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ON K-STABILITY OF P3 BLOWN UP ALONG A QUINTIC ELLIPTIC CURVE

IVAN CHELTSOV AND PIOTR POKORA

Abstract. In this note, we study K-stability of smooth Fano threefolds that can be obtained by
blowing up the three-dimensional projective space along a smooth elliptic curve of degree five.

Let C5 be be a smooth quintic elliptic curve in P3, and let π : X → P3 be the blow up of this curve.
Then X is a smooth Fano threefold in the family №2.17, and every smooth Fano 3-fold in this family
can be obtained by blowing up P3 along a suitable smooth quintic elliptic curve.

It is well known that there exists the following Sarkisov link:

(⋆) X

π

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ q

��
❄❄

❄❄
❄❄

❄❄

P3 Q

where Q is a smooth quadric threefold in P4, and q is a blow up of a smooth quintic elliptic curve C ′

5.
Let EP3 and EQ be the exceptional divisors of π and q, respectively. If ℓ is a general fiber of the natural
projection EP3 → C5, then π(ℓ) is a trisecant of the quintic elliptic curve C5. Similarly, if ℓ′ is a general
fiber of the projection EQ → C ′

5, then q(ℓ
′) is a secant of the curve C ′

5 contained in Q.

Example 1. Let E be the harmonic elliptic curve, and let θ be an element in Aut(E) of order 4 that
fixes a point P ∈ C5. Then it follows from [9] that

Aut
(
E , [5P ]

)
∼= µ

2
5 ⋊ µ4,

and there exists an Aut(E , [5P ])-equivariant embedding φ : E →֒ P4 such that φ(E) is a smooth
quintic elliptic curve. Let G be a subgroup in Aut(E , [5P ]) such that G ∼= µ5 ⋊ µ4. Then G fixes
a unique point in P4 that is not contains in the hypersurface spanned by the secants of the quintic
curve φ(E). Let ψ : P4 99K P3 be the projection from this point. Then ψ ◦ φ(E) is a smooth quintic
elliptic curve. Let C5 = ψ ◦ φ(E). Then Aut(X) ∼= µ5 ⋊ µ4, and X is K-stable [2, Section 5.7]

Since being K-stable is an open condition, a general member of the family №2.17 is K-stable.
In fact, all smooth Fano threefolds in the deformation family №2.17 are expected to be K-stable [2].
To show this it is enough to prove that β(F) = AX(F) − SX(F) > 0 for every prime divisor F over
the Fano threefold X [7, 10], where AX(F) is the log discrepancy of the divisor F, and

SX

(
F
)
=

1

(−KX)3

∞∫

0

vol
(
−KX − uF

)
du.

Unfortunately, we are unable to prove this. Instead, we prove the following weaker result:

Main Theorem. Let F be a prime divisor over X such that β(F) 6 0, let Z be its center on X.

Then Z is a point in EP3 ∩ EQ.

By [13, Corollary 4.14], the Main Theorem implies the following corollary.

Corollary 2. Suppose that Aut(P3, C5) does not fix a point in C5. Then X is K-stable.
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Observe that Aut(X) ∼= Aut(P3, C5), and all possibilities for the group Aut(P3, C5) can be easily
derived from [9]. Namely, if C5 is general, then Aut(P3, C5) is trivial, so Corollary 2 is not applicable.
If Aut(P3, C5) is not trivial, then it must be isomorphic to one of the following finite groups:

µ5 ⋊ µ4, µ5 ⋊ µ2, µ6, µ5, µ4, µ2.

Furthermore, if Aut(P3, C5) contains a subgroup isomorphic to µ5, it acts on C5 by translations.
This implies that Aut(P3, C5) does not fix a point in C5 ⇐⇒ Aut(P3, C5) contains a subgroup
isomorphic to µ5. Therefore, Corollary 2 gives the following generalization of Example 1.

Corollary 3. Suppose that Aut(X) contains a subgroup isomorphic to µ5. Then X is K-stable.

Example 4 ([9]). Fix a ∈ C such that a 6= 0 and a10 + 11a5 − 1 6= 0. Let C ′

5 be the quintic elliptic
curve in P4 given by the following system of equations:





x20 + ax2x3 −
x1x4

a
= 0,

x21 + ax3x4 −
x2x0

a
= 0,

x22 + ax4x0 −
x3x1

a
= 0,

x23 + ax0x1 −
x4x2

a
= 0,

x24 + ax1x2 −
x0x3

a
= 0,

where [x0 : x1 : x2 : x3 : x4] are coordinates on P4. Let σ, τ , ι be the automorphisms of P4 given by

σ
(
[x0 : x1 : x2 : x3 : x4]

)
= [x1 : x2 : x3 : x4 : x0],

τ
(
[x0 : x1 : x2 : x3 : x4]

)
= [x0 : ω5x1 : ω

2
5x2 : ω

3
5x3 : ω

4
5x4],

ι
(
[x0 : x1 : x2 : x3 : x4]

)
= [x0 : x4 : x3 : x2 : x1],

where ω5 is a primitive fifth root of unity. Set G = 〈σ, τ, ι〉. Then G ∼= µ
2
5⋊µ2, and C

′

5 is G-invariant.
Consider the following quadric hypersurface:

Q =
{
x20 + ax2x3 −

x1x4

a
= 0

}
⊂ P4.

Observe that Q is smooth, and Q is 〈τ, ι〉-invariant. Let q : X → Q be the blow up of the curve C ′

5.
Then we have 〈τ, ι〉-equivariant Sarkisov link (⋆) for an appropriate non-singular quintic elliptic
curve C5 ⊂ P3. Since 〈τ, ι〉 ∼= µ5 ⋊ µ2, X is K-stable by Corollary 3.

Let k be a subfield in C such that C5 is defined over k. Then the Sarkisov link (⋆) is also defined
over the field k. Moreover, the Main Theorem and [13, Corollary 4.14] imply the following result.

Corollary 5. If the intersection EP3 ∩ EQ does not have k-points, then X is K-stable.

Corollary 6. If C5(k) = ∅ or C ′

5(k) = ∅, then X is K-stable.

In fact, one can show that C5(k) = ∅ if and only if C ′

5(k) = ∅.
Corollary 6 has many applications. For instance, if k is a number field, there are infinitely many

smooth quintic genus one curves in P3 defined over k that do not have k-rational points [3, 4, 11].
Thus, using Corollary 6 and Pfaffian representations of quintic elliptic curves [5], one can construct
infinitely many explicit examples of K-stable smooth Fano threefolds in the family №2.17.
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Example 7 (T. Fisher). Fix a prime p > 2. Let C ′

5 be the quintic elliptic curve in P4 given by




x20 + px1x4 − px2x3 = 0,

x21 + x0x2 − px3x4 = 0,

x22 + x1x3 − x0x4 = 0,

px23 + px2x4 − x0x1 = 0,

px24 + x0x3 − x1x2 = 0,

let Q be the quadric {x20+px1x4−px2x3 = 0}, and let q : X → Q be the blow up along the curve C ′

5,
where [x0 : x1 : x2 : x3 : x4] are the coordinates on P4. Then (⋆) exists for an appropriate quintic
elliptic curve C5 ⊂ P3. We can set k = Q. Then C ′

5(k) = ∅, so X is K-stable by Corollary 6.

Let us prove the Main Theorem. Let F be a prime divisor over X , and let Z be its center on X .
Suppose that Z is not a point in EP3 ∩ EQ. Let us show that β(F) > 0.

If Z is a surface, then it follows from [6] that β(F) > 0. Thus, we may assume that

• either Z is a point,
• or Z is an irreducible curve.

Let P be any point in Z. Choose an irreducible smooth surface S ⊂ X such that P ∈ S. Set

τ = sup
{
u ∈ Q>0

∣∣ the divisor −KX − uS is pseudo-effective
}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor −KX − uS,
and let N(u) be its negative part. Then β(S) = 1− SX(S), where

SX(S) =
1

−K3
X

∞∫

0

vol
(
−KX − uS

)
du =

1

24

τ∫

0

P (u)3du.

Let us show how to compute P (u) and N(u). Set HP3 = π∗(OP3(1)) and HQ = q∗(OQ(1)). Then

HP3 ∼ 2HQ − EQ, HQ ∼ 3HP3 − EP3,

EP3 ∼ 5HQ − 3EQ, EQ ∼ 5HP3 − 2EP3.

Let us compute P (u) and N(u) in the following cases: S ∈ |HP3|, S ∈ |HQ|, and S = EP3 .

Example 8. Suppose that S ∈ |HP3|. Then τ = 3
2
, since −KX − uS ∼R

3−2u
2
S + 1

2
EQ. Based on

that, the positive part of the Zariski decomposition has the following form

P (u) ∼R





(4− u)HP3 − EP3 for 0 6 u 6 1,

(3− 2u)HQ for 1 6 u 6
3

2
,

and the negative part

N(u) =





0 for 0 6 u 6 1,

(u− 1)EQ for 1 6 u 6
3

2
,

which gives

SX(S) =
1

24

3

2∫

0

(
P (u)

)3
du =

1

24

1∫

0

24− u3 + 12u2 − 33udu+
1

24

3

2∫

1

2(3− 2u)3du =
23

48
.
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Example 9. Suppose that S ∈ |HQ|. Then −KX − uS ∼R
4−3u
3
S + 1

3
EP3 . Then τ = 4

3
,

P (u) ∼R





(3− u)HQ − EQ for 0 6 u 6 1,

(4− 3u)HP3 for 1 6 u 6
4

3
,

and

N(u) =





0 for 0 6 u 6 1,

(u− 1)EP3 for 1 6 u 6
4

3
,

which gives

SX(S) =
1

24

1∫

0

24− 2u3 + 18u2 − 39udu+
1

24

4

3∫

1

(4− 3u)3du =
121

288
.

Example 10. Suppose that S = E. Then −KX − uS ∼R
3−5u
5
EP3 + 4

5
EQ. Then τ = 3

5
,

P (u) ∼R





4HP3 − (1 + u)EP3 for 0 6 u 6
1

3
,

(3− 5u)HQ for
1

3
6 u 6

3

5
,

and

N(u) =





0 for 0 6 u 6
1

3
,

(3u− 1)EQ for
1

3
6 u 6

3

5
,

which gives

SX(S) =
1

24

1

3∫

0

20u3 − 60u+ 24du+
1

24

3

5∫

1

3

2(3− 5u)3du =
227

1080
.

Now, we choose an irreducible curve C ⊂ S that contains the point P . For instance, if Z is a curve,
and S contains Z, then we can choose C = Z. Since S 6⊂ Supp(N(u)), we can write

N(u)
∣∣
S
= d(u)C +N ′(u),

where N ′(u) is an effective R-divisor on S such that C 6⊂ Supp(N ′(u)), and d(u) = ordC(N(u)|S).
Now, for every u ∈ [0, τ ], we set

t(u) = sup
{
v ∈ R>0

∣∣ the divisor P (u)
∣∣
S
− vC is pseudo-effective

}
.

For v ∈ [0, t(u)], we let P (u, v) be the positive part of the Zariski decomposition of P (u)|S −vC, and
we let N(u, v) be its negative part. Following [1, 2], we let

S
(
W S

•,•;C
)
=

3

(−KX)3

τ∫

0

d(u)
(
P (u)

∣∣
S

)2

du+
3

(−KX)3

τ∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu,

which we can rewrite as

S
(
W S

•,•;C
)
=

3

(−KX)3

τ∫

0

d(u)
(
P (u, 0)

)2
du+

3

(−KX)3

τ∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu.
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If Z is a curve, Z ⊂ S and C = Z, then it follows from [1, 2] that

(1)
AX(F)

SX(F)
> min

{
1

SX(S)
,

1

S
(
W S

•,•;C
)
}
.

Hence, if Z is a curve, Z ⊂ S, C = Z and S(W S
•,•;C) < 1, then β(F) > 0, since SX(S) < 1 by [6].

Lemma 11. Suppose that Z is a curve, Z ⊂ EP3, and π(Z) is not a point. Then β(F) > 0.

Proof. Let e be the invariant of the ruled surface EP3 defined in Proposition 2.8 in [8, Chapter V].
Then e > −1 by [12]. Moreover, there is a section C0 of the projection EP3 → C5 such that C2

0 = −e.
Let ℓ a fiber of this projection. Then HP3|E

P3
≡ 5ℓ and EP3 |E

P3
≡ −C0+λℓ for some integer λ. Since

−20 = −c1
(
NC5/P3

)
= E3

P3 = (−C0 + λℓ)2 = −e− 2λ,

we get λ = 20−e
2

. Then e is even, so e > 0. Moreover, since 3HP3 − EP3 ∼ HQ is nef, the divisor
(
3HP3 − EP3

)∣∣
E

P3

≡ C0 + (15− λ)ℓ

is also nef. Then 0 6
(
C0 + (15− λ)ℓ

)
· C0 = 15− e− λ = 15− e− 20−e

2
, which implies e 6 10 and

hence we have e ∈ {0, 2, 4, 6, 8, 10}.
Now, we set S = EP3 and C = Z. Using (1), we see that to prove that β(F) > 0, it is enough to

show that S(W S
•,•;C) < 1. Let us estimate S(W S

•,•;C). It follows from Example 10 that τ = 3
5
and

P (u)
∣∣
S
≡





(1 + u)C0 +

(
10 +

1

2
e+

1

2
ue− 10u

)
ℓ for 0 6 u 6

1

3
,

(3− 5u)C0 +

(
15 +

3

2
e− 25u−

5

2
ue

)
ℓ for

1

3
6 u 6

3

5
.

Moreover, if 0 6 u 6 1
3
, then N(u) = 0. Furthermore, if 1

3
6 u 6 3

5
, then

N(u)
∣∣
S
= (3u− 1)EQ

∣∣
S
,

and EQ

∣∣
S
≡ 2C0 + (5 + e)ℓ. But it follows from Proposition 2.20 in [8, Chapter V] that

Z ≡ aC0 + bℓ

for some integers a and b such that a > 0 and b > ae. Since π(Z) is not a point, we also have a > 1.
This gives ordC(EQ|S) 6 2. Hence, if 1

3
6 u 6 3

5
, then d(u) 6 2(3u− 1). This gives

S(W S
•,•;C) =

3

24

3

5∫

1

3

d(u)
(
P (u)

∣∣
S

)2

du+
3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu 6

6
3

24

3

5∫

1

3

2(3u− 1)
(
P (u)

∣∣
S

)2

du+
3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu =

=
3

24

3

5∫

1

3

2(3u− 1)(250u2 − 300u+ 90)du+
3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu =

=
32

405
+

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC

)
dvdu =

32

405
+

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− v(aC0 + bℓ)

)
dvdu.
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On the other hand, since a > 1, we have

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− v(aC0 + bℓ)

)
dvdu 6

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC0

)
dvdu,

Therefore, to show that S(W S
•,•;C) < 1, we may assume that Z = C0. Then

t(u) =





1 + u for 0 6 u 6
1

3
,

3− 5u for
1

3
6 u 6

3

5
.

Moreover, if 0 6 u 6 1
3
and v ∈ [0, t(u)], then

P (u, v) = (1 + u− v)C0 +

(
10 +

1

2
e+

1

2
ue− 10u

)
ℓ

and the negative part N(u, v) is trivial. Similarly, if 1
3
6 u 6 3

5
and v ∈ [0, t(u)], then

P (u, v) = (3− 5u− v)C0 +

(
15 +

3

2
e− 25u−

5

2
ue

)
ℓ

and the negative part N(u, v) is trivial. Using the collected data, we compute

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC0

)
dvdu =

3

24

3

5∫

0

t(u)∫

0

(
P (u, v)

)2
dvdu =

=
3

24

1

3∫

0

u+1∫

0

(
20 + (e− 20)v − 20u2 − ev2 + (e+ 20)vu

)
dvdu+

+
3

24

3

5∫

1

3

3−5u∫

0

(
90− 300u+ (3e− 30)v + 250u2 − ev2 + (−5e + 50)vu

)
dvdu =

377e

25920
+

733

1296
.

As explained above, this gives

S(W S
•,•;C) 6

32

405
+

3

24

3

5∫

0

∞∫

0

vol
(
P (u)

∣∣
S
− vC0)

)
dvdu =

377e

25920
+

4177

6480
.

Since e ∈ {0, 2, 4, 6, 8, 10}, we conclude that S(W S
•,•;C) < 1. Then β(F) > 0 by (1). �

Let f : S̃ → S be the blow up of the point P , and let F be the f -exceptional curve. Write

f ∗
(
N(u)

∣∣
S

)
= d̃(u)F + Ñ ′(u),

where Ñ ′(u) is the strict transform of the divisor N(u)|S on the surface S̃, and d̃(u) = multP (N(u)|S).
For every u ∈ [0, τ ], we set

t̃(u) = sup
{
v ∈ R>0

∣∣ the divisor f ∗
(
P (u)

∣∣
S

)
− vF is pseudo-effective

}
.
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For v ∈ [0, t̃(u)], we let P̃ (u, v) be the positive part of the Zariski decomposition of f ∗(P (u)|S)− vF ,

and we let Ñ(u, v) be its negative part. As above, we let

S
(
W S

•,•;F
)
=

3

(−KX)3

τ∫

0

d̃(u)
(
P (u)

∣∣
S

)2

du+
3

(−KX)3

τ∫

0

∞∫

0

vol
(
f ∗
(
P (u)

∣∣
S

)
− vF

)
dvdu,

which we can rewrite as

S
(
W S

•,•;F
)
=

3

(−KX)3

τ∫

0

d̃(u)
(
P (u, 0)

)2
du+

3

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v)

)2
dvdu.

For every point O ∈ F , we let

FO

(
W S̃,F

•,•,•

)
=

6

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)
· ordO

(
Ñ ′(u)

∣∣
F
+ Ñ(u, v)

∣∣
F

)
dvdu,

and

S
(
W S̃,F

•,•,•;O
)
=

3

(−KX)3

τ∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)2
dvdu+ FO

(
W S̃,F

•,•,•

)
.

Then it follows from [1, 2] that

(2)
AX(F)

SX(F)
> min

{
1

SX(S)
,

2

S
(
W S

•,•;F
) , inf

O∈F

1

S
(
W

S̃,F
•,•,•;O

)

}
.

In the next two lemmas, we show how to apply this inequality to prove that β(F) > 0 under certain
generality conditions on the position of the point P .

Lemma 12. Let S be a general surface in |HP3| such that P ∈ S. Suppose P 6∈ EP3, −KS is ample,

and P is not contained in a (−1)-curve in S. Then β(F) > 0.

Proof. Observe that π(S) is a general plane in P3 that contains π(P ), and π induces a birational
morphism̟ : S → π(S) that blows up the points π(S)∩C5. Let e1, e2, e3, e4, e5 be the̟-exceptional
curves. Then EP3

∣∣
S
= e1 + e2 + e3 + e4 + e5.

Let L = HP3|S. For i ∈ {1, 2, 3, 4, 5}, the pencils |L−ei| and |2L+ei−e1−e2−e3−e4−e5| contain
irreducible curves that pass through the point P . Denote these curves by Zi and Z ′

i, respectively.
Then ̟(Zi) is the line in π(S) that passes through ̟(P ) and ̟(ei), and ̟(Z ′

i) is the conic that
passes through ϕ(P ) and all points among ̟(e1), ̟(e2), ̟(e3), ̟(e4), ̟(e5) except for ̟(ei). Set

Z =
5∑

i=1

Zi ∼ 5L− (e1 + e2 + e3 + e4 + e5),

Z ′ =

5∑

i=1

Z ′

i ∼ 10L− 4(e1 + e2 + e3 + e4 + e5).

Let Z̃ and Z̃ ′ be the proper transforms on S̃ of the curves Z and Z ′, respectively. On the surface S̃,

we have F 2 = −1, Z̃ · Z̃ ′ = F · Z̃ = F · Z̃ ′ = 5, Z̃2 = (Z̃ ′)2 = −5. Using Example 8, we get τ = 3
2
and

f ∗
(
P (u)

∣∣
S

)
− vF ∼R





3− 2u

5
Z̃ +

1 + u

10
Z̃ ′ +

7− 3u− 2v

2
F for 0 6 u 6 1,

3− 2u

5

(
Z̃ + Z̃ ′

)
+ (6− 4u− v)F for 1 6 u 6

3

2
.
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This gives

t̃(u) =





7− 3u

2
for 0 6 u 6 1,

6− 4u for 1 6 u 6
3

2
.

Furthermore, if 0 6 u 6 1, then

P̃ (u, v) =





3− 2u

5
Z̃ +

1 + u

10
Z̃ ′ +

7− 3u− 2v

2
F for 0 6 v 6 3− u,

18− 7u− 5v

5
Z̃ +

1 + u

10
Z̃ ′ +

7− 3u− 2v

2
F for 3− u 6 v 6

7− 3u

2
,

and

Ñ(u, v) =





0 for 0 6 v 6 3− u,

(v + u− 3)Z̃ for 3− u 6 v 6
7− 3u

2
,

which gives

(
P̃ (u, v)

)2
=





u2 − v2 − 8u+ 11 for 0 6 v 6 3− u,

2(4− u− v)(7− 3u− 2v) for 3− u 6 v 6
7− 3u

2
,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− u,

15− 5u− 4v for 3− u 6 v 6
7− 3u

2
.

If 1 6 u 6 3
2
, then P̃ (u, v) = 3−2u

5
(Z̃ + Z̃)+ (6− 4u− v)F and N̂(u, v) = 0 for v ∈ [0, 6− 4u], so that

P̂ (u, v)2 = (6− 4u− v)(6− 4u+ v)

and P̂ (u, v) · F = v for every v ∈ [0, 6− 4u].
Set R = EQ|S. Then R is smooth curve, since S is general surface in |HP3| that passes through P .

Let R̃ be the proper transform of the curve R on the surface R̃. Then it follows from Example 8 that

Ñ ′(u) =





0 for 0 6 u 6 1,

(u− 1)R̃ for 1 6 u 6
3

2
.

If 0 6 u 6 1, we have d̃(u) = 0. Similarly, if 1 6 u 6 3
2
and R does not contain P , then d̃(u) = 0.

Finally, if 1 6 u 6 3
2
and P ∈ R, then d̃(u) = (u− 1).

Using the data collected above, we can compute S(W S
•,•;F ). Namely, if P ∈ EQ, then

S
(
W S

•,•;F
)
=

1

8

3

2∫

1

(u− 1)(16u2 − 48u+ 36)du+
1

8

3

2∫

0

t̃(u)∫

0

(
P̃ (u, v)

)2
dvdu =

=
1

96
+

1

8

1∫

0

3−u∫

0

u2 − v2 − 8u+ 11dvdu+
1

8

1∫

0

7−3u

2∫

3−u

2(4− u− v)(7− 3u− 2v)dvdu+

+
1

8

3

2∫

1

6−4u∫

0

(6− 4u− v)(6− 4u+ v)dvdu =
1

96
+

655

384
+

1

12
=

691

384
< 2.

Similarly, if P 6∈ EQ, then S(W
S
•,•;F ) =

655
384

+ 1
12

= 229
128

< 2.
8



Now, let O be any point in F . Then

S
(
W S̃,F

•,•,•;O
)
=

1

8

3

2∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)2
dvdu+ FO

(
W S̃,F

•,•,•

)
=

155

192
+ FO

(
W S̃,F

•,•,•

)
=

=
1

8

1∫

0

3−u∫

0

v2dvdu+
1

8

1∫

0

7−3u

2∫

3−u

(15−5u−4v)2dvdu+
1

8

3

2∫

1

6−4u∫

0

v2dvdu+FO

(
W S̃,F

•,•,•

)
=

163

192
+FO

(
W S̃,F

•,•,•

)
.

Moreover, if O ∈ R̃ ∩ Z̃, then we compute FO(W
S̃,F
•,•,•) as follows:

FO

(
W S̃,F

•,•,•

)
=

1

4

3

2∫

0

t̃(u)∫

0

(
P̃ (u, v)·F

)
·ordO

(
Ñ ′(u)

∣∣
F

)
dvdu+

1

4

3

2∫

0

t̃(u)∫

0

(
P̃ (u, v)·F

)
·ordO

(
Ñ(u, v)

∣∣
F

)
dvdu =

=
1

4

3

2∫

1

6−4u∫

0

(
P̃ (u, v) · F

)
(u− 1)

(
R̃ · F

)
O
dvdu+

1

4

1∫

0

7−3u

2∫

3−u

(
P̃ (u, v) · F

)
(v + u− 3)

(
Z̃ · F

)
O
dvdu =

=
1

4

3

2∫

1

6−4u∫

0

v(u− 1)dvdu+
1

4

1∫

0

7−3u

2∫

3−u

(15− 5u− 4v)(v + u− 3)dvdu =
1

96
+

7

384
=

11

384
,

because the curve R̃ intersects F transversally, and every irreducible component of the curve Z̃ also

intersects F transversally. Hence, if O ∈ R̃ ∩ Z̃, then S(W S̃,F
•,•,•;O) =

337
384

< 1. Similar computations

imply that S(W S̃,F
•,•,•;O) <

337
384

< 1 if O 6∈ R̃ or O 6∈ Z̃. Thus, using (2), we see that β(F) > 0. �

Lemma 13. Let S be a general surface in |HP3| such that P ∈ S. Suppose P 6∈ EP3, −KS is ample,

and P is contained in a (−1)-curve B ⊂ S such that π(B) is a conic. Then β(F) > 0.

Proof. Let us use notations introduced in the proof of Lemma 12, and let B̃ be the proper transform
on the surface S̃ of the curve B. Observe that B̃ and Z̃ are disjoint, and B̃2 = −2 on the surface S̃.
Moreover, it follows from Example 8 that τ = 3

2
and

f ∗
(
P (u)

∣∣
S

)
− vF ∼R





2− u

3
Z̃ +

1 + u

3
B̃ +

11− 4u− 3v

3
F for 0 6 u 6 1,

3− 2u

3

(
Z̃ + 2B̃

)
+

21− 14u− 3v

3
F for 1 6 u 6

3

2
.

This gives

t̃(u) =





11− 4u

3
for 0 6 u 6 1,

21− 14u

3
for 1 6 u 6

3

2
.

Furthermore, if 0 6 u 6 1, then

P̃ (u, v) =





2− u

3
Z̃ +

1 + u

3
B̃ +

11− 4u− 3v

3
F for 0 6 v 6 3− 2u,

2− u

3
Z̃ +

11− 4u− 3v

6

(
B̃ + 2F

)
for 3− 2u 6 v 6 3− u,

11− 4u− 3v

6

(
2L+ B̃ + 2F

)
for 3− u 6 v 6

11− 4u

3
,
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and

Ñ(u, v) =





0 for 0 6 v 6 3− 2u,

v + 2u− 3

2
B̃ for 3− 2u 6 v 6 3− u,

v + 2u− 3

2
B̃ + (v + u− 3)Z̃ for 3− u 6 v 6

11− 4u

3
,

which gives

(
P̃ (u, v)

)2
=





u2 − v2 − 8u+ 11 for 0 6 v 6 3− 2u,

31

2
− 14u− 3v + 3u2 −

v2

2
+ 2vu for 3− 2u 6 v 6 3− u,

(11− 4u− 3v)2

2
for 3− u 6 v 6

11− 4u

3
,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− 2u,

3− 2u+ v

2
for 3− 2u 6 v 6 3− u,

33− 12u− 9v

2
for 3− u 6 v 6

11− 4u

3
.

Similarly, if 1 6 u 6 3
2
, then

P̃ (u, v) =





3− 2u

3

(
Z̃ + 2B̃

)
+

21− 14u− 3v

3
F for 0 6 v 6 3− 2u,

3− 2u

3
Z̃ +

21− 14u− 3v

6

(
B̃ + 2F

)
for 3− 2u 6 v 6 6− 4u,

21− 14u− 3v

6

(
2Z̃ + B̃ + 2F

)
for 6− 4u 6 v 6

21− 14u

3
,

and

Ñ(u, v) =





0 for 0 6 v 6 3− 2u,

v + 2u− 3

2
B̃ for 3− 2u 6 v 6 6− 4u,

v + 2u− 3

2
B̃ + (v + 4u− 6)Z̃ for 6− 4u 6 v 6

21− 14u

3
,

which gives

(
P̃ (u, v)

)2
=





(6− 4u− v)(6− 4u+ v) for 0 6 v 6 3− 2u,

81

2
− 54u− 3v + 18u2 −

v2

2
+ 2vu for 3− 2u 6 v 6 6− 4u,

(21− 14u− 3v)2

2
for 6− 4u 6 v 6

21− 14u

3
,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− 2u,

3− 2u+ v

2
for 3− 2u 6 v 6 6− 4u,

63− 42u− 9v

2
for 6− 4u 6 v 6

21− 14u

3
.
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Thus, as in the proof of Lemma 12, we compute

S
(
W S

•,•;F
)
=





523

288
if P ∈ EQ,

65

36
if P 6∈ EQ,

so that S(W S
•,•;F ) < 2. Similarly, if O is a point in F , then

S
(
W S̃,F

•,•,•;O
)
=





257

288
if O ∈ B̃ ∩ R̃,

119

144
if O ∈ Z̃ ∩ R̃,

127

144
if O ∈ B̃ and O 6∈ R̃,

235

288
if O ∈ Z̃ and O 6∈ R̃,

307

384
if O 6∈ B̃ ∪ Z̃ and O ∈ R̃

101

128
if O 6∈ B̃ ∪ Z̃ ∪ R̃.

Therefore, using (2), we see that β(F) > 0. �

On the other hand, we have the following purely geometric result.

Lemma 14. Suppose that P 6∈ EP3. Let S be a general surface in |HP3| such that S passes through P .

Then −KS is ample. Further, if P is contained in a (−1)-curve B ⊂ S, then π(B) is a smooth conic.

Proof. The surface π(S) is a general plane in P3 that contains the point π(P ). Write

π(S) ∩ C5 = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5,

where P1, P2, P3, P4, P5 are distinct points. Then π induces a birational morphism ̟ : S → π(S),
which is a blow up of the intersection points P1, P2, P3, P4, P5. Thus, to prove that −KS is ample,
we must show that at most two points among these five are contained in a line.

If three points among P1, P2, P3, P4, P5 are contained in a line ℓ, it is a trisecant of the curve C5,
the line ℓ is contained in π(EQ), and its proper transform on X is a fiber of the projection EQ → C ′

5.
However, the planes containing π(P ) and a trisecant of the curve C5 form a one-dimensional family.
Hence, a general plane in P3 that passes through π(P ) does not contain trisecants of the curve C5,
so that at most two points among P1, P2, P3, P4, P5 are contained in a line. Thus, −KS is ample.

Now, we suppose that P is contained in a (−1)-curve B ⊂ S. If π(B) is not a conic, it must be
a secant of the curve C5 that contains π(P ). Let φ : P3 99K P2 be the linear projection from π(P ).
Since π(P ) 6∈ C5, φ induces a birational morphism C5 → φ(C5), and φ(C5) is a singular irreducible
curve of degree 5. Moreover, if ℓ is a secant of the curve C5 that contains π(P ), then φ(ℓ) is a singular
point of the curve φ(C5). Since this curve has finitely many singular points, we conclude that there
are finitely many secants of the curve C5 that passes through π(P ). This shows that π(S) does not
contain secants of the curve C5 that pass through π(P ), because π(S) is a general plane in P3 that
contains the point π(P ). So, we conclude that π(B) must be a conic. �

Hence, applying Lemmas 11, 12, 13, 14, we obtain

Corollary 15. If β(F) 6 0, then Z is a fiber of the projection EP3 → C5.

Remark 16. By [13, Corollary 4.14], Corollary 15 implies both Corollaries 2 and Corollaries 5.
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To complete the proof of the Main Theorem, we may assume Z is a fiber of the projection EP3 → C5.
Note that Z 6⊂ EQ, since EQ is irrational. Thus, we can choose P ∈ Z such that P 6∈ EQ either.

Now, let S be a general surface in |HQ| such that P ∈ S. Then the surface q(S) is a general hyperplane
section of the quadric Q that contains q(P ), so q(S) ∼= P1×P1 and q(S)∩C ′

5 = P1∪P2∪P3∪P4∪P5,
where P1, P2, P3, P4, P5 are distinct points in C

′

5. Then the morphism q : X → Q induces a birational
morphism S → q(S) that blows up the points P1, P2, P3, P4, P5.

Lemma 17. The divisor −KS is ample.

Proof. Observe that q(S) is a general hyperplane section of the quadric Q that passes through q(P ),
and it follows from the adjunction formula that −KS ∼ HP3

∣∣
S
. Thus, if −KS is not ample, S contains

a fiber ℓ of the projection EP3 → C5 such that q(ℓ) is a secant line of the curve C ′

5. On the other hand,
hyperplane sections of Q that contain q(P ) and a secant line of the curve C ′

5 form a two-dimensional
family. So, we may assume that q(S) is not one of them, which implies that −KS is ample. �

Since −KS is ample, the morphism π induces an isomorphism S ∼= π(S), and π(S) is a smooth
cubic surface in P3 that contains the curve C5. Let us identify S with the smooth cubic surface π(S).
Using this identification, we see that C5 = EP3 ∩ S. Then P ∈ C5, since P ∈ EP3 .

Let L1 and L2 be the proper transforms on S of two rulings of the surface q(S) ∼= P1×P1 that pass
through the point q(P ). Then L1 and L2 are conics in S, because q(L1) and q(L2) do not contain
any of the points P1, P2, P3, P4, P5, since we assume that q(S) is a general hyperplane section of
the quadric Q that contains the point q(P ). Moreover, it follows from Example 9 that

P (u)
∣∣
S
∼R





−KS + (1− u)(L1 + L2) for 0 6 u 6 1,

(4− 3u)(−KS) for 1 6 u 6
4

3
,

and

N(u)
∣∣
S
=





0 for 0 6 u 6 1,

(u− 1)C5 for 1 6 u 6
4

3
,

Let TP be the unique curve in the linear system | −KS| that is singular at P . Then TP is cut out by
the hyperplane in P3 that is tangent to S at the point P . In particular, the curve TP is reduced.

Lemma 18. We have the following five possible cases:

• TP is an irreducible cubic curve,

• TP = ℓ+ C2, where ℓ is a line, C2 is a smooth conic such that C2 6= L1 and C2 6= L2,

• TP = ℓ1 + ℓ2 + ℓ3, where ℓ1, ℓ2, ℓ3 are lines such that P = ℓ1 ∩ ℓ2 and P 6∈ ℓ3.

Proof. A priori, since TP is a reduced cubic curve, we may have the following cases:

(1) TP is an irreducible curve,
(2) TP = ℓ+ L1, where ℓ is a line,
(3) TP = ℓ+ L2, where ℓ is a line,
(4) TP = ℓ+ C2, where ℓ is a line, C2 is a smooth conic such that C2 6= L1 and C2 6= L2,
(5) TP = ℓ1 + ℓ2 + ℓ3, where ℓ1, ℓ2, ℓ3 are lines such that P = ℓ1 ∩ ℓ2 and P 6∈ ℓ3,
(6) TP = ℓ1 + ℓ2 + ℓ3, where ℓ1, ℓ2, ℓ3 are lines such that P = ℓ1 ∩ ℓ2 ∩ ℓ3.

If TP = ℓ1 + ℓ2 + ℓ3 for three lines ℓ1, ℓ2, ℓ3 such that P = ℓ1 ∩ ℓ2 ∩ ℓ3, then

2 = −KS · L1 =
(
ℓ1 + ℓ2 + ℓ3

)
· L1 >

3∑

i=1

(
ℓ1 · L1

)
P
> 3,

which is absurd. Thus, we see that the last case is impossible. To complete the proof, we must show
that the second and the third cases are also impossible.
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Suppose that TP = ℓ + L1 for some line ℓ. Then q(ℓ) is a twisted cubic curve in Q that contains
all intersection points P1, P2, P3, P4, P5. In particular, we see that EQ ∩ ℓ > 5. On the other hand,
the curve q(ℓ) is not contained in the surface q(EP3), because the only rational curves in the ruled
irrational surface EP3 are fibers of the natural projection EP3 → C5, which are mapped to lines by q.
Therefore, since P ∈ EP3 by assumption, we have

1 6
(
EP3 · ℓ

)
P
6 EP3 · ℓ =

(
5HQ − 3EQ

)
· ℓ = 15− 3EQ · ℓ 6 0,

which is absurd. This shows that the conic L1 cannot be an irreducible component of the curve TP .
Similarly, we see L2 is also not an irreducible component of the curve TP . �

From Example 9, we know that SX(S) < 1. So, it follows from (2) that β(F) 6 0 if S(W S
•,•;F ) < 2,

and S(W S̃,F
•,•,•;O) < 1 for every point O ∈ F . Let us check these conditions.

Let L̃1, L̃2, T̃P be proper transforms on S̃ of the curves L1, L2, TP . Then

(3) f ∗
(
P (u)

∣∣
S

)
− vF ∼R




T̃P + (1− u)

(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 u 6 1,

(4− 3u)T̃P + (8− 6u− v)F for 1 6 u 6
4

3
.

Hence, if 0 6 u 6 1, then t̃(u) = 4− 2u. Similarly, if 1 6 u 6 4
3
, then t̃(u) = 8− 6u. Moreover, since

the curve C5 = EP3 ∩ S is smooth, we have d̃(u) = 0 for 0 6 u 6 1, and d̃(u) = u− 1 for 1 6 u 6 4
3
.

Finally, let C̃5 be the proper transform on S̃ of the curve C5. Then

Ñ ′(u) =





0 for 0 6 u 6 1,

(u− 1)C̃5 for 1 6 u 6
4

3
.

Now, we can compute S(W S
•,•;F ) and S(W

S̃,F
•,•,•;O) for every point O ∈ F .

Lemma 19. If TP is irreducible, then S(W S
•,•;F ) < 2 and S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F .

Proof. Suppose that the curve TP is irreducible. Then S̃ is a smooth del Pezzo surface of degree 2.

Note that L̃1, L̃1, T̃P are disjoint (−1)-curves on S̃. If 0 6 u 6 1
2
, it follows from (3) that

P̃ (u, v) =





T̃P + (1− u)
(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 v 6 3− u,

T̃P + (4− 2u− v)
(
L̃1 + L̃2 + F

)
for 3− u 6 v 6

7− 4u

2
,

(4− 2u− v)
(
2T̃P + L̃1 + L̃2 + F

)
for

7− 4u

2
6 v 6 4− 2u,

and

Ñ(u, v) =





0 for 0 6 v 6 3− u,

(v + u− 3)
(
L̃1 + L̃2

)
for 3− u 6 v 6

7− 4u

2
,

(v + u− 3)
(
L̃1 + L̃2

)
+ (2v + 4u− 7)T̃P for

7− 4u

2
6 v 6 4− 2u,

which gives

(
P̃ (u, v)

)2
=





2u2 − v2 − 12u+ 13 for 0 6 v 6 3− u,

4u2 + 4uv + v2 − 24u− 12v + 31 for 3− u 6 v 6
7− 4u

2
,

5(2u+ v − 4)2 for
7− 4u

2
6 v 6 4− 2u,
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and

P̃ (u, v) · F =





v for 0 6 v 6 3− u,

6− 2u− v for 3− u 6 v 6
7− 4u

2
,

20− 10u− 5v for
7− 4u

2
6 v 6 4− 2u.

Likewise, if 1
2
6 u 6 1, then it follows from (3) that

P̃ (u, v) =





T̃P + (1− u)
(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 v 6

7− 4u

2
,

(4− 2u− v)
(
2T̃P + F

)
+ (1− u)

(
L̃1 + L̃2

)
for

7− 4u

2
6 v 6 3− u,

(4− 2u− v)
(
2T̃P + L̃1 + L̃2 + F

)
for 3− u 6 v 6 4− 2u,

and

Ñ(u, v) =





0 for 0 6 v 6
7− 4u

2
,

(2v + 4u− 7)T̃P for
7− 4u

2
6 v 6 3− u,

(v + u− 3)
(
L̃1) + L̃2

)
+ (2v + 4u− 7)T̃P for 3− u 6 v 6 4− 2u,

which gives

(
P̃ (u, v)

)2
=





2u2 − v2 − 12u+ 13 for 0 6 v 6
7− 4u

2
,

18u2 + 16uv + 3v2 − 68u− 28v + 62 for
7− 4u

2
6 v 6 3− u,

5(2u+ v − 4)2 for 3− u 6 v 6 4− 2u,

and

P̃ (u, v) · F =





v for 0 6 v 6
7− 4u

2
,

14− 8u− 3v for
7− 4u

2
6 v 6 3− u,

20− 10u− 5v for 3− u 6 v 6 4− 2u.

Similarly, if 1 6 u 6 4
3
, then

P̃ (u, v) =





(4− 3u)T̃P + (8− 6u− v)F for 0 6 v 6
12− 9u

2
,

(8− 6u− v)(2T̃P + F ) for
12− 9u

2
6 v 6 8− 6u,

and

Ñ(u, v) =





0 for 0 6 v 6
12− 9u

2
,

(2v + 9u− 12)T̃P for
12− 9u

2
6 v 6 8− 6u,

which gives

(
P̃ (u, v)

)2
=





27u2 − v2 − 72u+ 48 for 0 6 v 6
12− 9u

2
,

3(6u+ v − 8)2 for
12− 9u

2
6 v 6 8− 6u,
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and

P̃ (u, v) · F =





v for 0 6 v 6
12− 9u

2
,

24− 18u− 3v for
12− 9u

2
6 v 6 8− 6u.

As in the proof of Lemma 12, we get S(W S
•,•;F ) =

1103
576

. Likewise, if O is a point in F , then

S
(
W S̃,F

•,•,•;O
)
=





131

144
if O ∈ T̃P , TP has a node at P, and O ∈ C̃5,

29

32
if O ∈ T̃P , TP has a node at P , and O 6∈ C̃5,

277

288
if O ∈ T̃P , TP has a cusp at P, and O ∈ C̃5,

23

24
if O ∈ T̃P , TP has a cusp at P and O 6∈ C̃5,

1045

1152
if O ∈ L̃1 ∪ L̃2 and O ∈ C̃5,

347

384
if O ∈ L̃1 ∪ L̃2 and O 6∈ C̃5,

247

288
if O 6∈ L̃1 ∪ L̃2 ∪ T̃P and O ∈ C̃5,

41

48
if O 6∈ L̃1 ∪ L̃2 ∪ T̃P and O 6∈ C̃5.

The lemma is proved. �

Lemma 20. Suppose TP = ℓ+C2, where ℓ is a line, C2 is an smooth conic such that L1 6= C2 6= L2.

Then S(W S
•,•;F ) < 2 and S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F .

Proof. Let ℓ̃ and c be the proper transforms on the surface S̃ of the curves ℓ and C2, respectively.

Then ℓ̃ is a (−2)-curve, C̃2 is a (−1)-curve, and the intersection ℓ̃ ∩ C̃2 consists of a single point.

Note also that ℓ̃ ∩ C̃2 ∈ F ⇐⇒ ℓ and C2 are tangent at P . If 0 6 u 6 2
3
, it follows from (3) that

P̃ (u, v) =





ℓ̃+ C̃2 + (1− u)
(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 v 6 3− 2u,

5− 2u− v

2
ℓ̃+ C̃2 + (1− u)

(
L̃1 + L̃2

)
+ (4− 2u− v)F for 3− 2u 6 v 6 3− u,

5− 2u− v

2
ℓ̃+ C̃2 + (4− 2u− v)

(
L̃1 + L̃2 + F

)
for 3− u 6 v 6

11− 6u

3
,

(4− 2u− v)
(
2ℓ̃+ 3C̃2 + L̃1 + L̃2 + F

)
for

11− 6u

3
6 v 6 4− 2u,

and

Ñ(u, v) =





0 for 0 6 v 6 3− 2u,

v + 2u− 3

2
ℓ̃ for 3− 2u 6 v 6 3− u,

v + 2u− 3

2
ℓ̃+ (v + u− 3)

(
L̃1 + L̃2

)
for 3− u 6 v 6

11− 6u

3
,

(4u+ 2v − 7)ℓ̃+ (6u+ 3v − 11)C̃2 + (v + u− 3)
(
L̃1 + L̃2

)
for

11− 6u

3
6 v 6 4− 2u,

15



which gives

(
P̃ (u, v)

)2
=





2u2 − v2 − 12u+ 13 for 0 6 v 6 3− 2u,

35

2
− 18u− 3v + 4u2 −

v2

2
+ 2uv for 3− 2u 6 v 6 3− u,

71

2
− 30u− 15v + 6u2 +

3v2

2
+ 6uv for 3− u 6 v 6

11− 6u

3
,

6(4− 2u− v)2 for
11− 6u

3
6 v 6 4− 2u,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− 2u,

3− 2u+ v

2
for 3− 2u 6 v 6 3− u,

15− 6u− 3v

2
for 3− u 6 v 6

11− 6u

3
,

24− 12u− 6v for
11− 6u

3
6 v 6 4− 2u,

Likewise, if 2
3
6 u 6 1, then it follows from (3) that

P̃ (u, v) =





ℓ̃+ C̃2 + (1− u)
(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 v 6 3− 2u,

5− 2u− v

2
ℓ̃+ C̃2 + (1− u)

(
L̃1 + L̃2

)
+ (4− 2u− v)F for 3− 2u 6 v 6

11− 6u

3
,

(4− 2u− v)
(
2ℓ̃+ 3C̃2 + F

)
+ (1− u)

(
L̃1 + L̃2

)
for

11− 6u

3
6 v 6 3− u,

(4− 2u− v)
(
2ℓ̃+ 3C̃2 + L̃1 + L̃2 + F

)
for 3− u 6 v 6 4− 2u,

and

Ñ(u, v) =





0 for 0 6 v 6 3− 2u,

v + 2u− 3

2
ℓ̃ for 3− 2u 6 v 6

11− 6u

3
,

(4u+ 2v − 7)ℓ̃+ (6u+ 3v − 11)C̃2 for
11− 6u

3
6 v 6 3− u,

(4u+ 2v − 7)ℓ̃+ (6u+ 3v − 11)C̃2 + (v + u− 3)
(
L̃1 + L̃2

)
for 3− u 6 v 6 4− 2u,

which gives

(
P̃ (u, v)

)2
=





2u2 − v2 − 12u+ 13 for 0 6 v 6 3− 2u,

35

2
− 18u− 3v + 4u2 −

v2

2
+ 2uv for 3− 2u 6 v 6

11− 6u

3
,

22u2 + 20uv + 4v2 − 84u− 36v + 78 for
11− 6u

3
6 v 6 3− u,

6(4− 2u− v)2 for 3− u 6 v 6 4− 2u,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− 2u,

3− 2u+ v

2
for 3− 2u 6 v 6

11− 6u

3
,

18− 10u− 4v + 18 for
11− 6u

3
6 v 6 3− u,

24− 12u− 6v for 3− u 6 v 6 4− 2u,
16



Similarly, if 1 6 u 6 4
3
, then

P̃ (u, v) =





(4− 3u)
(
ℓ̃+ C̃2

)
+ (8− 6u− v)F for 0 6 v 6 4− 3u,

12− 9u− v

2
ℓ̃+ (4− 3u)C̃2 + (8− 6u− v)F for 4− 3u 6 v 6

20− 15u

2
,

(8− 6u− v)
(
2ℓ̃+ 3C̃2 + F

)
for

20− 15u

2
6 v 6 8− 6u,

and

Ñ(u, v) =





0 for 0 6 v 6 4− 3u,

v + 3u− 4

2
ℓ̃ for 4− 3u 6 v 6

20− 15u

2
,

(9u+ 2v − 12)ℓ̃+ (15u+ 3v − 20)C̃2 for
20− 15u

2
6 v 6 8− 6u,

which gives

(
P̃ (u, v)

)2
=





27u2 − v2 − 72u+ 48 for 0 6 v 6 4− 3u,

56− 84u− 4v +
63u2

2
−
v2

2
+ 3uv for 4− 3u 6 v 6

20− 15u

2
,

4(6u+ v − 8)2 for
20− 15u

2
6 v 6 8− 6u,

and

P̃ (u, v) · F =





v for 0 6 v 6 4− 3u,

4− 3u+ v

2
for 4− 3u 6 v 6

20− 15u

2
,

32− 24u− 4v for
20− 15u

2
6 v 6 8− 6u,

Now, we can compute

S
(
W S

•,•;F
)
=

1

8

4

3∫

1

(u− 1)(27u2 − 72u+ 48)du+
1

8

4

3∫

0

t̃(u)∫

0

(
P̃ (u, v)

)2
dvdu =

1661

864
.

Let O be a point in F . If O ∈ ℓ̃ ∩ C̃2 ∩ C̃5, then O 6∈ L̃1 ∪ L̃2, so that

FO

(
W S̃,F

•,•,•

)
=

1

4

4

3∫

1

8−6u∫

0

(u− 1)
(
P̃ (u, v) · F

)
dvdu+

1

4

4

3∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)
· ordO

(
Ñ(u, v)

∣∣
F

)
dvdu =

=
1

576
+
1

4

2

3∫

0

11−6u

3∫

3−2u

(
P̃ (u, v)·F

)v + 2u− 3

2
dvdu+

1

4

2

3∫

0

4−2u∫

11−6u

3

(
P̃ (u, v)·F

)(
(6u+3v−11)+(4u+2v−7)

)
dvdu+

+
1

4

1∫

2

3

11−6u

3∫

3−2u

(
P̃ (u, v)·F

)v + 2u− 3

2
dvdu+

1

4

2

3∫

0

4−2u∫

11−6u

3

(
P̃ (u, v)·F

)(
(6u+3v−11)+(4u+2v−7)

)
dvdu+

+
1

4

4

3∫

1

20−15u

3∫

4−3u

(
P̃ (u, v)·F

)v + 2u− 3

2
dvdu+

1

4

4

3∫

1

8−6u∫

20−15u

3

(
P̃ (u, v)·F

)(
(6u+3v−11)+(4u+2v−7)

)
dvdu =

235

1728
,

17



so that

S
(
W S̃,F

•,•,•;O
)
=

1

8

4

3∫

0

t̃(u)∫

0

(
P̃ (u, v) · F

)2
dvdu+

235

1728
=

1685

1728
.

Similarly, if O ∈ ℓ̃∪ C̃2, then S(W
S̃,F
•,•,•;O) 6

1685
1728

. If O ∈ L̃1∪ L̃2, then O 6∈ ℓ̃∪ C̃2, and O is contained

in exactly one of the curves L̃1 or L̃2. In this case, we have

S
(
W S̃,F

•,•,•;O
)
=





515

576
if O ∈ C̃5,

257

288
if O 6∈ C̃5.

The lemma is proved. �

Lemma 21. Suppose TP = ℓ1 + ℓ2 + ℓ3, where ℓ1, ℓ2, ℓ3 are lines such that P = ℓ1 ∩ ℓ2 and P 6∈ ℓ3.

Then S(W S
•,•;F ) < 2 and S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F .

Proof. Let ℓ̃1, ℓ̃2, ℓ̃3 be the proper transforms on S̃ of the lines ℓ1, ℓ2, ℓ3, respectively. If 0 6 u 6 1,
then it follows from (3) that

P̃ (u, v) =





ℓ̃1 + ℓ̃2 + ℓ̃3 + (1− u)
(
L̃1 + L̃2

)
+ (4− 2u− v)F for 0 6 v 6 3− 2u,

5− 2u− v

2

(
ℓ̃1 + ℓ̃2

)
+ ℓ̃3 + (1− u)

(
L̃1 + L̃2

)
+ (4− 2u− v)F for 3− 2u 6 v 6 3− u,

5− 2u− v

2

(
ℓ̃1 + ℓ̃2

)
+ ℓ̃3 + (4− 2u− v)

(
L̃1 + L̃2 + F

)
for 3− u 6 v 6 4− 2u,

and

Ñ(u, v) =





0 for 0 6 v 6 3− 2u,

v + 2u− 3

2

(
ℓ̃1 + ℓ̃2

)
for 3− 2u 6 v 6 3− u,

v + 2u− 3

2

(
ℓ̃1 + ℓ̃2

)
+ (v + u− 3)

(
L̃1 + L̃2

)
for 3− u 6 v 6 4− 2u,

which gives

(
P̃ (u, v)

)2
=





2u2 − v2 − 12u+ 13 for 0 6 v 6 3− 2u,

6u2 + 4uv − 24u− 6v + 22 for 3− 2u 6 v 6 3− u,

8u2 + 8uv + 2v2 − 36u− 18v + 40 for 3− u 6 v 6 4− 2u,

and

P̃ (u, v) · F =





v for 0 6 v 6 3− 2u,

3− 2u for 3− 2u 6 v 6 3− u,

9− 4u− 2v for 3− u 6 v 6 4− 2u.

Similarly, if 1 6 u 6 3
2
, then

P̃ (u, v) =




(4− 3u)

(
ℓ̃1 + ℓ̃2 + ℓ̃3

)
+ (8− 6u− v)F for 0 6 v 6 4− 3u,

12− 9u− v

2

(
ℓ̃1 + ℓ̃2

)
+ (4− 3u)ℓ̃3 + (8− 6u− v)F for 4− 3u 6 v 6 8− 6u,

and

Ñ(u, v) =





0 for 0 6 v 6 4− 3u,

v + 3u− 4

2

(
ℓ̃1 + ℓ̃2

)
for 4− 3u 6 v 6 8− 6u,

18



which gives
(
P̃ (u, v)

)2
=

{
27u2 − v2 − 72u+ 48 for 0 6 v 6 4− 3u,

2(4− 3u)(8− 6u− v) for 4− 3u 6 v 6 8− 6u,

and

P̃ (u, v) · F =

{
v for 0 6 v 6 4− 3u,

4− 3u for 4− 3u 6 v 6 8− 6u.

Since P ∈ C5 and C5 is smooth, we compute S(W S
•,•;F ) =

31
16
. Similarly, if O is a point in F , then

S
(
W S̃,F

•,•,•;O
)
=





329

384
if O ∈ ℓ̃1 ∪ ℓ̃2,

161

192
if O ∈ L̃1 ∪ L̃2,

155

192
if O 6∈ ℓ̃1 ∪ ℓ̃2 ∪ L̃1 ∪ L̃2.

The lemma is proved. �

Thus, we see that S(W S
•,•;F ) < 2 and S(W S̃,F

•,•,•;O) < 1 for every point O ∈ F . Hence, using (2),
we conclude that β(F) > 0. The Main Theorem is proved.
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