [CDS15, so that in particular it is

K-semistable. On the other hand, K-semistability is an open condition, see [X19, Theorem 1.4] or BLX19, Corollary 1.2]. Hence $X^{\text {a }}$ is K-semistable.

The problem of existence of Kähler-Einstein metrics on threefolds of type V_{22}^{*} was addressed by Donaldson in D08, D18, by Rollin, Simanca and Tipler in [RST13], and by Dinew, Kapustka and Kapustka in DKK17. In particular, they proved that the set of such threefolds that are Kähler-Einstein is open in moduli in the Euclidean topology. Donaldson suggested that in fact all threefolds of type V_{22}^{*} are Kähler-Einstein. In D08, he wrote

> The Mukai-Umemura manifold has $\tau=1$. When τ is close to 1 we have seen that the corresponding manifold admits a Kähler-Einstein metric. It seems likely that this true for all τ but, as far as the author is aware, this is not known. It seems an interesting test case for future developments in the existence theory.

Here τ is a parameter in the moduli space of threefolds of type V_{22}^{*} that is used in D08. The Mukai-Umemura threefold corresponds to $\tau=1$.

In D18, §4.1], Donaldson made a more precise suggestion about which threefolds of type V_{22} are Kähler-Einstein metric and which are not. It also predicts that each threefold of type V_{22}^{*} must admit a Kähler-Einstein metric.

To verify Donaldson's suggestion, Dinew, Kapustka and Kapustka estimated the $\alpha_{\mathbb{C}^{*}}$-invariants of threefolds of type V_{22}^{*}. It appeared that they do not exceed $\frac{1}{2}$, so that Tian's Theorem 1.3 cannot be applied. However, the automorphism groups of all threefolds of type V_{22}^{*} are actually larger than \mathbb{C}^{*}. It was pointed out in RST13, DKK17 that there exists an additional involution that anticommutes with the \mathbb{C}^{*}-action, so that together they generate a subgroup isomorphic to $\mathbb{C}^{*} \rtimes \boldsymbol{\mu}_{2}$. Here $\boldsymbol{\mu}_{2}$ denotes the group of order 2. In fact, by KP17, Theorem 1.3], one has

$$
\operatorname{Aut}(X) \cong \mathbb{C}^{*} \rtimes \boldsymbol{\mu}_{2}
$$

for every threefold X of type V_{22}^{*} that is not the Mukai-Umemura threefold.
Dinew, Kapustka and Kapustka posed
Problem 1.5 (DKK17, Problem 7.1]). Let X be a smooth Fano threefold of type V_{22}^{*}, and let G be a subgroup in $\operatorname{Aut}(X)$ that is isomorphic to $\mathbb{C}^{*} \rtimes \boldsymbol{\mu}_{2}$. Compute $\alpha_{G}(X)$.

In this paper we completely solve this problem using the description of smooth Fano threefolds of type V_{22}^{*} obtained recently by Kuznetsov and Prokhorov in KP17.

Kuznetsov and Prokhorov proved that the isomorphisms classes of Fano threefolds of type V_{22}^{*} are naturally parameterized by $u \in \mathbb{C} \backslash\{0,1\}$. In \mathbb{Y}_{2}, we present their construction in details. Note that the parameter u used by

Kuznetsov and Prokhorov in KP17 differs from the parameter τ used by Donaldson in D08.

To state our main result, we denote by V_{u} the smooth Fano threefold of type V_{22}^{*} that corresponds to the parameter u in the construction of KP17. Then the Mukai-Umemura threefold is V_{u} for $u=-\frac{1}{4}$ by KP17, Theorem 1.3]. Let G be a subgroup in $\operatorname{Aut}\left(V_{u}\right)$ such that

$$
G \cong \mathbb{C}^{*} \rtimes \boldsymbol{\mu}_{2}
$$

The main result of our paper is
Theorem 1.6. One has

$$
\alpha_{G}\left(V_{u}\right)= \begin{cases}\frac{4}{5} & \text { if } u \neq \frac{3}{4} \text { and } u \neq 2, \\ \frac{3}{4} & \text { if } u=\frac{3}{4} \\ \frac{2}{3} & \text { if } u=2\end{cases}
$$

Applying Tian's Theorem 1.3, we obtain
Corollary 1.7. If $u \neq \frac{3}{4}$ and $u \neq 2$, then V_{u} is Kähler-Einstein.
Remark 1.8. If $u=\frac{3}{4}$ or $u=2$, then V_{u} is also Kähler-Einstein. This has been recently proved by Fujita in [Fu21. Note also that Theorem 1.6 and [ACCF^{+}, Theorem 1.4.10] imply that V_{u} is Kähler-Einstein for $u=\frac{3}{4}$.

Let us describe the scheme of the proof of Theorem [1.6. To estimate $\alpha_{G}\left(V_{u}\right)$, one has to describe irreducible G-invariant subvarieties of small degree in V_{u}. Since G acts on V_{u} without fixed points, we have to deal with irreducible G-invariant curves of small degree, and G-invariant anticanonical surfaces in V_{u}. However, the geometry of the threefold V_{u} is rather complicated, and it is hard to complete these tasks in a straightforward way. Instead, we use a construction of the threefold V_{u} as a G-equivariant birational image of a smooth quadric hypersurface in \mathbb{P}^{4} found recently by Kuznetsov and Prokhorov in KP17, see the diagram (2.5) for more details. This allows to describe irreducible G-invariant curves of small degree in V_{u} and G-invariant surfaces in $\left|-K_{V_{u}}\right|$ in terms of the quadric, whose G-equivariant geometry is much easier to control. In particular, this description gives us an upper bound on $\alpha_{G}\left(V_{u}\right)$. To show that the latter bound is sharp, we have to study G-equivariant birational geometry of the threefold V_{u}. We do this using three explicit G-equivariant Sarkisov links that start from V_{u}. As a result, we obtain the formula for $\alpha_{G}\left(V_{u}\right)$ in Theorem 1.6.

Let us describe the structure of this paper. In \S_{2} we recall from KP17 the explicit construction of the threefold V_{u} using a birational map from a three-dimensional quadric. In this section, we also describe this birational map explicitly in coordinates. In $\$ 3$, we start an explicit classification of
irreducible G-invariant curves of small degree in the threefold V_{u}, which will be used in the proof of Theorem 1.6. In $\S 4$ we complete this classification, see Proposition 4.12. In 95 , we study the pencil in the linear system $\left|-K_{V_{u}}\right|$ that consists of all G-invariant surfaces and describe singularities of surfaces in this pencil. In §6, we describe one Sarkisov link that plays a crucial role in the proof of Theorem 1.6 In this section, we also describe two special birational transformations of the threefold V_{u}, which are known as bad Sarkisov links. They are also used in the proof of our Theorem 1.6. Finally, in $\$ 7$, we prove Theorem 1.6

2. Kuznetsov-Prokhorov construction

Consider the projective space \mathbb{P}^{4} with homogeneous coordinates x, y, z, t, and w. Suppose that the group \mathbb{C}^{*} acts on \mathbb{P}^{4} by

$$
\begin{equation*}
\lambda:(x: y: z: t: w) \mapsto\left(x: \lambda y: \lambda^{3} z: \lambda^{5} t: \lambda^{6} w\right) \tag{2.1}
\end{equation*}
$$

Furthermore, consider the involution ι acting on \mathbb{P}^{4} by

$$
\begin{equation*}
\iota:(x: y: z: t: w) \mapsto(w: t: z: y: x) \tag{2.2}
\end{equation*}
$$

This defines the action of the group $G \cong \mathbb{C}^{*} \rtimes \boldsymbol{\mu}_{2}$ on \mathbb{P}^{4}.
Let the quadric Q_{u}, where $u \in \mathbb{C}$, be given by equation

$$
\begin{equation*}
u\left(x w-z^{2}\right)+\left(z^{2}-y t\right)=0 \tag{2.3}
\end{equation*}
$$

Then the quadric Q_{u} is G-invariant. Note that Q_{u} is smooth provided that $u \notin\{0,1\}$. Therefore, until the end of the paper (with the only exception of Remark (2.12), we will always assume that neither $u=0$ nor $u=1$.

Let Γ be the image of \mathbb{P}^{1} with homogeneous coordinates $\left(s_{0}: s_{1}\right)$ embedded into \mathbb{P}^{4} by

$$
\left(s_{0}: s_{1}\right) \mapsto\left(s_{0}^{6}: s_{0}^{5} s_{1}: s_{0}^{3} s_{1}^{3}: s_{0} s_{1}^{5}: s_{1}^{6}\right)
$$

Then Γ is a G-invariant curve contained in the quadric Q_{u}. It is the closure of the G-orbit of the point $(1: 1: 1: 1: 1)$. One easily checks that $\operatorname{deg}(\Gamma)=6$, cf. Lemma 3.1.

Let \mathcal{S} be the complete intersection in \mathbb{P}^{4} that is given by

$$
\left\{\begin{array}{l}
x w-z^{2}=0 \\
z^{2}-y t=0
\end{array}\right.
$$

Then the surface \mathcal{S} is G-invariant, and $\Gamma \subset \mathcal{S} \subset Q_{u}$.
Remark 2.4. The surface \mathcal{S} is a toric singular del Pezzo surface of degree 4 that has 4 ordinary double points. These points are ($1: 0: 0: 0: 0$),
$(0: 0: 0: 0: 1),(0: 1: 0: 0: 0)$ and $(0: 0: 0: 1: 0)$. The first two of them are contained in the curve Γ.

It was proved in [KP17, Theorem 2.2] (cf. [Ta89, (2.13.2)]) that there exists the following G-equivariant commutative diagram

Here V_{u} is a smooth Fano threefold of type V_{22}^{*}, the morphism π is the blowup of the quadric Q_{u} along the curve Γ, the morphism ϕ is the blowup of the threefold V_{u} along a (unique) G-invariant smooth rational curve \mathcal{C}_{2} with $-K_{V_{u}} \cdot \mathcal{C}_{2}=2$, the map χ is a flop in two smooth rational curves, which we will describe later in Remark 2.11 The morphisms α and β in (2.5) are small birational morphisms that are given by the linear systems $\left|-n K_{\widetilde{Q}_{u}}\right|$ and $\left|-n K_{\widetilde{V}_{u}}\right|$ for $n \gg 0$, respectively. By construction, the threefold Y_{u} is a non- \mathbb{Q}-factorial Fano threefold with terminal singularities such that $-K_{Y_{u}}^{3}=16$.

Remark 2.6. Kuznetsov and Prokhorov showed in KP17 that every smooth Fano threefold of type V_{22}^{*} can be obtained via diagram (2.5) for some $u \in \mathbb{C} \backslash\{0,1\}$. Moreover, they proved that for distinct u the resulting varieties V_{u} are not isomorphic. Furthermore, if $u=-\frac{1}{4}$, then V_{u} is the Mukai-Umemura threefold by [KP17, Theorem 1.3]. For other descriptions of threefolds of type V_{22}^{*}, see [D08, §5.3], DKK17, §2.2] and KPS18, §5.3].

Recall from [IP99, Proposition 4.1.11] that the divisor $-K_{V_{u}}$ is very ample, and the linear system $\left|-K_{V_{u}}\right|$ gives an embedding $V_{u} \hookrightarrow \mathbb{P}^{13}$. In particular, the curve \mathcal{C}_{2} is a conic in this embedding. Let us identify V_{u} with its anticalonical image in \mathbb{P}^{13} and fix the following notation.

- We denote by $H_{Q_{u}}$ a hyperplane section of the quadric Q_{u} in \mathbb{P}^{4}.
- We denote by $H_{V_{u}}$ a hyperplane section of the threefold V_{u} in \mathbb{P}^{13}.
- We denote by $\widetilde{\mathcal{S}}$ the proper transform of the surface \mathcal{S} on the threefold \widetilde{Q}_{u}.
- We denote by $E_{Q_{u}}$ the exceptional surface of the blowup π.
- We denote by $E_{V_{u}}$ the exceptional surface of the blowup ϕ.

Then $\widetilde{\mathcal{S}}$ is the proper transform of $E_{V_{u}}$ on \widetilde{Q}_{u}, which is the unique divisor in the linear system $\left|2 \pi^{*}\left(H_{Q_{u}}\right)-E_{Q_{u}}\right|$. Similarly, the proper transform of $E_{Q_{u}}$
on \widetilde{V}_{u} is the unique surface in the linear system $\left|2 \phi^{*}\left(H_{V_{u}}\right)-5 E_{V_{u}}\right|$. Thus, we also fix the following notation.

- We denote by $\widetilde{\mathcal{R}}$ the unique surface in the linear system $\mid 2 \phi^{*}\left(H_{V_{u}}\right)$ $5 E_{V_{u}} \mid$.
- We denote by \mathcal{R} the proper transform of the surface $\widetilde{\mathcal{R}}$ on the threefold V_{u}.
Corollary 2.7. One has $\alpha_{G}\left(V_{u}\right) \leqslant \frac{4}{5}$.
Proof. Let $D=\frac{1}{2} \mathcal{R}$. Then $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Moreover, since $\mathcal{R} \sim-2 K_{V_{u}}$ and $\operatorname{mult}_{\mathcal{C}_{2}}(\mathcal{R})=5$, the \log pair $\left(V_{u}, \frac{4}{5} D\right)$ is not Kawamata log terminal. Indeed, we have

$$
K_{\widetilde{V}_{u}}+\frac{4}{5} \widetilde{D}+E_{V_{u}} \sim_{\mathbb{Q}} \phi^{*}\left(K_{V_{u}}+\frac{4}{5} D\right) .
$$

This shows that $\alpha_{G}\left(V_{u}\right) \leqslant \frac{4}{5}$.
Using the information about the classes of the exceptional divisors $E_{Q_{u}}$ and $E_{V_{u}}$, one can easily check that the rational map $\phi \circ \chi: \widetilde{Q}_{u} \rightarrow V_{u}$ is given by the linear system $\left|5 \pi^{*}\left(H_{Q_{u}}\right)-2 E_{Q_{u}}\right|$, and the rational map $\pi \circ \chi^{-1}: \widetilde{V}_{u} \rightarrow Q_{u}$ is given by the linear system $\left|\phi^{*}\left(H_{V_{u}}\right)-2 E_{V_{u}}\right|$.

Remark 2.8. By [IP99, Proposition 4.1.12(iii)], the threefold V_{u} is a scheme-theoretic intersection of quadrics in \mathbb{P}^{13}. Thus since $-K_{\widetilde{V}_{u}} \sim \phi^{*}\left(H_{V_{u}}\right)-$ $E_{V_{u}}$ and $h^{0}\left(\mathcal{O}_{\widetilde{V}_{u}}\left(-K_{\widetilde{V}_{u}}\right)\right)=11$, the linear system $\left|-K_{\widetilde{V}_{u}}\right|$ gives a morphism $V_{u} \rightarrow \mathbb{P}^{10}$ that is birational on its image. Hence, there is a commutative diagram

such that the dashed arrow is a linear projection from the conic \mathcal{C}_{2}. This implies that we can assume that the morphism β in (2.5) is given by the linear system $\left|-K_{\widetilde{V}_{u}}\right|$. Hence, we can also assume that the morphism α is given by the linear system $\left|-K_{\widetilde{Q}_{u}}\right|$. Thus, the threefold Y_{u} is a (singular) Fano threefold anticanonically embedded into \mathbb{P}^{10}.

Let L_{1} and L_{2} be the tangent lines in \mathbb{P}^{4} to the curve Γ at the points ($1: 0: 0: 0: 0)$ and $(0: 0: 0: 0: 1)$, respectively. Then L_{1} is given by

$$
\begin{equation*}
z=t=w=0 \tag{2.9}
\end{equation*}
$$

and the line L_{2} is given by

$$
\begin{equation*}
x=y=z=0 . \tag{2.10}
\end{equation*}
$$

Thus, both lines L_{1} and L_{2} are contained in the surface \mathcal{S}. Denote by \widetilde{L}_{1} and \widetilde{L}_{2} the proper transforms of the lines L_{1} and L_{2} on the threefold \widetilde{Q}_{u}, respectively.

Remark 2.11. By KP17, Remark 5.3], the curves \widetilde{L}_{1} and \widetilde{L}_{2} are the flopping curves of the map χ. The flopping curves of χ^{-1} are described in KK17, Proposition 5.1]. Namely, the threefold V_{u} contains exactly two lines that intersect the conic \mathcal{C}_{2}. Denote them by ℓ_{1} and ℓ_{2}, and denote their proper transforms on \widetilde{V}_{u} by $\widetilde{\ell}_{1}$ and $\widetilde{\ell}_{2}$, respectively. The lines ℓ_{1} and ℓ_{2} intersect the conic \mathcal{C}_{2} transversally, because V_{u} is an intersection of quadrics. Moreover, the lines ℓ_{1} and ℓ_{2} are contained in the surface \mathcal{R}, since $\mathcal{R} \sim-2 K_{V_{u}}$ and $\operatorname{mult}_{\mathcal{C}_{2}}(\mathcal{R})=5$. By KP17, Remark 5.3], the curves $\widetilde{\ell}_{1}$ and $\widetilde{\ell}_{2}$ are exactly the flopping curves of the map χ^{-1}. Thus, the birational map ζ in (2.5) induces an isomorphism

$$
Q_{v} \backslash \mathcal{S} \cong V_{u} \backslash \mathcal{R}
$$

Without loss of generality, we may assume that $\beta\left(\widetilde{\ell}_{1}\right)=\alpha\left(\widetilde{L}_{1}\right)$ and $\beta\left(\widetilde{\ell}_{2}\right)=$ $\alpha\left(\widetilde{L}_{2}\right)$. Note that the lines ℓ_{1} and ℓ_{2} on the Fano threefold V_{u} are special, i.e., their normal bundles in V_{u} are isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)$; see the proof of KP17, Proposition 5.1]. This implies that the normal bundles of the curves $\widetilde{\ell}_{1}$ and $\widetilde{\ell}_{2}$ in \widetilde{V}_{u} are isomorphic to $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)$, so that the flop χ^{-1} is given by Reid's pagoda [R83, §5].

Remark 2.12. It follows from Theorem 1.6 and Remark 1.8 that V_{u} is K-polystable for every $u \notin\{0,1\}$. It would be interesting to find the Kpolystable limits of the threefolds V_{u} when $u \rightarrow 0, u \rightarrow 1$ and $u \rightarrow \infty$. In fact, we have a candidate for the limit in the case when $u \rightarrow 1$. Namely, if $u=1$, then the quadric threefold Q_{u} is singular at the point $(0: 0: 1: 0: 0)$. This point is not contained in the surface \mathcal{S}, and it is not contained in the curve Γ. Thus, the commutative diagram (2.5) still makes sense in this case. The threefold V_{1} is a Fano threefold with one ordinary double point such that $-K_{V_{1}}^{3}=22$. By [KP17, Proposition 5.4], one has $\operatorname{Pic}\left(V_{1}\right) \cong \mathbb{Z}$ and $\mathrm{Cl}\left(V_{1}\right) \cong$ \mathbb{Z}^{2}, so that V_{1} is one of the threefolds described in [P16, Theorem 1.2]. Note also that $\mathrm{Cl}\left(V_{1}\right)^{G} \cong \mathbb{Z}^{2}$. We expect that V_{1} is K-polystable, so that it is the K-polystable limit of our threefolds V_{u} when $u \rightarrow 1$.

The commutative diagram (2.5) is a Sarkisov link (that starts at Q_{u} and ends at V_{u}). It plays a crucial role in the proof of our Theorem 1.6. In $₫ 6$ we describe another G-equivariant Sarkisov link that starts at V_{u} and ends at another threefold of type V_{22}^{*} (possibly isomorphic to V_{u}). This link also helps to prove Theorem 1.6.

Remark 2.13 (cf. CS12, CS14, CS15, CS16, CS19). It would be interesting to study other G-Sarkisov links that start at the threefold V_{u} or the quadric Q_{u}. Such links usually arise from G-irreducible curves of small degree
or G-orbits of small length. For example, the inverse of the link (2.5) arises from the conic \mathcal{C}_{2}, which is irreducible and G-invariant. The curve $\ell_{1}+\ell_{2}$ from Remark 2.11 also gives rise to a G-Sarkisov link. Namely, one can show that there exists a G-equivariant commutative diagram

Here v is a blowup of the lines ℓ_{1} and ℓ_{2}, the morphisms ς and φ are small and birational, the map ϱ flops the curves contracted by ς, the threefold U is a Fano threefold with terminal singularities such that $-K_{U}^{3}=14$, the threefold W is a smooth Fano threefold such that $\operatorname{Pic}(W) \cong \mathbb{Z}^{2}$ and $-K_{W}^{3}=28$, and ν is a birational morphism that contracts the proper transform of the unique surface in $\left|-K_{V_{u}}\right|$ which is singular along the lines ℓ_{1} and ℓ_{2} to a smooth rational curve of (anticanonical) degree 6. Note that $\operatorname{Pic}(W)^{G} \cong \mathbb{Z}$, and W is the threefold No. (1.2.3) in P13, Theorem 1.2]. It can be realized as the blow-up of a smooth quadric in \mathbb{P}^{4} along a twisted quartic curve. Note that unlike (2.5) the diagram (2.14) is not a Sarkisov link in the usual sense C95, because the curve $\ell_{1}+\ell_{2}$ is reducible.

Now we describe the birational maps γ and ζ in the diagram (2.5) explicitly using coordinates on \mathbb{P}^{4}. To describe the map γ, recall that this map is given by the restriction of the linear system of all cubic hypersurfaces in \mathbb{P}^{4} that pass through the curve Γ to the quadric Q_{u}. Since γ is G-equivariant and, in particular, \mathbb{C}^{*}-equivariant, we are in position to choose \mathbb{C}^{*}-invariant generators of this linear system. To start with, set

$$
f=x w-y t
$$

so that the equation $f=0$ cuts out the surface \mathcal{S} on the quadric Q_{u}. Then we set

$$
\begin{align*}
& h_{3}=y^{3}-x^{2} z, \quad h_{5}=x^{2} t-y^{2} z, \quad h_{6}=x f, \quad h_{7}=y f, \tag{2.15}\\
& h_{8}=y^{2} w-x z t, \quad h_{9}=z f, \quad h_{10}=x t^{2}-y z w, \quad h_{11}=t f, \\
& h_{12}=w f, \quad h_{13}=y w^{2}-z t^{2}, \quad h_{15}=t^{3}-z w^{2} .
\end{align*}
$$

Then the involution ι swaps the polynomials h_{i} and h_{18-i} for $3 \leqslant i \leqslant 8$, and it preserves the polynomial h_{9}. Observe also that these 11 cubic polynomials all vanish on the curve Γ. Moreover, the corresponding surfaces in Q_{u} cut out by $h_{i}=0$ are smooth at a general point of the curve Γ, so that their proper transforms on \widetilde{Q}_{u} are all contained in the linear system $\left|-K_{\widetilde{Q}_{u}}\right|=$ $\left|3 \pi^{*}\left(H_{Q_{u}}\right)-E_{Q_{u}}\right|$.

Every polynomial h_{i} is semi-invariant with respect to the \mathbb{C}^{*}-action (2.1). Moreover, the weight of the polynomial h_{i} equals i. This implies, in particular, that they define linearly independent sections in $H^{0}\left(\mathcal{O}_{Q_{u}}\left(3 H_{Q_{u}}\right)\right)$. Since $h^{0}\left(\mathcal{O}_{\widetilde{Q}_{u}}\left(-K_{\widetilde{Q}_{u}}\right)\right)=11$ by the Riemann-Roch formula and KawamataViehweg vanishing theorem, we conclude that the birational map γ in (2.5) is given by

$$
\begin{equation*}
(x: y: z: t: w) \mapsto\left(h_{3}: h_{5}: h_{6}: h_{7}: h_{8}: h_{9}: h_{10}: h_{11}: h_{12}: h_{13}: h_{15}\right) \tag{2.16}
\end{equation*}
$$

Thus, using (2.9) and (2.10), we see that $\gamma\left(L_{1}\right)=(1: 0: 0: 0: 0: 0: 0: 0:$ $0: 0: 0: 0)$ and $\gamma\left(L_{2}\right)=(0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1)$.

Now let us describe the map ζ in (2.5). To do this, we set

$$
\begin{equation*}
g_{i+6}=f \cdot h_{i} \tag{2.17}
\end{equation*}
$$

for $i \in\{3,5,6,7,8,9,10,11,12,13,15\}$. Let

$$
\begin{gather*}
(2.18) \quad g_{10}=(u-1) x^{2} y z w-3 x y^{2} z t+(2-u) x y z^{3}+y^{4} w+x^{3} t^{2} \tag{2.18}\\
g_{20}=(u-1) x z t w^{2}-3 y z t^{2} w+(2-u) z^{3} t w+x t^{4}+y^{2} w^{3} \\
g_{15}^{\prime}=(u-1) x^{2} t^{3}+(u-1) y^{3} w^{2}-(u+4) y^{2} z t^{2}+(3 u+2) x y z t w+(4-4 u) y z^{3} t .
\end{gather*}
$$

Note that the involution ι swaps the polynomials g_{i} and g_{30-i} for $9 \leqslant i \leqslant 14$, and it preserves both polynomials g_{15} and g_{15}^{\prime}. Observe that all polynomials g_{i} and the polynomial g_{15}^{\prime} are semi-invariant with respect to the \mathbb{C}^{*}-action (2.1). Moreover, the weight of the polynomial g_{i} equals i, and the weight of the polynomial g_{15}^{\prime} equals 15 . Also observe that

$$
g_{15}^{\prime}(0,1,0,0,1)=1 \neq 0=g_{15}(0,1,0,0,1)
$$

and the point $(0: 1: 0: 0: 1)$ is contained in the quadric Q_{u}. This implies, in particular, that these 14 quintic polynomials define linearly independent sections in $H^{0}\left(\mathcal{O}_{Q_{u}}\left(5 H_{Q_{u}}\right)\right)$.

For every $i \in\{9, \ldots, 21\}$, denote by M_{i} the surface in the quadric Q_{u} that is cut out by the equation $g_{i}=0$. Similarly, denote by M_{15}^{\prime} the surface in Q_{u} that is cut out by the equation $g_{15}^{\prime}=0$. It is easy to see that all these surfaces pass through the curve Γ.

Lemma 2.19. The surfaces M_{i} and M_{15}^{\prime} are singular along Γ.
Proof. For $i \in\{3,5,6,7,8,9,10,11,12,13,15\}$ this follows from the fact that the polynomials h_{i} and f vanish along Γ. To check the assertion for the surfaces M_{10}, M_{20} and M_{15}^{\prime}, one can just write down the partial derivatives of g_{10}, g_{20} and g_{15}^{\prime} at the point $(1: 1: 1: 1: 1)$, compare them with the partial derivatives of the left hand side of (2.3), and then use the fact that Γ is the closure of the orbit of the latter point.

One can check that the multiplicities of the surfaces M_{i} and M_{15}^{\prime} along the curve Γ equal 2. This also follows from the fact that the surfaces $E_{Q_{u}}$ and $\widetilde{\mathcal{S}}$ generate the cone of effective divisors of the threefold \widetilde{Q}_{u}. We conclude that the proper transforms of the surfaces M_{i} and M_{15}^{\prime} on the threefold \widetilde{Q}_{u} generate the linear system $\left|5 H_{Q_{u}}-2 E_{Q_{u}}\right|$. Hence, the birational map ζ in (2.5) is given by

$$
\begin{align*}
(x: y: z: t: w) \mapsto(& \left(g_{9}: g_{10}: g_{11}: g_{12}: g_{13}: g_{14}: g_{15}\right. \tag{2.20}\\
& \left.: g_{15}^{\prime}: g_{16}: g_{17}: g_{18}: g_{19}: g_{20}: g_{21}\right)
\end{align*} .
$$

In particular, this reproves [DKK17, Proposition 4.1].
Denote by T_{i} and T_{15}^{\prime} the proper transforms of the surfaces M_{i} and M_{15}^{\prime} on the threefold V_{u}, respectively. Then

$$
T_{i} \sim T_{15}^{\prime} \sim-K_{V_{u}} \sim H_{V_{u}}
$$

This implies that all surfaces T_{i} and T_{15}^{\prime} are irreducible, because the group $\operatorname{Pic}\left(V_{u}\right)$ is generated by the divisor $H_{V_{u}}$. This implies that the surface M_{15}^{\prime} is irreducible, since the surface T_{15}^{\prime} is irreducible and M_{15}^{\prime} does not contain the surface \mathcal{S}. Similarly, the surfaces M_{10} and M_{20} are also irreducible. However, the remaining surfaces M_{i} are reducible. Namely, let $N_{3}, N_{5}, N_{8}, N_{10}, N_{13}$ and N_{15} be the surfaces in Q_{u} that are cut out by the equations $h_{3}=0$, $h_{5}=0, h_{8}=0, h_{10}=0$ and $h_{15}=0$, respectively. Similarly, let H_{x}, H_{y}, H_{z}, H_{t} and H_{w} be the hyperplane sections of the quadric Q_{u} that are cut out by $x=0, y=0, z=0, t=0$ and $w=0$, respectively. Then we see from (2.15) that

$$
\begin{array}{ll}
M_{9}=N_{3}+\mathcal{S}, & M_{11}=N_{5}+\mathcal{S}, \quad M_{12}=H_{x}+2 \mathcal{S}, \quad M_{13}=H_{y}+2 \mathcal{S} \\
M_{14}=N_{8}+\mathcal{S}, & M_{15}=H_{z}+2 \mathcal{S}, \quad M_{16}=N_{10}+\mathcal{S}, \quad M_{17}=H_{t}+2 \mathcal{S} \\
& M_{18}=H_{w}+2 \mathcal{S}, \quad M_{19}=N_{13}+\mathcal{S}, \quad M_{21}=N_{15}+\mathcal{S}
\end{array}
$$

Thus, the surfaces $T_{9}, T_{11}, T_{14}, T_{16}, T_{19}$ and T_{21} are actually the proper transforms on the threefold V_{u} of the surfaces $N_{3}, N_{5}, N_{8}, N_{10}, N_{13}$ and N_{15}, respectively. Similarly, the surfaces $T_{12}, T_{13}, T_{15}, T_{17}$ and T_{18} are the proper transforms on the threefold V_{u} of the surfaces $H_{x}, H_{y}, H_{z}, H_{t}$ and H_{w}, respectively.

Remark 2.21. It follows from (2.20) that the conic \mathcal{C}_{2} is contained in the surfaces $T_{9}, T_{11}, T_{12}, T_{13}, T_{14}, T_{15}, T_{16}, T_{17}, T_{18}, T_{19}$ and T_{21}, and it is not contained in the surfaces T_{10}, T_{20} and T_{15}^{\prime}.

Lemma 2.22. The line ℓ_{1} is contained in the surfaces $T_{11}, T_{12}, T_{13}, T_{14}$, $T_{15}, T_{15}^{\prime}, T_{16}, T_{17}, T_{18}, T_{19}, T_{20}, T_{21}$, and it is not contained in the surfaces T_{9} and T_{10}. Similarly, the line ℓ_{2} is contained in the surfaces T_{9}, T_{10}, T_{11},
$T_{12}, T_{13}, T_{14}, T_{15}, T_{15}^{\prime}, T_{16}, T_{17}, T_{18}, T_{19}$, and it is not contained in the surfaces T_{20} and T_{21}.

Proof. Let $P_{\lambda} \in \mathbb{P}^{4}$ be the point

$$
\left(\frac{\lambda(u \lambda-\lambda+1)}{u}: \lambda: \lambda: 1: 1\right),
$$

where $\lambda \in \mathbb{C}$. Let C be the (closure of the) curve swept out by P_{λ}. Then C is contained in the quadric Q_{u}, and

$$
C \cap L_{2}=P_{0}=(0: 0: 0: 1: 1) .
$$

Note that the point P_{0} is not contained in the curve Γ, so that the proper transforms of the curves C and L_{2} on the threefold \widetilde{Q}_{u} still meet at the preimage of the point P_{0}. This implies that the proper transform $C_{V_{u}}$ of the curve C on the threefold V_{u} intersects the line ℓ_{2}. Substitute the coordinates of the point P_{λ} into (2.20), multiply the coordinates of the resulting point by $\frac{u}{\lambda}$, and let $\lambda=0$. This gives the point

$$
C_{V_{u}} \cap \ell_{2}=(0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 1-u) .
$$

Using the \mathbb{C}^{*}-action on \mathbb{P}^{13}, we immediately obtain the equations of the line ℓ_{2}. The equations for the line ℓ_{1} are obtained in a similar way. Now the required assertion follows from (2.20).

Let us conclude this section by Lemma 2.23
Lemma 2.23. There are no G-fixed points in Q_{u} and V_{u}.
Proof. It follows from (2.1) that the only \mathbb{C}^{*}-fixed points in the quadric Q_{u} are the points $(1: 0: 0: 0: 0),(0: 0: 0: 0: 1),(0: 1: 0: 0: 0)$ and $(0: 0: 0: 1: 0)$. Note that ι swaps the points $(1: 0: 0: 0: 0)$ and ($0: 0: 0: 0: 1$), and it also swaps the remaining two \mathbb{C}^{*}-fixed points, so that there are no G-fixed points in Q_{u}. This also implies that there are no G-fixed points in \widetilde{Q}_{u}.

By Remark 2.11, the flopping curves of χ are disjoint and swapped by the involution ι. Hence, there are no G-fixed points in \widetilde{V}_{u}. Thus, if V_{u} contains a G-fixed point, then it must be contained in the conic \mathcal{C}_{2}.

Let $\Pi \cong \mathbb{P}^{2}$ be the linear span of the conic \mathcal{C}_{2} in \mathbb{P}^{13}. Then Π is G-invariant. The action of G on Π is not faithful (indeed, it contains all elements of order 5 in \mathbb{C}^{*}). However, the kernel is finite, and the automorphism ι acts faithfully on Π. This implies that there is a faithful action of a quotient of G that is isomorphic to G on Π and thus on \mathcal{C}_{2}. Therefore, the conic \mathcal{C}_{2} does not contain G-fixed points, so that there are no G-fixed points in V_{u}.

3. Invariant curves

In this section, we make the first steps needed for a description of irreducible G-invariant curves in Q_{u} and V_{u}. We start with

Lemma 3.1. Fix a point $\left(a_{0}: \ldots: a_{n}\right) \in \mathbb{P}^{n}$, and fix positive integers $r_{0} \leqslant \ldots \leqslant r_{n}$. Let Z be the curve in \mathbb{P}^{n} that is the closure of the subset

$$
\left\{\left(\lambda^{r_{0}} a_{0}: \ldots: \lambda^{r_{n}} a_{n}\right) \mid \lambda \in \mathbb{C}^{*}\right\} \subset \mathbb{P}^{n}
$$

Denote by Σ the set of indices i such that $a_{i} \neq 0$. Set

$$
r_{k}=\min \left\{r_{i} \mid i \in \Sigma\right\}, \quad r_{K}=\max \left\{r_{i} \mid i \in \Sigma\right\}
$$

Denote by d the greatest common divisor of the numbers $r_{i}-r_{k}$ for $i \in \Sigma$. Then

$$
\operatorname{deg}(Z)=\frac{r_{K}-r_{k}}{d}
$$

Furthermore, let s be the maximal number of indices i in Σ with distinct r_{i}. Then Z is a rational normal curve if and only if $\operatorname{deg}(Z)=s$.

Proof. Cancelling a common factor in the homogeneous coordinates if necessary, we may assume that $r_{k}=0$. To compute the degree of Z, note that the intersection points of Z with a general hyperplane Λ in \mathbb{P}^{n} correspond to the roots of a polynomial $P_{\Lambda}(\lambda)$ of degree r_{K} in λ. Since P_{Λ} is actually a polynomial of degree r_{K} / d in λ^{d}, the r_{K} roots of P_{Λ} produce r_{K} / d points of $\Lambda \cap Z$. Thus, the degree of Z equals r_{K} / d. It remains to notice that the linear span of Z has dimension s, so that Z is a rational normal curve if and only if $\operatorname{deg}(Z)=s$.

There are no G-fixed points in Q_{u} by Lemma 2.23. This implies, in particular, that every irreducible G-invariant curve in Q_{u} is rational and contains at least one ι-fixed point. Hence, every irreducible G-invariant curve is a closure of the \mathbb{C}^{*}-orbit of any of its ι-fixed points.

Lemma 3.2. All ι-fixed points in Q_{u} are the points

$$
P_{ \pm}=(1: \pm \sqrt{u}: 0: \mp \sqrt{u}:-1)
$$

and the points

$$
\begin{align*}
& \left(b^{2}-(1-u)(a-b)^{2}: u\left(a^{2}-b^{2}\right)-a^{2}:\right. \tag{3.3}\\
& \left.\quad a^{2}-u(a-b)^{2}: u\left(a^{2}-b^{2}\right)-a^{2}: b^{2}-(1-u)(a-b)^{2}\right)
\end{align*}
$$

where $(a: b) \in \mathbb{P}^{1}$.

Proof. Using (2.2), one can see that the ι-fixed points in \mathbb{P}^{4} are the points of the line

$$
\left\{\begin{array}{l}
x+w=0, \\
y+t=0, \\
z=0
\end{array}\right.
$$

and the points of the plane

$$
\left\{\begin{array}{l}
x-w=0 \\
y-t=0
\end{array}\right.
$$

Intersecting the line with Q_{u}, we obtain the points $P_{ \pm}$. Similarly, intersecting the plane with the quadric Q_{u}, we obtain the conic parameterized by (3.3).

Observe that the \mathbb{C}^{*}-orbit of the point P_{+}is the same as the \mathbb{C}^{*}-orbit of the point P_{-}. We denote its closure by $\Theta_{ \pm}$. Similarly, we denote the closure of the \mathbb{C}^{*}-orbit of the point (3.3) by $\Theta_{a, b}$. By construction, the curves $\Theta_{ \pm}$ and $\Theta_{a, b}$ are all irreducible G-invariant curves contained in the quadric Q_{u}.

Lemma 3.4. The only irreducible G-invariant curves in \mathcal{S} are

$$
\Gamma=\Theta_{0,1}=\Theta_{u, u-1}
$$

and $\Theta_{1,0}=\Theta_{1,1}$. The degree of the curve $\gamma\left(\Theta_{1,0}\right)$ in \mathbb{P}^{10} is 12 .
Proof. Recall from $₫ 2$ that the surface \mathcal{S} is cut out on the quadric Q_{u} by the equation $f=0$, where $f=x w-y t$. Substituting $x=1, y= \pm \sqrt{u}, z=0$, $t=\mp \sqrt{u}$ and $w=-1$ into the polynomial f, we get $u-1$, so that the curve $\Theta_{ \pm}$is not contained in \mathcal{S}. Similarly, substituting the coordinates of the point (3.3) into f, we obtain

$$
4(1-u) a b(a-b)(u(a-b)-a)
$$

and the first assertion follows.
The curve $\Theta_{1,0}$ is the closure of the \mathbb{C}^{*}-orbit of the point $P=(1: 1:-1$: $1: 1)$. Thus, by (2.16), the curve $\gamma\left(\Theta_{1,0}\right)$ is the closure of the \mathbb{C}^{*}-orbit of the point

$$
\gamma(P)=(1: 1: 0: 0: 1: 0: 1: 0: 0: 1: 1)
$$

so that the degree of the curve $\gamma\left(\Theta_{0,1}\right)$ is 12 by Lemma 3.1.
Let Δ be the conic in Q_{u} that is cut out by

$$
\begin{equation*}
y=t=0 . \tag{3.5}
\end{equation*}
$$

Then Δ is G-invariant. One can check that

$$
\Delta=\Theta_{\sqrt{u}, \sqrt{u-1}}=\Theta_{-\sqrt{u}, \sqrt{u-1}} .
$$

Similarly, let Υ be the conic in Q_{u} that is cut out by

$$
\begin{equation*}
x=w=0 . \tag{3.6}
\end{equation*}
$$

Then Υ is G-invariant. One can check that

$$
\Upsilon=\Theta_{\sqrt{1-u}+1, \sqrt{1-u}}=\Theta_{\sqrt{1-u}-1, \sqrt{1-u}}
$$

Lemma 3.7. The following assertions hold.
(i) The curve $\zeta\left(\Theta_{ \pm}\right)$is a curve of degree 12. One has $\zeta\left(\Theta_{ \pm}\right) \subset T_{15} \cap T_{15}^{\prime}$.
(ii) The curve $\zeta(\Delta)$ is a rational normal curve of degree 4. One has $\zeta(\Delta) \subset T_{10} \cap T_{20}$.
(iii) The curve $\zeta(\Upsilon)$ is a rational normal curve of degree 6. One has $\zeta(\Upsilon) \subset T_{10} \cap T_{20}$.
(iv) For every curve $\Theta_{a, b}$ not contained in the surface \mathcal{S} and different from Δ and Υ, the degree of $\zeta\left(\Theta_{a, b}\right)$ is either 10 or 12.
(v) If $\Theta_{a, b}$ is not contained in the surface \mathcal{S}, then the degree of the curve $\zeta\left(\Theta_{a, b}\right)$ equals 10 if and only if the curve $\Theta_{a, b}$ is contained in $N_{3} \cap N_{15}$.
Proof. By (2.20), the curve $\zeta\left(\Theta_{ \pm}\right)$is the closure of the \mathbb{C}^{*}-orbit of the point $\zeta\left(P_{+}\right)$that is

$$
\begin{aligned}
(u \sqrt{u}:-u:-\sqrt{u} & : u-1: \sqrt{u}(u-1): \\
& -u: 0: 0: u:-\sqrt{u}(u-1):-u+1: \sqrt{u}: u:-u \sqrt{u})
\end{aligned}
$$

which is contained in $T_{15} \cap T_{15}^{\prime}$. Then $\zeta\left(\Theta_{ \pm}\right)$is a curve of degree 12 by Lemma 3.1, and it is contained in $T_{15} \cap T_{15}^{\prime}$. This proves assertion (i).

To prove assertions (ii), (iii) and (iv), we need some auxiliary computations. Define the polynomial
$q_{0}=(u-1)^{2} a^{4}-2(u-1)^{2} a^{3} b+2(u-1)(u-2) a^{2} b^{2}-6 u(u-1) a b^{3}+u(3 u-2) b^{4}$.
Furthermore, define the polynomials

$$
\begin{aligned}
& q_{1}=(u-1) a^{2}-u b^{2}, \\
& q_{2}=(u-1) a^{2}-(2 u-2) a b+u b^{2}, \\
& q_{3}=(u-1) a^{2}+2 a b-(u+2) b^{2}, \\
& q_{4}=(u-1) a^{2}-(2 u-2) a b+(u-2) b^{2}, \\
& q_{5}=(u-1) a^{2}-2 u a b+u b^{2}, \\
& q_{6}=(u-1) a^{2}-(2 u-4) a b+(u-4) b^{2} .
\end{aligned}
$$

Recall that $u \neq 0$ and $u \neq 1$. Observe that q_{i} is coprime to q_{j} for $0 \leqslant i<j \leqslant 6$ with the following exceptions:

- q_{0} is divisible by q_{6} provided that $u^{2}-2 u+2=0$;
- $q_{1}=q_{6}$ provided that $u=2$;
- $q_{3}=q_{5}$ provided that $u=-1$;
- q_{2} and q_{3} have a common linear factor provided that $u=\frac{-1 \pm \sqrt{5}}{2}$.

Substituting the coordinates of the point (3.3) into the polynomials g_{i} and g_{15}^{\prime}, we obtain the polynomials p_{i} and p_{15}^{\prime} (in a and b), respectively. We compute

$$
\begin{aligned}
& p_{9}=p_{21}=-8(u-1) a^{2} b(a-b)((u-1) a-u b)^{2} q_{0}, \\
& p_{10}=p_{20}=4 a^{2}((u-1) a-u b)^{2} q_{1} q_{2} q_{3}, \\
& p_{11}=p_{19}=-8(u-1) a^{2} b(a-b)((u-1) a-u b)^{2} q_{1} q_{4}, \\
& p_{12}=p_{18}=16(u-1)^{2} a^{2} b^{2}(a-b)^{2}((u-1) a-u b)^{2} q_{2}, \\
& p_{13}=p_{17}=16(u-1)^{2} a^{2} b^{2}(a-b)^{2}((u-1) a-u b)^{2} q_{1}, \\
& p_{14}=p_{16}=-8(u-1) a^{2} b(a-b)((u-1) a-u b)^{2} q_{1} q_{2}, \\
& p_{15}=-16(u-1)^{2} a^{2} b^{2}(a-b)^{2}((u-1) a-u b)^{2} q_{5}, \\
& p_{15}^{\prime}=4(u-1) a^{2}((u-1) a-u b)^{2} q_{1}^{2} q_{6} .
\end{aligned}
$$

Let us consider the curve $\Theta_{a, b}$ not contained in the surface \mathcal{S}. By Lemma3.4 this means that $a \neq 0, b \neq 0, a-b \neq 0$ and $(u-1) a-u b \neq 0$. These conditions imply that

- the polynomials p_{9} and p_{21} vanish if and only if q_{0} does,
- the polynomials p_{10} and p_{20} vanish if and only if one of q_{1}, q_{2}, or q_{3} does,
- the polynomials p_{11} and p_{19} vanish if and only if either q_{1} or q_{4} does,
- the polynomials p_{12} and p_{18} vanish if and only if q_{2} does,
- the polynomials p_{13} and p_{17} vanish if and only if q_{1} does,
- the polynomials p_{14} and p_{16} vanish if and only if either q_{1} or q_{2} does,
- the polynomial p_{15} vanishes if and only if q_{5} does,
- the polynomial p_{15}^{\prime} vanishes if and only if either q_{1} or q_{6} does.

Note that $q_{1}=0$ if and only if $\Theta_{a, b}=\Delta$, and $q_{2}=0$ if and only if $\Theta_{a, b}=\Upsilon$.
Suppose that $\Theta_{a, b}=\Delta$. Then $q_{1}=0$, so that

$$
\begin{equation*}
p_{10}=p_{11}=p_{13}=p_{14}=p_{15}^{\prime}=p_{16}=p_{17}=p_{19}=p_{20}=0 . \tag{3.8}
\end{equation*}
$$

The coprimeness properties of the polynomials q_{i} imply that $p_{9}, p_{12}, p_{15}, p_{18}$ and p_{21} do not vanish. Therefore, $\zeta(\Delta)$ is a rational normal curve of degree 4 by (2.20) and Lemma 3.1 which proves assertion (ii).

Suppose that $\Theta_{a, b}=\Upsilon$. Then $q_{2}=0$, so that

$$
\begin{equation*}
p_{10}=p_{12}=p_{14}=p_{16}=p_{18}=p_{20}=0 . \tag{3.9}
\end{equation*}
$$

The coprimeness properties of the polynomials q_{i} imply that $p_{9}, p_{11}, p_{13}, p_{15}$, p_{17}, p_{19} and p_{21} do not vanish. Therefore, we see that $\zeta(\Upsilon)$ is a rational normal curve of degree 6 by (2.20) and Lemma 3.1, which proves assertion (iii).

Now suppose that $\Theta_{a, b}$ is different from Δ and Υ. This means that $q_{1} \neq 0$ and $q_{2} \neq 0$, so that in particular p_{12} and p_{13} do not vanish. If $q_{0} \neq 0$, then p_{9} and p_{21} do not vanish as well, so that the degree of the curve $\zeta\left(\Theta_{a, b}\right)$ is 12 by (2.20) and Lemma 3.1. Thus, we may assume that $q_{0}=0$, so that

$$
p_{9}=p_{21}=0
$$

The coprimeness properties of the polynomials q_{i} imply that p_{10}, p_{11} and p_{20} do not vanish, so that the degree of the curve $\zeta\left(\Theta_{a, b}\right)$ is 10 by (2.20) and Lemma 3.1. This proves assertion (iv). The condition $p_{9}=p_{21}=0$ means that the curve $\Theta_{a, b}$ is contained in M_{9} and M_{21}. Since $M_{9}=N_{3}+\mathcal{S}$ and $M_{21}=N_{15}+\mathcal{S}$, we see that $\Theta_{a, b}$ is contained in N_{3} and N_{15}, because we assume that $\Theta_{a, b}$ is not contained in \mathcal{S}. This proves assertion (v) and completes the proof of the lemma.

Taking a more careful look at the proof of Lemma 3.7, one can deduce that there are only a finite number of curves among $\zeta\left(\Theta_{a, b}\right)$ that are not rational normal curves of degree 12. Moreover, one can explicitly describe all such curves for any given u.

Remark 3.10. By Lemma 3.7(i), the intersection $T_{15} \cap T_{15}^{\prime}$ contains the curve $\zeta\left(\Theta_{ \pm}\right)$, which is a curve of degree 12 . Moreover, it follows from Lemma 2.22 that $T_{15} \cap T_{15}^{\prime}$ contains both lines ℓ_{1} and ℓ_{2}. Thus, the intersection $T_{15} \cap T_{15}^{\prime}$ does not contain irreducible G-invariant curves of degree greater than 8 that are different from the curve $\zeta\left(\Theta_{ \pm}\right)$. Note that $T_{15} \cap T_{15}^{\prime}$ does not contain the conic \mathcal{C}_{2} by Remark 2.21. Using (3.5), we see that $T_{15} \cap T_{15}^{\prime}$ does not contain the curve \mathcal{C}_{4}. Similarly, using (3.6), we see that $T_{15} \cap T_{15}^{\prime}$ does not contain the curve \mathcal{C}_{6}.

Let us describe explicitly the curves $\Theta_{a, b}$ in the case when $\zeta\left(\Theta_{a, b}\right)$ is a curve of degree 10 . If $u \neq-\frac{1}{3}$, let ϑ be one of the roots $\sqrt{(3 u+1)(1-u)}$. If $u=-\frac{1}{3}$, let $\vartheta=0$. If $u=\frac{2}{3}$, then

$$
(3 u+1)(1-u)=1
$$

In this case, we assume that $\vartheta=1$. Observe that the quadric Q_{u} contains the point

$$
\begin{equation*}
\left(1: 1: 1: \frac{(u-1)(\vartheta-u-1)}{2 u^{2}}: \frac{(u-1)\left(2 u^{2}+\vartheta-u-1\right)}{2 u^{3}}\right) . \tag{3.11}
\end{equation*}
$$

Similarly, the quadric Q_{u} contains the point

$$
\begin{equation*}
\left(1: 1: 1: \frac{(u-1)(-\vartheta-u-1)}{2 u^{2}}: \frac{(u-1)\left(2 u^{2}-\vartheta-u-1\right)}{2 u^{3}}\right) \tag{3.12}
\end{equation*}
$$

Let Ψ be the closure of the \mathbb{C}^{*}-orbit of the point (3.11), and let Ψ^{\prime} be the closure of the \mathbb{C}^{*}-orbit of the point (3.12). Then the curve Ψ is G-invariant,
since the \mathbb{C}^{*}-orbit of the point (3.11) contains the image of this point via the involution ι, because

$$
\begin{aligned}
\left(1: \lambda: \lambda^{3}:\right. & \left.\lambda^{5} \frac{(u-1)(\vartheta-u-1)}{2 u^{2}}: \lambda^{6} \frac{(u-1)\left(2 u^{2}+\vartheta-u-1\right)}{2 u^{3}}\right) \\
& =\left(\frac{(u-1)\left(2 u^{2}+\vartheta-u-1\right)}{2 u^{3}}: \frac{(u-1)(\vartheta-u-1)}{2 u^{2}}: 1: 1: 1\right)
\end{aligned}
$$

for $\lambda=\frac{u(\vartheta-u-1)}{\left(2 u^{2}+\vartheta-u-1\right)} \in \mathbb{C}^{*}$. Similarly, we see that the curve Ψ^{\prime} is G-invariant. Of course, the curves Ψ and Ψ^{\prime} are of the form $\Theta_{a, b}$ for certain a and b, but we will never use the values of these parameters.

It is straightforward to check that $\Psi=\Psi^{\prime}$ if and only if $u=-\frac{1}{3}$. Moreover, if $u=\frac{2}{3}$, then $\Psi \neq \Gamma$ and $\Psi^{\prime}=\Gamma$. This explains why we let $\vartheta=1$ in this case.

Lemma 3.13. The following assertions hold.
(i) Both curves Ψ and Ψ^{\prime} are contained in the intersection $N_{3} \cap N_{15}$.
(ii) The curve Ψ is not contained in \mathcal{S}. If $u \neq \frac{2}{3}$, then Ψ^{\prime} is not contained in \mathcal{S}.
(iii) The curve $\zeta(\Psi)$ is a curve of degree 10 .
(iv) If $u \neq \frac{2}{3}$, then $\zeta\left(\Psi^{\prime}\right)$ is a curve of degree 10 .
(v) If $\Theta_{a, b} \not \subset \mathcal{S}$ and $\zeta\left(\Theta_{a, b}\right)$ is a curve of degree 10, then $\Theta_{a, b}=\Psi$ or $\Theta_{a, b}=\Psi^{\prime}$.
(vi) The surfaces N_{3} and N_{15} are tangent along Γ if and only if $u=\frac{2}{3}$.
(vii) If $u=\frac{2}{3}$, then N_{3} and N_{15} do not tangent \mathcal{S} at a general point of the curve Γ.
(viii) If $u=-\frac{1}{3}$, then N_{3} and N_{15} are tangent along $\Psi=\Psi^{\prime}$.

Proof. Using (2.3), we see that the intersection $N_{3} \cap N_{15}$ is given in \mathbb{P}^{4} by

$$
\left\{\begin{array}{l}
y^{3}-x^{2} z=0 \tag{3.14}\\
t^{3}-z w^{2}=0 \\
u\left(x w-z^{2}\right)+\left(z^{2}-y t\right)=0
\end{array}\right.
$$

In fact, this system of equation defines an effective one-cycle in Q_{u} of degree 18, which contains the curve Γ.

Let us show that $N_{3} \cap N_{15}$ contains the curves Ψ and Ψ^{\prime}. To do this, we may consider the subset where $x \neq 0$, so that we let $x=1$. Substituting $z=y^{3}$ and

$$
w=\frac{y t}{u}+\frac{u-1}{u} z^{2}
$$

into $t^{3}-z w^{2}=0$, we obtain the equation

$$
\left(t-y^{5}\right)\left(t^{2} u^{2}+\left(u^{2}-1\right) t y^{5}+(u-1)^{2} y^{10}\right)=0
$$

If $t=y^{5}$, we get the curve Γ. Thus, the remaining part of the subset (3.14) consists of the \mathbb{C}^{*}-orbits of the points

$$
\left(1: 1: 1: t: \frac{t+u-1}{u}\right)
$$

where t is a solution of the quadratic equation

$$
u^{2} t^{2}+\left(u^{2}-1\right) t+(u-1)^{2}=0
$$

Solving this equation, we obtain exactly the points (3.11) and (3.12). This shows that (3.14) contains the curves Ψ and Ψ^{\prime}. This proves assertion (i).

Observe that the intersection $\mathcal{S} \cap N_{3}$ consists of the curve Γ, the line L_{2}, and the line $y=z=w=0$. Similarly, the intersection $\mathcal{S} \cap N_{15}$ consists of the curve Γ, the line L_{1}, and the line $x=z=t=0$. Thus, the curve Ψ is contained in \mathcal{S} if and only if $\Psi=\Gamma$. Since \mathcal{S} is cut out on Q_{u} by the equation $x w=y t$, we see that if Ψ is contained in \mathcal{S}, then

$$
\frac{(u-1)(\vartheta-u-1)}{2 u^{2}}=\frac{(u-1)\left(2 u^{2}+\vartheta-u-1\right)}{2 u^{3}} .
$$

Simplifying this equation, we get $\vartheta=\frac{3 u^{2}-1}{u-1}$, which implies that $u=\frac{2}{3}$, so that $\vartheta=1$ by assumption, which implies that the point (3.11) is not contained in \mathcal{S}. Hence, we see that Ψ is not contained in \mathcal{S}. Similarly, we see that Ψ^{\prime} is contained in \mathcal{S} if and only if $u=\frac{2}{3}$. This proves assertion (ii).

Since Ψ is not contained in \mathcal{S}, we see that $\zeta(\Psi)$ is a curve of degree 10 by Lemma 3.7(v). Similarly, if $u \neq \frac{2}{3}$, then Ψ^{\prime} is not contained in \mathcal{S}, so that $\zeta\left(\Psi^{\prime}\right)$ is a curve of degree 10 by Lemma 3.7(v) as well. This proves assertions (iii) and (iv).

If $\Theta_{a, b}$ is not contained in the surface \mathcal{S} and $\zeta\left(\Theta_{a, b}\right)$ is a curve of degree 10, then $\Theta_{a, b}$ is contained in $N_{3} \cap N_{15}$ by Lemma 3.7(v). On the other hand, the intersection $N_{3} \cap N_{15}$ is given by (3.14). We just proved that this system of equation defines the union $\Gamma \cup \Psi \cup \Psi^{\prime}$, so that either $\Theta_{a, b}=\Psi$ or $\Theta_{a, b}=\Psi^{\prime}$. This proves assertion (v).

To prove assertions (vi) and (vii), let us find the local equations of the surfaces N_{3}, N_{15} and \mathcal{S} at the point $(1: 1: 1: 1: 1)$. We may work in a chart $x \neq 0$, so that we let $x=1$. Substituting $w=\frac{y t}{u}+\frac{u-1}{u} z^{2}$ into the equation $t^{3}-w^{2} z=0$ and multiplying the resulting equation by u^{2}, we obtain the equation

$$
t^{3} u^{2}-t^{2} y^{2} z+2(1-u) t y z^{3}-(u-1)^{2} z^{5}=0
$$

Similarly, the surface \mathcal{S} is given by $t y=z^{2}$, and the surface N_{3} is given by $z=y^{3}$. Now introducing new coordinates $\bar{y}=y-1, \bar{z}=z-1$ and $\bar{t}=t-1$, we see that N_{15} is given by

$$
2 \bar{y}+(5 u-4) \bar{z}+(2-3 u) \bar{t}+\text { higher order terms }=0
$$

Similarly, the surface \mathcal{S} is given by

$$
\begin{equation*}
\bar{y}-2 \bar{z}+\bar{t}+\text { higher order terms }=0 \tag{3.15}
\end{equation*}
$$

while the linear term of the defining equation of the surface N_{3} is $3 \bar{y}-\bar{z}$. Hence, the surface N_{3} is not tangent to \mathcal{S} at the point $(1: 1: 1: 1: 1)$. Similarly, we see that the surface N_{3} is tangent to N_{15} at the point $(1: 1: 1: 1: 1)$ if and only if $u=\frac{2}{3}$. This proves assertions (vi) and (vii).

To prove assertion (viii), we assume that $u=-\frac{1}{3}$. Then $\Psi=\Psi^{\prime}$, and the point (3.11) is the point $(1: 1: 1: 4:-8)$. Arguing as above, we see that the local equations of the surfaces N_{3} and N_{15} at the point (1:1:1:4:-8) have the same linear part (in coordinates $\bar{y}=y-1, \bar{z}=z-1$ and $\bar{t}=t-4$). Hence, the surface N_{3} is tangent to N_{15} at the point ($1: 1: 1: 4:-8$). This proves assertion (viii) and completes the proof of the lemma.

Recall from Remark 2.11 that the birational map ζ in (2.5) induces an isomorphism

$$
Q_{v} \backslash \mathcal{S} \cong V_{u} \backslash \mathcal{R}
$$

Therefore, from (2.20) and Lemmas 3.7 and 3.13, we obtain an explicit description of all irreducible G-invariant curves in the Fano threefold V_{u} that are not contained in the surface \mathcal{R}. Thus, to classify all such curves in V_{u}, we need to describe those of them that are contained in \mathcal{R}. This will be done in the next section.

4. Invariant curves in the surface \mathcal{R}

In this section we describe irreducible G-invariant curves in the surface \mathcal{R}, and complete the classification of irreducible G-invariant curves in the threefold V_{u} (see Proposition 4.12). We will show that \mathcal{R} contains exactly two irreducible G-invariant curves, one of which is the conic \mathcal{C}_{2}. To describe the other curve, we analyze all irreducible G-invariant curves in surface $E_{Q_{u}}$. We start with

Remark 4.1. Recall from Remark[2.4] that the surface \mathcal{S} is smooth at every point of the curve Γ except for the points $(1: 0: 0: 0: 0)$ and $(0: 0: 0: 0: 1)$, which are isolated ordinary double singularities. This implies that

$$
\left.\widetilde{\mathcal{S}}\right|_{E_{Q_{u}}}=\widetilde{\Gamma}+\mathbf{l}_{1}+\mathbf{l}_{2}
$$

for some section $\widetilde{\Gamma}$ of the projection $E_{Q_{u}} \rightarrow \Gamma$, where \mathbf{l}_{1} and \mathbf{l}_{2} are the fibers of this projection over the points $(1: 0: 0: 0: 0)$ and $(0: 0: 0: 0: 1)$, respectively. The curve $\widetilde{\Gamma}$ is irreducible and G-invariant. Since $\widetilde{\Gamma}$ is contained in $\widetilde{\mathcal{S}}$, its image in V_{u} is the conic \mathcal{C}_{2}.

Now let us show that $E_{Q_{u}}$ contains exactly two irreducible G-invariant curves.

Lemma 4.2. The surface $E_{Q_{u}}$ contains exactly two irreducible G-invariant curves. One of them is the curve $\widetilde{\Gamma}$ from Remark 4.1. The second one is also a section of the projection $E_{Q_{u}} \rightarrow \Gamma$.

Proof. Let \mathbf{l} be the fiber of the natural projection $E_{Q_{u}} \rightarrow \Gamma$ over the point $(1: 1: 1: 1: 1)$. Then $\mathbf{l} \cong \mathbb{P}^{1}$ and the curve \mathbf{l} is ι-invariant. Thus, either ι fixes every point in \mathbf{l} or ι fixes exactly two points in \mathbf{l}. Let us show that the former case is impossible. To do this, recall from $\S 2$ that

$$
\Gamma \subset N_{3} \cap N_{5} \cap N_{8} \cap N_{10} \cap N_{13} \cap N_{15}
$$

and the surfaces $N_{3}, N_{5}, N_{8}, N_{10}, N_{13}, N_{15}$ are smooth at a general point of the curve Γ. Denote by $\widetilde{N}_{3}, \widetilde{N}_{5}, \widetilde{N}_{8}, \widetilde{N}_{10}, \widetilde{N}_{13}$ and \widetilde{N}_{15} the proper transforms of the surfaces $N_{3}, N_{5}, N_{8}, N_{10}, N_{13}$ and N_{15} on the threefold \widetilde{Q}_{u}, respectively. Then each intersection

$$
\tilde{N}_{3} \cap 1, \quad \tilde{N}_{5} \cap 1, \quad \tilde{N}_{8} \cap 1, \quad \tilde{N}_{10} \cap 1, \quad \tilde{N}_{13} \cap 1, \quad \tilde{N}_{15} \cap 1
$$

consists of a single point. Moreover, if $u \neq \frac{2}{3}$, then N_{3} is not tangent to N_{15} at a general point of Γ by Lemma 3.13(vi). Hence, in this case, we have

$$
\widetilde{N}_{3} \cap \mathbf{l} \neq \widetilde{N}_{15} \cap \mathbf{1}
$$

so that the involution ι swaps these two points, since $\iota\left(N_{3}\right)=N_{15}$. Thus, if $u \neq \frac{2}{3}$, then the involution ι acts on the curve 1 nontrivially.

Recall that $\iota\left(N_{5}\right)=N_{13}$, the surface N_{5} is cut out on Q_{u} by $x^{2} t-y^{2} z=0$, and the surface N_{5} is cut out on Q_{u} by $y w^{2}-z t^{2}=0$. Let us find out when N_{5} is tangent to N_{13} at a general point of Γ. To do this, let us describe the local equations of the surfaces N_{5} and N_{13} at the point $(1: 1: 1: 1: 1)$. We may work in a chart $x \neq 0$, so that we let $x=1$. Substituting

$$
w=\frac{y t}{u}+\frac{u-1}{u} z^{2}
$$

into $y w^{2}-z t^{2}=0$ and multiplying the resulting equation by u^{2}, we obtain the equation

$$
t^{2} y^{3}-u^{2} t^{2} z+2(u-1) t y^{2} z^{2}+(u-1)^{2} y z^{4}=0
$$

This is the equation of N_{13}. The equation of the surface N_{5} is simply $t=y^{2} z$.

Now introducing new coordinates $\bar{y}=y-1, \bar{z}=z-1$ and $\bar{t}=t-1$, we see that N_{13} is given by

$$
(u+2) \bar{y}+(3 u-4) \bar{z}+2(1-u) \bar{t}+\text { higher order terms }=0 .
$$

Similarly, the surface N_{13} is given by

$$
2 \bar{y}+\bar{z}-\bar{t}+\text { higher order terms }=0 .
$$

This implies that N_{5} is tangent to N_{13} at the point $(1: 1: 1: 1: 1)$ if and only if $u=2$.

Recall from Lemma 3.13(vi) that N_{3} is tangent to N_{15} at a general point of the curve Γ if and only if $u=\frac{2}{3}$. We see that N_{5} is tangent to the surface N_{13} at a general point of the curve Γ if and only if $u=2$. The same arguments imply that N_{8} is never tangent to N_{10} at a general point of the curve Γ. Arguing as above, we see that ι acts on 1 nontrivially as claimed.

Since ι acts nontrivially on the fiber l, it fixes two points in \mathbf{l}. One of them is the point $1 \cap \widetilde{\mathcal{S}}$. It is contained in $\widetilde{\Gamma}$, so that $\widetilde{\Gamma}$ is the closure of the \mathbb{C}^{*}-orbit of the point $\mathbf{1} \cap \widetilde{\mathcal{S}}$. Similarly, the closure of the \mathbb{C}^{*}-orbit of the second fixed point of the involution ι is another irreducible G-invariant curve in $E_{Q_{u}}$. Then every irreducible G-invariant curve in $E_{Q_{u}}$ must be one of these two curves. Indeed, an irreducible G-invariant curve in $E_{Q_{u}}$ cannot be contracted by π, since Q_{u} does not have G-fixed points. Moreover, since all \mathbb{C}^{*}-orbits in $E_{Q_{u}}$ that are not contained in the fibers of the projection $E_{Q_{u}} \rightarrow \Gamma$ are its sections, we conclude that an intersection of any irreducible G-invariant curve in $E_{Q_{u}}$ with \mathbf{l} must consist of a ι-invariant point, which in turn uniquely determines this curve. Since we proved that l contains exactly two ι-fixed points, an irreducible G-invariant curve in $E_{Q_{u}}$ must be the closure of the \mathbb{C}^{*}-orbit of one of these two points. This completes the proof of the lemma.

Thus, the surface $E_{Q_{u}}$ contains exactly two irreducible G-invariant curves. One of them is the curve $\widetilde{\Gamma}$ from Remark 4.1. The second curve can be described rather explicitly.

Remark 4.3. Let us use the notation of the proof of Lemma 4.2, Recall from this proof that ι fixes exactly two points in \mathbf{l}. One of them is the point $\mathbf{1} \cap \widetilde{\mathcal{S}}$. To describe the second ι-fixed point in \mathbf{l}, denote by M_{15}^{μ} the surface in Q_{u} that is cut out by the equation

$$
g_{15}^{\prime}+\mu g_{15}=0,
$$

where $\mu \in \mathbb{C}$. Denote by \widetilde{M}_{15}^{μ} the proper transform of the surface M_{15}^{μ} on the threefold \widetilde{Q}_{u}. Then M_{15}^{μ} is singular along Γ by Lemma 2.19, Moreover, it has a double point at a general point of Γ. To determine its type, let us describe the local equation of the surface M_{15}^{μ} at the point (1:1:1:1:1). We may work in the chart $x \neq 0$, so that we let $x=1$. Substituting $x=1$ and
$w=\frac{y t}{u}+\frac{u-1}{u} z^{2}$ into $g_{15}^{\prime}+\mu g_{15}$ and multiplying the result by u^{2}, we obtain the polynomial

$$
\begin{aligned}
& u^{2} t^{3}+t^{2} y^{5}+\left(u^{2} \mu-2 u \mu+\mu+u-4\right) t^{2} y^{2} z \\
& +2(u-1) t y^{4} z^{2}+\left(8-2 u^{2} \mu+4 u \mu-3 u^{2}-2 \mu-4 u\right) t y z^{3} \\
& \quad+(u-1)^{2} y^{3} z^{4}+\left(u^{2} \mu-2 u \mu+u^{2}+\mu+3 u-4\right) z^{5} .
\end{aligned}
$$

Then introducing new coordinates $\bar{y}=y-1, \bar{z}=z-1$ and $\bar{t}=t-1$, we rewrite this polynomial as
$\left(\mu u^{2}-2 \mu u+3 u^{2}+\mu+u-3\right) \vec{t}^{2}$

$$
\begin{gather*}
+\left(2 \mu u^{2}-4 \mu u-3 u^{2}+2 \mu+8 u-6\right) \bar{t} \bar{y}+\left(12-4 \mu u^{2}+8 \mu u-9 u^{2}-4 \mu-6 u\right) \bar{t} \bar{z} \tag{4.4}\\
+\left(\mu u^{2}-2 \mu u+3 u^{2}+\mu+7 u-3\right) \bar{y}^{2}+\left(12-4 \mu u^{2}+8 \mu u+3 u^{2}-4 \mu-18 u\right) \bar{y} \bar{z} \\
+\left(4 \mu u^{2}-8 \mu u+7 u^{2}+4 \mu+8 u-12\right) \bar{z}^{2}+\text { higher order terms. }
\end{gather*}
$$

If $\mu \neq-\frac{3 u^{2}+16 u-16}{4(u-1)^{2}}$, then the surface M_{15}^{μ} has a nonisolated ordinary double point at a general point of Γ. Vice versa, if $\mu=-\frac{3 u^{2}+16 u-16}{4(u-1)^{2}}$, then the quadratic part of the polynomial (4.4) simplifies as

$$
\frac{1}{4}((2+3 u) \bar{y}+4(u-1) \bar{z}+(2-3 u) \bar{t})^{2}
$$

Comparing it with (3.15), we see that the intersection $\widetilde{M}_{15}^{\mu} \cap 1$ consists of a single point that is not contained in $\widetilde{\mathcal{S}}$. This is the second point fixed in 1 by the involution ι.

Remark 4.5. Suppose that $u=\frac{2}{3}$. Let \widetilde{Z} be an irreducible G-invariant curve contained in the surface $E_{Q_{u}}$ that is different from the curve $\widetilde{\Gamma}$. Denote by $\widetilde{\Psi}$ the proper transform of the curve Ψ on the threefold \widetilde{Q}_{u}. Let us use the notation from the proof of Lemma 4.2 and Remark 4.3. Then

$$
\widetilde{N}_{3} \cap \widetilde{N}_{15}=\widetilde{Z} \cup \widetilde{\Psi}
$$

by Lemma 3.13(vi), because N_{3} is smooth at the point ($1: 0: 0: 0: 0$), and N_{15} is smooth at the point $(0: 0: 0: 0: 1)$. Observe also that the curve \widetilde{L}_{1} is contained in \widetilde{N}_{3}, and it is not contained in \widetilde{N}_{15}. Similarly, the curve \widetilde{L}_{2} is contained in \widetilde{N}_{15}, and it is not contained in \widetilde{N}_{3}. Thus, since $\widetilde{N}_{15} \cdot \widetilde{L}_{1}=0$ and $\widetilde{N}_{3} \cdot \widetilde{L}_{2}=0$, we see that \widetilde{L}_{1} is disjoint from \widetilde{N}_{15}, and \widetilde{L}_{2} is disjoint from \widetilde{N}_{3}. Using (2.5) and (2.20), we see that

$$
T_{9} \cap T_{21}=\mathcal{C}_{2} \cup \zeta(\Psi) \cup \phi \circ \chi(\widetilde{Z})
$$

Moreover, the surfaces T_{9} and T_{21} intersect transversally at a general point of the conic \mathcal{C}_{2}, since the surface $\widetilde{\mathcal{S}}$ does not contain the curves \widetilde{Z} and $\widetilde{\Psi}$.

Furthermore, the curve $\zeta(\Psi)$ has degree 10 by Lemma3.13(iii). Thus $\phi \circ \chi(\widetilde{Z})$ is also a curve of degree 10 .

Remark 4.6. Suppose that $u=2$. Let \widetilde{Z} be an irreducible G-invariant curve contained in the surface $E_{Q_{u}}$ that is different from the curve $\widetilde{\Gamma}$. Let us use the notation from the proof of Lemma 4.2 and Remark 4.3. In the proof of Lemma 4.2, we showed that both surfaces \widetilde{N}_{5} and \widetilde{N}_{13} contain the curve \widetilde{Z}. On the other hand, we have

$$
N_{5} \cap N_{13}=\Gamma \cup \Delta \cup L_{1} \cup L_{2} .
$$

Moreover, the surfaces N_{5} and N_{13} are not tangent at a general point of the conic Δ. This can be checked, for example, using local equations of the surfaces N_{5} and N_{13} at the point (1:0:2:0:2). Observe also that the surface N_{5} is smooth at the point $(0: 0: 0: 0: 1)$, and the surface N_{13} is smooth at the point ($1: 0: 0: 0: 0)$. Hence, we deduce that

$$
\widetilde{N}_{5} \cap \widetilde{N}_{13}=\widetilde{Z} \cup \widetilde{\Delta} \cup \widetilde{L}_{1} \cup \widetilde{L}_{2}
$$

where $\widetilde{\Delta}$ is the proper transform of the conic Δ. Moreover, the surfaces \widetilde{N}_{5} and \widetilde{N}_{13} intersect transversally at a general point of the curve \widetilde{Z}. Indeed, otherwise the curve Γ would be contained in the one-cycle $N_{5} \cdot N_{13}$ with multiplicity at least 3 , which is impossible, since $H_{Q_{u}} \cdot N_{5} \cdot N_{13}=18$, and the one-cycle $N_{5} \cdot N_{13}$ also contains the conic Δ and the lines L_{1} and L_{2}. Thus, keeping in mind that the curves \widetilde{L}_{1} and \widetilde{L}_{2} are contracted by α, we conclude that

$$
\alpha\left(\widetilde{N}_{5}\right) \cap \alpha\left(\widetilde{N}_{13}\right)=\alpha(\widetilde{Z}) \cup \gamma(\Delta)
$$

On the other hand, the degree of the curve $\gamma(\Delta)$ is 4 , one has $-K_{Y_{u}}^{3}=16$ and

$$
\alpha\left(\widetilde{N}_{5}\right) \sim \alpha\left(\widetilde{N}_{13}\right) \sim-K_{Y_{u}} .
$$

This implies that $\alpha(\widetilde{Z})$ is a curve of degree 12, because $\alpha\left(\widetilde{N}_{5}\right)$ and $\alpha\left(\widetilde{N}_{13}\right)$ intersect transversally at general points of the curves $\alpha(\widetilde{Z})$ and $\gamma(\Delta)$. Denote by \widetilde{C} the proper transform of the curve \widetilde{Z} on the threefold \widetilde{V}_{u}. Then

$$
\begin{aligned}
12 & =\operatorname{deg}(\alpha(\widetilde{Z}))=-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=-K_{Y_{u}} \cdot \alpha(\widetilde{Z})=-K_{Y_{u}} \cdot \beta(\widetilde{C})=-K_{\widetilde{V}_{u}} \cdot \widetilde{C} \\
& =\left(\phi^{*}\left(H_{V_{u}}\right)-E_{V_{u}}\right) \cdot \widetilde{C} \leqslant \phi^{*}\left(H_{V_{u}}\right) \cdot \widetilde{C}=H_{V_{u}} \cdot \widetilde{C}=\operatorname{deg}(\phi(\widetilde{C}))
\end{aligned}
$$

We conclude our investigation of irreducible G-invariant curves in $E_{Q_{u}}$ by the following result, which also completes the description of irreducible G invariant curves in V_{u} of degree 10 started in Lemma 3.13 and Remark 4.5,

Lemma 4.7. Let \widetilde{Z} be an irreducible G-invariant curve contained in the surface $E_{Q_{u}}$. Then one of the following two possibilities holds.

- The curve \widetilde{Z} is the curve $\widetilde{\Gamma}$ from Remark 4.1. The curve $\phi \circ \chi(\widetilde{Z})$ is the conic \mathcal{C}_{2}. The degree of the curve $\alpha(\widetilde{Z})$ is at least 12 .
- The curve \widetilde{Z} is the unique irreducible G-invariant curve in $E_{Q_{u}}$ not contained in $\widetilde{\mathcal{S}}$. If $u \neq \frac{2}{3}$, then $\operatorname{deg}(\phi \circ \chi(\widetilde{Z})) \geqslant 12$. If $u=\frac{2}{3}$, then $\operatorname{deg}(\phi \circ \chi(\widetilde{Z}))=10$, and the curve $\phi \circ \chi(\widetilde{Z})$ is contained in $T_{9} \cap T_{21}$.
Proof. The normal bundle of the smooth rational curve Γ in Q_{u} is isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(p) \oplus \mathcal{O}_{\mathbb{P}^{1}}(q)$ for some integers p and q such that $p \geqslant q$ and $p+q=16$. Thus, the exceptional surface $E_{Q_{u}}$ is a Hirzebruch surface \mathbb{F}_{n} for $n=p-q \geqslant 0$. Denote by s the section of the natural projection $E_{Q_{u}} \rightarrow \Gamma$ such that $\mathbf{s}^{2}=-n$. Then $-\left.E_{Q_{u}}\right|_{E_{Q_{u}}} \sim \mathbf{s}+\kappa \mathbf{l}$ for some integer κ. One has

$$
-16=E_{Q_{u}}^{3}=(\mathbf{s}+\kappa \mathbf{l})^{2}=-n+2 \kappa
$$

so that $\kappa=\frac{n-16}{2}$. This implies that $\left.\widetilde{\mathcal{S}}\right|_{E_{Q_{u}}} \sim \mathbf{s}+\frac{n+8}{2} \mathbf{l}$. On the other hand, it follows from Remark 4.1] that $\left.\widetilde{\mathcal{S}}\right|_{E_{Q_{u}}}=\widetilde{\Gamma}+\mathbf{l}_{1}+\mathbf{l}_{2}$, where \mathbf{l}_{1} and \mathbf{l}_{2} are the fibers of the natural projection $E_{Q_{u}} \rightarrow \Gamma$ over the points (1:0:0:0:0) and $(0: 0: 0: 0: 1)$, respectively. This gives $\widetilde{\Gamma} \sim \mathbf{s}+\frac{n+4}{2} \mathbf{l}$, which implies, in particular, that $\widetilde{\Gamma} \neq \mathbf{s}$. Hence, we have

$$
0 \leqslant \widetilde{\Gamma} \cdot \mathbf{s}=\left(\mathbf{s}+\frac{n+4}{2} \mathrm{l}\right) \cdot \mathbf{s}=\frac{4-n}{2}
$$

which implies that $n \leqslant 4$. Thus, we compute

$$
\begin{equation*}
\operatorname{deg}(\alpha(\widetilde{Z}))=-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=\left(3 \pi^{*}\left(H_{Q_{u}}\right)-E_{Q_{u}}\right) \cdot \widetilde{Z}=\left(\mathrm{s}+\frac{n+20}{2} \mathbf{l}\right) \cdot \widetilde{Z} \tag{4.8}
\end{equation*}
$$

In particular, if $\widetilde{Z}=\widetilde{\Gamma}$, then (4.8) gives

$$
\operatorname{deg}(\alpha(\widetilde{Z}))=\left(\mathrm{s}+\frac{n+20}{2} \mathrm{l}\right) \cdot\left(\mathrm{s}+\frac{n+4}{2} \mathrm{l}\right)=12
$$

Let \widetilde{C} be the proper transform of the curve \widetilde{Z} on the threefold \widetilde{V}_{u}, and let $C=\phi(\widetilde{C})$. If $\widetilde{Z} \neq \widetilde{\Gamma}$, then

$$
\begin{align*}
\operatorname{deg}(\alpha(\widetilde{Z})) & =-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=-K_{Y_{u}} \cdot \alpha(\widetilde{Z})=-K_{Y_{u}} \cdot \beta(\widetilde{C})=-K_{\widetilde{V}_{u}} \cdot \widetilde{C} \tag{4.9}\\
& =\left(\phi^{*}\left(H_{V_{u}}\right)-E_{V_{u}}\right) \cdot \widetilde{C} \leqslant \phi^{*}\left(H_{V_{u}}\right) \cdot \widetilde{C}=H_{V_{u}} \cdot \widetilde{C}=\operatorname{deg}(C) .
\end{align*}
$$

Now let us use the notation from the proof of Lemma 4.2 and Remark 4.3 , To complete the proof, we may assume that \widetilde{Z} is the closure of the \mathbb{C}^{*}-orbit of the point $\widetilde{M}_{15}^{\mu} \cap \mathbf{l}$. Then \widetilde{Z} is contained in \widetilde{M}_{15}^{μ}, it is a section of the natural projection $E_{Q_{u}} \rightarrow \Gamma$, and it is not contained in $\widetilde{\mathcal{S}}$. In particular, we have $\widetilde{Z} \neq \widetilde{\Gamma}$.

By Remarks 4.5 and 4.6, we may assume that $u \neq \frac{2}{3}$ and $u \neq 2$. This implies that $n=0$, cf. Remark 4.10. Indeed, suppose that $n>0$. Then
$\widetilde{Z}=\mathbf{s}$ by Lemma 4.2, because the curve s is clearly G-invariant. Then it follows from (4.8) that

$$
\operatorname{deg}(\alpha(\widetilde{Z}))=-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=\frac{20-n}{2}<10
$$

Hence, at least one surface among $\widetilde{N}_{3}, \widetilde{N}_{5}, \widetilde{N}_{8}, \widetilde{N}_{10}, \widetilde{N}_{13}$ and \widetilde{N}_{15} contains the curve \widetilde{Z}. Since $\iota\left(\widetilde{N}_{3}\right)=\widetilde{N}_{15}, \iota\left(\widetilde{N}_{5}\right)=\widetilde{N}_{13}$ and $\iota\left(\widetilde{N}_{8}\right)=\widetilde{N}_{10}$, this implies that \widetilde{Z} is contained in at least one of the intersections $\widetilde{N}_{3} \cap \widetilde{N}_{15}, \widetilde{N}_{5} \cap \widetilde{N}_{13}$, $\widetilde{N}_{8} \cap \widetilde{N}_{10}$. On the other hand, it follows from Lemma 3.13(vi) that N_{3} is tangent to N_{15} at a general point of the curve Γ if and only if $u=\frac{2}{3}$. Since we assumed that $u \neq \frac{2}{3}$, we see that

$$
\widetilde{Z} \not \subset \widetilde{N}_{3} \cap \widetilde{N}_{15}
$$

Likewise, the surface N_{5} is tangent to the surface N_{13} at a general point of the curve Γ if and only if $u=2$. We showed this in the proof of Lemma 4.2, Similar computations imply that the surface N_{8} is not tangent to N_{10} at a general point of the curve Γ. Therefore, the curve \widetilde{Z} is contained neither in $\widetilde{N}_{5} \cap \widetilde{N}_{13}$ nor in $\widetilde{N}_{8} \cap \widetilde{N}_{10}$. The obtained contradiction shows that the case $n>0$ is impossible, so that $n=0$.

Since $n=0$, one has $E_{Q_{u}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. By (4.8), we have

$$
-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=(\mathrm{s}+10 \mathrm{l}) \cdot \widetilde{Z} \geqslant(\mathrm{~s}+10 \mathrm{l}) \cdot \mathrm{s}=10
$$

This also shows that $-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z}=10$ if and only if $\widetilde{Z} \sim \mathbf{s}$. However, this case is impossible. Indeed, if $\widetilde{Z} \sim \mathbf{s}$, then the linear system $|\mathbf{s}|$ contains at least two irreducible G-invariant curves. On the other hand, we already know from Lemma 4.2 that \widetilde{Z} and $\widetilde{\Gamma} \sim \mathbf{s}+2 \mathbf{l}$ are the only irreducible G invariant curves in the surface $E_{Q_{u}}$. Hence, using (4.9) we conclude that $\operatorname{deg}(C) \geqslant-K_{\widetilde{Q}_{u}} \cdot \widetilde{Z} \geqslant 11$.

Using Lemma 3.7, we see that V_{u} does not contain irreducible G-invariant curves of degrees $1,3,5,7,8$ and 9 . In particular, the threefold V_{u} does not contain G-invariant lines, which also follows from KP17, Lemma 4.1(i)].

By Remark 3.10, there exists a unique surface in the pencil generated by T_{15} and T_{15}^{\prime} that contains C. In fact, we know this surface from Remark 4.3, It is the image of the surface \widetilde{M}_{15}^{μ} from Remark 4.3, where $\mu=-\frac{3 u^{2}+16 u-16}{4(u-1)^{2}}$. Thus, if $\operatorname{deg}(C)=11$, there should be at least one surface among T_{9}, T_{10}, $T_{11}, T_{12}, T_{13}, T_{14}, T_{16}, T_{17}, T_{18}, T_{19}, T_{20}, T_{21}$ that also contains C. But we proved above that none of the surfaces $\widetilde{N}_{3}, \widetilde{N}_{5}, \widetilde{N}_{8}, \widetilde{N}_{10}, \widetilde{N}_{13}, \widetilde{N}_{15}$ contains the curve \widetilde{Z}, so that the surfaces $T_{9}, T_{11}, T_{14}, T_{16}, T_{19}$ and T_{21} do not contain C either. Similarly, the surfaces T_{12}, T_{13}, T_{17} and T_{18} do not contain the curve C, because the surfaces $H_{x}, H_{y}, H_{z}, H_{t}$ and H_{w} do not contain the
curve Γ. Thus, to complete the proof, we may assume that either T_{10} or T_{20} contains the curve C. Actually, this assumption implies that both surfaces T_{10} and T_{20} contain the curve C, since $\iota\left(T_{10}\right)=T_{20}$. Note that this case is indeed possible when $u=-2$ by Remark 4.11.

By Lemma 3.7, both surfaces T_{10} and T_{20} contain the curves $\zeta(\Delta)$ and $\zeta(\Upsilon)$, the degree of the curve $\zeta(\Delta)$ is 4 , and the degree of the curve $\zeta(\Upsilon)$ is 6 . Since we already know that $\operatorname{deg}(C) \geqslant 11$, we see that the G-invariant onecycle $T_{10} \cdot T_{20}$ consists of the curves $\zeta(\Delta), \zeta(\Upsilon), C$ and a G-invariant curve of degree $12-\operatorname{deg}(C)$. Since V_{u} does not contain G-invariant lines, we see that

$$
T_{10} \cdot T_{20}=\zeta(\Delta)+\zeta(\Upsilon)+C
$$

so that $\operatorname{deg}(C)=12$. This completes the proof of the lemma.
Remark 4.10. If $u \neq \frac{2}{3}$ and $u \neq 2$, then $E_{Q_{u}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, so that the normal bundle of the curve Γ in the quadric Q_{u} is isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(8) \oplus \mathcal{O}_{\mathbb{P}^{1}}(8)$. We showed this in the proof of Lemma 4.7. Vice versa, if $u=\frac{2}{3}$ or $u=2$, then, arguing as in the proof of Lemma 4.7, one can show that $E_{Q_{u}} \cong \mathbb{F}_{4}$, so that the normal bundle of the curve Γ is $\mathcal{O}_{\mathbb{P}^{1}}(6) \oplus \mathcal{O}_{\mathbb{P}^{1}}(10)$ in this case. However, we will not use this information in the sequel.

Remark 4.11. Denote by \widetilde{M}_{10} and \widetilde{M}_{20} the proper transform of the surfaces M_{10} and M_{20} on the threefold \widetilde{Q}_{u}, respectively. Recall that both M_{10} and M_{20} have quadratic singularity at the point ($1: 1: 1: 1: 1$). Substituting $x=1$ and $w=\frac{y t}{u}+\frac{u-1}{u} z^{2}$ into the polynomial $u g_{10}$, we obtain the polynomial $u t^{2}+t y^{5}-(2 u+1) y^{2} z t+(u-1) y^{4} z^{2}+y z^{3}$. The quadratic part of its local expansion at the point $(1: 1: 1: 1: 1)$ is

$$
u \bar{t}^{2}+(3-4 u) \bar{y} \bar{t}-(2 u+1) \bar{t} \bar{z}+(4 u+3) \bar{y}^{2}+(4 u-7) \bar{y} \bar{z}+(u+2) \bar{z}^{2}
$$

where $\bar{y}=y-1, \bar{z}=z-1$ and $\bar{t}=t-1$. Similarly, substituting $x=1$ and $w=\frac{y t}{u}+\frac{u-1}{u} z^{2}$ into the polynomial $u^{3} g_{20}$, we obtain the polynomial

$$
\begin{aligned}
u^{3} t^{4}+t^{3} y^{5} & -\left(2 u^{2}+u\right) t^{3} y^{2} z+(3 u-3) t^{2} y^{4} z^{2}+\left(-2 u^{3}+u^{2}+2 u\right) t^{2} y z^{3} \\
& +\left(3 u^{2}-6 u+3\right) t y^{3} z^{4}+\left(u^{2}-u\right) t z^{5}+\left(u^{3}-3 u^{2}+3 u-1\right) y^{2} z^{6}
\end{aligned}
$$

Then the quadratic part of the local expansion of the polynomial $u^{2} g_{20}$ is

$$
\begin{aligned}
\left(4 u^{2}-5 u+2\right) \bar{t}^{2} & +\left(4-4 u^{2}-u\right) \bar{y} \bar{t}-\left(12 u^{2}-17 u+8\right) \bar{t} \bar{z} \\
& +\left(u^{2}+4 u+2\right) \bar{y}^{2}+\left(6 u^{2}-u-8\right) \bar{y} \bar{z}+\left(9 u^{2}-14 u+8\right) \bar{z}^{2}
\end{aligned}
$$

Both these quadric forms are degenerate, so that they define reducible conics in $\mathbb{P}_{\bar{y}, \bar{z}, \bar{t}}^{2}$. If $u \neq-2$, then these conics do not have common components. However, if $u=-2$, then the former quadratic form is $(\bar{t}-5 \bar{y})(\bar{y}+3 \bar{z}-2 \bar{t})$, and the latter quadratic form is $4(\bar{y}-12 \bar{z}+7 \bar{t})(\bar{y}+3 \bar{z}-2 \bar{t})$. Note that the quadratic part of the polynomial (4.4) is a multiple of $(\bar{y}+3 \bar{z}-2 \bar{t})^{2}$. Thus,
if $u=-2$, then $\widetilde{M}_{10} \cap \widetilde{M}_{20}$ contains the irreducible G-invariant curve in $E_{Q_{u}}$ that is different from the curve $\widetilde{\Gamma}$, see Remark 4.1 .

Recall that $\zeta(\mathcal{S})=\mathcal{C}_{2}$. Denote the curves $\zeta(\Delta)$ and $\zeta(\Upsilon)$ by \mathcal{C}_{4} and \mathcal{C}_{6}, respectively. Similarly, if $u \neq \frac{2}{3}$, let $\mathcal{C}_{10}=\zeta(\Psi)$ and $\mathcal{C}_{10}^{\prime}=\zeta\left(\Psi^{\prime}\right)$. Finally, if $u=\frac{2}{3}$, let $\mathcal{C}_{10}=\zeta(\Psi)$ and let $\mathcal{C}_{10}^{\prime}=\phi \circ \chi(\widetilde{Z})$, where \widetilde{Z} is the irreducible G-invariant curve in $E_{Q_{u}}$ that is different from the curve $\widetilde{\Gamma}$.

Proposition 4.12. Let C be an irreducible G-invariant curve in V_{u} with $\operatorname{deg}(C)<12$. Then one of the following holds: $C=\mathcal{C}_{2}, C=\mathcal{C}_{4}, C=\mathcal{C}_{6}$, $C=\mathcal{C}_{10}$, or $C=\mathcal{C}_{10}^{\prime}$.

Proof. We may assume that $C \neq \mathcal{C}_{2}$. Denote by \widetilde{C} the proper transform of the curve C on the threefold \widetilde{V}_{u}. By Remark [2.11, the curve \widetilde{C} is not flopped by χ^{-1}. Denote by \widetilde{Z} the proper transform of the curve \widetilde{C} on the threefold \widetilde{Q}_{u}. Then \widetilde{Z} is not contracted by π, since Q_{u} does not have G-fixed points by Lemma 2.23,

Let $Z=\pi(\widetilde{Z})$. Then Z is an irreducible G-invariant curve. Hence, the curve Z is either the curve $\Theta_{ \pm}$or the curve $\Theta_{a, b}$ for some $(a: b) \in \mathbb{P}^{1}$. Therefore, if Z is not contained in \mathcal{S}, the required assertion follows from Lemmas 3.7 and 3.13. Thus, we may assume that $Z \subset \mathcal{S}$, which implies that $Z=\Gamma$, because $C \neq \mathcal{C}_{2}$ by assumption. This simply means that \widetilde{Z} is contained in the exceptional surface $E_{Q_{u}}$. Then $u=\frac{2}{3}$ and $Z=\mathcal{C}_{10}^{\prime}$ by Lemma 4.7,

Using Remark 2.21 and Lemmas 3.13 and 4.7 we see that

$$
\begin{equation*}
T_{9} \cdot T_{21}=\mathcal{C}_{10}+\mathcal{C}_{10}^{\prime}+\mathcal{C}_{2} \tag{4.13}
\end{equation*}
$$

5. Anticanonical pencil

Let $\mathcal{P}_{Q_{u}}$ be the pencil of surfaces in $\left|5 H_{Q_{u}}\right|$ that are cut out on Q_{u} by

$$
\mu_{0} g_{15}+\mu_{1} g_{15}^{\prime}=0
$$

where $\left(\mu_{0}: \mu_{1}\right) \in \mathbb{P}^{1}$. Here g_{15} is the polynomial of weight 15 in (2.17), and g_{15}^{\prime} is the polynomial of weight 15 in (2.18). Then the pencil $\mathcal{P}_{Q_{u}}$ is free from base components.

Denote by $\mathcal{P}_{V_{u}}$ the proper transform of the pencil $\mathcal{P}_{Q_{u}}$ on the threefold V_{u}. Then $\mathcal{P}_{V_{u}}$ is generated by the irreducible surfaces T_{15} and T_{15}^{\prime}, and it contains all G-invariant surfaces in the linear system $\left|-K_{V_{u}}\right|$. This follows from (2.20).

By Lemma 2.22 the base locus of the pencil $\mathcal{P}_{V_{u}}$ contains the lines ℓ_{1} and ℓ_{2} from Remark 2.11. Similarly, we know from Lemma 3.7(i) that the base locus of the pencil $\mathcal{P}_{V_{u}}$ contains the curve $\zeta\left(\Theta_{ \pm}\right)$. Thus, using Remark 3.10 and Proposition 4.12 we obtain

Corollary 5.1. The curve $\zeta\left(\Theta_{ \pm}\right)$is the only irreducible G-invariant curve in V_{u} which is contained in the base locus of the pencil $\mathcal{P}_{V_{u}}$.

Therefore, for every irreducible G-invariant curve in V_{u} that is different from $\zeta\left(\Theta_{ \pm}\right)$, there exists a unique surface in the pencil $\mathcal{P}_{V_{u}}$ that contains this curve. In particular, the pencil $\mathcal{P}_{V_{u}}$ contains a unique surface that passes through \mathcal{C}_{4}, and it contains a unique surface that passes through \mathcal{C}_{6}. Below we describe both of them.

Lemma 5.2. The curve \mathcal{C}_{6} is not contained in T_{15}^{\prime}. On the other hand, the curve \mathcal{C}_{4} is contained in T_{15}^{\prime}. Moreover, the surface T_{15}^{\prime} is singular along the curve \mathcal{C}_{4}. If $u \neq 2$, then T_{15}^{\prime} has a nonisolated ordinary double point at a general point of the curve \mathcal{C}_{4}. If $u=2$, then T_{15}^{\prime} has a nonisolated ordinary triple point at general point of the curve \mathcal{C}_{4}.

Proof. Recall from (2.18) that
$g_{15}^{\prime}=(u-1) x^{2} t^{3}+(u-1) y^{3} w^{2}-(u+4) y^{2} z t^{2}+(3 u+2) x y z t w+(4-4 u) y z^{3} t$.
Substituting (3.6) into g_{15}^{\prime}, we see that Υ is not contained in M_{15}^{\prime}, so that \mathcal{C}_{6} is not contained in T_{15}^{\prime}. Similarly, substituting (3.5) into g_{15}^{\prime}, we see that Δ is contained in M_{15}^{\prime}, so that \mathcal{C}_{4} is contained in T_{15}^{\prime}.

To describe the singularity of the surface T_{15}^{\prime} at a general point of the curve \mathcal{C}_{4}, it is enough to describe the singularity of the surface M_{15}^{\prime} at a general point of the curve Δ. The latter point has the form ($\left.\frac{u-1}{u} \tau^{2}: 0: \tau: 0: 1\right)$ with $\tau \in \mathbb{C}^{*}$. Substituting $w=1$ and $x=z^{2}+\frac{t y-z^{2}}{u}$ into $g_{15}^{\prime}=0$ and multiplying the resulting equation by $\frac{u^{2}}{u-1}$, we obtain
$-u(u-2) t y z^{3}+u^{2} y^{3}+(u-1)^{2} t^{3} z^{4}-u(u+2) t^{2} y^{2} z+2(u-1) t^{4} y z^{2}+t^{5} y^{2}=0$.
Thus, at a general point of the curve \mathcal{C}_{4}, the surface M_{15}^{\prime} has singularity locally isomorphic to the product of \mathbb{C} and the germ of the curve singularity given by

$$
-u(u-2) t y+u^{2} y^{3}+(u-1)^{2} t^{3}-u(u+2) t^{2} y^{2}+2(u-1) t^{4} y+t^{5} y^{2}=0
$$

If $u \neq 2$, the quadratic part $-u(u-2) t y$ of the left hand side is nondegenerate, so that M_{15}^{\prime} has a nonisolated ordinary double point at P. If $u=2$, the above equation becomes $t^{3}+4 y^{3}-8 t^{2} y^{2}+2 t^{4} y+t^{5} y^{2}=0$, which defines an ordinary triple point (also known as curve singularity of type \mathbf{D}_{4}), and the assertion follows.

Corollary 5.4. If $u=2$, then $\alpha_{G}\left(V_{u}\right) \leqslant \frac{2}{3}$.
Let $g_{15}^{\prime \prime}=u g_{15}+g_{15}^{\prime}$. Then
$g_{15}^{\prime \prime}=(u-1) x^{2} t^{3}+(u-1) y^{3} w^{2}-4 y^{2} z t^{2}+(u+2) x y z t w-4(u-1) y z^{3} t+u x^{2} z w^{2}$.

Denote by $M_{15}^{\prime \prime}$ the surface in the quadric Q_{u} that is cut out by $g_{15}^{\prime \prime}=0$. Let $T_{15}^{\prime \prime}$ be its proper transform on the threefold V_{u}. Then $T_{15}^{\prime \prime}$ is an irreducible surface in $\mathcal{P}_{V_{u}}$.

Lemma 5.5. The curve \mathcal{C}_{4} is not contained in $T_{15}^{\prime \prime}$. On the other hand, the curve \mathcal{C}_{6} is contained in $T_{15}^{\prime \prime}$. Moreover, the surface $T_{15}^{\prime \prime}$ is singular along the curve \mathcal{C}_{6}. If $u \neq \frac{3}{4}$, then $T_{15}^{\prime \prime}$ has a nonisolated ordinary double point at a general point of the curve \mathcal{C}_{6}. If $u=\frac{3}{4}$, then $T_{15}^{\prime \prime}$ has a nonisolated tacnodal singularity at a general point of the curve \mathcal{C}_{6}.

Proof. Substituting (3.5) into $g_{15}^{\prime \prime}$, we see that $\Delta \not \subset M_{15}^{\prime \prime}$, so that $\mathcal{C}_{4} \not \subset T_{15}^{\prime \prime}$. Similarly, substituting (3.6) into $g_{15}^{\prime \prime}$, we see that $\Upsilon \subset M_{15}^{\prime \prime}$, so that $\mathcal{C}_{6} \subset T_{15}^{\prime \prime}$.

To describe the singularity of the surface $T_{15}^{\prime \prime}$ at a general point of the curve \mathcal{C}_{6}, it is enough to describe the singularity of the surface $M_{15}^{\prime \prime}$ at a general point of the curve Υ. The latter point has the form $P=\left(0:(1-u) \tau^{2}: \tau\right.$: $1: 0)$ with $\tau \in \mathbb{C}^{*}$.

Substituting $t=1$ and $y=z^{2}+u\left(w x-z^{2}\right)$ into $g_{15}^{\prime \prime}=0$ and dividing the resulting equation by $(u-1)$, we obtain

$$
\begin{aligned}
& x^{2}+(3 u-2) z^{3} x w-(u-1)^{3} w^{2} z^{6}+3 u(u-1)^{2} z^{4} x w^{3} \\
&-3 u w^{2} x^{2} z-3 u^{2}(u-1) z^{2} x^{2} w^{4}+u^{3} w^{5} x^{3}=0
\end{aligned}
$$

Thus, at a general point of the curve \mathcal{C}_{6}, the surface $M_{15}^{\prime \prime}$ has singularity locally isomorphic to the product of \mathbb{C} and the germ of the curve singularity given by

$$
\begin{aligned}
x^{2}+(3 u-2) x w-(u-1)^{3} w^{2} & +3 u(u-1)^{2} x w^{3} \\
& -3 u w^{2} x^{2}-3 u^{2}(u-1) x^{2} w^{4}+u^{3} w^{5} x^{3}=0 .
\end{aligned}
$$

If $u \neq \frac{3}{4}$, the quadratic part $x^{2}+(3 u-2) x w-(u-1)^{3} w^{2}$ of the left hand side is nondegenerate, so that $M_{15}^{\prime \prime}$ has a nonisolated ordinary double point at P. If $u=\frac{3}{4}$, the above equation becomes $w^{2}+16 w x+64 x^{2}+9 w^{3} x-144 w^{2} x^{2}+$ $27 w^{4} x^{2}+27 w^{5} x^{3}=0$. So, introducing new auxiliary coordinates $w=v-8 x$, we get

$$
\begin{aligned}
& v^{2}-13824 x^{4}+4032 v x^{3}+110592 x^{6}-360 v^{2} x^{2} \\
& \quad+9 v^{3} x-55296 v x^{5}+10368 v^{2} x^{4}-884736 x^{8}+552960 v x^{7}-864 v^{3} x^{3} \\
& \quad+27 v^{4} x^{2}-138240 v^{2} x^{6}+17280 v^{3} x^{5}-1080 v^{4} x^{4}+27 v^{5} x^{3}=0 .
\end{aligned}
$$

This equation defines a tacnodal point (also known as curve singularity of type \mathbf{A}_{3}), and the assertion follows.

Corollary 5.6. If $u=\frac{3}{4}$, then $\alpha_{G}\left(V_{u}\right) \leqslant \frac{3}{4}$.
Proof. Suppose that $u=\frac{3}{4}$. Recall that $T_{15}^{\prime \prime} \sim-K_{V_{u}}$. Since $T_{15}^{\prime \prime}$ has a tacnodal singularity at a general point of the curve \mathcal{C}_{6} by Lemma [5.5, the log pair $\left(V_{u}, \frac{3}{4} T_{15}^{\prime \prime}\right)$ is not Kawamata log terminal. Hence $\alpha_{G}\left(V_{u}\right) \leqslant \frac{3}{4}$.

6. Sarkisov links

Let \mathcal{C} be one of the irreducible G-invariant curves \mathcal{C}_{4} or \mathcal{C}_{6} in the threefold V_{u}, let $\sigma: \widehat{V}_{u} \rightarrow V_{u}$ be the blowup of the curve \mathcal{C}, and let E_{σ} be the exceptional surface of σ. Denote by $\widehat{T}_{i}, \widehat{T}_{15}^{\prime}, \widehat{T}_{15}^{\prime \prime}$ the proper transforms on \widehat{V}_{u} of the surfaces $T_{i}, T_{15}^{\prime}, T_{15}^{\prime \prime}$, respectively.

Remark 6.1. Suppose that $\mathcal{C}=\mathcal{C}_{4}$. Then $\widehat{T}_{15}^{\prime} \sim \sigma^{*}\left(H_{V_{u}}\right)-m^{\prime} E_{\sigma}$, where $m^{\prime}=\operatorname{mult}_{\mathcal{C}}\left(T_{15}^{\prime}\right)$. By Lemma 5.2, one has

$$
m^{\prime}= \begin{cases}2 & \text { if } u \neq 2 \\ 3 & \text { if } u=2\end{cases}
$$

Moreover, if $u \neq 2$, then T_{15}^{\prime} has a nonisolated ordinary double point at a general point of the curve \mathcal{C}. In this case, one has

$$
\left.\widehat{T}_{15}^{\prime}\right|_{E_{\sigma}}=\widehat{\mathcal{C}}+\varkappa\left(\mathbf{l}_{1}+\mathbf{l}_{2}\right)
$$

where $\widehat{\mathcal{C}}$ is a 2 -section of the natural projection $E_{\sigma} \rightarrow \mathcal{C}_{4}$, the curves \mathbf{l}_{1} and \mathbf{l}_{2} are the fibers of this projection over two \mathbb{C}^{*}-fixed points in \mathcal{C}_{4}, respectively, and \varkappa is a nonnegative integer. Moreover, it can be seen from (5.3) that the curve $\widehat{\mathcal{C}}$ is reducible, so that it consists of two sections of the projection $E_{\sigma} \rightarrow \mathcal{C}$. However, the curve $\widehat{\mathcal{C}}$ is G-irreducible. This follows from (2.2) and (5.3).

Let us show that the divisor $-K_{\widehat{V}_{u}} \sim \sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}$ is nef.
Lemma 6.2. Suppose that $\mathcal{C}=\mathcal{C}_{4}$. Then $\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}$ is nef.
Proof. Recall from (3.5) that the conic Δ is the scheme-theoretic intersection of the surfaces H_{y} and H_{t}. Moreover, it follows from (3.8) that \mathcal{C}_{4} is contained in the intersection

$$
\begin{equation*}
T_{10} \cap T_{11} \cap T_{13} \cap T_{14} \cap T_{15}^{\prime} \cap T_{16} \cap T_{17} \cap T_{19} \cap T_{20} \tag{6.3}
\end{equation*}
$$

Recall also that T_{13} is the proper transform on V_{u} of the surface H_{y}, and the surface T_{17} is the proper transform on V_{u} of the surface H_{t}. Thus, using Remark 2.21 and Lemma 2.22, we see that the intersection $T_{13} \cap T_{17}$ consists of the curve \mathcal{C}_{4}, the conic \mathcal{C}_{2}, the lines ℓ_{1} and ℓ_{2} from Remark 2.11 and the proper transform on V_{u} of the fibers of π over the points ($1: 0: 0: 0: 0$) and ($0: 0: 0: 0: 1$).

Recall that T_{11} is the proper transform on V_{u} of the surface N_{5}, and the surface T_{19} is the proper transform on V_{u} of the surface N_{13}. Since N_{5} contains Γ and is smooth at the point $(1: 0: 0: 0: 0)$, the surface \widetilde{N}_{5} does not contain the fiber of π over this point. Similarly, the surface \widetilde{N}_{13} does not contain the fiber of π over the point ($0: 0: 0: 0: 1$). Hence, using Remark 2.21 again, we see that the only curves contained in the intersection $T_{11} \cap T_{13} \cap T_{17} \cap T_{19}$ are the conic \mathcal{C}_{2}, the curve \mathcal{C}_{4}, and the lines ℓ_{1} and ℓ_{2}.

By Remark 2.21, the surface T_{15}^{\prime} does not contain the conic \mathcal{C}_{2}. Similarly, it follows from Lemma 2.22 that the intersection $T_{10} \cap T_{20}$ contains neither ℓ_{1} nor ℓ_{2}. Thus, we see that \mathcal{C}_{4} is the only curve contained in the intersection (6.3).

The base locus of the linear system $\left|\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right|$ does not contain any curves outside the exceptional surface E_{σ}. Moreover, the surfaces T_{13} and T_{17} intersect transversally at a general point of the curve \mathcal{C}_{4}, because the surfaces H_{y} and H_{t} intersect transversally at every point of the conic Δ. Hence, the base locus of the linear system $\left|\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right|$ does not contain curves, with the only possible exception of finitely many fibers of the projection $E_{\sigma} \rightarrow \mathcal{C}_{4}$. This implies the required assertion.

Lemma 6.4. Suppose that $\mathcal{C}=\mathcal{C}_{6}$. Then $\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}$ is nef.
Proof. Recall from (3.6) that the conic Υ is the scheme-theoretic intersection of the surfaces H_{x} and H_{w}. Moreover, it follows from (3.9) that \mathcal{C}_{6} is contained in the intersection

$$
\begin{equation*}
T_{10} \cap T_{12} \cap T_{14} \cap T_{15}^{\prime \prime} \cap T_{16} \cap T_{18} \cap T_{20} \tag{6.5}
\end{equation*}
$$

Recall also that T_{12} is the proper transform on V_{u} of the surface H_{x}, and the surface T_{18} is the proper transform on V_{u} of the surface H_{w}. Moreover, the surface H_{x} does not contain the point $(1: 0: 0: 0: 0)$, and the surface H_{w} does not contain the point $(0: 0: 0: 0: 1)$. Thus, using Remark 2.21 and Lemma [2.22] we see that the intersection $T_{12} \cap T_{18}$ consists of the curve \mathcal{C}_{6}, the conic \mathcal{C}_{2}, and the lines ℓ_{1} and ℓ_{2} from Remark 2.11.

By Remark [2.21, the surface $T_{15}^{\prime \prime}$ does not contain the conic \mathcal{C}_{2}. Similarly, it follows from Lemma 2.22 that the intersection $T_{10} \cap T_{20}$ contains neither ℓ_{1} nor ℓ_{2}. Thus, the curve \mathcal{C}_{6} is the only curve contained in the intersection (6.5).

The base locus of the linear system $\left|\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right|$ does not contain any curves outside the exceptional surface E_{σ}. Moreover, the surfaces T_{13} and T_{18} intersect transversally at a general point of the curve \mathcal{C}_{6}, because the surfaces H_{x} and H_{w} intersect transversally at every point of the conic Υ. Therefore, the base locus of the linear system $\left|\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right|$ does not contain curves with
the only possible exception of finitely many fibers of the projection $E_{\sigma} \rightarrow \mathcal{C}_{6}$. This implies the required assertion.

We see that $-K_{\widehat{V}_{u}}$ is nef. Since $E_{\sigma}^{3}=-\operatorname{deg}(\mathcal{C})+2$ and $\sigma^{*}\left(H_{V_{u}}\right) \cdot E^{2}=$ $-\operatorname{deg}(\mathcal{C})$, we compute

$$
-K_{\widehat{V}_{u}}^{3}=\left\{\begin{array}{l}
12 \text { if } \mathcal{C}=\mathcal{C}_{4} \\
8 \text { if } \mathcal{C}=\mathcal{C}_{6}
\end{array}\right.
$$

Therefore, the divisor $-K_{\widehat{V}_{u}}$ is also big. Thus, it follows from Basepoint-free Theorem that the linear system $\left|-n K_{\widehat{V}_{u}}\right|$ is free from base points for $n \gg 0$, see KM98, Theorem 3.3]. This linear system gives a crepant birational morphism $\eta: \widehat{V}_{u} \rightarrow Y$, so that Y is a Fano threefold with at most canonical singularities such that $-K_{Y}^{3}=-K_{\widehat{V}_{u}}^{3}$. Observe that according to the classification of smooth Fano threefolds with Picard rank 2, the threefold \widehat{V}_{u} is not Fano. In other words, η is not an isomorphism, and Y is indeed singular.

Lemma 6.6. Suppose that $\mathcal{C}=\mathcal{C}_{4}$. Then η is small if and only if $u \neq 2$.
Proof. If $u=2$, then $\operatorname{mult}_{\mathcal{C}}\left(T_{15}^{\prime}\right)=3$ by Lemma 5.2, so that

$$
\begin{aligned}
& 0 \leqslant-K_{\widehat{V}_{u}}^{2} \cdot \widehat{T}_{15}^{\prime}=\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right)^{2} \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-3 E_{\sigma}\right) \\
&=22+3 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+4 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-3 E_{\sigma}^{3}=0
\end{aligned}
$$

which implies that $\widehat{T}_{15}^{\prime}$ is contracted by η.
We may assume that $u \neq 2$. Then $\operatorname{mult}_{\mathcal{C}}\left(T_{15}^{\prime}\right)=2$ by Lemma 5.2 Let F be an irreducible surface in \widehat{V}_{u}. Then $F \sim \sigma^{*}\left(n H_{V_{u}}\right)-m E_{\sigma}$ for some integers n and m. We compute

$$
\begin{aligned}
-K_{\widehat{V}_{u}}^{2} \cdot F & =\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right)^{2} \cdot\left(\sigma^{*}\left(n H_{V_{u}}\right)-m E_{\sigma}\right) \\
& =22 n+n \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+2 m \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-m E_{\sigma}^{3}=18 n-6 m
\end{aligned}
$$

so that F is contracted by η if and only if $m=3 n$. In particular, the surface $\widehat{T}_{15}^{\prime}$ is not contracted by η. On the other hand, if $F \neq \widehat{T}_{15}^{\prime}$, then

$$
\begin{aligned}
0 & \leqslant\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot F \cdot \widehat{T}_{15}^{\prime} \\
& =\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot\left(\sigma^{*}\left(n H_{V_{u}}\right)-m E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}\right) \\
& =22 n+2 n \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+3 m \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-2 m E_{\sigma}^{3}=14 n-8 m,
\end{aligned}
$$

so that $m \neq 3 n$, which implies that F is also not contracted by η.
Therefore, if $\mathcal{C}=\mathcal{C}_{4}$ and $u \neq 2$, then it follows from standard computations as in [IP99, §4.1] or Ta89, ACM17,CM13 that there exists a G-equivariant
commutative diagram

where ρ is the flop in the curves contracted by η, and the variety $V_{u^{\prime}}$ is a smooth Fano threefold of type V_{22}^{*} that corresponds to (some) parameter u^{\prime}, which is possibly different from u. Here the map σ^{\prime} is a birational morphism that contracts the proper transform of the surface $\widehat{T}_{15}^{\prime}$ to a unique irreducible G-invariant (rational normal) curve \mathcal{C}_{4}^{\prime} of degree 4 in $V_{u^{\prime}}$. The diagram (6.7) is Sarkisov link No. 104 in CM13.

Remark 6.8. It would be interesting to know whether the threefold $V_{u^{\prime}}$ in (6.7) is isomorphic to the threefold V_{u} or not, that is, whether $u=u^{\prime}$ or not.

Lemma 6.9. Suppose that $\mathcal{C}=\mathcal{C}_{4}$ and $u \neq 2$. Then η does not contract curves in E_{σ}.

Proof. The normal bundle of the curve \mathcal{C}_{4} in V_{u} is isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(p) \oplus$ $\mathcal{O}_{\mathbb{P}^{1}}(q)$ for some integers p and q such that $p \geqslant q$ and $p+q=2$. Thus, the exceptional surface E_{σ} is a Hirzebruch surface \mathbb{F}_{n} for $n=p-q \geqslant 0$. Denote by \mathbf{s} a section of the natural projection $E_{\sigma} \rightarrow \mathcal{C}_{4}$ such that $\mathbf{s}^{2}=-n$, and denote by \mathbf{l} a fiber of this projection. Then $-\left.E_{\sigma}\right|_{E_{\sigma}} \sim \mathbf{s}+\kappa \mathbf{l}$ for some integer κ. One has

$$
-2=E_{\sigma}^{3}=(\mathbf{s}+\kappa \mathbf{l})^{2}=-n+2 \kappa,
$$

so that $\kappa=\frac{n-2}{2}$. By Remark 6.1] one has

$$
\left.\widehat{T}_{15}^{\prime}\right|_{E_{\sigma}}=\widehat{\mathcal{C}}+\varkappa\left(\mathbf{l}_{1}+\mathbf{l}_{2}\right)
$$

where $\widehat{\mathcal{C}}$ is a reducible G-irreducible 2 -section of the projection $E_{\sigma} \rightarrow \mathcal{C}_{4}$, the curves \mathbf{l}_{1} and \mathbf{l}_{2} are the fibers of this projection over two \mathbb{C}^{*}-fixed points in \mathcal{C}_{4}, respectively, and \varkappa is a nonnegative integer. This gives

$$
\widehat{\mathcal{C}} \sim 2 \mathbf{s}+(n+2-2 \varkappa) \mathbf{l} .
$$

Since $\widehat{\mathcal{C}} \neq \mathbf{s}$, we have $0 \leqslant \widehat{\mathcal{C}} \cdot \mathbf{s}=2-n-2 \varkappa$, which gives $n \leqslant 2$. This implies that the divisor

$$
-\left.K_{\widehat{V}_{u}}\right|_{E_{\sigma}} \sim \mathbf{s}+\frac{n+6}{2} \mathbf{l}
$$

is ample, and the assertion follows.

If $\mathcal{C}=\mathcal{C}_{6}$, then the morphism η is never small, since it contracts the surface $\widehat{T}_{15}^{\prime \prime}$. Indeed, in this case, we have $\widehat{T}_{15}^{\prime \prime} \sim \sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}$ by Lemma5.5, which implies that
$K_{\widehat{V}_{u}}^{2} \cdot \widehat{T}_{15}^{\prime \prime}=\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right)^{2} \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}\right)=22+5 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-2 E_{\sigma}^{3}=0$.
This is a so-called bad link (cf. Sarkisov link No. 93 in ACM17).

7. The proof

In this section, we prove Theorem 1.6 Let

$$
\varepsilon(u)= \begin{cases}\frac{4}{5} & \text { if } u \neq \frac{3}{4} \text { and } u \neq 2, \\ \frac{3}{4} & \text { if } u=\frac{3}{4} \\ \frac{2}{3} & \text { if } u=2 .\end{cases}
$$

By Corollaries 2.7, 5.4 and 5.6, we know that $\alpha_{G}\left(V_{u}\right) \leqslant \varepsilon(u)$. Thus, by (1.2), to prove Theorem [1.6] we have to show that the \log pair $\left(V_{u}, \frac{\varepsilon(u)}{n} \mathcal{D}\right)$ has \log canonical singularities for every G-invariant linear system $\mathcal{D} \subset\left|-n K_{V_{u}}\right|$ and for every positive integer n. For basic properties of singularities of such log pairs, we refer the reader to Ko97, Theorem 4.8].

Remark 7.1. Let \mathcal{D} be a nonempty G-invariant linear subsystem in $\left|-n K_{V_{u}}\right|$ for some $n \in \mathbb{Z}_{>0}$. Fix a positive rational number ϵ. Suppose that the \log pair $\left(V_{u}, \frac{\epsilon}{n} \mathcal{D}\right)$ is strictly \log canonical, i.e., \log canonical but not Kawamata \log terminal. Let Z be a center of \log canonical singularities of the \log pair $\left(V_{u}, \frac{\epsilon}{n} \mathcal{D}\right)$ (see Ka97, Definition 1.3]). Then Z is \mathbb{C}^{*}-invariant. This follows from the existence of an equivariant strong resolution of singularities (see RY02, Ko07).

Remark 7.2. In the assumptions of Remark 7.1, let \mathcal{F} be the fixed part of the linear system \mathcal{D}, and let \mathcal{M} be its mobile part, so that

$$
\mathcal{D}=\mathcal{F}+\mathcal{M}
$$

Since $\operatorname{Pic}\left(V_{u}\right)=\mathbb{Z}\left[-K_{V_{u}}\right]$, one has $\mathcal{F} \sim-n_{1} K_{V_{u}}$ and $\mathcal{M} \sim-n_{2} K_{V_{u}}$ for some nonnegative integers n_{1} and n_{2} such that $n_{1}+n_{2}=n$. Then Z is a center of \log canonical singularities of either $\left(V_{u}, \frac{\epsilon}{n_{1}} \mathcal{F}\right)$ or $\left(V_{u}, \frac{\epsilon}{n_{2}} \mathcal{M}\right)$, see [CS09, Remark 2.9] and the proof of [CS09, Lemma 2.10].

Remark 7.3. In the assumptions of Remark 7.2, there is a \mathbb{C}^{*}-invariant divisor $D \in \mathcal{D}$. Then Z is a center of \log canonical singularities of the \log pair $\left(V_{u}, \frac{\epsilon}{2 n}(D+\iota(D))\right)$.

Hence, to prove Theorem 1.6 it is enough to show that the \log pair $\left(V_{u}, \varepsilon(u) D\right)$ is \log canonical for every G-invariant effective \mathbb{Q}-divisor D on the threefold V_{u} such that

$$
D \sim_{\mathbb{Q}}-K_{V_{u}}
$$

Moreover, if necessary, we may assume that $D=\frac{1}{n} S$ for some irreducible surface S in the linear system $\left|-n K_{V_{u}}\right|$. This follows from

Remark 7.4. Let D be a G-invariant effective \mathbb{Q}-divisor D on the threefold V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$, and let Z be an irreducible subvariety in V_{u} such that Z is a center of \log canonical singularities of the \log pair $\left(V_{u}, \epsilon D\right)$, where ϵ is a positive rational number. Suppose that

$$
D=D_{1}+D_{2}
$$

for two nonzero effective G-invariant \mathbb{Q}-divisors $D_{1} \sim_{\mathbb{Q}}-\epsilon_{1} K_{V_{u}}$ and $D_{2} \sim_{\mathbb{Q}}$ $-\epsilon_{2} K_{V_{u}}$. Here ϵ_{1} and ϵ_{2} are positive rational numbers such that $\epsilon_{1}+\epsilon_{2}=$ 1. Then either Z is a center of \log canonical singularities of the \log pair ($V_{u}, \frac{\epsilon}{\epsilon_{1}} D_{1}$) or Z is a center of \log canonical singularities of the \log pair $\left(V_{u}, \frac{\epsilon}{\epsilon_{2}} D_{2}\right)$ (or both). This is well known and easy to prove. See, for instance, CS08, Remark 2.22] or CP16, Lemma 2.2].

The key point in the proof of Theorem 1.6 is the following
Proposition 7.5. Let D be a G-invariant effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Suppose that $\left(V_{u}, \varepsilon(u) D\right)$ is not log canonical. Then $\left(V_{u}, \varepsilon(u) D\right)$ is not \log canonical at a general point of one of the curves \mathcal{C}_{2}, \mathcal{C}_{4} or \mathcal{C}_{6}.

Proof. Let ϵ be a positive rational number such that $\left(V_{u}, \epsilon D\right)$ is strictly \log canonical. Then $\epsilon<\varepsilon(u)$. Let Z be a minimal center of \log canonical singularities of the \log pair $\left(V_{u}, \epsilon D\right)$. Since $\operatorname{Pic}\left(V_{u}\right)$ is generated by $-K_{V_{u}}$ and $\epsilon<1$, the center Z is either a point or a curve. Recall from Remark 7.1 that Z is \mathbb{C}^{*}-invariant. Observe that $\iota(Z)$ is also a minimal center of \log canonical singularities of the log pair $\left(V_{u}, \frac{\epsilon}{n} D\right)$.

Now we will use the so-called perturbation trick. For details, see CS16, Lemma 2.4.10], and the proofs of Ka97, Theorem 1.10] and Ka98, Theorem 1]. Observe that there exists a mobile G-invariant linear system \mathcal{B} on the threefold V_{u}, and there are rational numbers $1 \gg \epsilon_{1} \geqslant 0$ and $1 \gg \epsilon_{2} \geqslant 0$ such that

$$
\left(\epsilon-\epsilon_{1}\right) D+\epsilon_{2} \mathcal{B} \sim_{\mathbb{Q}}-\theta K_{V_{u}}
$$

for some positive rational number $\theta<\varepsilon(u)$, the \log pair

$$
\begin{equation*}
\left(V_{u},\left(\epsilon-\epsilon_{1}\right) D+\epsilon_{2} \mathcal{B}\right) \tag{7.6}
\end{equation*}
$$

has strictly log canonical singularities, and the only centers of log canonical singularities of the \log pair (7.6) are Z and $\iota(Z)$.

Observe that the divisor $-\left(K_{V_{u}}+\left(\epsilon-\epsilon_{1}\right) D+\epsilon_{2} \mathcal{B}\right)$ is ample, since $\theta<\varepsilon(u)<$ 1. Thus, the locus of \log canonical singularities of the pair (7.6) is connected by the Kollár-Shokurov connectedness principle [KM98, Corollary 5.49]. Since there are no G-fixed points on V_{u} by Lemma 2.23 , the center Z is not a point, so that Z is a curve.

By [Ka97, Proposition 1.5], either $Z=\iota(Z)$ or the centers Z and $\iota(Z)$ are disjoint. Using the Kollár-Shokurov connectedness, we see that $Z=\iota(Z)$, so that Z is G-invariant.

Since $(\theta-\varepsilon(u)) K_{V_{u}}$ is an ample \mathbb{Q}-divisor, using Kawamata subadjunction theorem Ka98, Theorem 1], we see that Z is smooth and
$\left.\left.(1-\varepsilon(u)) K_{V_{u}}\right|_{Z} \sim_{\mathbb{Q}}\left(K_{V_{u}}+\left(\epsilon-\epsilon_{1}\right) D+\epsilon_{2} \mathcal{B}+(\theta-\varepsilon(u)) K_{V_{u}}\right)\right|_{Z} \sim_{\mathbb{Q}} K_{Z}+D_{Z}$
for some ample divisor D_{Z} on the curve Z. In particular, we see that Z is rational and

$$
(\varepsilon(u)-1) \operatorname{deg}(Z)>-2,
$$

which implies that $\operatorname{deg}(Z)<\frac{2}{1-\varepsilon(u)} \leqslant 10$, so that $\operatorname{deg}(Z) \leqslant 9$. Thus, by Proposition 4.12, the curve Z is one of the curves $\mathcal{C}_{2}, \mathcal{C}_{4}$ or \mathcal{C}_{6}, which is exactly what we need.

In the remaining part of this section, we will show that $\left(V_{u}, \varepsilon(u) D\right)$ is \log canonical at general points of the curves $\mathcal{C}_{2}, \mathcal{C}_{4}$ or \mathcal{C}_{6} for every G-invariant effective \mathbb{Q}-divisor D on the threefold V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. We start with the conic \mathcal{C}_{2}.

Lemma 7.7. Let D be a G-invariant effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Then the log pair $\left(V_{u}, \frac{4}{5} D\right)$ is log canonical at a general point of the curve \mathcal{C}_{2}.

Proof. The normal bundle of the conic \mathcal{C}_{2} in V_{u} is either isomorphic to $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}$ or isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$. Thus, the exceptional surface $E_{V_{u}}$ is either $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or the Hirzebruch surface \mathbb{F}_{2}.

If $E_{V_{u}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, we denote by \mathbf{s} the section of the natural projection $E_{V_{u}} \rightarrow \mathcal{C}_{2}$ such that $\mathbf{s}^{2}=0$. Similarly, if $E_{V_{u}} \cong \mathbb{F}_{2}$, we denote by s the section of the projection $E_{V_{u}} \rightarrow \mathcal{C}_{2}$ such that $\mathbf{s}^{2}=-2$. If $E_{V_{u}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, then $-\left.E_{V_{u}}\right|_{E_{V_{u}}} \sim \mathbf{s}$. Similarly, if $E_{V_{u}} \cong \mathbb{F}_{2}$, then

$$
-\left.E_{V_{u}}\right|_{E_{V_{u}}} \sim \mathbf{s}+\mathbf{l}
$$

where \mathbf{l} is the fiber of the natural projection $E_{V_{u}} \rightarrow \mathcal{C}_{2}$.
Denote by \widetilde{D} the proper transform of the divisor D on the threefold \widetilde{V}_{u}. Then

$$
\widetilde{D} \sim_{\mathbb{Q}} \phi^{*}\left(H_{V_{u}}\right)-m E_{V_{u}},
$$

where $m=\operatorname{mult}_{\mathcal{C}_{2}}(D)$. One the other hand, we know that $\mathcal{R} \sim 2 \phi^{*}\left(H_{V_{u}}\right)-$ $5 E_{V_{u}}$, so that

$$
\widetilde{D} \sim_{\mathbb{Q}} \frac{1}{2} \mathcal{R}+\left(\frac{5}{2}-m\right) E_{V_{u}},
$$

which implies that $m \leqslant \frac{5}{2}$, because $E_{Q_{u}}$ is the proper transform of the surface \mathcal{R} on the threefold \widetilde{Q}_{u}.

Suppose that the \log pair $\left(V_{u}, \frac{4}{5} D\right)$ is not \log canonical at a general point of the curve \mathcal{C}_{2}. Then $m>\frac{5}{4}$. Moreover, the surface $E_{V_{u}}$ contains a G-irreducible curve \widetilde{C} such that $\phi(\widetilde{C})=\mathcal{C}_{2}$, and the log pair

$$
\begin{equation*}
\left(\widetilde{V}_{u}, \frac{4}{5} \widetilde{D}+\left(\frac{4 m}{5}-1\right) E_{V_{u}}\right) \tag{7.8}
\end{equation*}
$$

is not \log canonical at a general point of the curve \widetilde{C}. Furthermore, since we know that $m \leqslant \frac{5}{2}$, the curve \widetilde{C} must be a section of the natural projection $E_{V_{u}} \rightarrow \mathcal{C}_{2}$. This fact is well-known. See for instance [CP16, Remark 2.5]. Thus, the curve \widetilde{C} is irreducible.

When we apply [KM98, Theorem 5.50] to (7.8), we see that the log pair $\left(E_{V_{u}},\left.\frac{4}{5} \widetilde{D}\right|_{E_{V_{u}}}\right)$ is also not \log canonical at a general point of the curve \widetilde{C}. This simply means that

$$
\left.\frac{4}{5} \widetilde{D}\right|_{E_{V_{u}}}=\theta \widetilde{C}+\Omega
$$

for some rational number $\theta>1$ and some effective \mathbb{Q}-divisor Ω on the surface $E_{V_{u}}$.

One has $\widetilde{C} \sim \mathbf{s}+\kappa \mathbf{l}$ for some nonnegative integer κ. If $E_{V_{u}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, then

$$
\theta \mathbf{s}+\theta \kappa \mathbf{l}+\Omega \sim_{\mathbb{Q}} \theta \widetilde{C}+\Omega=\left.\frac{4}{5} \widetilde{D}\right|_{E_{V_{u}}} \sim_{\mathbb{Q}} \frac{4 m}{5} \mathbf{s}+\frac{8}{5} \mathbf{l}
$$

so that either $\kappa=0$ or $\kappa=1$. Thus, in this case we have

$$
-K_{\widetilde{V}_{u}} \cdot \widetilde{C}=-\left.K_{\widetilde{V}_{u}}\right|_{E_{V_{u}}} \cdot \widetilde{C}=(\mathbf{s}+2 \mathbf{l}) \cdot(\mathbf{s}+\kappa \mathbf{l})=2+\kappa \leqslant 3
$$

Similarly, if $E_{V_{u}} \cong \mathbb{F}_{2}$, then

$$
\theta \mathbf{s}+\theta \kappa \mathbf{l}+\Omega \sim_{\mathbb{Q}} \theta \widetilde{C}+\Omega=\left.\frac{4}{5} \widetilde{D}\right|_{E_{V_{u}}} \sim_{\mathbb{Q}} \frac{4 m}{5} \mathbf{s}+\frac{8+4 m}{5} \mathbf{l}
$$

so that $\kappa \leqslant 3$, which gives

$$
-K_{\widetilde{V}_{u}} \cdot \widetilde{C}=-\left.K_{\widetilde{V}_{u}}\right|_{E_{V_{u}}} \cdot \widetilde{C}=(\mathbf{s}+3 \mathbf{l}) \cdot(\mathbf{s}+\kappa \mathbf{l})=1+\kappa \leqslant 4
$$

We proved that $-K_{\widetilde{V}_{u}} \cdot \widetilde{C} \leqslant 4$. Then the degree of the curve $\beta(\widetilde{C})$ is $-K_{\widetilde{V}_{u}} \cdot \widetilde{C} \leqslant 4$. This is impossible by Lemmas 3.4 and 4.7

Now we deal with the curve \mathcal{C}_{6}.
Lemma 7.9. Let D be an effective \mathbb{Q}-divisor on the threefold V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Suppose that $\operatorname{Supp}(D)$ does not contain $T_{15}^{\prime \prime}$. Then the log pair $\left(V_{u}, D\right)$ is log canonical at a general point of the curve \mathcal{C}_{6}.

Proof. Let us use the notation of $₫ 6$ with $\mathcal{C}=\mathcal{C}_{6}$. Denote by $\widehat{T}_{15}^{\prime \prime}$ the proper transform of the surface $T_{15}^{\prime \prime}$ on the threefold \widehat{V}_{u}. Then

$$
\widehat{T}_{15}^{\prime \prime} \sim \sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}
$$

by Lemma 5.5.
Denote by \widehat{D} the proper transform on \widehat{V}_{u} of the divisor D. We also let $m=\operatorname{mult}_{\mathcal{C}_{6}}(D)$. Using $E_{\sigma}^{3}=-4$ and $\sigma^{*}\left(H_{V_{u}}\right) \cdot E^{2}=-6$, we compute

$$
\begin{aligned}
& \left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot \widehat{D} \cdot \widehat{T}_{15}^{\prime \prime} \\
& \quad=\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-m E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}\right) \\
& \quad=22+2 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+3 m \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-2 m E_{\sigma}^{3}=10-10 m .
\end{aligned}
$$

On the other hand, the divisor $\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}$ is nef by Lemma 6.4. Thus, we have $m \leqslant 1$, and the assertion follows.

Corollary 7.10. Let D be an effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. If $u=\frac{3}{4}$, then the log pair $\left(V_{u}, \frac{3}{4} D\right)$ is log canonical at a general point of the curve \mathcal{C}_{6}. If $u \neq \frac{3}{4}$, then the log pair $\left(V_{u}, D\right)$ is log canonical at a general point of the curve \mathcal{C}_{6}.

Proof. If $u=\frac{3}{4}$, then $\left(V_{u}, \frac{3}{4} T_{15}^{\prime \prime}\right)$ is \log canonical at a general point of \mathcal{C}_{6} by Lemma 5.5, Likewise, if $u \neq \frac{3}{4}$, then the pair $\left(V_{u}, T_{15}^{\prime \prime}\right)$ is \log canonical at a general point of the curve \mathcal{C}_{6}. Thus, by Remark 7.4 we may assume that $\operatorname{Supp}(D)$ does not contain the surface $T_{15}^{\prime \prime}$. Now the assertion follows from Lemma 7.9 .

Combining Proposition 7.5, Lemma 7.7 and Corollary 7.10, we obtain
Corollary 7.11. Let D be a G-invariant effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Suppose that the log pair $\left(V_{u}, \varepsilon(u) D\right)$ is log canonical at a general point of the curve \mathcal{C}_{4}. Then the \log pair $\left(V_{u}, \varepsilon(u) D\right)$ is log canonical.

Finally, we deal with the curve \mathcal{C}_{4} using Corollary 7.11.
Lemma 7.12. Let D be a G-invariant effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. Suppose that $\operatorname{Supp}(D)$ does not contain T_{15}^{\prime}. Then the log pair $\left(V_{u}, \frac{5}{6} D\right)$ is log canonical at a general point of the curve \mathcal{C}_{4}.

Proof. Let us use the notation of $\sqrt[6]{6}$ with $\mathcal{C}=\mathcal{C}_{4}$. Then $\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}$ is nef by Lemma6.2 Denote by \widehat{D} the proper transform on \widehat{V}_{u} of the divisor D. We also let $m=\operatorname{mult}_{\mathcal{C}_{4}}(D)$. If $u=2$, then mult $\mathcal{C}_{4}\left(T_{15}^{\prime}\right)=3$ by Remark 6.1,
so that

$$
\begin{aligned}
0 & \leqslant\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot \widehat{D} \cdot \widehat{T}_{15}^{\prime} \\
& =\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-m E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-3 E_{\sigma}\right) \\
& =22+3 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+4 m \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-3 m E_{\sigma}^{3}=10-10 m
\end{aligned}
$$

so that $m \leqslant 1$, which implies that the \log pair $\left(V_{u}, D\right)$ is \log canonical at a general point of the curve \mathcal{C}_{4}.

Hence, we may assume that $u \neq 2$, so that $\operatorname{mult}_{\mathcal{C}_{4}}\left(T_{15}^{\prime}\right)=2$ by Remark 6.1. Then

$$
\begin{aligned}
0 & \leqslant\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot \widehat{D} \cdot \widehat{T}_{15}^{\prime} \\
& =\left(\sigma^{*}\left(H_{V_{u}}\right)-E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-m E_{\sigma}\right) \cdot\left(\sigma^{*}\left(H_{V_{u}}\right)-2 E_{\sigma}\right) \\
& =22+2 \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}+3 m \sigma^{*}\left(H_{V_{u}}\right) \cdot E_{\sigma}^{2}-2 m E_{\sigma}^{3}=14-8 m,
\end{aligned}
$$

which gives $m \leqslant \frac{7}{4}$. Let us show that this implies that $\left(V_{u}, \frac{5}{6} D\right)$ is \log canonical at a general point of the curve \mathcal{C}_{4}.

Let $\epsilon=\frac{5}{6}$. Suppose that $\left(V_{u}, \epsilon D\right)$ is not \log canonical at a general point of the curve \mathcal{C}_{4}. Then the surface E_{σ} contains a G-irreducible curve \widehat{Z} such that $\sigma(\widehat{Z})=\mathcal{C}_{4}$, and the log pair

$$
\begin{equation*}
\left(\widehat{V}_{u}, \epsilon \widehat{D}+(\epsilon m-1) E_{\sigma}\right) \tag{7.13}
\end{equation*}
$$

is not \log canonical at a general point of the curve \widehat{Z}. Moreover, since $\epsilon m=$ $\frac{5 m}{6} \leqslant \frac{35}{24}<2$, the curve \widehat{Z} must be a section of the natural projection $E_{\sigma} \rightarrow \mathcal{C}_{4}$. This is well-known. See for instance [CP16, Remark 2.5].

We see that \widehat{Z} is irreducible. Thus, the curve \widehat{Z} is not contained in $\widehat{T}_{15}^{\prime}$ by Remark 6.1. Moreover, it follows from Lemma 6.9 that the curve \widehat{Z} is not contracted by η, so that \widehat{Z} is not flopped by ρ.

Denote by D^{\prime} the proper transform of the divisor D on the threefold $V_{u^{\prime}}$, and denote by T^{\prime} the proper transform of the exceptional surface E_{σ} on the threefold $V_{u^{\prime}}$. Then the log pair

$$
\begin{equation*}
\left(V_{u^{\prime}}, \epsilon D^{\prime}+(\epsilon m-1) T^{\prime}\right) \tag{7.14}
\end{equation*}
$$

is not \log canonical, because the log pair (7.13) is not log canonical at a general point of the curve \widehat{Z}.

Let us compute the class of the divisor D^{\prime} in the group $\operatorname{Pic}\left(V_{u^{\prime}}\right)$, and the multiplicity of the divisor D^{\prime} at a general point of the curve \mathcal{C}_{4}^{\prime}. Recall from
(6.7) that \mathcal{C}_{4}^{\prime} is the unique irreducible G-invariant curve of degree 4 in the threefold $V_{u^{\prime}}$. We have

$$
\widehat{D}+(m-1) E_{\sigma} \sim_{\mathbb{Q}}-K_{\widehat{V}_{u}}
$$

This implies that $D^{\prime}+(m-1) T^{\prime} \sim_{\mathbb{Q}}-K_{V_{u^{\prime}}}$, where T^{\prime} is the unique surface in the linear system $\left|-K_{V_{u^{\prime}}}\right|$ that is singular along the curve \mathcal{C}_{4}^{\prime}. Thus, we have

$$
D^{\prime} \sim_{\mathbb{Q}}-(2-m) K_{V_{u^{\prime}}} .
$$

Similar arguments applied to the divisor $\frac{1}{2-m} D^{\prime}$ give

$$
-\frac{1}{2-m} K_{V} \sim_{\mathbb{Q}} \frac{1}{2-m} D \sim_{\mathbb{Q}}-\left(2-\frac{\operatorname{mult}_{\mathcal{C}_{4}^{\prime}}\left(D^{\prime}\right)}{2-m}\right) K_{V}
$$

so that $\operatorname{mult}_{\mathcal{C}_{4}^{\prime}}\left(D^{\prime}\right)=3-2 m$.
Observe that mult $\mathcal{C}_{4}^{\prime}\left(T^{\prime}\right)=2$. Thus, we have

$$
\operatorname{mult}_{\mathcal{C}_{4}^{\prime}}\left(\epsilon D^{\prime}+(\epsilon m-1) T^{\prime}\right)=3 \epsilon-2<1,
$$

so that (7.14) is \log canonical at a general point of the curve \mathcal{C}_{4}^{\prime}. On the other hand, we have

$$
\epsilon D^{\prime}+(\epsilon m-1) T^{\prime} \sim_{\mathbb{Q}}-(2 \epsilon-1) K_{V_{u^{\prime}}}
$$

and $2 \epsilon-1=\frac{2}{3} \leqslant \varepsilon(u)$. Thus, the log pair (7.14) must be log canonical by Corollary 7.11 applied to $V_{u^{\prime}}$. The obtained contradiction completes the proof of the lemma.

Corollary 7.15. Let D be an effective \mathbb{Q}-divisor on V_{u} such that $D \sim_{\mathbb{Q}}$ $-K_{V_{u}}$. If $u=2$, then the \log pair $\left(V_{u}, \frac{2}{3} D\right)$ is log canonical at a general point of the curve \mathcal{C}_{4}. If $u \neq 2$, then the \log pair $\left(V_{u}, \frac{5}{6} D\right)$ is log canonical at a general point of the curve \mathcal{C}_{4}.

Proof. If $u=2$, then $\left(V_{u}, \frac{2}{3} T_{15}^{\prime}\right)$ is \log canonical at a general point of \mathcal{C}_{4} by Lemma 5.2. Similarly, if $u \neq 2$, then the pair $\left(V_{u}, T_{15}^{\prime}\right)$ is \log canonical at a general point of the curve \mathcal{C}_{4}. Thus, by Remark 7.4 we may assume that $\operatorname{Supp}(D)$ does not contain the surface T_{15}^{\prime}. Now the assertion follows from Lemma 7.12

Combining Corollaries 7.11 and 7.15 , we obtain the assertion of Theorem 1.6. Indeed, let D be an effective \mathbb{Q}-divisor on the threefold V_{u} such that $D \sim_{\mathbb{Q}}-K_{V_{u}}$. As we already mentioned, we have to show that the log pair $\left(V_{u}, \varepsilon(u) D\right)$ is \log canonical. But the \log pair $\left(V_{u}, \varepsilon(u) D\right)$ is \log canonical at a general point of the curve \mathcal{C}_{4} by Corollary 7.15, so that it is \log canonical everywhere by Corollary 7.11

Acknowledgments

The authors are grateful to Sir Simon Donaldson, Kento Fujita, Alexander Kuznetsov, Yuri Prokhorov, Cristiano Spotti, and Chenyang Xu for useful discussions.

References

[ACM17] Maxim Arap, Joseph Cutrone, and Nicholas Marshburn, On the existence of certain weak Fano threefolds of Picard number two, Math. Scand. 120 (2017), no. 1, 68-86, DOI 10.7146/math.scand.a-25505. MR3624007
$\left[\mathrm{ACCF}^{+}\right]$C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. MartinezGarcia, C. Shramov, H. Süß, and N. Viswanathan, The Calabi problem for Fano threefolds, MPIM preprint 2021-31.
[BLX19] H. Blum, Yu. Liu, and Ch. Xu, Openness of K-semistability for Fano varieties, arXiv:1907.02408 2019.
[CP16] Ivan Cheltsov, Jihun Park, and Joonyeong Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 7, 1537-1564, DOI 10.4171/JEMS/622. MR 3506607
[CS08] I. A. Cheltsov and K. A. Shramov, Log-canonical thresholds for nonsingular Fano threefolds (Russian, with Russian summary), Uspekhi Mat. Nauk 63 (2008), no. 5(383), 73-180, DOI 10.1070/RM2008v063n05ABEH004561; English transl., Russian Math. Surveys 63 (2008), no. 5, 859-958. MR2484031
[CS09] I. A. Cheltsov and K. A. Shramov, Extremal metrics on del Pezzo threefolds (Russian, with Russian summary), Tr. Mat. Inst. Steklova 264 (2009), no. Mnogomernaya Algebraicheskaya Geometriya, 37-51, DOI 10.1134/S0081543809010040; English transl., Proc. Steklov Inst. Math. 264 (2009), no. 1, 30-44. MR2590832
[CS12] Ivan Cheltsov and Constantin Shramov, Three embeddings of the Klein simple group into the Cremona group of rank three, Transform. Groups 17 (2012), no. 2, 303-350, DOI 10.1007/s00031-012-9183-8. MR2921069
[CS14] Ivan Cheltsov and Constantin Shramov, Five embeddings of one simple group, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1289-1331, DOI 10.1090/S0002-9947-2013-05768-6. MR3145732
[CS15] Ivan Cheltsov and Constantin Shramov, Two rational nodal quartic 3-folds, Q. J. Math. 67 (2016), no. 4, 573-601, DOI 10.1093/qmath/haw032. MR3609847
[CS16] Ivan Cheltsov and Constantin Shramov, Cremona groups and the icosahedron, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. MR3444095
[CS19] Ivan Cheltsov and Constantin Shramov, Finite collineation groups and birational rigidity, Selecta Math. (N.S.) 25 (2019), no. 5, Paper No. 71, 68, DOI 10.1007/s00029-019-0516-5. MR4036497
[CDS15] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I, II, III, J. Amer. Math. Soc. 28 (2015), no. 1, 183-197, 199234, 235-278, DOI 10.1090/S0894-0347-2014-00800-6. MR3264767
[C95] Alessio Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223-254. MR1311348
[CM13] Joseph W. Cutrone and Nicholas A. Marshburn, Towards the classification of weak Fano threefolds with $\rho=2$, Cent. Eur. J. Math. 11 (2013), no. 9, 15521576, DOI 10.2478/s11533-013-0261-5. MR3071923
[DKK17] Sławomir Dinew, Grzegorz Kapustka, and Michał Kapustka, Remarks on Mukai threefolds admitting \mathbb{C}^{*} action, Mosc. Math. J. 17 (2017), no. 1, 15-33, DOI 10.17323/1609-4514-2017-17-1-15-33. MR3634518
[D08] Simon K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 29-75. MR2483362
[D18] Simon K. Donaldson, Stability of algebraic varieties and Kähler geometry, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 199-221, DOI 10.4310/pamq.2009.v5.n2.a2. MR3821150
[Fu21] K. Fujita, On Fano threefolds of degree 22 after Cheltsov and Shramov, preprint, arXiv:2107.04816 2021.
[I77] V. Iskovskikh, Fano 3-folds I, Math. U.S.S.R. Izvestiya 11 (1977), 485-527.
[I78] V. A. Iskovskih, Fano threefolds. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506-549. MR503430
[IP99] V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1-247. MR1668579
[Ka97] Yujiro Kawamata, On Fujita's freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), no. 3, 491-505, DOI 10.1007/s002080050085. MR1457742
[Ka98] Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893-899. MR1646046
[Ko97] János Kollár, Singularities of pairs, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221287. MR 1492525
[Ko07] János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original, DOI 10.1017/CBO9780511662560. MR1658959
[KP17] Alexander Kuznetsov and Yuri Prokhorov, Prime Fano threefolds of genus 12 with $a \mathbb{G}_{\mathrm{m}}$-action and their automorphisms, Épijournal Géom. Algébrique 2 (2018), Art. 3, 14, DOI 10.46298/epiga.2018.volume2.4179. MR3816899
[KPS18] Alexander G. Kuznetsov, Yuri G. Prokhorov, and Constantin A. Shramov, Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math. 13 (2018), no. 1, 109-185, DOI 10.1007/s11537-017-1714-6. MR3776469
[MU83] Shigeru Mukai and Hiroshi Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 490-518, DOI 10.1007/BFb0099976. MR 726439
[P90] Yu. G. Prokhorov, Automorphism groups of Fano 3-folds (Russian), Uspekhi Mat. Nauk 45 (1990), no. 3(273), 195-196, DOI 10.1070/RM1990v045n03ABEH002363; English transl., Russian Math. Surveys 45 (1990), no. 3, 222-223. MR 1071944
[P13] Yuri Prokhorov, G-Fano threefolds, II, Adv. Geom. 13 (2013), no. 3, 419-434, DOI 10.1515/advgeom-2013-0009. MR3100918
[P16] Yu. G. Prokhorov, Singular Fano manifolds of genus 12 (Russian, with Russian summary), Mat. Sb. 207 (2016), no. 7, 101-130, DOI 10.4213/sm8585; English transl., Sb. Math. 207 (2016), no. 7-8, 983-1009. MR3535377
[RY02] Z. Reichstein and B. Youssin, Equivariant resolution of points of indeterminacy, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2183-2187, DOI 10.1090/S0002-9939-02-06595-4. MR 1896397
[R83] Miles Reid, Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131-180, DOI 10.2969/aspm/00110131. MR 715649
[RST13] Yann Rollin, Santiago R. Simanca, and Carl Tipler, Deformation of extremal metrics, complex manifolds and the relative Futaki invariant, Math. Z. 273 (2013), no. 1-2, 547-568, DOI 10.1007/s00209-012-1019-7. MR3010175
[Ta89] Kiyohiko Takeuchi, Some birational maps of Fano 3-folds, Compositio Math. 71 (1989), no. 3, 265-283. MR 1022045
[Ti87] Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$, Invent. Math. 89 (1987), no. 2, 225-246, DOI 10.1007/BF01389077. MR 894378
[Ti97] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1-37, DOI 10.1007/s002220050176. MR1471884
[X19] Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003-1030, DOI 10.4007/annals.2020.191.3.6. MR4088355

School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Email address: I.Cheltsov@ed.ac.uk
Steklov Mathematical Institute of RAS, 8 Gubkina Street, Moscow 119991, Russia; and National Research University Higher School of Economics, Laboratory of Algebraic Geometry, NRU HSE, 6 Usacheva str., Moscow, 117312, Russia

Email address: costya.shramov@gmail.com

[^0]: Received May 26, 2020. The work of the first author has been supported by EPSRC grant number EP/V054597/1. The work of the second author was performed at the Steklov International Mathematical Center and was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265). He was also supported by the Russian Academic Excellence Project " $5-100$ " and the Young Russian Mathematicians award.

