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Cylinders in rational surfaces

I. A. Cheltsov

Abstract. We answer a question of Ciliberto’s about cylinders in rational
surfaces obtained by blowing up the plane at points in general position.
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§ 1. Introduction

Let S be a smooth rational surface. A cylinder in S is an open subset U ⊂ S
such that U ∼= C1×Z for an affine curve Z. The surface S contains many cylinders,
and it seems a hopeless task to describe all of them. Instead, we consider a similar
problem for polarized surfaces (see [7]–[9], [2], [3] and [11]). To describe it, fix an
ample Q-divisor A on the surface S.

Definition 1.1. An A-polar cylinder in S is a Zariski open subset U in S such
that

(C) U ∼= C1 × Z for some affine curve Z, that is, U is a cylinder in S;
(P) there is an effective Q-divisorD on S such thatD∼QA and U = S\Supp(D).

An ample divisor A can always be chosen such that S contains an A-polar cylin-
der. This follows from Proposition 3.13 in [7]. On the other hand, we have the
following.

Theorem 1.2 (see [9], [2] and [3]). Let Sd be a smooth del Pezzo surface1 of degree
d = K2

Sd
. Then the following assertions hold:

(1) the surface Sd contains a (−KSd
)-polar cylinder if and only if d ⩾ 4;

(2) if d ⩾ 4, then Sd contains an H-polar cylinder for every ample Q-divisor H
on Sd ;

(3) if d = 3, then Sd contains an H-polar cylinder for every ample Q-divisor H
on Sd such that H /∈ Q>0[−KSd

].

The paper [3] also contains one relevant result for del Pezzo surfaces of degree 1
and 2. To describe this result, let

µA = inf
{
λ ∈ Q>0 | the Q-divisor KS + λA is pseudo-effective

}
∈ Q.

This research was carried out with the support of the Laboratory for Mirror Symmetry and
Automorphic Forms, National Research University Higher School of Economics, RF Government
grant, ag. no. 14.641.31.0001.

1Unless explicitly stated otherwise, all varieties are assumed to be algebraic, projective and
defined over C.
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The number µA is known as the Fujita invariant, pseudo-effective threshold or
spectral value of the divisor A (see [6] and [13]). Let ∆A be the smallest extremal
face of the Mori cone NE(S) that contains KS + µAA. Denote the dimension of
the face ∆A by rA. Observe that rA = 0 if and only if S is a smooth del Pezzo
surface and µAA ∼Q −KS . The number rA is known as the Fujita rank of the
divisor A (see [3]).

Theorem 1.3 (see [3]). Let Sd be a smooth del Pezzo surface of degree d = K2
Sd

,
let H be an ample Q-divisor on Sd , and let rH be the Fujita rank of the divisor H .
Suppose that rH + d ⩽ 3. Then Sd does not contain H-polar cylinders.

At the conference “Complex affine geometry, hyperbolicity and complex analysis”
held in Grenoble in October 2016, Ciro Ciliberto asked the following.

Question 1.4. Let S be a rational surface that is obtained from P2 by blowing
up points in general position, and let A be an ample Q-divisor on S such that
rA +K2

S ⩽ 3. Is it true that S does not contain A-polar cylinders?

Ciliberto also suggested that Question 1.4 be considered modulo Conjecture 2.3
in [4]. In this paper, we show that the answer to Question 1.4 is ‘Yes’. To be
precise, we prove the following.

Theorem 1.5. Let S be a smooth rational surface that satisfies the following gen-
erality condition:

(∗) the self-intersection of every smooth rational curve in S is at least −1.
Let A be an ample Q-divisor on S , and let rA be the Fujita rank of the divisor A.
Suppose that rA +K2

S ⩽ 3. Then S does not contain A-polar cylinders.

By Proposition 2.4 in [5], rational surfaces obtained by blowing up P2 at points
in general position satisfy (∗). Thus, the answer to Question 1.4 is ‘Yes’.

Remark 1.6. Smooth del Pezzo surfaces satisfy (∗). Moreover, if K2
S ⩾ 1, then the

divisor −KS is ample if and only if S satisfies (∗). This shows that Theorem 1.5 is
a generalization of Theorem 1.3.

By Corollary 3.2 in [8], Theorem 1.5 implies the following.

Corollary 1.7. Let S be a smooth rational surface that satisfies (∗), let A be an
ample Z-divisor on S , let rA be the Fujita rank of the divisor A, and let

V = Spec
(⊕
n⩾0

H0(S,OS(nA))
)
.

Suppose that rA+K2
S ⩽ 3. Then V does not admit an effective action of the additive

group C+ .

The following example shows that the inequality rA +K2
S ⩽ 3 in Theorem 1.5 is

sharp.

Example 1.8. Let S be a rational surface that satisfies (∗). Suppose that K2
S ⩽ 3.

Then there exists a blow-down f : S → P2 of 9 − K2
S different points. Put

k = 4−K2
S ⩾ 1. Let E1, . . . , E5, G1, . . . , Gk be the exceptional curves of f , let C

be the unique conic in P2 that passes through f(E1), . . . , f(E5), let L be a general
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line in P2 tangent to C , and let P be the pencil generated by C and 2L. Denote
the conic in P that contains f(Gi) by Ci. Then

P2 \ (C ∪ L ∪ C1 ∪ · · · ∪ C)

is a cylinder. Denote the proper transforms of C and L on S by C̃ and L̃, respec-
tively. Similarly, denote the proper transform of the conic Ci on the surface S
by C̃i. Then

S \ (C̃ ∪ L̃ ∪ E1 ∪ · · · ∪ E5 ∪ C̃1 ∪ · · · ∪ C̃k ∪G1 ∪ · · · ∪Gk)
∼= P2 \ (C ∪ L ∪ C1 ∪ · · · ∪ Ck).

Let ε1, ε2 and x be rational numbers such that 1/2 > ε1 > ε2/2 > 0 и 1 > x >
1− (1−2ε1)/(2k). Let A = −KS +x(G1 + · · ·+Gk). Then A is ample and rA = k,
since

A∼Q

(
1 + ε1 −

ε2
2

)
C̃ + ε2L̃+

(
ε1 −

ε2
2

) 5∑
i=1

Ei +
1− 2ε1

2k

k∑
i=1

C̃i

+
(
x+

1− 2ε1
2k

− 1
) k∑
i=1

Gi.

Thus, the surface S contains an A-polar cylinder, and rA +K2
S = 4.

The following example shows that the inequality rA +K2
S ⩾ 4 does not always

imply the existence of A-polar cylinders in S.

Example 1.9. Let f : S → P2 be a blow-up of nine points such that |−KS | is a base
point free pencil. Suppose that all curves in the pencil |−KS | are irreducible. Then
S satisfies (∗). Suppose, in addition, that all singular curves in the pencil |−KS | do
not have cusps. Let E1, . . . , E4 be any four f -exceptional curves. Fix x ∈ Q such
that 0 < x < 1. Let

A = −KS + x(E1 + · · ·+ E4).

Then A is ample. Moreover, we have rA = 4. Furthermore, if x > 7/8, then it
follows from Example 1.8 that S contains an A-polar cylinder. On the other hand,
the surface S does not contain A-polar cylinders for x ⩽ 1/4 by Lemmas 2.4, 2.6
and 2.7.

The following examples shows that we cannot omit (∗) in Theorem 1.5.

Example 1.10. Let L1 and L2 be two distinct lines in P2. Then

P2 \ (L1 ∪ L2) ∼= C1 × C∗.

Let P1 be a point in L1 \ L2. Let P2, . . . , P7 be general points in L2 \ L1. Let
f : Ŝ→P2 be the blow-up of these seven points P1, . . . , P7. Denote the f -exceptional
curves such that f(Fi) = Pi by F1, . . . , F7. Let g : S̃ → Ŝ be the blow-up of the
point in F1 contained in the proper transform of L1. Denote the g-exceptional curve
by G. Let F̃1 be the proper transform on S̃ of the curve F1. Let h : S → S̃ be the
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blow-up of the point F̃1 ∩G. Denote the h-exceptional curve by H. Let e : S → S̃
be the blow-up of a general point in H. Denote the e-exceptional curve by E .
Denote the proper transforms of the curves H,G,F1, . . . , F7, L1, L2 on the surface
S by H ,G ,F1, . . . ,F7,L1,L2, respectively. Fix a positive rational number ε
such that ε < 1/3. Then

−KS ∼Q (2− ε)L1 + (1 + ε)L2 + (1− ε)F1 + ε

7∑
i=2

Fi

+ (2− 2ε)G + (2− 3ε)H + (1− 3ε)E .

We also have

S \ (L1 ∪L2 ∪F1 ∪ · · · ∪F7 ∪ G ∪H ∪ E ) ∼= P2 \ (L1 ∪ L2).

Let π : S → S be the contraction of the curves L1, G and H . Then S is a smooth
surface. We have K2

S = 2, the divisor −KS is nef, but

π(F1) · π(F1) = π(L2) · π(L2) = −2.

In particular, the surface S does not satisfy (∗). Let L12 be the line in P2 that
contains P1 and P2, and let L12 be its proper transform on S . Fix a positive
rational number x such that ε > x > 3ε− 1. Then

−KS + xL12 ∼Q (2− ε)L1 + (1 + ε)L2 + (1− ε)F1 + (ε− x)F2

+ ε(F3 + · · ·+ F7) + (2 + x− 2ε)G + (2 + x− 3ε)H + (1 + x− 3ε)E .

Let A = −KS + xπ(L12). Then the divisor A is ample and rA = 1, so that
rA +K2

S = 3. On the other hand, the surface S contains an A-polar cylinder, since

A∼Q (1 + ε)π(L2) + (1− ε)π(F1) + (ε−x)π(F2) + ε
7∑
i=3

π(Fi) + (1 +x− 3ε)π(E )

and
S \ (π(L2) ∪ π(F1) ∪ · · · ∪ π(F7) ∪ π(E )) ∼= C1 × C∗.

Now we describe the structure of this paper. In § 2 we present results that are
used in the proof of Theorem 1.5. In § 3 we prove three lemmas that constitute the
main part of the proof of Theorem 1.5. In § 4 we finish the proof of Theorem 1.5.

Acknowledgement. The author is grateful to Ciro Ciliberto for asking Ques-
tion 1.4.

§ 2. Preliminaries

Let S be a smooth rational surface, and let C1, . . . , Cn be irreducible curves
on S. Fix nonnegative rational numbers λ1, . . . , λn. Let D = λ1C1 + · · · + λnCn.
For consistency, we will use this notation throughout the paper. In this section,
we present a few well-known (local and global) results about S and D that will be
used in the proof of Theorem 1.5. We start with the following.
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Lemma 2.1 (see [10], Theorem 4.57, (2)). Let P be a point in S . Suppose the
singularities of the log pair (S,D) are not log canonical at P . Then multP (D) > 1.

The following lemma is a special case of a much more general result, known as
the inversion of adjunction (see [10], Theorem 5.50).

Lemma 2.2 (see [10], Corollary 5.57). Let P be a smooth point of the curve C1 .
Suppose that λ1 ⩽ 1 and the log pair (S,D) is not log canonical at P . Let

∆ = λ2C2 + · · ·+ λnCn.

Then C1 ·∆ ⩾ (C1 ·∆)P > 1.

We will also use the following (local) result.

Lemma 2.3 (see [1], Theorem 13). Let P be a point in C1 ∩ C2 . Suppose that
λ1 ⩽ 1 and λ2 ⩽ 1. Suppose further that at P the curves C1 and C2 are smooth
and intersect transversally, and that the log pair (S,D) is not log canonical at P .
Let

∆ = λ3C3 + · · ·+ λnCn.

If multP (∆) ⩽ 1, then (C1 ·∆)P > 1− λ2 or (C2 ·∆)P > 1− λ1 .

The following result was used in Example 1.9.

Lemma 2.4. Using the assumptions and notation from Example 1.9, suppose that
D ∼Q A and x ⩽ 1/4. Then the log pair (S,D) is log canonical.

Proof. Suppose that (S,D) is not log canonical at some point P ∈ S. Let C be
the curve in the pencil |−KS | that contains P . By assumption, the curve C is
irreducible. Moreover, its arithmetic genus is 1, so that it is either smooth or has
one simple node, because we assume that curves in the pencil |−KS | do not have
cusps.

If C is not contained in Supp(D), then 1 ⩾ 4x = C1 · ∆ ⩾ multP (D) > 1
by Lemma 2.1. This shows that C is contained in the support of the divisor D.
Without loss of generality we can assume that C = C1 and λ1 > 1. Let ∆ =
λ2C2 + · · ·+ λnCn.

We claim that λ1 < 1. Indeed, we have

C1 + x(E1 + · · ·+ E4)∼Q λ1C1 + ∆,

and the intersection form of the curves E1, . . . , E4 is negative definite. Thus,
if λ1 ⩾ 1, then λ1 = 1 and ∆ = x(E1 + · · ·+E4), which is impossible, because the
singularities of the log pair (S,C1 + x(E1 + · · ·+E4)) are log canonical, since C1 is
either smooth or has one simple node (by assumption).

If C1 is smooth at P , then 1 ⩾ 4x = C1 ·∆ ⩾ (C1 ·∆)P > 1 by Lemma 2.2, so that
the curve C1 has a simple node at the point P . This implies that P /∈ E1∪· · ·∪E4,
because C · Ei = −KS · Ei = 1 for every i.

We can assume that one of the curves E1, . . . , E4 is not contained in Supp(∆),
since otherwise we can swap D with the divisor

(1 + µ)D − µ(C1 + x(E1 + · · ·+ E4)r)
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for an appropriate positive rational number µ. Without loss of generality, we can
assume that E4 ̸⊂ Supp(∆). Then

1− x = E4 · (λ1C1 + ∆) = λ1 + E4 ·∆ ⩾ λ1.

Let m = multP (∆). Then 4x = C1 ·∆ ⩾ 2m, so that m ⩽ 2x.
Let f : S̃ → S be the blow-up of the point P . Denote the f -exceptional curve

by F and the proper transforms on S̃ of the divisors C1 and ∆ by C̃1 and ∆̃,
respectively. Then (S̃, λ1C̃1 + ∆̃ + (2λ1 + m − 1)F ) is not log canonical at some
point Q ∈ F , since

KS̃ + λ1C̃1 + ∆̃ + (2λ1 +m− 1)F ∼Q f
∗(KS +D).

Moreover, 2λ1+m−1 ⩽ 1, since we have already proved that λ1 ⩽ 1−x andm ⩽ 2x.
If Q /∈ C̃1, then (S̃, ∆̃ + F ) is not log canonical at Q, so that 1/2 ⩾ 2x ⩾

m = F · ∆̃ > 1 by Lemma 2.2. This shows that Q ∈ C̃1.
The curve C̃1 is smooth and intersects F transversally at Q. We know that

m ⩽ 2x ⩽ 1. Thus, we can apply Lemma 2.3 to the log pair (S̃, λ1C̃1 + ∆̃ +
(2λ1 +m− 1)F ). Then

4x− 2m = ∆̃ · C̃1 > 2(1− (2λ1 +m− 1)),

or m = ∆̃ · F > 2(1 − λ1). This leads to a contradiction, since m ⩽ 2x and
λ1 ⩽ 1− x. The lemma is proved.

In the proof of Theorem 1.5 we will use the following (global) result.

Theorem 2.5 (see [2], Theorem 1.12). Suppose that S is a smooth del Pezzo surface
such that K2

S ⩽ 3, and let
D ∼Q −KS .

Let P be a point in S . Suppose that (S,D) is not log canonical at the point P .
Then the linear system |−KS | contains a unique curve T such that (S, T ) is not log
canonical at P . Moreover, the support of the divisor D contains all the irreducible
components of the curve T .

Let U = S \ (C1 ∪ · · · ∪ Cn). Suppose that U ∼= C1 × Z for an affine curve Z.

Lemma 2.6. The inequality n ⩾ 10−K2
S holds.

This follows from the proof of Lemma 4.11 in [7].
The embeddings Z ↪→ P1 and C1 ↪→ P1 induce the commutative diagram

P1 × P1

p2

��

C1 × P1? _oo

p2

��

C1 × Z ∼= U? _oo

pZ

��

� � // S

ψ

���
�
�
�
�
�
�

Z � s

&&LLLLLLLLLLLLJ j

wwoooooooooooooo S

π

ffNNNNNNNNNNNNN

φ
xxppppppppppppp

P1 P1 P1



Cylinders in rational surfaces 405

where pZ , p2 and p2 are the projections onto the second factors, ψ is the map
induced by pZ , the map π is a birational morphism resolving the indeterminacy
of ψ and φ is a morphism. Let E1, . . . ,Em be the π-exceptional curves (if π is an
isomorphism, we let m = 0). Let C be the section of the projection p2 that is the
complement of C1×P1 in P1×P1. Denote the proper transforms on S of the curves
C1, . . . , Cn by C1, . . . ,Cn, respectively. Similarly, denote the proper transform of
the curve C on the surface S by C .

Lemma 2.7. Suppose that KS + D is pseudo-effective, and λi < 2 for every i.
Then π(C ) is a point, and (S,D) is not log canonical at π(C ).

Proof. By construction, a general fibre of the morphism φ is a smooth rational
curve, and the curve C is its section. Then C is either one of the curves C1, . . . ,Cn or
one of the curves E1, . . . ,Em. All the other curves among C1, . . . ,Cn and E1, . . . ,Em
are mapped by φ to points in P1. Thus, without loss of generality we can assume
that C = C1 or C = Em.

There are rational numbers µ1, . . . , µm such that

KS +
n∑
i=1

λiCi +
m∑
i=1

µiEi = π∗(KS +D).

Let F be a general fibre of the morphism φ. If C = C1, then

−2 + λ1 =
(
KS +

n∑
i=1

λiCi +
m∑
i=1

µiEi

)
·F

= π∗(KS +D) ·F = (KS +D) · π(F ) ⩾ 0,

because KS +D is pseudo-effective. Thus, in this case λ1 > 2, which is impossible
by assumption. Hence we conclude that C = Em, so that π(C ) is a point. Then

−2 + µm =
(
KS +

n∑
i=1

λiCi +
m∑
i=1

µiEi

)
·F

= π∗(KS +D) ·F = (KS +D) · π(F ) ⩾ 0,

because the divisor KS +D is pseudo-effective. This shows that the singularities of
the log pair (S,D) are not log canonical at the point π(C ). The lemma is proved.

§ 3. Three main lemmas

In this section, we prove three results which will be used later, in the proof of
Theorem 1.5 in § 4, namely Lemmas 3.4–3.6 below.

Let S be a smooth rational surface that satisfies (∗), let C1, . . . , Cn be irreducible
curves on S, let

U = S \ (C1 ∪ · · · ∪ Cn)

and letD =
∑n
i=1 λiCi for some non-negative rational numbers λ1, . . . , λn. Suppose

also that S contains disjoint smooth rational curves E1, . . . , Er such that E2
i = −1

for every i, and
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D ∼Q −KS +
r∑
i=1

aiEi

for some nonnegative rational numbers a1, . . . , ar.

Remark 3.1. If D is ample, then r is the Fujita rank of the divisor D. However,
in this section, we deliberately do not assume that D is ample. We hope that
this will not cause much confusion. We have to consider nonample divisors here,
because Lemmas 3.4–3.6 can also be applied to nonample divisors, and this is also
used in proving them.

Let g : S → S be a blow-down of the curves E1, . . . , Er, let C1 = g(C1), . . . ,
Cn = g(Cn), and let D = λ1C1 + · · ·+ λnCn. Then K2

S
= r+K2

S and D∼Q −KS .

Remark 3.2. Since S satisfies (∗) by assumption, the surface S also satisfies (∗).
In particular, if r +K2

S ⩾ 1, then S is a smooth del Pezzo surface by Remark 1.6.

First we prove an auxiliary result.

Lemma 3.3. Suppose that Ci ̸= Ej for all i and j . Then the log pair (S,D) is log
canonical along E1 ∪ · · · ∪ Er .

Proof. Suppose that the log pair (S,D) is not log canonical at some point P ∈
E1 ∪ · · · ∪ Er. Then multP (D) > 1 by Lemma 2.1. Thus, if P ∈ E1, then
1 ⩾ 1− a1 = D · E1 > 1, which is absurd. Similarly, we see that P /∈ E2 ∪ · · · ∪Er.
The lemma is proved.

Recall that U = S \ (C1 ∪ · · · ∪Cn), and r is the number of g-exceptional curves.

Lemma 3.4. Suppose that r + K2
S = 1, and λi > 0 for every i. Then U is not

a cylinder.

Proof. We have U=S\Supp(D), and S is a smooth del Pezzo surface by Remark 3.2.
If K2

S = 1, then r = 0, so that S ∼= S and D∼Q−KS . In this case, if U is a cylinder,
then U is a (−KS)-polar cylinder, which is impossible by Theorem 1.2. Therefore,
we can assume that K2

S ⩽ 0. We prove the required assertion by induction on K2
S .

Suppose first that C1 = E1. Then there exists a commutative diagram

S
f

����
��

��
�� g

��>
>>

>>
>>

>

Ŝ
h // S

where f : S → Ŝ is a contraction of the curve C1 = E1, and h is a birational
morphism. Denote the proper transforms on Ŝ of the curves E2, . . . , Er by Ê2,
. . . , Êr, respectively and the proper transforms on Ŝ of the curves C2, . . . , Cn by
Ĉ2, . . . , Ĉn, respectively. Then K2

Ŝ
= K2

S + 1 and

−KŜ +
r∑
i=2

aiÊi ∼Q

n∑
i=2

λiĈi.
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By induction, the subset Ŝ \ (Ĉ2 ∪ · · · ∪ Ĉn) ∼= U is not a cylinder. Thus, we can
assume that C1 ̸= E1. Similarly, we can assume that Ci ̸= Ej for all possible i
and j, which means that none of the curves E1, . . . , Er is contained in Supp(D).

Suppose that U is a cylinder. Then n ⩾ 10−K2
S ⩾ 10 by Lemma 2.6, and

1 = −KS ·D = −KS · (λ1C1 + · · ·+ λnCn) ⩾
n∑
i=1

λi

because the divisor −KS is ample. Thus, we see that λi < 1 for every i.
By Lemma 2.7, the surface S contains a point P such that the log pair (S,D) is

not log canonical at P . In the notation of § 2, P is the point π(C ). Let P = g(P ).
Then (S,D) is not log canonical at P because P /∈ E1 ∪ · · · ∪ Er by Lemma 3.3.

By Theorem 2.5 there is a unique curve T ∈ |−KS | such that (S, T ) is not log
canonical at the point P . Note that T is irreducible. Thus, Theorem 2.5 also
implies that T is one of the curves C1, . . . , Cn. Without loss of generality we can
assume that T = C1.

The curve T = C1 is singular at P . In fact, we can say more: this curve has
a cuspidal singularity at P , and it is smooth away from this point. For every
i ∈ {1, . . . , r}, we let

mi =

{
0 if g(Ei) ̸∈ T ,
1 if g(Ei) ∈ T .

Then

C1 ∼ g∗(C1)−
r∑
i=1

miEi ∼ −KS +
r∑
i=1

(1−mi)Ei.

We replace D by a divisor (1 + µ)D − µC1 for an appropriate rational number
µ > 0 such that the new divisor is effective and its support does not contain the
curve C1. Let

D′ =
1

1− λ1
D − λ1

1− λ1
C1 =

n∑
i=2

λi
1− λ1

Ci.

Then D′ is an effective divisor whose support does not contain the curve C1. On the
other hand, we have

D′ ∼Q −KS +
r∑
i=1

ai + (mi − 1)λ1

1− λ1
Ei.

Thus, if (ai+(mi− 1)λ1)/(1−λ1) ⩾ 0 for every i, then (S,D′) is not log canonical
at P by Lemma 2.7. In this case the singularities of the log pair(

S,

n∑
i=2

λi
1− λ1

Ci

)
are not log canonical at the point P , because P /∈ E1 ∪ · · · ∪ Er. The latter is
impossible by Theorem 2.5. Therefore, at least one rational number among

a1 + (m1 − 1)λ1

1− λ1
,
a2 + (m2 − 1)λ1

1− λ1
, . . . ,

ar + (mr − 1)λ1

1− λ1
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must be negative. Without loss of generality we can assume that there exists k ⩽ r
such that

ai + (mi − 1)λ1

1− λ1
< 0

for every i ⩽ k, and (ai + (mi− 1)λ1)/(1−λ1) ⩾ 0 for every i > k (if k < r). Then
m1 = · · · = mk = 0. We can also assume that a1 ⩽ · · · ⩽ ak. Let

D′′ =
1

1− a1
D − a1

1− a1
C1 =

λ1 − a1

1− a1
C1 +

n∑
i=2

λi
1− a1

Ci.

Then D′′ is an effective Q-divisor such that

D′′ ∼Q −KS +
r∑
i=2

ai − a1(1−mi)
1− a1

Ei

= −KS +
k∑
i=2

ai − a1

1− a1
Ei +

r∑
i=k+1

ai − a1(1−mi)
1− a1

Ei.

Note that (ai − a1(1−mi))/(1− a1) ⩾ 0 for every possible i > k, because a1 < λ1.
Let e : S̃ → S be the blow-up of the point g(E1), and let Ẽ1 be its exceptional

curve. Denote the proper transforms on S̃ of the curves C1, . . . , Cn by C̃1, . . . , C̃n,
respectively. Likewise, let D̃′′ denote the proper transform of the divisor D′′ on the
surface S̃. Then

D̃′′ =
λ1 − a1

1− a1
C̃1 +

n∑
i=2

λi
1− a1

C̃i ∼Q −KS̃ .

Since g(E1) /∈ T , the point g(E1) is not the base point of the pencil | − KS |.
Thus, |−KS | contains a unique irreducible curve that passes through g(E1). Denote
this curve by R, and let R̃ and R be the proper transforms of this curve on the
surfaces S̃ and S, respectively. If R is singular at g(E1), then R is a smooth rational
curve such that

R2 ⩽ R̃2 = −3,

which is impossible, because S satisfies (∗). Thus, we see that the curve R is smooth
at the point g(E1). Then R̃ ∼ −KS̃ and R̃2 = 0. In particular, R̃ is a nef divisor.
On the other hand, we have C̃1 · R̃ = 1, because C1 = T does not contain g(E1)
since m1 = 0. Then

0 = K2
S̃

= D̃′′ · R̃ =
λ1 − a1

1− a1
C̃1 · R̃+

n∑
i=2

λi
1− a1

C̃i · R̃ ⩾
λ1 − a1

1− a1
C̃1 · R̃ =

λ1 − a1

1− a1
,

so that a1 ⩾ λ1. This is a contradiction, since we have already proved that a1 < λ1.
The lemma is proved.

Lemma 3.5. Suppose that r + K2
S = 2 and λi > 0 for every i. Then U is not

a cylinder.
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Proof. We have K2
S

= 2, so that S is a smooth del Pezzo surface by Remark 3.2.
If K2

S = 2, then r = 0 and S ∼= S. In this case the required assertion follows from
Theorem 1.2. Thus, we can assume that K2

S ⩽ 1. Moreover, arguing as in the
proof of Lemma 3.4 we can assume that Ci ̸= Ej for all i and j. Then, applying
Lemma 3.1 from [2] to the log pair (S,D), we conclude that λi ⩽ 1 for each i.

Suppose that U = S \ Supp(D) is a cylinder. Then n ⩾ 9 by Lemma 2.6.
Moreover, by Lemma 2.7 the surface S contains a point P such that the log pair
(S,D) is not log canonical at P . In the notation of § 2, the point P is the point π(C ).
Let P = g(P ). Then (S,D) is not log canonical at P because P /∈ E1 ∪ · · · ∪Er by
Lemma 3.3.

By Theorem 2.5 the linear system |−KS | contains a curve T such that (S, T ) is
not log canonical at the point P , and irreducible components of the curve T are
among the curves C1, . . . , Cn. In particular, T is singular at P . Note that this
property determines the curve T uniquely. Moreover, since S is a smooth del Pezzo
surface of degree K2

S
= 2, T has at most two irreducible components. Thus, without

loss of generality, we can assume that either T = C1, or T = C1 +C2 and λ1 ⩽ λ2.
If T = C1, then T has a cuspidal singularity at P . Likewise, if T = C1 + C2,

then T has a tacknodal singularity at P . In both cases P is the unique singular
point of the curve T . As in the proof of Lemma 3.4, for every i ∈ {1, . . . , r}, let

mi =

{
0 if g(Ei) ̸∈ T ,
1 if g(Ei) ∈ T .

Let T be the proper transform of the curve T on the surface S. Then

T ∼ g∗(T )−
r∑
i=1

miEi ∼ −KS +
r∑
i=1

(1−mi)Ei.

If T = C1, then λ1 < 1, because

2 = −KS ·D =
n∑
i=1

λi(−KS · Ci) = 2λ1 +
n∑
i=2

λi(−KS · Ci) ⩾ 2λ1 +
n∑
i=2

λi > 2λ1.

Similarly, if T = C1 + C2, then λ1 < 1, because

2 = −KS ·D = λ1 + λ2 +
n∑
i=3

λi(−KS · Ci) > λ1 + λ2 ⩾ 2λ1.

Let D′ = 1
1−λ1

D − λ1
1−λ1

T and D
′
= 1

1−λ1
D − λ1

1−λ1
T . If T = C1, then

D′ =
n∑
i=2

λi
1− λ1

Ci.

Similarly, if T = C1 + C2, then

D′ =
λ2 − λ1

1− λ1
C2 +

n∑
i=3

λi
1− λ1

Ci.
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In both cases the divisor D′ is effective, and its support does not contain C1. On the
other hand we have

D′ ∼Q −KS +
r∑
i=1

ai + (mi − 1)λ1

1− λ1
Ei.

Thus, if (ai + (mi − 1)λ1)/(1 − λ1) ⩾ 0 for every i, then the log pair (S,D′) is
not log canonical at the point P by Lemma 2.7. Then D

′ ∼Q −KS and (S,D
′
)

is not log canonical at P , which contradicts Theorem 2.5. Hence at least one of
the numbers (a1 + (m1 − 1)λ1)/(1 − λ1), . . . , (ar + (mr − 1)λ1)/(1 − λ1) must be
negative. Without loss of generality we can assume that

ai + (mi − 1)λ1

1− λ1
< 0 ⇐⇒ i ⩽ k

for some k ⩽ r, and a1 ⩽ · · · ⩽ ak. Then mi = 0 and ai < λ1 for every i ⩽ k.
Let D′′ = 1

1−a1
D − a1

1−a1
T . Then D′′ is effective. Indeed, if T = C1, then

D′′ =
λ1 − a1

1− a1
C1 +

n∑
i=2

λi
1− a1

Ci.

Similarly, if T = C1 + C2, then

D′′ =
λ1 − a1

1− a1
C1 +

λ2 − a1

1− a1
C2 +

n∑
i=3

λi
1− a1

Ci.

Note that Supp(D′′) = Supp(D). On the other hand we have

D′′ ∼Q −KS +
r∑
i=2

ai − a1(1−mi)
1− a1

Ei.

Applying Lemma 3.4 to D′′ we see that U is not a cylinder. This is a contradiction.
The lemma is proved.

Lemma 3.6. Suppose that r + K2
S = 3, and λi > 0 for every i. Then U is not

a cylinder.

Proof. Since K2
S

= 3, we see that S is a smooth cubic surface in P3 by Remark 3.2.
Thus, if K2

S = 3, then r = 0 and S ∼= S and D∼Q−KS , so that U = S \Supp(D) is
not a cylinder by Theorem 1.2. Therefore, we can assume that K2

S ⩽ 2. Moreover,
arguing as in the proof of Lemma 3.4 we can assume that Ci ̸= Ej for all possible
i and j. Then, applying Lemma 4.1 from [2] to the log pair (S,D), we conclude
that λi ⩽ 1 for each i.

Suppose that U is a cylinder. Let us seek for a contradiction. By Lemma 2.6,
we have n ⩾ 8. By Lemma 2.7, the surface S contains a point P such that (S,D)
is not log canonical at P . In the notations of § 2, the point P is the point π(C ).
Let P = g(P ). Then (S,D) is not log canonical at P because P /∈ E1 ∪ · · · ∪Er by
Lemma 3.3.
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Let T be the hyperplane section of S that is singular at P . By Theorem 2.5,
the pair (S, T ) is not log canonical at P , and all irreducible components of the
curve T are among the irreducible curves C1, . . . , Cn. Thus, we can assume that
either

• T = C1, or
• T = C1 + C2 and λ1 ⩽ λ2, or
• T = C1 + C2 + C3 and λ1 ⩽ λ2 ⩽ λ3.

If T = C1, then T has a cuspidal singularity at P . Likewise, if T = C1 + C2, then
T has a tacknodal singularity at P . Finally, if T = C1 + C2 + C3, then the curves
C1, C2 and C3 are lines passing through the point P . Therefore, in all possible
cases P is the unique singular point of the curve T . As in the proofs of Lemmas 3.4
and 3.5 for every i ∈ {1, . . . , r} we let

mi =

{
0 if g(Ei) ̸∈ T ,
1 if g(Ei) ∈ T .

Let T be the proper transform of T on the surface S. Then

T ∼ g∗(T )−
r∑
i=1

miEi ∼ −KS +
r∑
i=1

(1−mi)Ei.

We claim that λ1 < 1. Indeed, if T = C1, then

3 = −KS ·D =
n∑
i=1

λi(−KS · Ci) = 3λ1 +
n∑
i=2

λi(−KS · Ci) ⩾ 3λ1 +
n∑
i=2

λi > 3λ1,

so that λ1 < 1. Similarly, if T = C1 + C2, then λ1 < 1 because

3 = λ1 deg(C1) + λ2 deg(C2) +
n∑
i=3

λi(−KS · Ci) > λ1

(
deg(C1) + deg(C2)

)
= 3λ1.

Finally, if T = C1 + C2 + C3, then we also have λ1 < 1 because

3 = −KS ·D = λ1 + λ2 + λ3 +
n∑
i=4

λi(−KS · Ci) > λ1 + λ2 + λ3 ⩾ 3λ1.

Let D′ = 1
1−λ1

D − λ1
1−λ1

T and D
′
= 1

1−λ1
D − λ1

1−λ1
T . If T = C1, then

D′ =
n∑
i=2

λi
1− λ1

Ci.

Similarly, if T = C1 + C2, then

D′ =
λ2 − λ1

1− λ1
C2 +

n∑
i=3

λi
1− λ1

Ci.
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Finally, if T = C1 + C2 + C3, then

D′ =
λ2 − λ1

1− λ1
C2 +

λ3 − λ1

1− λ1
C3 +

n∑
i=4

λi
1− λ1

Ci.

Therefore, in all cases, the divisor D′ is effective, and its support does not contain
the curve C1. On the other hand, we have

D′ ∼Q −KS +
r∑
i=1

ai + (mi − 1)λ1

1− λ1
Ei.

Thus, if (ai + (mi − 1)λ1)/(1 − λ1) ⩾ 0 for every i, then (S,D′) is not log
canonical at P by Lemma 2.7, so that the log pair (S,D

′
) is not log canonical

at P , which contradicts Theorem 2.5, because D
′ ∼Q −KS and the support of

the divisor D
′
does not contain the curve C1. Hence at least one number among

(a1 + (m1 − 1)λ1)/(1− λ1), . . . , (ar + (mr − 1)λ1)/(1− λ1) is negative.
Without loss of generality we can assume that

ai + (mi − 1)λ1

1− λ1
< 0 ⇐⇒ i ⩽ k

for some k ⩽ r, and a1 ⩽ · · · ⩽ ak. Then mi = 0 and ai < λ1 for every i = 1, . . . , k.
Put D′′ = 1

1−a1
D − a1

1−a1
T . Then D′′ is an effective divisor. Indeed, if T = C1,

then

D′′ =
λ1 − a1

1− a1
C1 +

n∑
i=2

λi
1− a1

Ci.

Similarly, if T = C1 + C2, then

D′′ =
λ1 − a1

1− a1
C1 +

λ2 − a1

1− a1
C2 +

n∑
i=3

λi
1− a1

Ci.

Finally, if T = C1 + C2 + C3, then

D′′ =
λ1 − a1

1− a1
C1 +

λ2 − a1

1− a1
C2 +

λ3 − a1

1− a1
C3 +

n∑
i=4

ai
1− a1

Ci.

In all cases Supp(D′′) = Supp(D). On the other hand, we have

D′′ ∼Q −KS +
r∑
i=2

ai − a1(1−mi)
1− a1

Ei.

Applying Lemma 3.5 to D′′ we see that U is not a cylinder. This is a contradiction.
The lemma is proved.
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§ 4. The proof

In this section we prove Theorem 1.5 using Lemmas 3.4–3.6.
Let S be a smooth rational surface, let A be an ample Q-divisor on S, and let

µA be its Fujita invariant. Then

KS + µAA ∈ ∂NE(S).

Thus, the divisor KS + µAA is pseudo-effective, and it is not big. Let ∆A be the
smallest extremal face of the cone NE(S) that contains KS + µAA, and let rA
be the dimension of this face, that is, rA is the Fujita rank of the divisor A. To
prove Theorem 1.5 we have to show that S does not contain A-polar cylinders if S
satisfies (∗), and rA +K2

S ⩽ 3.
First, we describe the Zariski decomposition of the divisor KS + µAA, which

follows from Theorem 1 in [13] or [12]. To be precise, we have the following.

Lemma 4.1. There is a birational morphism g : S → S such that S is smooth, and

KS + µAA∼Q g
∗(KS + µAA) +

r∑
i=1

aiEi,

where E1, . . . , Er are all g-exceptional curves, a1, . . . , ar are positive rational num-
bers, A = g∗(A), the divisor KS + µAA is nef, and

(KS + µAA)2 = 0.

Moreover, one of the following two cases holds:
(1) S is a smooth del Pezzo surface, KS + µAA∼Q 0, and r = rA ;
(2) there exists a conic bundle h : S → P1 such that KS+µAA∼QqF for a positive

rational number q , where F is a fibre of h, and rA = rkPic(S)− 1.

Proof. The surface S contains an irreducible curve C such that µAA ∼Q aC for
some positive rational number a, and the singularities of the log pair (S, aC) are
log terminal. Thus, we can apply the Log Minimal Model Program to this log pair
(see [10]).

If KS + aC ∼Q 0, the required assertion is obvious. Likewise, if KS + aC ̸∼Q 0
and the divisor KS + aC is nef, then (KS + aC)2 = 0, because KS + aC is not big
by assumption. In this case the required assertion follows from [10], Theorem 3.3,
because C is ample. Thus, we can assume that KS + aC is not nef.

If rk Pic(S) = 1, then S = P2. If rk Pic(S) = 2, then S is one of Hirzebruch
surfaces. In both cases the required assertion is obvious. Thus, we can assume that
rk Pic(S) ⩾ 3.

Then, since KS + aC is not nef, there exists a birational map g1 : S → S1 that
contracts an irreducible curve E1 such that (KS + aC) ·E1 < 0. Since C is ample,
we see that E1 ̸= C and KS · E1 < 0, which implies that E1 is a smooth rational
curve, and E2

1 = −1. In particular, the surface S1 is smooth.
Let C1 = g(C). Then

KS + aC ∼Q g
∗
1(KS1 + aC1) + b1Ei



414 I. A. Cheltsov

for some rational number b1 > 0. Then (S1, aC1) is log terminal, the divisor aC1

is ample, and the divisor KS1 + aC1 is contained in the boundary of the Mori
cone NE(S1). Hence we can apply the same arguments to KS1 + aC1 and iterate
the whole process. Eventually, after finitely many steps this gives us the required
assertions. The lemma is proved.

Now we suppose that rA + K2
S ⩽ 3. Since rk Pic(S) = 10 − K2

S , the face ∆A

has large codimension in NE(S). Thus, by Lemma 4.1 the nef part of the Zariski
decomposition of the divisor KS +µAA is trivial, and there exists a birational mor-
phism g : S → S such that S is a smooth del Pezzo surface, g contracts rA smooth
rational curves, and

µAA∼Q −KS +
rA∑
i=1

aiEi

where E1, . . . , ErA
are g-exceptional curves, and a1, . . . , arA

are positive rational
numbers. Observe also that K2

S
= rA +K2

S , so that rA +K2
S ⩾ 1.

Finally, we suppose that S satisfies (∗). Then the curves E1, . . . , ErA
must be

disjoint, so that E2
1 = E2

2 = · · · = E2
rA

= −1.
To prove Theorem 1.5, we have to show that S does not containA-polar cylinders.

Suppose that this is not the case. Then there is an effective Q-divisor D on the
surface S such that S \ Supp(D) is a cylinder, and D ∼Q A. This contradicts
Lemmas 3.4–3.6, because rA +K2

S ∈ {1, 2, 3}.
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