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On del Pezzo surfaces, we study effective ample R-divisors such that the complements

of their supports are isomorphic to A1-bundles over smooth affine curves.

All considered varieties are assumed to be algebraic and defined over an

algebraically closed field of characteristic 0 throughout this article.

1 Introduction

1.1 Cylinders

The purpose of this article is to study cylinders in rational surfaces and, more specially,

in del Pezzo surfaces. A cylinder in a projective variety X is a Zariski open subset that

is isomorphic to A1 × Z for some affine variety Z. So, if X is a rational surface, then Z is

just the projective line with finitely many missing points.
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2 I. Cheltsov et al.

One can easily see that every smooth rational surface contains cylinders [19,

Proposition 3.13]. However, this is no longer true for singular rational surfaces, that is,

there are plenty of singular rational surfaces without any cylinder. Let us explain how to

find such rational surfaces. First, let S be a rational surface with quotient singularities

and suppose that S has a cylinder U , that is, a Zariski open subset in S such that U ∼=
A1 × Z for some affine curve Z. Consider the following commutative diagram

P1 × P1

p̄2

��

A1 × P1� ���

p2

��

A1 × Z ∼= U� ���

pZ

��

� � �� S

ψ

���
�
�
�
�
�
� S̃

π��

φ

����
��

��
��

��
��

��
��

��

Z � �

��������������� 	

����������������

P1 P1 P1

, (1.1.1)

where pZ , p2, and p̄2 are the natural projections to the second factors, ψ is the rational

map induced by pZ , π is a birational morphism resolving the indeterminacy of ψ , and φ

is a morphism. By construction, a general fiber of φ is P1. Let C1, . . . ,Cn be the irreducible

curves in S such that

S \ U =
n⋃
i=1

Ci.

Then, the curves C1, . . . ,Cn generate the divisor class group Cl(S) of the surface S because

Cl(U) = 0. In particular, one has

n � rank Cl(S). (1.1.2)

Let E1, . . . ,Er be the π-exceptional curves, if any, and let � be the section of p̄2 that is

the complement of A1 × P1 in P1 × P1. Denote by C̃1, . . . , C̃n, and �̃ the proper transforms

of the curves C1, . . . ,Cn, and � on the surface S̃, respectively. Then �̃ is a section of φ.

Moreover, the curve �̃ is one of the curves C̃1, . . . , C̃n and E1, . . . ,Er . Furthermore, all the

other curves among C̃1, . . . , C̃n and E1, . . . ,Er are irreducible components of some fibers

of φ. We may assume either �̃ = C̃1 or �̃ = Er .

If �̃ = C̃1, then ψ is a morphism. Conversely, if ψ is a morphism, then �̃ = C̃1.

Let λ1, . . . , λn be arbitrary real numbers. Then

KS̃ +
n∑
i=1

λiC̃i +
r∑
i=1

μiEi = π∗
(
KS +

n∑
i=1

λiCi

)
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Cylinders in del Pezzo Surfaces 3

for some real numbers μ1, . . . ,μr . Let F̃ be a general fiber of φ. Then KS̃ · F̃ = −2 by the

adjunction formula. Put F = π(F̃).

If �̃ = Er , then

−2 + μr =
(
KS̃ +

n∑
i=1

λiC̃i +
r∑
i=1

μiEi

)
· F̃ = π∗

(
KS +

n∑
i=1

λiCi

)
· F̃ =

(
KS +

n∑
i=1

λiCi

)
· F .

If �̃ = C1, then

−2 + λ1 =
(
KS̃ +

n∑
i=1

λiC̃i +
r∑
i=1

μiEi

)
· F̃ = π∗

(
KS +

n∑
i=1

λiCi

)
· F̃ =

(
KS +

n∑
i=1

λiCi

)
· F .

On the other hand, if KS +∑n
i=1 λiCi is pseudo-effective, then

(
KS +

n∑
i=1

λiCi

)
· F � 0

because F̃ is a general fiber of φ.

Remark 1.1.3. We are therefore able to draw the following conclusions:

• if KS + ∑n
i=1 λiCi is pseudo-effective, the log pair (S,

∑n
i=1 λiCi) is not log

canonical;

• if KS+∑n
i=1 λiCi is pseudo-effective for some real numbers λi < 2, the rational

map ψ cannot be a morphism.

This observation is originated from [19, Lemmas 4.11, 4.14], and [21, Lemma 5.3]. �

FromRemark 1.1.3, it immediately follows that if a rational surfacewith pseudo-

effective canonical class has only quotient singularities then it cannot contain any

cylinder. We will present various examples of such surfaces in Section 3.

1.2 Polar cylinders

In general, it seems hopeless to determine which singular rational surfaces have cylin-

ders and which do not have cylinders. This is simply because we do not have any

reasonable classification of singular del Pezzo surfaces. Instead of this, we are to con-

sider a similar problem for polarized surfaces, which has a significant application to

theory of unipotent group actions in affine geometry (e.g., see [19–21]). To do this, let S

be a rational surface with at most quotient singularities.
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4 I. Cheltsov et al.

Definition 1.2.1 ([19]). LetM be an R-divisor on S. AnM-polar cylinder in S is a Zariski

open subset U of S such that

• U = A1 × Z for some affine curve Z, that is, U is a cylinder in S,

• there is an effective R-divisor D on S with D ≡ M and U = S \ Supp(D). �

With the notation at the beginning, the second condition can be rephrased as

follows:

M ≡
n∑
i=1

λiCi (1.2.2)

for some positive real numbers λ1, . . . , λn. We here remark that on a log del Pezzo surface,

numerical equivalence for Q-divisors coincides with Q-linear equivalence, that is, if S

is a log del Pezzo surface and M is a Q-divisor, then (1.2.2) can be rewritten as

M ∼Q

n∑
i=1

λiCi

for some positive rational numbers λ1, . . . , λn.

Let Amp(S) be the ample cone of S in Pic(S)⊗ R. Denote by Ampcyl(S) the set

{H ∈ Amp(S) : there is an H-polar cylinder on S} .

This set will be called the cone of cylindrical ample divisors of S. We have seen that

the set Ampcyl(S) can be empty. On the other hand, one can show that Ampcyl(S) �= ∅

provided that S is smooth (see [19, Proposition 3.13]).

For smooth del Pezzo surfaces, [5] and [21] have achieved the following:

Theorem1.2.3. Let Sd be a smooth del Pezzo surface of degreed. Then the set Ampcyl(Sd)

contains the anticanonical class if and only if d � 4. �

Theorem 1.2.3 has been generalized in [6] as follows:

Theorem 1.2.4. Let Sd be a del Pezzo surface of degree d with at most du Val singu-

larities. The set Ampcyl(Sd) contains the anticanonical class if and only if one of the

following conditions holds:

• d � 4,

• d = 3 and Sd is singular,
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Cylinders in del Pezzo Surfaces 5

• d = 2 and Sd has a singular point that is not of type A1,

• d = 1 and Sd has a singular point that is not of type A1, A2, A3, or D4. �

In [5, 6] we have witnessed several vague pieces of evidence for the supposi-

tion that a cylinder polarized by an ample divisor can be obtained by manipulating an

anticanonically polarized cylinder, if any, on a log del Pezzo surface.

Conjecture 1.2.5. A log del Pezzo surface S has a (−KS)-polar cylinder if and only if

Ampcyl(S) = Amp(S). �

2 Main Results

2.1 Fujita Invariant

To investigate the cones of cylindrical ample divisors on log del Pezzo surfaces, we adopt

the concept, so-called, the Fujita invariant of a log pair defined in [15, Definition 2.2].

This was originally introduced by Fujita, disguised as its negative value and under the

name Kodaira energy [10–13]. This plays essential roles in Manin’s conjecture (see, e.g.,

[1, 15]).

Let S be a log del Pezzo surface and A be a big R-divisor on S. It follows from

Cone Theorem (see, e.g., [23, Theorem 3.7]) that the Mori cone NE(S) of the surface S is

polyhedral.

Definition 2.1.1. For the log pair (S,A), we define the Fujita invariant of (S,A) by

μA := inf
{
λ ∈ R>0

∣∣∣ the R-divisor KS + λA is pseudo-effective
}
.

The smallest extremal face �A of the Mori cone NE(S) that contains KS + μAA is called

the Fujita face of A. The Fujita rank of (S,A) is defined by rA := dim�A. Note that rA = 0

if and only if −KS ≡ μAA. �

Remark 2.1.2. In [15, Definition 2.2], Hassett et al. define the Fujita invariants only for

Q-factorial varieties with canonical singularities. For general varieties, they define the

Fujita invariants by taking the pull-backs to smooth models [28]. �

Let φA : S → Z be the contraction given by the Fujita face �A of the divisor A.

Then either φA is a birational morphism or a conic bundle with Z ∼= P1 (see, e.g., [7,

Subsection 8.2.6]). In the former case, the R-divisor A is said to be of type B(rA) and in

the latter case it is said to be of type C(rA).
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6 I. Cheltsov et al.

Now we suppose that S is a smooth del Pezzo surface of degree d � 7. Then,

the Mori cone NE(S) of the surface S is generated by all the (−1)-curves in S (see [7,

Theorem 8.2.23]). Let H be an ample R-divisor on S.

If H is of type B(rH ), then its Fujita face �H is generated by rH disjoint (−1)-

curves contracted by φH , where rH � 9−d. If H is of type C(rH ), then �H is generated by

the (−1)-curves in the (8−d) reducible fibers of φH . Each reducible fiber consists of two

(−1)-curves that intersect transversally at a single point.

Suppose that H is of type B(rH ). Let E1, . . . ,ErH be all the (−1)-curves contained

in �H . These are disjoint and generate the Fujita face �H . Therefore,

KS + μHH ≡
rH∑
i=1

aiEi (2.1.3)

for some positive real numbers a1, . . . ,arH . We have ai < 1 for every i because H · Ei > 0.

Vice versa, for every positive real numbers b1, . . . ,brH < 1, the divisor

−KS +
rH∑
i=1

biEi

is ample. The set of all ample R-divisor classes of type B(rH ) in Pic(S) ⊗ R is denoted

by AmpB
rH
(S).

Suppose that H is of type C(rH ). Note that rH = 9 − d. There are a 0-curve B and

(8 − d) disjoint (−1)-curves E1,E2,E3, . . . ,E8−d, each of which is contained in a distinct

fiber of φH , such that

KS + μHH ≡ aB+
8−d∑
i=1

aiEi (2.1.4)

for some positive real number a and non-negative real numbers a1, . . . ,a8−d < 1. In

particular, these curves generate the Fujita face �H . Vice versa, for every positive real

number b and non-negative real numbers b1, . . . ,b8−d < 1 the divisor

−KS + bB+
8−d∑
i=1

biEi

is ample.

In the case of type C(rH ), put �H = |{ai|ai �= 0}|. The R-divisor H is said to be of

length �H . The set of all ample R-divisor classes of type C(rH )with length �H in Pic(S)⊗R
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Cylinders in del Pezzo Surfaces 7

is denoted by AmpC
�H
(S). It is clear that

Amp(S) =
8−d⋃
�=0

AmpC
� (S) ∪

9−d⋃
r=0

AmpB
r (S).

Note that AmpB
0(S) is the ray generated by the anticanonical class [−KS].

2.2 Main theorems

The goal of the present article is to study the cones of cylindrical ample divisors of

smooth del Pezzo surfaces. This continues the work of Kishimoto et al. in [21] and the

work of Cheltsov et al. in [5, 6].

Theorem 2.2.1. Let Sd be a smooth del Pezzo surface of degree d.

(1) For 4 � d � 9,

Ampcyl(Sd) = Amp(Sd).

(2) For d = 3,

Ampcyl(S3) = Amp(S3) \ AmpB
0(S3),

that is, any ample polarization H of S3 admits an H-polar cylinder unless

H ≡ α(−KS3) for some α > 0. �

A. Perepechko verified that Ampcyl(Sd) = Amp(Sd) for d � 5 by showing that

the ample cones of smooth del Pezzo surfaces of degrees at least 5 are contained in

the cones generated by components of a certain effective divisor the complement of

the support of which is a cylinder [36, Subsection 3.2]. However, his method cannot

be fully generalized to del Pezzo surfaces of lower degrees. Indeed, he yielded partial

description of Ampcyl(S4) [36, Theorem 7] and thereafter Park and Won showed that

Ampcyl(S4) = Amp(S4) using the same idea as in the present article [35].

The proof of Theorem 2.2.1 is given in Section 4.2.

Corollary 2.2.2. Conjecture 1.2.5 holds for smooth del Pezzo surfaces. �

In order to analyze Conjecture 1.2.5 for smooth del Pezzo surfaces,we do not have

to study the sets Ampcyl(S) for del Pezzo surfaces of degrees �3 since these surfaces do
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8 I. Cheltsov et al.

not have (−KS)-polar cylinders already. Only Theorem 2.2.1 (1) is required. Meanwhile,

Theorem 2.2.1 (2) completely describes the set Ampcyl(S) for smooth del Pezzo surfaces of

degree 3. After [5] resolved the question whether the anticanonical class lies in Ampcyl(S)

or not for a smooth cubic surface S, Yu. Prokhorov proposed a more general problem:

“To describe the cones of cylindrical ample divisors of smooth cubic surfaces”.

Theorem 2.2.1 (2) gives the complete answer to Yu. Prokhorov’s problem. It is however

natural that Yu. Prokhorov’s problem should be extended to smooth del Pezzo surfaces

of degrees �2. In the present article, we also give some partial descriptions for them as

follows:

Theorem 2.2.3. Let Sd be a smooth del Pezzo surface of degree d � 3 and H be an

ample R-divisor of Fujita rank rH on Sd. If rH � 3 − d, then no H-polar cylinder exists

on Sd. �

Theorem 2.2.3 immediately shows that

Ampcyl(Sd)
⋂{

3−d⋃
r=0

AmpB
r (Sd)

}
= ∅

for a smooth del Pezzo surface Sd of degree d � 3. The proof of the theorem follows from

Theorems 5.2.3 and 5.2.4.

Theorem 2.2.4. Let S be a smooth del Pezzo surface of degree 2. Then

(1)

Ampcyl(S) ⊃
7⋃

r=3

AmpB
r (S).

(2)

Ampcyl(S)
⋂

AmpB
2(S) �= ∅.

(3)

Ampcyl(S) ⊃
6⋃
�=3

AmpC
� (S).
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Cylinders in del Pezzo Surfaces 9

(4) For each 0 � � � 6,

Ampcyl(S)
⋂

AmpC
� (S) �= ∅. �

In Theorem 2.2.4, (1) follows from Theorem 6.2.2, (2) from Theorem 6.2.3, (3) from

Theorem 6.2.10, and (4) from Theorem 6.2.11.

Theorem 2.2.5. Let S be a smooth del Pezzo surface of degree 1. Then

(1) For each 3 � r � 8,

Ampcyl(S)
⋂

AmpB
r (S) �= ∅.

(2) For each 0 � � � 7,

Ampcyl(S)
⋂

AmpC
� (S) �= ∅. �

The statement follows from Propositions 6.3.1 and 6.3.2.

3 Rational Singular Surfaces Without any Cylinder

3.1 Examples

Before we proceed, let us remind that a normal surface singularity is Kawamata log

terminal if and only if it is a quotient singularity [17, Corollary 1.9]. A projective surface

with quotient singularities is always Q-factorial.

Definition 3.1.1. A normal projective surface with quotient singularities is called a log

Enriques surface if its canonical class is numerically trivial and its irregularity is zero.

It is called a log del Pezzo surface if its anticanonical class is ample [29]. �

We are now ready to present several examples of rational singular surfaces

without any cylinder.

Example 3.1.2. Kollár has constructed a series of rational surfaces with ample

canonical classes in [22]. The following is an easy example based on his construction.

Let a1,a2,a3,a4; w1,w2,w3,w4 be positive integers such that

• a1w1 +w2 = a2w2 +w3 = a3w3 +w4 = a4w4 +w1;

• gcd(w1,w3) = 1, gcd(w2,w4) = 1.
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10 I. Cheltsov et al.

From the first condition above we obtain

w1 = (a2a3a4 − a3a4 + a4 − 1), w2 = (a1a3a4 − a1a4 + a1 − 1),

w3 = (a1a2a4 − a1a2 + a2 − 1), w4 = (a1a2a3 − a2a3 + a3 − 1).

Let S be the Klein-type hypersurface in P(w1,w2,w3,w4) defined by the quasi-

homogeneous equation of degree (a1a2a3a4 − 1)

xa11 x2 + xa22 x3 + xa33 x4 + xa44 x1 = 0.

By the conditions gcd(w1,w3) = 1 and gcd(w2,w4) = 1 we can easily see that S is

well-formed. Therefore,

KS = OS (a1a2a3a4 −w1 −w2 −w3 −w4 − 1) .

If a1, a2, a3, a4 � 4, then a1a2a3a4 −w1 −w2 −w3 −w4 − 1 > 0, and hence KS is ample.

By [22, Theorem 39] S is a rational surface of Picard rank 3 with four cyclic quotient

singularities. Therefore, the surface S cannot contain any cylinder. In [16], Hwang and

Keumhave constructed another types of singular rational surfaceswith ample canonical

divisors. �

Example 3.1.3. In order to construct smooth surface of general type with pg = q = 0

for a given self-intersection number of the canonical class, Lee, Park, Park, and Shin

generate rational elliptic surfaces with nef canonical classes and quotient singulari-

ties of class T and then take their Q-smoothings in [26, 33, 34]. Many such surfaces

are presented in [27]. These rational surfaces meet our conditions not to have any

cylinder. �

Example 3.1.4 (cf. [30]). Let

E = C/(Z + τZ)

be the elliptic curve of period τ = e
2
3 π . Its j-invariant is 0 and it is isomorphic to the

Fermat cubic curve. It is the unique elliptic curve admitting an automorphism σ of order

3 such that σ ∗(ω) = τω, where ω is a non-zero regular 1-form on E. Let S be the quotient

surface

E × E/〈diag(−σ ,−σ)〉.
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Cylinders in del Pezzo Surfaces 11

Then, 6KS is linearly trivial. Since there is no non-zero regular 1-form on E×E invariant

by diag(−σ ,−σ), we obtain h1(S,OS) = 0. Therefore, the surface S is a rational surface

with quotient singularities whose canonical class is numerically trivial, that is, it is a

log Enriques surface, and hence it cannot contain any cylinder. �

Example 3.1.5. This construction is due to Oguiso and Zhang [31, Example 1]. The

most extremal rational log Enriques surface of type D19 is defined as follows. Let S
′
be

the quotient surface

E × E/〈diag(σ , σ 2)〉,

where the notations are the same as in Example 3.1.4. The automorphism σ on E has

exactly three fixed points P1,P2, and P3. They correspond to 0, 2
3 + 1

3τ , and
1
3 + 2

3τ . The

action by 〈diag(σ , σ 2)〉 on E ×E has nine fixed points and these nine fixed points become

du Val singular points of type A2 on S
′
. Let S′ be the minimal resolution of S

′
. It is a

K3 surface with twenty four smooth rational curves. Six of them come from the six fixed

curves, {Pi} × E,E × {Pi} on E × E. The others come from the nine singular points of type

A2. Let σ ′ be the automorphism of S′ induced by the automorphism diag(σ , 1) on E × E.

Our twenty four smooth rational curves on S′ are σ ′-invariant. Among these twenty four

curves we can find a rational tree of type D19. Let S′ → Ŝ be the contraction of this tree.

Then σ ′ acts on Ŝ and it fixes two points. The quotient surface Ŝ/〈σ ′〉 is a rational log

Enriques surface. It follows from Remark 1.1.3 that any rational log Enriques surface

cannot contain a cylinder.

Rational log Enriques surfaces of ranks 19 and 18 are completely classified in

[32, 37], respectively. �

An effective Q-divisor D on a proper normal variety X is called a tiger if it is

numerically equivalent to −KX and (X ,D) is not log canonical. The tiger was introduced

by Keel and Mckernan in their study of log del Pezzo surfaces of Picard rank 1 [18].

Example 3.1.6. M. Miyanishi proposed a conjecture (see [14]) that for a log del Pezzo

surface of Picard rank 1, its smooth locus has a finite unramified covering that contains

a cylinder. It however turned out that the conjecture is answered in negative. S. Keel and

J. Mckernan have constructed log del Pezzo surfaces of Picard rank 1 such that

• they have no tigers;

• their smooth loci have trivial algebraic fundamental groups.
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12 I. Cheltsov et al.

For their construction, see [18, Example 21.3.3]. If such a surface S contains a cylinder

U , then we are able to obtain an effective divisor D such that S \U = Supp(D). Since S is

a log del Pezzo surface of Picard rank 1, for some positive rational number λ the divisor

λD is linearly equivalent to −KS. It immediately follows from Remark 1.1.3 that λD is

a tiger. This is a contradiction. Therefore, the surface S cannot contain any cylinder

at all. �

The rational surfaces inExample 3.1.6 are overqualified to be free fromcylinders.

We may give away the condition of the algebraic fundamental group since we are not

considering cylinders in étale covers. On del Pezzo surfaces of Picard rank 1 with du

Val singularities, instead of non-existence of tigers, we can apply a finer condition than

Remark 1.1.3 that there is a tiger that does not contain the support of any effective

anticanonical divisor (see [6, Remark 3.8]).

Example 3.1.7. Let S be a del Pezzo surface of degree 1 with one of the following types

of singularities

2D4, 2A3 + 2A1, 4A2.

Then, its divisor class group is generated by the anticanonical class over R. Therefore,

Theorem 1.2.4 implies that S cannot contain any cylinder at all. The smooth loci of these

surfaces are not simply connected [29]. �

Remark 3.1.8. The surfaces in Example 3.1.7 are the only del Pezzo surfaceswith duVal

singularities that have no cylinder. The other del Pezzo surfaceswith duVal singularities

contain cylinders. Indeed, del Pezzo surfaces with one of the types of singularities 2D4,

2A3 + 2A1, 4A2 are the only ones that contain no (−KS)-cylinder and have Picard rank 1

(see [6]). Furthermore, since their divisor class groups are generated by the anticanonical

classes over R, they cannot contain any cylinder at all. In [6], all the del Pezzo surfaces

with duVal singularities that have no anticanonically polarized cylinders are completely

classified. Among them, the surfaces of the three types of singularities above are the

only ones of Picard rank 1. For those of higher Picard rank without anticanonically

polarized cylinders, one can always construct cylinders polarized by ample Q-divisors.

These constructions can be made by manipulating various anticanonically polarized

cylinders that appear in [6]. �
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Cylinders in del Pezzo Surfaces 13

4 Cylinders in del Pezzo Surfaces of Big Degree

4.1 Basic cylinders

We here present many examples of cylinders on smooth del Pezzo surfaces. These will

be building blocks from which we are able to construct cylinders polarized by various

ample divisors.

Before we proceed, note that an (n)-curve on a smooth surface is an integral

curve isomorphic to P1 with self-intersection number n.

Example 4.1.1. On P2, let Li, i = 1, . . . , r, be lines meeting altogether at a single point.

The complement of the union of these r lines is an A1-bundle over an (r − 1)-punctured

affine line. Therefore, this is a cylinder in P2. �

Example 4.1.2. Let L and M be a line and a conic on P2 intersecting tangentially at

a point. Each divisor aL + bM with positive real numbers a and b defines a cylinder

isomorphic to an A1-bundle over a simply punctured affine line A1
∗. �

Example 4.1.3. Let C be a cuspidal cubic curve on P2 and T be the Zariski tangent line

at its cuspidal point P. Their complement is a cylinder isomorphic to A1 × A1
∗. To see

this, take the blow up π1 : F1 → P2 at the point P and then take the blow up π2 : S̃7 → F1

at the intersection point of the proper transforms of C and T . Let E1 be the exceptional

curve on S̃7 contracted by π1 and E2 be the exceptional curve on S̃7 contracted by π2. In

addition, let C̃ and T̃ be the proper transforms of C and T by π1 ◦ π2. Now we contract

T̃ , which is a (−1)-curve on S̃7. This gives us a birational morphism π : S̃7 → F2. Then,

π(E1) is the exceptional section of F2 with self-intersection number −2 and π(E2) is a

fiber of F2. The curve π(C̃) is linearly equivalent to π(E1)+ 3π(E2) and is a section of F2

with the self-intersection number 4. The three curves π(E1), π(E2), and π(C̃) on F2 meet

transversally at a single point, and hence their complement is isomorphic to A1 × A1
∗.

Since

P2 \ (C ∪ T) ∼= S̃7 \ (C̃ ∪ T̃ ∪ E1 ∪ E2) ∼= F2 \ (π(C̃) ∪ π(E1) ∪ π(E2))

the complement of C and T is a cylinder. �

Example 4.1.4. On P1 × P1, let E be a curve of bidegree (1, 0) and Fi, i = 1, . . . , r, be

curves of bidegree (0, 1). The complement of these curves is isomorphic to an A1-bundle

over a (r − 1)-punctured affine line. By blowing up P1 × P1 at the intersection point of E
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14 I. Cheltsov et al.

and F1 and then contracting the proper transforms of E and F1 to P2, we may encounter

the cylinder described in Example 4.1.1. �

Example 4.1.5 ([19, Theorem3.19]). Let Sd be a smooth del Pezzo surface of degreed � 2,

not isomorphic to P1 × P1. Then, it can be obtained by blowing up P2 at (9−d) points in

general position. Let σ : Sd → P2 be such a blow up and let Ei be the exceptional curve,

where i = 1, . . . , 9−d. Put Pi = σ(Ei). Suppose that these (9−d) points P1, . . . ,P9−d lie on

the union of a line L and a conic C that intersect tangentially at a single point. Note

Sd \ (L̃ ∪ C̃ ∪ E1 ∪ . . . ∪ E9−d) ∼= P2 \ (L ∪ C) ∼= A1 × A1
∗,

where L̃ and C̃ are the proper transforms of L and C by σ .

We now suppose that d � 4. There is a conic passing through all the points

P1, . . . ,P9−d. So we may assume that P1, . . . ,P9−d lie on C and that L meets C tangentially

at a point other than P1, . . . ,P9−d. Then, for a real number 0 < ε < 1
2 , the R-divisor

(1 + ε)C̃ + (1 − 2ε)L̃+ ε

9−d∑
i=1

Ei

is effective and numerically equivalent to −KSd . Therefore, the cylinder

Sd \ (L̃ ∪ C̃ ∪ E1 ∪ . . . ∪ E9−d)

is (−KSd)-polar. �

Example 4.1.6. Let C be an irreducible curve of bidegree (1, 2) on P1 ×P1. There are two

curves of bidegree (1, 0) that intersect C tangentially. Let T be one of them and P be the

intersection point of C and T . In addition, let L be the curve of bidegree (0, 1) passing

through the point P. Then, the open set

P1 × P1 \ (C ∪ L ∪ T)

is a cylinder. To see this, let π : S7 → P1 ×P1 be the blow up at P and E be its exceptional

curve. Denote the proper transforms of the curves C, T , and L by C̃, T̃ , and L̃, respectively.

The curves T̃ and L̃ are disjoint (−1)-curves. Let ψ : S7 → P2 be the contraction of L̃ and

T̃ . Then, ψ(E) is a line, ψ(C) is a conic, and they meet tangentially. Therefore, the open

set above is a cylinder since

P1 × P1 \ (C ∪ L ∪ T) ∼= S \ (C̃ ∪ L̃ ∪ T̃ ∪ E) ∼= P2 \ (ψ(C̃) ∪ ψ(E)) ∼= A1 × A1
∗.
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Cylinders in del Pezzo Surfaces 15

In particular, for a real number 0 < ε < 1,

(1 − ε)C + (1 + ε)T + 2εL ≡ −KP1×P1 ,

and hence the cylinder is (−KP1×P1)-polar. �

Example 4.1.7. Let C1 and C2 be irreducible curves of bidegree (1, 1) on P1×P1. Suppose

that these two curves meet tangentially at a single point P. Let L1 and L2 be the curves

of bidegrees (1, 0) and (0, 1), respectively, that pass through the point P. We claim that

the open set

P1 × P1 \ (C1 ∪ C2 ∪ L1 ∪ L2)

is a cylinder. Let π : S7 → P1 × P1 be the blow up at P and E be its exceptional curve.

Denote the proper transforms of Ci and Li by C̃i and L̃i, respectively, i = 1, 2. The curves L̃1

and L̃2 are disjoint (−1)-curves. Therefore, we obtain a birational morphism ψ : S7 → P2

by contracting L̃1 and L̃2. The three curves ψ(E),ψ(C̃1), and ψ(C̃2) are lines intersecting

at a single point. Since

P1 × P1 \ (C1 ∪ C2 ∪ L1 ∪ L2) ∼= S7 \ (C̃1 ∪ C̃2 ∪ L̃1 ∪ L̃2 ∪ E)

∼= P2 \ (ψ(C̃1) ∪ ψ(C̃2) ∪ ψ(E)) ∼= A1 × A1
∗∗,

where A1
∗∗ is a two-punctured affine line, our claim is confirmed. In particular, the

cylinder is (−KP1×P1)-polar because the divisor

(1 + ε)C1 + (1 − 2ε)C2 + εL1 + εL2

is effective for an arbitrary real number 0 < ε < 1
2 and numerically equivalent

to −KP1×P1 . �

Example 4.1.8. Let C be a cuspidal rational curve in the anticanonical linear system of

the Hirzebruch surface F1. Let M be the 0-curve that passes through the cuspidal point

P. There is a unique 1-curve T that intersects C only at the point P. For an arbitrary real

number 0 < ε < 1, the divisor

(1 − ε)C + εM + 2εT

defines a (−KF1)-polar cylinder. To see this, take the blow up φ : S7 → F1 at the point

P. Let E be the exceptional curve. Denote the proper transforms of the curves C, M , and
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16 I. Cheltsov et al.

T on S7 by C̃, M̃ , and T̃ , respectively. The R-divisor (1 − ε)C̃ + εM̃ + 2εT̃ + (1 + ε)E is

numerically equivalent to −KS7 . Let ψ : S7 → P1 ×P1 be the contraction of the (−1)-curve

M̃ . Then, the R-divisor (1− ε)ψ(C̃)+ 2εψ(T̃)+ (1+ ε)ψ(E) is the divisor in Example 4.1.6

that defines a (−KP1×P1)-polar cylinder. �

Example 4.1.9. On the Hirzebruch surface F1, letM be a 0-curve and let T be a 1-curve.

Let P be the intersection point of T and M . There is a 3-curve C that is tangent to the

curve T at the point P. Then for an arbitrary real number 0 < ε < 1, the divisor

(1 − ε)C + (1 + ε)T + εM

defines a (−KF1)-polar cylinder. Take the blow up φ : S7 → F1 at the point P. Let E be its

exceptional curve. Denote the proper transforms of the curves C, M , and T on S7 by C̃,

M̃ , and T̃ , respectively. The R-divisor (1 − ε)C̃ + (1 + ε)T̃ + εM̃ + (1 + ε)E is numerically

equivalent to −KS7 . Let ψ : S7 → P1 × P1 be the contraction of the (−1)-curve M̃ . Then

the R-divisor (1−ε)ψ(C̃)+ (1+ε)ψ(T̃)+ (1+ε)ψ(E) is numerically equivalent to −KP1×P1 .

The curve ψ(C̃) is an irreducible curve of bidegree (1, 1), ψ(T̃) is of bidegree (1, 0), and

ψ(Ẽ) is of bidegree (0, 1). Moreover, these three curves meet at a single point. This easily

shows that the divisor (1 − ε)C + (1 + ε)T + εM defines a (−KF1)-polar cylinder. �

Example 4.1.10. Let C be a cuspidal rational curve in the anticanonical linear system

of the smooth del Pezzo surface S7 of degree 7. There are exactly two 0-curves M1 and

M2 passing through the cuspidal point P of C. There is a unique 1-curve T that meets C

only at the point P. For an arbitrary real number 0 < ε < 1, the divisor

(1 − ε)C + εM1 + εM2 + εT

defines a (−KS7)-polar cylinder. To see this, take the blow up φ : S6 → S7 at the point P.

Let E be the exceptional divisor. The proper transforms of M1 and M2 are disjoint (−1)-

curves on S6. Let ψ : S6 → F1 be the birational morphism obtained by contracting these

two curves. Then, the curve E becomes a 1-curve and the curve T becomes a 0-curve on

F1. They intersect at a single point Q. The curve C becomes a 3-curve tangent to ψ(E)

at Q. Then, Example 4.1.9 shows that the divisor (1 − ε)C + εM1 + εM2 + εT defines a

(−KS7)-polar cylinder. �

Example 4.1.11. Let S6 be a smooth del Pezzo surface of degree 6. Let C be a cuspidal

rational curve in the anticanonical linear system and let P be its cuspidal point. There
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Cylinders in del Pezzo Surfaces 17

are three disjoint (−1)-curves E1,E2, and E3 on S6. Each of them meets C at a single

smooth point of C. Let φ : S6 → P2 be the birational morphism obtained by contracting

E1,E2, and E3. Let T ′ be the Zariski tangent line to the cuspidal rational curve φ(C) at

the point φ(P). There is a unique conic curve T ′
0 such that it is tangent to T ′ at the point

φ(P) and passes through the points φ(E1),φ(E2),φ(E3). Let M ′
i be the line through φ(P)

and φ(Ei). Let T , T0, and Mi be the proper transforms of T ′, T ′
0, and Mi by the birational

morphism φ. For an arbitrary real number 0 < ε < 1
2 , the R-divisor

(1 − 2ε)C + εT + εT0 + εM1 + εM2 + εM3

is numerically equivalent to the anticanonical class on S6. We take the blow up φ : S5 →
S6 at the point P. Let E be the exceptional curve. The proper transforms ofM1,M2, andM3

are disjoint (−1)-curves on S5. Let ψ : S5 → P1 × P1 be the birational morphism obtained

by contracting these three curves. Then Example 4.1.7 shows that the R-divisor above

defines a (−KS6)-polar cylinder on S6. �

Example 4.1.12. Let S5 be a smooth del Pezzo surface of degree 5. In addition, let H be

an effective anticanonical divisor on S5 that consists of one 1-curve C and one 0-curve

M meeting tangentially at a single point P. Then there are four 0-curvesM1,M2,M3,M4,

other than M , passing through the point P. They intersect each other only at the point

P. For an arbitrary real number 0 < ε < 1
2 , the divisor

(1 − ε)M + (1 − 2ε)C + εM1 + εM2 + εM3 + εM4

defines a (−KS5)-polar cylinder. Indeed, to see this, consider the blow up φ : S4 → S5 at

the point P, and then contract the proper transforms of Mi’s and M by φ to P2. �

Example 4.1.13. Let S5 be a smooth del Pezzo surface of degree 5. Let C be a cuspidal

rational curve in the anticanonical linear system and let P be its cuspidal point. We

have four disjoint (−1)-curves E1, . . . ,E4 on S5. Each of them intersects C at a single

smooth point of C. Let φ : S5 → P2 be the birational morphism obtained by contracting

E1, . . . ,E4. Let M ′
0 be the conic on P2 determined by the points φ(E1), . . . ,φ(E4), and φ(P).

For i = 1, 2, 3, 4, let M ′
i be the line passing through the points φ(Ei) and φ(P). Let Mi be

the proper transform ofM ′
i by the birational morphism φ. These five curves are 0-curves

on S5 passing through P. For an arbitrary real number 0 < ε < 1
2 , the divisor

(1 − 2ε)C + εM0 + εM1 + εM2 + εM3 + εM4
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18 I. Cheltsov et al.

defines a (−KS5)-polar cylinder. We consider the blow up ψ : S4 → S5 at P. The proper

transforms of Mi by ψ are mutually disjoint (−1)-curves. We contract these five (−1)-

curves to P2. Then, C and the exceptional curve of ψ become a line and a conic meeting

tangentially on P2. Therefore, the effective R-divisor above defines a cylinder. �

Example 4.1.14. We here use the same notations S5, C, P, E1, . . . ,E4, and φ : S5 → P2 as

in Example 4.1.13. Let T ′
0 be the Zariski tangent line to the cuspidal rational curve φ(C)

at the point φ(P). For i = 1, 2, 3, 4, there is a unique conic curve T ′
i such that it is tangent

to T ′
0 at the point φ(P) and passes through the points φ(E1), . . . ,φ(E4) except φ(Ei). Let T0

and Ti be the proper transforms of T ′
0 and T

′
i by the birational morphism φ. Then, for an

arbitrary real number 0 < ε < 1
3 , the divisor

(1 − 3ε)C + εT0 + εT1 + εT2 + εT3 + εT4

defines a (−KS5)-polar cylinder. To see this, let φ1 : S4 → S5 be the blow up at the point P.

Then, the exceptional curve B1 of φ1 intersects the proper transform of C tangentially at

a single pointQ. Let φ2 : S3 → S4 be the blow up at the pointQ and denote its exceptional

curve by B2. Let C̃ and T̃i be the proper transforms of C and Ti by the morphism φ1 ◦ φ2,
where i = 0, . . . , 4. In addition, let B̃1 be the proper transform of B1 by φ2. Then, the

R-divisor

(1 − 3ε)C̃ + (1 − ε)B̃1 + (1 + ε)B2 + εT̃0 + εT̃1 + εT̃2 + εT̃3 + εT̃4

is numerically equivalent to the anticanonical class on S3. Now, contracting the five

disjoint (−1)-curves T̃0, . . . , T̃4 to the Hirzebruch surface F2, we obtain a birational

morphism ψ1 : S3 → F2. Put C = ψ1(C̃), B1 = ψ1(B̃1), and B2 = ψ1(B2). Then

(1 − 3ε)C + (1 − ε)B1 + (1 + ε)B2

is numerically equivalent to −KF2 . Note that B1 is the (−2)-curve on F2 and C is a 0-curve.

We take the blow up φ3 : S → F2 at a general point of C. Let B3 be its exceptional curve.

In addition, let Ĉ, B̂1, and B̂2 be the proper transforms of C, B1, and B2 by φ3. Finally,

by contracting Ĉ and B̂1 in turn, we obtain a birational morphism ψ2 : S → P2. We

immediately see that ψ3(B̂2) is a cuspidal rational curve and ψ3(B3) is the Zariski tangent

line to ψ3(B̂2) at its cuspidal point. Even though

(1 + ε)ψ3(B̂2)− 3εψ3(B3)
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Cylinders in del Pezzo Surfaces 19

is a non-effective divisor on P2, the original divisor on S5 defines a (−KS5)-polar cylinder

since

S5 \ (C ∪ T0 ∪ . . . ∪ T4) ∼= P2 \ (ψ3(B̂2) ∪ ψ3(B3))

(see Example 4.1.3). �

Example 4.1.15. Let S4 be a smooth del Pezzo surface of degree 4. In addition, let H be

an effective anticanonical divisor on S4 that consists of one 1-curve C and one (−1)-curve

L meeting tangentially at a single point P.

By contracting L, we see from Example 4.1.14 that there are five 0-curves

T1, . . . ,T5 passing through the point P such that they intersect each other only at P and

meet L and C only at P. Example 4.1.14 immediately shows that

(1 − 3ε)C + (1 − ε)L+ ε

5∑
i=1

Ti

defines a (−KS4)-polar cylinder on S4 for 0 < ε < 1
3 . �

4.2 Proof of Theorem 2.2.1

Let Sd be a smooth del Pezzo surface of degree d � 3 and let H be an ample R-divisor on

Sd. It is easy to check that Sd always contains an H-polar cylinder isomorphic to A2 if

d � 8. For this reason, in order to prove Theorem 2.2.1, we assume that d � 7.

Let μ be the Fujita invariant of H , � be the Fujita face of H , and r be the Fujita

rank of H . Let φ : Sd → Z be the contraction given by �.

Lemma 4.2.1 (cf. Example 4.1.5). Suppose that H is of type B(r) and Z �∼= P1 × P1. If

(d, r) �= (3, 0), then Sd contains an H-polar cylinder. �

Proof. For the case r = 0 and d � 4, Theorem 1.2.3 implies the statement. Therefore,

we may assume that r > 0.

Let E1, . . . ,Er be the (−1)-curves that generate the face �. Then,

KSd + μH ≡
r∑
i=1

aiEi

for some positive real numbers a1, . . . ,ar . Note that r � 9−d and E1, . . . ,Er are disjoint.
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20 I. Cheltsov et al.

The surface Z is a smooth del Pezzo surface of degree (d+ r). Since Z �∼= P1 × P1,

either Z = P2 or Z is a blow up of P2 in (9−d−r) points in general position. Let ψ : Z → P2

be the blow up. Put k = 9 − d and σ = ψ ◦ φ. If k > r, denote the proper transforms of

these ψ-exceptional curves on Sd by Er+1, . . . ,Ek. Put Pi = σ(Ei).

Let C be an irreducible conic in P2 passing through the points P2, . . . ,Pk. Such a

conic exists because k � 6. Let L be a line in P2 passing through the point P1 and tangent

to the conic C. Note that L may be tangent to C at one of the points P2, . . . ,Pk, say P2.

For a positive real number ε we have −KP2 ≡ (1 + ε)C + (1 − 2ε)L. Hence,

−KSd ∼ σ ∗(−KP2)−
k∑
i=1

Ei ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + ε)C̃ + (1 − 2ε)L̃− 2εE1 + (1 − ε)E2 + ε

k∑
i=3

Ei

if L meets C at P2;

(1 + ε)C̃ + (1 − 2ε)L̃− 2εE1 + ε

k∑
i=2

Ei

otherwise,

where C̃ and L̃ are the proper transforms of C and L, respectively, by σ . Thus, we have

H ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

μ

(
(1 + ε)C̃ + (1 − 2ε)L̃+ (a1 − 2ε)E1 + (a2 + 1 − ε)E2 +

r∑
i=3

(ai + ε)Ei + ε

k∑
i=r+1

Ei

)

if L meets C at P2;

1

μ

(
(1 + ε)C̃ + (1 − 2ε)L̃+ (a1 − 2ε)E1 +

r∑
i=2

(ai + ε)Ei + ε

k∑
i=r+1

Ei

)

otherwise.

For 0 < ε <
a1
2 , this defines an H-polar cylinder because

Sd \ (C̃ ∪ L̃ ∪ E1 ∪ . . . ∪ Ek) ∼= P2 \ (C ∪ L). �

As in the casewhere LmeetsC at P2 in the proof of Lemma4.2.1, it canhappen that

we should separately deal with the case where two curves meet at one of the centers

of blow ups. However, in such a case, we always obtain a bigger coefficient for the

exceptional curve over the center than when it is not the case. For this reason, in the

sequel, we always omit the proof for such a special case. The proof for a non-special

case works almost verbatim for such a special case.
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Cylinders in del Pezzo Surfaces 21

Lemma 4.2.2. Suppose that H is of type B(8 − d) and Z ∼= P1 × P1. Then Sd contains an

H-polar cylinder. �

Proof. Let E1, . . . ,Er be the (−1)-curves that generate the face �. Note that r = 8 − d.

Then,

KSd + μH ≡
r∑
i=1

aiEi

for some positive real numbers a1, . . . ,ar . The (−1)-curves E1, . . . ,Er are disjoint. Put

Pi = φ(Ei).

Since r � 5, there is an irreducible curve C of bidegree (2, 1) in P1 × P1 passing

through the points P1, . . . ,Pr . Let L be a curve of bidegree (0, 1) in P1 × P1 that is tangent

to the curve C. Let P be the intersection point of C and L. Then, there is a unique curve

M of bidegree (1, 0) in P1 × P1 passing through the point P.

For a positive real number ε, we have −KP1×P1 ≡ (1− ε)C+ (1+ ε)L+2εM . Hence,

−KSd ∼ φ∗(−KP1×P1)−
r∑
i=1

Ei ≡ (1 − ε)C̃ + (1 + ε)L̃+ 2εM̃ − ε

r∑
i=1

Ei,

where C̃, L̃, and M̃ are the proper transforms of C, L, andM , respectively, by φ. Thus, we

have

H ≡ 1

μ

(
(1 − ε)C̃ + (1 + ε)L̃+ 2εM̃ +

r∑
i=1

(ai − ε)Ei

)
.

Furthermore, we see immediately that

Sd \ (C̃ ∪ L̃ ∪ M̃ ∪ E1 ∪ . . . ∪ Er) ∼= P1 × P1 \ (C ∪ L ∪M).

By taking 0 < ε < min{a1, . . . ,ar}we obtain anH-polar cylinder on Sd (see Example 4.1.6).

�

Lemma 4.2.3. Suppose that H is of type C(9−d). Then Sd contains an H-polar cylinder.

�

Proof. If the contraction φ is a conic bundle, then, as in (2.1.4), we may write

KSd + μH ≡ aB+
m∑
i=1

aiEi,
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where B is an irreducible fiber of φ, Ei’s are disjoint (−1)-curves in fibers of φ, a is

a positive real number, ai’s are non-negative real numbers, and m = 8 − d. We may

assume that a1 � a2 � . . . � am. Let φ1 : Sd → W be the birational morphism obtained

by contracting the disjoint (−1)-curves E1, . . . ,Em. ThusW is a smooth del Pezzo surface

of degree 8, hence either W ∼= P1 × P1 or W ∼= F1.

Case 1. am �= 0 and W ∼= F1.

There is a (−1)-curve E on Sd whose image by φ1 is the unique (−1)-curve onW .

Let ψ : W → P2 be the birational morphism given by contracting φ1(E). Put σ = ψ ◦ φ1.
Denote the points σ(Ei) by Pi, i = 1, . . . ,m, the point σ(E) by P, and the line σ(B) by M .

Note that the line M passes through the point P.

Let C be the conic passing through the points P1, . . . ,Pm. Such a conic exists

becausem � 5. Let L be a line that passes through the point P and that is tangent to the

conic C. We may assume that the line L is different from M .

For any real number ε, we have −KP2 ≡ (1 − ε)C + (1 + 2ε + a)L− aM . Hence,

−KSd ∼ σ ∗(−KP2)−
m∑
i=1

Ei − E

≡ (1 − ε)C̃ + (1 + 2ε + a)L̃+ 2εE − aB− ε

m∑
i=1

Ei,

where C̃ and L̃ are the proper transforms of C and L, respectively, by σ . Thus, we have

H ≡ 1

μ

(
(1 − ε)C̃ + (1 + 2ε + a)L̃+ 2εE +

m∑
i=1

(ai − ε)Ei

)
.

By taking a sufficiently small positive real number ε we obtain an H-polar cylinder

on Sd.

Case 2. Either am �= 0 with W ∼= P1 × P1 or am = 0.

We first assume thatW ∼= P1 × P1. Denote the points φ1(Ei) by Pi, i = 1, . . . ,m−1,

the point φ1(Em) by P, and the curve φ1(B) byM . The curveM is a curve of bidegree (0, 1)

or (1, 0) on P1 × P1. We may assume that it is of bidegree (0, 1).

There is a unique curve C of bidegree (1, 2) passing through the points

P,P1, . . . ,Pm−1. There is a curve L of bidegree (1, 0) that is tangent to C. Let Q be the

point at which L meets C and let N be the curve of bidegree (0, 1) passing through the

point Q.

 at T
he U

niversity of E
dinburgh on O

ctober 23, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Cylinders in del Pezzo Surfaces 23

For an arbitrary real number ε, we have −KP1×P1 ≡ (1+ε)C+(1−ε)L+(a−2ε)N−
aM . Hence,

−KSd ∼ φ∗
1(−KP1×P1)− Em −

m−1∑
i=1

Ei

≡ (1 + ε)C̃ + (1 − ε)L̃+ (a− 2ε)Ñ − aB+ εEm +
m−1∑
i=1

εEi,

where C̃, L̃, and Ñ are the proper transforms of C, L, N , respectively, by φ1. Thus, we

have

H ≡ 1

μ

(
(1 + ε)C̃ + (1 − ε)L̃+ (a− 2ε)Ñ + (am + ε)Em +

m−1∑
i=1

(ai + ε)Ei

)
.

By taking a sufficiently small positive real number ε we obtain an H-polar cylinder on

Sd (see Example 4.1.6).

Now we assume that W ∼= F1 and am = 0. Let E ′
m be the other (−1)-curve in the

fiber of φ containing the (−1)-curve Em. Let φ2 : Sd → P1 ×P1 be the birational morphism

given by contracting the (−1)-curves E1, . . . ,Em−1,E ′
m. Since am = 0, after replacing φ1

and Em by φ2 and E ′
m, we see immediately that the previous argument also works for

this case. �

Theorem 2.2.1 immediately follows from Theorem 1.2.3 and Lemmas 4.2.1, 4.2.2,

and 4.2.3.

5 Absence of Cylinders

5.1 The main obstruction

We here refine Remark 1.1.3 for a smooth rational surface as below.

Let S be a smooth rational surface and let A be a big R-divisor on S. Suppose

that S contains an A-polar cylinder, that is, there is an open affine subset U ⊂ S and an

effective R-divisor D such that D ≡ A, U = S \ Supp(D), and U ∼= A1 × Z for some smooth

rational affine curve Z. Put D = ∑n
i=1 aiCi, where each Ci is an irreducible reduced curve

and each ai is a positive real number. Let μ be the Fujita invariant of A.

As in (1.1.1), the natural projection pZ : U ∼= A1 × Z → Z induces a rational map

ψ : S ��� P1 given by a pencil L on the surface S. If the base locus Bs(L) of the pencil is

non-empty, then it must consist of a single point because ψ∗(Q) ∼= P1 for a general point

Q of P1 and Supp(ψ∗(Q)) \ Supp(Bs(L)) contains an affine line.
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Theorem 5.1.1. Suppose that the base locus of L consists of a point P on S. Then, for

every effective R-divisor B on S such that Supp(B) ⊂ Supp(D) and KS + B is pseudo-

effective, the log pair (S,B) is not log canonical at P. In particular, (S,μD) is not log

canonical at P. �

Proof. The proof is the same as the explanation for Remark 1.1.3. We may assume that

the exceptional divisor of π lies over the point P. Since Supp(B) ⊂ Supp(D), the divisor B

can bewritten as B = ∑n
i=1 biCi, where bi’s are non-negative real numbers. The remaining

parts are exactly the same as in the explanation for Remark 1.1.3. �

Theorem 5.1.2. Let Sd be a smooth del Pezzo surface of degree d � 3 and let D be an

effective R-divisor on Sd such that D ≡ −KSd . If the log pair (Sd,D) is not log canonical

at a point P, then there exists a divisor T in the anticanonical linear system |−KSd | such
that the log pair (Sd,T) is not log canonical at the point P and Supp(T) ⊂ Supp(D). �

Proof. See [5, Theorem 1.12] for an effective Q-divisor. The proof works verbatim for

an effective R-divisor. �

5.2 Proof of Theorem 2.2.3

Before we prove Theorem 2.2.3, we introduce two easy results that we use for the proof.

Lemma 5.2.1. Let S be a smooth surface and let D be an effective R-divisor on S. If the

log pair (S,D) is not log canonical at a point P, then multP(D) > 1. �

Proof. For instance, see [25, Proposition 9.5.13]. �

Lemma 5.2.2. Let S be a smooth del Pezzo surface of degree d � 3 and let

D =
n∑
i=1

aiDi

be an effective R-divisor on S such that D ≡ −KS, where D1, . . . ,Dn are irreducible curves

and a1, . . . ,an are positive real numbers. Then ai � 1 for each i = 1, . . . ,n. �

Proof. For the case where d = 1, the statement follows from

1 = K2
S =

n∑
i=1

aiDi · (−KS) � aiDi · (−KS) � ai.

 at T
he U

niversity of E
dinburgh on O

ctober 23, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Cylinders in del Pezzo Surfaces 25

For the cases where d = 2 and 3, see [5, Lemmas 3.1 and 4.1], respectively. Their proofs

work verbatim for an effective R-divisor. �

Theorem 2.2.3 immediately follows from the following two statements.

Theorem 5.2.3. Let S be a smooth del Pezzo surface of degree d � 2. Let E be a (−1)-

curve on S. For a positive real number a, the surface S does not contain any (−KS +
aE)-polar cylinder. �

Proof. Suppose that there exists an effective R-divisor D such that D ≡ −KS + aE and

S \ Supp(D) is isomorphic to A1 × Z for some affine variety Z.

Let f : S → S be the contraction of the curve E. Put D = f (D). Then S is a smooth

del Pezzo surface of degree d+ 1 � 3. Moreover, we have D ≡ −KS.

If E ⊂ Supp(D), then

S \ Supp(D) ∼= S \ Supp(D) ∼= A1 × Z,

which implies that S \ Supp(D) is a (−KS)-polar cylinder on S. This contradicts

Theorem 1.2.3. Therefore, E �⊂ Supp(D). In particular, D · E � 0 and a � 1.

Put D = ∑n
i=1 aiDi, where D1, . . . ,Dn are irreducible curves and a1, . . . ,an are

positive real numbers. None of the curves D1, . . . ,Dn is contracted by the morphism f

and

n∑
i=1

aif (Di) = D ≡ −KS.

Therefore, we have ai � 1 for each i = 1, . . . ,n by Lemma 5.2.2. Since a � 1 too, by the

second case in Remark 1.1.3 the linear system L associated with the cylinder S \Supp(D)
has a base point, say P. Due to Theorem 5.1.1 for every effective R-divisor B on S such

that KS + B is pseudo-effective and Supp(B) ⊂ Supp(D), the log pair (S,B) is not log

canonical at P. In particular, (S,D) is not log canonical at the point P.

The inequality

1 > 1 − a = (−KS + aE) · E = D · E � multP(D)multP(E)

and Lemma 5.2.1 show that P lies outside E. Therefore, (S,D) is not log canonical at f (P).

Let T be the unique divisor in | − KS| that is singular at f (P). Denote by T its

proper transform on the surface S. Since D ≡ −KS and (S,D) is not log canonical at
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the point f (P), it follows from Theorem 5.1.2 that (S,T) is not log canonical at f (P) and

Supp(T) ⊂ Supp(D). Hence, Supp(T) ⊂ Supp(D).

For every non-negative real number μ, put Dμ = (1 + μ)D − μT and Dμ = (1 +
μ)D − μT . Since −KS · T = K2

S
� 3, the divisor T consists of at most three irreducible

components. Therefore, D �= T because the divisor D has at least eight components by

(1.1.2). Put

ν = sup
{
μ ∈ R�0

∣∣∣ Dμ is effective
}
.

Then Supp(T) �⊂ Supp(Dν) and Supp(T) �⊂ Supp(Dν). In particular, we have ν > 0 since

Supp(T) ⊂ Supp(D).

We have Dμ ≡ D ≡ T ≡ −KS for each real number μ. This implies that

Dμ ≡ −KS + aμE

for some real number aμ. Note that aμ is either linear or constant in μ.

Suppose that aν � 0. Then KS + Dν is pseudo-effective. Therefore, the log pair

(S,Dν) is not log canonical at the point P by Theorem 5.1.1. Then (S,Dν) is not log canon-

ical at f (P). The latter contradicts Theorem 5.1.2 because Supp(T) �⊂ Supp(Dν) by the

choice of ν.

Suppose that aν < 0. Since a0 = a > 0, there exists a positive real number

λ ∈ (0, ν) such that aλ = 0. It follows from λ < ν that Supp(T) ⊂ Supp(Dλ) and Supp(Dλ) =
Supp(D). Therefore,

S \ Supp(Dλ) ∼= S \ Supp(D) ∼= A1 × Z

is a cylinder. However, this contradicts Theorem 1.2.3 because aλ = 0, that is,

Dλ ≡ −KS. �

Theorem 5.2.4. Let S be a smooth del Pezzo surface of degree 1. Let E and F be two

disjoint (−1)-curves on S. The surface S contains no (−KS + aE + bF)-polar cylinder for

any positive real numbers a and b. �

Proof. Suppose that there exists an effective R-divisor D such that D ≡ −KS + aE + bF

and such that S\Supp(D) is isomorphic toA1×Z for some affine variety Z. In the following

we seek for a contradiction.
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Let g : S → Ŝ be the contraction of the curve E. Put D̂ = g(D) and F̂ = g(F). Then

Ŝ is a smooth del Pezzo surface of degree 2, F̂ is a (−1)-curve, and D̂ ≡ −KŜ + bF̂ . This

implies that E �⊂ Supp(D). Indeed, if E ⊂ Supp(D), then

Ŝ \ Supp(D̂) ∼= S \ Supp(D) ∼= A1 × Z

is a D̂-polar cylinder on Ŝ. This is impossible by Theorem 5.2.3. Similarly, we see that

F �⊂ Supp(D). Therefore, D · E � 0, D · F � 0 and a � 1, b � 1.

Write D = ∑n
i=1 aiDi, where D1, . . . ,Dn are irreducible curves and a1, . . . ,an are

positive real numbers.

Let f : S → S be the contraction of the curves E and F . Put D = f (D). Then S is

a smooth cubic surface and D ≡ −KS. None of the curves D1, . . . ,Dn is contracted by the

morphism f and

n∑
i=1

aif (Di) = D ≡ −KS.

Therefore, we have ai � 1 for each i = 1, . . . ,n by Lemma 5.2.2. Because a,b � 1, the

second case in Remark 1.1.3 implies that the linear systemL associatedwith the cylinder

S \ Supp(D) has a base point, say P. By Theorem 5.1.1 for every effective R-divisor B on

S such that KS + B is pseudo-effective and Supp(B) ⊂ Supp(D), the log pair (S,B) is not

log canonical at P . In particular, (S,D) is not log canonical at the point P.

We claim that P belongs to neither E nor F . Indeed, if P ∈ E, then

1 > 1 − a = (−KS + aE) · E = D · E � multP(D) > 1

by Lemma 5.2.1. This shows that P �∈ E. Similarly, we see that P �∈ F . Therefore, the

birationalmorphism f is an isomorphism in a neighborhood of the point P. In particular,

the log pair (S,D) is not log canonical at f (P).

Let T be the unique divisor in | − KS| that is singular at f (P). Denote by T its

proper transform on the surface S. Since D ≡ −KS and (S,D) is not log canonical at

the point f (P), it follows from Theorem 5.1.2 that (S,T) is not log canonical at f (P) and

Supp(T) ⊂ Supp(D). Hence, Supp(T) ⊂ Supp(D).

For every non-negative real number μ, put Dμ = (1 + μ)D − μT and Dμ = (1 +
μ)D − μT . Since −KS · T = K2

S
= 3, the divisor T consists of at most three irreducible
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components. Therefore, D �= T because the divisor D has at least nine components by

(1.1.2). Put

ν = sup
{
μ ∈ R�0

∣∣∣ Dμ is effective
}
.

Then Supp(T) �⊂ Supp(Dν) and Supp(T) �⊂ Supp(Dν). In particular, we have ν > 0 since

Supp(T) ⊂ Supp(D).

We have Dμ ≡ D ≡ T ≡ −KS for each real number μ. This implies that

Dμ ≡ −KS + aμE + bμF

for some real numbers aμ and bμ. From −KS + E + F ≡ f ∗(Dμ) = (1 + μ)f ∗(D) − μf ∗(T)

and a0 = a, b0 = b, we obtain

⎧⎨
⎩
aμ = (

multf (E)(T)− multf (E)(D)
)
μ+ a

bμ = (
multf (F)(T)− multf (F)(D)

)
μ+ b.

Suppose that aν � 0 and bν � 0. Then KS +Dν is pseudo-effective, and hence the

log pair (S,Dν) is not log canonical at the point P by Theorem 5.1.1. Then (S,Dν) is not

log canonical at f (P). Since Supp(T) �⊂ Supp(Dν), this contradicts Theorem 5.1.2.

Suppose that either aν < 0 or bν < 0. Since a0 = a > 0 and b0 = b > 0, there is

a real number λ ∈ (0, ν) such that either aλ = 0, bλ � 0 or aλ � 0, bλ = 0. Without loss

of generality we may assume that aλ = 0. Since λ < ν, Supp(T) ⊂ Supp(Dλ) = Supp(D).

Therefore, S \ Supp(Dλ) = S \ Supp(D) is a cylinder. However, this contradicts either

Theorem 1.2.3 or Theorem 5.2.3 since

Dλ ≡ −KS + bλF . �

6 Cylinders in del Pezzo Surfaces of Small Degrees

6.1 Del Pezzo surface of degree 2 without a cuspidal anticanonical divisor

A smooth quartic plane curve can have at most twenty four inflection points. There may

be two kinds of inflection points on a smooth quartic curve. One is a point at which its

tangent line intersects the quartic with multiplicity 3, and the other with multiplicity 4.

The former is called an ordinary inflection point and the latter a hyperinflection point.
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Cylinders in del Pezzo Surfaces 29

These inflection points can be spotted with the Hessian curve of the given quartic curve.

TheHessian curve intersects the quartic curve transversally at ordinary inflection points

and meets the quartic curve at hyperinflection points with multiplicity 2. Since the

degree of the Hessian curve is 6, we have

the number of ordinary inflection points

+ 2 × the number of hyperinflection points = 24.

Therefore, a smooth quartic plane curve has exactly twelve hyperinflection points if it

contains no ordinary inflection point.

A smooth del Pezzo surface of degree 2 is a double cover of P2 ramified along a

smooth plane quartic curve. An effective anticanonical divisor on a smooth del Pezzo

surface of degree 2 is given by the pull-back of a line on P2 via the double covering

map. An effective anticanonical divisor that is a cuspidal rational curve is given exactly

by the pull-back of the tangent line at an ordinary inflection point. The pull-back of

the tangent line at a hyperinflection point is an effective anticanonical divisor that is

a tacnodal curve, that is, two (−1)-curves intersecting at a single point tangentially.

Consequently, a smooth del Pezzo surface of degree 2 contains twelve effective anti-

canonical divisors that are tacnodal curves if its anticanonical linear system contains

no cuspidal rational curve. Each of the twelve tacnodal curves consists of two distinct

(−1)-curves intersecting at a single point tangentially. These twenty four (−1)-curves

are distinct.

In fact, there are exactly twoquartic plane curveswithout any ordinary inflection

point [8, 24]. One is the Fermat quartic, that is, the curve defined by

x4 + y4 + z4 = 0,

and the other is the curve defined by

x4 + y4 + z4 + 3(x2y2 + y2z2 + z2x2) = 0.

As explained above, these have exactly twelve hyperinflection points. The del Pezzo

surfaces of degree 2 corresponding these two quartic curves are the only del Pezzo

surfaces of degree 2 whose anticanonical linear systems contain no cuspidal rational

curves.
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6.2 Cylinders in del Pezzo surfaces of degree 2

In order to prove Theorem 2.2.4, let S be a smooth del Pezzo surface of degree 2

and let H be an ample R-divisor on S. Let μ and r be the Fujita invariant and the

Fujita rank of H . Denote by � the Fujita face of H . Let φ : S → Z be the contraction

given by �.

We first consider ample R-divisors of type B(r). Let E1, . . . ,Er be the r disjoint

(−1)-curves that generate the face �. We may then write

KS + μH ≡
r∑
i=1

aiEi (6.2.1)

for some positive real numbers a1, . . . ,ar (see (2.1.3)).

Theorem 6.2.2. If the ample R-divisor H is of type B(r) with 3 � r � 7, then S contains

an H-polar cylinder. �

Proof. The proof is divided into two cases. One is the case when S has a cuspidal

rational curve in | − KS|, and the other is the case when it does not.

Case 1. The surface S has no cuspidal rational curve in | − KS|.

In this case, as mentioned in the previous subsection, S has exactly twelve pairs

of (−1)-curves {Ci,C ′
i}, i = 1, . . . , 12 such that each Ci + C ′

i is a tacnodal anticanonical

divisor.

Choose one tacnodal anticanonical divisor, say C1 +C ′
1. Since we have more than

seven tacnodal anticanonical divisors, we may assume that

• none of Ei are C1 or C ′
1;

• if r = 6, then neither φ(C1) nor φ(C ′
1) is a (−1)-curve.

Letm be the number of the curves Ei’s intersecting C1 andm′ be the number of the curves

Ei’s intersecting C ′
1.Wemay assume that E1, . . . ,Em intersect C1 and that Em+1, . . . ,Er meet

C ′
1. Furthermore, wemay assume thatm � m′. Note thatm+m′ = r . Furthermore, by the

assumption above, 2 � m � 5. Let C1 and C
′
1 be the images C1 and C ′

1 by φ, respectively.

The curve C1 is an (m − 1)-curve on the del Pezzo surface Z. Since m � 2, the complete
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linear system |C1| induces a birational morphism ψ of Z into Pm. Furthermore, its image

is isomorphic to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P2 for m = 2;

P1 × P1 ∼= a smooth quadratic surface ⊂ P3 for m = 3;

F1
∼= a smooth rational normal scroll of degree 3 in P4 for m = 4;

P2 ∼= a Veronese surface in P5 for m = 5.

Put σ = ψ ◦ φ.
Form = 2 and 5, we have (7− r) disjoint (−1)-curves on Z that are contracted by

ψ . These curves do not intersect C1 but they meet C
′
1 since C1 + C

′
1 is an anticanonical

divisor of Z. Let F1, . . . ,F7−r be the pull-backs of these (7 − r) disjoint (−1)-curves by φ.

Then, the curve C1 intersects exactlym curves E1, . . .Em and the curve C ′
1 meets the other

m′ curves Em+1, . . .Er and all the (7 − r) curves F1, . . . ,F7−r .

For m = 2, σ(C1) is a line and σ(C ′
1) is a conic in P2. For m = 5, σ(C1) is a conic

and σ(C ′
1) is a line in P2. They intersect tangentially at a single point. Therefore,

−KS ≡ (1 − aε)C1 + (1 + bε)C ′
1 − aε

m∑
i=1

Ei + bε
r∑

i=m+1

Ei + bε
7−r∑
i=1

Fi,

and hence

μH ≡ (1 − aε)C1 + (1 + bε)C ′
1 +

m∑
i=1

(ai − aε)Ei +
r∑

i=m+1

(ai + bε)Ei + bε
7−r∑
i=1

Fi,

where a = 2, b = 1 if m = 2 and a = 1, b = 2 if m = 5. For a sufficiently small positive

real number ε, H yields a cylinder because

S \ (C1 ∪ C ′
1 ∪ E1 ∪ . . . ∪ Er ∪ F1 ∪ . . . ∪ F7−r) ∼= P2 \ (σ (C1) ∪ σ(C ′

1)).

Form = 3 and 4, we have (6− r) disjoint (−1)-curves on Z that are contracted by

ψ . These curves do not intersect C1 but they meet C
′
1 since C1 + C

′
1 is an anticanonical

divisor of Z. Againwe let F1, . . . ,F6−r be the pull-backs of these (6−r) disjoint (−1)-curves

by φ. Then, the curve C1 intersects exactlym curves E1, . . .Em and the curve C ′
1 meets the

other m′ curves Em+1, . . .Er and all the (6 − r) curves F1, . . . ,F6−r .

Form = 3, σ(C1) is an irreducible curve of bidegree (1, 1) in P1 ×P1 since its self-

intersection number is 2. The irreducible curve σ(C ′
1) is also of bidegree (1, 1) because

σ(C1)+σ(C ′
1) is an anticanonical divisor of P1×P1. They intersect tangentially at a single
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point Q. Let L1 and L2 be the curves of bidegrees (1, 0) and (0, 1), respectively, passing

through Q. Then,

−KS ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + ε(L̃1 + L̃2)− 2ε

3∑
i=1

Ei + ε

r∑
i=4

Ei + ε

6−r∑
i=1

Fi,

where L̃1 and L̃2 are the proper transforms of L1 and L2 by σ , respectively. Therefore

μH ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + ε(L̃1 + L̃2)+

3∑
i=1

(ai − 2ε)Ei +
r∑
i=4

(ai + ε)Ei + ε

6−r∑
i=1

Fi.

For a sufficiently small positive real number ε, we obtain an H-polar cylinder because

S \ (C1 ∪ C ′
1 ∪ L̃1 ∪ L̃2 ∪ E1 ∪ . . . ∪ Er ∪ F1 ∪ . . . ∪ F6−r)

∼= P1 × P1 \ (σ (C1) ∪ σ(C ′
1) ∪ L1 ∪ L2)

(see Example 4.1.7).

For m = 4, σ(C1) is a 3-curve in F1. The irreducible curve σ(C ′
1) is a 1-curve

intersecting σ(C1) at a single point Q tangentially. LetM be the 0-curve passing through

the point Q. Example 4.1.9 shows that

−KS ≡ (1 − ε)C1 + (1 + ε)C ′
1 + εM̃ − ε

4∑
i=1

Ei + ε

r∑
i=5

Ei + ε

6−r∑
i=1

Fi

and

μH ≡ (1 − ε)C1 + (1 + ε)C ′
1 + εM̃ +

4∑
i=1

(ai − ε)Ei +
r∑
i=5

(ai + ε)Ei + ε

6−r∑
i=1

Fi,

where M̃ is the proper transform ofM . We see also from Example 4.1.9 that H defines a

cylinder with a sufficiently small positive real number ε.

Case 2. The surface S possesses a cuspidal rational curve C in | − KS|.

Let P be the point at which the curve C has the cusp. Each Ei intersects the curve

C at a single smooth point. This cuspidal curve C plays a key role in constructingH-polar

cylinders case by case, according to r.
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Subcase 1. r = 3.

In this subcase, the surface S has five 0-curves F1, . . . ,F5 such that

• they pass through P;

• they do not meet each other outside P;

• they are disjoint from the curves E1, E2 and E3.

(For the better understanding of this construction, see Example 4.1.13 after contracting

the (−1)-curves E1, E2, E3 to a smooth del Pezzo surface of degree 5.)

Let π : S̃ → S be the blow up at the point P and let E be the exceptional curve

of π . Then S̃ is a weak del Pezzo surface of degree 1 and it has exactly one (−2)-curve,

the proper transform C̃ of C. Denote the proper transforms on S̃ of the curves E1, E2,

E3, F1, . . . ,F5 by Ẽ1, Ẽ2, Ẽ3, F̃1, . . . , F̃5. Since these (−1)-curves are disjoint, they give us a

contraction ψ : S̃ → P2.

Since ψ(E) is a conic and ψ(C̃) is a line on P2, we immediately see that

−KS̃ ≡ (1 − 2ε)C̃ + (1 + ε)E + ε

5∑
i=1

F̃i − 2ε(Ẽ1 + Ẽ2 + Ẽ3),

and hence

−KS ≡ (1 − 2ε)C + ε

5∑
i=1

Fi − 2ε(E1 + E2 + E3).

Therefore,

μH ≡ (1 − 2ε)C + ε

5∑
i=1

Fi + (a1 − 2ε)E1 + (a2 − 2ε)E2 + (a3 − 2ε)E3.

For a sufficiently small positive real number ε, this is an H-polar cylinder because

S \ (C ∪ F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ E1 ∪ E2 ∪ E3) ∼= P2 \ (ψ(E) ∪ ψ(C̃)).

The conic ψ(E) and the line ψ(C̃) meet tangentially.

Subcase 2. r = 4.

In this subcase, the surface S has three 0-curves F1,F2,F3 such that

• they pass through P;

• they do not intersect each other outside P;

• they are disjoint from the curves E1, E2, E3, E4.
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In addition, it has two 1-curves G1,G2 such that

• they intersect C only at P;

• they do not meet each other outside P;

• they are disjoint from the curves E1, E2, E3, E4.

(See Example 4.1.11 after contracting the (−1)-curves E1, E2, E3, E4 to a smooth del Pezzo

surface of degree 6.)

Let π : S̃ → S be the blow up at the point P and let E be the exceptional curve of

π . Then S̃ is a weak del Pezzo surface of degree 1 and it has exactly one (−2)-curve, the

proper transform C̃ of C. Denote the proper transforms on S̃ of the curves E1, . . . ,E4, F1,

F2, F3, G1, G2 by Ẽ1, . . . , Ẽ4, F̃1, F̃2, F̃3, G̃1, G̃2. Contracting the seven (−1)-curves Ẽ1, . . . , Ẽ4,

F̃1, F̃2, F̃3, we obtain a birational morphism ψ : S̃ → P1 × P1. Since ψ(E) and ψ(C̃) are

curves of bidegree (1, 1) on P1 × P1 and ψ(G̃1), ψ(G̃2) are curves of bidegrees (1, 0) and

(0, 1), respectively, on P1 × P1,

−KS̃ ≡ (1 − 2ε)C̃ + (1 + ε)E + ε(F̃1 + F̃2 + F̃3)+ ε(G̃1 + G̃2)− 2ε
4∑
i=1

Ẽi,

and hence

−KS ≡ (1 − 2ε)C + ε(F1 + F2 + F3)+ ε(G1 + G2)− 2ε
4∑
i=1

Ei.

Therefore,

μH ≡ (1 − 2ε)C + ε(F1 + F2 + F3)+ ε(G1 + G2)+
4∑
i=1

(ai − 2ε)Ei.

For a sufficiently small positive real number ε, this defines an H-polar cylinder because

S \ (C ∪ F1 ∪ F2 ∪ F3 ∪ G1 ∪ G2 ∪ E1 ∪ E2 ∪ E3 ∪ E4)

∼= P1 × P1 \ (ψ(E) ∪ ψ(C̃) ∪ ψ(G̃1) ∪ ψ(G̃2)).

The curves ψ(E) and ψ(C̃) meet tangentially at one point and the curves ψ(G̃1), ψ(G̃2)

pass through this point (see Example 4.1.7).

Subcase 3. r = 5.
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There are two 0-curves L1, L2 such that

• they pass through P;

• they do not intersect each other outside P;

• they are disjoint from the curves E1, . . . ,E5.

In addition, there is a unique 1-curve T that meets C only at the point P and that does

not intersect any of Ei’s (see Example 4.1.10).

By contracting the (−1)-curves E1, . . . ,E5, we immediately see from Exam-

ple 4.1.10 that

−KS ≡ (1 − ε)C + εL1 + εL2 + εT − ε

5∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + εL1 + εL2 + εT +
5∑
i=1

(ai − ε)Ei.

Example 4.1.10 shows that for a sufficiently small positive real number ε, this defines

an H-polar cylinder.

Subcase 4. r = 6 and Z ∼= P1 × P1.

There are exactly two 0-curves F1,F2 passing through the point P and not inter-

secting any of Ei’s. (By contracting E1, . . . ,E6 into the surface P1×P1, we can easily detect

such 0-curves.)

Let π : S̃ → S be the blow up at the point P and let E be the exceptional curve of

π . Then S̃ is a weak del Pezzo surface of degree 1 and it has exactly one (−2)-curve, the

proper transform C̃ of C. Denote the proper transforms on S̃ of the curves E1, . . . ,E6, F1, F2

by Ẽ1, . . . , Ẽ6, F̃1, F̃2. Contracting the (−1)-curves Ẽ1, . . . , Ẽ6, F̃1, F̃2, we obtain a birational

morphismψ : S̃ → P2. Note thatψ(C) andψ(E) are a conic and a linemeeting tangentially

on P2. Therefore,

−KS ≡ (1 − ε)C + 2ε(F1 + F2)− ε

6∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + 2ε(F1 + F2)+
6∑
i=1

(ai − ε)Ei.
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For a sufficiently small positive real number ε, this defines an H-polar cylinder since

S \ (C ∪ F1 ∪ F2 ∪ E1 ∪ . . . ∪ E6) ∼= P2 \ (ψ(C̃) ∪ ψ(E)).

Subcase 5. r = 6 and Z ∼= F1.

There is a unique 0-curve L passing through the point P and not meeting any of

Ei’s. In addition, there is a unique 1-curve T that intersects C only at the point P and

that does not intersect any of Ei’s. (By contracting E1, . . . ,E6 into the Hirzebruch surface

F1, we can easily detect such curves.)

Example 4.1.8 shows that

−KS ≡ (1 − ε)C + εL+ 2εT − ε

6∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + εL+ 2εT +
6∑
i=1

(ai − ε)Ei.

It also shows that for a sufficiently small positive real number ε, this defines an H-polar

cylinder since

S \ (C ∪ L ∪ T ∪ E1 ∪ . . . ∪ E6) ∼= F1 \ (φ(C) ∪ φ(L) ∪ φ(T)).

Subcase 6. r = 7.

By contracting E1, . . . ,E7 we obtain a birational morphism π of S on to the pro-

jective plane P2. The curve π(C) is a cuspidal cubic curve passing through all the points

π(Ei)’s. Let T be the Zariski tangent line to the curve π(C) at its cuspidal point. We

immediately see that

−KS ≡ (1 − ε)π∗(π(C))+ 3επ∗(T)−
7∑
i=1

Ei ≡ (1 − ε)C + 3εT̃ − ε

7∑
i=1

Ei,

where T̃ is the proper transform of T by π , and hence

μH ≡ (1 − ε)C + 3εT̃ +
7∑
i=1

(ai − ε)Ei.
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For a sufficiently small positive real number ε, this defines an H-polar cylinder since

S \ (C ∪ T̃ ∪ E1 ∪ . . . ∪ E7) ∼= P2 \ (π(C) ∪ T)

(see Example 4.1.3). �

For the following theorem we assume that a1 � . . . � ar in (6.2.1).

Theorem 6.2.3. Suppose that H is of type B(2). If one of the following conditions

holds

• 2a2 > 1;

• 2a1 + a2 > 2,

then S contains an H-polar cylinder. �

Proof. There are five (−1)-curves E3, . . . ,E7 on S such that they, together with E1 and

E2, define a birational morphism σ : S → P2. Denote the point σ(Ei) by Pi for i = 1, . . . , 7.

Let C1 be the conic that passes through the points P3, . . . ,P7.

Suppose that the inequality 2a2 > 1 is satisfied.

There is a conic C2 passing through the points P1,P2 andmeeting the conic C1 only

at a single point. Let T be the tangent line to both the conics C1 and C2 at the intersection

point of C1 and C2. For any real number ε, we have −KP2 ≡ (1 + ε)C1 + (
1
2 − 2ε

)
C2 + 2εT .

Hence,

− KS ∼Q σ
∗ (−KP2)−

7∑
i=1

Ei

≡ (1 + ε) C̃1 +
(
1

2
− 2ε

)
C̃2 + 2εT̃ −

(
1

2
+ 2ε

)
(E1 + E2)+ ε

7∑
i=3

Ei,

where C̃1, C̃2, and T̃ are the proper transforms of C1, C2, and T , respectively. Thus, we

have

H ≡ 1

μ

{
(1 + ε) C̃1 +

(
1

2
− 2ε

)
C̃2 + 2εT̃

+
(
a1 − 1

2
− 2ε

)
E1 +

(
a2 − 1

2
− 2ε

)
E2 + ε

7∑
i=3

Ei

}
.
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Since a1 − 1
2 � a2 − 1

2 > 0, for a sufficiently small positive real number ε this defines an

H-polar cylinder on S.

Suppose that the inequality 2a1 + a2 > 2 is satisfied.

Let L be a line passing through the point P2 and tangent to the conic C1. Let C3

be the conic that intersects C1 only at the point where C1 and L meet and that passes

through P1. For any real numbers β and ε we have

−KP2 ≡ (1 + 2ε)C1 + (β − ε)C3 + (1 − 2β − 2ε)L.

Hence,

− KS ∼Q σ
∗ (−KP2)−

7∑
i=1

Ei

≡ (1 + 2ε) C̃1 + (β − ε) C̃3 + (1 − 2β − 2ε) L̃+ (β − ε − 1)E1 − 2 (β + ε)E2 + 2ε
7∑
i=3

Ei,

where C̃3, L̃ are the proper transforms of C3, L, respectively. Thus, we have

H ≡ 1

μ

{
(1 + 2ε) C̃1 + (β − ε) C̃3 + (1 − 2β − 2ε) L̃

+ (a1 + β − ε − 1)E1 + (a2 − 2β − 2ε)E2 + 2ε
7∑
i=3

Ei

}
.

By putting β = 3
2ε + 1 − a1 with a sufficiently small positive real number ε, we are able

to obtain an H-polar cylinder on S. �

From now on, we suppose that the ample R-divisor H is of type C(7) with length

�. Then the morphism φ : S → Z is a conic bundle, that is, Z = P1. We may write

KS + μH ≡ aB+
�∑

i=1

aiEi,

where a and ai are positive real numbers, B is an irreducible fiber of φ, and Ei’s are

disjoint (−1)-curves in fibers of φ. There exist (6 − �) disjoint (−1)-curves Ê1, . . . , Ê6−�
such that they are in fibers of φ and they generate the face� together with B and Ei’s. Let

φ1 : S → W be the birational morphism obtained by contracting the disjoint (−1)-curves

E1, . . . ,E�, Ê1, . . . , Ê6−�. Let Ê ′
j be the (−1)-curve such that Êj + Ê ′

j is a fiber of φ.
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Lemma 6.2.4. Suppose that the surface S has no cuspidal rational curve in | − KS|. If
the ample R-divisor H is of type C(7) with length 3 � � � 6, then S contains an H-polar

cylinder. �

Proof. The surface S has exactly twelve pairs of (−1)-curves {Ci,C ′
i}, i = 1, . . . , 12 such

that each Ci + C ′
i is a tacnodal anticanonical divisor. Choose one tacnodal anticanonical

divisor, say C1 + C ′
1. Since we have more than ten tacnodal anticanonical divisors, we

may assume that

• none of E1, . . . ,E� is C1 or C ′
1;

• none of Ê1, Ê ′
1 . . . , Ê6−�, Ê ′

6−� is C1 or C ′
1;

• neither φ1(C1) nor φ1(C ′
1) is a (−1)-curve on W .

Each of Ei and Êj intersects exclusively either C1 or C ′
1 once. If Êi intersects C1,

then Ê ′
i meets C ′

1 and if Êi intersects C ′
1, then Ê

′
i meets C1. Letm1 (resp.m′

1) be the number

of Ei with Ei · C1 = 1 (resp. Ei · C ′
1 = 1) and let m0 (resp. m′

0) be the number of Êj with

Êj ·C1 = 1 (resp. Êj ·C ′
1 = 1). Putm = m0 +m1 andm′ = m′

0 +m′
1. We may assume that

• m � m′;
• if m = m′, then m1 � m′

1;

• E1, . . . ,Em1 intersect C1 and Em1+1, . . . ,E� intersect C ′
1;

• Ê1, . . . , Êm0 intersect C1 and Êm0+1, . . . , Ê6−� intersect C ′
1.

Since m + m′ = 6 and neither φ1(C1) nor φ1(C ′
1) is a (−1)-curve on W , we have three

possibilities, (5, 1), (4, 2), (3, 3) for (m,m′).

Suppose that (m,m′) = (5, 1) and W ∼= P1 × P1. Then φ1(C1) is a 4-curve. We

may assume that this is an irreducible curve of bidegree (1, 2). Then φ1(C ′
1) is a curve of

bidegree (1, 0). The curves φ1(C1) and φ1(C ′
1) meet tangentially at a single point Q. Let L

be the curve of bidegree (0, 1) passing through Q. Note that φ1(B) is a curve of bidegree

(0, 1) since B·C1 = B·C ′
1 = 1.We immediately see fromExample 4.1.6 that for an arbitrary

real number ε

−KS + aB ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ 2ε)L̃−

m1∑
i=1

εEi

−
m0∑
i=1

εÊi +
�∑

i=m1+1

εEi +
6−�∑

i=m0+1

εÊi, (6.2.5)
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where L̃ is the proper transform of L by φ1. In a similar way, we obtain

−KS + aB ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− 2ε)L̃+

m1∑
i=1

εEi

+
m0∑
i=1

εÊi −
�∑

i=m1+1

εEi −
6−�∑

i=m0+1

εÊi. (6.2.6)

Example 4.1.6 also shows that the complements of the supports of the right-hand sides

of (6.2.5) and (6.2.6) are cylinders for a sufficiently small positive real number ε.

Suppose that (m,m′) = (4, 2). Then φ1(C1) is a 3-curve, and henceW ∼= F1. There is

a unique 0-curveM on S such that φ1(M) is the 0-curve passing through the intersection

point of φ1(C1) and φ1(C ′
1). From Example 4.1.9 we obtain

−KS + aB ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ ε)M

−
m1∑
i=1

εEi −
m0∑
i=1

εÊi +
�∑

i=m1+1

εEi +
6−�∑

i=m0+1

εÊi (6.2.7)

for an arbitrary real number ε. We can also obtain

−KS + aB ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− ε)M

+
m1∑
i=1

εEi +
m0∑
i=1

εÊi −
�∑

i=m1+1

εEi −
6−�∑

i=m0+1

εÊi. (6.2.8)

With a sufficiently small positive real number ε, these two divisors on the right-hand

sides define cylinders (see Example 4.1.9).

Suppose that (m,m′) = (3, 3). Then φ1(C1) and φ1(C ′
1) are 2-curves, and henceW ∼=

P1 × P1. Moreover, φ1(C1) and φ1(C ′
1) are irreducible curves of bidegree (1, 1) intersecting

tangentially at a single point Q. Let L1 and L2 be the curves of bidegrees (1, 0) and (0, 1),

respectively, passing through Q. The curve φ1(B) is a curve of bidegree (1, 0) or (0, 1).

Without loss of generality, we may assume that φ1(B) is a curve of bidegree (1, 0). Then

for an arbitrary real number ε

−KS + aB ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + (a+ ε)L̃1 + εL̃2

−
m1∑
i=1

2εEi −
m0∑
i=1

2εÊi +
�∑

i=m1+1

εEi +
6−�∑

i=m0+1

εÊi, (6.2.9)
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where L̃1 and L̃2 are the proper transforms of L1 and L2 by φ1. In particular, the comple-

ment of the support of the divisor on the right-hand side is a cylinder for a sufficiently

small positive real number ε (see Example 4.1.7).

Now we construct H-polar cylinders case by case, according to the length �.

Case 1. � = 6 and W ∼= P1 × P1.

If m = 5, then we use (6.2.5) to obtain

μH ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ 2ε)L̃+ (a6 + ε)E6 +

5∑
i=1

(ai − ε)Ei.

If m = 3, then we apply (6.2.9) to yield

μH ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + (a+ ε)L̃1 + εL̃2 +

3∑
i=1

(ai − 2ε)Ei +
6∑
i=4

(ai + ε)Ei.

These show that S has an H-polar cylinder.

Case 2. � = 6 and W ∼= F1.

Suppose that m = 5. Then φ1(C1) is a 4-curve and φ1(C ′
1) is a 0-curve. They meet

tangentially at a single point. There is a (−1)-curve E on S such that φ1(E) is the negative

section of W ∼= F1. The curve φ1(B) is equivalent to φ1(C ′
1). Therefore,

−KS + aB ≡ (1 − ε)C1 + (1 + a+ 2ε)C ′
1 + 2εE + (a+ 2ε)E6 − ε

5∑
i=1

Ei,

and

μH ≡ (1 − ε)C1 + (1 + a+ 2ε)C ′
1 + 2εE + (a6 + a+ 2ε)E6 +

5∑
i=1

(ai − ε)Ei.

Suppose that m = 4. Then we apply (6.2.7) to obtain

μH ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ ε)M +

4∑
i=1

(ai − ε)Ei +
6∑
i=4

(ai + ε)Ei.

The divisors on the right-hand sides produce H-polar cylinders on S.

From now, we consider the cases where � < 6. By contracting Ê ′
1 instead of Ê1, if

necessary, we may always assume that W ∼= P1 × P1.
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Case 3. � = 5.

If (m1,m0) = (5, 0), we apply (6.2.5) to yield

μH ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ 2ε)L̃+ εÊ1 +

5∑
i=1

(ai − ε)Ei.

If (m1,m0) = (4, 1), then we use (6.2.6) to obtain

μH ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− 2ε)L̃+ εÊ1 + (a5 − ε)E5 +

4∑
i=1

(ai + ε)Ei.

If (m1,m0) = (3, 0), then (6.2.9) shows

μH ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + (a+ ε)L̃1 + εL̃2 + εÊ1

+
3∑
i=1

(ai − 2ε)Ei +
5∑
i=4

(ai + ε)Ei.

In each case, the divisor on the right-hand side produces an H-polar cylinder on S with

a sufficiently small positive real number ε.

Case 4. � = 4.

Suppose that (m1,m0) = (4, 1). When we obtain the birational morphism φ1, we

contract Ê ′
1 instead of Ê1. Then this new contraction maps S on to F1. The curve C1 meets

E1, . . . ,E4 and the curve C ′
1 intersects Ê

′
1 and Ê2. We apply (6.2.7) to this new set-up. Then

we obtain

μH ≡ (1 − ε)C1 + (1 + ε)C ′
1 + (a+ ε)M + εÊ ′

1 + εÊ2 +
4∑
i=1

(ai − ε)Ei.

If (m1,m0) = (3, 2), then we apply (6.2.6) to yield

μH ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− 2ε)L̃+ (a4 − ε)E4 +

2∑
i=1

εÊi +
3∑
i=1

(ai + ε)Ei.

If (m1,m0) = (3, 0), then use (6.2.9), and obtain

μH ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + (a+ ε)L̃1 + εL̃2 + (a4 + ε)E4

+
3∑
i=1

(ai − 2ε)Ei +
2∑
i=1

εÊi.
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If (m1,m0) = (2, 1), then we contract Ê ′
2 instead of Ê2 when we obtain the bira-

tional morphism φ1. This new contraction sends S to F1. The curve C1 meets E1,E2, Ê1, Ê ′
2

and the curve C ′
1 intersects E2 and E4. Apply (6.2.8) to the new contraction, and we obtain

μH ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− ε)M + εÊ1 + εÊ ′

2

+
2∑
i=1

(ai + ε)Ei +
4∑
i=3

(ai − ε)Ei.

These four equivalences show that S has an H-polar cylinder if � = 4.

Case 5. � = 3.

If (m1,m0) = (3, 2), then we contract Ê ′
1 and Ê ′

2 instead of Ê1 and Ê2 when we

obtain the birational morphism φ1. Then new contraction maps S to P1 × P1. Therefore,

it is enough to consider the case (m1,m0) = (3, 0) below.

If (m1,m0) = (2, 3), then apply (6.2.6) and we obtain

μH ≡ (1 + ε)C1 + (1 − ε)C ′
1 + (a− 2ε)L̃+ (a3 − ε)E3 +

2∑
i=1

(ai + ε)Ei +
3∑
i=1

εÊi.

If (m1,m0) = (3, 0), then we use (6.2.9) to get

μH ≡ (1 − 2ε)C1 + (1 + ε)C ′
1 + (a+ ε)L̃1 + εL̃2 +

3∑
i=1

(ai − 2ε)Ei +
3∑
i=1

εÊi.

Suppose that (m1,m0) = (2, 1). Then we contract Ê ′
2 and Ê ′

3 instead of Ê2 and Ê3.

This new contraction reduces this case to the case where (m1,m0) = (2, 3) above.

Consequently, these two equivalences verify that S has an H-polar cylinder. �

Theorem 6.2.10. If the ample R-divisor H is of type C(7) with length 3 � � � 6, then S

contains an H-polar cylinder. �

Proof. Due to Lemma 6.2.4, we may assume that there exists a cuspidal rational curve

C in | − KS|. Let P be the point at which the curve C has the cusp. Each Ei intersects the

curve C at a single smooth point.

We construct H-polar cylinders case by case, according to the length �.

Case 1. � = 6 and W ∼= P1 × P1.
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There are two 0-curves F1,F2 passing through the point P and not meeting any

of Ei’s. The curve B must intersect one of the 0-curves F1, F2. We may assume that it

intersects F1. Then B ≡ F2. We see that

−KS ≡ (1 − ε)C + 2εF1 + (a+ 2ε)F2 − aB− ε

6∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + 2εF1 + (a+ 2ε)F2 +
6∑
i=1

(ai − ε)Ei.

Let π : S̃ → S be the blow up at the point P and let E be the exceptional curve of

π . Then S̃ is a weak del Pezzo surface of degree 1 and it has exactly one (−2)-curve, the

proper transform C̃ of C. Denote the proper transforms on S̃ of the curves E1, . . . ,E6, F1, F2

by Ẽ1, . . . , Ẽ6, F̃1, F̃2. Contracting the (−1)-curves Ẽ1, . . . , Ẽ6, F̃1, F̃2, we obtain a birational

morphism ψ : S̃ → P2.

For a sufficiently small positive real number ε, the divisor above defines an

H-polar cylinder since

S \ (C ∪ F1 ∪ F2 ∪ E1 ∪ . . . ∪ E6) ∼= P2 \ (ψ(C̃) ∪ ψ(E)),

where ψ(C̃) and ψ(E) are a conic and a line meeting tangentially at a single point on P2.

Case 2. � = 6 and W ∼= F1.

In this case, we have only one 0-curve F passing through the point P and not

intersecting any of Ei’s. Instead, we consider the Zariski tangent lineM to C at the point

P. This is a 1-curve. The curve φ1(B) is a 0-curve and it intersects the unique (−1)-curve

on F1. We have

−KS ≡ (1 − ε)C + 2εM + (a+ ε)F − aB− ε

6∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + 2εM + (a+ ε)F +
6∑
i=1

(ai − ε)Ei.

For a sufficiently small positive real number ε, this defines an H-polar cylinder (see

Example 4.1.8).
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Case 3. � = 5.

There are two 0-curves L1, L2 such that

• they pass through P;

• they do not meet each other outside P;

• they are disjoint from the curves E1, . . . ,E5.

In addition, there is a unique 1-curve T that intersects C only at P and that does not

meet any of Ei’s (see Example 4.1.10). The curve B is a 0-curve. It may be assumed to

intersect L1 but not L2. Then

−KS ≡ (1 − ε)C + εL1 + (a+ ε)L2 + εT − aB− ε

5∑
i=1

Ei,

and hence

μH ≡ (1 − ε)C + εL1 + (a+ ε)L2 + εT +
5∑
i=1

(ai − ε)Ei.

For a sufficiently small positive real number ε, this defines an H-polar cylinder (see

Example 4.1.10).

Case 4. � = 4.

The surface S has three 0-curves F1,F2,F3 such that

• they pass through P;

• they do not intersect each other outside P;

• they are disjoint from the curves E1, E2, E3, E4.

In addition, it has two 1-curves G1,G2 such that

• they meet C only at P;

• they do not intersect each other outside P;

• they are disjoint from the curves E1, E2, E3, E4

(see Example 4.1.11). The curve B is a 0-curve. We may assume that it intersects F1, F2

but not F3. Then,

−KS ≡ (1 − 2ε)C + ε(F1 + F2)+ (a+ ε)F3 + ε(G1 + G2)− aB− 2ε
4∑
i=1

Ei.
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Therefore,

μH ≡ (1 − 2ε)C + ε(F1 + F2)+ (a+ ε)F3 + ε(G1 + G2)+
4∑
i=1

(ai − 2ε)Ei.

For a sufficiently small positive real number ε, this defines anH-polar cylinder as shown

in Example 4.1.11.

Case 5. � = 3.

In this case, the surface S has five 0-curves F1, . . . ,F5 such that

• they pass through P;

• they do not intersect each other outside P;

• they are disjoint from the curves E1, E2, E3

(see Example 4.1.13). The curve B is a 0-curve. We may assume that it meets F1, F2, F3, F4

but not F5. Then

−KS ≡ (1 − 2ε)C + ε

4∑
i=1

Fi + (a+ ε)F5 − aB− 2ε(E1 + E2 + E3).

Therefore,

μH ≡ (1 − 2ε)C + ε

4∑
i=1

Fi + (a+ ε)F5 + (a1 − 2ε)E1 + (a2 − 2ε)E2 + (a3 − 2ε)E3.

For a sufficiently small positive real number ε, this defines an H-polar cylinder. �

Theorem 6.2.11. If H is of type C(7) with a > 10
3 , then S contains an H-polar cylinder.

�

Proof. Put φ1(Ei) = Pi for i = 1, . . . , 6.

Suppose thatW ∼= P1 ×P1. We may assume that φ1(B) is a curve of bidegree (0, 1).

Let C be the curve of bidegree (1, 0) passing through the point P1. Let Fi be the curve of

bidegree (0, 1) passing through the point Pi for i = 1, . . . , 6. We have

−KP1×P1 ≡ 2C + 1

3

6∑
i=1

Fi.
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We then obtain

−KS ≡ 2C̃ + 1

3
F̃1 + 4

3
E1 + 1

3

6∑
i=2

F̃i − 2

3

6∑
i=2

Ei,

where C̃ and F̃i’s are the proper transforms of C and Fi’s by φ1, respectively. Since B ≡
F̃i + Ei for each i, we have

−KS + aB ≡ 2C̃ + 1

3
F̃1 + 4

3
E1 +

(
a

5
+ 1

3

) 6∑
i=2

F̃i +
(
a

5
− 2

3

) 6∑
i=2

Ei.

Since a
5 − 2

3 > 0, Example 4.1.4 shows that S has an H-polar cylinder.

We now suppose that W ∼= F1. Let C be the negative section of F1. Note that C

cannot pass through any of the points Pi. Take the fiber Fi of the P1-bundle morphism of

F1 to P1 that passes through the point Pi for each i. We have

−KF1 ≡ 2C + 1

2

6∑
i=1

Fi.

We then obtain

−KS ≡ 2C̃ + 1

2

6∑
i=1

(F̃i − Ei),

where C̃ and F̃i’s are the proper transforms of C and Fi by φ1, respectively. Since B ≡ F̃i+Ei
for each i, we have

−KS + aB ≡ 2C̃ +
(
a

6
+ 1

2

) 6∑
i=1

F̃i +
(
a

6
− 1

2

) 6∑
i=1

Ei.

Since a > 3, Example 4.1.1 verifies that S has an H-polar cylinder. �

Theorems 6.2.2, 6.2.3, 6.2.10, and 6.2.11 imply (1), (2), (3), and (4) in Theorem 2.2.4,

respectively.

6.3 Cylinders in del Pezzo surfaces of degree 1

In order to prove Theorem 2.2.5, let S be a smooth del Pezzo surface of degree 1 and let

H be an ample R-divisor on S. We use the same notations as those at the beginning of

Section 6.2.
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Again we first consider ample R-divisors of type B(r). Let E1, . . . ,Er be the r

disjoint (−1)-curves that generate the face �. We may then write

KS + μH ≡
r∑
i=1

aiEi,

for some positive real numbers a1, . . . ,ar . We may assume that a1 � . . . � ar .

Proposition 6.3.1. Suppose that r � 3, 2a1 + 2a2 + a3 > 4, the contraction φ is a

birational, and Z �∼= P1 × P1. Then S contains an H-polar cylinder. �

Proof. Note that Z is a smooth del Pezzo surface of degree r + 1. Moreover, by our

assumption Z �∼= P1 × P1. Thus, either Z = P2 or Z is a blow up of P2 at (8 − r) points in

general position. For both the cases, let ψ : Z → P2 be the blow up. If 8 − r > 0, denote

the proper transforms of these ψ-exceptional curves on S by Er+1, . . . ,E8. Put Pi = σ(Ei)

and σ = ψ ◦ φ.
Let C be the conic in P2 passing through the points P4, . . . ,P8. Let L be a line

passing through the point P3 and tangent to the conic C and let Q be the intersection

point of the line L and the conic C. For i = 1, 2, let Ci be the conic passing through the

point Pi and intersecting C only at the point Q.

The open subset U = P2 \ (L ∪ C ∪ C1 ∪ C2) is a cylinder.

We claim that the cylinderU ′ := σ−1(U) � U isH-polar. Indeed, for a real number

ε we have

−KP2 ≡ (1 + 3ε)C + (α1 − ε)C1 + (α2 − ε)C2 + (α3 − 2ε)L,

where α1,α2,α3 > 0 and 2α1 + 2α2 + α3 = 1. Hence,

−KS ∼ σ ∗(−KP2)−
8∑
i=1

Ei

≡ (1 + 3ε)C̃ + (α1 − ε) C̃1 + (α2 − ε) C̃2 + (α3 − 2ε) L̃

+ (α1 − ε − 1)E1 + (α2 − ε − 1)E2 + (α3 − 2ε − 1)E3 + 3ε
8∑
i=4

Ei,
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where L̃, C̃ and C̃j are the proper transforms of the line L and the conics C, Cj, respectively.

We then obtain

μH ≡ (1 + 3ε)C̃ + (α1 − ε) C̃1 + (α2 − ε) C̃2 + (α3 − 2ε) L̃

+ (α1 + a1 − ε − 1)E1 + (α2 + a2 − ε − 1)E2 + (α3 + a3 − 2ε − 1)E3 +
8∑
i=4

(3ε + ai)Ei,

where ai = 0 if i > r. Put α1 = 3
2ε+1−a1, α2 = 3

2ε+1−a2, and α3 = 2a1+2a2−6ε−3. Since

2a1 + 2a2 + a3 > 4, for a sufficiently small positive real number ε, all the coefficients in

the divisor above are positive. This proves our claim. �

We now suppose that the morphism φ : S → Z is a conic bundle, that is, Z = P1.

We may write

KS + μH ≡ aB+
7∑
i=1

aiEi,

where B is an irreducible fiber of φ, Ei’s are disjoint (−1)-curves in fibers of φ, a is a

positive real number, and ai’s are non-negative real numbers.

Proposition 6.3.2. If H is of type C(8) with a > 30
7 , then S has H-polar cylinders. �

Proof. The proof of Theorem 6.2.11 works almost verbatim for this case. �
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