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1. Introduction

This article draws its motivation from classification theory of Fano type varieties 
in algebraic geometry on the one hand, and the uniformization problem of Kähler edge 
manifolds in complex differential geometry on the other hand. Our results here contribute 
to both of these problems, and also draw some connections between the two. In addition, 
we relate both of these to the theory of non-compact Calabi–Yau fibrations and the 
Minimal Model Program.

An expository reference for some of our results is the survey article by one of the 
authors [42, §§8–9].

1.1. Asymptotically log Fano varieties

A projective variety X of complex dimension n is said to be of Fano type if there 
exists an effective Q-divisor

Δ =
r∑

i=1
aiΔi

on X such that the divisor −KX−Δ is ample and the pair (X, Δ) has at most Kawamata 
log terminal singularities [41, Lemma–Definition 2.6]. Fano type varieties possess very 
nice properties: they are rationally connected [51], they are Mori dream spaces [2], and 
their Cox rings have mild singularities [3,19]. Moreover, Fano type varieties play an 
important role in birational geometry: they are building blocks of rationally connected 
varieties [32], they appear as exceptional divisors of extremal contractions and they 
behave well under contractions [41, Lemma 2.8].

Can we classify Fano type varieties? Probably not. This problem seems to be beyond 
current reach even in dimension two. One can expect that the problem is much easier 
if we restrict ourself to the log smooth case, i.e., when X is smooth and the support 
of Δ is a simple normal crossing divisor. However, this does not seem to be the case, 
and the later problem seems equally hard and is also very far from being solved even in 
dimension two.

One of the early attempts at classifying pairs with such properties is Maeda’s work. 
Maeda coined the term “log Fano varieties” for log smooth pairs (X, D) such that 
−KX − D is ample and gave a complete classification in dimensions two and three 
[35] (for some recent work see Fujita [18]). A special family of two-dimensional Fano 
type varieties whose boundaries have standard coefficients, i.e., all ai are of the form 
m−1
m for m ∈ N, appeared naturally in the work of Kollár who used them to construct 

5-dimensional real manifolds that carry an Einstein metric with positive constant [30,
31]. In a different setting, work of Tsuji, Tian, and Donaldson, suggests to consider 
pairs (X, (1 − a1)Δ1) where X is itself Fano, Δ1 is an anticanonical divisor, and a1 is a 
real number close to 1 [50,47,16]. Then the numbers 2π(1 − ai) have a natural concrete 
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geometrical interpretation by considering Kähler metrics with positive curvature that 
have edge singularities along Δi, in other words metrics modeled on a one-dimensional 
cone of angle 2π(1 − ai) along each ‘complex edge’ Δi. Such metrics were introduced 
by Tian as a natural generalization of conical Riemann surfaces. A general existence 
theorem for Kähler–Einstein edge (KEE) metrics with a smooth divisor has been ob-
tained by Jeffres–Mazzeo–Rubinstein [26] and we come back to this circle of ideas in 
Sections 1.3–1.4.

The present work draws its motivation from all three of these geometric settings: the 
asymptotic classes we introduce next contain as special cases these previously studied 
geometries.

Definition 1.1. We say that a pair (X, D) consisting of a projective variety X with −KX

Q-Cartier and a divisor D =
∑r

i=1 Di (where the Di are distinct Q-Cartier prime Weil 
divisors) on X is (strongly) asymptotically log Fano if the log pair (X, 

∑r
i=1(1 − βi)Di)

has Kawamata log terminal singularities, and the divisor −KX−
∑r

i=1(1 −βi)Di is ample 
for (all) sufficiently small (β1, . . . , βr) ∈ (0, 1]r.

In the two dimensional case, we also refer to such pairs as (strongly) asymptotically 
log del Pezzo. Note that both definitions (asymptotically log Fano and strongly asymp-
totically log Fano) coincide if D consists of a single component. This is not the case when 
D is reducible.

For the rest of this article we restrict without further mention to the (already chal-
lenging) log smooth case, i.e., when X is smooth and D has simple normal crossings.

1.2. Classification results in dimension two

In this article we classify all strongly asymptotically log del Pezzo surfaces, i.e., we 
explicitly describe all pairs (S, C) consisting of a smooth surface S and a simple normal 
crossing curve C on S such that (S, C) is strongly asymptotically log del Pezzo. We 
believe many of the results and techniques presented should also be useful for classifying 
all asymptotically log del Pezzo surfaces in the future. Our main classification result is 
as follows.

Theorem 1.2. Let S be a smooth complex surface. Let C = C1+ . . . Cr be a simple normal 
crossing divisor on S, with each of the Ci smooth. Then (S, C) is a strongly asymptotically 
log del Pezzo surface if and only if it is one of the pairs listed in Theorem 2.1 (when 
r = 1) or Theorem 3.1 (r ≥ 2).

This generalizes the classical result of Castelnuovo, Enriques and del Pezzo for the 
case with no boundary [11,23], as well as its generalization to the logarithmic setting by 
Maeda [35] who classified all pairs (S, C) with −KS − C ample.

The classification part (‘only if’) of the proof occupies Sections 2 (r = 1) and 3 (r ≥ 2). 
The first several steps are to obtain useful topological and cohomological restrictions on 
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the boundary curve. For instance, C has genus at most one, and when it is elliptic it 
must be anticanonical, r must be 1, and S must be del Pezzo (Lemmas 2.2 and 3.2). 
Thus, we may assume that C � −KS and that C is rational. Then C2 ≤ −2, i.e., C
‘traps’ the negative curvature portion (if any) of −KS, (Lemma 2.6). In the same token, 
no other rational curve may have self-intersection less than −1 (Lemma 2.5), reflecting 
the fact that the curvature should morally be positive outside of C. But −1-curves are 
indeed allowed away from C and an important task is to understand their geometry 
and configuration relative to C. Lemma 2.7 shows that such curves come in two types: 
disjoint from C or intersecting it transversally at exactly one point. Motivated by this 
observation we say a pair is minimal if it contains no −1-curves of the second type. 
Lemmas 2.11 and 3.13 show that minimality implies the Picard group is ‘small’, namely, 
of rank at most 2. The case r ≥ 2 relies on some general results (proved in Section 3.1) 
on the combinatorial and cohomological structure of the boundary that hold also in 
the asymptotic (and not necessarily strongly asymptotic) regime. Thus, we perform 
an induction on rk(Pic(S)) by successively contracting −1-curves; the observation that 
makes this possible is that when −1-curves of the first type are contracted the resulting 
pair is still log smooth and strongly asymptotically del Pezzo (Lemmas 2.10, 3.4, and 
3.12). An additional complication in the case r ≥ 2 is that the blown-down of a −1-curve 
could be a component of the boundary. According to Lemma 3.6 such a curve must be at 
the ‘tail’: it cannot intersect two boundary components. Then Lemma 3.13 guarantees 
the inductive step can still be carried out. Once this induction has been carried out all 
that remains is to classify all pairs with rk(Pic(S)) ≤ 2 (Lemmas 2.9 and 3.11).

The second part of the proof of Theorem 1.2 consists of the verification that each pair 
appearing in the lists of Theorems 2.1 and 3.1 is strongly asymptotically log del Pezzo 
(Section 4.2). Instead of checking each case separately, we approach this straightfor-
ward task slightly more systematically by first reformulating those two lists in a unified 
list (Theorem 1.4) according to the positivity of the logarithmic anticanonical bundle 
−KS − C—this is discussed in detail in the next paragraph. When this bundle is trivial 
or ample the verification is then immediate. In the remaining two cases (big but not 
ample, and nef but not big) we verify case by case.

The classification theorem has a number of corollaries, but we state here only the 
most obvious one.

Corollary 1.3. Let (S, C) be a log smooth strongly asymptotically log del Pezzo pair. Then 
C contains at most four components.

It would be interesting to find a similar bound in all dimensions. In the simpler log 
Fano setting of Maeda, a pair (X, D) induces by restriction a log Fano pair of one 
dimension lower, and so by induction the number of components is bounded by dimX

[35, Lemma 2.4].
The classification of strongly asymptotically log del Pezzo surfaces according to the 

positivity of the logarithmic anticanonical bundle just mentioned plays a crucial role also 



I.A. Cheltsov, Y.A. Rubinstein / Advances in Mathematics 285 (2015) 1241–1300 1245
in other parts of this article and so we now state it precisely. We distinguish between four 
mutually exclusive classes. Class (ℵ): S is del Pezzo and C ∼ −KS ; class (�): C � −KS

and (KS + C)2 = 0; class (ג): −KS − C is big but not ample; class (�): −KS − C is 
ample.

Theorem 1.4. Strongly asymptotically log del Pezzo pairs, whose list appears in Theo-
rems 2.1 and 3.1, are classified according to the positivity properties (ℵ), (�), (ג), and 
(�) as follows:

(ℵ) (S, 
∑r

i=1 Ci) is one of (I.1A), (I.4A), (I.5.m), (II.1A), (II.4A), (II.4B), (II.5A.m),
(II.8.m), (III.1), (III.2), (III.4.m) or (IV),

(�) (S, 
∑r

i=1 Ci) is one of (I.3A), (I.4B), (I.9B.m), (II.2A.n), (II.2B.n), (II.3),
(II.6A.n.m), (II.6B.n.m), (II.7.m), (III.3.n) or (III.5.n.m),

(ג) (S, 
∑r

i=1 Ci) is one of (I.6B.m), (I.6C.m), (I.7.n.m), (I.8B.m), (I.9C.m), (II.5B.m) 
or (II.6C.n.m),

(�) (S, 
∑r

i=1 Ci) is one of (I.1B), (I.1C), (I.2.n), (I.3B), (I.4C), (II.1B) or (II.2C.n).

The verification of this list is an elementary corollary of Theorems 2.1 and 3.1 and 
appears in Section 4.1. It can be seen as a generalization of two previously known classes. 
Class (�) is Maeda’s classical classification of what he coined as ‘log del Pezzo surfaces’ 
[35]. On the other hand, the class (ℵ) is simply the classical class of del Pezzo surfaces 
together with the information of a simple normal crossing anticanonical curve but its 
explicit (and very elementary) classification seems to appear here for the first time. The 
classes (�) and (ג) are new.

1.3. An asymptotic logarithmic version of Calabi’s conjecture

In 1990, in what became known as the resolution of Calabi’s conjecture for del Pezzo 
surfaces, Tian gave a complete classification of those complex surfaces that admit a 
smooth KE metric of positive curvature [46]. In light of Theorem 1.2 it is therefore very 
natural and tempting to hope for a counterpart for strongly asymptotically log del Pezzo 
surfaces. One of the main goals of this article is to formulate such a conjecture as well 
as prove key parts of it. As it might be expected, the situation in the singular setting 
is quite a bit more complex and we intend to pursue other aspects of this conjecture in 
future work.

As we now explain in detail, a surprisingly accurate guide to this uniformization 
problem is the positivity classification of Theorem 1.4.

Pairs of class (ℵ) are the best understood, since according to a result of Berman 
the Tian invariant of the pair is then bigger than n

n+1 , which subsequently implies by 
the work of Jeffres–Mazzeo–Rubinstein (Theorem 1.14 below, cf. [38, Corollary 1.5]) 
that the pair admits KEE metrics for all small angles. We generalize Berman’s result 
in several ways by obtaining a general bound on the global log canonical threshold in 
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a possibly singular and/or degenerate setting (Proposition 6.5). This gives an algebraic 
proof of the aforementioned estimate due to Berman for the class (ℵ) with explicit (but 
far from optimal) lower bounds on the largest angle possible in dimensions two and three 
(Proposition 6.10).

The uniformization problem is thus reduced to understanding the existence problem 
for pairs of classes (�), (ג), and (�).

As a first guide, we investigate the asymptotic behavior in the small-angle limit of 
Tian’s invariant α(X, (1 − β)D), also referred to as the global log canonical threshold of 
the pair (X, D) (see Section 6.1 for definitions).

Theorem 1.5. Assume (S, C) is asymptotically log del Pezzo with C smooth and irre-
ducible. Then

lim
β→0+

α(S, (1 − β)C) =

⎧⎪⎪⎨
⎪⎪⎩

1 class (ℵ),
1/2 class (�),
0 class (ג) or (�)

This gives an indication that the existence theory might, in fact, depend on the pos-
itivity classification. In fact, we conjecture that the positivity classification completely 
determines the existence problem.

Conjecture 1.6. Suppose that (S, C) is strongly asymptotically log del Pezzo with C
smooth and irreducible. Then S admits Kähler–Einstein edge metrics with angle β along 
C for all sufficiently small β if and only if (KS + C)2 = 0, i.e., (S, C) is of class (ℵ)
or (�).

To put this conjecture in appropriate context and give perhaps more striking moti-
vation for its validity we begin by noting that 0, 1/2 and 1 are the Tian invariants of 
Pn, n → ∞, P1, and P0, respectively. It is then tempting to think of 1/2 as the Tian invari-
ant of certain generic rational fiber. Motivated by this we prove the following structure 
theorem for surfaces of class (�).

Proposition 1.7. If (KS +
∑r

i=1 Ci)2 = 0 but KS +
∑r

i=1 Ci 	= 0, then the linear system 
|−(KS +

∑r
i=1 Ci)| is free from base points and gives a morphism S → P1 whose general 

fiber is P1, and every reducible fiber consists of exactly two components, each a P1.

Thus, surfaces of class (�) are conic bundles, and the boundary C intersects each 
generic fiber at two points. This gives strong motivation for the ‘if’ part of Conjecture 1.6
because it suggests what the small-angle limit of the purported KEE metrics on pairs of 
class (�) could be:

Conjecture 1.8. Let (S, C, ωβ) be KEE pairs of class (ℵ) or (�). Then (S, C, ωβ) converges 
in an appropriate sense to a generalized KE metric ω∞ on S \ C as β tends to zero. In 
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particular, ω∞ is a Calabi–Yau metric in case (ℵ), and a cylinder along each generic 
fiber in case (�).

The generalized KE metrics alluded to in the conjecture are related to metrics studied 
by Song–Tian on elliptic fibrations [44], however there are some important differences. 
We postpone an in-depth discussion of this to a sequel.

This conjecture can be generalized to any dimension, and is perhaps better understood 
in such a more general context. To that end we first note that Proposition 1.7 is a very 
special and explicit case of a much more general result that is a direct corollary of deep 
results of Kawamata and Shokurov.

Theorem 1.9. Suppose (X, D) is asymptotically log Fano and −KX −D is not big. Then 
|−n(KX+D)| is base point free for n 
 1 and gives a morphism φ : X → Z whose general 
fiber F is a Fano type variety. Moreover, D|F ∼Q −KF and (F, D|F ) is asymptotically 
log Fano. Furthermore, if (X, D) is strongly asymptotically log Fano, then F is a Fano 
variety with Kawamata log terminal singularities, and (F, D|F ) is strongly asymptotically 
log Fano.

Proof. By Kawamata–Shokurov’s Basepoint-free theorem [32, Theorem 3.3] the linear 
system |−n(KX +D)| is base point free for n 
 1. Let φ : X → Z be a morphism given 
by it, and let F be its general fiber. If (X, 

∑r
i=1(1 − βi)Di) is Kawamata log terminal 

and −KX−
∑r

i=1(1 −βi)Di is ample, then (F, 
∑r

i=1(1 −βi)Di|F ) has at most Kawamata 
log terminal singularities and

−
(
KF +

r∑
i=1

(1 − βi)Di|F
)
∼R −

(
KX +

r∑
i=1

(1 − βi)D
)∣∣∣

F

is ample. Thus, (F, D|F ) is asymptotically log Fano. Note that by using adjunction 
D|F ∼Q −KF , because F is a fiber of φ and φ is given by |−n(KX + D)|.

If (X, D) is strongly asymptotically log Fano the same argument shows that so is 
(F, D|F ). Moreover, then

−KF ∼ −KX |F ∼Q D|F ∼R

1
β
βD|F ∼R

1
β

(−KX−D+βD)|F = −(KX+
r∑

i=1
(1−β)D)|F

for small β ∈ (0, 1], which implies that −KF is ample, i.e., F is a Fano variety. �
Corollary 1.10. Let X be a smooth variety, let D be smooth and irreducible Weil divi-
sor on X. Suppose (X, D) is asymptotically log Fano and −KX − D is not big. Then 
|−n(KX + D)| is base point free for n 
 1 and gives a morphism φ : X → Z whose 
general fiber F is a smooth Fano variety with D|F ∈ |−KF |.

Therefore, we conjecture:
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Conjecture 1.11. Suppose that (X, D) is strongly asymptotically log Fano manifold with D
smooth and irreducible. Let κ := inf{N � k ≤ dimX : (KX +D)k = 0}. Set inf ∅ := ∞.

(i) There exist no KEE metric with small β if κ = ∞.
(ii) Suppose that (KX +D)dim X = 0. Then there exist KEE metrics ωβ, β ∈ (0, ε) on 

(X, D) for some ε > 0.
(iii) As β tends to zero (X, D, ωβ) converges in an appropriate sense to a generalized 

KE metric ω∞ on X \D that is Calabi–Yau along its generic (dimX+1 −κ)-dimensional 
fibers.

(iv) Furthermore,

lim
β→0+

α(X, (1 − β)D) =

⎧⎪⎪⎨
⎪⎪⎩

1 if KX + D ∼ 0,
min{1, α(X, [−KX −D]), α(D)} if 0 � −KX −D is not big,
0 if −KX −D is big.

(1.1)

Conjecture 1.11 (iii) is itself a generalization of a folklore conjecture in Kähler geom-
etry for the case κ = 1 mentioned, e.g., by Donaldson [16, p. 76], saying that X \ D

equipped with the Tian–Yau metric [49] should be a limit of KEE metrics on (X, D)
when X is Fano and D ∈ |−KX |. As mentioned earlier, Conjecture 1.11 (ii) holds when 
κ = 1. In Proposition 6.10 we further give explicit bounds on ε when dimX ∈ {2, 3} and 
κ = 1.

Since the work of Hitchin, Kobayashi, and many others, a standard condition for the 
existence of canonical metrics that can be described as zeros of an infinite-dimensional 
moment map is some sort of ‘stability’ condition. How, then, does Conjecture 1.11 fit 
into this scheme? The condition (KX +D)dim X = 0 hardly looks at first like a stability 
condition. Perhaps one way to motivate it is to conceive the non-compact Calabi–Yau 
fibration of Conjecture 1.11 (ii) as a KEE metric itself, only with β = 0. In case (i) 
such a smooth (and hence non-compact) limit does not exist since too much ‘posi-
tivity’ is still remaining, and so the small angle regime, which would otherwise be a 
metric ‘perturbation’ of that limit, should not exist either. Thus, the existence of the 
Calabi–Yau degeneration provides the necessary ‘stability’ in this situation, at least con-
jecturally. An obvious advantage of the existence criterion of Conjecture 1.11 is that it 
is very explicit as opposed to logarithmic K-stability which in general seems hard to 
check.

We prove Conjecture 1.11 (iv) except for the middle case which we only prove in 
dimension two (Propositions 6.8, 6.9, and 6.10). We refer to Section 6.2 for one technical 
issue relevant to the definition of the invariants appearing in (1.1).

Finally, we make some progress towards Conjecture 1.11 (i) and (ii) in dimension two, 
i.e., Conjecture 1.6, that we describe next.



I.A. Cheltsov, Y.A. Rubinstein / Advances in Mathematics 285 (2015) 1241–1300 1249
1.4. Existence and non-existence results in the asymptotic regime

Matsushima’s theorem [36] implies that the Kähler–Einstein metric is the most 
aesthetically pleasing one since it exhibits the maximal symmetry possible: every one-
parameter subgroup of automorphisms of the complex structure Aut(X) can be realized 
as the complexification of a one-parameter subgroup of isometries of the KE metric. This 
has a natural generalization to the edge setting by considering the automorphism group 
of the pair Aut(X, D), i.e., elements of Aut(X) that map D to itself.

Theorem 1.12. Let (X, D, g) be a KEE manifold. Then Aut0(X, D) = Isom0(X, g)C. In 
particular, Aut0(X, D) is reductive.

Here Isom0(X, g)C denotes the complexification of the identity component of the isom-
etry group of (X, g), while Aut0(X, D) denotes the identity component of Aut(X, D). 
Theorem 1.12 is proved in Section 5, using the asymptotic structure of solutions to linear 
elliptic equations with edge degeneracies in the sense of Mazzeo [37] as developed in the 
complex codimension one setting in [26]. After posting this article we were informed that 
in the special case X is itself Fano a more general result than Theorem 1.12 has been 
obtained in [8, Theorem 4] and [48, Lemma 6.3] that appeared several months prior to 
our work. While the proofs in these articles quite likely can be extended to the case X
is not Fano, these proofs are quite different from our approach.

In the smooth world, Matsushima’s criterion is often considered as a rather coarse 
obstruction to existence. Nevertheless, in the asymptotic regime with its much richer 
variety of cases, such a tool proves to be quite useful.

Theorem 1.13. The following strongly asymptotically log del Pezzo pairs listed in The-
orem 2.1 do not admit KEE metrics for sufficiently small β: (I.1C), (I.2.n) with any 
n ≥ 0, (I.6C.m) with any m ≥ 1, (I.7.n.m) with any n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1) 
and (I.9C.1).

This proves part of the ‘only if’ direction of Conjecture 1.6. It is proven in Section 7.1
by computing the automorphisms groups of pairs of classes (ג) and (�). We also supply 
further evidence for the converse direction of the conjecture by showing that all pairs of 
class (�) have reductive automorphism groups (Theorem 7.2).

Next, we turn to the existence part of Conjecture 1.6. Our main tool here is the 
following existence theorem that is a special case of [26, Theorem 2, Lemma 6.13]. The 
invariant αG(S, (1 −β)C) is the G-invariant Tian invariant of the pair (S, (1 −β)C) with 
respect to the Kähler class [−KS − (1 − β)C] (see Definition 7.3).

Theorem 1.14. Let (S, C) be a strongly asymptotically log del Pezzo surface with C smooth 
and irreducible. Suppose that G ⊂ Aut(S) is a finite group and that αG(S, (1 − β)C) >
2/3. Then there exists a G-invariant Kähler–Einstein edge metric with positive Ricci 
curvature and with angle 2πβ along C.
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We apply this to prove the following existence theorem for pairs of class (�) giving 
the first construction of KEE metrics of positive curvature and of small angle outside of 
the classical class (ℵ).

Theorem 1.15. There exist strongly asymptotically log del Pezzo pairs of type (I.3A), 
(I.4B), and (I.9B.5) (listed in Theorem 2.1) that admit KEE metrics for all sufficiently 
small β.

This result is proven using computations of the Tian invariant of these pairs (Subsec-
tion 7.2). In the cases (I.3A), (I.4B) the pair possesses certain discrete symmetry that 
allows using representation theoretic arguments coupled with Shokurov’s connectedness 
principle for log canonical loci to conclude that in fact Tian’s invariant equals 1 for all 
β ∈ (0, 1]. The case (I.9B.5) is somewhat more delicate since then S varies in a moduli 
space. We choose the Clebsch cubic surface in that space and again are able to show that 
the Tian invariant equals 1 for all β ∈ (0, 1]. We also compute the Tian invariant of more 
general cubic surfaces with an Eckardt point and show that without symmetry one can-
not apply the existence result of Theorem 1.14. This last computation (Proposition 7.6) 
generalizes a result from the smooth setting [5, Theorem 1.7].

Using log slope stability Li–Sun proved that the pairs (I.1B) and (I.3B) admit no KEE 
metrics for small β [34, §3]. It is possible to apply arguments similar to theirs to prove 
non-existence results for other pairs of class (ג) and (�) but for the sake of brevity we 
postpone this discussion, along with further existence results for class (�), to a separate 
article [6].

1.5. Conventions

Let us describe notation and basic results that will be used throughout the article.
By a curve in an algebraic variety X we mean an irreducible reduced subvariety of 

dimension one. Occasionally, we allow curves to be reducible (but we always assume that 
they are reduced). For a curve C on a smooth surface S, we define its arithmetic genus 
pa(C) by

pa = h1(OC). (1.2)

Then 2pa(C) −2 = KS ·C +C2 by [20]. When C is smooth pa(C) equals the genus of C, 
g(C). If C is an irreducible curve on a smooth surface S, then by applying adjunction 
one verifies that

C ∼= P1 if and only if pa(C) = 0 (1.3)

This can be quite handy.
By ∼ we assume rational equivalence of Weil divisors or Cartier divisors (or their 

classes in Cl(X) and Pic(X), respectively) except in Section 5 where ∼ stands for equality 
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in the sense of complete asymptotic expansions as in [26]. By ∼Q we assume Q-rational 
equivalence of Q-divisors, i.e., D1 ∼Q D2 if and only if nD1 ∼ nD2 for some non-zero 
integer n such that nD1 and nD2 are integral divisors. By Q-Cartier and R-Cartier 
divisors we mean elements in Pic(X) ⊗ Q and Pic(X) ⊗ R, respectively. By ∼R we 
assume R-rational equivalence of R-divisors, i.e., D1 −D2 is a sum with real coefficients 
of Q-Cartier divisors that are Q-rationally equivalent to zero.

For two divisors D1 and D2, we write D1 ≡ D2 (and say that D1 and D2 are nu-
merically equivalent) iff D1 − D2 is R-Cartier divisor such that (D1 − D2).C = 0 for 
every curve C ⊂ X. Vice versa, we say that two curves C1 and C2 on X are numerically 
equivalent iff D.C1 = D.C2 for every R-Cartier divisor D on X. Similarly, we define 
numerical equivalence of 1-cycles (with real or rational coefficients) on X. We denote 
the real vector space of 1-cycles modulo numerical equivalence by N1(X). By the cone 
of curves or the Mori cone of X we assume the cone in N1(X) generated by curves in X. 
We denote the Mori cone of X by NE(X). By NE(X) we denote its closure.

Recall that a Q-Cartier Q-divisor D is called ample if there exists positive integer n
such that nD is a very ample Cartier divisor. By Kleiman’s criterion, D is ample if and 
only if D is positive on NE(X) (and this in turn is equivalent to the differential geometric 
notion of positivity of a class). The latter can be used as a definition of ampleness for 
R–Cartier R-divisors. Note that in the case of surfaces, the ampleness of a Q-Cartier 
Q-divisor D is equivalent to the Nakai–Moishezon criterion

D2 > 0 and D.C > 0 (1.4)

for every curve C ⊂ X. So we can use the latter condition as another definition of 
ampleness for R–Cartier R-divisors on surfaces. This criterion-definition is very handy 
for surfaces: if D is an ample R-Cartier divisor on a smooth surface S, then

π�(D) is an ample R-Cartier divisor (1.5)

for every birational morphism π : S → s such that s is a smooth surface.
Recall that a Q-divisor D is called big if h0(OX(nD)) grows as O(ndim(X)) for n 
 1

such that nD is an integral divisor. One can show that D is big if and only if it is a 
sum of an effective divisor and an ample divisor. For R-divisors this can be used as a 
definition of bigness.

Recall that a divisor D is effective if D is a finite linear combination of prime Weil 
divisors with non-negative coefficients, and that h0(OX(−D)) = 0 for every non-zero 
effective Weil divisor D. An R-Cartier R-divisor D is called nef (a shortcut for numerically 
effective) if D.C ≥ 0 for every curve C ⊂ X. Thus,

if D is effective and −D is nef, then D is a zero divisor. (1.6)

For each n ≥ 0, denote by

Fn (1.7)
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the unique rational ruled surface whose Picard group has rank two and contains a unique 
(if n > 0) smooth rational curve of self-intersection −n. We denote this curve by Zn, and 
by F we denote an irreducible smooth rational curve such that F 2 = 0 and F.Zn = 1. If 
n = 0 when we refer to Z0 and F we intend that each is a fiber of a different projection 
to P1. Such a surface can be constructed, e.g., as a toric variety or as a ruled surface and 
[22, Chapter 5, §2] and applying adjunction yields

−KS ∼ 2Zn + (n + 2)F (1.8)

Recall that every smooth irreducible curve in |Zn +nF | (a ‘zero section’) intersects each 
fiber transversally at a single point and does not intersect the ‘infinity section’ Zn. Any 
curve C on Fn satisfies C ∼ aZn + bF with a, b ∈ N ∪ {0}. This, combined with (1.4), 
implies

C is ample if and only if a > 0 and b > na, (1.9)

and furthermore,

if C is an irreducible curve then C = Zn or b ≥ na ≥ 0. (1.10)

The classification of rational surfaces [20, p. 520] implies that

every rational surface with rk(Pic) > 2 contains a − 1-curve, (1.11)

and that

a smooth rational surface with rk(Pic) ≤ 2 is either P2 or Fn, n ≥ 0. (1.12)

We denote by Ga the additive group (C, + ), by Gm the multiplicative group (C�, · ), 
and by μn the finite cyclic group of order n.

Finally, if G is a graph with vertex set V and edges E, the dual graph of G refers to 
the graph whose vertex set is E and whose edge set is V , namely if v ∈ V, e1, e2 ∈ E and 
v ∈ e1 ∩ e2 then e1 and e2 are connected in the dual graph by v. A graph is a cycle if for 
some N � k ≥ 2 E = {e1, . . . , ek}, V = {v1, . . . , vk}, and ei ∩ ei+1 = vi with ek+1 := e1. 
A tree is a graph that contains no cycles. A chain is a connected tree with no three edges 
intersecting.

2. Asymptotically log del Pezzo surfaces with smooth connected boundary

The following theorem gives complete classification in the case of a single boundary 
component.

Theorem 2.1. Let S be a smooth surface (the surface), and let C be an irreducible smooth 
curve on S (the boundary curve). Then −KS−(1 −β)C is ample for all sufficiently small 
β > 0 if and only if S and C can be described as follows:
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(I.1A) S ∼= P2, and C is a smooth cubic elliptic curve,
(I.1B) S ∼= P2, and C is a smooth conic,
(I.1C) S ∼= P2, and C is a line,
(I.2.n) S ∼= Fn for any n ≥ 0, and C = Zn,
(I.3A) S ∼= F1, and C ∈ |2(Z1 + F )|,
(I.3B) S ∼= F1, and C ∈ |Z1 + F |,
(I.4A) S ∼= P1 × P1, and C is a smooth elliptic curve of bi-degree (2, 2),
(I.4B) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (2, 1),
(I.4C) S ∼= P1 × P1, and C is a smooth rational curve of bi-degree (1, 1),

(I.5.m) S is a blow-up of the surface in (I.1A) at m ≤ 8 distinct points on the boundary 
curve such that −KS is ample, i.e., S is a del Pezzo surface, and C is the proper 
transform of the boundary curve in (I.1A), i.e., C ∈ |−KS |,

(I.6B.m) S is a blow-up of the surface in (I.1B) at m ≥ 1 distinct points on the boundary 
curve, and C is the proper transform of the boundary curve in (I.1B),

(I.6C.m) S is a blow-up of the surface in (I.1C) at m ≥ 1 distinct points on the boundary 
curve, and C is the proper transform of the boundary curve in (I.1C),

(I.7.n.m) S is a blow-up of the surface in (I.2.n) at m ≥ 1 distinct points on the boundary 
curve, and C is the proper transform of the boundary curve in (I.2),

(I.8B.m) S is a blow-up of the surface in (I.3B) at m ≥ 1 distinct points on the boundary 
curve, and C is the proper transform of the boundary curve in (I.3B),

(I.9B.m) S is a blow-up of the surface in (I.4B) at m ≥ 1 distinct points on the boundary 
curve with no two of them on a single curve of bi-degree (0, 1), and C is the 
proper transform of the boundary curve in (I.4B),

(I.9C.m) S is a blow-up of the surface in (I.4C) at m ≥ 1 distinct points on the boundary 
curve, and C is the proper transform of the boundary curve in (I.4C).

The rest of the section is devoted to the proof of this theorem.

2.1. Classification

Throughout this subsection we assume without further mention that

−KS − (1 − β)C is ample for sufficiently small β ∈ (0, 1], (2.1)

i.e., (S, C) is asymptotically log del Pezzo. Then −KS −C is nef. Moreover, the surface 
S is projective, since −KS− (1 −β)C is an ample Q-divisor for sufficiently small rational 
β ∈ (0, 1]. Furthermore, the divisor −KS is big, since it is a sum of an ample class and 
an effective class, to wit,

−KS = −(KS + (1 − β)C) + (1 − β)C.

Since −KS is big, we have h0(OS(KS)) = h0(OS(2KS)) = 0. Moreover, it follows 
from the Kawamata–Viehweg Vanishing Theorem [33, Vol. II, §9.1.C] that h1(OS) =
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h2(OS) = 0. Thus, the surface S is rational by Castelnuovo’s rationality criterion [20, 
p. 536]. We remark that all of these considerations apply equally when C has several com-
ponents, but for the rest of this subsection we implicitly assume r = 1 unless explicitly 
stated.

In the rest of this subsection we prove that (S, C) is one of the pairs listed in Theo-
rem 2.1. Our proof is divided into several steps, each contained in a separate paragraph.

2.1.1. Non-rational boundary
Let g(C) denote the genus of the (smooth) curve C.

Lemma 2.2. Suppose that g(C) 	= 0. Then −KS is ample, i.e., S is a del Pezzo surface, 
and C is a smooth elliptic curve in |−KS|.

Proof. Since −KS − C is nef, it follows from the adjunction theorem that

0 ≤ 2g − 2 = (KS + C).C ≤ 0, (2.2)

thus g = 1.
Next, by Kodaira–Serre duality, h2(OS(KS + C)) = h0(OS(−C)) = 0. Also, since S

is rational χ(OS) = 1. Recalling that (KS +C).C = 0 by (2.2), and using the Riemann–
Roch theorem thus gives

1 = χ(OS) + (KS + C).(KS + C −KS)
2 = χ(OS(KS + C))

= h0(OS(KS + C)) − h1(OS(KS + C)) + h2(OS(KS + C))

≤ h0(OS(KS + C)). (2.3)

Therefore, there exists an effective divisor R such that R ∼ KS+C. Thus by (1.6) R = 0, 
from which C ∈ |−KS |, and

−βKS ∼ −KS − (1 − β)C > 0, (2.4)

for sufficiently small rational β ∈ (0, 1], i.e., S is del Pezzo. �
Recall that a smooth projective surface S not equal to P1 × P1 is del Pezzo precisely 

when there is a smooth anticanonical curve C ⊂ S which is the proper transform of 
a smooth cubic curve in P2 blown-up at 8 points in general position on the cubic [23, 
Proposition 3.2]. Thus, we have:

Corollary 2.3. Suppose C is not rational, then (S, C) is one of (I.1A), (I.4A), or (I.5.m).

Thus, for the remainder of Section 2.1, we assume

C is a smooth rational curve. (2.5)
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Remark 2.4. In the notation and assumption of Theorem 1.2, suppose additionally that 
S is a del Pezzo surface. Then the divisor −KS −

∑r
i=1(1 − βi)Ci is ample for any

(β1, . . . , βr) ∈ (0, 1]r.

2.1.2. Rational boundary and curves of negative self-intersection
The goal is now to show that (S, C) is one of the cases not covered by Corollary 2.3. 

In this paragraph we derive some basic intersection properties of the boundary and other 
curves of negative self-intersection.

Lemma 2.5. Let Z be an irreducible curve on S such that Z 	= C and Z2 < 0. Then Z is 
a smooth rational curve and Z2 = −1.

Proof. Since Z 	= C,

−KS .Z = −
(
KS + (1 − β)C

)
.Z + (1 − β)C.Z ≥ −

(
KS + (1 − β)C

)
.Z > 0, (2.6)

for sufficiently small β ∈ (0, 1]. Hence, by (1.2) it follows that

0 > Z2 > KS .Z + Z2 = 2h1(OZ) − 2, (2.7)

or h1(OZ) = 0. Now it follows from (1.3) that Z is a smooth rational curve. Going back 
to (2.7) then Z2 = −1. �
Lemma 2.6. Suppose that S is not a del Pezzo surface. Then C2 ≤ −2.

Proof. Suppose that C2 ≥ −1. Then −KS .C > 0 by the adjunction formula, since by 
Lemma 2.2 C is a smooth rational curve. Also, by (2.6) KS .Z < 0 for every irreducible 
curve Z 	= C on the surface S. Moreover, K2

S > 0, since −KS is big. Therefore, the divisor 
−KS is ample by the Nakai–Moishezon criterion, which contradicts our assumption. �

The next lemma is crucial for the proof of the main result. It shows that any −1-curve 
intersects the boundary transversally at most at one point.

Lemma 2.7. Suppose that there exists a smooth irreducible rational curve E on the surface 
S such that E2 = −1 and E 	= C. Then either E ∩ C = ∅ or E.C = 1.

Proof. Choose β such that βC.E < 1 (and, as always, also satisfying (2.1)). By adjunc-
tion, −KS .E = 1. Then

0 < −(KS + (1 − β)C).E = 1 − C.E + βC.E < 2 − C.E,

thus C.E < 2. Hence, either C.E = 0 (and, thus E∩C = ∅ since E 	= C) or C.E = 1. �
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2.1.3. Minimal pairs
Suppose that there exists a smooth irreducible rational curve E on the surface S

such that E2 = −1 and E 	= C. By Castelnuovo’s contractibility criterion there exists 
a birational morphism π : S → s that contracts the curve E to a smooth point of the 
surface s [20, p. 476]. Since by Lemma 2.7 E and C intersect transversally at most 
at one point then π(C) is a smooth curve. Moreover, by (1.5), we see that the divisor 
−(Ks + (1 − β)π(C)) is ample provided that −(KS + (1 − β)C) is ample. Thus, we see 
that (s, π(C)) is asymptotically log del Pezzo as well.

Thus, it seems possible to use Lemma 2.7 to give an inductive proof (in the rank of 
the Picard group, Pic(S)) of one direction of Theorem 2.1. To do this in a consistent 
way we make the following definition.

Definition 2.8. The pair (S, C) is minimal if there exist no smooth irreducible rational 
curve E on the surface S such that E2 = −1, E 	= C and E ∩ C 	= ∅.

The base of our induction is given by the next lemma. Recall that throughout we are 
assuming C is a smooth rational curve (2.5).

Lemma 2.9. Suppose that rk(Pic(S)) ≤ 2 and C � −KS. Then when (S, C) is minimal 
it is one of (I.1B), (I.1C), (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C), and otherwise it is
(I.6B.1) or (I.6C.1).

Proof. First note that all the cases listed in the statement are indeed asymptotically log 
del Pezzo by Section 4.2. By (1.12) the assumption rk(Pic(S)) ≤ 2 implies that either S ∼=
P2 or S ∼= Fn, n ≥ 0. In the former case, (S, C) is either (I.1B) or (I.1C), as C is rational. 
Let us consider the latter cases. If n = 0, then one sees that (S, C) is either (I.2.0),
(I.4B), or (I.4C) (again, as C is rational). Let n > 0 and suppose C ∈ |aZn + bF | with 
a, b ∈ N ∪{0}. Then by (1.8)–(1.9), −KS−(1 −β)C = (2 −(1 −β)a)Zn+(n +2 −(1 −β)b)F
is ample if and only if a ∈ [0, 2], b ∈ [0, na + 2−n

1−β ).
Suppose first that b = 0. Then either (a, b) = (1, 0), i.e., C = Zn and we are in the 

case (I.2.n), or else (a, b) = (2, 0), i.e., C ∈ |2Zn|, but since Zn is unique for n > 0 by 
(1.7) this means C is not reduced, so this case is excluded.

Thus it remains to consider the case b > 0. If a = 0 then necessarily b = n = 1. This 
is excluded by minimality since then C.Z1 = 1 and Z2

1 = −1. If a = 1 then b ∈ [1, 2]. 
The case (a, b) = (1, 1) implies C.Zn = 1 − n ≥ 0 since C 	= Zn. Thus n = 1 and we 
obtain case (I.3B). Similarly the case (a, b) = (1, 2) implies n ≤ 2. But n = 1 is excluded 
by minimality since then C.Z1 = 1, Z2

1 = −1 and C 	= Z1, while n = 2 is excluded by 
Lemma 2.5 as C 	= Z2. Finally, if a = 2 then b ∈ [1, n + 2]. Then C.Zn = −2n + b ≥ 0
as C 	= Zn. Thus either n = 2 and b = 4, or else n = 1 and b = 2 or b = 3. The 
former is again excluded by Lemma 2.5, while the latter gives only the case (I.3A) since 
if (a, b) = (2, 3) then C ∈ |−KS | is not rational. �
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2.1.4. The inductive step
The next lemma provides the inductive step for our classification. Note that, by defi-

nition, part (ii) refers to the case the −1-curve E is disjoint from the boundary.

Lemma 2.10. (i) Suppose that there exists a smooth irreducible rational curve E on the 
surface S such that E2 = −1 and E 	= C. Then there exists a birational morphism 
π : S → s such that s is a smooth surface, π(E) is a point, the morphism π induces an 
isomorphism S \E ∼= s \ π(E), the curve π(C) is a smooth rational curve, and (s, π(C))
is asymptotically log del Pezzo.

(ii) Suppose in addition that (S, C) is minimal. Then (s, π(C)) is minimal.

Proof. (i) By the discussion at the beginning of Section 2.1.3 there exists a birational 
morphism π : S → s that contracts E to a smooth point of the surface s, the curve π(C)
is a smooth rational curve, and the divisor −(Ks + (1 −β)π(C)) is ample for sufficiently 
small β ∈ (0, 1], i.e., the pair (s, π(C)) asymptotically del Pezzo.

(ii) It remains to show that (s, π(C)) is minimal. Suppose, on the contrary, that there 
exists a smooth irreducible rational curve z on the surface s such that z2 = −1, z 	= π(C), 
and z ∩ π(C) 	= ∅. Let Z be the proper transform of the curve z on the surface S. Then 
either π(E) ∈ z and Z2 = −2, contradicting Lemma 2.5, or else π(E) /∈ z and Z2 = −1, 
but then Z ∩ C 	= ∅, contradicting minimality of (S, C). �
2.1.5. Classification of minimal pairs

The next lemma uses a geometric argument to apply the inductive step to reduce the 
classification of minimal pairs to Lemma 2.9.

Lemma 2.11. Suppose that (S, C) is minimal. Then rk(Pic(S)) ≤ 2.

Proof. If C ∼ −KS then by Corollary 2.3 the pair must be (I.1A) or (I.4A), hence 
rk(Pic(S)) ≤ 2. So we assume that C � −KS .

Let (S, C) be a pair and suppose that rk(Pic(S)) ≥ 3. We would like to show that the 
pair is not minimal.

If S a del Pezzo surface, there exists a smooth irreducible rational −1-curve E on the 
surface S such that E 	= C. Indeed, in this case it follows from the classification of smooth 
del Pezzo surfaces referred to before Corollary 2.3 that there are at least three distinct 
−1-curves in S at most one of which can be the boundary. On the other hand, if S is 
not del Pezzo, then the existence of such curve E follows from Lemma 2.6, and (1.11). 
To complete the proof it thus suffices to show that E ∩ C 	= ∅ (recall Definition 2.8).

Suppose, on the contrary, that every such −1-curve E in S satisfies E ∩ C = ∅, i.e., 
that (S, C) is minimal. By Lemma 2.10 there exists a birational morphism π : S → s

such that s is a smooth surface, π(E) is a point, the morphism π induces an isomorphism 
S \E ∼= s \ π(E), the curve π(C) is smooth, and the pair (s, π(C)) is asymptotically log 
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del Pezzo and minimal. Since

rk(Pic(s)) = rk(Pic(S)) − 1 ≥ 2,

we may as well assume that rk(Pic(S)) = 3 and rk(Pic(s)) = 2.
Since rk(Pic(s)) = 2, one has s ∼= Fn for some n ≥ 0. Put

c := π(C).

Then π(E) /∈ c, since E ∩ C = ∅. Since rk(Pic(s)) = 2 and (s, c) is minimal, Lemma 2.9
implies that (s, c) is one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C).

Let ξ : s → P1 be a natural projection (unique when n > 0, and one of two choices 
when n = 0, see (1.7)), let f be the fiber of the morphism ξ that passes through the point 
π(E), and let F be its proper transform on S. Here we are following the conventions of 
(1.7). Then F is a smooth irreducible rational curve such that F 2 = −1 (since f2 = 0
downstairs). Moreover, we have F ∩C = ∅, since (S, C) is minimal. Since E ∩C = ∅, we 
see that f ∩ c = ∅, which implies that c is also a fiber of the morphism ξ, i.e.,

c ∈ |f |, (2.8)

and in particular also c2 = 0. In the case (I.2.n) c2 = −n, while in the cases (I.3A),
(I.3B), (I.4B), (I.4C), we have c2 	= 0. Thus, (s, c) is neither (I.2.n), n > 0, nor one of
(I.3A), (I.3B), (I.4B), or (I.4C). The only remaining possibility is that (s, c) is (I.2.0). 
Then s ∼= P1 × P1 and ξ = p1 is a projection to one of the factors. Let p2 denote the 
projection onto the second factor, and let g denote the fiber of p2 passing through π(E). 
Then g intersects c at one point, g2 = 0, and hence the proper transform of g, denoted G, 
satisfies G2 = −1 and G ∩ C = 1, which once again contradicts minimality of (S, C). 
This completes the proof of the lemma. �
2.1.6. Dealing with non-uniqueness

Now we are ready to finish the proof of the classification part of Theorem 2.1. If 
rk(Pic(S)) ≤ 2, then it follows from Lemma 2.9 that (S, C) is one of (I.1B), (I.1C),
(I.2.n), (I.3A), (I.3B), (I.4B), (I.4C), (I.6B.1), or (I.6C.1). Thus, we may assume that 
rk(Pic(S)) ≥ 3. In particular, the pair (S, C) is not minimal by Lemma 2.11. To prove 
Theorem 2.1, we must show that (S, C) is one of the cases: (I.6B.m), (I.6C.m) for some 
N � m ≥ 2, (I.7.n.m) for some positive integers n and m, or, finally, (I.8B.m), (I.9B.m), 
or (I.9C.m) for some positive integer m.

Since (S, C) is not minimal, there exists a curve E and a birational morphism π : S → s

as in Lemma 2.10. The next lemma follows directly from Lemma 2.5.

Lemma 2.12. Let h be a smooth irreducible rational curve on the surface s such that 
h 	= π(C) and h2 = −1. Then π(E) /∈ h.
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Now we may replace the pair (S, C) by the pair (s, c) and iterate this process. As a 
result, we obtain a birational morphism, that by abuse, we still denote by π : S → s

such that s is a smooth surface, π is a blow-up of m distinct points P1, P2, . . . , Pm on the 
smooth curve c ⊂ s such that c := π(C), and, finally, (s, c) is a minimal asymptotically 
log del Pezzo pair. By Lemma 2.11, one has rk(Pic(s)) ≤ 2. By Lemma 2.9, (s, c) is
(I.1B), (I.1C), (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C).

Corollary 2.13. If (s, c) is (I.1B), (I.1C), (I.2.n), (I.3B), (I.4B), or (I.4C), then (S, C)
can be obtained as described in one of the cases (I.6B.m), (I.6C.m), (I.7.n.m), (I.8B.m),
(I.9B.m), or (I.9C.m), respectively.

Thus, to complete the proof of Theorem 2.1, we must do the following two things:

• if s ∼= P1 × P1 and c is a smooth rational curve of bi-degree (2, 1), we must check 
that no two points among P1, P2, . . . , Pm lie on a one curve in s of bi-degree (0, 1),

• if (s, c) is (I.3A) we must show the pair (S, C) can also be described by a birational 
morphism that is listed in Theorem 2.1.

The first point is simple. Suppose that there exist two points among P1, P2, . . . , Pm

that lie on a one curve in s of bi-degree (0, 1). Let us denote this curve by z. Denote 
by Z its proper transform on the surface S. Then Z2 ≤ −2, contradicting Lemma 2.5, 
because z 	= c.

The second point is dealt with using the next lemma.

Lemma 2.14. Suppose that (s, c) is (I.3A). Then (S, C) can also be described as (I.9B.m).

Proof. We have s ∼= F1. Let ξ : S → P1 be the natural projection, let z be the section of 
ξ such that z2 = −1, and let f be a fiber of ξ that passes through the point P1. Then 
the curve c is a smooth rational in |2z + 2f |.

There exists a commutative diagram

S

π

υ
BlP1F1

ψ φ

s = F1

ξ

σ = P1 × P1

ξ′

P1 P1,

where ψ is a blow-up of the point P1, φ is a contraction of the proper transform of the 
fiber f , υ is a birational morphism, and ξ′ is a natural projection. Put π′ = φ ◦ υ. Let us 
show that π′ : S → σ is the desired replacement of the birational morphism π : S → s. 
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These birational transformations did not change the generic fiber of the projection ξ. 
Thus, σ comes equipped with a fibration ξ′ : σ → P1. In particular, the curve ζ in σ
corresponding to z ⊂ s is a fiber of ξ′ and it has zero self-intersection. Thus, σ ∼= P1×P1. 
Because φ contracts a −1-curve (f̃ , the proper transform of f) that intersects both z
and the exceptional curve A of ψ, it follows that φ(A) has zero self-intersection and 
intersects ζ at one point. At the same time φ(A) intersects the transformed boundary 
of s (which equals π′(C)) at two points (counted with multiplicity). Thus π′(C) is a 
curve of bi-degree (2, 1). Thus, (S, C) is the blow-up of (P1 ×P1, π′(C)) at m ≥ 1 points. 
Further, as already checked earlier, no two of these points may lie on a single fiber of ξ′. 
Thus, (S, C) is (I.9B.m). �
3. Strongly asymptotically log del Pezzo surfaces

The following theorem gives complete classification in the case of a reducible boundary 
curve. We assume without further mention that in each case listed below the curves 
composing the boundary intersect simply and normally. A point in the smooth locus of 
such a boundary means a point that is not an intersection point of any two components 
of the boundary.

Theorem 3.1. Let S be a smooth surface, let C1, . . . , Cr be irreducible smooth curves on 
S such that 

∑r
i=1 Ci is a divisor with simple normal crossings. Suppose that r ≥ 2. Then 

(S, 
∑r

i=1 Ci) is a strongly asymptotically log del Pezzo surface if and only if it is one of 
the following pairs:

(II.1A) |C1 ∩ C2| = 2, S ∼= P2, and C1 is a smooth conic, and C2 is a line,
(II.1B) |C1 ∩ C2| = 1, S ∼= P2, and C1 and C2 are two distinct lines,

(II.2A.n) C1 ∩ C2 = ∅, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 ∈ |Zn + nF |,
(II.2B.n) |C1 ∩ C2| = 1, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 ∈ |Zn + (n + 1)F |,
(II.2C.n) |C1 ∩ C2| = 1, S ∼= Fn for any n ≥ 0, C1 = Zn and C2 = F ,

(II.3) |C1 ∩ C2| = 1, S ∼= F1, C1, C2 ∈ |Z1 + F |,
(II.4A) |C1 ∩ C2| = 2, S ∼= P1 × P1, C1, C2 are distinct bi-degree (1, 1) curves,
(II.4B) |C1 ∩ C2| = 2, S ∼= P1 × P1, the curve C1 is a smooth rational curve of 

bi-degree (2, 1), and C2 is a smooth rational curve of bi-degree (0, 1),
(II.5A.m) |C1 ∩ C2| = 2, (S, C) is a blow-up of (II.1A) at 1 ≤ m ≤ 5 points in the 

smooth locus of the boundary curve such that the surface S is a del Pezzo 
surface and C2

1 , C
2
2 ≥ 0, i.e., C1 +C2 ∼ −KS, and there exists a birational 

morphism π : S → P2 such that π(C1) is a smooth conic, and π(C2) is a 
line such that |π(C1) ∩π(C2)| = 2, and π is a blow-up of 1 ≤ m ≤ 5 distinct 
points on π(C1) and π(C2) but away from π(C1) ∩ π(C2) with no two of 
them on π(C1), and no five of them on π(C2),

(II.5B.m) |C1 ∩C2| = 1, (S, C) is a blow-up of (II.1B) at m ≥ 1 points in the smooth 
locus of the boundary curve, i.e., there exists a birational morphism π : S →
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P2 such that π(C1) and π(C2) are distinct lines, and π is a blow-up of m ≥ 1
distinct points on π(C1) and π(C2) but away from π(C1) ∩ π(C2),

(II.6A.n.m) C1 ∩ C2 = ∅, (S, C) is a blow-up of (II.2A.n) at m ≥ 1 points on the 
boundary curve such that there exists a birational morphism π : S → Fn for 
some n ≥ 0 such that π(C1) = Zn, π(C2) ∈ |Zn + nF |, and π is a blow-up 
of m distinct points on π(C1) and π(C2) with at most one point on a single 
curve in the linear system |F |,

(II.6B.n.m) |C1∩C2| = 1, (S, C) is a blow-up of (II.2B.n) at m ≥ 1 points in the smooth 
locus of the boundary curve such that there exists a birational morphism 
π : S → Fn for some n ≥ 0 such that π(C1) = Zn, π(C2) ∈ |Zn +(n +1)F |, 
and π is a blow-up of m ≥ 1 distinct points on π(C1) and π(C2) with at 
most one point on a single curve in the linear system |F |, and no point 
being π(C1) ∩ π(C2)

(II.6C.n.m) |C1 ∩ C2| = 1, (S, C) is a blow-up of (II.2C.n) at m ≥ 1 points in the 
smooth locus of the boundary curve, i.e., there exists a birational morphism 
π : S → Fn for some n ≥ 0 such that π(C1) = Zn, π(C2) = F , and π
is a blow-up of m ≥ 1 distinct points on π(C1) and π(C2) but away from 
π(C1) ∩ π(C2),

(II.7.m) |C1 ∩ C2| = 1, (S, C) is a blow-up of (II.3) at m ≥ 1 points in the smooth 
locus of the boundary curve such that there exists a birational morphism 
π : S → F1 such that π(C1), π(C2) ∈ |Z1 +F |, and π is a blow-up of m ≥ 1
distinct points on π(C1) and π(C2) with at most one point on a single curve 
in the linear system |F |, and no point being π(C1) ∩ π(C2)

(II.8.m) |C1 ∩ C2| = 2, (S, C) is a blow-up of (II.4B) at 1 ≤ m ≤ 4 points in the 
smooth locus of the boundary curve such that S is a del Pezzo surface and 
C2

1 , C
2
2 ≥ 0, i.e., C1 + C2 ∼ −KS, and there exists a birational morphism 

π : S → P1×P1 such that π(C1) is a smooth rational curve of bi-degree (2, 1), 
π(C2) is a smooth rational curve of bi-degree (0, 1), and π is a blow-up of 
1 ≤ m ≤ 4 distinct points on π(C1) with no point being π(C1) ∩ π(C2),

(III.1) S ∼= P2, the curves C1, C2, C3 are lines,
(III.2) S ∼= P1×P1, C1, C2, C3 are of bi-degree (1, 1), (0, 1), and (1, 0), respectively,

(III.3.n) S ∼= Fn for any n ≥ 0, C1 = Zn, C2 = F , and C3 ∈ |Zn + nF |,
(III.4.m) (S, C) is a blow-up of (III.1) at 1 ≤ m ≤ 3 points in the smooth locus of 

the boundary curve such that S is a del Pezzo surface, C2
1 , C

2
2 , C

2
3 ≥ 0, i.e., 

C1 + C2 + C3 ∼ −KS, and there exists a birational morphism π : S → P2

such that the curves π(C1), π(C2), π(C3) are lines that have no common 
intersection, and π is a blow-up of 1 ≤ m ≤ 3 distinct points on these lines 
with at most one point on each line and no point on an intersection of two 
lines,

(III.5.n.m) (S, C) is a blow-up of (III.3.n) at m ≥ 1 points in the smooth locus of the 
boundary curve such that there exists a birational morphism π : S → Fn for 
some n ≥ 0 such that π(C1) = Zn, π(C2) = F , and π(C3) ∈ |Zn + nF |, 
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and π is a blow-up of m distinct points on π(C1) and π(C3) with at most 
one point on a single curve in the linear system |F |, and no point being 
π(C1) ∩ π(C2) or π(C2) ∩ π(C3),

(IV) S ∼= P1 × P1, the curves C1 and C2 are distinct curves of bi-degree (1, 0), 
the curves C3 and C4 are distinct curves of bi-degree (0, 1).

The rest of the section is devoted to the proof of Theorem 3.1.

3.1. Basic properties of asymptotically log del Pezzo pairs

In this subsection, before embarking on the proof of Theorem 2.1, we collect several 
properties of asymptotically log del Pezzo pairs that are not necessarily strongly asymp-
totically log del Pezzo. These properties are later used in the proof of that theorem, but 
they should also be useful in a future classification of the former class of pairs.

Thus in the rest of this subsection we assume (S, C), β ∈ (0, 1]r, and r ≥ 2 are as in 
Definition 1.1.

Lemma 3.2. All curves C1, . . . , Cr are smooth rational curves.

Proof. Suppose that there exists a non-rational curve among the curves C1, . . . , Cr. 
Without loss of generality, we may assume that this curve is C1. Since −(KS +

∑r
i=1 Ci)

is nef, it follows from the adjunction theorem that

2g(C1) − 2 +
r∑

i=2
C1.Ci = (KS +

r∑
i=1

Ci).C1 ≤ 0,

which implies that g(C1) = 1 and C1 ∩ Ci = ∅ for every i 	= 1. Hence, we see that C1
is an elliptic curve. Arguing as in the proof of Lemma 2.2, we see that there exists an 
effective divisor R ∼ C1 + KS . Thus, −R−

∑r
i=2 Ci ∼ −KS −C is nef, implying R ∼ 0

and r = 1, which contradicts our assumption that r ≥ 2. �
Lemma 3.3. Suppose that there exists a smooth irreducible rational curve E on the surface 
S such that E2 = −1 and E 	= Ci for every i. Then either E is disjoint from 

∑r
i=1 Ci, or 

it intersects exactly one irreducible component of 
∑r

i=1 Ci. Moreover, in the latter case 
E intersects that irreducible component transversally at exactly one point.

Proof. Since −KS .E = 1 by adjunction then

0 < −(KS +
r∑

i=1
(1 − βi)Ci).E = 1 −

r∑
i=1

Ci.E +
r∑

i=1
βiCi.E < 2 −

r∑
i=1

Ci.E,

for small |β|. This implies that 
∑r

i=1 Ci.E < 2. Hence, either 
∑r

i=1 Ci.E = 0 or ∑r
i=1 Ci.E = 1, because E 	= Ci for every i. In the former case E ∩ Ci = ∅ for ev-
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ery i. In the latter case there is an i such that E.Ci = 1 and E ∩ Cj = ∅ for every 
j 	= i. �

Similarly to Definition 2.8, let us call the pair (S, 
∑r

i=1 Ci) minimal if there exist no 
smooth irreducible rational curve on the surface S such that E2 = −1, E 	= Ci for every 
i, and there is a j such that and E ∩Cj 	= ∅. Then we have the following generalization 
of Lemma 2.10.

Lemma 3.4. Suppose that there exists a smooth irreducible rational curve E on the surface 
S such that E2 = −1 and E 	= Ci for every i. Then there exists a birational morphism 
π : S → s such that s is a smooth surface, π(E) is a point, the morphism π induces an 
isomorphism S \ E ∼= s \ π(E), the divisor 

∑r
i=1 π(Ci) is a divisor with simple normal 

crossings, and π(C1), . . . , π(Cr) are smooth rational curves whose dual graph is the same 
as the dual graph of the curves C1, . . . , Cr. Moreover, the pair (s, 

∑r
i=1 π(Ci)) is asymp-

totically log del Pezzo and strongly asymptotically log del Pezzo if (S, C) is. Furthermore, 
if the pair (S, 

∑r
i=1 Ci) is minimal, then the pair (s, 

∑r
i=1 π(Ci)) is minimal.

Proof. By the Castelnuovo’s contractibility criterion, there exists a birational morphism 
π : S → s such that s is a smooth surface, π(E) is a point, the morphism π induces 
an isomorphism S \ E ∼= s \ π(E). Moreover, the divisor 

∑r
i=1 π(Ci) is a divisor with a 

simple normal crossing, the curves π(C1), . . . , π(Cr) are smooth rational curves whose 
dual graph is the same as the dual graph of the curves C1, . . . , Cr. Indeed, the latter is 
obvious if the curve E is disjoint from 

∑r
i=1 Ci. If E is not disjoint from 

∑r
i=1 Ci, then it 

intersects exactly one irreducible component of 
∑r

i=1 Ci (and intersects this component 
transversally and at exactly one point) by Lemma 3.3. The latter implies that the divisor ∑r

i=1 π(Ci) is a divisor with a simple normal crossing, the curves π(C1), . . . , π(Cr) are 
smooth rational curves whose dual graph is the same as the dual graph of the curves 
C1, . . . , Cr. Now we can complete the proof arguing as in the proof of Lemma 2.10 (ii). �

The next lemma describes the combinatorial structure of C.

Lemma 3.5. (i) Either |Ci∩Cj | ≤ 1 for i 	= j, or r = 2, |C1∩C2| = 2 and C1+C2 ∼ −KS.
(ii) If r ≥ 3, then either the dual graph of the curves C1, . . . , Cr forms a tree, or the 

dual graph of the curves C1, . . . , Cr forms a cycle with 
∑r

i=1 Ci ∼ −KS.
(iii) If the dual graph of the curves C1, . . . , Cr forms a tree, then it is a disjoint union 

of chains.

Proof. (i) Suppose that |C1 ∩ C2| ≥ 2. We claim that r = 2, C1 + C2 ∼ −KS , and 
|C1 ∩ C2| = 2. By Serre duality,

h2(OS(KS + C1 + C2)) = h0(OS(−C1 − C2)) = 0.
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Put k = |C1 ∩ C2|. Then

(KS + C1 + C2).(C1 + C2) = (C1 + C2)2 + KS .C1 + KS .C2

= C2
1 + C2

2 + 2C1.C2 + 2g(C1) − 2 − C2
1 + 2g(C2) − 2 − C2

2 = 2k − 4,

since C1 and C2 are rational curves by Lemma 3.2. Since S is rational, it follows from 
the Riemann–Roch theorem that h0(OS

(
KS + C1 + C2

)
) ≥ 1 + (2k − 4)/2 = k − 1 ≥ 1. 

The rest of the proof is now identical to that of Lemma 3.2.
(ii) By (i), |Ci∩Cj | ≤ 1 for every i 	= j. Suppose that for some k ≤ r the dual graph of 

the curves C1, C2, . . . , Ck forms a cycle such that Ck.C1 = C1.C2 = . . . = Ck−1.Ck = 1, 
and Ci.Cj = 0 in all other cases when 1 ≤ i 	= j ≤ k. We claim that r = k. Indeed, as 
before h2(OS(KS +

∑k
i=1 Ci)) = h0(OS(− 

∑k
i=1 Ci)) = 0. Since

(KS +
k∑

i=1
Ci).(

k∑
i=1

Ci) = 2
∑

1≤i<j≤k

Ci.Cj +
k∑

i=1
KS .Cj +

k∑
i=1

C2
i

= 2
∑

1≤i<j≤k

Ci.Cj +
k∑

i=1
(2g(Ci) − 2) = 2k − 2k = 0.

Thus, as in (i), h0(OS(KS +
∑k

i=1 Ci)) 	= 0 by the Riemann–Roch theorem and there 
exists an effective divisor R such that R ∼ KS +

∑k
i=1 Ci, hence the divisor −KS −∑r

i=1 Ci ∼ −R−
∑r

i=k Ci is nef, so R = 0 and r = k.
(iii) Suppose that the dual graph of the curves C1, . . . , Cr forms a tree that is not 

a disjoint union of chains. Then r ≥ 4, and there exists a curve among C1, . . . , Cr

that intersects at least three other different curves among C1, . . . , Cr, say C1.C2 = 1, 
C1.C3 = 1, and C1.C4 = 1. Then

0 > (KS +
r∑

i=1
(1 − βi)Ci).C1

= KS .C1 + (1 − β1)C2
1 +

4∑
i=2

(1 − βi)Ci.C1 +
r∑

i=5
(1 − βi)Ci.C1

≥ KS .C1 + (1 − β1)C2
1 +

4∑
i=2

(1 − βi)Ci.C1

= −2 − C2
1 + (1 − β1)C2

1 +
4∑

i=2
(1 − βi)Ci.C1 = 1 − β1C

2
1 − β2 − β3 − β4 > 0,

for |β| � 1, a contradiction. �
The next lemma shows that only curves Ci that are at the ‘tail’ of a chain can have 

negative self-intersection.
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Lemma 3.6. Suppose that (S, 
∑r

i=1 Ci) is strongly asymptotically log del Pezzo. Then 
C2

i ≥ 0 for every Ci such that Ci intersects at least two curves among C1, . . . , Cr different 
from itself. Similarly, C2

i ≥ 0 if there exists a curve among C1, . . . , Cr different from Ci

that intersects Ci by more than one point.

Proof. Suppose that C1, say, intersects at least two curves among C2, . . . , Cr, say 
C1.C2 = C1.C3 = 1. Suppose that C2

1 < 0. Then it follows from adjunction that

(KS +
r∑

i=1
(1 − βi)Ci).C1 ≥ KS .C1 + (1 − β1)C2

1 + (1 − β2)C2.C1 + (1 − β3)C3.C1

= −β1C
2
1 − β2 − β3

thus β1 < β2 + β3. The latter contradicts our assumption that the divisor −(KS +∑r
i=1(1 − βi)Ci) is ample for every (β1, . . . , βr) ∈ (0, 1]r with |(β1, . . . , βr)| < ε.
To complete the proof, we may assume that C1 intersects some curve among C2, . . . , Cr

by more than 2 points. Then r = 2 and C1.C2 = 2 by Lemma 3.5. If C2
1 < 0, then

0 > (KS +
r∑

i=1
(1 − βi)Ci).C1 = KS .C1 + (1 − β1)C2

1 + (1 − β2)C2.C1 = −β1C
2
1 − 2β2

which once again does not hold for all small β. �
Remark 3.7. We mention that the number of connected components of the curve 

∑r
i=1 Ci

is at most 2 [43, Theorem 6.9] (see also [17, Proposition 2.1] for a generalization in 
all dimensions). We will not use this result in the proof of Theorem 3.1. In fact, if 
(S, 

∑r
i=1 Ci) is strongly asymptotically log del Pezzo, this also follows from Theorem 3.1.

The next example shows that the previous lemma does not hold in the non-strongly 
asymptotically log del Pezzo regime (nor in the “diagonal regime”, i.e., where β =
β1(1, . . . , 1)), where ‘interior’ boundary components could have negative self-intersection.

Example 3.8. Let S ∼= Fn for some n > 0. Let C1 and C2 be two distinct fibers of the 
natural projection Fn → P1, and let C3 = Zn. Then the pair (S, 

∑3
i=1 Ci) is asymptot-

ically log Fano, but it is not strongly asymptotically log Fano. Indeed, by (1.9) we see 
that the divisor −KS −

∑3
i=1(1 − βi)Ci is ample if and only if β1 + β2 > nβ3.

3.2. Classification

Note that in Section 3.1 we only assumed that (S, 
∑r

i=1 Ci) is asymptotically log del 
Pezzo. In this subsection, we assume that (S, 

∑r
i=1 Ci) is strongly asymptotically log del 
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Pezzo (Definition 1.1). Namely, there exists a positive ε ∈ (0, 1] such that the divisor

−KS −
r∑

i=1
(1 − βi)Ci (3.1)

is ample for every β = (β1, . . . , βr) ∈ (0, 1]r with |β| ≤ ε.

3.2.1. Boundary with arithmetic genus one
Lemma 3.9. Suppose that 

∑r
i=1 Ci ∼ −KS. Then −KS is ample, Ci

∼= P1 ∀i, and C2
i ≥ 0

∀i. Furthermore, if r = 2, then |C1 ∩ C2| = 2. If r ≥ 3, then |Ci ∩ Cj | ≤ 1 for every 
i 	= j, and the dual graph of the curves C1, . . . , Cr forms a cycle.

Proof. The ampleness of −KS is obvious, because (S, 
∑r

i=1 Ci) is asymptotically log del 
Pezzo

−(KS +
r∑

i=1
(1 − β)Ci) ∼R −βKS

for every real β ∈ (0, 1]. By Lemma 3.2, Ci
∼= P1 ∀i. By Lemma 3.6, C2

i ≥ 0 ∀i. Now, 
observe that a disjoint union of chains of smooth rational curves intersecting transversally 
in a del Pezzo surface cannot be linearly equivalent to −KS (to see this, intersect the 
tail curve with 

∑
i Ci ∼ −KS and apply adjunction to get a contradiction). If r = 2, 

then |C1 ∩ C2| = 2 by Lemma 3.5. Similarly, if r ≥ 3, then it follows from Lemma 3.5
that |Ci ∩ Cj | ≤ 1 for every i 	= j, and the dual graph of the curves C1, . . . , Cr forms a 
cycle. �

In analogy with Corollary 2.3, we get:

Corollary 3.10. Suppose 
∑r

i=1 Ci ∼ −KS. Then (S, 
∑r

i=1 Ci) is one of (II.1A), (II.4A),
(II.4B),(II.5A.m), (II.8.m), (III.1), (III.2), (III.4.m), or (IV).

3.2.2. Boundary with arithmetic genus zero
To complete the proof of the classification part of Theorem 3.1, we may assume that ∑r
i=1 Ci � −KS . By Lemma 3.5 |Ci ∩Cj | ≤ 1 for every i 	= j, and the dual graph of the 

curves C1, . . . , Cr is a union of disjoint chains. By Lemma 3.6, C2
k ≥ 0 for every curve 

Ck among C1, . . . , Cr that intersects at least 2 other different curves among the curves 
C1, . . . , Cr. The next lemma gives a complete classification in this situation under the 
further assumption that the Picard group is small.

Lemma 3.11. Suppose that rk(Pic(S)) ≤ 2 and C � −KS. Then when (S, C) is minimal 
it is one of (II.1B), (II.2A.n), (II.2B.n), (II.2C.n), (II.3), or (III.3.n), and otherwise it 
is (II.5B.1).
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Proof. Since rk(Pic(S)) ≤ 2, either S ∼= P2 or S ∼= Fn for some n ≥ 0. If the former case 
(S, C) must be (II.1B), as C � −KS . Assume from now on that S = Fn.

Recall that |Ci ∩ Cj | ≤ 1 for every i 	= j, and C1, . . . , Cr are smooth rational curves 
whose dual graph is a union of disjoint chains. Then r ≤ 3 as a direct computation shows. 
If n = 0 this determines (S, C), i.e., the boundary C must be either two disjoint fibers 
(II.2A.0), two intersecting fibers (II.2C.0), a fiber and a bi-degree (1,1) curve (II.2B.0), 
or three non-disjoint fibers (III.3.0).

To complete the proof let us first consider the case n ≥ 2. First,

0 < −
(
KS +

r∑
i=1

(1 − βi)Ci

)
.Zn = 2 − n−

r∑
i=1

(1 − βi)Ci.Zn, (3.2)

so one of the curves, say C1, equals Zn. If every curve C2, . . . , Cr lies in |F |, then

0 < −
(
KS +

r∑
i=1

(1 − βi)Ci

)
.Zn = −nβ1 + 2 −

r∑
i=2

(1 − βi),

thus r = 2 and (S, C) is (II.2C.n). Assume that C2 � F and write Ci ∼ aiZn + biF . 
Then since [F ] is nef

0 < −
(
KS+

r∑
i=1

(1−βi)Ci

)
.F = 1+β1−a2(1−β2)−

r∑
i=3

(1−βi)Ci.F ≤ 1+β1−a2(1−β2),

and since a2 > 0 this implies that a2 = 1. Then

0 < −
(
KS +

r∑
i=1

(1 − βi)Ci

)
.F = β1 + β2 −

r∑
i=3

(1 − βi)Ci.F,

i.e., Ci.F = 0 for every i ≥ 3. Therefore, we see that Ci ∈ |F | for every i ≥ 3. Then

−
(
KS +

r∑
i=1

(1 − βi)Ci

)
∼ (β1 + β2)Zn +

(
n + 2 − (1 − β2)b2 −

r∑
i=3

(1 − βi)
)
F,

where b2 ≥ n by (1.10). Then by (1.9)

n + 2 − (1 − β2)b2 −
r∑

i=3
(1 − βi) > n(β1 + β2).

If r = 2 this implies that (1 − β2)b2 ≤ n + 1 so b2 ∈ {n, n + 1} (as β2 can be assumed 
to be small), i.e., (S, C) is (II.2A.n) or (II.2B.n) and if r = 3 then b2 ≤ n so b2 = n so 
(S, C) is (III.3.n).
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Finally, assume n = 1. Then (3.2) implies that either C1 = Z1 or C1 ∼ Z1 + F . In 
the former case the same arguments of the previous paragraph apply to yield (S, C) is 
either (II.2C.1), (II.2A.1), (II.2B.1), or (III.3.1). In the latter case, if C2 ∼ F then r = 2
and (S, C) is (II.5B.1) and is not minimal since Z1 intersects C2 transversally at one 
point. Due to (3.2) the only other remaining possibility is C2 ∼ Z1 + F and then (S, C)
is (II.3). The proof is now complete since all the cases listed in the statement are indeed 
strongly asymptotically log del Pezzo by Section 4.2. �

The following is an analogue of Lemma 3.4 for the case when a −1-curve contained 
in the boundary is contracted. We omit the proof as it is analogous to the proof of that 
lemma.

Recall that |Ci ∩Cj | ≤ 1 for every i 	= j, and the dual graph of the curves C1, . . . , Cr

is a union of disjoint chains.

Lemma 3.12. Suppose that C2
1 = −1. Then there exists a birational morphism π : S → s

such that s is a smooth surface, π(C1) is a point, the morphism π induces an isomorphism 
S \ C1 ∼= s \ π(C1), the divisor 

∑r
i=2 π(Ci) is a divisor with simple normal crossings, 

|π(Ci) ∩ π(Cj)| ≤ 1 for every i 	= j, and π(C2), . . . , π(Cr) are smooth rational curves 
whose dual graph is a union of disjoint chains. Moreover, the pair (s, 

∑r
i=2 π(Ci)) is 

strongly asymptotically log del Pezzo. Furthermore, if the pair (S, 
∑r

i=1 Ci) is minimal, 
then the pair (s, 

∑r
i=2 π(Ci)) is minimal as well.

Proof. Recall that |Ci∩Cj | ≤ 1 for every i 	= j, and C1, . . . , Cr are smooth rational curves 
whose dual graph is a union of disjoint chains. Moreover, it follows from Lemma 3.6 that 
C2

1 ≥ 0 if C1 intersects at least 2 curves among the curves C2, . . . , Cr. Arguing as in the 
proof of Lemma 3.4, we obtain all required assertions. �

Now we are ready to prove an analogue of Lemma 2.11 that plays a crucial role in the 
proof of Theorem 3.1.

Lemma 3.13. Suppose that (S, 
∑r

i=1 Ci) is minimal. Then rk(Pic(S)) ≤ 2.

Proof. If C ∼ −KS then (S, C) is one of the pairs listed in Corollary 3.10. Of those,
(II.1A), (II.4A), (III.1), (III.2), and (IV) are minimal and they all satisfy rk(Pic(S)) ≤ 2. 
So we assume from now on that C � −KS .

Suppose that rk(Pic(S)) ≥ 3. Let us derive a contradiction. By (1.11) there exists a 
smooth rational curve E on the surface such that E2 = −1. Either E 	= Ci for every i, 
or there is k such that E = Ck. By Lemmas 3.4 and 3.12 and induction on rk(Pic(S))
we can assume that rk(Pic(S)) = 3.

If E 	= Ci for every i, then we can proceed exactly as in the proof of Lemma 2.11
to obtain a contradiction. Thus, assume that E = C1. By Lemma 3.6, C1 intersects at 
most one curve among the curves C1, . . . , Cr. Suppose that C1 ∩ Ci = ∅ for every i ≥ 3
(if any).
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Since the pair (S, C) is minimal and strongly asymptotically log del Pezzo, there exists 
a birational morphism π : S → s as in Lemma 3.12. Then (s, 

∑r
i=2 π(Ci)) is minimal and 

rk(Pic(s)) = 2, and, in particular, s ∼= Fn for some n ≥ 0.
Put ci = π(Ci) for every i ≥ 2. Let ξ : S → P1 be the natural projection (it is uniquely 

determined if n 	= 0). Then either

π(C1) /∈
r⋃

i=2
ci,

(if C1 ∩ C2 = ∅) or π(C1) ∈ c2 and π(C1) /∈ ci for every i ≥ 3 (if any) (if C1 ∩ C2 	= ∅).
We can apply Lemmas 2.9 and 3.11 to get an explicit description of the pair 

(s, 
∑r

i=2 ci). The cases (I.1B), (I.1C), (I.6B.1), (I.6C.1), (II.1B), and (II.5B.1) are ex-
cluded because either the rank of their Picard group is one or else they are not minimal. 
Thus, if r ≥ 3, (s, 

∑r
i=2 ci) is one of (II.2A.n), (II.2B.n), (II.2C.n), (II.3), or (III.2.n). 

Similarly, if r = 2, (s, 
∑r

i=2 ci) is one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C). In 
particular, r is at most four.

Let f be a fiber of the morphism ξ that passes through the point π(C1), and let F
be its proper transform on S. Then F is a smooth irreducible rational curve such that 
F 2 = −1. Moreover, we have F ∩C1 	= ∅ by construction. Since (S, 

∑r
i=1 Ci) is minimal, 

the curve F must be one of the curves C2, . . . , Cr. Then F = C2, C1∩C2 	= ∅, π(C1) ∈ c2, 
and π(C1) /∈ ci for every i ≥ 3 (if any). Moreover, it follows from Lemma 3.6 that C2
does not intersect any curve among C3, . . . , Cr (if any), since F 2 = −1. Thus, c2 does 
not intersect any curve among c3, . . . , cr (if any).

Suppose that r = 2. Then (s, c2) is one of (I.2.n), (I.3A), (I.3B), (I.4B), or (I.4C). The 
latter is possible only in the case (I.2.0) since c2 ∈ |f | is a fiber of the morphism ξ. Then 
s ∼= P1 × P1. The latter implies that (S, C1 + C2) is not minimal. Indeed, the surface S
is a del Pezzo surface with K2

S = 7. It contains three (−1)-curves. Two of them are the 
curves C1 and C2. The third one intersects C2, contradicting minimality.

Suppose that r = 3. As noted earlier then (s, c2 + c3) is one of (II.2A.n), (II.2B.n),
(II.2C.n), or (II.3). Since c2 ∩ c3 = ∅ it must be (II.2A.n). Since c2 is a fiber of the 
morphism ξ and c2 ∩ c3 = ∅ it follows that c3 is also a fiber of ξ. Thus, n = 0, i.e., 
s ∼= P1 × P1. The latter implies that (S, C1 + C2) is not asymptotically log del Pezzo. 
Indeed, the surface S is del Pezzo surface with K2

S = 7. It contains three (−1)-curves. 
Two of them are the curves C1 and C2. The third one intersects C2 and C3, contradicting 
Lemma 3.3.

Suppose that r = 4. Then (s, c2 + c3 + c4) must be (III.2.n). But this is precluded by 
the fact that c2 does not intersect c3 or c4.

In conclusion then rk(Pic(S)) ≤ 2. �
We now complete the proof of the classification part of Theorem 3.1. If rk(Pic(S)) ≤ 2, 

then (S, C) is listed in Corollary 3.10 if C ∼ −KS and by Lemma 3.11 if C � −KS . On 
the other hand, if rk(Pic(S)) > 2, the pair (S, 

∑r
i=1 Ci) is not minimal by Lemma 3.13. 
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But then, Lemmas 3.4 and 3.12 imply (S, C) is a blow-up along the boundary of one of 
the minimal pairs that we already listed. It remains to check the genericity conditions 
on the location of the blow-up points as stated in Theorem 3.1. This is carried out in 
Section 4.2 where we simultaneously also verify that all pairs listed in the theorem are 
indeed strongly asymptotically del Pezzo.

Remark 3.14. The results of this section already give some hints as to the difficulties 
in classifying all asymptotically log del Pezzo surfaces. In particular, r can then be un-
bounded, and −1-curves can appear as ‘interior’ curves of the boundary (see Example 3.8) 
even though the number of connected components of the support of C is still two by Re-
mark 3.7. However, the classification of the ‘diagonal’ regime (where −KS−

∑
(1 −βi)Ci

is ample for all sufficiently small β of the form β = β1(1, . . . , 1)) should be more tractable. 
In a related vein, results of di Cerbo–di Cerbo [13] give bounds on the largest possible 
value β1 may take for pairs of class (�) in this last regime depending only on (KS +C)2. 
We further note that di Cerbo [14] considered the ‘diagonal’ regime in the setting of 
negative curvature, and obtained necessary and sufficient intersection-theoretic restric-
tions on the pair for KS + (1 − β) 

∑
Ci to be ample. Of course, in the negative setting 

a complete classification is lacking even in the smooth setting with no boundary.

4. Positivity properties of the logarithmic anticanonical bundle

Let S be a smooth surface, let C1, . . . , Cr be smooth irreducible curves on the surface S
such that 

∑r
i=1 Ci is a divisor with simple normal crossings, and let β = (β1, β2, . . . , βr) ∈

(0, 1]r, where r ≥ 1. Suppose that (S, 
∑r

i=1 Ci) is strongly asymptotically log del Pezzo. 
Then we have the following mutually excluding possibilities:

(ℵ) −(KS +
∑r

i=1 Ci) ∼ 0, S is del Pezzo surface, and 
∑r

i=1 Ci ∼ −KS , and C2
i ≥ 0 ∀i,

(�) (−KS −
∑r

i=1 Ci)2 = 0, KS +
∑r

i=1 Ci � 0, all curves C1, . . . , Cr are rational, and 
the dual graph of the curves C1, . . . , Cr is a disjoint union of chains,

(ג) the divisor −(KS +
∑r

i=1 Ci) is big and nef, the divisor −(KS +
∑r

i=1 Ci) is not 
ample, all curves C1, . . . , Cr are rational and the dual graph of the curves C1, . . . , Cr

is a disjoint union of chains,
(�) the divisor −(KS +

∑r
i=1 Ci) is ample, all curves C1, . . . , Cr are rational and the 

dual graph of the curves C1, . . . , Cr is a disjoint union of chains.

This follows from Lemmas 2.12, 2.2, 3.6 and 3.5. Note that the classification in Theo-
rems 2.1 and 3.1 generalizes Maeda’s classical result [35] that corresponds to class (�). 
Maeda further provided a full classification in class (�). In Section 4.1 we generalize 
this by giving a complete classification in each of the remaining classs. In Section 4.3 we 
go further in the class (�) by proving that the linear system |−KS −

∑r
i=1 Ci| gives a 

morphism S → P1 whose general fiber is P1.
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Remark 4.1. There is perhaps no real need to distinguish between classes (ג) and (�), 
but we do that mainly for a historical reason. Indeed, class (�) is not new. These pairs 
were completely classified in Maeda’s work who coined the term ‘log del Pezzo surface’ 
for this class of pairs [35]. In higher dimensions it might prove more natural to identify 
only dimX + 1 classes according to the Kodaira dimension of −KX −D.

4.1. Positivity classification

We now prove Theorem 1.4, relying on Theorems 2.1 and 3.1.
Class (ℵ) follows from Corollary 2.3 (and the remark preceding it) and Corollary 3.10. 

Class (�) follows from (1.9).
Next, if (S, 

∑r
i=1 Ci) is not minimal (see Definition 2.8), then it follows from the proof 

of Theorems 2.1 and 3.1 that there exists a non-biregular birational map π : S → s such 
that the pair (s, 

∑r
i=1 π(Ci)) is minimal and

−KS +
r∑

i=1
Ci ∼ π∗(−Ks −

r∑
i=1

π(Ci)).

Indeed, by our construction, each −1-curve that is contracted intersects the boundary 
transversally exactly at one point. This also shows that −KS−

∑r
i=1 Ci cannot be ample 

if (S, 
∑r

i=1 Ci) is not minimal, because −KS−
∑r

i=1 Ci intersects all π-exceptional curves 
trivially. In sum, if (S, C) is of class (ℵ), respectively (�), then so is (s, c), and if (s, c)
is of class (ג) or (�), (S, C) is of class (ג). This completes the verification of class (ג)
since each of these pairs are blow-ups of a pair of class (�), while the pairs (I.3A),
(I.4B), (II.2A.n), (II.2B.n), (II.3), and (III.3.n) all satisfy (KS +C)2 = 0. Class (�) then 
contains, by exclusion, all the remaining pairs listed in Theorems 2.1 and 3.1.

4.2. Verification of the list

Using the positivity classification of the original lists of Theorems 2.1 and 3.1, we now 
verify that indeed each of the pairs listed there is strongly asymptotically log del Pezzo. 
This is the last step remaining to complete the proof of the main classification result, 
Theorem 1.2.

The Maeda case (�) is immediate by convexity as then −KS −C itself is ample, and 
so is the case (ℵ). So suppose (S, C) is a pair of class (�) or (ג) listed in Theorem 1.4. 
Then there exists a blow-down map π : S → s such that the pair (s, c) is minimal where 
c = π(C). When C has only one component,

−KS − (1 − β)C ≡ π∗
(
−
(
Ks + (1 − β)c

))
−

m∑
i=1

βEi. (4.1)

In the general case there is a slightly more involved formula involving possibly different 
angles. Here Ei = π−1(Pi), with P1, . . . , Pm ∈ c denoting the blow-up points. The slight 
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subtlety is that while the second term on the right is ‘small’ in terms of its contribution 
to intersection numbers and the first term is ample, the latter also depends on β and so a 
priori it is not clear which term will dominate. In fact, the following example illustrates 
a situation where such a problem arises.

Example 4.2. Consider the surface Fn and let R be some smooth curve in |Zn + nF |. 
Then (Fn, Zn +F +R) is strongly asymptotically log Fano. Let π : S → Fn be a blow-up 
of m distinct points in the smooth locus of Zn + F + R such that no two of the points 
lie on one curve in the linear system |F |. Let C1, C2, C3 be the proper transforms of the 
curves Zn, F , R, respectively. Then (S, C1 + C2 + C3) is asymptotically log Fano. On 
the other hand, (S, C1 +C2 +C3) is strongly asymptotically log Fano if and only if none 
of the blow-up points lies in F (cf. (III.5.n.m) in Theorem 3.1).

We now go through the lists of classes � and ג and verify the pairs are strongly asymp-
totically log del Pezzo. We assume without mention that β is taken in each equation to 
be sufficiently small, depending only on (S, C).

By the Nakai–Moishezon criterion (1.4), we have to check that (KS+
∑

(1 −βi)Ci)2 > 0
and −(KS +

∑
(1 − βi)Ci).Z > 0 for every irreducible curve Z ⊂ S, with β independent 

of Z (and we use, e.g., the notation On,m(γ) to denote a quantity bounded by a constant 
times γ with the constant depending only on n, m, and (S, C)).

To do this, let us fix some irreducible curve Z on the surface S. We may assume that 
Z is not π-exceptional since by (4.1) (when C consists of one component) and the fact 
that all the blow-up points are distinct (so none of the exceptional divisors intersect) 
−(KS +

∑
(1 − βi)Ci).Z > 0 if Z is π-exceptional. Put z := π(Z), and suppose that 

multP1(z) ≤ · · · ≤ multPm
(z).

Class (ג). Suppose that we are either in case (I.6B.m) or (I.6C.m). Then s ∼= P2, and c
is a conic in the case (I.6B.m) or a line in the case (I.6C.m). Let δ be the degree of the 
curve c in s ∼= P2, i.e., either δ = 2 in the case (I.6B.m) or δ = 1 in the case (I.6C.m). 
Let l be a line in s. Then −(KS + (1 − β)C) ≡ π∗((3 − (1 − β)δ)l) −

∑m
i=1 βEi, which 

implies that (KS + (1 − β)C)2 = (3 − δ + δβ)2 −mβ2 > 0 since δ ∈ {1, 2}. Let d be the 
degree of the curve z in s ∼= P2. Then

−(KS + (1 − β)C).Z = (3 − (1 − β)δ)d−
m∑
i=1

βmultPi
(z) ≥ d−mβmultPm

(z) > 0,

concluding these cases.
Now consider the case (I.7.n.m). Then s ∼= Fn, and c = Zn. Let f be a fiber of the 

natural projection s → P1, i.e., f is a smooth irreducible rational curve such that f.c = 1
and f2 = 0. Then −Ks ∼ 2c + (2 + n)f , so

−(KS + (1 − β)C) ≡ π∗((1 + β)c + (2 + n)f) −
m∑

βEi
i=1
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and (KS + (1 − β)C)2 = 4 + n + 4β − nβ2 −mβ2 > 0. Note that z ∼ a1c + a2f for some 
non-negative integers a1, a2 such that either (a1, a2) = (1, 0) (if n ≥ 1, then Z = C in 
this case), or (a1, a2) = (0, 1) (this means that z is a fiber of the projection s → P1), or 
a2 ≥ na1 (see [22, Corollary 2.18]). Then

−(KS + (1 − β)C).Z = a2 + 2a1 + β(a2 − na1) −
m∑
i=1

βmultPi
(z) > 0.

Indeed, since the divisor c +(n +1)f is very ample [22, Theorem 2.17], we get a uniform 
bound on the multiplicity:

multPm
(z) ≤ (c + (n + 1)f)z = a2 + a1.

This concludes this case.
The case (I.8B.m) is treated similarly.
Suppose now (S, C) is (I.9C.m). Then s ∼= P1 × P1. Let f1, f2 be fibers of the two 

natural projections s → P1. Then c ∼ f1 +f2 and −Ks ∼ 2f1 +2f2, and z ∼ a1f1 +a2f2
for some non-negative integers a1 and a2 such that (a1, a2) 	= (0, 0). Then

−KS − (1 − β)C = π∗((1 + β)f1 + (1 + β)f2) −
m∑
i=1

βEi,

and (KS + (1 − β)C)2 = 2(1 + β)2 −mβ2 > 0. Since f1 + f2 is very ample multPm
(z) ≤

a1 + a2. Thus,

−(KS + (1 − β)C).Z = (a1 + a2)(1 + β) −
m∑
i=1

βmultPi
(z)

≥ (a1 + a2)(1 + β) −mβmultPm
(z) > 0.

Finally, one readily checks that the case (II.5B.m) reduces to (II.1B) which in turns 
is essentially identical to (I.1B). Similarly, (II.6C.n.m) reduces to (II.2C.n) which is in 
the class (�).

Class (�). The cases (I.3A) and (I.4B) are immediate. Suppose we are in the case
(I.9B.m). Then

−KS − (1 − β1)C1 − (1 − β2)C2 ≡ π∗(2βf1 + (1 + β)f2) −
m∑
i=1

βEi,

so (KS + (1 − β)C)2 = 4β(1 + β) −mβ2 > 0, and

−(KS + (1 − β)C).Z = 2βa2 + (1 + β)a1 −
m∑

βmultPi
(z) > 0 (4.2)
i=1
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since if z ∈ |f2| (i.e., (a1, a2) = (0, 1)) then z passes through at most one of the blow-up 
points and in this case z (a fiber) is also necessarily smooth, so multPi

(z) ∈ {0, 1}.
Among (II.2A.n) and (II.2B.n) it suffices to check the latter. In fact, since (II.6A.n.m)

and (II.6B.n.m) are their blow-ups we only need to consider (II.6B.n.m) (allowing m to 
possibly equal 0). In this case,

−KS − (1 − β)C = π∗((β1 + β2)Zn + (1 + (n + 1)β2)F
)
−

k∑
i=1

β1Ei −
m∑

i=k+1

β2Ei,

assuming that exactly the first k points are blown-up along π(C1) = Zn. The square of 
this class is then 2β1 +2β2 +On,m(β1β2 +β2

1 +β2
2) > 0, and its intersection with Z (such 

that z ∼ a1Zn + a2F ) equals

−na1(β1 + β2) + a1(1 + (n + 1)β2) + a2(β1 + β2) − β1

k∑
i=1

multPi
(z)

− β2

m∑
i=k+1

multPi
(z)

= a1(1 + β2 − nβ1) + a2(β1 + β2) − β1

k∑
i=1

multPi
(z) − β2

m∑
i=k+1

multPi
(z).

This is positive if a1 > 0 since, as before, the multiplicities are uniformly bounded 
independently of z. If a1 = 0 then a2 > 0, so a2 = 1 as z is irreducible, thus a fiber. 
Then the intersection number is positive (bounded below by min{β1, β2}) provided the 
fiber does not intersect more than one of the Pi.

The case (II.7.m) (that implies the case (II.3)) is proven using very similar computa-
tions.

Finally we consider (III.5.n.m) (that takes care of the case (III.3.n)). Then

−KS −
∑

(1 − βi)Ci = π∗((β1 + β3)Zn + (1 + β2 + nβ3)F
)
−

k∑
i=1

β1Ei −
m∑

i=k+1

β3Ei.

This squares to −n(β1 +β3)2 +2(β1 +β3)(1 +β2 +nβ3) −kβ2
1 − (m −k− 1)β2

3 > 0 (here 
we see why blow-ups along π(C2) are prohibited). The verification of the intersection 
with Z is as in the previous case.

The proof of Theorem 1.2 is now complete.

4.3. Nef and non-big adjoint anticanonical bundle

In the case (�), the linear system |−(KS +
∑r

i=1 Ci)| gives a morphism S → P1

whose general fiber is P1. This can be shown by using our classification in Theorems 2.1
and 3.1 or alternatively (and in any dimension) from Kawamata–Shokurov’s results as 
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demonstrated in Theorem 1.9. But we prefer to give a self-contained classification-free 
proof of Proposition 1.7 that does not rely on these deep works.

In the remaining part of this subsection we prove Proposition 1.7. Suppose that (KS +∑r
i=1 Ci)2 = 0. By Lemma 3.5, the dual graph of the curves C1, . . . , Cr is a disjoint 

union of chains. Let l be the number of connected components of the curve 
∑r

i=1 Ci (by 
Remark 3.7 one has l ≤ 2 but we will not use it here).

Lemma 4.3. One has h0(OS(−(KS +
∑r

i=1 Ci))) = 1 + l.

Proof. Since the dual graph of the curves C1, . . . , Cr is a disjoint union of chains, one 
can easily check that

(KS +
r∑

i=1
Ci).(

r∑
i=1

Ci) = −2l.

This allows us to compute h0(OS(−(KS +
∑r

i=1 Ci))). Indeed, we have

h2(OS(−(KS +
r∑

i=1
Ci))) = h1(OS(−(KS +

r∑
i=1

Ci))) = 0

by (3.1) and the Kawamata–Viehweg Vanishing Theorem. Therefore, it follows from the 
Riemann–Roch theorem that

h0
(
OS

(
− (KS +

r∑
i=1

Ci)
))

= 1 +
(KS +

∑r
i=1 Ci).(2KS +

∑r
i=1 Ci)

2

= 1 − 1
2(KS +

r∑
i=1

Ci).(
r∑

i=1
Ci) = 1 + l, (4.3)

because (−KS −
∑r

i=1 Ci)2 = 0 by assumption. �
Thus, we see that |−(KS + C)| is at least a pencil. Moreover, if l = 1, then it is a 

pencil, since S is rational. Note that we can use [43, Theorem 6.9] to show that l ≤ 2. 
But we do not need this. In fact, one can show that l ≤ 2 using Lemma 4.3 (cf. the proof 
of [43, Theorem 6.9]).

Lemma 4.4. The linear system |−KS −
∑r

i=1 Ci| is a base point free.

Proof. Let us first show that |−(KS + C)| is free from fixed components (see [21, The-
orem III.1]). Suppose this is not the case. Let B be the fixed part of the linear system 
|−(KS + C)|, and let M be its mobile part. Then M is nef. In particular, we have 
h1(OS(M)) = h2(OS(M)) = 0 by the Kawamata–Viehweg Vanishing Theorem. Then it 
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follows from the Riemann–Roch theorem that

2l = h0(OS(M + B)) = h0(OS(M)) = 1 + M.(M −KS)
2 ,

which implies that M2 −M.KS = 4l − 2. On the other hand, we have

0 = (KS +
r∑

i=1
Ci)2 = (B + M)2 = B2 + 2B.M + M2 =

= B.(B + M) + B.M + M2 = −(KS +
r∑

i=1
Ci).B + B.M + M2 ≥ 0,

since both −(KS +
∑r

i=1 Ci) and M are nef. Hence, we have M2 = 0 and B.M = 0, 
which implies that B2 = 0, since (B + M)2 = 0.

We claim that B is nef. Indeed, put B =
∑k

i=1 aiBi, where Bi is an irreducible curve, 
and ai is a positive integers. Then

0 = (B + M).
( k∑

i=1
aiBi

)
≥

k∑
i=1

ai(B + M).Bi,

which implies that (B + M).Bi = 0 for every possible i (as B + M is nef each of these 
terms must be nonnegative, hence zero). Similarly, we see that M.Bi = 0 for every 
possible i, which implies that B.Bi = 0 for every possible i. Hence, the divisor B is nef.

Since B is nef, we have h1(OS(B)) = h2(OS(B)) = 0 by the Kawamata–Viehweg 
Vanishing Theorem. Applying the Riemann–Roch theorem to the divisor B, we see that 
(recall that we showed B2 = 0)

h0(OS(B)) = 1 + B.(B −KS)
2 = 1 − B.KS

2 ≥ 0,

since −KS ∼
∑r

i=1 Ci +B+M and B is nef. But h0(OS(B)) = 1, because B is the fixed 
part of the linear system |−(KS +

∑r
i=1 Ci)|. The latter implies that −KS .B = 0. Since 

B 	= 0 by assumption, the Riemann–Roch theorem implies that

h2(OS(−B)) = h0(OS(−B)) + h2(OS(−B)) =

= 1 + h1(OS(−B)) + B.(B −KS)
2 = 1 + h1(OS(−B)) ≥ 1,

which implies that h2(OS(−B)) 	= 0. By Serre duality, we have h2(OS(−B)) =
h0(OS(B + KS)). But

B + KS ∼ −
r∑

Ci −M,

i=1



I.A. Cheltsov, Y.A. Rubinstein / Advances in Mathematics 285 (2015) 1241–1300 1277
which implies that h0(OS(B + KS)) = 0, which is a contradiction. Thus, the linear 
system |−(KS +

∑r
i=1 Ci)| is free from fixed curves.

Since |−(KS +
∑r

i=1 Ci)| is free from fixed curves and (−KS −
∑r

i=1 Ci)2 = 0, the 
linear system |−(KS +

∑r
i=1 Ci)| does not have base points at all. �

Since (−KS −
∑r

i=1 Ci)2 = 0, the linear system |−(KS +
∑r

i=1 Ci)| is composed from 
a base point free pencil. By Bertini’s theorem, there exists a smooth irreducible curve F
such that F 2 = 0, the linear system |F | is a base point free pencil, and

−KS −
r∑

i=1
Ci ∼ kF

for some positive integer k. Since −KS is big (so sum of ample and effective), we have 
−KS .F > 0. Hence, we have −KS.F = 2 and F ∼= P1 by adjunction formula (since 
F 2 = 0). Then it follows from the Riemann–Roch theorem that h0(OS(kF )) = k + 1, 
which implies that k = l by (4.3).

We may assume that F is a general curve in |F |. The pencil |F | gives a morphism 
ξ : S → P1 whose general fiber is F ∼= P1, i.e., the morphism ξ is a conic bundle. Since 
−KS .F = 2 and −(KS +

∑r
i=1 Ci).F = 0, we have F.(

∑r
i=1 Ci) = 2.

For every irreducible curve Z on the surface that is contained in the fibers of ξ, we 
have

0 < −(KS +
r∑

i=1
(1 − βi)Ci).Z ∼R F.Z +

r∑
i=1

βiCi.Z =
r∑

i=1
βiCi.Z,

for all 0 < |β| � 1, because (S, 
∑r

i=1 Ci) is strongly asymptotically log del Pezzo (note 
that this step does not work if (S, 

∑r
i=1 Ci) just asymptotically log del Pezzo). This 

implies that 
∑r

i=1 Ci.Z > 0. Keeping in mind that 
∑r

i=1 Ci.F = 2, we see that either ∑r
i=1 Ci.Z = 1 or 

∑r
i=1 Ci.Z = 2. In the latter case, we must have Z ∼ F . This implies 

that ξ is so-called standard conic bundle, i.e., every singular fiber of ξ consists of a union 
of two smooth rational curves that intersect each other transversally at one point.

5. Reductivity of the automorphism group of a pair

Denote by aut(X) the Lie algebra of holomorphic vector fields on (X, J), i.e., all 
vector fields V ∈ Γ(X, TX) satisfying LV J = 0. We emphasize that these are real vector 
fields. The projection of V onto T 1,0X, denoted V 1,0 = (V −

√
−1JV )/2 will be referred 

to as a holomorphic (1, 0)-vector field, and it is sometimes convenient to work with 
aut(X) recast in this complex notation. Let aut(X, D) ⊂ aut(X) denote the subspace 
of fields tangent to D. It is a Lie subalgebra. We say that (X, D, ω) is KEE if for some 
β ∈ (0, 1], Ricω − 2π(1 − β)[D] is a (positive) constant multiple of ω, and such that ω
is a Kähler edge metric, namely ω is uniformly equivalent to the model edge metric on 
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balls intersecting D. By the results of [26], any KEE metric is polyhomogeneous, which 
will be crucial in our arguments below.

Proposition 5.1. Let (X, D, ω) be a KEE manifold. Then aut(X, D) is the complexification 
of the Lie algebra of (Hamiltonian) Killing vector fields of (X, ω).

Proof. Suppose V = ∇u ∈ aut(X, D) is a gradient holomorphic vector field (here 
u is a real-valued function). We claim that JV is a Killing field with respect to g
(the metric associated to ω). Indeed, this is equivalent to Z �→ ∇Z(JV ) = J∇ZV

being a skew-symmetric endomorphism of TX [40, Proposition 27]. But ∇(J∇u) =
∇(

√
−1∇1,0u −

√
−1∇0,1u) =

√
−1(∇0,1∇1,0u − ∇1,0∇0,1u) = −

√
−1∂∂̄u, since 

∇1,0V 1,0 = ∇1,0∇1,0u = 0.
Next, we claim that any element X of aut(X, D) is necessarily a linear combination 

of a gradient vector field and J applied to such a field. In fact, consider the (0, 1)-form 
g(V 1,0, . ) given in local coordinates by gij̄V

idzj . Since ∇1,0V = 0, this form is closed. 
Thus, by Lemma 5.3 below, it equals a ∂̄-exact form, say ∂̄u/2 with u complex-valued. 
It follows that V 1,0 = ∇1,0u/2, and V 0,1 = ∇0,1ū/2, so

V = ∇Reu + J∇Im u. (5.1)

The same argument also shows that any Killing field V is necessarily a Hamiltonian 
vector field. In fact, an isometry homotopic to the identity preserves any ω-harmonic 
form by Hodge theory [20, p. 82] since it preserves its class. Thus, LV ω = 0, or ιV ω = 0. 
Since b1(V ) = 0 then ιV ω = du and V = −J∇u. Further, since LV g = 0, LV ω = 0, and 
ω( . , . ) = g(J . , . ), then also LV J = 0. Next, note that any automorphism of (X, ω)
must preserve its singular set, i.e., D. Thus, combining all the above, aut(X, D) must 
contain the Lie algebra of Killing fields of (X, ω).

Thus, we would be done if we knew that each summand in the decomposition (5.1)
of a holomorphic vector field V were itself a holomorphic vector field (then V would be 
equal to a Killing field and J times such a field, by the previous paragraphs). To show 
that, recall that as shown in [26, §6], if ω is a KEE metric of positive Ricci curvature 
μ, and φ is a complex-valued eigenfunction of −Δω with eigenvalue μ then ∇1,0φ is a 
holomorphic (1,0)-vector field tangent to D. We claim that the converse is true as well. 
Assuming this claim, there is an isomorphism between Λμ(−Δω) (the aforementioned 
eigenspace) and aut(X, D) given by u +

√
−1v �→ ∇u + J∇v, where u, v ∈ C∞(X)

are real-valued functions. By the remark at the beginning of this paragraph then, the 
proposition follows: indeed, for a complex-valued function in Λμ(−Δω) it is immediate 
that both its real and imaginary parts are contained in Λμ(−Δω) since −Δω is a linear 
operator.

Thus suppose that u ∈ C∞(X \ D) ∩ C0(X) is such that ∇u ∈ aut(X, D), so that 
∇1,0∇1,0u = 0 (the gradients here and below are with respect to the edge metric ω and 
the underlying complex structure). Thus, using the Weitzenböck formula [26, §6] and 
the KEE assumption,



I.A. Cheltsov, Y.A. Rubinstein / Advances in Mathematics 285 (2015) 1241–1300 1279
Δω|∇1,0u|2ω = 2 Ric(∇1,0u,∇0,1u) + 2|∇1,0∇1,0u|2 + 2(Δωu)2 + 4ω(∇1,0u,∇0,1Δωu)

= 2μ|∇1,0u|2ω + 2(Δωu)2 + 4ω(∇1,0u,∇0,1Δωu).

To conclude then, it would suffice to integrate (5.2) and prove that

∫
X

Δω|∇1,0u|2ωωn = 0,
∫
X

|∇1,0u|2ωωn = −
∫
X

uΔωuω
n, (5.2)

and

−
∫
X

ω(∇1,0u,∇0,1Δωu)ωn =
∫
X

(Δωu)2ωn. (5.3)

Indeed, these identities then imply

μ

∫
X

|∇1,0u|2ωωn =
∫
X

(Δωu)2. (5.4)

They also imply that
∫
X

|∇1,0u|2ωωn = −
∫
X

uΔωuω
n ≤ ||u||L2(X,ωn)||Δωu||L2(X,ωn)

≤ μ−1/2||Δωu||L2(X,ωn)||∇1,0u||L2(X,ωn)

where we used the fact that since ω is KEE, the first positive eigenvalue of −Δω equals 
μ [26, Lemma 6.1]. Therefore, μ 

∫
X
|∇1,0u|2ωωn ≤

∫
X

(Δωu)2, with equality if and only 
if u is an eigenfunction of −Δω with eigenvalue λ1 = μ. Thus, by (5.4), u is such an 
eigenfunction, concluding the proof of the proposition.

We now turn to proving (5.2)–(5.3). First, we claim that u in fact has a polyhomoge-
neous expansion of the form

u ∼ a0(y) + (a10(y) cos θ + a11(y) sin θ)r
1
β + a2(y)r2 + O(r2+η), (5.5)

for some η > 0. Here y is a local coordinate on D and re
√
−1θ = zβ1 with D = {z1 = 0}

locally. For the proof, observe that since ∇1,0∇1,0u = 0, u lies in the kernel of the 
self-adjoint fourth-order Lichnerowicz operator Dω := L�

ω ◦Lω : C∞(X \D) ∩C0(X) →
C∞(X \D) ∩C0(X); here Lω : u �→ ∇1,0∇1,0u and L�

ω is the formal L2 adjoint computed 
with respect to ω. Second, Dω is a linear degenerate elliptic operator of edge type, in 
the sense of Mazzeo [37], whose principal symbol is Δ2

ω; more precisely [4, (2.1)],

Dω = Δ2
ω + (Ricω,

√
−1∂∂̄( . ))ω + (∂sω, ∂u)ω = Δ2

ω + μΔω, (5.6)
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by the KEE assumption. The expansion (5.5) then follows from the polyhomogeneous 
expansion for the KEE metric ω [26, Theorem 1] and the polyhomogeneous structure of 
inverses of elliptic edge operators associated to polyhomogeneous Kähler edge metrics 
[37, Theorem 6.1], [26, Proposition 3.8], and the fact that u is bounded (if u were not 
bounded then its expansion would contain a log r term, but then the corresponding 
vector field would not be bounded).

Finally, given (5.5), the verification of (5.2)–(5.3) follows in the same way as in the 
proof of [26, Lemma 6.1]. �
Remark 5.2. A shorter proof would be to avoid the Weitzenböck formula and use (5.6)
directly. It then follows that v = Δωu + μu is in the kernel of Δω. By the asymptotic 
expansion for bounded solutions of Dωu = 0 we see that v is bounded (indeed, the term 
of order O(r1/β) in (5.5) is in the kernel of Δω), and hence a constant. Then it follows 
that by changing u by a constant it must be a eigenvalue of Δω with eigenvalue −μ. We 
preferred the current proof since the Weitzenböck formula was used in [26] to obtain one 
direction of the isomorphism proved here, and it seemed natural to emphasize what is 
needed to make that proof work in the other direction.

Lemma 5.3. Let (X, D, ω) be a Kähler edge manifold, and suppose that c1(X) −∑
i(1 − βi)[Di] = μ[ω] with μ > 0. Then b1(X) = 0.

Proof. This is a direct corollary of the Kawamata–Viehweg Vanishing Theorem which 
states that Hi(X, OX(KX +M)) = 0 for all i > 0 whenever M is numerically equivalent 
to a sum B+Δ of a big and nef Q-divisor B, and a Q-divisor with snc support Δ [33, Vol. 
II, §9.1.C]. Thus, we may choose β ∈ QN ∩ (0, 1)N such that B := −KX −

∑
i(1 −βi)Di

is ample, and set Δ =
∑

i(1 − βi)Di. Finally, by Hodge theory b1(X) = 2h1,0(X) =
2 dimH1(X, OX) = 0 [20, p. 105]. �
Remark 5.4. In fact, it follows from [51, Corollary 1] that X is simply connected in a 
much more general setting. This generalizes the classical result of Kobayashi in the Fano 
case [27].

Let Aut0(X) denote the connected Lie group associated to aut(X). Similarly, denote 
by Aut0(X, D) ⊂ Aut0(X) the Lie subgroup associated to aut(X, D). This is the identity 
component of the automorphism group of the pair. Putting the above results together 
we obtain a version of Matsushima’s theorem [36] for pairs.

Proof. [Proof of Theorem 1.12] Suppose that c1(X) − (1 − β)[D] = μ[ω] with μ ∈ R. 
In case μ > 0 the statement is a corollary of Proposition 5.1 since as noted in its proof 
every Killing vector field of (X, g) is Hamiltonian.

Suppose now that μ ≤ 0. Let ψ ∈ Aut0(X, D). Since ψ ∈ Aut(X), ψ�c1(X) = c1(X). 
Since ψ fixes D, ψ�[D] = [D]. Thus, ψ�[ω] = [ω]. Therefore, if ω is KEE then ψ�ω is a 
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cohomologous KEE form. But, when μ ≤ 0 the KEE form is unique in its cohomology 
class [26, Theorem 2]. Thus ψ is the identity map, and Aut0(X, D) = {id}. �
Remark 5.5. Using the arguments above one can prove a corresponding generalization 
to the edge setting of Calabi’s theorem on the structure of the automorphism group of 
an extremal metric [4]. For brevity, we do not go into the details here.

6. Tian invariants of asymptotic pairs

Throughout the article we use the standard language of the singularities of pairs [29,7]. 
By strictly log canonical (lc) singularities we mean log canonical singularities that are not 
Kawamata log terminal [29, Definition 3.5]. We also distinguish between an α-invariant 
as in Definition 6.3 below, by which we refer to a global log canonical threshold, and a 
Tian invariant, by which we refer to the analogous invariant defined analytically in terms 
of metrics [45]. These two invariants coincide under certain regularity assumptions [7,
1]. The algebraic definition makes sense in more general (singular and/or degenerate) 
settings, while the analytic definition is useful for proving existence of KEE metrics by 
Theorem 1.14.

6.1. A general bound on global log canonical thresholds of pairs

Given a proper birational morphism π : Y → X, we define the exceptional set of π
to be the smallest subset exc(π) ⊂ Y , such that π : Y \ exc(π) → X \ π(exc(π)) is an 
isomorphism.

A log resolution of (X, Δ) is a proper birational morphism π : Y → X such that 
π−1(Δ) ∪ {exc(π)} is a divisor with snc support and Y is smooth. Log resolutions exist 
for all the pairs we will consider in this article, by Hironaka’s theorem.

Assume that KX + Δ is a Q-Cartier divisor. Given a log resolution of (X, Δ), write

π�(KX + Δ) = KY + Δ̃ +
∑

eiEi,

where Δ̃ denotes the proper transform of Δ, and where exc(π) = ∪Ei, and Ei are 
irreducible codimension one subvarieties. Also, assume Δ =

∑
δiΔi, with Δi irreducible 

codimension one subvarieties, so Δ̃ =
∑

δiΔ̃i. Singularities of pairs can be measured as 
follows.

Definition 6.1. Let Z ⊂ X be a subvariety. A pair (X, Δ) has at most log canonical (lc) 
singularities along Z if ei, δj ≤ 1 for every i such that Ei ∩ Z 	= ∅ and every j such that 
Δj ∩ Z 	= ∅.
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Definition 6.2. Let Z ⊂ X be a subvariety. The log canonical threshold of the pair (X, Δ)
along Z is

lctZ(X,Δ) := sup{λ : (X,λΔ) is log-canonical along Z}.

Set lct(X, Δ) := lctX(X, Δ).

Let X be a variety, let B and D be effective Cartier Q-divisors on the variety 
X such that the singularities of the log pair (X, B) are log terminal, and KX + B + D

is a Q-Cartier divisor. Recall that the log canonical threshold of the boundary D is the 
number

lct
(
X,B;D

)
= sup

{
λ ∈ Q : the pair

(
X,B + λD

)
is log canonical

}
.

Let H be an ample Q-divisor on X, and let [H] be the class of the divisor H in Pic(X) ⊗Q.

Definition 6.3. The global log canonical threshold of the log pair (X, B) with respect to 
[H] is the number

α(X,B, [H]) := inf
{
lct

(
X,B;D

)
: D is effective Q-divisor such that D ∼Q H

}
.

For simplicity, we put α(X, [H]) = α(X, B, [H]) if there is no boundary, i.e., B = 0. 
Similarly, we put α(X, B) = α(X, B, [H]) if H ∼Q −(KX + B).

Finally, we put α(X) = α(X, [H]) if B = 0 and H = −KX . Note that it follows from 
Definition 6.3 that

α
(
X,B, [H]

)
= sup

{
c

∣∣∣∣∣ for every Q-divisor D such that D ∼Q H

the log pair (X,B + cD) is log canonical

}
, (6.1)

and α(X, B, [μH]) = α(X, B, [H])/μ for every positive rational number μ.
By a result of Demailly [7, Appendix] (with complements by Berman [1] in the log 

setting) α(X, 
∑

(1 − βi)Di, [H]) coincides with Tian’s invariant for the Kähler class [H]
[45] when X is smooth, 

∑
Di has simple normal crossings and when the background 

measure has edge singularities of angle 2πβi along Di. In other words

α(X,
∑

(1 − βi)Di, [H]) = sup
{
a : sup

ϕ∈PSH(X,ω0)

∫
X

e−a(ϕ−sup ϕ)ωn < ∞
}
, (6.2)

where ω is a Kähler edge metric with angle 2πβi along Di and ω0 is a smooth Kähler 
metric with [ω0] = [ω] = [H]. In the notation of [26, §6.3] μ = 1, so in this normalization 
the criterion for existence of KEE is precisely the one stated in Theorem 1.14.

The next lemma gives an explicit bound for α-invariants on curves. We will make 
use of it in Proposition 6.10 to obtain explicit bounds for α-invariants on log del Pezzo 
surfaces. It also serves to illustrate the definitions above.
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Lemma 6.4. Let C be a smooth curve, Pi ∈ C distinct points, and ai ≥ 0. Suppose that 
(C, 

∑k
i=1 aiPi) is log terminal, i.e., ai < 1 for all i. Let H be an ample R-divisor on C, 

and let d ∈ R>0 be its degree. Then

α
(
C,

k∑
i=1

aiPi, [H]
)
≥ 1 − max{a1, . . . , ak}

d
.

Furthermore, equality holds when C = P1.

Proof. If D ∼Q H then D =
∑

biQi with bi ≥ 0 and 
∑

bi = d. Then (C, 
∑n

i=1 aiPi+λD)
is log canonical precisely when ai +λbi ≤ 1, i.e., λ ≤ (1 −ai)/bi for all such admissible bi
(here we are assuming that Pi = Qi otherwise the bounds are even weaker). In particular, 
if λ ≤ (1 − maxi ai)/d then the pair is always log canonical. This proves the inequality. 
The result follows since we may choose a divisor D = dPj with j such that maxi ai = aj ; 
on P1 Q-rational equivalence is determined solely by degree so D ∼Q H, thus in this case 

α
(
C, 

∑k
i=1 aiPi, [H]

)
≤ (1 − maxi ai)/d. �

The following gives a general bound on global log canonical thresholds of pairs.

Proposition 6.5. Suppose that B = (1 −β)S, where β ∈ (0, 1) and S is an irreducible nef 
Cartier divisor on X. Let H be an ample Q-divisor on X. Put

γ = sup
{
c ∈ Q

∣∣ H − cS is pseudoeffective
}
.

Then α(X, (1 − β)S, [H]) ≥ min(β/γ, α(X, [H]), α(S, [H]|S)).

Proof. Put λ = min(β/γ, α(X, [H]), α(S, [H]|S)). We may assume that λ > 0. Suppose 
that α(X, (1 − β)S, [H]) < λ. Then there exists an effective Q-divisor Δ on X such that 
Δ ∼Q H and the log pair (X, (1 − β)S + μΔ) is not log canonical at some point P ∈ X

for some positive rational number μ < λ.
If P /∈ S, then the log pair (X, μΔ) is not log canonical at the point P ∈ X, contra-

dicting μ < λ ≤ α(X, [H]) and Δ ∼Q H. Thus, P ∈ S.
Put (1 − β)S + μΔ = aS + R for some positive rational number a ≥ 1 − β and some 

effective Q-divisor R such that S 	⊂ Supp(R). Since

H ∼Q Δ = a− 1 + β

μ
S + 1

μ
R,

we see that (a − 1 + β)/μ ≤ γ. Because μ < λ ≤ β/γ then a ≤ 1. Since a ≤ 1, the log 
pair (X, S +R) is not log canonical at the point P ∈ S. Thus, it follows from adjunction 
theorem [32, Theorem 5.50] that the log pair (S, R|S) is not log canonical as well.
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Note that R ∼Q μH − (a − 1 + β)S. Thus, if S|S is Q-linearly equivalent to some 
effective divisor TS on S, then

R|S + (a− 1 + β)TS ∼Q μH

while (S, R|S + (a − 1 + β)TS) is not log canonical, which contradicts μ < α(S, [H]|S). 
Unfortunately, we do not know that S|S is Q-linearly equivalent to some effective divisor 
on S, because we only know that S|S is nef. Nevertheless, we still can obtain a contra-
diction in a similar way by adding to S|S a small piece of an ample divisor H|S. Note 
that

R ∼Q μH − (a− 1 + β)S = λH −
(
(λ− μ)H + (a− 1 + β)S

)
,

where (λ −μ)H+(a −1 +β)S is an ample Q-divisor, since S is nef and H is ample. Thus, 
there exists an effective Q-divisor G on the variety X such that G ∼Q (λ − μ)H + (a −
1 + β)S and S 	⊂ Supp(G). Then (R + G)|S ∼Q [λH]|S and the log pair (S, (R + G)|S)
is not log canonical, since (S, R|S) is not log canonical and G|S is an effective Q-divisor 
on S. On the other hand, the log pair (S, (R + G)|S) must be log canonical, because 
λ ≤ α(S, [H]|S) and λ−1(R + G)|S ∼Q [H]|S . �

The previous result specializes to a result of Berman [1] when X is further assumed to 
be smooth, when the boundary S is assumed to be smooth and ample, and further when 
S and H are proportional in the sense that S ∼Q cH, (i.e., in his setting S is a section of 
H and γ = c). Upon completion of this article we learned that Odaka–Sun also gave an 
algebraic proof of Berman’s result in the special case [H] = [S] = −KX [39, Corollary 
5.5]. We decided to keep Proposition 6.5 due to its general form and possible application 
to polarizations different from −KX . Thus, we obtain as a corollary the following result 
originally proved by Berman using analytic methods.

Corollary 6.6. Suppose that X is smooth, B = (1 − β)S, where β ∈ (0, 1] and S is an 
irreducible smooth ample Cartier divisor on X. Then

α
(
X, (1 − β)S, [βS]

)
≥ min

{
1, α(X, [S])

β
,
α(S, [S]|S)

β

}
.

6.2. Limiting behavior of α-invariants

In this subsection we prove Theorem 1.5. The proof is divided into Propositions 6.8, 
6.9, and 6.10.

More generally, we conjectured in (1.1) that in higher dimensions

lim
β→0+

α(X, (1−β)D) =

⎧⎪⎪⎨
⎪⎪⎩

1 if KX + D ∼ 0,
min{1, α(X, [−KX −D]), α(D)} if 0 � −KX −D is not big,
0 if −K −D is big.
X
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provided that D is irreducible and smooth. Note that the divisors −KX −D and −KS =
(−KX −D)|D may not be ample. This violates our definitions of α(X, [−KX −D]) and 
α(D) = α(D, [(−KX−D)|D]). However, it follows from [32, Theorem 3.3] that −KX−D

and −KD are semi-ample, so we can define α(X, [−KX −D]) and α(D) in the same way 
as in the case when −KX −D and −KD are ample (and it could happen that α = ∞, 
for instance). We prove this conjecture in the cases when KX + D ∼ 0 or −KX −D is 
big. While Proposition 6.9 is two-dimensional, we believe its proof should find a suitable 
generalization to higher dimensions.

Remark 6.7. The situation in the simple normal crossings case is more complicated and 
there is in general no unique limit for Tian’s invariant as |β| tends to zero. To illustrate 
this we consider the following toric example. Let L1, L2, L3 be distinct lines on P2. Then

α(P2,

3∑
i=1

(1 − βi)Li) = min(β1, β2, β3)
β1 + β2 + β3

for any (β1, β2, β3) ∈ (0, 1]3. Furthermore, let G be a finite group in Aut(P2) such that 
L1 +L2 +L3 is G-invariant and G does not fix any point in P2 (there are infinitely many 
such groups). Then αG(P2, (1 − β) 

∑3
i=1 Li) = 1 for any β ∈ (0, 1]. The proof, modeled

on the arguments in [7, Lemma 5.1.], is left to the reader.

6.2.1. Class (ג) and (�)
The next result holds for asymptotically log Fano varieties in any dimension and for 

C with any r ≥ 1.

Proposition 6.8. Suppose that −KS − C is big. Then limβ→0+ α(S, (1 − β)C) = 0.

Proof. Since −KS − C is big, there exists positive integer N such that

−N(KS + C) ∼ C + Δ

for some effective divisor Δ (this follows from the characterization of bigness [33, Corol-
lary 2.2.7] since given an ample class H and an effective class C one may find an 
integer M such that MH ∼ C + E for some effective divisor E). Put ε = 1

N . Then 
−KS−C ∼Q εC+εΔ. Take any sufficiently small real β > 0 such that −(KS +(1 −β)C)
is ample. Put D = (β + ε)C + εΔ. Then

D ∼R (β + ε)C + εΔ ∼R −(KS + (1 − β)C).

On the other side, we have lct(S, (1 −β)C; D) ≤ β
ε+β , which implies that α(S, (1 −β)C) ≤

β . This shows that
ε+β
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lim
β→0+

α(S, (1 − β)C) = 0,

since ε depends only on the pair (S, C) and not on β. �
6.2.2. Class (�)

In this subsection we prove Theorem 1.5 in the case when (S, C) is of class (�).
Before embarking on the proof let us say few words about the idea of the proof. 

If −KS − C is not big, then by Proposition 1.7 C ∼= P1 and |−KS − C| is free from 
base points and gives a morphism S → P1 whose general fiber is P1 (a conic bundle). 
Moreover, the general curve in |−KS − C| is a fiber of this conic bundle. On the other 
hand, when β is small, the class

−KS − (1 − β)C ∼R −(KS + C) + βC

is close to −KS − C. Thus, when looking for divisors

Δ ∼R −(KS + (1 − β)C)

having small lct(S, (1 − β)C; Δ) with 0 < β � 1, there are not many options. Namely, 
we can take Δ to be βC+F where F is a fiber of the conic bundle. All other choices of Δ
gives us either better or similar singularities. The reason is a continuity of α(S, (1 −β)C)
in β. When β is very small, we have

α(S, (1 − β)C) ≈ α(S,C).

Note that α(S, C) is not well defined according to our definition of the α-invariant, 
because −KS − C is not ample. Nevertheless, we can still define α(S, C) in a similar 
way, since −(KS + C) is semi-ample. On the other hand, if β = 0, we have no freedom 
in choosing Δ at all! Indeed, if β = 0, then

Δ ∼R −KS − C,

which implies that every irreducible component of Δ must be a fiber of the conic bundle 
S → P1. In this case, the worst Δ (the one with smallest lct(S, C; Δ)) must be a fiber of 
the conic bundle. Furthermore, among these fibers there are exactly two that are worse 
than others, i.e., the two fibers that do not intersect C transversally. So in a sense we 
have a choice of exactly two divisors for Δ, which both gives us lct(S, C; Δ) ≈ 1

2 .

Proposition 6.9. Suppose that −KS − C is not big. Then limβ→0+ α(S, (1 − β)C) = 1
2 .

Proof. By Lemma 2.2, we have C ∼= P1. By Proposition 1.7 the linear system |−KS −∑r
i=1 Ci| is free from base points and gives a morphism ξ : S → P1 such that its general 

fiber is P1, and every reducible fiber consists of exactly two components.
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Let F be a general fiber of ξ. Then −KS −C ∼ F , since |−KS −
∑r

i=1 Ci| is a pencil 
by Lemmas 4.3 and 4.4. Then, F.C = 2.

The morphism ξ induces a double cover C → P1. Since C is a smooth rational curve, 
this double cover has exactly two ramification points. Let O be one of these two ramifi-
cation points, and let FO be a fiber of ξ that passes through it. Recall that

−(KS + (1 − β)C) ∼R FO + βC

by construction. On the other hand, we have

lct(S, (1 − β)C;FO + βC) =

⎧⎪⎪⎨
⎪⎪⎩

1 + β

2 + β
if FO is singular,

1 + 2β
2 + 2β if FO is smooth.

To see this it suffices to blow-up once when FO is singular and twice when it is smooth. 
Hence, α(S, (1 −β)C) ≤ (1 +β)/(2 +β). To complete the proof it is thus enough to show 
that for every positive real ε > 0 there exists real δ = δ(ε, C) > 0 such that both (2.1)
and

α(S, (1 − β)C) ≥ 1
2 − ε (6.3)

hold for every real β ∈ (0, δ). In fact, we claim that δ = min{1/2, ε/|C2|, βmax} will do, 
where (2.1) holds for β ∈ (0, βmax).

To that end we work with the definition (6.2) of the global log canonical threshold 
of the pair (S, (1 − β)C). We use repeatedly the following application of adjunction: if 
K ⊂ S is a smooth irreducible curve and M an effective R-divisor on S and if (S, K+M)
is not lc at a point Q on K then (K, M |K) is not lc at Q, or equivalently multQ K.M > 1
[9, Excercise 6.31].

Throughout the proof we let D be an effective R-divisor satisfying

D ∼R F + βC

If the pair (S, (1 − β)C + λD) is not lc at some point P ∈ C and C 	⊂ Supp(D) then

2 + βC2 = C.
(
F + βC

)
= C.D ≥ multP

(
C.D

)
> λ−1,

thus λ > 1
2+βC2 . If (S, (1 − β)C + λD) is not lc at some point P ∈ C and C ⊂ Supp(D)

then write D = μC + Ω, where μ is a positive rational number, and Ω is an effective 
R-divisor on the surface S whose support does not contain the curve C. Then

2β = (F + βC).F = D.F = (μC + Ω).F = 2μ + Ω.F ≥ 2μ,
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so μ ≤ β. On the other hand, (S, (1 −β+λμ)C+λΩ) is not lc at P . Since 1 −β+λμ ≤ 1, 
also (S, C + λΩ) is not lc at P . Thus,

2 + (β − μ)C2 = C.
(
F + (β − μ)C

)
= C.Ω ≥ multP

(
C.Ω

)
> λ−1,

so again λ > 1
2+βC2 .

Next, suppose that (S, (1 −β)C +λD) is not lc at some point P /∈ C. Then (S, λD) is 
not lc at P . Let FP be the fiber of ξ that passes through P . Then we must consider three 
cases: FP is smooth, FP is singular and P 	= Sing(FP ), FP is singular and P = Sing(FP ).

First, suppose FP is smooth and put D = τFP + Δ, where 0 ≤ τ ∈ Q, and Δ is an 
effective R-divisor with FP 	⊂ Supp(Δ). Then

4β + β2C2 = D2 = (FP + βC).D = (τFP + Δ).D = 2βτ + Δ.D ≥ 2βτ,

so τ ≤ 2 + β
2C

2. If λτ > 1 then λ > 1
2+βC2/2 . Suppose that λτ ≤ 1. Thus, the pair 

(S, FP + λΔ) is not lc at P . Then

2β = FP .
(
FP + βC − τFP

)
= FP .Δ ≥ multP

(
FP .Δ

)
> λ−1,

so λ > 1
2β .

Next, suppose FP is singular. Then FP = F1 + F2, where F1 and F2 are smooth 
rational curves on S such that F1.F2 = F1.C = 1 = F2.C = 1, and F 2

1 = F 2
2 = −1. 

Put D = τ1F1 + τ2F2 + Θ, where 0 ≤ τ1, τ2 ∈ Q, and Θ is an effective R-divisor with 
F1, F2 	⊂ Supp(Θ). Then

β = (F + βC).F1 = (τ1F1 + τ2F2 + Θ).F1 = −τ1 + τ2 + Θ.F1 ≥ −τ1 + τ2, (6.4)

and similarly τ1 − τ2 ≤ β. On the other hand, using that D is ample we have

4β + β2C2 = (F + βC).D = (τ1F1 + τ2F2 + Θ).D = β(τ1 + τ2) + Θ.D ≥ β(τ1 + τ2),

so τ1 + τ2 ≤ 4 + βC2, and combined with (6.4) then τ2 ≤ 2 + β
2C

2 + β
2 and similarly for 

τ1. If λτi > 1 for some i then λ > 1
2+βC2/2+β/2 . Suppose that λτ1, λτ2 ≤ 1. There are 

two cases to consider: P = F1 ∩ F2 and P 	= F1 ∩ F2. Suppose first that P = F1 ∩ F2. 
Then the pairs (S, F1 + λτ2F2 + λΘ) and (S, λτ1F1 + F2 + λΘ) are not lc at P . Then

β + τ1 = F1.(F + βC − τ1F1) = F1.(τ2F2 + Θ) > τ2 + λ−1

so λ > 1
β+τ1−τ2

and similarly λ > 1
β+τ2−τ1

, so using (6.4) λ > 1
2β . Next, suppose 

P 	= F1 ∩ F2, say P /∈ F1, P ∈ F2. Hence, the log pair (S, λτ2F2 + λΘ) is not lc at P . 
Then

β + τ2 − τ1 = F2.
(
F + βC − τ1F1 − τ2F2

)
= F2.Θ > λ−1,

so λ > 1 , so again using (6.4) λ > 1 .
β+τ2−τ1 2β
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In conclusion, we see that if (S, (1 − β)C + λD) is not lc then λ > 1
2 − ε whenever 

β < min{1/2, ε/|C2|, βmax}. Thus, (6.3) follows from (6.2), concluding the proof. �
6.2.3. Class (ℵ)

By Corollary 6.6, α(X, (1 − β)S) ≥ min{1, β−1α(X), β−1α(S, [S]|S)} when (S, C) is 
of class (ℵ). Moreover, from the definition and the fact that D ∼ −KX this invariant is 
bounded above by 1. Combining this, Lemma 6.4, and Theorem 1.14 yields:

Proposition 6.10. Let (X, D) be an asymptotically log Fano pair with D ∈ |−KX | a 
smooth irreducible divisor and X Fano. Then limβ→0+ α(S, (1 − β)C) = 1. Moreover,

(i) if dimX = 2, then α(X, (1 − β)D) ∈ [min
{
1, 1

9β
}
, 1], and (X, D) admits KEE 

metrics for all β ∈ (0, 1/6).
(ii) if dimX = 3, then α(X, (1 − β)D) ∈ [min

{
1, 1

64β
}
, 1], and (X, D) admits KEE 

metrics for all β ∈ (0, 1/48).

Proof. As noted above, it suffices to estimate min{α(X), α(D, [D]|D)}.
(i) First, by using Lemma 6.4 and the fact that K2

X ≤ 9 for every smooth del Pezzo 
surface (by their classification) one has α(D, [D]|D) ≥ 1/9.

It remains to show that α(X) ≥ 1/9. This follows from the complete list of lcts of del 
Pezzo surfaces [5, Theorem 1.7] but we now explain a direct derivation that can also be 
adapted to prove (ii). Let Δ be an effective Q-divisor on X such that Δ ∼Q −KX and 
the log pair (X, λΔ) is not log canonical at some point P ∈ X for some positive rational 
λ.

If −KX is very ample, let HP be a general curve in |−KX | that passes through P . 
By the very ampleness we may assume that HP is not contained in the support of the 
divisor D. Thus, as in the proof of Proposition 6.9,

K2
X = Δ.HP ≥ multP (Δ)multP (HP ) ≥ multP (Δ) > λ−1,

so λ > 1/9.
If −KX is not very ample but still base-point free |−KX | gives a surjective finite 

morphism X → V , where V is a surface, which implies that we can still proceed as in 
the very ample case. If −KX is not base-point free by the classification of del Pezzo 
surfaces K2

X = 1 and the linear system |−2KX | is base-point free and gives a surjective 
finite morphism X → V ′, where V ′ is a surface. Let H ′

P denote a general curve in |−2KX |
that passes though P . Then

2K2
X = Δ.HP ≥ multP (Δ)multP (HP ) ≥ multP (Δ) > λ−1,

so λ > 1/2K2
X = 1/2. The result now follows from (6.1).

(ii) Let Δ be as in (i). Suppose first that |−KX | is base-point free. We claim that 
multP (Δ) ≤ 64 for every point P ∈ X and for every divisor Δ on X such that Δ ∼Q

−KX . Indeed, since |−KX | is base-point free, the linear system |−KX | gives a finite 
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surjective morphism X → U , where U is a threefold. Thus, there exists SP and S′
P in 

|−KX | such that P ∈ Supp(SP .S
′
P ) and no component of the 1-cycle SP .S

′
P is contained 

in the support of D. Then

−K3
X = Δ.SP .S

′
P ≥ multP (Δ)multP (SP )multP (S′

P ) ≥ multP (Δ) > λ−1.

Thus, λ > −1/K3
X ≥ 1/64 [25, Corollary 7.1.2], implying α(X) ≥ 1/64. Similarly, we 

can prove that multP (Ω) ≤ 64 for every point P ∈ D and for every divisor Ω on D such 
that Ω ∼Q −KX |D. Thus, α(D, [D]|D) ≥ 1/64.

Next, suppose that |−KX | has base-points. This is a very special situation. Indeed, it 
follows from [25, Theorem 2.4.5] that either −K3

X = 4 and X is a blow up of a smooth 
hypersurface in P(1, 1, 1, 2, 3) of degree 6 along a smooth elliptic curve that is a complete 
intersection of two surfaces in |−1

2KX |, or −K3
X = 6 and X ∼= P1 × S1, where S1 is 

a smooth del Pezzo surface with K2
S1

= 1. In both cases |−2KX | is base-point free. 
Thus, the same arguments as in the base-point free case show that multP (Δ) < −4K3

X

for every point P ∈ X and for every divisor Δ on X such that Δ ∼Q −KX , and 
that multP (Ω) < −4K3

X for every point P ∈ D and for every divisor Ω on D such 
that Ω ∼Q −KX |D. Keeping in mind that −K3

X ≤ 6, we see that α(X) ≥ 1/24 and 
α(D, [D]|D) ≥ 1/24. �

Note that the lower bounds in Proposition 6.10 can be improved by a case-by-case 
analysis using results from [5,7]. When dimX = 2 it is also possible to say more about 
the existence of KEE metrics. In fact, in the cases (I.1A) and (I.5A.m) with m ≥ 3 a KEE 
metric exists for all β ∈ (0, 1] since it exists for β = 1 [1,34,26,46]. In the remaining two 
cases (I.5A.m), m ∈ {1, 2}, it is possible to compute α(S, (1 − β)C) to find all β ∈ (0, 1]
such that α(S, (1 − β)C) > 2

3 . Moreover, in the latter cases the value of the α-invariant 
depends on the choice of the anticanonical boundary curve itself.

Remark 6.11. Let X be a smooth Fano variety of dimension n, and let D be a smooth 
divisor in |−KX |. Put M = 3n(2n − 1)n(n + 1)n(n+2)(2n−1) and N = 2(n + 1)(n + 2)!. 
Then

α(X, (1 − β)D) ≥ min{1, β−1Nn−1M},

for every β ∈ (0, 1]. Indeed, (−KX)n ≤ 3n(2n − 1)n(n + 1)n(n+2)(2n−1) (see, e.g., [10, 
Theorem 5.18]). On the other hand, |−NKX | is base-point free by [28, Theorem 1]. Note 
that −12nnKX is very ample by [12, Corollary 12.11]. Thus we can proceed as in the 
proof of Proposition 6.10.

7. Existence and non-existence of KEE metrics

Our goal in this section is to make several first steps towards the uniformization of 
asymptotically log del Pezzo surfaces as stated in Conjecture 1.6.
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7.1. Automorphism groups

Theorem 1.13 is a direct consequence of Theorem 1.12 and the following result.

Proposition 7.1. The automorphisms groups of the following pairs of class (ג) or (�) are 
not reductive: (I.1C), (I.2.n) with any n ≥ 0, (I.6C.m) with any m ≥ 1, (I.7.n.m) with 
any n ≥ 0 and m ≥ 1, (I.6B.1), (I.8B.1) and (I.9C.1). On the other hand, Aut(S, C) is 
reductive when (S, C) is one of the following: (I.1A), (I.4A), (I.3B), (I.4C), (I.5.m) with 
m ≥ 1, (I.1B), (I.6B.m), (I.8B.m), or (I.9C.m) with m ≥ 2.

Proof. If (S, C) is (I.1A), (I.4A), or (I.5.m), then Aut(S, C) is finite, since C is a 
Aut(S, C)-invariant elliptic curve that is an anticanonical ample divisor. If (S, C) is
(I.1B) then Aut(S, C) ∼= PGL2(C). If (S, C) is (I.3B) then Aut(S, C) ∼= GL2(C). If 
(S, C) is (I.4C) then Aut0(S, C) ∼= PGL2(C).

For the case (I.1C), or, in fact, in any dimension, the pair (Pn, H) with H a hyperplane 
in Pn, satisfies

Aut(Pn, H) ∼= Aut(Pn, p) ∼= Aut(BlpPn) ∼= Gn
a � GLn(C),

for a point p ∈ Pn, where BlpPn denotes the blow-up of Pn at p. The latter group is 
not reductive. Note that this generalizes Troyanov’s obstruction to the existence of a 
constant curvature metric on the teardrop (S2 with one cone point).

In the case (I.2.0), we have

Aut(Fn, Zn) ∼= PGL2(C) × Aut(C1) ∼= PGL2(C) × (Ga �Gm),

which is not reductive. In the case (I.2.n) with n ≥ 1, we have Aut(Fn, Zn) ∼= Aut(Fn), 
because the curve Zn must be fixed by any automorphism of Fn (since n > 0). On the 
other hand, it follows from [15, Theorem 4.10] that if n > 0, then

Aut(Fn) ∼= Gn+1
a � (GL2(C)/μn),

where GL2(C)/μn acts on Gn+1
a by means of its natural linear representation in the 

space of binary forms of degree n. The latter group is not reductive.
If (S, C) is in (I.6C.1), then Aut(S, C) ∼= G2

a� (Ga�G2
m). If (S, C) is in (I.6C.2), then 

Aut0(S, C) ∼= G2
a�G2

m. If (S, C) is in (I.6C.m) with m ≥ 3, then Aut0(S, C) ∼= G2
a�Gm. 

All these groups are not reductive.
Now let us consider the case (I.7.n.m) for m > 0. If (S, C) is in (I.7.0.1), then 

Aut(S, C) ∼= (Ga � Gm) × (Ga � Gm). If (S, C) is in (I.7.0.2), then Aut0(S, C) ∼=
Gm × (Ga � Gm). If (S, C) is in (I.7.0.m) with m ≥ 3, then Aut0(S, C) ∼= Ga � Gm. If 
(S, C) is in (I.7.1.1), then Aut(S, C) ∼= G2

a � (Ga � G2
m). If (S, C) is in (I.7.1.2), then 

Aut0(S, C) ∼= G2
a�G2

m. If (S, C) is in (I.7.1.m) with m ≥ 3, then Aut0(S, C) ∼= G2
a�Gm.
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If (S, C) is in (I.7.n.1) with n ≥ 2, then

Aut(S,C) ∼= Gn+1
a � ((Ga �G2

m)/μn),

where ((Ga �G2
m)/μn ⊂ GL2(C)/μn acts on Gn+1

a by means of its natural linear repre-
sentation in the space of binary forms of degree n. Similarly, if (S, C) is in (I.7.n.2) with 
n ≥ 2, then Aut0(S, C) ∼= Gn+1

a � G2
m/μn. Finally, if (S, C) is in (I.7.n.m) with n ≥ 2

and m ≥ 3, then Aut0(S, C) ∼= Gn+1
a �Gm/μn. All these groups are not reductive.

Now let us consider the case (I.6B.m) with m ≥ 1. If (S, C) is in (I.6B.1), then 
Aut(S, C) ∼= Ga � G2

m, which is not reductive group. If m = 2, then Aut0(S, C) ∼= Gm, 
which is reductive. If m ≥ 3, then Aut(S, C) is finite.

Now let us consider the case (I.8B.m) with m ≥ 1. If m = 1, then Aut(S, C) ∼=
Ga � G2

m, which is not reductive group. If m = 2, then Aut0(S, C) ∼= G2
m, which is 

reductive. If m ≥ 3, then Aut0(S, C) ∼= Gm, which is reductive.
Finally let us consider the case (I.9C.m) with m ≥ 1. If (S, C) is in (I.9C.1), then 

Aut0(S, C) ∼= Ga �Gm, which is not reductive group. If m = 2, then Aut0(S, C) ∼= Gm, 
which is reductive. If m ≥ 3, then Aut(S, C) is finite. �

The following result shows that all pairs of class (�) have reductive automorphism 
groups. This gives further evidence for Conjecture 1.6.

Theorem 7.2. Let (S, C) be a pair of class (�) with C smooth and irreducible. Then 
Aut(S) is reductive.

Proof. If (S, C) is (I.3A), then Aut0(S, C) ∼= Gm (this is easy). If (S, C) is (I.4B), then 
Aut0(S, C) is a subgroup in PGL2(C) that fixes two points (the ramification points of the 
double cover projection C → P1), which implies that Aut0(S, C) is either trivial or Gm. 
Thus, if (S, C) is (I.3A) or (I.4B) then Aut(S) is reductive. Note that this also follows 
from Theorem 1.12 combined with Theorem 1.15.

Suppose (S, C) is (I.9B.m) with m ≥ 1. Then Aut0(S, C) preserves the conic bundle 
given by |−KS −C| (see Proposition 1.7). This implies that Aut0(S, C) is a subgroup of 
the group Aut0(S′, C ′) where (S′, C ′) is a minimal model (see the proof of Theorem 2.1) 
of (S, C) (it is either (I.3A) or (I.4B)). Thus, we see that Aut0(S, C) is a subgroup of Gm, 
which is either trivial of Gm. In particular, we see that Aut0(S, C) is reductive. �
7.2. Existence of KEE metrics on some pairs of class �

The goal of this subsection is to prove Theorem 1.15 as a first step towards confirming 
Conjecture 1.6. This gives the first examples of pairs with KEE metrics of positive Ricci 
curvature which are not of class (ℵ). In Section 7.2.1 we define the G-invariant Tian 
invariant, with G a finite group of automorphisms. In the remainder of this subsection 
we then compute the Tian invariants of three pairs of class �. For the first two (I.3A), 
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(I.4B) the surface is fixed (F1 or P1 × P1), while for the third (I.9B.5) we specialize 
to the Clebsch cubic surface. The proofs use the results of Section 6 and Shokurov’s 
connectedness principle. Note that Proposition 7.6 generalizes to the logarithmic setting 
the result that α(S) = 2/3 when S is a cubic surface in P3 with an Eckardt point [5]. 
This result also serves to show (Example 7.7) that the bound of Proposition 6.5 cannot 
hold without the nefness assumption.

7.2.1. Symmetry considerations
Suppose that X is acted by a finite group G of automorphisms, the divisor B is 

G-invariant, and the class [H] is G-invariant. Then one can consider a G-invariant ana-
logue of the global lct of the pair (X, B) with respect to [H].

Definition 7.3. Let G ⊂ Aut(X). The G-invariant global lct of the pair (X, B) with 
respect to [H] is the number

αG(X,B, [H])

:= inf
{

lct
(
X,B;D

)
: D is effective G-invariant Q-divisor such that D ∼Q H

}
,

For simplicity, we put αG(X, [H]) = αG(X, B, [H]) if B = 0. Similarly, we put 
αG(X, BX) = αG(X, B, [H]) if H = −(KX + B). Finally, we put αG(X) = αG(X, [H])
if B = 0 and H = −KX .

7.2.2. P1 × P1

Let G be a subgroup in Aut(P1) that is isomorphic to D10 (the dihedral group of 
order 10). Then the action of G is given by an irreducible unimodular two-dimensional 
representation of the binary dihedral group 2.G (a central extension of G by Z2). Let us 
denote this representation by V2 (we can identify it with H0(OP1(1))).

Note that the group 2.G has eight distinct irreducible representations: the triv-
ial one (which we denote by I), the two-dimensional representation V2, three more 
two-dimensional representations (which we denote by V′

2, V′′
2 and V′′′

2 ), and three non-
trivial one-dimensional representations (which we denote by V1, V′

1 and V′′
1). Then 

Sym3(V2) ∼= V2 ⊕ V′′
2 . Moreover, one has

Sym6(V2) ∼= V1 ⊕ V′
2 ⊕ V′

2 ⊕ V′′′
2 ,

and Sym2(Sym3(V2)) ∼= Sym6(V2) ⊕V1 ⊕V′′′
2 . This follows from elementary representa-

tion theory.
Let φ : P1 → P3 be an embedding given by the linear system |OP1(3)|. Then φ is 

G-equivariant. Put C = φ(P1). Then C is a smooth rational cubic curve in P3. Since C
is projectively normal, we have an exact sequence of 2.G-representations

0 → H0(OP3(2) ⊗ IC) → H0(OP3(2)) → H0(OC ⊗OP3(2)) → 0,
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where H0(OP3(2)) ∼= Sym6(V2) and H0(OC ⊗OP3(2)) ∼= Sym6(V2). This gives

H0(OP3(2) ⊗ IC) ∼= V1 ⊕ V′′′
2 ,

which implies, in particular, that there exists unique G-invariant quadric surface in P3

that contains the curve C. Let us denote this quadric surface by S.
Since C is not contained in a hyperplane in P3, the surface S is reduced and irreducible, 

Moreover, the surface S is smooth, since Sym3(V2) does not contain one-dimensional 
subrepresentations of the group 2.G. Then S ∼= P1 × P1 and C is a curve of bi-degree 
(2, 1) on S so (S, C) is (I.4B).

Proposition 7.4. One has αG(S, (1 − β)C) = 1 for every β ∈ (0, 1].

Proof. Note that |−KS − C| is a free pencil on S that gives a projection S → P1 (cf. 
Lemma 4.4). Let Z1 be a curve in |−KS−C|, and let Z2, . . . , Zr be all curves in |−KS−C|
that are images of Z1 via G. Then

1
r

r∑
i=1

Zi + βC ∼Q −(KS + (1 − β)C),

and Z1 + Z2 + · · · + Zr is G-invariant. On the other hand, we have

lct
(
S, (1 − β)C; r−1

r∑
i=1

Zi + βC
)
≤ 1,

so α(S, (1 − β)C) ≤ 1.
Suppose that αG(S, (1 −β)L) < 1. Then there exists an effective G-invariant Q-divisor 

Δ such that

Δ ∼R −(KS + (1 − β)C)

and the pair (S, (1 − β)C +μΔ) is not lc at some point O ∈ S for some positive rational 
μ < 1. We claim that (S, (1 −β)C+μΔ) is lc outside of the point O. Indeed, suppose that 
this is not the case. Then (S, (1 − β)C + μΔ) is not lc along a curve. The latter follows 
from the connectedness principle [43, Lemma 5.7] since the divisor −KS−(1 −β)C−μΔ)
is ample, because μ < 1. Thus, we see that there exists a G-invariant (possibly reducible) 
curve Z ⊂ S such that

Δ = εZ + Ω

for some effective R-divisors Ω whose support does not contain the curve Z and some 
positive rational ε such that either Z = C and με > β or Z 	= C and με > 1. This is, of 
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course, impossible, because Δ ∼R −KS−C+βC. Indeed, if Z = C, then (με −β)C+Ω ∼R

−KS − C, which implies that

0 < 2(με−β) = (με−β)C.(−KS−C) ≤
(
(με−β)C+Ω

)
.(−KS−C) = (−KS−C)2 = 0,

which is absurd. Thus, we have Z 	= C. Then

Z.(−KS − C) ≤ μεZ.(−KS − C) ≤ (μεZ + Ω).(−KS − C)

= (−KS − C + βC).(−KS − C) = 2β,

which implies that Z.(−KS − C) = 0. Then Z ∈ |n(−KS − C)| for some n ∈ N. On 
the other hand, the pencil |−KS − C| does not contain G-invariant curves (if |−KS −
C| contains a G-invariant curve, then |−KS | contains a G-invariant curve, which is 
impossible, since there exists unique G-invariant quadric surface in P3 that contains the 
curve C. Therefore, we see that n ≥ 2. Then (nμε − 1)(−KS − C) + Ω ∼R βC, which 
implies that

2 < (2nμε− 1) ≤ (2nμε− 1) + Ω.(−KS)

= ((nμε− 1)(−KS − C) + Ω).(−KS) = βC.(−KS) = 6β

which is impossible for small β. The obtained contradiction shows that (S, (1 −β)C+μΔ)
is lc outside of the point O.

Since (1 − β)C + μΔ is G-invariant and the pair (S, (1 − β)C + μΔ) is lc outside of 
the point O, the point O must be G-invariant. The latter is impossible, since Sym3(V )
does not contain one-dimensional sub-representations. Thus αG(S, (1 − β)C) = 1. �
7.2.3. F1

Let G be a subgroup in Aut(P1) that is isomorphic to D2n (the dihedral group of 
order 2n) for n ≥ 2 (if n = 2, then we assume that G ∼= Z2 × Z2). Then the action of G
is given by an irreducible unimodular two-dimensional representation of the group 2.G
(a central extension of G by Z2). Let us denote this representation by V . Them Sym2(V )
is a representation of the group G. Moreover, it splits as a union of an irreducible 
two-dimensional representation of G and a one-dimensional subrepresentation.

Let φ : P1 → P2 be an embedding given by the linear system |OP1(2)|. Then φ is 
G-equivariant. Put C̄ = φ(P1). Then C̄ is a smooth conic in P2. Moreover, there exists 
G-invariant point P ∈ P2. Since V is irreducible representation of the group 2.G, we see 
P /∈ C̄.

Let π : S → P2 be the blow up of the point P . Then the action of G lifts to S and 
S ∼= F1. Denote by C the proper transform of the curve C̄ on the surface S. Thus, 
(S, C) is (I.3A). The proof of the following result is almost identical to the proof of 
Proposition 7.4.
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Proposition 7.5. One has αG(S, (1 − β)C) = 1 for every β ∈ (0, 1].

7.2.4. Cubic surfaces
The Tian invariant of a smooth cubic surface with an Eckardt point is 2/3 [5, Theorem 

1.7]. The following is a natural generalization.

Proposition 7.6. Let S be a smooth cubic surface in P3, and let C be a line on S. Then 
the divisor −(KS + (1 −β)C) is ample for every real β ∈ (0, 1]. Suppose that C contains 
an Eckardt point. Then

α(S, (1 − β)C) = 1 + β

2 + β

for every real β ∈ (0, 1].

Proof. Let P be an Eckardt point on C, let L1 and L2 be two lines in S such that 
L1 ∩ L2 ∩ C = P . Then

lct
(
S, (1 − β)C;L1 + L2 + βC

)
= 1 + β

2 + β

and L1+L2+βC ∼Q −(KS+(1 −β)C), which implies that α(S, (1 −β)C) ≤ (1 +β)/(2 +β).
Suppose that α(S, (1 −β)C) < (1 +β)/(2 +β). Then there exists an effective Q-divisor 

Δ on the surface S such that Δ ∼Q −(KS + (1 − β)C) and the pair (S, (1 − β)C + μΔ)
is not lc at some point O ∈ S for some positive rational number μ < (1 + β)/(2 + β). 
Let us derive a contradiction (compare the proofs of [5, Lemmas 3.4 and 3.6]).

Since (1 − β)C + Δ ∼Q −KS , it follows from [9, Lemma 5.36] that the pair 
(S, (1 − β)C + Δ) is lc outside of finitely many points in C. Hence, the pair 
(S, (1 − β)C + μΔ) is lc outside of the a finitely many points in S, since μ ≤ 1. In fact, 
this implies that the log pair (S, (1 −β)C+μΔ) is log canonical outside of the point O by 
the connectedness principle [43, Lemma 5.7], because the divisor −(KS +1 −β)C +μΔ)
is ample.

If O /∈ C, then the pair (S, μΔ) is not log canonical at the point O ∈ S, which is 
impossible, since α(S) = 2/3 [5, Theorem 1.7] and 1+β

2+β < 2/3. Thus, O ∈ C.
There exists a birational morphism π : S → P2 such that π is an isomorphism in a 

neighborhood of the point O, and π(C) is a line in P2. Put c = π(C) and Δ̄ = π(Δ). 
Then the pair (P2, (1 − β)c + μΔ̄) is not log canonical at the point π(O). Moreover, the 
pair (P2, (1 − β)c + μΔ̄) is lc outside of finitely many points in P2. Then (P2, (1 − β)c +
μΔ̄) is lc outside of the point π(O) by the connectedness principle, because the divisor 
−(KP2 + (1 − β)c + μΔ̄) is ample.

Let L be a general line in P2. Then the pair (P2, (1 − β)c + μΔ̄ + εL) is not lc along 
L for every rational number ε > 1. Choose ε > 1 such that ε < 1 + 3β. Then

3 − (1 − β) − μ
(
2 + β

)
− ε > 3 − 2(1 − β) − 1 + β (2 + β

)
− ε = 1 + 3β − ε > 0,
2 + β
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which implies that the divisor −(KP2 + (1 − β)c + μΔ̄ + εL) is ample. This contradicts 
the connectedness principle, because the pair (P2, (1 − β)c + μΔ̄ + εL) is not lc at every 
point of the non-connected set π(O) /∈ L, and it is lc outside of this set. �

Proposition 7.6 shows that the nefness conditions in Theorem 6.5 cannot be omitted 
as the following example demonstrates.

Example 7.7. Let S be a smooth cubic surface in P3, and let C be a line on X such that 
there exists an Eckardt point on C. Put H = −(KS +(1 −β)C) for any β ∈ (0, 1). Then 
H is ample. Put

γ = sup
{
c ∈ Q

∣∣ H − cC is pseudoeffective
}
.

Then γ = β. Moreover, it follows from Definition 6.3 that α(S, [H]) ≥
α(S, [H + (1 − β)C]) = α(S) = 2/3. But it follows from Lemma 6.4 that

α(C, [H]|C)) = 1
H.C

= 1
2 − β

.

On the other hand, it follows from Proposition 7.6 that α(S, (1 − β)C) = 1+β
2+β for any 

β ∈ (0, 1). Thus, we see that

α(S, (1 − β)C, [H]) = α(S, (1 − β)C) = 1 + β

2 + β
�

1
2 − β

= min{β/γ, α(S, [H]), α(C, [H]|C)}

for sufficiently small β > 0. Note that C is not nef, since C2 = −1 on the surface S.

Next, we show that for the Clebsch diagonal cubic surface Tian’s invariant is in fact 
equal to 1 for any β ∈ (0, 1]. Recall that the Clebsch diagonal cubic surface is a smooth 
cubic surface with Aut(S) = S5 (see [24, § 4]). Such surface exists and it is unique (this 
follows from basic representation and invariant theory of the group S5).

Proposition 7.8. Let S be the Clebsch diagonal cubic surface, i.e., the unique smooth cubic 
surface in P3 such that Aut(S) ∼= S5. Let G ∼= D10 be a subgroup in Aut(S) consisting of 
even permutations. Then there exists a G-invariant line C ⊂ S and αG(S, (1 −β)C) = 1
for every β ∈ (0, 1].

Proof. The surface S can be obtained as A5-equivariant blow up of P2 at the unique 
A5-orbit of length 6 (see [24, § 4] for details). Then the stabilizer in A5 of any exceptional 
curve of this blow up is a finite group isomorphic to G. Keeping in mind that all finite 
subgroups in A5 that are isomorphic to G are conjugate, we see that there exists a 
G-invariant line C ⊂ S.
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By Proposition 1.7 the linear system |−KS − C| is a free pencil of conics on S. By 
our assumptions this pencil is G-invariant. Let Z1 be any curve in |−KS − C|, and let 
Z2, . . . , Zr be all curves in |−KS − C| that are images of Z1 via G. Then the divisor 
Z1 + Z2 + · · · + Zr is G-invariant and

1
r

r∑
i=1

Zi + βC ∼Q −KS − (1 − β)C.

On the other hand,

lct
(
S, (1 − β)C; r−1

r∑
i=1

Zi + βC
)
≤ 1,

so α(S, (1 − β)C) ≤ 1.
Suppose that αG(S, (1 −β)C) < 1. Then there exists an effective G-invariant Q-divisor 

Δ such that

Δ ∼Q −KS − (1 − β)C

and the pair (S, (1 − β)C +μΔ) is not lc at some point O ∈ S for some positive rational 
μ < 1. Since (1 − β)C + Δ ∼Q −KS , it follows from [9, Lemma 5.36] that the pair 
(S, (1 − β)C + Δ) is lc outside of finitely many points in S. Since μ < 1, the divisor 
−KS − (1 − β)C − μΔ) is ample, and thus the connectedness principle [43, Lemma 5.7]
implies that the pair (S, (1 − β)C + μΔ) is lc outside of the point O ∈ S. In particular, 
this point O must be G-invariant.

On the other hand, the vector space H0(OS(−KS)) is a four-dimensional (χS(−KS) =
h0(S, OS(−KS)) = 1 + K2

S = 4 [20, p. 471] since S is a six-point blow-up of 
P2) representation of the group G that splits as a sum of two irreducible two-
dimensional representations. Hence, there exists no G-invariant point in S, since oth-
erwise H0(OS(−KS)) would contain a one-dimensional sub-representation of G. Thus 
αG(S, (1 − β)C) = 1. �
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