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On exceptional quotient singularities

IVAN CHELTSOV

CONSTANTIN SHRAMOV

We study exceptional quotient singularities. In particular, we prove an exceptionality
criterion in terms of the ˛–invariant of Tian, and utilize it to classify four-dimensional
and five-dimensional exceptional quotient singularities.

We assume that all varieties are projective, normal, and defined over C .

1 Introduction

Let X be a smooth Fano variety (see Iskovskikh and Prokhorov [19]) of dimension n,
and let g D gi N| be a Kähler metric with a Kähler form

! D

p
�1

2�

X
gi N|dzi ^ dxzj 2 c1.X /:

Definition 1.1 The metric g is a Kähler–Einstein metric if Ric.!/D! , where Ric.!/
is a Ricci curvature of the metric g .

Let xG � Aut.X / be a compact subgroup. Suppose that g is xG –invariant.

Definition 1.2 Let P xG.X;g/ be the set of C 2 –smooth xG –invariant functions ' such
that

!C

p
�1

2�
@x@' > 0

and supX ' D 0. Then the xG –invariant ˛–invariant of the variety X is the number

˛ xG.X /D sup
�
� 2Q

ˇ̌̌
9 C 2R such that

Z
X

e��'!n 6 C for any ' 2 P xG.X;g/

�
:

The number ˛ xG.X / was introduced by Tian [42] and Tian and Yau [44] and now it is
called the ˛–invariant of Tian.
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Theorem 1.3 [42] The Fano variety X admits a xG–invariant Kähler–Einstein met-
ric if ˛ xG.X / > n=.nC 1/.

The normalized Kähler–Ricci flow on the smooth Fano X is defined by the equation

.1:4/

8<:
@!.t/

@t
D�Ric.!.t//C!.t/;

!.0/D !;

where !.t/ is a Kähler form such that !.t/ 2 c1.X /, and t 2 R>0 . It follows from
Cao [8] that the solution !.t/ to (1.4) exists for every t > 0.

Theorem 1.5 (Tian–Zhu [45]) If X admits a Kähler–Einstein metric with a Kähler
form !KE , then any solution to (1.4) converges to !KE in the sense of Cheeger–Gromov.

The normalized Kähler–Ricci iteration on the smooth Fano variety X is defined by
the equation

.1:6/

(
!i�1 D Ric.!i/;

!0 D !;

where !i is a Kähler form such that !i 2 c1.X /. It follows from Yau [46] that
the solution !i to (1.6) exists for every i > 1.

Theorem 1.7 (Rubinstein [35]) If ˛ xG.X / > 1 then X admits a xG –invariant Kähler–
Einstein metric with a Kähler form !KE and any solution to (1.6) converges to !KE in
C1.X /–topology.

Smooth Fano varieties that satisfy all hypotheses of Theorem 1.7 do exist.

Example 1.8 Let X be a smooth del Pezzo surface such that K2
X
D 5. Then X is

unique and Aut.X /Š S5 . Moreover, one can show that ˛ xG.X /D 2 in the case when
xG Š S5 or xG Š A5 (see Cheltsov [9, Example 1.11] and Cheltsov and Shramov [11,
Theorem A.3]).

Suppose now that X D Pn (the simplest possible case). Then the Fubini–Study metric
on Pn is Kähler–Einstein. Moreover, if xG is the maximal compact subgroup of
Aut.Pn/, then the only xG –invariant metric on Pn is the Fubini–Study metric and we
have ˛ xG.P

n/ D C1 by Definition 1.2. In particular, the solution to (1.6) is trivial
(and constant) in the latter case, since the initial metric g must be the Fubini–Study
metric. On the other hand, the convergence of any solution to (1.6) is not clear in the
case when xG is a finite group. So, Yanir Rubinstein asked the following question in
the spring of 2009.
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Question 1.9 Is there a finite subgroup xG � Aut.Pn/ such that ˛ xG.P
n/ > 1?

This paper is inspired by Question 1.9. In particular, we will show that the answer to
Question 1.9 is positive in the case when n 6 4, which follows from [11, Theorem A.3]
and Theorems 4.1, 4.2, 4.13, 5.6 and 3.21.

It came as a surprise that Question 1.9 is strongly related to the notion of exceptional
singularity that was introduced by Vyacheslav Shokurov in [39]. Let us recall this
notion. Let .V 3O/ be a germ of Kawamata log terminal singularity (see Kollár [23,
Definition 3.5]).

Definition 1.10 [39, Definition 1.5] The singularity .V 3O/ is said to be exceptional
if for every effective Q–divisor DV on the variety V such that .V;DV / is log canonical
(see [23, Definition 3.5]) and for every resolution of singularities � W U ! V there
exists at most one � –exceptional divisor E � U such that a.V;DV ;E/D�1, where
the rational number a.V;DV ;E/ can be defined through the equivalence

KU CDU �Q ��.KV CDV /C
X

a.V;DV ;E/E;

where the sum is taken over all f –exceptional divisors, and DU is the proper transform
of the divisor DV on the variety U .

One can show that exceptional Kawamata log terminal singularities are straightforward
generalizations of the Du Val singularities of type E6 , E7 and E8 (cf Theorem 4.1),
which partially justifies the word “exceptional” in Definition 1.10.

Remark 1.11 One can easily check (for example, by applying Theorem 3.11) that the
singularity .V 3O/ is not exceptional if V is smooth and dim.V /> 2.

It follows from Shokurov [38], Ishii and Prokhorov [18] and Markushevich and
Prokhorov [27] that exceptional Kawamata log terminal singularities do exist in dimen-
sions 2 and 3. The existence in dimension 4 follows from Johnson and Kollár [20] and
Prokhorov [31, Theorem 4.9]. Actually, exceptional Kawamata log terminal singulari-
ties exist in every dimension (see Example 3.13). We will see later (cf Theorem 1.14,
Remark 1.16, Theorem 1.17 and Conjecture 1.23) that Question 1.9 is almost equivalent
to the following

Question 1.12 Are there exceptional quotient singularities of dimension nC 1?
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Recall that quotient singularities are always Kawamata log terminal by [23, Proposi-
tion 3.16]. So Question 1.12 fits well to Definition 1.10. Moreover, it follows from
Shokurov [39] and Markushevich and Prokhorov [27] that the answer to Question 1.12
is positive for n D 1 and n D 2, respectively. The purpose of this paper is to study
exceptional quotient singularities and, in particular, to give positive answers to Ques-
tions 1.9 and 1.12 for every n 6 4. In a subsequent paper we will show that the answers
to Questions 1.9 and 1.12 are still positive for nD 5 and are surprisingly negative for
nD 6 (see [10]). So it is hard to predict what would be the answer to Question 1.9 in
general. However, we still believe in the following:

Conjecture 1.13 For every N 2 Z>0 there exist exceptional quotient singularities of
dimension greater than N .

Let G be a finite subgroup in GLnC1.C/, where n > 1. Denote by Z.G/ the center and
by ŒG;G� the commutator of group G . Let �W GLnC1.C/! Aut.Pn/Š PGLnC1.C/
be the natural projection. Put xG D �.G/ and put

lct.Pn; xG/D sup
�
� 2Q

ˇ̌̌̌
the log pair .Pn; �D/ has log canonical singularities
for every xG–invariant effective Q–divisor D �Q �KPn

�
:

Theorem 1.14 (See eg [11, Theorem A.3].) One has lct.Pn; xG/D ˛ xG.P
n/.

The number lct.Pn; xG/ is usually called xG –equivariant global log canonical threshold
of Pn . Despite the fact that lct.Pn; xG/ D ˛ xG.P

n/, we still prefer to work with the
number lct.Pn; xG/ throughout this paper, because it is easier to handle than ˛ xG.P

n/.
For example, it follows immediately from Definition 3.1 that lct.Pn; xG/6 d=.nC 1/

if the group G has a semi-invariant of degree d (a semi-invariant of the group G is a
polynomial whose zeroes define a xG –invariant hypersurface in Pn ).

Remark 1.15 A semi-invariant of the group G is its invariant if Z.G/� ŒG;G� and xG
is a nonabelian simple group.

Recall that an element g 2 G is called a reflection (or sometimes a quasireflection)
if there is a hyperplane in Pn that is pointwise fixed by �.g/ (cf Springer [40, Sec-
tion 4.1]).

Remark 1.16 Let R�G be a subgroup generated by all reflections. Then the quotient
CnC1=R is isomorphic to CnC1 (see Shephard and Todd [37] and Springer [40,
Theorem 4.2.5]). Moreover, the subgroup R � G is normal, and the singularity
CnC1=G is isomorphic to the singularity CnC1=.G=R/. Note that the subgroup R is
trivial if G� SLnC1.C/. If G is a trivial group, then the singularity CnC1=GŠCnC1

is not exceptional by Remark 1.11.
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Thus to answer Question 1.12 one can always assume that the group G does not contain
reflections. On the other hand, one can easily check that there exists a finite subgroup
G0� SLnC1.C/ such that �.G0/D xG . So to answer Question 1.9 one can also assume
that G � SLnC1.C/, which implies, in particular, that the group G does not contain
reflections. Moreover, if the group G does not contain reflections, then the singularity
CnC1=G is exceptional if and only if the singularity CnC1=G0 is exceptional thanks
to the following:

Theorem 1.17 Let G be a finite subgroup in GLnC1.C/ that does not contain reflec-
tions. Then

� the singularity CnC1=G is exceptional if lct.Pn; xG/ > 1,

� the singularity CnC1=G is not exceptional if either lct.Pn; xG/ < 1 or G has
a semi-invariant of degree at most nC 1,

� for any subgroup G0 � GLnC1.C/ such that G0 does not contain reflections and
�.G0/D xG , the singularity CnC1=G is exceptional if and only if the singularity
CnC1=G0 is exceptional.

Proof All required assertions immediately follow from Theorem 3.17 (cf [32, Propo-
sition 3.1; 32, Lemma 3.1]).

It should be pointed out that the assumption that G contains no reflections is crucial
for Theorem 1.17.

Example 1.18 Let G be a finite subgroup in GL4.C/ that is the subgroup number 32

in Shephard and Todd [37, Table VII]. Then the group G is generated by reflections
(see [37]), so that the singularity C4=G is not exceptional by Remark 1.16. On the other
hand, it follows from Theorem 4.13 that lct.P3; xG/ > 5=4, because xG Š PSp4.F3/.
It follows from Theorem 4.13 that there exists a subgroup G0 � SL4.C/ such that
xGD�.G0/ and the singularity C4=G0 is exceptional. One can produce similar examples
for two-dimensional and three-dimensional singularities.

By Theorem 1.17 and [40, Section 4.5], if G is a finite subgroup in GL2.C/ that does
not contain reflections, then the singularity C2=G is exceptional if and only if G has
no semi-invariants of degree at most 2. A similar result holds in dimension 3.

Theorem 1.19 [27, Theorem 1.2] Let G be a finite group in GL3.C/ that does not
contain reflections. Then the singularity C3=G is exceptional if and only if G does
not have semi-invariants of degree at most 3.
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For finite subgroups in GL4.C/, the assertion of Theorem 1.19 is no longer true.

Example 1.20 [32, Example 3.1] Let � � SL2.C/ be a binary icosahedron group.
Put

G D

8̂̂<̂
:̂
0BB@

a11 a12 0 0

a21 a22 0 0

0 0 b11 b12

0 0 b21 b22

1CCA
ˇ̌̌̌
ˇ̌̌̌ �a11 a12

a21 a22

�
2 � 3

�
b11 b12

b21 b22

�9>>=>>;� SL4.C/;

where aij 2 C 3 bij . Then G does not have semi-invariants of degree at most 4,
because � does not have semi-invariants of degree at most 4 (see [40, Section 4.5]).
On the other hand, it follows from [32, Proposition 2.1] that the singularity C4=G is not
exceptional (cf Corollary 3.20).

Actually, it is possible to modify the assertion of Theorem 1.19 so that its new version
can be generalized to higher dimensions.

Definition 1.21 (Blichfeldt [3]) The subgroup G�GLnC1.C/ is said to be primitive
if there is no nontrivial decomposition CnC1 D

Lr
iD1 Vi such that for any g 2G and

any i there is some j D j .g/ such that g.Vi/D Vj .

If G is primitive, then xG ŠG=Z.G/ by Schur’s lemma. It follows from [32, Proposi-
tion 2.1] that G must be primitive if CnC1=G is exceptional (we give a short proof
of this fact in Corollary 3.20). Moreover, primitivity plays a crucial role in the main
result of this paper:

Theorem 1.22 Let G be a finite subgroup in GLnC1.C/ that does not contain reflec-
tions. Suppose that n 6 4. Then the following conditions are equivalent:

� The singularity CnC1=G is exceptional.

� lct.Pn; xG/> .nC 2/=.nC 1/.

� The group G is primitive and has no semi-invariants of degree at most nC 1.

Proof The required assertion follows from Theorems 1.19, 3.17, 3.18, 3.21, 4.13
and 5.6.

It appears that in higher dimensions exceptionality cannot be expressed in terms of
primitivity and absence of semi-invariants of small degree. In particular, there are
nonexceptional six-dimensional quotient singularities arising from primitive subgroups
without reflections in GL6.C/ that have no semi-invariants of degree at most 6 (see

Geometry & Topology, Volume 15 (2011)



On exceptional quotient singularities 1849

Example 3.25). On the other hand, it follows from Theorem 1.22 that we may expect
the sufficient condition for exceptionality in Theorem 1.17 to be a necessary condition
as well. Namely, inspired by Theorem 1.22 and Tian [43, Question 1] we believe in
the following:

Conjecture 1.23 Let G be a finite subgroup in GLnC1.C/ that does not contain
reflections. Then the singularity CnC1=G is exceptional if and only if lct.Pn; xG/ > 1.

It follows from Theorem 1.22 that Conjecture 1.23 holds for n 6 4. In a subsequent
paper we will show that Conjecture 1.23 holds for nD 5 and nD 6 (see [10]). Note
that Conjecture 1.23 is a special case of Conjecture 3.5.

To apply Theorem 1.22 we may assume that G � SLnC1.C/, since there exists a finite
subgroup G0 � SLnC1.C/ such that �.G0/D xG . On the other hand, it is well known
that there are at most finitely many primitive finite subgroups in SLnC1.C/ up to
conjugation (see Collins [12]). Primitive finite subgroups of SL2.C/ are group-theoretic
counterparts of Platonic solids and each of them gives rise to an exceptional singularity
(see Theorem 4.1). Primitive finite subgroups of SL3.C/ are classified by Blichfeldt
in [3]. Prokhorov and Markushevich used Blichfeldt’s classification in [27] to obtain an
explicit classification of the subgroups in SL3.C/ corresponding to three-dimensional
exceptional quotient singularities (see Theorem 4.2). For dimension 2 the same was
done by Shokurov (see Theorem 4.1). Similar classification is possible in dimensions 4

and 5, since primitive finite subgroups of SL4.C/ and SL5.C/ are classified by
Blichfeldt [3] and Brauer [5], respectively. In fact, we obtain a complete list of finite
subgroups in SL4.C/ and SL5.C/ that satisfy all hypotheses of Theorem 1.22 (see
Theorems 4.13 and 5.6).

While the exceptionality of a quotient singularity CnC1=G depends on a lower bound
for a global log canonical threshold lct.Pn; xG/, it is interesting to find upper bounds
for lct.Pn; xG/ as well. Using [40, Section 4.5; 47] and a bit of direct computation, we
see that it follows from Corollary 3.19 that

lct.Pn; xG/6

8̂<̂
:

6 if nD 1;

2 if nD 2;

3 if nD 3:

Theorem 1.24 The inequality lct.Pn; xG/6 4.nC1/ holds for every n > 1. Moreover,
if n > 23, then lct.Pn; xG/6 12.nC 1/=5.

Proof Let p be any prime number which does not divide jGj. Then G has a semi-
invariant of degree at most .p � 1/.n C 1/ by [41, Lemma 2]. Thus, it follows
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from Definition 3.1 that lct.Pn; xG/ 6 p � 1. On the other hand, it follows from
the Bertrand’s postulate (see Ramanujan [34]) that there is a prime number p0 such that
2nC 3< p0 < 2.2nC 3/, which implies that p0 6 4nC 5. If G is not primitive, then
lct.Pn; xG/ 6 1 by Corollary 3.19. If G is primitive, then p0 does not divide jGj by
Feit and Thompson [15, Theorem 1], which completes the proof of the first assertion
of the theorem. A similar argument with an additional use of Nagura [29] gives the
second assertion for n > 23.

In fact, we expect the following to be true (cf [41]).

Conjecture 1.25 There exists a universal constant C 2R such that lct.Pn; xG/ 6 C

for any finite subgroup xG � Aut.Pn/ and for any n > 1.

Let us describe the structure of the paper. In Section 2 we collect auxiliary results. In
Section 3 we prove the exceptionality criterion for a singularity CnC1=G . In Section 4
we classify exceptional quotient singularities in dimension 4 (see Theorem 4.13). In
Section 5 we classify exceptional quotient singularities in dimension 5 (see Theorem
5.6). In Appendix A we prove Corollary A.2 and Theorem A.9 that are used in Section 5.

Many of our results can be obtained by direct computations using the Atlas of finite
groups [13].

Throughout the paper we use the following standard notation: the symbol Zn denotes
the cyclic group of order n, the symbol Fn denotes the finite field consisting of
n elements, the symbol Sn denotes the symmetric group of degree n, the symbol An

denotes the alternating group of degree n, the symbols GL, PGL, SL, PSL, Sp4.F3/

and PSp4.F3/ denote the corresponding algebraic groups. The symbol k:G denotes
a central extension of a group G with the center Zk (this might be nonunique).
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2 Preliminaries

Throughout the paper we use the standard language of the singularities of pairs (see
Kollár [23]). By strictly log canonical singularities we mean log canonical singularities
that are not Kawamata log terminal (see [23, Definition 3.5]).

Let X be a variety, let BX and DX be effective Q–divisors on the variety X such that
the singularities of the log pair .X;BX / are Kawamata log terminal, and KXCBXCDX

is a Q–Cartier divisor. Let Z �X be a closed nonempty subvariety.

Definition 2.1 The log canonical threshold of the boundary DX along Z is

cZ .X;BX ;DX /D sup
˚
� 2Q j the pair .X;BX C�DX / is log canonical along Z

	
:

Note that the log pair .X;BX CDX / is Kawamata log terminal along Z if and only if
cZ .X;BX ;DX / > 1. For simplicity, we put c.X;BX ;DX /D cX .X;BX ;DX /. We
put cZ .X;DX /D cZ .X;BX ;DX / in the case when BX D 0. For simplicity, we also
put c.X;DX /D cX .X;DX /.

Apart from some rare but important occasions (cf Section 3), we only need to consider
the case when BX D 0. So from now on we assume that BX D 0.

Let � W xX !X be a birational morphism such that xX is smooth. Then

K xX CD xX �Q ��.KX CDX /C

mX
iD1

diEi ;

where D xX is a proper transform of the divisor DX on the variety xX , di 2Q, and Ei

is an exceptional divisor of the morphism � . Put D xX D
Pr

iD1 ai
xDi , where ai 2Q>0 ,

and xDi is a prime Weil divisor on xX . Suppose that
Pr

iD1
xDi C

Pm
iD1 Ei is a divisor

with simple normal crossing. Put

I.X;DX /D ��O xX

� mX
iD1

ddieEi �

rX
iD1

baic
xDi

�
;

and let L.X;DX / be a subscheme that corresponds to the ideal sheaf I.X;DX /

(the sheaf I.X;DX / is an ideal sheaf, because DX is an effective divisor). Put
LCS.X;DX /D Supp.L.X;DX //.

Remark 2.2 If .X;DX / is log canonical, then L.X;DX / is reduced.
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The subscheme L.X;DX / and locus LCS.X;DX / were introduced by Shokurov [38].
They are called are called the subscheme of log canonical singularities of the log
pair .X;DX / and the locus of log canonical singularities of the log pair .X;DX /,
respectively. Note that the ideal sheaf I.X;DX / is also known as the multiplier ideal
sheaf of the log pair .X;DX / (see Lazarsfeld [25]).

Theorem 2.3 [25, Theorem 9.4.8] Let H be a nef and big Q–divisor on X such
that KX CDX CH �D for some Cartier divisor D on the variety X . Then

H i.I.X;DX /˝D/D 0

for every i > 1.

Corollary 2.4 [38, Lemma 5.7] Suppose that �.KX CDX / is nef and big. Then the
locus LCS.X;DX / is connected.

Let LCS.X;DX / be the set that consists of all possible centers of log canonical
singularities of the log pair .X;DX / (see [11, Definition 2.2]).

Remark 2.5 Let H be a linear system on the variety X that has no base points. Put
Z \H D

Pk
iD1 Zi , where H is a general divisor in H , and Zi is an irreducible

subvariety in H . Then Z 2 LCS.X;DX / if and only if all subvarieties Z1; : : : ;Zk

are contained in the set LCS.H;DX jH /.

If Z 2LCS.X;DX / and no proper subvariety of Z is contained in LCS.X;DX /, then
Z is said to be a minimal center in LCS.X;DX / or minimal center of log canonical
singularities of the log pair .X;DX /.

Lemma 2.6 (Kawamata [21, Proposition 1.5]) Suppose that Z 2 LCS.X;DX / and
.X;DX / is log canonical. Let Z0 be a center in LCS.X;DX / such that ¿¤Z\Z0DPk

iD1 Zi , where Zi ¨ Z is an irreducible subvariety. Then Zi 2 LCS.X;DX / for
every i 2 f1; : : : ; kg.

Theorem 2.7 [22, Theorem 1] Suppose Z�X is a minimal center in LCS.X;DX /

and .X;DX / is log canonical. Then Z is normal and has at most rational singularities.
Let � be an ample Q–Cartier Q–divisor on X . Then there exists an effective Q–
divisor BZ on the variety Z such that

.KX CDX C�/jZ �Q KZ CBZ ;

and .Z;BZ / has Kawamata log terminal singularities.
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Let xG � Aut.X / be a finite subgroup such that DX is xG–invariant. Then g.Z/ 2

LCS.X;DX / for every g 2 xG , and the locus LCS.X;DX / is xG –invariant.

If Z is a minimal center in LCS.X;DX / and .X;DX / is log canonical, then it follows
from Lemma 2.6 that

Z \g.Z/¤¿()Z D g.Z/

for every g 2 xG .

Lemma 2.8 Suppose that Z is a minimal center in LCS.X;DX /, the log pair
.X;DX / is log canonical, and DX is ample. Let � be an arbitrary rational number such
that � > 1. Then there exists an effective xG –invariant Q–divisor D on the variety X

such that
LCS.X;D/D

[
g2 xG

fg.Z/g;

the log pair .X;D/ is log canonical, and the equivalence D �Q �DX holds.

Proof Take m 2 Z such that mDX is a very ample Cartier divisor. Take a general di-
visor R in the linear system jnmDX j such that Z � Supp.R/ and R is xG –invariant,
where n� 0. Then[

g2 xG

fg.Z/g � LCS.X; �DX C�R/� LCS.X;DX /

for some positive rational numbers � and � such that � < 1 6 �C�nm< � . One has
�DX C�R�Q .�C�nm/DX .

It follows from the generality of the divisor R that .X; �R/ is Kawamata log terminal,
and

LCS.X; �DX C�R/D
[
g2 xG

g.Z/;

because � < 1 and n� 0. Then there is � 2Q>0 such that 0< 1� ��6 � < 1 and[
g2 xG

fg.Z/g � LCS.X; .1� ��/DX C�R/� LCS.X; �DX C�R/;

but the log pair .X; .1� ��/DX C�R/ is log canonical at the general point of Z .

Note that for a fixed R, the number � is a function of �. In the above process, we can
choose the number � so that 1 6 1� ��C�nm< � and

LCS
�
X; .1� ��/DX C�R

�
D

[
g2 xG

fg.Z/g;
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because Z is a minimal center in LCS.X;DX / (see Lemma 2.6). Put

D D .1� ��/DX C�RC
�� 1� ��C�nm

nm
M;

where M is a general xG –invariant divisor in jRj. Then D is the required divisor.

Suppose now that X D Pn . In this case we can say much more about the locus
LCS.X;DPn/ and the set LCS.Pn;DPn/.

Lemma 2.9 Let H be a hyperplane in Pn , and let � be a nonnegative rational number
such that DPn �Q �H . Suppose that the locus LCS.Pn;DPn/ is an equidimensional
subvariety in Pn of codimension s . Put

r D

(
d�� s� 1e if � 62 Z;

d�� s� 1eC 1 if � 2 Z:

Then r > 0 and

deg.LCS.Pn;DPn//6
�

sC r

r

�
:

Proof Put Y D LCS.Pn;DPn/. Let … � Pn be a general linear subspace of
dimension s . Put D D DPn j… and ƒ D H \…. Then deg.Y / D jY \…j and
LCS.…;D/D Y \… by Remark 2.5. One has K…CD �Q .�� s� 1/ƒ.

It follows from Theorem 2.3 that there is an exact sequence of cohomology groups

0 �!H 0.O….rƒ/˝ I.…;D// �!H 0.O….rƒ// �!H 0.OL.…;D// �! 0;

and Supp.L.…;D//D LCS.…;D/D Y \…¤¿. Therefore, we see that r > 0 and

deg.Y /D jY \…j6 h0.OL.…;D//6 h0.O….rƒ//D h0.OP s .r//D

�
sC r

r

�
;

which completes the proof.

Let �W GLnC1.C/! Aut.Pn/Š PGLnC1.C/ be the natural projection, and let G be
a finite subgroup in GLnC1.C/ such that xG D �.G/.

Remark 2.10 If G does not have semi-invariants of degree at most k , then every
xG –orbits in Pn contains at least kC 1 points, because every xG –orbit consisting of s

points defines a xG –invariant hypersurface in Pn that is a union of s hyperplanes.
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Lemma 2.11 Let H be a hyperplane in Pn , and let � be a nonnegative rational
number such that DPn �Q �H . Suppose that G does not have semi-invariants of
degree at most b�c. Then LCS.Pn;DPn/ does not contain subvarieties in Pn of
codimension 1. If in addition b�c6 nC1 and the log pair .Pn;DPn/ is log canonical,
then LCS.Pn;DPn/ does not contain points.

Proof Suppose that LCS.Pn;DPn/ contains an irreducible subvariety Y � Pn of
codimension 1. Let R be the xG –orbit of the subvariety Y . Then

DPn D aRC�

for some rational number a > 1 and some effective Q–divisor � on Pn . Since
DPn �Q �H , we see that R is a hypersurface in Pn of degree at most b�=ac6 b�c,
which is impossible, because G does not have semi-invariants of degree at most b�c.

We see that LCS.Pn;DPn/ does not contain subvarieties in Pn of codimension 1.
Let us show that LCS.Pn;DPn/ does not contain points provided that b�c6 nC 1

and the log pair .Pn;DPn/ is log canonical.

Suppose that b�c6 nC1, the log pair .Pn;DPn/ is log canonical, and LCS.Pn;DPn/

contains a point P 2 Pn . Let us show that these assumptions lead to a contradiction.

Let † be the xG –orbit of the point P , and let � be a rational number such that � > 1 and
b��c6 nC 1. Then it follows from Lemma 2.8 that there is an effective xG –invariant
Q–divisor D on Pn such that D �Q ��H , the log pair .Pn;D/ is log canonical and
†D LCS.Pn;D/.

Since b��c6 nC 1, it follows from Theorem 2.3 that

H 0.OPn.1/˝ I.Pn;D//D 0;

because KPnCD �Q .���n� 1/H and ���n� 1< 1. Therefore, it follows from
the exact sequence of cohomology groups

0 �!H 0.OPn.1/˝ I.Pn;D// �!H 0.OPn.1// �!H 0.O†/ �! 0

that j†j 6 nC 1, which is impossible because G does not have semi-invariants of
degree at most b�c6 nC 1.

Remark 2.12 If G is conjugate to a subgroup in GLnC1.R/, then the subgroup G

has an invariant of degree 2, which implies that lct.Pn; xG/6 2=.nC 1/.

Remark 2.13 If Z is a xG –invariant, then there is a homomorphism �W xG! Aut.Z/
that must be a monomorphism provided that Z is not contained in a linear subspace
of Pn , because eigenvectors that correspond to a fixed eigenvalue of any matrix in
GLnC1.C/ form a vector subspace in CnC1 .
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Theorem 2.14 Let C be a smooth irreducible curve of genus g > 2. Then jAut.C /j6
84.g� 1/.

Proof The required inequality is the famous Hurwitz bound (see Breuer [6, Theo-
rem 3.17]).

3 Exceptionality criterion

Let X be a variety, let BX be an effective Q–divisor on X such that the log pair
.X;BX / has at most Kawamata log terminal singularities, and the divisor �.KX CBX /

is ample. Recall that .X;BX / is usually called a log Fano variety. Let xG � Aut.X /
be a finite subgroup such that the divisor BX is xG –invariant.

Definition 3.1 The global xG –invariant log canonical threshold of the log Fano variety
.X;BX / is a real number lct.X;BX ; xG/ that can be defined as

inf
�

c.X;BX ;DX / 2Q

ˇ̌̌̌
DX is a xG–invariant Q–Cartier effective Q–divisor
on the variety X such that DX �Q �.KX CBX /

�
:

For simplicity, we put lct.X;BX ; xG/ D lct.X; xG/ if BX D 0. Similarly, we put
lct.X;BX ; xG/D lct.X;BX / if xG is trivial. Finally, we put lct.X;BX ; xG/D lct.X / if
BX D 0 and xG is trivial. Then it follows from [11, Theorem A.3] that lct.X; xG/D
˛ xG.X / if X is smooth and BX D 0 (see Definition 1.2).

Remark 3.2 Suppose that BX D 0. Put V DX= xG . Let � W X ! V be the quotient
map. Then

KX �Q ��.KV CRV /;

where RV is a ramification Q–divisor of the morphism � . Note that �.KV CRV / is
an ample Q–Cartier divisor, and .V;RV / is Kawamata log terminal by [23, Propo-
sition 3.16]. Moreover, it follows from [23, Proposition 3.16] that lct.X; xG/ D
lct.V;RV /.

Example 3.3 Suppose that X Š P1 . Then BX D
Pn

iD1 aiPi , where Pi is a point,
and ai 2Q such that 0 6 ai < 1. We may assume that a0 6 : : :6 an . Then

lct.X;BX /D
1� an

2�
Pn

iD1 ai

;

where
Pn

iD1 ai < 2, because the divisor �.KX CBX / is ample. Moreover, it fol-
lows from Remark 3.2 that lct.X; xG/D 2=�, where � is the length of a xG–orbit of
the smallest length (cf Theorem 4.1).

Geometry & Topology, Volume 15 (2011)



On exceptional quotient singularities 1857

Lemma 3.4 The global log canonical threshold lct.X;BX ; xG/ is equal to

inf

8<:c
�

X;BX ;

rX
iD1

aiDi

� ˇ̌̌̌ˇ̌ Di is a linear system and ai 2Q>0

for every i 2 f1; : : : ; rg,
Pr

iD1 aiDi is xG–invariant,
and

Pr
iD1 aiDi �Q �.KX CBX /

9=; :
Proof The required assertion follows from Definition 3.1 and [23, Theorem 4.8].

In general, it is unknown whether lct.X;BX ; xG/ is a rational number or not (cf [43,
Question 1]). Of course, we expect that lct.X;BX ; xG/ is rational. Moreover, we expect
the following to be true.

Conjecture 3.5 There is an effective xG–invariant Q–divisor DX on X such that
lct.X;BX ; xG/D c.X;BX ;DX / 2Q and DX �Q �.KX CBX /.

Let .V 3O/ be a germ of a Kawamata log terminal singularity, and let � W W ! V

be a birational morphism such that the exceptional locus of � consists of one irreducible
divisor E � W such that O 2 �.E/, the log pair .W;E/ has purely log terminal
singularities (see [23, Definition 3.5]), and �E is a � –ample Q–Cartier divisor.

Theorem 3.6 The birational morphism � W W ! V does exist.

Proof Modulo the Log Minimal Model Program in dimension dim.V /, the existence
of the morphism � follows from [31, Proposition 2.9] in the case when V has Q–
factorial singularities. It follows from [24, Theorem 1.5] that the Q–factoriality
condition in [31, Proposition 2.9] can be removed. Moreover, the proofs of [31,
Proposition 2.9] and [24, Theorem 1.5] only need the Log Minimal Model Program for
log pairs with big boundaries, which is proved now in [2].

We say that � W W ! V is a plt blow up of the singularity .V 3O/.

Definition 3.7 [31, Definition 4.1] We say that .V 3O/ is weakly-exceptional if it
has unique plt blow up.

Weakly-exceptional Kawamata log terminal singularities do exist (see [24, Exam-
ple 2.2]).

Lemma 3.8 [24, Corollary 1.7] If .V 3O/ is weakly-exceptional, then �.E/DO .
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Let R1; : : : ;Rs be irreducible components of Sing.W / such that dim.Ri/Ddim.W /�2

and Ri �E for every i 2 f1; : : : ; sg. Put

DiffE.0/D

sX
iD1

mi � 1

mi
Ri ;

where mi is the smallest positive integer such that miE is Cartier at a general point
of Ri .

Lemma 3.9 [23, Theorem 7.5] The variety E is normal, and .E;DiffE.0// is
Kawamata log terminal.

Therefore, if �.E/DO , then the log pair .E;DiffE.0// is a log Fano variety, because
�E is � –ample.

Theorem 3.10 [24, Theorem 2.1] The singularity .V 3 O/ is weakly-exceptional
if and only if �.E/DO and lct.E;DiffE.0//> 1.

Theorem 3.11 [31, Theorem 4.9] The singularity .V 3 O/ is exceptional if and
only if �.E/DO and c.E;DiffE.0/;DE/ > 1 for every effective Q–divisor DE on
the variety E such that DE �Q �.KE CDiffE.0//.

In particular, we see that if the assertion of Conjecture 3.5 is true, then .V 3 O/ is
exceptional if and only if �.E/DO and lct.E;DiffE.0// > 1 holds.

Corollary 3.12 If .V 3O/ is exceptional, then .V 3O/ is weakly-exceptional.

It should be pointed out that Theorem 3.11 is an applicable criterion. For instance, it
can be used to construct exceptional singularities of any dimension.

Example 3.13 Suppose that .V 3O/ is a Brieskorn–Pham hypersurface singularity
nX

iD0

x
ai

i D 0�CnC1
Š Spec.CŒx0;x1; : : : ;xn�/;

where n > 3 and 2 6 a0 < a1 < � � �< an . Arguing as in the proof of [4, Theorem 34],
we see that it follows from Theorem 3.11 that the singularity .V 3O/ is exceptional if

1<

nX
iD0

1

ai
< 1Cmin

�
1

a0

;
1

a1

; : : : ;
1

an

�
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and a0; a1; : : : ; an are pairwise coprime. This is satisfied if a0; a1; : : : ; an are primes
and

.3:14/
1

a0

C
1

a1

C � � �C
1

an�1

< 1<
1

a0

C
1

a1

C � � �C
1

an�1

C
1

an
:

We use induction to construct the .nC1/–tuple .a0; a1; : : : ; an/ such that a0; a1; : : : ; an

are prime integers, and the .nC1/–tuple .a0; a1; : : : ; an/ satisfies the inequality (3.14).

If nD3, then the four-tuple .a0; a1; a2; a3/D .2; 3; 7; 41/ satisfies the inequality (3.14).

Suppose that n > 4, and there are prime numbers 2 6 c0 < c1 < c2 < � � �< cn�1

such that
1

c0

C
1

c1

C � � �C
1

cn�2

< 1<
1

c0

C
1

c1

C � � �C
1

cn�2

C
1

cn�1

;

and assume that cn�1 > 8 is the largest prime with these properties (for the fixed
numbers c0; : : : ; cn�2 ). It follows from cn�1 > 8 that there are prime numbers p1;p2

and p3 such that cn�1 < p1 < p2 < p3 < 2cn�1 (see [34, page 209, (18)]). Put
.a0; a1; : : : ; an/D .c0; : : : ; cn�2;p2;p3/. Then

n�2X
iD0

1

ai
C

1

p2

<

n�2X
iD0

1

ai
C

1

p1

6 1<

n�2X
iD0

1

ci
C

1

2cn�1

C
1

2cn�1

<

n�2X
iD0

1

ai
C

1

p2

C
1

p3

by the maximality assumption imposed on cn�1 . So the .nC1/–tuple .a0; a1; : : : ; an/

satisfies the inequality (3.14), which completes the construction1.

Suppose, in addition, that .V 3 O/ is a quotient singularity CnC1=G , where n > 1

and G is a finite subgroup in GLnC1.C/. Put xG D �.G/, where �W GLnC1.C/!
Aut.Pn/Š PGLnC1.C/ is the natural projection.

Remark 3.15 Let �W CnC1! V be the quotient map. Then there is a commutative
diagram

U



��

! // W

�

��
CnC1

�
// V;

where  is the blow up of O , the morphism ! is the quotient map that is induced by
the lifted action of G on the variety U , and � is a birational morphism. Moreover, �
is a plt blow up of the singularity CnC1=G .

1 Alternatively, one can use the Sylvester sequence to construct .a0; : : : ; an/ explicitly (suggested by
S. Galkin).
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Thus, to prove the existence of a plt blow up of the quotient singularity CnC1=G we
do not need to use Theorem 3.6.

Theorem 3.16 Suppose that the group G � GLnC1.C/ does not contain reflections.
Then the singularity CnC1=G is weakly-exceptional if and only if lct.Pn; xG/> 1.

Proof Let us use the notation and assumptions of Remark 3.15. Let F be the ex-
ceptional divisor of the blow up  . Put E D !.F /. Then F Š Pn and E Š Pn= xG .
Since the group G does not contain reflections, it follows from Remark 3.2 that
lct.Pn; xG/D lct.E;DiffE.0//, which implies that the singularity CnC1=G is weakly-
exceptional if and only if lct.Pn; xG/> 1 by Theorem 3.11.

Theorem 3.17 Suppose that the group G � GLnC1.C/ does not contain reflections.
Then the singularity CnC1=G is exceptional if and only if for any xG –invariant effective
Q–divisor D on Pn such that D �Q �KPn the log pair .Pn;D/ is Kawamata log
terminal.

Proof Arguing as in the proof of Theorem 3.16 and using Theorem 3.11 together with
[23, Proposition 3.16], we obtain the required assertion.

Recall that the subgroup G � GLnC1.C/ is said to be transitive if the corresponding
.nC1/–dimensional representation is irreducible (see [3]). Note that G is transitive
if it is primitive. As an easy application of Theorems 3.17 and 3.16 in conjunction
with Lemma 3.4 one can establish the relation between the primitivity of the group G

(transitivity, respectively) and the exceptionality of the singularity CnC1=G (weak-
exceptionality, respectively).

Theorem 3.18 Suppose that the group G �GLnC1.C/ is not primitive (not transitive,
respectively). Then there exists a xG –invariant effective Q–divisor D on Pn such that
D �Q �KPn and the pair .Pn;D/ is not Kawamata log terminal (not log canonical,
respectively).

Proof We will only prove that if the group G is not primitive, then there exists a xG –
invariant effective Q–divisor D on Pn such that D �Q �KPn and the pair .Pn;D/

is not Kawamata log terminal, since the remaining assertion can be proved similarly.

Suppose that G is not primitive. Then there is a nontrivial decomposition

Spec.CŒx0;x1; : : : ;xn�/ŠCnC1
D

rM
iD1

Vi
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such that g.Vi/D Vj for all g 2G . We may assume that dim.V1/6 : : :6 dim.Vr /.

Put d D dim.V1/. Then d 6 b.nC1/=2c. We may assume that V1�CnC1 is given by
xd D xdC1 D xdC2 D � � � D xn D 0. Let M1 be a linear system on Pn that consists
of hyperplanes that are given by

d�1X
iD0

�ixi D 0� Pn
Š Proj.CŒx0;x1; : : : ;xn�/;

where �i 2C . Let M1; : : : ;Ms be the xG –orbit of the linear system M1 . Then

nC 1

s

� sX
iD1

Mi

�
�Q �KPn ;

where s 6 b.nC1/=dc. Let ƒ�Pn be a linear subspace that is given by the equations
x0 D : : :D xd D 0. Then

nC 1

s
multƒ

� sX
iD1

Mi

�
> nC 1

s
multƒ.M1/D

nC 1

s
> d D n� dim.ƒ/;

which implies the desired assertion by Lemma 3.4.

Corollary 3.19 Suppose that the group G�GLnC1.C/ is not primitive (not transitive,
respectively). Then lct.Pn; xG/6 1 (lct.Pn; xG/ < 1, respectively).

Applying Theorems 3.16, 3.17 and 3.18, we obtain the following.

Corollary 3.20 [32, Proposition 2.1] Suppose that the group G � GLnC1.C/ does
not contain reflections. Then the group G is primitive (transitive, respectively) provided
that the singularity CnC1=G is exceptional (weakly-exceptional, respectively).

Let us show how to apply Theorems 3.16 and 3.17 (cf [9, Example 1.9]).

Theorem 3.21 Suppose that G � GL3.C/. Then lct.P2; xG/> 4=3 if and only if G

does not have semi-invariants of degree at most 3.

Proof Suppose that the subgroup G does not have semi-invariants of degree at most 3.
To complete the proof we must show that lct.P2; xG/ > 4=3, because the remaining
implication is obvious.

Suppose that the strict inequality lct.P2; xG/ < 4=3 holds. Then there exist a positive
rational number � < 4=3 and an effective xG–invariant Q–divisor D on P2 such
that D �Q �KP2 , and the log pair .P2; �D/ is strictly log canonical. Applying
Lemma 2.11, we obtain a contradiction.
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Using Theorems 3.17 and 3.21, we obtain the following.

Corollary 3.22 Suppose that the group G � GL3.C/ does not contain reflections.
Then the following are equivalent:

� The singularity C3=G is exceptional.
� The subgroup G does not have semi-invariants of degree at most 3.
� The inequality lct.P2; xG/> 4=3 holds.

Arguing as in the proof of Theorem 3.21, we easily obtain a similar assertion that
can be used for the classification of three-dimensional weakly exceptional quotient
singularities (see [36]).

Theorem 3.23 Suppose that G � GL3.C/. Then lct.P2; xG/ > 1 if and only if G

does not have semi-invariants of degree at most 2.

Proof The proof is left to the reader.

Suppose that nC1D 2l for some integer l > 2. Let G1 � SL2.C/ and G2 � SLl.C/
be finite subgroups, let M be the vector space of .2�l/–matrices with entries in C .
For every .g1;g2/ 2G1 �G2 and every M 2M, put

.g1;g2/.M /D g1Mg�1
2 2MŠC2l ;

which induces a homomorphism 'W G1 �G2! SL2l.C/. Note that jker.'/j6 2 if n

is even, and ' is a monomorphism if n is odd.

Lemma 3.24 Suppose that G D '.G1 �G2/. Then lct.Pn; xG/ < 1.

Proof Put s D l � 1. Let  W P1 � P s ! Pn be the Segre embedding. Put Y D

 .P1�P s/ and let Q be the linear system consisting of all quadric hypersurfaces in Pn

that pass through the subvariety Y . Then Q is a nonempty xG –invariant linear system.
The log pair .Pn; lQ/ is not log-canonical along Y , which implies that lct.Pn; xG/ < 1

by Lemma 3.4.

As an application of Lemma 3.24 one obtains nonexceptionality of some quotient
singularities.

Example 3.25 (cf Theorem 1.22) Suppose that G D '.G1 �G2/ and l D 3. Then
the singularity C6=G is not exceptional by Theorem 1.17 and Lemma 3.24. On the
other hand, if G1 Š 2:A5 and G2 Š 3:A6 , then G has no semi-invariants of degree at
most 6 which can be shown by direct computation.
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Suppose that l D 2. The transposition of matrices in M induces an involution � 2
SL4.C/.

Lemma 3.26 If G is generated by '.G1 �G2/ and �, then lct.P3; xG/ < 1.

Proof See the proof of Lemma 3.24.

4 Four-dimensional case

Shokurov [38] and Prokhorov and Markushevich [27] obtained an explicit classification
of exceptional quotient singularities of dimension 2 and 3. Namely, for Gorenstein
quotient singularities they prove the following.

Theorem 4.1 [38, Example 5.2.3] Let G be the finite subgroup in SL2.C/. Then
the singularity C2=G is exceptional if and only if G is a binary central extension of
one of the following groups: A4 , S4 or A5 .

Theorem 4.2 [27, Theorem 3.13] Let G be a finite subgroup in SL3.C/. Then the
singularity C3=G is exceptional if and only if G is one of the following subgroups:

� a central extension of PSL2.F7/, which is isomorphic to either PSL2.F7/ or
Z3 �PSL2.F7/,

� a nontrivial central extension 3:A6 of the alternating group A6 by Z3 ,

� the Hessian group, which can be characterized by the exact sequence

1 �!H.3;F3/ �!G �! S4 �! 1;

where H.3;F3/ is the Heisenberg group consisting of all unipotent .3�3/–
matrices with entries in F3 ,

� the normal subgroup of the Hessian group of index 3 that contains H.3;F3/.

The purpose of this section is to present an analogous classification for exceptional
singularities of dimension 4 (see Theorem 4.13), and prove some relevant results.

Let xG be a finite subgroup in Aut.P3/, and let �W GL4.C/!Aut.P3/ be the natural
projection. Then there is a finite subgroup in SL4.C/ such that �.G/D xG . Moreover,
if G is primitive, then it follows from [3; 14] that one may assume that Z.G/� ŒG;G�,
where Z.G/ and ŒG;G� are the center and the commutator of the group G , respectively.

As a warming-up we start with a result that can be applied to a classification of
four-dimensional weakly exceptional quotient singularities (see [36]).
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Theorem 4.3 The inequality lct.P3; xG/> 1 holds if and only if the following three
conditions are satisfied: the group G is transitive, the group G does not have semi-
invariants of degree at most 3, and2 there is no xG–invariant smooth rational cubic
curve in P3 .

Proof Let us prove the ) part. If G has a semi-invariant of degree at most 3, then
lct.P3; xG/ 6 3=4 by Definition 3.1. If G is not transitive, then lct.P3; xG/ < 1 by
Corollary 3.19.

Suppose that there is a xG –invariant smooth rational cubic curve C � P3 . Let R� P3

be the surface that is swept out by lines that are tangent to C . Then c.P3;R/D 5=6

the surface R is xG –invariant, and deg.R/D 4. Hence, we see that lct.P3; xG/6 5=6.

Let us prove the ( part. Suppose that G is transitive, the subgroup G has no semi-
invariants of degree at most 3, there is no xG–invariant smooth rational cubic curve
in P3 , but lct.P3; xG/ < 1.

There is an effective xG–invariant Q–divisor D on P3 such that D �Q �KP3 and
a positive rational number � < 1 such that .P3; �D/ is strictly log canonical. Let
S be an irreducible subvariety of P3 that is a minimal center in LCS.P3; �D/. By
Lemma 2.8, we may assume that

LCS.P3; �D/D
[
g2 xG

fg.S/g;

where dim.S/¤ 2, because G has no semi-invariants of degree at most 3.

The locus LCS.P3; �D/ is connected by Corollary 2.4. Then S is xG–invariant by
Lemma 2.6. Since the group G is transitive, we see that S is not a point. We see
that S is a curve. Then deg.S/6 3 by Lemma 2.9, and S is not contained in a plane,
because G is transitive. Hence S is a smooth rational cubic curve.

Combining Remark 2.13, Theorem 4.3 and the classification of finite subgroups in
PGL2.C/, we easily obtain the following result (cf Theorem 3.23).

Corollary 4.4 The inequality lct.P3; xG/> 1 holds if the following three conditions
are satisfied: the group G is transitive, the group G does not have semi-invariants of
degree at most 3, and the group xG is not isomorphic to the alternating group A5 .

2One can show that the third condition of Theorem 4.3 is not redundant. Namely, if G � SL4.C/
is a primitive group isomorphic to 2:A5 , then G has no semi-invariants of degree at most 3 , but there
is a xG –invariant twisted cubic in P3 . In fact, the primitive group G Š 2:A5 gives essentially the only
example of this kind.
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The main purpose of this section is to prove the following result (cf Theorem 1.19).

Theorem 4.5 The inequality lct.P3; xG/> 5=4 holds if the following three conditions
are satisfied: the group G is primitive, the group G does not have semi-invariants of
degree at most 4, and the inequality j xGj> 169 holds.

Proof Suppose that G is primitive and does not have semi-invariants of degree
at most 4, the inequality j xGj > 169 holds, but lct.P3; xG/ < 5=4. Let us derive
a contradiction.

There is an effective xG–invariant Q–divisor D on P3 such that D �Q �KP3 and
a positive rational number � < 5=4 such that .P3; �D/ is strictly log canonical.

Let S be an irreducible subvariety in P3 that is a minimal center in LCS.P3; �D/.
Then S is a curve by Lemma 2.11.

Note that g.S/2LCS.P3; �D/ for every g2 xG , because the divisor D is xG –invariant.
It follows from Lemma 2.6 that

S \g.S/¤¿() S D g.S/

for every g 2 xG . It follows from Lemma 2.8 that we may assume that

LCS.P3; �D/D
[
g2 xG

fg.S/g:

Let I be the multiplier ideal sheaf of the log pair .P3; �D/, and let L be the log
canonical singularities subscheme of the log pair .P3; �D/. Then there is an exact
sequence

.4:6/ 0 �!H 0.OP3.1/˝ I/ �!H 0.OP3.1// �!H 0.OL˝OP3.1// �! 0

by Theorem 2.3. Then it follows from Theorem 2.7 that S is a smooth curve of genus g

such that 2g� 2< deg.S/.

Let Z be the xG–orbit of the curve S . Then Z is smooth and deg.Z/ 6 6 by
Lemma 2.9. Then 2g� 2< deg.S/6 6, which implies that g 6 3. Note that Z D L
by Remark 2.2, because .P3; �D/ is log canonical. Moreover, the curve Z is not
contained in a plane, because G is transitive.

Let r be the number of irreducible components of Z . Then 6 > deg.Z/D rdeg.S/,
which implies that r 6 6. Note that g D 0 if r > 3.

Using (4.6) and the Riemann–Roch theorem, we see that

.4:7/ 4D h0.OL˝OP3.1//D r.deg.S/�gC 1/;
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because LDZ and 2g� 2< deg.S/. In particular, we see that r 6 2.

One has deg.S/ ¤ 1, because G is primitive. Thus S is not contained in a plane,
because otherwise the xG –orbit of the plane spanned by S would give a semi-invariant
of G of degree 1 or 2. Thus, we have 6 > deg.Z/D rdeg.S/> 3r .

If r D 2, then deg.S/D 3 and gD 0, which contradicts the equality (4.7). We see that
r D 1 and ZDS . Then g 6 1 by Theorem 2.14 and Remark 2.13, because j xGj> 169.

Arguing as in the proof of Theorem 4.3, we see that g ¤ 0, because G does not have
semi-invariants of degree 4. Then it follows from (4.7) that g D 1 and deg.S/D 4.
We see that S DQ1\Q2 , where Q1 and Q2 are irreducible quadrics in P3 .

Let P be a pencil generated by Q1 and Q2 . Then P contains exactly 4 singular
surfaces, which are simple quadric cones. This means that there is a xG–orbit in P3

consisting of at most 4 points, which is impossible by Remark 2.10.

In the rest of this section we will refine the assertion of Theorem 4.5 by removing
the assumption that xG contains at least 169 elements and providing an explicit list of
possible finite subgroups in PGL4.C/ that satisfy all hypothesis of Theorem 4.5 (cf
Theorems 4.1 and 4.2). Let us start with the following example.

Example 4.8 (See Blichfeldt [3, Section 123] and Nieto [30].) Let H be a subgroup
in SL4.C/ that is conjugate to the subgroup generated by0BB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCA ;
0BB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCA ;
0BB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1CCA ;
0BB@

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

1CCA ;
and let N � SL4.C/ be the normalizer of the subgroup H . There is an exact sequence
of groups3

1 // zH
˛ // N

ˇ // S6
// 1;

where zHDhH; diag.
p
�1/i. One can show that N is a primitive subgroup of SL4.C/.

3The choice of the epimorphism ˇ is not canonical even up to conjugation, due to the existence of
outer automorphisms of S6 . There are essentially two possible choices of ˇ . To fix one of them we use
the fact that the subspace W � Sym4.C4/ of zH–invariant quartics is five-dimensional; moreover, the
group N= zH acts on W , and W is an irreducible representation of N= zH (cf the proof of Lemma 4.12 and
references therein). We choose ˇ so that W corresponds to the standard five-dimensional representation
of S6 twisted by the sign representation. Another way to describe the choice of ˇ is through introducing
the action of N= zH on the space W 0 Dƒ2.C4/ (see [30]).
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The following theorem provides an explicit list of possible finite subgroups in PGL4.C/
that satisfy all hypotheses of Theorem 4.5:

Theorem 4.9 (See [3, Chapter VII; 14, Section 8.5].) Let G be a primitive subgroup
of SL4.C/ such that Z.G/� ŒG;G�. Then one of the following possibilities holds:

� either G satisfies the hypotheses of Lemma 3.24 or Lemma 3.26,

� or G is one of the following groups:
– A5 or S5 ,
– SL2.F5/,
– SL2.F7/,
– 2:A6 , which is a central extension of the group A6 Š

xG ,
– 2:S6 , which is a central extension4 of the group S6 Š

xG ,
– 2:A7 , which is a central extension of the group A7 Š

xG ,
– Sp4.F3/,
– in the notation of Example 4.8, a primitive subgroup in N that contains ˛. zH/.

It should be pointed out that Theorem 4.9 describes primitive subgroups of SL4.C/
up to conjugation. Namely, if there are two monomorphisms �1W G! SL4.C/ and
�2W G! SL4.C/ such that both subgroups �1.G/ and �2.G/ are primitive, then it
follows from [3, Chapter VII] that �1.G/ and �2.G/ are conjugate, but it may happen
that the representations of the group G given by �1 and �2 are nonisomorphic, ie there
is no element g 2 SL4.C/ that makes the diagram

G
�1

{{

�2

##
SL4.C/

�g // SL4.C/

commutative, where �g is the conjugation by g (cf [13]).

Lemma 4.10 Suppose that G Š 2:A6 . Then G has no semi-invariants of degree at
most 4.

Proof Semi-invariants of G are its invariants by Remark 1.15, and G has no odd
degree invariants, because G contains a scalar matrix whose nonzero entries are �1.

To complete the proof, it is enough to prove that G has no invariants of degree 4.

4There are three nonisomorphic nontrivial central extensions of the group S6 with the center isomorphic
to Z2 , two of which are embedded in SL4.C/ (cf [13]). But up to conjugation there is only one subgroup
of PGL4.C/ isomorphic to S6 .
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Let V ŠC4 be the irreducible representation of the group G that corresponds to the em-
bedding G � SL4.C/. Without loss of generality, we may assume that ƒ2V ŠC6 is
a permutation representation of the group G=Z.G/Š A6 , because G has two four-
dimensional irreducible representations, which give one subgroup G � SL4.C/ up to
conjugation.

Let � be the character of the representation V , and let �4 be the character of the rep-
resentation Sym4.V /. Then

�4.g/D
1

24

�
�.g/4C 6�.g/2�.g2/C 3�.g2/2C 8�.g/�.g3/C 6�.g4/

�
for every g 2G . The values of the characters � and �4 are listed in Table 1. In this

Œ5;1�10 Œ5;1�5 Œ4;2�8 Œ3;3�6 Œ3;3�3 Œ3;1;1;1�6 Œ3;1;1;1�3 Œ2;2;1;1�4 z e

# 144 144 180 40 40 40 40 90 1 1

� 1 �1 0 �1 1 2 �2 0 �4 4

�4 0 0 �1 2 2 �4 �4 3 35 35

Table 1

table, the first row lists the types of the elements in G (for example, the symbol Œ5; 1�10

denotes the set5 of order 10 elements whose image in A6 is a product of disjoint cycles
of length 5 and 1), and z and e are the nontrivial element in the center of G and
the identity element, respectively.

Now one can check that the inner product of the character �4 and the trivial charac-
ter is zero, which implies that the subgroup G does not have invariants of degree 4.

Lemma 4.11 If G Š 2:S6 or G Š 2:A7 , then G has no semi-invariants of degree at
most 4.

Proof Recall that these groups contain 2:A6 and we can apply Lemma 4.10.

Lemma 4.12 Under the assumptions of Theorem 4.9 the subgroup G has no semi-
invariants of degree at most 4 if and only if G is one of the following groups:

� 2:A6 , 2:S6 or 2:A7 ,

� Sp4.F3/,

5 Note that these sets do not coincide with conjugacy classes. For example, the image of the set of
the elements of type Œ5; 1�10 under the natural projection 2:A6!A6 is a union of two different conjugacy
classes in A6 .
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� in the notation of Example 4.8, a subgroup of N that satisfies one of the following
four conditions:
– G DN ,
– ˛. zH/¨ G and ˇ.G/Š A6 ,
– ˛. zH/¨ G and ˇ.G/ŠS5 , where the embedding ˇ.G/�S6 is nonstandard,

ie the standard one twisted by an outer automorphism of S6 ,
– ˛. zH/¨ G and ˇ.G/ŠA5 , where the embedding ˇ.G/�S6 is nonstandard.

Proof Let d be the smallest positive number such G has an semi-invariant of degree d .
If G Š 2:A6 , then d > 5 by Lemma 4.10. If G Š 2:S6 or G Š 2:A7 , then d > 5 by
Lemma 4.11. In fact, one can check by direct computation that d D 8 if G Š 2:A6

or G Š 2:S6 or G Š 2:A7 . If G Š SL2.F7/, then the equality d D 4 holds by [26]
and Remark 1.15. If G Š Sp4.F3/, then the equality d D 12 holds by [28] and
Remark 1.15.

Suppose that GŠ SL2.F5/Š 2:A5 . Then there is a xG –invariant smooth rational cubic
curve C � P3 , because the representation G ! GL4.C/ is a symmetric square of
a two-dimensional representation of the group G . The surface swept out by the lines
tangent to the curve C is a xG –invariant surface of degree 4 (cf proof of Theorem 4.3).
Therefore, the inequality d 6 4 holds6.

Let us use the notation of Example 4.8. By Theorem 4.9, Remark 2.12 and Lem-
mas 3.24 and 3.26, to complete the proof we may assume that G is a primitive
subgroup in N that contains ˛. zH/.

One can show that the group zH has no invariants of degree less than 4 and its invariants
of degree 4 form a five-dimensional vector space W (see eg [33, Lemma 3.18]).

The group ˇ.G/ naturally acts on W . Moreover, the subgroup G has an invariant of
degree 4 if and only if the representation W has a one-dimensional subrepresentation
of the group ˇ.G/. On the other hand, it follows from [30] that if G DN , then W is
an irreducible representation of ˇ.G/D S6 .

It follows from [3, Section 123] that, up to conjugation, there exist exactly 9 possibilities
for the subgroup G � N such that G is primitive. These possibilities are listed in
Table 2. In this table, the first column lists the labels of the subgroup G according
to [3, Section 123] and the last column lists the dimensions of the irreducible ˇ.G/–
subrepresentations of W .

Note that H� zH has no semi-invariants of degree 3, because H has no invariants of
degree 3, the center of the group H coincides with its commutator and acts nontrivially
on cubic forms.

6Actually, one can show that d D 4 in this case.
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Label of the group G ˇ.G/
Generators of the

subgroup ˇ.G/� S6
Splitting type

13ı Z5 .24635/ 1; 1; 1; 1; 1

14ı Z5 Ì Z2 .24635/; .36/.45/ 1; 2; 2

15ı Z5 Ì Z4 .24635/; .3465/ 1; 2; 2

16ı A5 .24635/; .34/.56/ 1; 4

17ı A5 .24635/; .12/.36/ 5

18ı S5 .24635/; .56/ 1; 4

19ı S5 .24635/; .12/.34/.56/ 5

20ı A6 .24635/; .12/.34/ 5

21ı S6 .24635/; .12/ 5

Table 2

The subgroups of N described in Lemma 4.12 are the subgroups 21ı , 20ı , 19ı , 17ı ,
respectively. We see that d 6 4 if G is the subgroup 13ı , 14ı , 15ı , 16ı or 18ı . On
the other hand, if G is the subgroup 17ı , 19ı , 20ı or 21ı , then the subgroup G has
neither semi-invariants of degree less than 4, nor invariants of degree 4. Let us prove
that the subgroup 17ı does not have semi-invariants of degree 4. Since the absence of
semi-invariants of degree 4 implies the absence of semi-invariants of degree 2, this
would imply that in the case when G is the subgroup 17ı , 19ı , 20ı or 21ı of the
group N the inequality d > 5 holds7.

Suppose that G is the subgroup 17ı , and suppose, in addition, that G does have a semi-
invariant ˆ of degree 4. Let us show that this assumption leads to a contradiction.

Note that the polynomial ˆ is not zH–invariant, because ˆ is not G–invariant and
G= zHŠ ˇ.G/Š A5 is a simple group. Let Z be the center of the group zH . Put
xHD �. zH/. Then zH=Z Š xHŠ Z4

2
, and Z acts trivially on ˆ. Thus, there is a homo-

morphism �W xH!C� such that ker.�/¤ xH , which implies that ker.�/ŠZ3
2

, because
im.�/ is a cyclic group. Let � W xG! Aut. xH/ be the homomorphism such that

�.g/.h/D ghg�1
2 xHŠ Z4

2

for all g 2 xG and h 2 xH . Consider xH as a vector space over F2 . Then � induces
a monomorphism � W ˇ.G/!GL4.F2/ and ker.�/ is a im.�/–invariant subspace. But
im.�/ Š A5 has no nontrivial three-dimensional representations over F2 , because

7In fact, one can check by direct computation that d D 8 if G is the subgroup 17ı , 19ı , 20ı or 21ı .
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jGL3.F2/j D 168 is not divisible by jA5j D 60. Thus, we see that there is a nonzero
element t 2 xH such that t is im.�/–invariant. Let F be the stabilizer of t in GL4.F2/.
Then A5 Š im.�/� F , which is impossible, because jF j D 1344 is not divisible by
jA5j D 60.

Combining the previous results we obtain the following.

Theorem 4.13 Let G be a finite subgroup in SL4.C/. Then the following conditions
are equivalent:

� The singularity .V 3O/ is exceptional.

� The inequality lct.P3; xG/> 5=4 holds.

� The group G is primitive and G does not have semi-invariants of degree at
most 4.

� xG D �.G0/, where G0 is one of the 8 subgroups listed in Lemma 4.12.

Proof This follows from Theorems 1.17, 4.5 and 4.9 and Lemma 4.12.

5 Five-dimensional case

The purpose of this section is to present an explicit classification of exceptional five-
dimensional singularities (see Theorem 5.6, cf Theorems 4.1, 4.2 and 4.13), and prove
some relevant results.

Let xG be a finite subgroup in Aut.P4/, and consider the natural projection

�W SL5.C/! Aut.P4/Š PGL5.C/:

Then there is a finite subgroup G � SL5.C/ such that �.G/D xG . Suppose that G is
primitive. Then we may assume that Z.G/� ŒG;G� (see [5; 14]).

Example 5.1 (cf Appendix A) Let H be the Heisenberg group of all unipotent
.3�3/–matrices with entries in F5 . Then there is a monomorphism �W H! SL5.C/.
Let HM be the normalizer of the subgroup �.H/ � SL5.C/. Then there is an exact
sequence

1 // H
˛ // HM

ˇ // SL2.F5/ // 1;

and HM is a primitive subgroup in SL5.C/ (see [5, Theorem 9A; 17]).
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Theorem 5.2 (See [5; 14, Section 8.5].) Let G be a finite primitive subgroup in
SL5.C/ such that Z.G/ � ŒG;G�. Then G is one of the groups A5 , A6 , S5 , S6 ,
PSL2.F11/, PSp4.F3/, or, in the notation of Example 5.1, a primitive subgroup of HM
that contains ˛.H/.

Note that if there are two monomorphisms �1W G ! SL5.C/ and �2W G! SL5.C/
such that both subgroups �1.G/ and �2.G/ are primitive, then �1.G/ and �2.G/ are
conjugate.

Lemma 5.3 Suppose that G is one of the following groups: A5 , A6 , S5 , S6 ,
PSL2.F11/ or PSp4.F3/. Then G has an invariant of degree at most 4, which implies
that lct.P4; xG/6 4=5.

Proof If G is A5 , A6 , S5 or S6 , then G has an invariant of degree 2 by Remark 2.12.
If G Š PSp4.F3/, then G has an invariant of degree 4 (see [7]). If G Š PSL2.F11/,
then G has an invariant of degree 3 (see [1]).

Lemma 5.4 In the notation of Example 5.1, suppose that ˛.H/¨ G �HM. Then G

has no semi-invariants of degree at most 5 if and only if either G D HM or G is
a subgroup of HM of index 5.

Proof Let V be the vector space of H–invariant forms of degree 5. Then the group
HM=˛.H/ Š SL2.F5/ Š 2:A5 naturally acts on the vector space V . Moreover, it
follows from [17, Theorem 3.5] that V D V 0 ˚ V 00 , where V 0 and V 00 are three-
dimensional im.ˇ/–invariant linear subspaces that arise from two nonequivalent three-
dimensional representations of the group A5 , respectively. Therefore, we see that G has
a semi-invariant of degree 5 if and only if V 0 has a ˇ.G/–invariant one-dimensional
subspace.

Let Z Š Z2 be the center of the group HM=˛.H/ Š 2:A5 . Then 2:A5=Z Š A5 .
Moreover, either ˇ.G/ is cyclic, or Z � ˇ.G/ and ˇ.G/=Z is one of the following
subgroups of A5 : dihedral group of order 6, dihedral group of order 10, the group
Z2 �Z2 , the group A4 , the group A5 .

If ˇ.G/ is cyclic, then V 0 is a sum of one-dimensional ˇ.G/–invariant linear subspaces.
Hence we may assume that Z � ˇ.G/. Recall that Z ŠZ2 acts trivially on V 0 . Thus,
if ˇ.G/=ZŠZ2�Z2 , then V 0 is a sum of one-dimensional ˇ.G/–invariant subspaces.

If ˇ.G/=Z is a dihedral group, then V 0 must have one-dimensional ˇ.G/–invariant
subspace, because irreducible representations of dihedral groups are one-dimensional
or two-dimensional.
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If ˇ.G/=ZŠA5 or ˇ.G/=ZŠA4 , then V 0 is an irreducible representation of ˇ.G/=Z ,
which implies that V 0 is an irreducible representation of the group ˇ.G/. Now using
Corollary A.2, we complete the proof.

The main purpose of this section is to prove the following result.

Theorem 5.5 In the notation of Example 5.1, let G be a subgroup of the group HM
of index 5. Then lct.P4; xG/> 6=5.

Combining the previous results we obtain the following.

Theorem 5.6 Let G be a finite subgroup in SL5.C/. Then the following conditions
are equivalent:

� The singularity .V 3O/ is exceptional.

� The inequality lct.P4; xG/> 6=5 holds.

� The group G is primitive and G does not have semi-invariants of degree at
most 5.

� In the notation of Example 5.1, either GŠHM or G is isomorphic to a subgroup
of the group HM of index 5.

Proof The required assertion follows from Theorems 1.17, 5.5, 5.2 and Lemmas 5.4
and 5.3.

In the remaining part of this section we will prove Theorem 5.5. Let us use the notation
of Example 5.1. Suppose that G be a subgroup of the group HM of index 5.

Lemma 5.7 Let ƒ be a xG–invariant subset of P4 . Then ƒ consists of at least 10

points.

Proof The required assertion follows from Lemma 5.4 and Corollary A.2.

Suppose that lct.P4; xG/ < 6=5. Let us derive a contradiction.

There is a rational positive number �< 6=5 and an effective xG –invariant Q–divisor D

on P5 such that D �Q �KP4 and the log pair .P4; �D/ is strictly log canonical.
Let S be an irreducible subvariety of P4 that is a minimal center in LCS.P4; �D/.
Then S is either a curve or a surface by Lemma 2.11.
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Let Z be the xG –orbit of the subvariety S �P4 , and let r be the number of irreducible
components of the subvariety Z . We may assume that

LCS.P4; �D/D
[
g2 xG

fg.S/g

by Lemma 2.8. Then Supp.Z/D LCS.P4; �D/. It follows from Lemma 2.6 that

S \g.S/¤¿() S D g.S/

for every g 2 xG . Then deg.Z/D rdeg.S/.

Let I be the multiplier ideal sheaf of the log pair .P4; �D/, and let L be the log
canonical singularities subscheme of the log pair .P4; �D/. By Theorem 2.3, there is
an exact sequence

.5:8/ 0 �!H 0.OP4.n/˝ I/ �!H 0.OP4.n// �!H 0.OL˝OP4.n// �! 0

for every n > 1. Note that Z D L by Remark 2.2.

Lemma 5.9 The center S is not a curve.

Proof Suppose that S is a curve. Then it follows from Theorem 2.7 that S is a smooth
curve of genus g such that 2g�2< deg.S/. Moreover, it follows from Lemma 2.9 that
deg.Z/6 10. Then 2g�2< deg.S/6 10, which implies that g 6 5. The curve Z is
not contained in a hyperplane, because G is transitive. Then 10 > deg.Z/D rdeg.S/,
which implies that r 6 10.

Using (5.8) and the Riemann–Roch theorem, we see that

.5:10/ 5D h0.OL˝OP3.1//D r.deg.S/�gC 1/;

because LDZ and 2g� 2< deg.S/. Thus, either r D 1 or r D 5.

If r D 5, then deg.S/D 2 and g D 0, which contradicts (5.10). We see that r D 1.
Thus S is a xG–invariant irreducible curve of genus g 6 5, which is impossible by
Lemma A.8.

We see that S is a surface. Then deg.Z/ 6 10 by Lemma 2.9. It follows from
Theorem 2.7 that S is normal and has at most rational singularities, and there is
an effective Q–divisor BS and an ample Q–divisor � on the surface S such that

KS CBS C��Q OP4.1/jS ;

and the log pair .S;BS / has Kawamata log terminal singularities. Therefore, the
equality r D 1 holds, since two irreducible surfaces in P4 have nonempty intersection.

Thus, we see that the surface S DZ is xG –invariant.
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Lemma 5.11 The surface S is not contained in a hyperplane in P4 .

Proof The required assertion follows from the fact that G is transitive.

Lemma 5.12 The surface S is not contained in a quadric hypersurface in P4 .

Proof Suppose that there is a quadric hypersurface Q�P4 such that S �Q. Then Q

is irreducible by Lemma 5.11. Moreover, it follows from Lemma 5.4 that there is
a quadric hypersurface Q0�P4 such that S�Q\Q0 , because otherwise the quadric Q

would be xG –invariant. Then Q0 is irreducible by Lemma 5.11.

Suppose that S DQ\Q0 . If S is nonsingular, consider a pencil P generated by the
quadrics Q and Q0 . Then P contains exactly 5 singular quadrics, which are simple
quadric cones. This means that there is a xG –orbit in P4 consisting of at most 5 points,
which is impossible, because G has no semi-invariants of degree up to 5. Therefore,
the surface S is singular.

It follows from [16] that jSing.S/j6 4, because S has canonical singularities since S

is a complete intersection that has Kawamata log terminal singularities. But Sing.S/
is xG –invariant, which contradicts Lemma 5.7.

We see that S ¤ Q\Q0 . Therefore, it follows from Lemma 5.11 that either S is
a cone over a smooth rational cubic curve, or S is a smooth cubic scroll.

If S is a cone, then its vertex is xG –invariant, which is impossible since G is transitive.
Thus, we see that S is a smooth cubic scroll. Then there is a unique line L� S such
that L2 D�1, which implies that L must be xG –invariant, which is again impossible,
because G is transitive.

Let H be a hyperplane section of the surface S � P4 .

Lemma 5.13 The equalities H �H D�H �KS D 5 and �.OS /D 0 hold.

Proof It follows from Corollary A.2 that there is m>0 such that h0.OP4.3/˝I/D5m.
Let us show that this is possible only if H �H D�H �KS D 5 and �.OS /D 0.

It follows from the Riemann–Roch theorem and Theorem 2.3 that

.5:14/ h0.OS .nH //D �.OS .nH //D �.OS /C
n2

2
.H �H /�

n

2
.H �KS /

for any n > 1. It follows from Lemma 5.11, the equality (5.14) and the exact se-
quence (5.8) that

.5:15/ 5D h0.OS .H //D �.OS /C
1

2
.H �H /�

1

2
.H �KS /;
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and it follows from Lemma 5.12, the equality (5.14) and the exact sequence (5.8) that

.5:16/ 15D h0.OS .2H //D �.OS /C 2.H �H /� .H �KS /:

It follows from Lemmas 2.9, 5.11 and 5.12 that 4 6 H �H D deg.S/6 10.

Suppose that H �H D10. It follows from the equalities (5.15) and (5.16) that �.OS /D5

and H �KS DH �H D 10, which is impossible, because H �Q KSCBSC�, where
� is ample and BS is effective. Thus H �H 6 9.

It follows from the equalities (5.15) and (5.16) that

H �KS D 3�.OS /� 5D 3.H �H /� 20:

It follows from the equality (5.14) and the exact sequence (5.8) that

h0.OP4.3/˝I/D 35�h0.OS .3H //D 35�.�.OS /C
9

2
.H �H /�

3

2
.H �KS //D 5m;

which implies that H �H D5, �.OS /D0 and H �KS D�5, because 4 6 H �H 6 9.

Let � W U ! S be the minimal resolution of the surface S . Then �.U /D�1 and

1� h1.OU /D 1� h1.OS /D h2.OS /D h2.OU /D h0.OU .KU //D 0;

because S has rational singularities and �.U /D�1 since H �KS D�5< 0.

Corollary 5.17 The surface S is birational to E � P1 , where E is smooth elliptic
curve.

By Remark 2.13, there is a monomorphism �W xG ! Aut.Y /, which contradicts
Corollary A.11.

The obtained contradiction completes the proof of Theorem 5.5.

Appendix A Horrocks–Mumford group

Let H be the Heisenberg group of all unipotent .3�3/–matrices with entries in F5 .
Then

HD hx;y; z j x5
D y5

D z5
D 1; xz D zx; yz D zy; xy D zyxi
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for some x;y; z 2H . There is a monomorphism �W H! SL5.C/ such that

�.x/D

0BBBB@
0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1CCCCA ; �.y/D

0BBBB@
� 0 0 0 0

0 �2 0 0 0

0 0 �3 0 0

0 0 0 �4 0

0 0 0 0 1

1CCCCA ;
where � is a nontrivial fifth root of unity. Let us identify H with im.�/. Then
Z.H/Š Z5 and 0BBBB@

� 0 0 0 0

0 � 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 �

1CCCCA 2Z.H/;

where Z.H/ is the center of H . Let �W GL5.C/! PGL5.C/ be the natural projection.

Lemma A.1 [17, Section 1] Let �W H! GLN .C/ be an irreducible representation
of H . Then either N D 1 and Z.H/� ker.�/, or N is divisible by 5.

Take n 2 Z>0 . Then H naturally acts on H 0.OP4.n//.

Corollary A.2 Let V be a H–invariant subspace in H 0.OP4.n//. Then either
dim.V / is divisible by 5, or n is divisible by 5.

Let HM � SL5.C/ be the normalizer of the subgroup H . Then there is an exact
sequence

1 // H
˛ // HM

ˇ // SL2.F5/ // 1;

and it follows from [17, Section 1] that there is a subgroup M�HM such that HMD
HÌM and MŠˇ.M/DSL2.F5/Š2:A5 . Put xHD�.H/ and HMD�.HM/. Then
HM= xHŠ SL2.F5/ and xHŠZ5�Z5 . Let Z.HM/ be the center of the group HM.
Then Z.HM/DZ.H/Š Z5 .

Corollary A.3 The group HM is isomorphic to HM=Z.HM/.

Let G be a subgroup of the group HM of index 5. Then G ŠH Ì 2:A4 �H Ì 2:A5

and j xGj D 600, where xG D �.G/. Let Z.G/ be the center of the group G . Then
Z.G/DZ.HM/DZ.H/Š Z5 .
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Lemma A.4 Let g be an element of the group xG such that ghD hg 2 xG for every
element h 2 xH . Then g 2 xH .

Proof The required assertion follows from [17, Section 1].

Lemma A.5 Let F be a proper normal subgroup of 2:A4 . Then either F Š Z2 is
a center of the group 2:A4 , or F ŠQ8 , where Q8 is the quaternion group of order 8.

Proof The only nontrivial normal subgroup of the group A4 is isomorphic to the
group Z2 �Z2 .

Lemma A.6 The group xH contains no proper nontrivial subgroups that are normal
in xG .

Proof Let � W HM! Aut. xH/ be the homomorphism such that

�.g/.h/D ghg�1
2 xH

for all g 2HM and h 2 xH . Then ker.�/D xH by Lemma A.4.

The homomorphism � induces an isomorphism � W M! SL2.F5/.

Let F �M be a subgroup such that ˇ.F /D ˇ.G/Š 2:A4 . Then G DH Ì F .

Suppose that the group xH contains a proper nontrivial subgroup that is a normal
subgroup of the group xG . Let us consider xH as a two-dimensional vector space
over F5 . Then F2

5
Š xH D V0˚ V1 , where V0 and V1 are one-dimensional �.F /–

invariant subspaces, since j2:A4j D 24 is coprime to 5.

By Lemma A.4, the homomorphism � induces a monomorphism

F �! GL1.F5/�GL1.F5/Š Z4 �Z4;

which implies that F is an abelian group, which is not the case.

Lemma A.7 The group xG does not contain proper normal subgroups not contain-
ing xH .

Proof Suppose that xG contains a normal subgroup xG0 such that xH 6� xG0 . Then the
intersection xG0\ xH consists of the identity element in G by Lemma A.6. Hence

xG0 Š ˇ. xG0/� ˇ. xG/Š 2:A4;

which implies that xG0 is isomorphic to a normal subgroup of the group 2:A4 .

Let xZ be the center of xG0 . Then xZ is a normal subgroup of the group xG . Thus,
we have xZ Š Z2 by Lemma A.5. Hence xZ is contained in the center of xG , which
contradicts Lemma A.4.
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Lemma A.8 Let E be a smooth irreducible curve of genus g 6 8. Then there is no
monomorphism xG! Aut.E/.

Proof By classification of finite subgroups in PGL2.C/ the case g D 0 is impossible.
The cases 2 6 g 6 8 are impossible by Theorem 2.14. Therefore, we may assume that
E is an elliptic curve.

Let us consider E as an abelian group. Then there is an exact sequence

1 // E
� // Aut.E/ � // Zn

// 1

for some n 2 f2; 4; 6g.

Suppose that there is a monomorphism � W xG! Aut.E/. Then �. xH/� �.E/, because
�.E/ contains all the elements of Aut.E/ of order 5.

Let g be any element of xG such that �.g/ 2 �.E/. Then �.g/�.h/D �.h/�.g/ for
every h2 xH , because �.E/ is an abelian group, and thus g 2 xH by Lemma A.4. Hence
�. xG/\ �.E/D �. xH/, which implies that �. xG/Š ˇ. xG/Š 2:A4 , which is absurd.

The main purpose of this section is to prove the following result.

Theorem A.9 Let E be a smooth elliptic curve. Then there is no exact sequence of
groups

.A:10/ 1 // G0
� // xG

� // G00 // 1;

where G0 and G00 are subgroups of the groups Aut.P1/ and Aut.E/, respectively.

Proof Suppose that the exact sequence of groups (A.10) does exist. Then � is not
an isomorphism, because the group Aut.P1/ does not contain subgroups isomorphic
to xG . The monomorphism � is not an isomorphism by Lemma A.8. Then xH� �.G0/
by Lemma A.7. But Aut.P1/ contains no subgroups isomorphic to xH , which is
a contradiction.

Corollary A.11 There is no monomorphism xG!Bir.E�P1/, where E is a smooth
elliptic curve.

We believe that there is a simpler proof of Theorem A.9.
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