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For every smooth del Pezzo surface S, smooth curve C ∈ | − KS| and β ∈ (0, 1], we com-

pute the α-invariant of Tian α(S, (1 − β)C ) and prove the existence of Kähler–Einstein

metrics on S with edge singularities along C of angle 2πβ for β in certain interval. In

particular, we give lower bounds for the invariant R(S, C ), introduced by Donaldson as

the supremum of all β ∈ (0, 1] for which such a metric exists. The pairs (S, C ) considered

are strongly asymptotically log del Pezzo surfaces. We study one of the two classes of

such pairs for which such metrics are expected to exist for all small β > 0.

1 Introduction

In the last 50 years, the existence of canonical metrics on complex manifolds has

attracted a lot of interest from complex differential geometers. In the case of Fano man-

ifolds, the Yau–Tian–Donaldson conjecture (recently solved by Chen et al. [6] and Tian

[22]) predicted that the existence of Kähler–Einstein metrics should be equivalent to the

algebro-geometric concept of K-stability.

Received March 27, 2015; Accepted June 9, 2015

Communicated by J.-M. Hwang

c© The Author(s) 2015. Published by Oxford University Press. All rights reserved. For permissions,
please e-mail: journals.permissions@oup.com.

 International Mathematics Research Notices Advance Access published August 3, 2015
 at T

he U
niversity of E

dinburgh on O
ctober 23, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


2 I. Cheltsov and J. Martinez-Garcia

In recent decades, many geometric problems have been generalized to a log

setting, initially in an attempt to solve these problems and later on their own merit.

This was indeed the approach successfully suggested by Donaldson to solve the Kähler–

Einstein problem (see [9]). In this article, we study the Kähler–Einstein problem for sur-

faces in a natural log setting.

Definition 1.1 ([4]). Let (X, D =∑r
i=1 Di) be log smooth, that is, X is non-singular

and D is a reduced Z-divisor whose irreducible components are smooth and inter-

sect with simple normal crossings. Consider β = (β1, . . . , βr) ∈ (0, 1]r. The pair (X, D) is

strongly asymptotically log Fano if for all sufficiently small 0 < ‖β‖ � 1, the R-divisor

−(KX +∑
(1 − βi)Di) is ample. �

Strongly asymptotically log Fano varieties are a natural generalization of log

Fano varieties (X, D), for which −(KX + D) is ample. Furthermore, both concepts gener-

alize Fano varieties. Indeed, a (strongly asymptotically) log Fano variety (X, D) such that

D = 0 is a Fano variety.

Given a strongly asymptotically log Fano pair (X, D), we may consider Kähler–

Einstein metrics on X with edge singularities (KEE metrics) of angles 2πβ1, . . . , 2πβr

along D1, . . . , Dr, respectively. In this log setting, the KEE problem consists of two parts.

On the one hand, we must decide if (X, D) admits a KEE metric for all small values of

‖β‖. On the other hand, it is interesting to describe the geometry of the space of β ∈ (0, 1]r

such that (X,
∑

(1 − βi)Di) admits a KEE metric, and in particular on the boundary of this

space.

The particular case when r = 1 (i.e., Supp(D) consists of one smooth component)

and D ∈ | − KX| is of special interest, since a Kähler–Einstein metric with singularities

along D of angle 2π is a Kähler–Einstein metric in the usual sense. Moreover, in this case

we can pick any β ∈ (0, 1], since −(KX + (1 − β)D) ∼Q −βKX is ample. Hence, in that case,

studying the geometry of β ∈ (0, 1] is equivalent to computing the following invariant

introduced by Donaldson.

Definition 1.2 ([9]). Let X be a smooth Fano variety and let D be a smooth divi-

sor in | − KX|. Then R(X, D) is the supremum of all β ∈ (0, 1] such that X admits a

Kähler–Einstein metric with edge singularities along D of angle 2πβ. �

It follows from [10] that the smooth Fano variety X admits a Kähler–Einstein

metric with edge singularities of angle 2πβ along D for every positive β < R(X, D).
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Remark 1.3. If X is a smooth Fano variety, D ∈ | − KX| is a smooth divisor, and X admits

a Kähler–Einstein metric, then R(X, D) = 1. �

Cheltsov and Rubinstein [4] have classified all strongly asymptotically log Fano

varieties (S, D) in dimension 2. In their classification, (S, D) is conjectured to admit KEE

metrics for all small 0 < β � 1 [4, Conjecture 1.6.] if and only if (KS + D)2 = 0. The main

subcase of this classification, and the focus of this article, is the case in which S is a del

Pezzo surface (−KS is ample) and D ∈ | − KS| is a smooth curve. This is the natural setting

in which R(S, D) above is defined. Before explaining our contribution, let us discuss the

main tool used: Tian’s α-invariant.

Let (V,Δ) be a log Fano variety, where Δ is an R-divisor. Its α-invariant can be

defined as

α(V,Δ) = sup

⎧⎪⎨
⎪⎩λ ∈ R

∣∣∣∣∣∣∣
the log pair (V,Δ + λB) is log canonical

for any effective R − divisor B ∼R −(KV + Δ)

⎫⎪⎬
⎪⎭ ∈ R>0.

If Δ = 0, we denote α(V,Δ) by α(V).

Remark 1.4. For every effective R-Cartier R-divisor B on V , the number

lct(V,Δ; B) = sup{λ ∈ R | the log pair (V,Δ + λB) is log canonical}

is called the log canonical threshold of B with respect to (V,Δ). Note that

α(V,Δ) = inf{lct(V,Δ; B) | B is an effective R − divisor such that B ∼R −(KV + Δ)}. �

The role of α-invariants in the study of KEE metrics arises from the following

theorem.

Theorem 1.5 ([10, 20, Theorem 2, Lemma 6.13], cf. [5, 15, Theorem 5.4]). Let X be a

smooth projective variety of dimension n and let D be a smooth irreducible hyper-

surface in X. Let β ∈ (0, 1] and suppose that the divisor −(KX + (1 − β)D) is ample. If

α(X, (1 − β)D) > n
n+1 , then X admits a Kähler–Einstein metric with edge singularities of

angle 2πβ along D. �

The α-invariants of smooth del Pezzo surfaces were computed in [1, Theorem 1.7]

(see [18] for toric case, [7, 16] for an analytic approach and [14] for a characteristic free

approach). The computation implies the following theorem.
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4 I. Cheltsov and J. Martinez-Garcia

Theorem 1.6. Let S be a smooth del Pezzo surface. Then

α(S) = inf
{
lct(S, 0; B) | B ∈ | − KS| and B =

∑
Bi,

where Bi
∼= P

1 and − KS · Bi � 3 ∀i
}

. �

Let X be a smooth Fano variety and D ∈ | − KX| be a smooth divisor (see [17]). By

the definition of α-invariant, and Theorem 1.5 it follows that there is a KEE metric for

all sufficiently small 0 < β � 1. On the other hand, it well known that the existence of

KEE metrics is a convex property for β. Therefore, (X, D) admits a KEE metric for all

0 < β � R(X, D).

By a theorem of Tian (see [21]), a smooth del Pezzo surface S admits a Kähler–

Einstein metric if and only if S �∼= F1 and K2
S �= 7. Thus, we have the following corollary.

Corollary 1.7 ([21]). Let S be a smooth del Pezzo surface such that S �∼= F1 and K2
S �= 7, and

let C be a smooth curve in | − KS|. Then R(S, C ) = 1. �

Unless R(X, D) = 1, we do not know a single example for which the invariant

R(X, D) is known precisely (cf. [12, Theorem 1.7]).

In this article, we generalize Theorem 1.6 to the case of strongly asymptotically

log Fano surfaces (S, C ), where S is a del Pezzo surface and C ∈ | − KS| is smooth.

Theorem 1.8 (Main Theorem). Let S be a smooth del Pezzo surface, let C be a smooth

curve in | − KS|, and let β be a real number in (0, 1]. Then

α(S, (1 − β)C ) = inf

⎧⎪⎨
⎪⎩lct(S, (1 − β)C ;βB)

∣∣∣∣∣∣∣
B ∈ | − KS| such that B = C or B =

∑
Bi,

where Bi
∼= P

1 and − KS · Bi � 3 ∀i

⎫⎪⎬
⎪⎭ .

�

Moreover, we establish how the α-invariants of del Pezzo surfaces vary under

blowups.

Theorem 1.9. Let S1 and S2 be smooth del Pezzo surfaces, let C1 and C2 be smooth

curves in | − KS1 | and | − KS2 |, respectively. Suppose that there is a birational mor-

phism f : S2 → S1 such that f(C2) = C1. Then α(S1, (1 − β)C1) � α(S2, (1 − β)C2) for every

β ∈ (0, 1] except for the following cases:

(1) S1
∼= P

2, S2
∼= F1, and f is the blowup of an inflection point of the cubic curve

C1 ⊂ P
2;

(2) S1
∼= P

1 × P
1, K2

S2
= 7, and f is the blowup of a point in C1. �
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Dynamic Alpha-invariants of Del Pezzo Surfaces 5

We will prove Theorems 1.8 and 1.9 in Section 4. In Section 2, we will give very

explicit formulas for the invariant α(S, (1 − β)C ). Instead of presenting them here, let us

consider their applications.

Corollary 1.10. Let S be a smooth del Pezzo surface and let C be a smooth curve in

| − KS|. Then α(S, (1 − β)C ) is a decreasing continuous piecewise smooth function for

β ∈ (0, 1]. �

If S is a smooth del Pezzo surface such that either S ∼= F1 or K2
S = 7, and C is

a smooth curve in | − KS|, then R(S, C ) � 1
6 by [4, Proposition 6.10 (i)]. We improve this

bound.

Corollary 1.11. Suppose that S ∼= F1. Let C be a smooth curve in | − KS|. Then

R(S, C ) � 3
10 . Furthermore, if C is chosen to be general in | − KS|, then R(S, C ) � 3

7 . �

Corollary 1.12. Let S be a smooth del Pezzo surface such that K2
S = 7, and let C be a

smooth curve in | − KS|. Then R(S, C ) � 3
7 . Furthermore, if C does not pass through the

intersection point of two intersecting (−1)-curves in S, then R(S, C ) � 1
2 . �

In [19, Theorem 1], Székelyhidi proved that R(S, C ) � 4
5 when S = F1, and

R(S, C ) � 7
9 when K2

S = 7 and C passes through the intersection point of two intersecting

(−1)-curves in S.

1.1 Structure of the article

In Section 2, we define explicit functions α̂(S, (1 − β)C ) : (0, 1] → R for all smooth del

Pezzo surfaces S and all smooth curves C ∈ | − KS|. These functions coincide with specific

values of lct(S, (1 − β)C , βB) where B ∈ | − KS| and B = C or B =∑
Bi where Bi

∼= P
1 and

−KS · Bi � 3 for all i.

The goal of this article is to prove Theorems 1.8 and 1.9. Both results follow

from showing that α(S, (1 − β)C ) = α̂(S, (1 − β)C ) (see Theorems 4.1 and 4.10). Proving

that this equality holds boils down to show that, given any effective R-divisor D ∼R −KS

and any point p∈ S, the pair

(S, (1 − β)C + α̂(S, (1 − β)C )βD)

is log canonical at p for all β ∈ (0, 1].

The proof consists of several cases according to the pair (S, C ) and the posi-

tion of p∈ S. These are covered in Section 4. A particularly involved case is when
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6 I. Cheltsov and J. Martinez-Garcia

4 � K2
S � 7, p belongs to a unique (−1)-curve L and p=L ∩ C . This case is treated sep-

arately in Section 5. In Section 3, we provide a few local inequalities for pairs (S, D)

which are not log canonical. We use these inequalities in the proofs in Sections 4

and 5.

Throughout this article, we assume that all considered varieties are projective

and defined over C.

2 Explicit Formulas

Let S be a smooth del Pezzo surface. If K2
S � 3, then −KS is very ample (see [11, Propo-

sition III.3.4]). In this case, we will identify S with its anticanonical image, and we will

call a curve Z ⊂ S such that Z · (−KS) = 1, 2, 3 a line, conic, cubic, respectively. Let C be

a smooth curve in | − KS|, and let β be a positive real number in (0, 1]. Let

α̌(S, (1 − β)C ) = inf

⎧⎪⎨
⎪⎩lct(S, (1 − β)C ;βB)

∣∣∣∣∣∣∣
B ∈ | − KS| such that B = C or B =

∑
Bi,

where Bi
∼= P

1 and − KS · Bi � 3 ∀i

⎫⎪⎬
⎪⎭ .

Then α(S, (1 − β)C ) � α̌(S, (1 − β)C ). Theorem 1.8 states that α(S, (1 − β)C ) = α̌(S,

(1 − β)C ). In this section, we will define a number α̂(S, (1 − β)C ) such that α̂(S,

(1 − β)C ) � α̌(S, (1 − β)C ). In Section 4, we will prove that α(S, (1 − β)C ) � α̂(S,

(1 − β)C ). The latter inequality implies Theorem 1.8, since α̂(S, (1 − β)C ) � α̌(S,

(1 − β)C ) � α(S, (1 − β)C ).

2.1 Projective plane

Suppose that S ∼= P
2. Then C is a smooth cubic curve on S. Let

α̂(S, (1 − β)C ) = min
{

1,
1 + 3β

9β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

6
,

1 + 3β

9β
for

1

6
� β � 2

3
,

1

3β
for

2

3
� β � 1.

Let P be an inflection point of the curve C and let T be the line in P
2 that is tangent to C

at the point P . Then α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ), since

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ; 3βT)}.
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Dynamic Alpha-invariants of Del Pezzo Surfaces 7

2.2 Smooth quadric surface

Suppose that S ∼= P
1 × P

1. Let

α̂(S, (1 − β)C ) = min
{

1,
1 + 2β

6β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

4
,

1 + 2β

6β
for

1

4
� β � 1.

Let T be a divisor of bi-degree (1, 1) on S that is a union of two fibers of each projection

from S to P
1. Suppose in addition that one component of T is tangent to C at some

point, and another component of T passes through this point. Then α̂(S, (1 − β)C ) � α̌(S,

(1 − β)C ), since

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ; 2βT)}.

2.3 First Hirzebruch surface

Suppose that S ∼= F1. Let Z be the unique (−1)-curve in S, and let F be the fiber of the

natural projection S → P
1 that passes through the point C ∩ Z . Then C ∼ 2Z + 3F . If F is

tangent to C at the point C ∩ Z , let

α̂(S, (1 − β)C ) = min
{

1,
1 + 2β

8β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

6
,

1 + 2β

8β
for

1

6
� β � 5

6
,

1

3β
for

5

6
� β � 1.

If F is not tangent to C at the point C ∩ Z , let

α̂(S, (1 − β)C ) = min
{

1,
1 + β

5β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

4
,

1 + β

5β
for

1

4
� β � 2

3
,

1

3β
for

2

3
� β � 1.

In both cases, we have α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ), because

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(2Z + 3F ))}.
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8 I. Cheltsov and J. Martinez-Garcia

2.4 Blowup of P
2 at two points

Suppose that K2
S = 7. Then there exists a birational morphism π : S → P

2 that is the

blowup of two distinct points in P
2. Denote by E1 and E2 two π-exceptional curves,

and denote by L the proper transform of the line in P
2 that passes through π(E1) and

π(E2). Then E1, E2, and L are all (−1)-curves in S.

The pencil |E2 + L| contains a unique curve that passes though C ∩ E1. Similarly,

|E1 + L| contains a unique curve that passes though C ∩ E2. Denote these curves by L1

and L2, respectively. Then L1 is irreducible and smooth unless L1 = E2 + L (in this case

E1 ∩ L ∈ C ). Similarly, the curve L2 is irreducible and smooth unless L2 = E1 + L and

L ∩ E2 ∈ C .

If C does not contain the points E1 ∩ L nor E2 ∩ L, then there exists a unique

smooth irreducible curve R∈ |E1 + E2 + L| such that R passes though C ∩ L and is tan-

gent to C at the point C ∩ L. If either E1 ∩ L ∈ C or E2 ∩ L ∈ C , we let R= E1 + E2 + L. In

the former case, either R and C have simple tangency at the point C ∩ L or the curve

R is tangent to C at the point C ∩ L with multiplicity 3 (in this case, we must have

R ∩ C = C ∩ L, because R · C = 3).

If either E1 ∩ L ∈ C or E2 ∩ L ∈ C (but not both, since C · L = 1), then we let

α̂(S, (1 − β)C ) = min
{

1,
1 + β

5β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1
4 ,

1 + β

5β
for

1

4
� β � 2

3
,

1

3β
for

2

3
� β � 1.

If the curve C does not contain the points E1 ∩ L nor E2 ∩ L, and either L1 is tangent to

C at the point C ∩ E1 or L2 is tangent to C at the point C ∩ E2, then we let

α̂(S, (1 − β)C ) = min
{

1,
1 + 2β

6β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

4
,

1 + 2β

6β
for

1

4
� β � 1

2
,

1

3β
for

1

2
� β � 1.

If the curve C does not contain the points E1 ∩ L nor E2 ∩ L (this implies that the curve

R is smooth), neither L1 is tangent to C at the point C ∩ E1 nor L2 is tangent to C at the

point C ∩ E2, and the curve R is tangent to C at the point C ∩ L with multiplicity 3, then
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Dynamic Alpha-invariants of Del Pezzo Surfaces 9

we let

α̂(S, (1 − β)C ) = min
{

1,
1 + 3β

7β
,

1

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

4
,

1 + 3β

7β
for

1

4
� β � 4

9
,

1

3β
for

4

9
� β � 1.

Finally, if the curve C does not contain the points E1 ∩ L nor E2 ∩ L (and hence the curve

R is smooth), neither L1 is tangent to C at the point C ∩ E1 nor L2 is tangent to C at the

point C ∩ E2, and R is tangent to C at the point C ∩ L with multiplicity 2, then we let

α̂(S, (1 − β)C ) = min
{

1,
1

3β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

3
,

1

3β
for

1

3
� β � 1.

We have α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ). Indeed, if either E1 ∩ L ∈ C or E2 ∩ L ∈ C ,

then

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(3L + 2E1 + 2E2))},

which implies that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ). If neither E1 ∩ L ∈ C nor E2 ∩ L ∈ C ,

then

min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(3L + 2E1 + 2E2))} = min
{

1,
1

3β

}
.

If the curve C does not contain the points E1 ∩ L nor E2 ∩ L, and L1 is tangent to C at

the point C ∩ E1, then

α̂(S, (1 − β)C ) = min
{

1,
1

3β
, lct(S, (1 − β)C ;β(2L1 + 2E1 + L))

}
,

and similarly if L2 is tangent to C at the point C ∩ E2. If the curve C does not contain the

points E1 ∩ L nor E2 ∩ L (this implies that the curve R is smooth), neither L1 is tangent

to C at the point C ∩ E1 nor L2 is tangent to C at the point C ∩ E2, and the curve R is

tangent to C at the point C ∩ L with multiplicity 3, then

min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(3L + 2E1 + 2E2)), lct(S, (1 − β)C ;β(L + 2R))}

equals α̂(S, (1 − β)C ). We conclude that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) in every case.
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10 I. Cheltsov and J. Martinez-Garcia

2.5 Blowup of P
2 at three points

Suppose that K2
S = 6. Then there exists a birational morphism π : S → P

2 that is the

blowup of three non-collinear points. Denote the π-exceptional curves by E1, E2, E3,

denote the proper transform on S of the line in P
2 that passes through π(E1) and π(E2)

by L12, denote the proper transform on S of the line in P
2 that passes through π(E1) and

π(E3) by L13, and denote the proper transform on S of the line in P
2 that passes through

π(E2) and π(E3) by L23. Then E1, E2, E3, L12, L13, and L23 are all the lines in S.

If the curve C contains an intersection point of two intersecting lines in S, then

we let

α̂(S, (1 − β)C ) = min
{

1,
1 + β

4β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

3
,

1 + β

4β
for

1

3
� β � 1.

If the curve C does not contain the intersection points of any two intersecting lines and,

there are a line Z1 and an irreducible conic Z2 in S such that Z2 is tangent to C at the

point C ∩ Z1, then we let

α̂(S, (1 − β)C ) = min
{

1,
1 + 2β

5β
,

1

2β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

3
,

1 + 2β

5β
for

1

3
� β � 3

4
,

1

2β
for

3

4
� β � 1.

If C does not contain the intersection point of any two intersecting lines, and for every

line Z1 in S, there exists no irreducible conic Z2 in S such that Z2 is tangent to C at

C ∩ Z1, then we let

α̂(S, (1 − β)C ) = min
{

1,
1

2β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1

2β
for

1

2
� β � 1.

One has α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ). Indeed, we have 2E1 + 2L12 + L13 +
E2 ∼ −KS. Thus, if E1 ∩ L12 �∈ C , E1 ∩ L13 �∈ C , and E2 ∩ L12 �∈ C , then

min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(2E1 + 2L12 + L13 + E2))}

=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1

2β
for

1

2
� β � 1.
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Dynamic Alpha-invariants of Del Pezzo Surfaces 11

Otherwise, this minimum is α̂(S, (1 − β)C ). This shows that α̂(S, (1 − β)C ) � α̌(S,

(1 − β)C ) except for the case when C does not contain the intersection point of any two

intersecting lines, but there are a line Z1 and a conic Z2 in S such that Z2 is tangent to

C at the point C ∩ Z1. In the latter case, we may assume that Z1 = E1 and Z2 ∈ |L12 + E2|,
which implies that

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(2Z2 + E1 + L23))},

since 2Z2 + E1 + L23 ∼ −KS. Thus, in all cases we have α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ).

2.6 Blowup of P
2 at four points

Suppose that K2
S = 5. Then there exists a birational morphism π : S → P

2 that contracts

four smooth rational curves to four points such that no three of them are collinear.

Denote these curves by E1, E2, E3, E4. For and integers i and j such that 1 � i < j � 4,

denote by Lij the proper transform on S via π of the line in P
2 that passes through π(Ei)

and π(E j). This gives us six lines L12, L13, L14, L23, L24, and L34. Moreover, E1, E2, E3, E4,

L12, L13, L14, L23, L24, and L34 are all the lines in S. Let

α̂(S, (1 − β)C ) = min
{

1,
1

2β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1

2β
for

1

2
� β � 1.

Then α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ), since 2E1 + L12 + L13 + L14 ∼ −KS and

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(2E1 + L12 + L13 + L14))}.

2.7 Complete intersections of two quadrics

Suppose that K2
S = 4. Then there exists a birational morphism π : S → P

2 that is the

blowup of five points such that no three of them are collinear. Denote by E1, E2, E3,

E4, and E5 the π-exceptional curves. For any integers i and j such that 1 � i < j � 5,

denote by Lij the proper transform via π on S of the line in P
2 that passes through π(Ei)

and π(E j). Denote by E the proper transform on S of the unique smooth conic in P
2 that

passes through π(E1), π(E2), π(E3), π(E4), and π(E5). Then E1, E2, E3, E4, E5, L12, L13,

L14, L15, L23, L24, L25, L34, L35, L45, and E are all the lines in S.
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12 I. Cheltsov and J. Martinez-Garcia

If the curve C contains the intersection point of any two intersecting lines, then

we let

α̂(S, (1 − β)C ) = min
{

1,
1 + β

3β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1 + β

3β
for

1

2
� β � 1.

If the curve C does not contain the intersection point of any two intersecting lines, but

there are two conics C1 and C2 in S such that C1 + C2 ∼ −KS, and C1 and C2 both tangent

C at one point, then we let

α̂(S, (1 − β)C ) = min
{

1,
1 + 2β

4β
,

2

3β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 1

2
,

1 + 2β

4β
for

1

2
� β � 5

6
,

2

3β
for

5

6
� β � 1.

Finally, if the curve C does not contain the intersection point of any two intersecting

lines, and for every two conics C1 and C2 in S such that C1 + C2 ∼ −KS, the conics C1 and

C2 do not tangent C at one point, then we let

α̂(S, (1 − β)C ) = min
{

1,
2

3β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 2

3
,

2

3β
for

2

3
� β � 1.

We claim that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ). Indeed, the lines L12 and L34 inter-

sect at a single point. Let Z be the proper transform on S of the line in P
2 that passes

through π(E5) and π(L12 ∩ L34). Then L12 + L34 + Z ∼ −KS. Moreover, if L12 ∩ L34 ∈ C ,

then

min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(L12 + L34 + Z))} =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1 + β

3β
for

1

2
� β � 1.

However, if L12 ∩ L34 �∈ C , then this minimum equals min{1, 2
3β

}. Since we can repeat these

computations for any pair of intersecting lines in S, we see that α̂(S, (1 − β)C ) � α̌(S,

(1 − β)C ) except possibly the case when C does not contain the intersection point of any

two intersecting lines, but there are two conics C1 and C2 in S such that C1 + C2 ∼ −KS,
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Dynamic Alpha-invariants of Del Pezzo Surfaces 13

and C1 and C2 both tangent C at one point. In the latter case, α̂(S, (1 − β)C ) is equal to

min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;β(L12 + L34 + Z)), lct(S, (1 − β)C ;β(C1 + C2))},

since C1 + C2 ∼ −KS. This shows that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) in all three cases.

2.8 Cubic surfaces

Suppose that K2
S = 3. Then S is a smooth cubic surface in P

3. Recall that an Eckardt

point in S is a point of intersection of three lines contained in S. A general cubic surface

contains no Eckardt points. If S contains an Eckardt point that is contained in C , then

we let

α̂(S, (1 − β)C ) = min
{

1,
1 + β

3β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 1

2
,

1 + β

3β
for

1

2
� β � 1.

If S contains an Eckardt point and C contains no Eckardt points, then we let

α̂(S, (1 − β)C ) = min
{

1,
2

3β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 2

3
,

2

3β
for

2

3
� β � 1.

If S contains no Eckardt points, but S contains a line L and a conic M such that L is

tangent to M and L ∩ M ∈ C , then we let

α̂(S, (1 − β)C ) = min
{

1,
2 + β

4β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 2

3
,

2 + β

4β
for

2

3
� β � 1.

If S contains no Eckardt points, and for every line L and every conic M on S such that

L is tangent to M, we have L ∩ M �∈ C , but there is a cuspidal curve T ∈ | − KS| such that

T ∩ C = Sing(T), then we let

α̂(S, (1 − β)C ) = min
{

1,
2 + 3β

6β
,

3

4β

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β � 2

3
,

2 + 3β

6β
for

2

3
� β � 5

6
,

3

4β
for

5

6
� β � 1.
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14 I. Cheltsov and J. Martinez-Garcia

Finally, if S contains no Eckardt points, and for every line L and every conic M on S

such that L is tangent to M, we have L ∩ M �∈ C , and every irreducible cuspidal curve

T ∈ | − KS| intersects C by at least two point, then we let

α̂(S, (1 − β)C ) = min
{

1,
3

4β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 3

4
,

3

4β
for

3

4
� β � 1.

One can easily check that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) (see [13, Theorem 4.9.1]).

2.9 Double covers of P
2

Suppose that K2
S = 2. Recall that C is a non-singular curve in the linear system | − KS|.

Different choices of C will give rise to different invariants α̂(S, (1 − β)C ) whose values

depend on the existence of certain singular irreducible curves Z ∈ | − KS| such that C

contains the singular point of Z . We give the different values of α̂(S, (1 − β)C ) for all

smooth C ∈ | − KS| distinguishing four possible cases for the curve Z .

If | − KS| contains a tacnodal curve Z whose singular point is contained in C ,

then we let

α̂(S, (1 − β)C ) = min
{

1,
2 + β

4β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 2

3
,

2 + β

4β
for

2

3
� β � 1.

If | − KS| contains at least one tacnodal curve Z , but C does not contain singular points

of any tacnodal curve in | − KS|, then we let

α̂(S, (1 − β)C ) = min
{

1,
3

4β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 3

4
,

3

4β
for

3

4
� β � 1.

If | − KS| contains no curves with tacnodal singularities but there is at least one cuspidal

rational point Z ∈ | − KS| such that C contains the cuspidal singular point of Z , then we

let

α̂(S, (1 − β)C ) = min
{

1,
3 + 2β

6β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 3

4
,

3 + 2β

6β
for

3

4
� β � 1.
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Finally, if | − KS| contains no curves with tacnodal singularities, and C does not contain

the cuspidal singular point of any cuspidal rational curves in | − KS|, then we let

α̂(S, (1 − β)C ) = min
{

1,
5

6β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 5

6
,

5

6β
for

5

6
� β � 1.

Clearly, these four cases exhaust all possibilities for smooth curves C ∈ | − KS|.
One can easily check that α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) (see [13, Theorem 4.10.1]).

2.10 Double covers of quadric cones

Suppose that K2
S = 1. As above, C is a non-singular curve in the pencil | − KS|. If | − KS|

contains no cuspidal curves, then we let α̂(S, (1 − β)C ) = 1 for every β ∈ (0, 1]. Otherwise,

we let

α̂(S, (1 − β)C ) = min
{

1,
5

6β

}
=

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 < β � 5

6
,

5

6β
for

5

6
� β � 1.

In the former case, we have α̂(S, (1 − β)C ) = lct(S, (1 − β)C ;βC ). In the latter case, we

have

α̂(S, (1 − β)C ) = min{lct(S, (1 − β)C ;βC ), lct(S, (1 − β)C ;βZ)},

where Z is a cuspidal curve in | − KS|. Thus, α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) in both cases.

3 Local Inequalities

Let S be a smooth surface, let D be an effective R-divisor on S, and let P be a point in S.

Lemma 3.1. Suppose that (S, D) is not log canonical at P . Then multP (D) > 1. �

Proof. This is a well-known fact. See [8, Exercise 6.18], for instance. �

Lemma 3.2. Suppose that (S, D) is not log canonical at P . Let B be an effec-

tive R-divisor on S such that (S, B) is log canonical and B ∼R D. Then there exists

an effective R-divisor D′ on S such that D′ ∼R D, the log pair (S, D′) is not log

canonical at P , and Supp(D′) does not contain at least one irreducible component

of Supp(B). �
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16 I. Cheltsov and J. Martinez-Garcia

Proof. Let μ be the greatest real number such that D′ := (1 + μ)D − μB is effective.

Since D �= B, the number μ does exist. Then D′ ∼R D, the log pair (S, D′) is not log

canonical at P , and Supp(D′) does not contain at least one irreducible component

of Supp(B). �

Let π1 : S1 → S be a blowup of the point P , let F1 be the π-exceptional curve,

and let D1 be the proper transform of D via π1. Then KS1 + D1 + (multP (D) − 1)F1 ∼R

π∗
1 (KS + D).

Lemma 3.3. Suppose that (S, D) is not log canonical at P . Then multP (D) > 1 and there

exists a point P1 ∈ F1 such that (S1, D1 + (multP (D) − 1)F1) is not log canonical at P1.

Moreover, one has multP (D) + multP1(D1) > 2. If, in addition, multP (D) � 2, then such

point P1 is unique. �

Proof. This is a well-known fact. See, for example, [3, Remark 2.5]. �

Let C be an irreducible curve on S that contains P . Suppose that C is smooth at P .

Write D = aC + Ω, where a∈ R�0, and Ω is an effective R-divisor on S with C �⊂ Supp(Ω).

Theorem 3.4. If (S, aC + Ω) is not log canonical at P and a� 1, then

multP (Ω · C ) > 1. �

Proof. For the proof, see, for example, [8, Exercise 6.31], [14, Lemma 2.5], or

[2, Theorem 7]. �

Denote the proper transform of the curve C on the surface S1 by C 1, and denote

the proper transform of the R-divisor Ω on the surface S1 by Ω1.

Lemma 3.5. Suppose that a� 1, the log pair (S, aC + Ω) is not log canonical at the point

P , and multP (Ω) � 1. Then (S1, aC 1 + Ω1 + (a + multP (Ω) − 1)F1) is not log canonical at

C 1 ∩ F1, it is log canonical at every point in E1 \ (C 1 ∩ F1), and multP (Ω · C ) > 2 − a. �

Proof. Since a� 1 and multP (Ω) � 1, we have multP (D) � 2. By Lemma 3.3, there

exists a unique point P1 ∈ F1 such that the log pair (S1, aC 1 + Ω1 + (a + multP (Ω) − 1)

F1) is not log canonical at P1. If P1 �∈ C 1, then multP (Ω) = F1 · Ω1 � multP1(Ω
1 · F1) > 1

by Theorem 3.4, which is impossible, since multP (Ω) � 1. Thus, P1 ∈ C 1. Then, by

Theorem 3.4 again,

multP (Ω · C ) � multP (Ω) + multP1(Ω
1 · C 1) > 2 − a. �
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Let us consider an infinite sequence of blowups

· · ·
πn+1

�� Sn

πn

�� Sn−1

πn−1

�� · · ·
π3

�� S2

π2

�� S1

π1

�� S

such that each πn is the blowup of the point in the proper transform of the curve C on

the surface Sn−1 that dominates P . Denote the πn-exceptional curve by Fn, and denote the

proper transform of C on Sn by C n. For every n� 1, write Pn = C n ∩ Fn, denote the proper

transform of the divisor Ω on Sn by Ωn, let mn = multPn(Ω
n), and let m0 = multP (Ω). For

every positive integers k� n, denote the proper transform of the curve Fk on Sn by F n
k .

Finally, we let

DSn = aC n + Ωn +
n∑

k=1

(
ka − k +

k−1∑
i=0

mi

)
F n

k

for every n� 1. Then KSn + DSn ∼R (π1 ◦ π2 ◦ · · · ◦ πn)
∗(KS + D) for every n� 1.

Theorem 3.6. Suppose that (S, aC + Ω) is not log canonical at P and a� 1. Then

m0 + a> 1 and multP (Ω · C ) > 1. Moreover, the following additional assertions hold:

(i) if m0 � 1, then the log pair (S1, DS1) is not log canonical at P1;

(ii) if (Sn, DSn) is not log canonical at some point in Fn, then DSn is an effective

divisor;

(iii) if (Sn, DSn) is not log canonical at some point in Fn and
∑n−1

i=0 mi � n+ 1 − na,

then such point in Fn is unique;

(iv) if (Sn, DSn) is not log canonical at Pn, then (n+ 1)a +∑n
i=0 mi > n+ 2, the

log pair (Sn+1, DSn+1) is not log canonical at some point in Fn+1, and

multP (Ω · C ) > n+ 1 − na;

(v) if n� 2, mn−1 � 1 and
∑n−1

i=0 mi � n+ 1 − na, then (Sn, DSn) is log canonical at

every point of Fn different from Pn and Fn ∩ F n
n−1;

(vi) if n� 2 and
∑n−1

i=0 mi � n− (n− 1)a, then (Sn, DSn) is log canonical at Fn ∩ F n
n−1;

(vii) if n� 2,
∑n−2

i=0 mi � n− (n− 1)a and
∑n−3

i=0 mi + 2mn−2 � n+ 1 − na, then

(Sn, DSn) is log canonical at Fn ∩ F n
n−1. �

Proof. By Lemma 3.1, we have m0 + a> 1. By Theorem 3.4, we have

multP (Ω · C ) > 1 − a. Assertion (i) follows from Lemma 3.5.

For assertion (ii), it is enough to show that k(a − 1) +∑k−1
i=0 mi � 0 for 1 � k� n.

If a� 1, this is clear. If 0 � a� 1, then m0 > 1 by Lemma 3.1 and hence DS1 is effective.

Assertion (ii) follows by induction. Indeed, since (Sn, DSn) is not log canonical at some
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18 I. Cheltsov and J. Martinez-Garcia

point in Fn, then (Sl−1, DSl−1) is not log canonical at Pl−1 for 1 � l � n. If (l − 1)(a − 1) +∑l−2
i=0 mi � 0, then

l(a − 1) +
l−1∑
i−0

mi � (a − 1) + ml−1 � 0.

For the last inequality, we note that the induction hypothesis gives us that Dk is effec-

tive and (Sk, DSk) is not log canonical for 0 � k� l − 1. Hence, Lemma 3.1 implies that

ml−1 > 1, proving assertion (ii).

Inequality
∑n−1

i=0 mi � n+ 1 − na is equivalent to multPn−1(DSn−1) � 2. Thus, asser-

tion (iii) follows from Lemma 3.3. If (Sn, DSn) is not log canonical at Pn, then

(n+ 1)a +∑n
i=0 mi > n+ 2 by Lemma 3.1, the pair (Sn+1, DSn+1) is not log canonical at

some point in Fn+1 by Lemma 3.3, and

multP (Ω · C ) −
n−1∑
i=0

mi = multPn(Ω
n · C n) > 1 −

(
na − n+

n−1∑
i=0

mi

)
,

by Theorem 3.4. This proves assertion (iv).

Suppose that n� 2. Let O = Fn ∩ F n
n−1. If

∑n−1
i=0 mi � n+ 1 − na and (Sn, DSn)

is not log canonical at some point in Fn \ (Pn ∪ O), then mn−1 = Fn · Ωn > 1 by

Theorem 3.4, which implies assertion (v). If (Sn, DSn) is not log canonical at O and∑n−1
i=0 mi � n+ 1 − na, then

mn−1 = Fn · Ωn � multO(Fn · Ωn) > 1 −
(

(n− 1)a − n+ 1 +
n−2∑
i=0

mi

)

by Theorem 3.4. If (Sn, DSn) is not log canonical at O and
∑n−2

i=0 mi � n− (n− 1)a, then

mn−2 − mn−1 = F n
n−1 · Ωn � multO(F n

n−1 · Ωn) > 1 −
(

na − n+
n−1∑
i=0

mi

)

by Theorem 3.4. This proves assertions (vi) and (vii). �

Corollary 3.7. Suppose that (S, aC + Ω) is not log canonical at P , C �⊂ Supp(Ω), a� 1

and m0 � min{1, 1 + 1
n − na} for some integer n� 1. Then multP (Ω · C ) > n+ 1 − na. �

Corollary 3.8. Suppose that (S, aC + Ω) is not log canonical at P , a� 1 and

m0 � 1. Suppose that 2m0 � 3 − 2a or m0 + m1 � 2 − a. Suppose that m0 + 2m1 � 4 − 3a

or m0 + m1 + m2 � 3 − 2a. Then multP (Ω · C ) > 4 − 3a. If m0 + m1 + 2m2 � 5 − 4a or

m0 + m1 + m2 + m3 � 4 − 3a, then multP (Ω · C ) > 5 − 4a. �

Let us conclude this section by recalling the following theorem.
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Theorem 3.9 ([2, Theorem 13]). Let C1 and C2 be two irreducible curves on S that are

both smooth at P and intersect transversally at P . Let D = a1C1 + a2C2 + Δ, where a1

and a2 are non-negative real numbers, and Δ is an effective R-divisor on S whose sup-

port does not contain the curves C1 and C2. If (S, D) is not log canonical at P and

multP (Δ) � 1, then multP (Δ · C1) > 2(1 − a2) or multP (Δ · C2) > 2(1 − a1). �

4 The Proof

Let us use the notation of Section 2. The goal of this section is to prove the following

theorem.

Theorem 4.1. One has α(S, (1 − β)C ) = α̂(S, (1 − β)C ) for every β ∈ (0, 1]. �

This theorem implies Theorem 1.8, since α̂(S, (1 − β)C ) � α̌(S, (1 − β)C ) (see

Section 2) and α̌(S, (1 − β)C ) � α(S, (1 − β)C ) (by definition) for every β ∈ (0, 1].

Let D be any effective R-divisor such that D ∼R −KS, and let P be any point in

S. Since α(S, (1 − β)C ) � α̂(S, (1 − β)C ), to prove Theorem 4.1, it is enough to show that

the log pair

(S, (1 − β)C + α̂(S, (1 − β)C )βD) (4.1)

is log canonical at P for every β ∈ (0, 1]. We will do this in several steps.

Lemma 4.2. Suppose that (4.1) is not log canonical at P . Then P ∈ C , we have

multP (D) >
1

α̂(S, (1 − β)C )
� 1,

and (4.1) is log canonical outside of the point P . Moreover, if there exists a (−1)-curve

Z ⊂ S such that P ∈ Z , then Z ⊂ Supp(D). Furthermore, there exists an effective R-divisor

D′ ∼R D such that C �⊂ Supp(D′) and (S, (1 − β)C + α̂(S, (1 − β)C )βD′) is not log canonical

at P . �

Proof. If P �∈ C , then (S, α̂(S, (1 − β)C )βD) is not log canonical at P , which is impossible,

since α(S) � βα̂(S, (1 − β)C ) by [1, Theorem 1.7]. We have α̂(S, (1 − β)C ) multP (D) > 1 by

Lemma 3.1. In particular, if there exists a (−1)-curve Z ⊂ S such that P ∈ Z , then Z must

be contained in Supp(D), because otherwise we would have 1 = Z · D � multP (D) > 1.

We see that (4.1) is log canonical outside of the curve C . Moreover, the coefficient

of the curve C in the divisor (1 − β)C + α̂(S, (1 − β)C )βD does not exceed 1, since D ∼R

C . Hence, the log pair (4.1) is log canonical outside of finitely many points. Now the
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20 I. Cheltsov and J. Martinez-Garcia

connectedness principle (see, e.g., [8, Theorem 6.32]) implies that (4.1) is log canonical

outside of P .

Since (S, (1 − β)C + α̂(S, (1 − β)C )βC ) is log canonical, it follows from Lemma 3.2

that there is an effective R-divisor D′ ∼R D such that C �⊂ Supp(D′) and (S, (1 − β)C + α̂(S,

(1 − β)C )βD′) is not log canonical at P . �

Thus, to prove that (4.1) is log canonical at P , we may assume that

P ∈ C �⊂ Supp(D).

Lemma 4.3. If S ∼= P
2, then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let L be a general line in S that con-

tains P . Then multP (D) � D · L = 3. But 3α̂(S, (1 − β)C )β � 1
3 + β (see Section 2.1). Thus,

if β � 2
3 , then

α̂(S, (1 − β)C )β multP (D) � 3α̂(S, (1 − β)C )β � 1
3 + β � 1.

Similarly, if 2
3 � β � 1, then α̂(S, (1 − β)C )β multP (D) � 1

3 multP (D) � 1. Applying

Corollary 3.7 with n= 3 to (4.1), we get

9βα̂(S, (1 − β)C ) = α̂(S, (1 − β)C )β(C · D) � α̂(S, (1 − β)C )β multP (C · D) > 1 + 3β,

which contradicts the definition of α̂(S, (1 − β)C ) in Section 2.1. �

Lemma 4.4. Suppose that S ∼= P
1 × P

1. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let L1 and L2 be the fibers of

two different projections S → P
1 that both pass through P . Since (S, (1 − β)C + α̂(S,

(1 − β)C )β(2L1 + 2L2)) is log canonical and 2L1 + 2L2 ∼R D, we may assume that either

L1 �⊂ Supp(D) or L2 �⊂ Supp(D) by Lemma 3.2. This implies that multP (D) � 2, since

D · L1 = D · L2 = 2. Then

α̂(S, (1 − β)C )β multP (D) � 2α̂(S, (1 − β)C )β � min{1, 1
4 + β}

(see Section 2.2). Applying Corollary 3.7 with n= 4, we get

8α̂(S, (1 − β)C )β = α̂(S, (1 − β)C )β(C · D) � α̂(S, (1 − β)C )β multP (C · D) > 1 + 4β,

which contradicts the definition of α̂(S, (1 − β)C ) in Section 2.2. �

Lemma 4.5. Suppose that K2
S � 3. Then (4.1) is log canonical at P . �
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Proof. Suppose that (4.1) is not log canonical at P . By [3, Theorem 1.12], there is

T ∈ | − KS| such that (S, T) is not log canonical at P , and all irreducible components

of the curve T are contained in the support of the divisor D. Moreover, such T is unique.

Since (S, T) is not log canonical at P , we have very limited number of choices for

T ∈ | − KS|. Going through all of them, we see that (S, (1 − β)C + α̂(S, (1 − β)C )βT) is log

canonical at P (for details, see the proofs of [13, Theorems 4.9.1, 4.10.1, and 4.11.1]).

By Lemma 3.2, there is an effective R-divisor D′ on the surface S such that

D′ ∼R D, the log pair (S, (1 − β)C + α̂(S, (1 − β)C )βD′) is not log canonical at P , and

Supp(D′) does not contain at least one irreducible component of T . The latter contra-

dicts [3, Theorem 1.12]. �

Corollary 4.6. Theorem 4.1 holds in the following cases: S ∼= P
2, S ∼= P

1 × P
1, and

K2
S � 3. �

Lemma 4.7. Suppose that 4 � K2
S � 7, and P is the intersection point of two intersecting

(−1)-curves in S. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Denote by Z1 and Z2 the two (−1)-

curves in S that contain P . We write D = aZ1 + bZ2 + Ω, where a and b are non-negative

real numbers, and Ω is an effective R-divisor whose support does not contain Z1 and

Z2. By Lemma 4.2, one has a> 0 and b > 0. Let x = multP (Ω). Then 1 − b + a= Ω · Z1 � x,

which gives b − a + x � 1. Similarly, we obtain a − b + x � 1. Then a� 1 + b, b � 1 + a, and

x � 1. Thus, we have

multP ((1 − β)C + α̂(S, (1 − β)C )βΩ) = 1 − β + α̂(S, (1 − β)C )βx

� 1 − β + α̂(S, (1 − β)C )β � 1,

because α̂(S, (1 − β)C ) � 1. Applying Theorem 3.9 to (4.1), we see that

2(1 − α̂(S, (1 − β)C )βa) < Z1 · (α̂(S, (1 − β)C )βΩ + (1 − β)C )

= α̂(S, (1 − β)C )β(1 − a + b) + 1 − β,

or

2(1 − α̂(S, (1 − β)C )βb) < Z2 · (α̂(S, (1 − β)C )βΩ + (1 − β)C )

= α̂(S, (1 − β)C )β(1 − b + a) + 1 − β.

In both cases, we obtain α̂(S, (1 − β)C )β(1 + a + b) > 1 + β.
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Suppose that K2
S = 7. Let us use the notation of Section 2.4. We may assume

that Z1 = E1 and Z2 = L. Since 3L + 2E1 + 2E2 ∼ −KS and (S, (1 − β)C + α̂(S, (1 − β)C )

β(3L + 2E1 + 2E2)) is log canonical, we may also assume that E2 �⊂ Supp(Ω) by

Lemma 3.2. Then 1 − b = E2 · Ω � 0, which gives b � 1. Since a� 1 + b, we get a + b � 3.

Thus, we have

4βα̂(S, (1 − β)C ) � α̂(S, (1 − β)C )β(1 + a + b) > 1 + β,

which contradicts the definition of α̂(S, (1 − β)C ).

Suppose that K2
S = 6. Let us use the notation of Section 2.5. Without loss of

generality, we may assume that Z1 = E1 and Z2 = L12. Since (S, (1 − β)C + α̂(S, (1 −
β)C )β(2L12 + 2E1 + L13 + E2)) is log canonical and 2L12 + 2E1 + L13 + E2 ∼ −KS, we may

assume that Supp(Ω) does not contain L13 or E2 by Lemma 3.2. If L13 �⊂ Supp(Ω), then

1 − a= Ω · L13 � 0, which implies that a� 1. Similarly, if E2 �⊂ Supp(Ω), then b � 1. Since

a� 1 + b and b � 1 + a, we see that a + b � 3. Thus, we have

4βα̂(S, (1 − β)C ) � α̂(S, (1 − β)C )β(1 + a + b) > 1 + β,

which contradicts the definition of α̂(S, (1 − β)C ).

Suppose that K2
S = 5. Let us use the notation of Section 2.6. Without loss

of generality, we may assume that Z1 = E1 and Z2 = L12. Since (S, (1 − β)C + α̂(S,

(1 − β)C )β(2E1 + L12 + L13 + L14)) is log canonical and 2E1 + L12 + L13 + L14 ∼ −KS, we

may assume that Supp(Ω) does not contain L13 or L14 by Lemma 3.2. Since (S,

(1 − β)C + α̂(S, (1 − β)C )β(E1 + 2L12 + E2 + L34)) is log canonical and E1 + 2L12 + E2 +
L34 ∼ −KS, we may assume that Supp(Ω) does not contain E2 or L34 by Lemma 3.2. If

L13 �⊂ Supp(Ω), then 1 − a= Ω · L13 � 0, which gives a� 1. Similarly, if L14 �⊂ Supp(Ω),

then a� 1. If E2 �⊂ Supp(Ω), then 1 − b = Ω · E2 � 0, which gives b � 1. Similarly, if

L34 �⊂ Supp(Ω), then b � 1. Thus, we have a� 1 and b � 1. Then

3βα̂(S, (1 − β)C ) � α̂(S, (1 − β)C )β(1 + a + b) > 1 + β,

which contradicts the definition of α̂(S, (1 − β)C ).

We have K2
S = 4. Let us use the notation of Section 2.7. Without loss of gener-

ality, we may assume that Z1 = L12 and Z2 = L34. Let Z be the proper transform on S

of the line in P
2 that passes through π(E5) and π(L12 ∩ L34). Since (S, (1 − β)C + α̂(S,

(1 − β)C )β(L12 + L34 + Z)) is log canonical and L12 + L34 + Z ∼ −KS, we may assume
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that Z �⊂ Supp(Ω) by Lemma 3.2. Then 2 − a − b = Ω · Z � 0, which implies that 3βα̂(S,

(1 − β)C ) � α̂(S, (1 − β)C )β(1 + a + b) > 1 + β. The latter contradicts the definition of α̂(S,

(1 − β)C ). �

Lemma 4.8. Suppose that S ∼= F1, and P is contained in the unique (−1)-curve in S. Then

(4.1) is log canonical at P . �

Proof. Let us use the notation of Section 2.3. Then P = Z ∩ C , since P ∈ C . Suppose

that (4.1) is not log canonical at P . By Lemma 4.2, we have Z ⊂ Supp(D). By Lemma 3.2,

we may assume that F �⊂ Supp(D), since (S, (1 − β)C + α̂(S, (1 − β)C )β(2Z + 3F )) is log

canonical and 2Z + 3F ∼ −KS. Then multP (D) � F · D = 2. On the other hand, we have

2α̂(S, (1 − β)C )β � 1
4 + β and 2α̂(S, (1 − β)C )β � 1. Applying Corollary 3.7 with n= 4 to

(4.1), we get

8α̂(S, (1 − β)C )β = α̂(S, (1 − β)C )β(C · D) � α̂(S, (1 − β)C )β multP (C · D) > 1 + 4β,

which contradicts the definition of α̂(S, (1 − β)C ). �

Lemma 4.9. Suppose that 4 � K2
S � 7, and P is contained in a (−1)-curve in S. Then (4.1)

is log canonical at P . �

Proof. For the proof, see Section 5. �

The following result implies Theorem 1.9 modulo Theorem 4.1.

Theorem 4.10. Let S1 and S2 be smooth del Pezzo surfaces and let C1 and C2 be smooth

curves in | − KS1 | and | − KS2 |, respectively. Suppose that there exists a birational mor-

phism f : S2 → S1 such that f(C2) = C1. Then α̂(S1, (1 − β)C1) � α̂(S2, (1 − β)C2) for every

β ∈ (0, 1] except for the following cases:

(1) S1
∼= P

2, S2
∼= F1, and f is the blowup of an inflection points of the cubic curve

C1 ⊂ P
2;

(2) S1
∼= P

1 × P
1, K2

S2
= 7, and f is the blowup of a point in C1. �

Proof. Since f(C2) = C1, the morphism f is the blowup of K2
S1

− K2
S2

� 0 distinct points

on the curve C2. Suppose that α̂(S1, (1 − β)C1) > α̂(S2, (1 − β)C2). Going through all pos-

sible cases considered in Section 2, we end up with the following possibilities:

(1) S1
∼= P

2, S2
∼= F1, and f is the blowup of an inflection points of the cubic curve

C1 ⊂ P
2,
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(2) S1
∼= P

1 × P
1, K2

S2
= 7, and f is the blowup of a point in C1,

(3) K2
S1

= 4, K2
S2

= 3, the morphism f is the blowup of a point in C1, the curve C1

does not contain intersection points of any two lines, for every two conics Z1

and Z2 in S1 such that Z1 + Z2 ∼ −KS1 , the conics Z1 and Z2 do not tangent

C1 at one point, and S2 contains an Eckardt point and this point is contained

in C2,

(4) K2
S1

= 3, K2
S2

= 2, the morphism f is the blowup of a point in C1, the surface S1

contains no Eckardt points, for every line L and every conic M on S1 such that

L is tangent to M we have L ∩ M �∈ C1, and every irreducible cuspidal curve

T ∈ | − KS1 | intersects C1 by at least two points, the linear system | − KS2 |
contains a curve with a tacnodal singularity and this tacnodal singular point

is contained in C2.

The first two cases are indeed possible. Let us show that the last two cases are impossi-

ble. Denote by E the f-exceptional curve. Then f(E) ∈ C1.

Suppose that K2
S1

= 4 and K2
S2

= 3. Then C2 contains an Eckardt point O. Denote

by L1, L2, L3 the lines in S2 that passes through O. Then either E is one of these three

lines, or E intersects exactly one of them. Without loss of generality, we may assume

that either E = L3 or E ∩ L1 = E ∩ L3 = ∅. In the former case, f(L1) and f(L2) are two

conics in S1 such that f(L1) + f(L2) ∼ −KS2 , and both f(L1) and f(L2) tangent the curve

C1 = f(C2) at the point f(P ) ∈ C1. Since we know that such conics do not exist by assump-

tion, we conclude that E ∩ L1 = E ∩ L3 = ∅. Then f(L1) and f(L2) are two lines in S1 that

both pass through the point f(P ) ∈ C1. Such lines do not exist either. Thus, this case is

impossible.

Now we suppose that K2
S1

= 3 and K2
S2

= 2. Let Z be a curve in | − KS2 | such that Z

has tacnodal singularity Q ∈ C2. Then Z = L1 + L2, where L1 and L2 are two (−1)-curves

in S2 that are tangent to each other at the point Q ∈ C2. Then either E is one of these

two curves, or E intersects exactly one of them. Without loss of generality, we may

assume that either E = L2 or E ∩ L1 = ∅. In the former case, f(L1) is a cuspidal curve in

| − KS1 | whose intersection with the curve C1 consists of the point f(Q) = Sing( f(L1)). By

assumption, such a cuspidal curve does not exist. Thus, E ∩ L1 = ∅. Then f(L1) is a line

and f(L2) is a conic. Moreover, the line f(L1) tangents to f(L2) at the point f(Q) ∈ C1.

The latter is impossible by assumption. �

To prove Theorem 4.1, we have to prove that (4.1) is log canonical at P , where

P is a point in C �⊂ Supp(D). The latter follows from Corollary 4.6, Lemmas 4.7–4.9, and

the following lemma.
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Lemma 4.11. Suppose that K2
S � 3, and neither S ∼= P

2 nor S ∼= P
1 × P

1. Suppose that P

is not contained in any (−1)-curve in S. If Theorem 4.1 holds for all smooth del Pezzo

surfaces of degree K2
S − 1, then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let f : S̃ → S be a blowup of P . Then

S̃ is a smooth del Pezzo surface of degree K2
S̃

= K2
S − 1, since P is not contained in any

(−1)-curve in S. Denote the f-exceptional curve by E , denote the proper transform of C

on S̃ by C̃ , and denote the proper transform of D on S̃ by D̃. Then C̃ ∈ | − KS̃|, since P ∈ C .

The log pair(
S̃, (1 − β)C̃ + α̂(S, (1 − β)C )β

(
D̃ +

(
multP (D) − 1

α̂(S, (1 − β)C )

)
E
))

(4.2)

is not log canonical by Lemma 3.3. Let D̃′ = D̃ + (multP (D) − 1)E . Then D̃′ ∼R −KS̃, and D̃′

is effective by Lemma 4.2. Furthermore, the log pair (S̃, (1 − β)C̃ + α̂(S, (1 − β)C )β D̃′) is

not log canonical because (4.2) is not log canonical. This shows that α̂(S, (1 − β)C ) > α(S̃,

(1 − β)C̃ ). But it follows from Theorem 4.10 that α̂(S̃, (1 − β)C̃ ) � α̂(S, (1 − β)C ). Thus, we

see that α̂(S̃, (1 − β)C̃ ) > α(S̃, (1 − β)C̃ ). Hence, Theorem 4.1 does not hold for S̃. �

This completes the proof of Theorem 4.1 modulo Lemma 4.9.

5 The Proof of Lemma 4.9

In this section, we will prove Lemma 4.9. Let us use its notation and assumptions.

Then 4 � K2
S � 7 and P is a point in C �⊂ Supp(D) that is contained in a (−1)-curve in

S. Let us denote this (−1)-curve by L. We must prove that (4.1) is log canonical at P . By

Lemma 4.7, we may assume that L is the only (−1)-curve in S that contains P . We write

D = aL + Ω, where a is a non-negative real number, and Ω is an effective R-divisor such

that L �⊂ Supp(Ω). By Lemma 4.2, we have a> 0. Let x = multP (Ω). Then 1 + a=L · Ω � x.

Corollary 5.1. One has x � 1 + a. �

Let λ = α̂(S, (1 − β)C ). Consider a sequence of four blowups

S4

π4

�� S3

π3

�� S2

π2

�� S1

π1

�� S

such that π1 is the blowup of the point P , π2 is the blowup of the intersection point of the

π1-exceptional curve and the proper transform of the curve C on S1, π3 is the blowup of

the intersection point of the π2-exceptional curve and the proper transform of the curve
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C on S2, and π4 is the blowup of the intersection point of the π3-exceptional curve and

the proper transform of the curve C on S3. Denote by F1, F2, F3, and F4 the exceptional

curves of the blowups π1, π2, π3, and π4, respectively. Denote by C 1, C 2, C 3, and C 4 the

proper transforms of the curve C on the surfaces S1, S2, S3, and S4, respectively. Let

P1 = C 1 ∩ F1, P2 = C 2 ∩ F2, P3 = C 3 ∩ F3, and P4 = C 4 ∩ F4. Denote the proper transform of

the divisor Ω on the surfaces S1, S2, S3, and S4 by Ω1, Ω2, Ω3, and Ω4, respectively. Let

x1 = multP1(Ω), x2 = multP2(Ω), and x3 = multP3(Ω).

Lemma 5.2. Suppose that (4.1) is not log canonical at P . Then at least one of the follow-

ing four conditions is not satisfied:

(i) λβ(a + x) � 1;

(ii) 2λβ(a + x) − 2β � 1 or λβ(a + x + x1) − β � 1;

(iii) λβ(a + x + 2x1) − 3β � 1 or λβ(a + x + x1 + x2) − 2β � 1;

(iv) λβ(a + x + x1 + 2x2) − 4β � 1 or λβ(a + x + x1 + x2 + x3) − 3β � 1.

If λβK2
S � 1 + 3β, then at least one of the conditions (i), (ii), or (iii) is not satisfied. �

Proof. If conditions (i)–(iv) are satisfied, then Corollary 3.8 gives

K2
S = D · C � multP (D · C ) >

1 + 4β

λβ
,

which is impossible, since λβK2
S � 1 + 4β by the definition of λ = α̂(S, (1 − β)C )

for 4 � K2
S � 7. Similarly, if conditions (i)–(iii) are satisfied, then λβK2

S > 1 + 3β by

Corollary 3.8. �

Lemma 5.3. Suppose that K2
S = 7. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let us use the notation of Section 2.4.

Without loss of generality, we may assume that either L= E1 or L= L (but not both).

Suppose that L= L. Since P �∈ E1 ∪ E2, the curve R is smooth and irreducible.

Since (S, (1 − β)C , λβ(L + 2R)) is log canonical and L + 2R∼ −KS, we may assume

that R �⊂ Supp(Ω). Denote the proper transform of the curve R on S1 by R1, and

denote its proper transform on S2 by R2. Then 3 − a − x − x1 = R2 · Ω2 � 0, which

gives a + x + x1 � 3. Since x − a� 1 by Corollary 5.1, then x1 � 4
3 and all conditions of

Lemma 5.2 are satisfied, giving a contradiction.

We have L= E1. Then L1 is irreducible, since P �∈ L. Since (S, (1 − β)C ,

λβ(2L1 + 2E1 + L)) is log canonical and 2L1 + 2E1 + L ∼ −KS, we may assume that L1
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or L is not contained in Supp(Ω) by Lemma 3.2. We write Ω = bL1 + Δ, where b is a non-

negative real number, and Δ is an effective R-divisor on S such that L1 �⊂ Supp(Δ) and

E1 �⊂ Supp(Δ). Then 1 − b + a= E1 · Δ � y, which gives b + y� 1 + a. If b > 0, then a� 1.

Indeed, if L �⊂ Supp(Δ), then 1 − a= L · Δ � 0.

Denote the proper transform of the divisor Δ on S1 by Δ1 , denote the proper

transform of the divisor Δ on S2 by Δ2, and denote the proper transform of the divisor

Δ on S3 by Δ3 . Let y= multP (Δ), y1 = multP1(Δ
1), y2 = multP2(Δ

2), and y3 = multP3(Δ
3).

Then x = b + y. Since L1 · C = 2, either multP (L1 · C ) = 1 or multP (L1 · C ) = 2. Thus, we

have x2 = y2 and x3 = y3.

Suppose that multP (L1 · C ) = 1. Then x1 = y1 and 2 − a= L1 · Δ � y. We have

b + y� 1 + a by Corollary 5.1. If b > 0, then a� 1. Therefore, we have λβ(a + x) � 1,

λβ(a + x + x1) − β � 1, λβ(a + x + 2x1) − 3β � 1, and λβ(a + x + x1 + 2x2) − 4β � 1, which

contradicts Lemma 5.2.

Thus, we see that multP (L1 · C ) = 2. Then x1 = y1 + b and 2 − a= L1 · Δ � y + y1,

which gives a + y + y1 � 2. Since L1 is tangent to C at the point P , we have

λ = α̂(S, (1 − β)C ) � min
{

1,
1 + 2β

7β
,

1

3β

}
.

Moreover, we have b + y� 1 + a by Corollary 5.1. Furthermore, if b > 0, then

a� 1. This gives λβ(a + x) � 1, 2λβ(a + x) − 2β � 1, λβ(a + x + x1 + x2) − 2β � 1, and

λβ(a + x + x1 + 2x2) − 4β � 1, which is impossible by Lemma 5.2. �

Lemma 5.4. Suppose that K2
S = 6. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let us use the notation of Section 2.5.

Without loss of generality, we may assume that L= E1. Denote the proper transform of

the curve E1 on the surface S1 by E1
1. Let L be the proper transform on S of the line in

P
2 that is tangent to π(C ) at the point π(P ). Then −KS · L = 2, since P �∈ L12 ∪ L13 ∪ L23.

Denote the proper transform of the curve L on S1 by L1, denote the proper transform of

the curve L on S2 by L2, and denote the proper transform of the curve L on S3 by L3.

We claim that L ⊂ Supp(Ω). Indeed, suppose that L �⊂ Supp(Ω). Then a + x � 2,

since 2 − a= Ω · L � x. But x � 1 + a by Corollary 5.1. Therefore, we have x1 � x � 3
2 .

These inequalities give λβ(a + x) � 1, 2λβ(a + x) − β � 1, and λβ(a + x + 2x1) − 3β � 1.

Therefore, λβ(a + x + x1 + 2x2) − 4β > 1 and 6λβ > 1 + 3β by Lemma 5.2. The former

inequality implies a + x + x1 + 2x2 > 6. The latter inequality implies that L is not tan-

gent to C at the point P (see Section 2.5).
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Let Z be the proper transform on S of the conic in P
2 that passes through

the points π(E1), π(E2), π(E3), and is tangent to π(C ) at the point π(P ). Then Z is

irreducible, E1 + L + Z ∼ −KS, and −KS · Z = 3, since L is not tangent to C at P . Then

multP (Z · C ) � 3, since −KS · Z = 3.

We write Ω = cZ + Υ , where c is a non-negative real number, and Υ is an

effective R-divisor on S whose support does not contain Z . Denote the proper trans-

form of the divisor Υ on S1 by Υ 1, denote the proper transform of the divisor Υ

on S2 by Υ 2, and denote the proper transform of the divisor Υ on S3 by Υ 3. Let

z= multP (Υ ), z1 = multP1(Υ
1), z2 = multP2(Υ

2), z3 = multP3(Υ
3). Then x = c + z, x1 = c + z1,

x3 = z3. If multP (Z · C ) = 2, then x2 = z2 and 3 − a − c − z= Z1 · Υ 1 � multP1(Z1 · Υ 1) � z1,

which implies that

6 < a + x + x1 + 2x2 = a + z + z1 + 2z2 + 2c � 3 + 2z2 + c � 3 + 2z2 + 2c � 3 + 2x � 6,

since z + c � 3
2 and a + c + z� 2. Thus, we see that multP (Z · C ) = 3. Then x2 = c + z2 and

3 − a − c − z − z1 = Z2 · Υ 2 � multP2(Z2 · Υ 2) � z2, which gives a + c + z + z1 + z2 � 3. Then

6 < a + x + x1 + 2x2 = a + z + z1 + 2z2 + 3c < 3 + z2 + 2c � 3 + 2z2 + 2c � 3 + 2x � 6,

which is absurd. This shows that L ⊂ Supp(Ω).

We write Ω = bL + Δ, where b is a positive real number, and Δ is an effective

R-divisor on S such that L �⊂ Supp(Δ). Let y= multP (Δ). Then 2 − a= Δ · L � y. Denote

the proper transform of the divisor Δ on S1 by Δ1, denote the proper transform of the

divisor Δ on S2 by Δ2, and denote the proper transform of the divisor Δ on S3 by Δ3. Let

y1 = multP1(Δ
1), y2 = multP2(Δ

2), and y3 = multP3(Δ
3). Then x = b + y, x2 = y2, and x3 = y3,

which implies that b + y� 1 + a by Corollary 5.1. Then

(S1, (1 − β)C 1 + λβaE1
1 + λβbL1 + λβΔ1 + (λβ(a + b + y) − β)F1) (5.1)

is not log canonical at some point Q1 ∈ F1 by Lemma 3.3.

We claim that L is tangent to C at the point P . Indeed, suppose that L is not

tangent to C at P . Then x1 = y1. Let Z be the proper transform on S of the conic in

P
2 that passes through π(E1), π(E2), π(E3), and is tangent to π(C ) at π(P ). Then Z is

irreducible and −KS · Z = 3. Moreover, we have E1 + L + Z ∼ −KS, and the log pair (S,

(1 − β)C + λβ(E1 + L + Z)) is log canonical. Thus, we may assume that Z �⊂ Supp(D)

by Lemmas 3.2. Then 3 − a − b − y= Z1 · Δ1 � multP1(Z1 · Δ1) � y1. Since we also have
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b + y� 1 + a, a + y� 2, x = y + b, x1 = y1, and x2 = y2, we see that

λβy1 � 1, λβ(a + b + y) − β � λβ(a + b + y + y1) − β � 1,

λβ(a + b + y + 2y1) − 3β � 1, λβ(a + b + y1 + 2y2) − 4β � 1.

(5.2)

In particular, (5.1) is log canonical at every point of F1 that is different from Q1

by Lemma 3.3. If Q1 �= L1 ∩ F1 and Q1 �= P1, then λβ(a + y) = F1 · (λβ(aE1 + Δ1)) > 1, by

Theorem 3.4. But λβ(a + y) � 1, since a + y� 2. This shows that Q1 = L1 ∩ F1 or Q1 = P1.

Since b − a + y� 1 and a + b + y + y1 � 3, we have b + y� 2. So, if Q1 = L1 ∩ F1, then

1 < λβF1 · (bL1 + Δ1) = λβ(b + y) � 2λβ � 1,

by Theorem 3.4. If Q1 = P1, then 6 = D · C >
1+4β

λβ
by (5.2) and Theorem 3.6. The latter

contradicts 6λβ � 1 + 4β.

We see that L is tangent to C at the point P . Then x1 = y1 + b and

λ � min
{

1,
1 + 2β

5β
,

1

2β

}
,

which gives 6λβ � 1 + 3β. Moreover, we have a + y + y1 � 2, because 2 − a − y − y1 = L2 ·
Δ2 � 0. Furthermore, since 2L + L23 + E1 ∼ −KS and (S, (1 − β)C + λβ(2L + L23 + E1)) is

log canonical, we may assume that L23 �⊂ Supp(Δ) by Lemma 3.2. This gives us b � 1,

because 1 − b = Δ · L23 � 0. Since L + L12 + L13 + 2E1 ∼ −KS and (S, (1 − β)C + λβ(L +
L12 + L13 + 2E1)) is log canonical, we may assume that L12 �⊂ Supp(Δ) or L13 �⊂ Supp(Δ)

by Lemma 3.2. If L12 �⊂ Supp(Δ), then 1 − a= Δ · L12 � 0, which gives a� 1. Similarly, we

get a� 1 if L13 �⊂ Supp(Δ). Thus, we have

a� 1, b � 1, b − a + y� 1, a + y + y1 � 2, (5.3)

which implies that λβ(a + b + y) − β � 1. In particular, (5.1) is log canonical at every

point of F1 that is different from Q1 by Lemma 3.3. If Q1 �= P1 and Q1 �= E1
1 ∩ F1, then

λβy= λβΔ1 · F1 > 1 by Theorem 3.4. The latter is impossible, since λβy� 2λβ � 1 by (5.3).

If Q1 = E1
1 ∩ F1, then

1 < E1
1 · (λβΔ1 + (λβ(a + b + y) − β)F1) = λβ(1 + 2a) − β

by Theorem 3.4. The latter is impossible, since λβ(1 + 2a) − β � 3λβ − β � 1 by (5.3).

Thus, we see that Q1 = P1.
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By (5.3), one has a + 2b + y + y1 � 4. This implies that λβ(a + 2b + y + y1) −
2β � 1. Then

(S2, (1 − β)C 2 + λβbL2 + λβΔ2 + (λβ(a + b + y) − β)F 2
1 + (λβ(a + 2b + y + y1) − 2β)F2)

is not log canonical at a unique point Q2 ∈ F2 by Lemma 3.3. If Q2 �∈ L2 ∪ F 2
1 ∪ C 2, then

λβy2 = λβΔ2 · F2 > 1 by Theorem 3.4, which is impossible, since λβy2 � 1 by (5.3). Sim-

ilarly, if Q2 = F2 ∩ L2, then λβ(b + y2) = λβ(bL2 + Δ2) · F2 > 1 by Theorem 3.4, which is

impossible because b + y2 � b + y� 2 by (5.3). If Q2 = F2 ∩ F 2
1 , then

λβ(y + y1 + a + b) − β = (λβΔ2 + (λβ(a + b + y) − β)F 2
1 ) · F2 > 1

by Theorem 3.4, which is impossible, since y + y1 + a + b � 3 by (5.3). Then Q2 = P2.

We have λβ(a + 2b + y + y1 + y2) − 3β � 1, since a + 2b + y + y1 + y2 � 5 by (5.3).

Then

(S3, (1 − β)C 3 + λβΔ3 + (λβ(a + 2b + y + y1) − 2β)F 3
2 + (λβ(a + 2b + y + y1 + y2) − 3β)F3)

is not log canonical at a unique point Q3 ∈ F3 by Lemma 3.3. If Q3 �∈ F 3
2 ∪ C 3, then

λβy3 = λβΔ3 · F3 > 1 by Theorem 3.4, which is impossible, because λβy3 � 1 by (5.3). If

Q3 = F3 ∩ F 3
2 , then Theorem 3.4 gives

1 < F 3
2 · (λβΔ3 + (λβ(a+ 2b+ y+ y1 + y2)− 3β)F3) = λβ(a+ 2b+ y+ 2y1)− 3β � 5λβ − 3β,

which is impossible, since a + 2b + y + 2y1 � 5 by (5.3). Thus, we see that Q3 = P3. By

Theorem 3.6(iv), we have 6 = D · C � multP (D · C ) >
1+3β

λβ
. The latter is impossible, since

we already proved earlier that 6λβ � 1 + 3β. �

Lemma 5.5. Suppose that K2
S = 5. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let us use the notation of Section 2.5.

Then λ = min{1, 1
2β

}. This implies that 5λβ � 1 + 3β. By Lemma 5.2, at least one of

the conditions (i)–(iii) in Lemma 5.2 is not satisfied. In particular, if a + x � 2, then

λβ(a + x + 2x1) − 3β > 1.

Without loss of generality, we may assume that L= L12. Let B3 be the proper

transform on S of the line in P
2 that passes through π(P ) and π(E3), and let B4

be the proper transform on S of the line in P
2 that passes through π(P ) and π(E4).

Since L12 + B3 + B4 ∼ −KS and (S, (1 − β)C + λβ(L12 + B3 + B4)) is log canonical, we may
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assume that at least one curve among B3 and B4 is not contained in Supp(Ω). Intersect-

ing this curve with Ω, we get a + x � 2. Then λβ(a + x + 2x1) − 3β > 1. This implies that

a + x + 2x1 > 5.

Denote the proper transform of the curve B3 on the surface S1 by B1
3 , and denote

the proper transform of the curve B4 on the surface S1 by B1
4 . Recall P1 = C 1 ∩ F1.

Suppose that P1 �∈ B1
3 ∪ B1

4 . Then B3 and B4 do not tangent C at P . Let R be the

proper transform on S of the line in P
2 that is tangent to π(C ) at the point π(P ), let R1 be

the proper transform on S of the conic in P
2 that tangents to π(C ) at the point π(P ) and

passes through the points π(E2), π(E3), and π(E4), and let R2 be the proper transform

on S of the conic in P
2 that tangents to π(C ) at the point π(P ) and passes through the

points π(E1), π(E3), and π(E4). Since P1 �∈ B1
3 ∪ B1

4 , the curves R1 and R2 are irreducible.

Hence, 1
2 L12 + 1

2 R + 1
2 R1 + 1

2 R2 ∼R −KS and (S, (1 − β)C + λβ( 1
2 L12 + 1

2 R + 1
2 R1 + 1

2 R2)) is

log canonical. By Lemma 3.2, we may assume that one curve among R, R1, and R2 is not

contained in Supp(D). Denote this curve by Z , and denote its proper transform on S1

by Z1. Then P1 ∈ Z1 and 3 − a − x = Z1 · Ω1 � x1, which is impossible, since a + x � 2 and

a + x + 2x1 > 5.

We see that P1 = B1
3 ∩ F1 or P1 = B1

4 ∩ F1. Without loss of generality, we

may assume that P1 = B1
3 ∩ F1. Then B3 ⊂ Supp(Ω), since otherwise we would have

2 − a − x = B1
3 · Ω1 � x1, which is impossible, since a + x � 2. We write Ω = bB3 + Δ,

where b ∈ R>0 and Δ is an effective R-divisor on S such that B3 �⊂ Supp(Δ). Denote the

proper transform of the divisor Δ on S1 by Δ1. Let y= multP (Δ) and y1 = multP1(Δ
1). Then

x = b + y and x1 = b + y1. We have b − a + y� 1 by Corollary 5.1 and a + b + y= a + x � 2,

which implies a contradiction a + x + 2x1 � 2 + 2y + 2b � 5. �

Lemma 5.6. Suppose that K2
S = 4. Then (4.1) is log canonical at P . �

Proof. Suppose that (4.1) is not log canonical at P . Let us use the notation of Section 2.7.

Then λβ < 2
3 . Without loss of generality, we may assume that P ∈ E . Then P = E ∩ C . By

Lemma 4.7, the point P is not contained in any other (−1)-curve. By Lemma 4.2, we have

E ⊂ Supp(D).

The log pair (S, (1 − β)C + λβ( 3
2 E + 1

2 (E1 + E2 + E3 + E4 + E5))) is log canoni-

cal and 3
2 E + 1

2 (E1 + E2 + E3 + E4 + E5) ∼R −KS. By Lemma 3.2, we may assume that

Supp(Ω) does not contain one curve among E1, E2, E3, E4, E5. Intersecting this

curve with Ω, we get a� 1. Let L1, L2, L3, L4, L5 be the proper transforms on

S of the lines in P
2 that pass through π(P ) and π(E1), π(E2), π(E3), π(E4), π(E5),
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respectively. Then 2
3 E + 1

3 (L1 + L2 + L3 + L4 + L5) ∼R −KS, and (S, (1 − β)C + λβ( 2
3 E +

1
3 (L1 + L2 + L3 + L4 + L5))) is log canonical. By Lemma 3.2, we may assume that Supp(Ω)

does not contain one curve among L1, L2, L3, L4, L5. Intersecting this curve with Ω, we

get a + x � 2. Recall that a� 1 by Corollary 5.1. Thus, we have

a� 1, x − a� 1, a + x � 2, (5.4)

which implies that x � 3
2 and λβ(a + x) − β � 1. In particular, we have λβx � 1.

Denote the proper transform of the curve E on S1 by E1. Then λβ(a + x) − β � 1,

since a + x � 2. Thus, the log pair (S1, (1 − β)C 1 + λβaE1 + λβΩ1 + (λβ(a + x) − β)F1) is

not log canonical at the unique point Q1 ∈ F1 by Lemma 3.3. Note that λβ(a + x) − β > 0

by Lemma 3.1. Moreover, either Q1 = P1 or Q1 = E1 ∩ F1, since otherwise we would have

λx = λβΩ1 · F1 > 1 by Theorem 3.4. If Q1 = E1 ∩ F1, then Theorem 3.9 implies

λβ(1 + a − x) = λβΩ1 · E1 > 2(1 + β − λβ(x + a))

or λβx = λβΩ1 · F1 > 2(1 − λβa). The former inequality gives λβ(1 + 3a + x) > 2 + 2β,

which is impossible since 1 + 3a + x � 5 by (5.4). The latter inequality gives that

λβ(x + 2a) > 2, which is impossible since x + 2a� 3 by (5.4). Thus, we see that Q1 = P1.

Let R be the proper transform on S of a line in P
2 that is tangent to π(C ) at the

point π(P ). Then either −KS · R= 3 or −KS · R= 2. Moreover, −KS · R= 3 if and only if

π(R) does not contain any of the points π(E1), π(E2), π(E3), π(E4), π(E5).

Suppose that −KS · R= 2. Without loss of generality, we may assume that R= L1.

We write Ω = bL1 + Δ, where b is a non-negative real number, and Δ is an effective R-

divisor on S whose support does not contain the curve L1. Denote the proper transform

of the curve L1 on S1 by L1
1, and denote the proper transform of Δ on S1 by Δ1. Let

y= multP (Δ) and y1 = multP1(Δ
1). Then x = y + b. Since (S, (1 − β)C + λβ(E + E1 + L1))

is log canonical and E + E1 + L1 ∼ −KS, we may assume that b = 0 or Supp(Δ) does

not contain E1 by Lemma 3.2. Thus, if b �= 0, then 1 − a − b = Δ · E1 � 0. With (5.4),

this gives y + 2b � 2 and 2 + a + y + 2b � 9
2 . On the other hand, we have 2 − a − y=

Δ1 · L1
1 � y1, which implies that a + 2y1 � 2, since y� y1. Thus, we see that y1 � 1. Then

multP1((1 − β)C 1 + λβΔ1) = 1 − β + λβy1 � 1. Applying Theorem 3.9, we see that

1 − β + λβ(2 − a − y) = ((1 − β)C 1 + λβΔ1) · L1
1 > 2(1 + β − λβ(a + b + y))

or 1 − β + λβy= ((1 − β)C 1 + λβΔ1) · F1 > 2(1 − λβb). This gives λβ(2 + a + y + 2b) >

1 + 3β or λβ(y + 2b) > 1 + β. The former inequality is impossible, because 2 + a + y +
2b � 9

2 . The latter inequality is also impossible, because y + 2b � 2.
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We have −KS · R= 3. Then R is irreducible and R + E ∼ −KS. Since (S, (1 − β)C +
λβ(R + E)) is log canonical, we may assume that R �⊂ Supp(Ω) by Lemma 3.2. Denote the

proper transform of the curve R on the surface S1 by R1. Then 3 − 2a − x = Ω1 · R1 � x1,

which gives x + x1 + 2a� 3. Then λβ(a + x + x1) − 2β � 1 by (5.4). Thus, the log pair

(S2, (1 − β)C 2 + λβΩ2 + (λβ(a + x) − β)F 2
1 + (λβ(a + x + x1) − 2β)F2)

is not log canonical at a unique point Q2 ∈ F2 by Lemma 3.3. Note that λβ(a + x +
x1) − 2β > 0 by Lemma 3.1. If Q2 �= P2 and Q2 �= F 2

1 ∩ F2, then Theorem 3.4 gives λβx1 =
λβΩ2 · F2 > 1, which is impossible, since λβx1 � λβx � 1 by (5.4). If Q2 = F 2

1 ∩ F2, then

Theorem 3.4 gives

λβ(a + 2x) − 2β � (λβΩ2 + (λβ(a + x + x1) − 2β)F2) · F 2
1 > 1,

which is impossible, since a + 2x � 7
2 , by (5.4). Hence, we see that Q2 = P2.

One has λβ(a + x + x1 + x2) − 3β � 1 by (5.4), since x + x1 + 2a� 3 and x2 � x1 � x.

Thus, it follows from Lemma 3.3 that

(S3, (1 − β)C 3 + λβΩ3 + (λβ(a + x + x1) − 2β)F 3
2 + (λβ(a + x + x1 + x2) − 3β)F3)

is not log canonical at a unique point Q3 ∈ F3. Note that λβ(a + x + x1 + x2) − 3β > 0 by

Lemma 3.1. If Q3 �= P3 and Q3 �= F 3
2 ∩ F3, then Theorem 3.4 gives λβx2 = λβΩ3 · F3 > 1,

which is impossible, since λβx2 � λβx � 1 by (5.4). If Q3 = F 3
2 ∩ F3, then Theorem 3.4 gives

λβ(a + x + 2x1) − 3β = (λβΩ3 + (λβ(a + x + x1 + x2) − 3β)F3) · F 3
2 > 1,

which contradicts (5.4), since x + x1 + 2a� 3. Thus, we have Q3 = P3. Then Theorem 3.4

gives

β � 4λβ − 3β = C 3 · (λβΩ3 + (λβ(a + x + x1 + x2) − 3β)F3) > 1,

which is impossible, since β ∈ (0, 1]. �

This completes the proof of Lemma 4.9.
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