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ON MAXIMALLY NON-FACTORIAL NODAL FANO THREEFOLDS

IVAN CHELTSOV, IGOR KRYLOV, JESUS MARTINEZ GARCIA, EVGENY SHINDER

Abstract. We classify non-factorial nodal Fano threefolds with 1 node and class group of rank 2.

Let X be a Fano threefold that has at worst isolated ordinary double points (nodes). Then both
the Picard group Pic(X) and the class group Cl(X) are torsion-free of finite rank, and the number

rkCl(X)− rkPic(X)

is known as the defect of X [14, 19, 20, 32]. If the defect is zero, we say that X is factorial [7, 8].
Factoriality imposes significant constraints on the geometry of the Fano threefold [9, 11, 37, 46].

The defect of the Fano threefold X does not exceed the number of its singular points [40]. If

rkCl(X)− rkPic(X) = |Sing(X)|,

then X is said to be Q-maximally non-factorial [36, Definition 6.10]. If X has a single node, then
the threefold X is Q-maximally non-factorial if and only if it is non-factorial.

Example. Let X be the quadric cone in P4 with one node. Then X is Q-maximally non-factorial

nodal Fano threefold. Let η : X̃ → X be the blow up of the singular point of the threefold X , and
let E be the η-exceptional surface. Then E ∼= P1 × P1 and E|E ∼= OE(−1,−1), which implies that
there exists the following commutative diagram:

X̃
ϕ1

  ❅
❅❅

❅❅
❅❅

❅
ϕ2

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

η

��

X1

π1

~~⑤⑤
⑤⑤
⑤⑤
⑤ φ1

  ❆
❆❆

❆❆
❆❆

❆
X2

φ2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ π2

  ❇
❇❇

❇❇
❇❇

P1 X P1

where ϕ1 and ϕ2 are contractions of the surface E to curves such that ϕ1 ◦ ϕ
−1
2 is an Atiyah flop,

both φ1 and φ2 are small projective resolutions, and both π1 and π2 are P2-bundles.

Q-maximally non-factorial nodal Fano threefolds are very special from the perspective of derived
categories of coherent sheaves, in particular on the derived categories level they behave almost as
if they were smooth [31, 36, 40]. On the other hand, Q-maximally non-factorial Fano threefolds
are rather rare among all nodal Fano threefolds. It seems natural to pose the following problem.

Problem. Classify all Q-maximally non-factorial nodal Fano threefolds.

The goal of this paper is to partially solve this problem. Namely, we aim to classify Q-maximally
non-factorial nodal Fano threefolds of Picard rank one that have exactly one singular point (node).
Before we present our classification, let us remind the following construction of Yuri Prokhorov.

Construction ([44, § 3.4 Case 4o]). Let E = {z1 = z2 = 0} ⊂ P2
x1,y1,z1

× P2
x2,y2,z2

, and let

X =
{
z1f(x1, y1, z1; x2, y2, z2) = z2g(x1, y1, z1; x2, y2, z2)

}
,
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Throughout this paper, all varieties are assumed to be projective and defined over C.
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where f and g are some sufficiently general polynomials of bi-degrees (1, 2) and (2, 1), respectively.
Then X is a singular Verra threefold (a hypersurface of bidegree (2, 2) in P2 × P2) with 5 nodes.
Note that E ∼= P1 × P1, E ⊂ X and

Sing(X) =
{
z1 = z2 = f = g = 0

}
⊂ E.

Let ρ : P2
x1,y1,z1

× P2
x2,y2,z2

99K P4
x,y,z,t,w be the rational map given by

(
[x1 : y1 : z1], [x2 : y2 : z2]

)
7→

[
x1z2 : y1z2 : x2z1 : y2z1 : z1z2

]
.

Then ρ is birational, and the inverse map ρ−1 is given by [x : y : z : t : w] 7→ ([x : y : w], [z : t : w]).
Let ξ : W → P2

x1,y1,z1
× P2

x2,y2,z2
be the blow up of the surface E, let E be its exceptional divisor,

let G1 = {z1 = 0} and G2 = {z2 = 0}, let G1 and G2 be proper transforms on W of G1 and G2.
Then we have the following commutative diagram:

W
ξ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

θ

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚

P2
x1,y1,z1

× P2
x2,y2,z2 ρ

//❴❴❴❴❴❴❴❴❴❴❴❴❴ P4
x,y,z,t,w

where θ blows down G1 and G2 to the lines ℓ1 = {z = t = w = 0} and ℓ2 = {x = y = w = 0}.
Note that θ(E ) is the hyperplane {w = 0} — the unique hyperplane containing the lines ℓ1 and ℓ2.
Set V = ρ(X). Then V is a smooth cubic threefold in P4

x,y,z,t,w. Moreover, we have

V =
{
f(x, y, w; z, t, w) = g(x, y, w; z, t, w)

}
⊂ P4

x,y,z,t,w.

Now, let X̂ be the strict transform of the threefold X on W , let ς : X̂ → X be the morphism

induced by ξ, and let ν : X̂ → V be the morphism induced by θ. Then X̂ is smooth, ς is a small
projective resolution, and we have the following commutative diagram:

X̂

ς

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ν

��❃
❃❃

❃❃
❃❃

❃

X
ρ|

X

//❴❴❴❴❴❴❴ V

.

Note that ν is a blow up of the cubic threefold V along the lines ℓ1 and ℓ2. Let Ê = E |X̂ . Then

• the induced map ς|Ê : Ê → E is a blow up of the points Sing(X),

• Ê is isomorphic to a smooth cubic surface,

• ν(Ê) is the hyperplane section {w = 0} ∩ V .

Now, we complement the last commutative diagram by the following commutative diagram:

V

V1

υ1

��

ψ1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
X̂

ς

��

ν

OO

ν2
oo

ν1
// V2

υ2

��

ψ2

ggPPPPPPPPPPPPPPPP

P2
x1,y1,z1

X
pr

2

//
pr

1

oo P2
x2,y2,z2

where ψ1 and ψ2 are blow ups of the lines ℓ1 and ℓ2, respectively, ν1 and ν2 are blow ups of the strict
transforms of the lines ℓ1 and ℓ2, respectively, both υ1 and υ2 are standard conic bundles [42],
and pr1 and pr2 are natural projections. Let ∆1 and ∆2 be the discriminant curves of the conic
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bundles υ1 and υ2, respectively. Then ∆1 and ∆2 are quintic curves with at most nodal singularities.

Since ς is a flopping contraction, there exists a composition of flops χ : X̂ 99K X̃ of all curves

contracted by ς. Then X̃ is smooth and projective, and we have another commutative diagram:

X̃

σ
��❄

❄❄
❄❄

❄❄
❄ X̂

χoo❴ ❴ ❴ ❴ ❴ ❴ ❴

ς

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ν

��❃
❃❃

❃❃
❃❃

❃

X
ρ|

X

//❴❴❴❴❴❴❴ V

where σ is a small resolution. Let E = χ(Ê). Then χ induces a morphism Ê → E that blows down
all five curves contracted by ς, which implies that σ induces an isomorphism E ∼= E ∼= P1 × P1.

Note that E|E ∼ OE(−1,−1), and there exists a birational morphism η : X̃ → X that blows down
the surface E to an ordinary double point of the threefold X . We have −K3

X = −K2

X̃
−2 = 14 and

1 = rkPic(X) < rkCl(X) = 1 +
∣∣Sing(X)

∣∣ = 2.

Therefore, the threefold X is a Q-maximally non-factorial nodal Fano threefold that has one node.
Summarizing, we have the following commutative diagram:

X

X1

π1

��

φ1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
X̃

ϕ1 //ϕ2oo

η

OO

σ

��

X2

φ2

ggPPPPPPPPPPPPPPP

π2

��

P2
x1,y1,z1

X
pr

2

//
pr

1

oo P2
x2,y2,z2

V1

υ1

OO

ψ1

''PP
PP

PP
PP

PP
PP

PP
PP X̂

ς

OO

ν

��

ν2
oo

ν1
// V2

υ2

OO

ψ2

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

V

where φ1 and φ2 are two small resolutions such that the composition φ−1
1 ◦ φ2 is an Atiyah flop,

both ϕ1 and ϕ2 are contractions of the surface E to curves, π1 and π2 are standard conic bundles
whose discriminant curves are ∆1 and ∆2, respectively. Note that X is irrational as it is birational
to a smooth cubic threefold [15], and

h1,2(X1) = h1,2(X2) = h1,2(X̃) = h1,2(X̂) = h1,2(V ) = 5.

Instead of using the Verra threefold X containing E, we can construct the nodal threefold X using
the birational map ρ−1, and the smooth cubic threefold V containing the lines ℓ1 and ℓ2.

Now, we are ready to present the main result of this paper. To do this, we suppose that

• the nodal Fano threefold X has one node,
• the rank of the Picard group Pic(X) is one,
• the rank of the class group Cl(X) is two.

Let η : X̃ → X be the blow up of the node of the threefold X , let E be the η-exceptional surface.

Then X̃ is smooth, E ∼= P1 × P1, E|E ≃ OE(−1,−1), and it follows from [16] that X uniquely
3



determines the following Sarkisov link:

(⋆) X̃
ϕ1

  ❅
❅❅

❅❅
❅❅

❅

ϕ2

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

η

��

X1

π1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ φ1

  ❆
❆❆

❆❆
❆❆

❆
X2

φ2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ π2

  ❇
❇❇

❇❇
❇❇

❇

Z1 X Z2

where ϕ1 and ϕ2 are contractions of the surface E to curves such that ϕ1 ◦ ϕ
−1
2 is an Atiyah flop,

both φ1 and φ2 are small projective resolutions, and both π1 and π2 are extremal contractions [38].
Note that −KX1

∼ φ∗
1(−KX) and −KX2

∼ φ∗
2(−KX), so that

−K3
X1

= −K3
X2

= −K3
X .

It follows from [39, 30] thatX admits a smoothingX  Xs, whereXs is a smooth Fano threefold,
−K3

X = −K3
Xs
, and the rank of the Picard group Pic(Xs) is 1. We also know from [14] that

(z) h1,2(X̃) = h1,2(X1) = h1,2(X2) = h1,2(Xs),

which imposes a significant constraint on the link (⋆). We set

d = −K3
X ,

h1,2 = h1,2(Xs),

and

I = max
{
n ∈ Z>0 such that −KXs

∼ nH for H ∈ Pic(Xs)
}
.

Then I is the index of the Fano threefold Xs, which is also the index of the Fano threefold X [30].
In the remaining part of this paper, we prove the following theorem.

Theorem. All possibilities for (⋆), up to swapping the left and right sides of the diagram, are

described in the table at the end of the paper.

Each Sarkisov link in the table exists and can be described explicitly (we provide the relevant
references in the table). For the case of −K3

X = 22, our theorem follows from [41, Theorem 1.2].
Upon circulating a draft of our paper, we were informed that A. Kuznetsov and Yu. Prokhorov had
independently obtained the same classification but their results are not publicly available yet.

Remark. It should be pointed out that it follows from our classification that one-nodalQ-maximally
non-factorial degenerations of smooth Fano threefolds of Picard rank one have the same rationality
as their smoothing (in the cases 2 and 7 we need to assume that the Fano threefolds are general).
Indeed, this can be verified case by case, using the rationality results from [3, 10, 15, 23, 42, 49].

Observation. If X is a del Pezzo threefold (I = 2) of Picard rank one such that −K3
X 6 32, then

the nodal Fano threefold X is never Q-maximally non-factorial. This follows from [19, 20, 31, 40].
Therefore, the only options for X when I > 1 are these two Fano threefolds:

• the nodal quadric threefold in P3 (I = 3, −K3
X = 54, the Sarkisov link 17);

• a quintic del Pezzo threefold (I = 2, −K3
X = 40, the Sarkisov link 16).

We prove the theorem by analyzing the possible links (⋆) in the following order:

(1) π1 is a del Pezzo fibration, and π2 is arbitrary;
(2) both π1 and π2 are birational;
(3) π1 is a conic bundle and π2 is arbitrary.

4



This covers all possible Mori fiber spaces arising in (⋆), up to swapping π1 and π2.
Note that all possibilities for the smooth Fano variety Xs are known and can be found in [25].

Using this classification, we list the possible values of h1,2 as follows.

(d, I) (2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1), (16, 1) (18, 1) (22, 1)

h1,2 52 30 20 14 10 7 5 3 2 0

(d, I) (8, 2) (16, 2) (24, 2) (32, 2) (40, 2) (54, 3) (64, 4)

h1,2 21 10 5 2 0 0 0

Possibilities for (⋆) are studied in [1, 4, 17, 18, 21, 22, 26, 27, 28, 29, 30, 33, 41, 43, 44, 47, 48, 50].
Using some of these results, we immediately obtain the following corollary.

Corollary. Suppose that π1 is a fibration into del Pezzo surfaces. Then (⋆) is one of the links

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17

in the table at the end of the paper.

Proof. If π1 is a fibration into del Pezzo surfaces of degree 6, the assertion follows from [21, 22], in
which case we get the link 15. In the remaining cases, the required assertion follows from [48]. �

Therefore, we may assume that neither π1 nor π2 is a fibration into del Pezzo surfaces.

Proposition. Suppose that π1 and π2 are birational. Then (⋆) is the link 13 in the table.

Proof. Both Z1 and Z2 are (possibly singular) Fano threefolds, and rkPic(Z1) = rkPic(Z2) = 1.
Suppose that Z1 is smooth (i.e. π1 is a contraction of type E1 or E2 in [34, Theorem 1.32]

and π2 is a contraction of type E1 − E5). Then all possibilities for h1,2(Z1) are listed in the two
tables presented above. Using [18], we obtain all possible values of h1,2(X1). Now, using (z), in
combination with the list of Sarkisov links in [18, Tables 1–7] we see, carrying out a case-by-case
analysis, that

Z1
∼= Z2

∼= P3,

and both π1 and π2 are blow ups of smooth rational curves of degree 5. Alternatively, one can run
a short computer programme exhausting all the possibilities for Z1 and Z2 and reach the same
conclusion: both morphisms π1 and π2 are blow ups of P3 along smooth rational curves of degree 5.
Observe also that none of these curves are contained in a quadric surface, because the birational
morphisms φ1 and φ2 are small by construction. Therefore, the Sarkisov link (⋆) is the link 13 in
the table presented at the end of the paper.

We may assume that Z1 and Z2 are singular. Now, using [18, Tables 8–9], we get −K3
X ∈ {2, 4}.

Hence, if | −KX | does not have base points, then X is one of the following threefolds:

(1) sextic hypersurface in P(1, 1, 1, 1, 3),
(2) quartic hypersurface in P4,
(3) complete intersection of a quadric cone and a quartic hypersurface in P(1, 1, 1, 1, 1, 2).

Indeed, if |−KX | does not have base points, then |−KX| gives a morphism φ : X → PN such that
the induced map ϕ : X → φ(X) is finite, and

deg
(
φ(X)

)
· deg

(
ϕ
)
= −K3

X .

If −K3
X = 3, then N = 3, φ(X) = P3, and the morphism ϕ is a double cover ramified at a sextic

hypersurface (by Hurwitz’s formula), thus giving the first case. Similarly, if −K3
X = 4, then we

obtain one of the last two cases. Now, studying the defect in each of these three cases, we see that
5



the Fano threefold X must be factorial [6, 7, 8, 9, 46], which contradicts our initial assumption.
This shows that the linear system | −KX | has base points.

Now, using [29, Theorem 1.1], we see that −K3
X = 2, and

X =
{
x0x1 − x2x3 = 0, f6(x0, x1, x2, x3, x4)− x25 = 0

}
⊂ P(1, 1, 1, 1, 2, 3),

where f6 is a quasi-homogeneous polynomial of degree 6, x0, x1, x2, x3 are coordinates of weight 1,
and x4 and x5 are coordinates of weights 2 and 3, respectively. After a small resolution, the map

[x0 : x1 : x2 : x3 : x4 : x5] 7→ [x0 : x2]

gives a fibration into del Pezzo surfaces of degree 1. Similarly, the map

[x0 : x1 : x2 : x3 : x4 : x5] 7→ [x0 : x3]

gives another fibration into del Pezzo surfaces of degree 1. This implies that (⋆) is the link 1 in
the table, so that π2 is not birational, which contradicts our assumption. �

Thus, we may assume that π1 is a conic bundle, and either π2 is birational, or π2 is a conic bundle.
Then the surface Z1 is smooth [38, (3.5.1)], which implies that Z1 = P2, since X1 has Picard rank 2.
Let d1 be the degree of the discriminant curve of the conic bundle π1. Then [45, 1.6 Main Theorem]
implies d1 6 11, where d1 = 0 if and only if π1 is a P1-bundle. By [3, 51], we get

(♠) h1,2(X1) =
d1(d1 − 3)

2
,

so d1 6∈ {1, 2}. Using (z) and the list of possible values of h1,2 presented in tables above, we get

d1 ∈ {0, 3, 4, 5, 7, 8}.

Using the Observation above, for the remaining part of the proof we will always assume that I = 1.
Therefore we have

(♦) (d, h1,2, d1) ∈ {(6, 20, 8), (8, 14, 7), (14, 5, 5), (18, 1, 4), (22, 0, 0), (22, 0, 3)} .

LetD2 be a Cartier divisor onX2, letD1 be its strict transform onX1, and letH1 be a sufficiently
general surface in |π∗

1(OP2(1))|. Then

D1 ∼Q a(−KX1
)− bH1

for some rational numbers a and b. Moreover, if d1 6= 0, then both numbers a and b are integers.
Similarly, if d1 = 0, then 2a and 2b are integers. But we have (e.g. see [12, Lemma A.3])

−KX1
·D2

1 = −KX2
·D2

2,(
−KX1

)2
·D1 =

(
−KX2

)2
·D2.

Moreover, we have [5, Proposition 6]

−K3
X1

= d, (−KX1
)2 ·H1 = 12− d1, −KX1

·H2
1 = 2, H3

1 = 0.

This gives

(♥)

{
da2 − 2(12− d1)ab+ 2b2 = −KX2

·D2
2,

da− (12− d1)b =
(
−KX2

)2
·D2.

Lemma. Suppose that π2 is birational. Then (⋆) is either the link 11 or the link 14 in the table.

Proof. To prove the lemma, we let D2 be the π2-exceptional surface. Then a = D1 ·H
2
1 > 0.

If π2(D2) is a point, it follows from [38, Theorem (3.3)] that one of the following cases holds:

(A) D2 = P2 and D2|E2
is a line bundle of degree −1,

(B) D2 = P2 and D2|E2
is a line bundle of degree −2,

(C) D2 is an irreducible quadric surface in P3,
6



which implies that

−KX2
·D2

2 =





− 2 in the case (A),

− 4 in the case (B),

− 2 in the case (C),

and

(
−KX2

)2
·D2 =





4 in the case (A),

1 in the case (B),

2 in the case (C).

Now, solving (♥) for each triple (d, h1,2, d1) listed in (♦), we see that 2a is never a non-negative
integer. This shows that π2(D2) is not a point.

We see that Z2 is a smooth Fano threefold of Picard rank 1, and π2(D2) is a smooth curve in Z2.
Then it follows from [28, Theorem 7.14] and (z) that (⋆) is one of the Sarkisov links 11 and 14,
which would complete the proof of the lemma.

Note, however, that [28] has gaps [13, Remark 1.18]. For instance, the link in the construction
contradicts [28, Theorem 7.4], and few examples constructed in [50] contradict [28, Proposition 7.2].
Keeping this in mind, let us complete the proof of the lemma without using [28, Theorem 7.14].

Set C2 = π2(D2). Let d2 = −KZ2
· C2, and let g2 be the genus of the curve C2. Then

h1,2(Z2) + g2 = h1,2 ∈
{
0, 2, 5, 14, 20

}
,

where the latter follows from (♠) and the further limitation imposed by I = 1.
As a result, using the classification of smooth Fano threefolds, we get

h1,2(Z2) ∈
{
0, 2, 3, 5, 7, 10, 14, 20

}
.

In fact, we can say a bit more. Let e = −K3
Z2
, let i be the index of the Fano threefold Z2. Then

• (e, i) = (64, 4) ⇐⇒ Z2 = P3,
• (e, i) = (54, 3) ⇐⇒ Z2 is a smooth quadric threefold in P4.

Moreover, the possible values of h1,2(Z2) 6 20 can be listed as follows.

(e, i) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1), (16, 1) (18, 1) (22, 1)

h1,2(Z2) 20 14 10 7 5 3 2 0

(e, i) (16, 2) (24, 2) (32, 2) (40, 2) (54, 3) (64, 4)

h1,2(Z2) 10 5 2 0 0 0

This leaves not so many possibilities for the genus g2 = h1,2 − h1,2(Z2).
One the other hand, it follows from [25, Lemma 4.1.2] that

−KX2
·D2

2 = 2g2 − 2,

−(−KX2
)2 ·D2 = d2 + 2− 2g2,

−K3
X2

= e− 2 + 2g2 − 2d2,

so that (♥) gives 



da2 − 2(12− d1)ab+ 2b2 = 2g2 − 2,

da− (12− d1)b = d2 + 2− 2g2,

d = e− 2 + 2g2 − 2d2.
7



Now, solving this system of equations for each triple (d, I, h1,2, d1) listed in (♦), and each possible
triple (e, i, g2) = (e, i, h1,2 − h1,2(Z2)), we obtain the following three cases:

(I) d = 18, I = 1, h1,2 = 2, d1 = 4, Z2 = P3, d2 = 24, g2 = 2, a = 3, b = 4;
(II) d = 22, I = 1, h1,2 = 0, d1 = 3, Z2 is a smooth quadric in P4, d2 = 15, g2 = 0, a = 3, b = 4;

In the case (I), (⋆) is the link 11 in the table. In the case (II), (⋆) is the link 14 in the table. �

Therefore, we may assume that π2 is also a conic bundle. Then Z2 = P2, and the discriminant
curve of the conic bundle π2 must also have degree d1, since

d2(d2 − 3)

2
= h1,2(X2) = h1,2(X1) =

d1(d1 − 3)

2
.

Now, we let D2 be a general surface in |π∗
2(OP2(1))|. Then (♥) simplifies as

{
da2 − 2(12− d1)ab+ 2b2 = 2,

da− (12− d1)b = 12− d1.

Solving these equations for each quadruple (d, h1,2, d1) listed in (♦), we get the following cases:

(1) a = 0, b = −1;
(2) d = 14, I = 1, h1,2 = 5, d1 = 5, a = 1, b = 1.

In the case (1), the composition ϕ1 ◦ ϕ
−1
2 is biregular. But this contradicts our initial assumption.

So, the case (2) holds. Then (⋆) is the link 7 in the table, which proves the theorem.

Let us conclude this paper by showing that the Sarkisov link 7 in the table is always obtained
using Prokhorov’s construction [44, § 3.4 Case 4o] revisited above. Let C1 and C2 be the curves
contracted by φ1 and φ2, respectively. Then it follows from [12, Lemma A.3] that

−1 =
(
−KX −H1

)3
=

(
a(−KX)− bH1

)3
= D3

1 = D3
2 −

(
D2 · C2

)3
= −

(
D2 · C2

)3
,

so that D2 · C2 = 1. Similarly, get H1 · C1 = 1. Using this and D2 ∼ −KX −H1, we see that

−KX̃ ∼ ϕ∗
1(H1) + ϕ∗

2(D2).

Note that

−K3

X̃
= 12, h1,2(X̃) = 5, rkPic(X̃) = 3,

which implies that the divisor −K
X̃

is not ample, because smooth Fano threefolds with these
discrete invariants do not exists [25].

Combining π1 ◦ ϕ1 and π2 ◦ ϕ2, we obtain a morphism X̃ → P2 × P2. Let X be its image, and
let σ : X̃ → X be the induced morphism. Then one of the following two cases holds:

• either X is a divisor of degree (2, 2), and σ is birational,
• or X is a divisor of degree (1, 1), and σ is generically two-to-one.

In the former case, it follows from the subadjunction formula that the threefold X is normal,
because hypersurface singularities are normal if and only if they are smooth in codimension two.
In the latter case, the threefold X is also normal — it is either smooth or has one node.

Set E = σ(E). Let pr1 : X → P2 and pr2 : X → P2 be the projections to the first and the second
factors of the fourfold P2 × P2, respectively. Then pr1(E) and pr2(E) are lines, so we can choose
coordinates ([x1 : y1 : z1], [x2 : y2 : z2]) on P2 × P2 such that

E =
{
z1 = z2 = 0

}
.

Since E ⊂ X , we see that X is singular. Note also that σ induces an isomorphism E ∼= E.

Claim. The threefold X is a divisor of degree (2, 2), and σ is a small birational morphism.
8



Proof. If σ contracts a divisor F , then

F ∼ a1ϕ
∗
1(H1) + a2ϕ

∗
2(D2) + a3E

for some integers a1, a2, a3, because ϕ
∗
1(H1), ϕ

∗
2(D2) and E freely generate the group Pic(X̃).

Thus, in this case, we have

2a2 = F · ϕ∗
1(H1) · ϕ

∗
1(H1) = 0,

2a1 = F · ϕ∗
1(D2) · ϕ

∗
1(D2) = 0,

2a1 + 2a2 + a3 = F · ϕ∗
1(H1) · ϕ

∗
1(D2) = 0,

which gives a1 = 0, a2 = 0, a3 = 0. This shows that σ does not contract any divisors.
The Stein factorization of σ is the following commutative diagram:

X̃

σ
��❄

❄❄
❄❄

❄❄
❄

α // X̂

β��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X

where α is a birational morphism, and β is either an isomorphism or a (ramified) double cover.
Since σ does not contract divisors and −KX̃ is not ample, we see that α is a flopping contraction,

and X̂ has terminal Gorenstein singularities. We must show that β is an isomorphism.
Suppose β is a double cover. Its Galois involution induces a birational involution τ ∈ Bir(X̃).

Then τ acts naturally on Pic(X̃) such that

τ∗(ϕ
∗
1(H1)) ∼ ϕ∗

1(H1),

τ∗(ϕ
∗
1(D2)) ∼ ϕ∗

1(D2),

τ∗(E) ∼ b1ϕ
∗
1(H1) + b2ϕ

∗
2(D2) + b3E

for some integers b1, b2, b3. Then

2b2 = τ∗(E) · ϕ
∗
1(H1) · ϕ

∗
1(H1) = E · ϕ∗

1(H1) · ϕ
∗
1(H1) = 0,

2b1 = τ∗(E) · ϕ
∗
1(D2) · ϕ

∗
1(D2) = E · ϕ∗

1(D2) · ϕ
∗
1(D2) = 0,

b2b1 + 2b2 + b3 = τ(E)∗ · ϕ
∗
1(H1) · ϕ

∗
1(D2) = E · ϕ∗

1(H1) · ϕ
∗
1(D2) = 1,

which gives b1 = 0, b2 = 0, b3 = 1, so τ∗(E) ∼ E, which gives τ(E) = E, since E is η-exceptional.
Since τ(E) = E and σ induces an isomorphism E ∼= E, we see that the surface E is contained in

the ramification divisor of the double cover β. This implies that X̂ has non-isolated singularities,

which is impossible, since X̂ has terminal singularities. Thus, we see that β is an isomorphism. �

We see that X is a divisor in P2 × P2 of degree (2, 2), and σ is a flopping contraction. Then

X =
{
z1f(x1, y1, z1; x2, y2, z2) = z2g(x1, y1, z1; x2, y2, z2)

}

for some polynomials f and g of bi-degree (1, 2) and (2, 1), respectively, and X can be obtained
using Prokhrov’s construction presented earlier in the paper.
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Table describing all possibilities for the Sarkisov link (⋆).

№ d I h1,2 π1 : X1 → Z1 π2 : X2 → Z2 References

1 2 1 52

Z1 = P1,
π1 is a fibration into

del Pezzo surfaces of degree 1

Z2 = P1,
π2 is is a fibration into

del Pezzo surfaces of degree 1

[23, 24, 29],
[48, (2.5.2)]

2 6 1 20

Z1 = P1,
π1 is a fibration into

del Pezzo surfaces of degree 2

Z2 is a del Pezzo threefold of degree 1
that has one singular double point,
π2 is a blow up of the singular point

[10, Proposition 5.6],
[23, 24],

[43, Example 4.3],
[48, (2.7.3)]

3 8 1 14
Z1 = P1,

π1 is a fibration into cubic surfaces

Z2
∼= P2,

π2 is a conic bundle
with septic discriminant curve

[10, Proposition 5.9],
[43, Example 4.6],

[48, (2.9.4)]

4 10 1 10
Z1 = P1,

π1 is a fibration into cubic surfaces

Z2 is a smooth del Pezzo threefold of degree 2,
π2 is blow up of a smooth rational curve

that has anticanonical degree 2

[10, Example 1.11],
[44, § 3.12 Case 11o],

[48, (2.9.3)]

5 12 1 7

Z1 = P1,
π1 is a fibration into

quartic del Pezzo surfaces

Z2
∼= P3,

π2 is a blow up of a smooth
curve of degree 8 and genus 7

[28, Proposition 3.16],

[48, (2.11.5)]

6 14 1 5

Z1 = P1,
π1 is a fibration into

quartic del Pezzo surfaces

Z2 is a smooth cubic threefold,
π2 is a blow up of a smooth conic

[28, Proposition 3.16],

[44, § 3.13 Case 12o],
[48, (2.11.4)]

7 14 1 5

Z1 = P2,
π1 is a conic bundle

with quntic discriminant curve

Z2 = P2,
π1 is a conic bundle

with quntic discriminant curve

[44, § 3.4 Case 4o],
Construction,

Claim

8 16 1 3

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces

Z2 is a smooth quadric in P4,
π2 is a blow up of a smooth
curve of degree 7 and genus 3

[28, Proposition 3.16],

[48, (2.13.4)]

1
0



9 16 1 3
Z1 = P1,

π1 is a quadric bundle

Z2 = P1,
π2 is a fibration into

quartic del Pezzo surfaces

[2, Example 4.9],
[48, (2.3.8)],

[48, (2.11.2)]

10 18 1 2

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces

Z2 is a smooth complete
intersection of two quadrics in P5,
π2 is a blow up of a twisted cubic

[28, Proposition 3.16],

[48, (2.13.3)]

11 18 1 2
Z1

∼= P2,
π1 is a conic bundle

with quartic discriminant curve

Z2 = P3,
π2 is a blow up of a smooth
curve of degree 6 and genus 2

[28, Proposition 4.14],

[4, Example 4.8],
[28, Theorem 7.14]

12 22 1 0

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces

Z2
∼= P2,

π2 is a P1-bundle
[41, (IV)],

[48, (2.13.1)]

13 22 1 0

Z1 = P3,
π1 is a blow up of a smooth
rational curve of degree 5

that is not contained in a quadric

Z2 = P3,
π1 is a blow up of a smooth
rational curve of degree 5

that is not contained in a quadric

[18, Proposition 2.11],
[41, (I)]

14 22 1 0

Z1
∼= P2,

π1 is a conic bundle
with cubic discriminant curve

Z2 is a smooth quadric threefold,
π2 is a blow up of a smooth

rational quintic curve

[28, Proposition 4.14],
[41, (II)]

15 22 1 0

Z1
∼= P1,

π1 is a fibration into
sextic del Pezzo surfaces

Z2
∼= V5,

π2 is a blow up of
a rational quartic curve

[28, Theorem 7.14],

[41, (III)]

16 40 2 0
Z1 = P1,

π1 is a quadric bundle
Z2 = P2,

π2 is a P1-bundle

[26, Theorem 3.5],

[48, (2.3.2)]

17 54 3 0
Z1 = P1,

π1 is a P2-bundle
Z2 = P1,

π2 is a P2-bundle Example

1
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