K-STABLE FANO 3-FOLDS IN THE FAMILIES №2.18 AND №3.4

IVAN CHELTSOV, KENTO FUJITA, TAKASHI KISHIMOTO, JIHUN PARK

Abstract. We prove that smooth Fano 3 -folds in the families №2.18 and №3.4 are K-stable.

Contents

1. Introduction	1
2. Smooth Fano 3 -folds in the family №2.18	2
3. Smooth Fano 3-folds in the family №3.4	14
3.1. The proof	16
3.2. Exclusion of the case $\left(\mathbb{D}_{4}\right)$	26
3.3. Exclusion of the case (\mathbb{A}_{3})	37
Appendix A. Tables	42
References	52

Throughout this paper, all varieties are assumed to be projective and defined over \mathbb{C}.

1. Introduction

Smooth Fano threefolds are classified into 105 families labeled as №1.1, №1.2, №1.3, ..., №10.1. For the description of these families, see [18]. It has been proved in [3, 14, 16] that the families

$$
\begin{aligned}
& \text { №2.23, №2.26, №2.28, №2.30, №2.31, №2.33, № } 2.35 \text {, № } 2.36 \text {, №3.14, } \\
& \text { №3.16, №3.18, №3.21, №3.22, №3.23, №3.24, №3.26, №3.28, №3.29, } \\
& \text { №3.30, №3.31, №4.5, №4.8, №4.9, №4.10, №4.11, №4.12, №5.2 }
\end{aligned}
$$

do not have smooth K-polystable members, and general members of other families are K-polystable. For 56 families, K-polystable smooth Fano 3-folds are described in [2, 3, 4, 6, 8, 11, 17, 20, 22, 24, 7]. The remaining 21 deformation families are:

$$
\begin{aligned}
& \text { № } 1.9 \text {, №1.10, № } 2.5 \text {, № } 2.9 \text {, № } 2.10 \text {, № } 2.11 \text {, № } 2.12 \text {, № } 2.13 \text {, № } 2.14 \text {, № } 2.16 \text {, } \\
& \text { №2.17, №2.18, №2.19, №2.20, №3.2, №3.4, №3.5, №3.6, №3.7, №3.8, №3.11. }
\end{aligned}
$$

The families №1.10, №2.20, №3.5, №3.8 contain both K-polystable and non-K-polystable members, and all smooth Fano threefolds in the families
№1.9, №2.5, № 2.9 , №2.10, №2.11, №2.12, №2.13, №2.14,
№2.16, №2.17, №2.18, №2.19, №3.2, №3.4, №3.6, №3.7, №3.11
are conjectured to be K-stable [3]. In this paper, we verify this conjecture for two families:
Main Theorem. All smooth Fano 3-folds in the families №2. 18 and №3.4 are K-stable.
Hence, to find all smooth K-polystable Fano 3-folds, one have to deal with 19 families №1.9, №1.10, № 2.5 , № 2.9 , № 2.10 , № 2.11 , № 2.12 , № 2.13 , № 2.14 , №2.16, №2.17, №2.19, №2.20, №3.2, №3.5, №3.6, №3.7, №3.8, №3.11.

To describe smooth Fano 3-folds in the families № 2.18 and №3.4, let $V \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ be a double cover branched along a smooth surface of degree $(2,2)$, let $V \rightarrow \mathbb{P}^{2}$ be the composition of this double cover and the projection $\mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, and let $X \rightarrow V$ be the blow up of a smooth fiber of this composition morphism. Then we have the following commutative diagram:

where \mathbb{F}_{1} is the first Hirzebruch surface, the morphism $X \rightarrow \mathbb{P}^{1} \times \mathbb{F}_{1}$ is a double cover ramified over the proper transform on $\mathbb{P}^{1} \times \mathbb{F}_{1}$ of the ramification surface of the double cover $V \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$, and $\mathbb{P}^{1} \times \mathbb{F}_{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ is a birational morphism induced by the blow up $\mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$. Then

- V is a smooth Fano 3-fold in the deformation family №2.18,
- X is a smooth Fano 3-fold in the deformation family №3.4.

Furthermore, all smooth Fano 3-folds in these deformation families can be obtained in this way.
Let us say few words about the proof of Main Theorem. To prove that V is K-stable, we recall from [12, 15, 21, 25] that
the Fano 3 -fold V is K-stable \Longleftrightarrow the \log Fano pair $\left(\mathbb{P}^{1} \times \mathbb{P}^{2}, \frac{1}{2} R\right)$ is K-stable,
where R is the ramification surface of the double cover $V \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$. In Section 2, we prove that the \log Fano pair $\left(\mathbb{P}^{1} \times \mathbb{P}^{2}, c R\right)$ is K-stable for every $c \in(0,1) \cap \mathbb{Q}$ using Abban-Zhuang theory and the technique developed in [3, 16]. We refer the reader to [3, §1.7] and [16, § 4] for details. Similarly, to prove that X is K-stable, we prove that the \log Fano pair $\left(\mathbb{P}^{1} \times \mathbb{F}_{1}, \frac{1}{2} R\right)$ is K-stable, where now R is the ramification surface of the double cover $X \rightarrow \mathbb{P}^{1} \times \mathbb{F}_{1}$. The proof is much more involved in this case, because we have to resolve two deadlocks arising when R is quite special. To overcome these difficulties, we apply Abban-Zhuang theory to exceptional surfaces of toric weighted blow ups of the 3 -fold $\mathbb{P}^{1} \times \mathbb{F}_{1}$, and use toric geometry to compute Zariski decompositions. This is a new approach, which can resolve deadlocks in similar problems.

The structure of this paper is simple: we prove Main Theorem for the family № 2.18 in Section 2 , and we prove Main Theorem for the family №3.4 in Section 3. In Appendix A, we put all the tables necessary for the Zariski decompositions discussed in Section 3.

Acknowledgements. The authors thank IBS Center for Geometry and Physics in Pohang, Saitama University, and the University of Edinburgh for their hospitality.

Ivan Cheltsov was supported by JSPS Invitational Fellowships for Research in Japan (S22040), EPSRC Grant № EP/V054597/1, and Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette).

Kento Fujita was supported by JSPS KAKENHI Grant Number 22K03269.
Takashi Kishimoto was supported by JSPS KAKENHI Grants Number 19K03395 and 23K03047.
Jihun Park was supported by the IBS project IBS-R003-D1, Institute for Basic Science in Korea.

2. Smooth Fano 3-folds in the family № 2.18

Let $Y=\mathbb{P}^{1} \times \mathbb{P}^{2}$, let R be a smooth surface in Y of degree $(2,2)$, and let $V \rightarrow Y$ be the double cover branched over R. Then $\operatorname{Aut}(V)$ is finite [9], so V is K-stable if and only if V is K-polystable. On the other hand, it follows from [12, 15, 21, 25] that
V is K-polystable $\Longleftrightarrow\left(Y, \frac{1}{2} R\right)$ is K-polystable.
Let $\Delta_{Y}=c R$ for $c \in[0,1) \cap \mathbb{Q}$. Then $\left(Y, \Delta_{Y}\right)$ is a \log Fano pair for every $c \in[0,1) \cap \mathbb{Q}$.
Theorem 2.1. The log Fano pair $\left(Y, \Delta_{Y}\right)$ is K-stable for every $c \in(0,1) \cap \mathbb{Q}$.

Let us prove Theorem 2.1. Set $L=-K_{Y}-\Delta_{Y}$. Then L is a divisor of degree $(2-2 c, 3-2 c)$, so

$$
L^{3}=6(1-c)(3-2 c)^{2}
$$

Fix $c \in(0,1) \in \mathbb{Q}$. Let P be a point in Y. Recall that

$$
\delta_{P}\left(Y, \Delta_{Y}\right)=\inf _{\substack{\mathbf{E} / Y \\ P \in C_{Y}(\mathbf{E})}} \frac{A_{Y, \Delta_{Y}}(\mathbf{E})}{S_{L}(\mathbf{E})}
$$

where the infimum is taken over all prime divisors \mathbf{E} over Y whose centers on Y contain P, and

$$
S_{L}(\mathbf{E})=\frac{1}{L^{3}} \int_{0}^{\infty} \operatorname{vol}(L-u \mathbf{E}) d u
$$

By [19, 14], to prove that $\left(Y, \Delta_{Y}\right)$ is K-stable, it is enough to show that $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Lemma 2.2. Suppose that $P \notin R$. Then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Proof. Let S be the surface in Y of degree $(1,0)$ that contains P, let $R_{S}=\left.R\right|_{S}$, and let $\Delta_{S}=c R_{S}$. Take $u \in \mathbb{R}_{\geqslant 0}$. Then $L-u S$ is pseudoeffective $\Longleftrightarrow L-u S$ is nef $\Longleftrightarrow u \in[0,2-2 c]$. This gives

$$
S_{L}(S)=\frac{1}{L^{3}} \int_{0}^{2-2 c}(L-u S)^{3} d u=\frac{1}{L^{3}} \int_{0}^{2-2 c} 3(3-2 c)^{2}(2-2 c-u) d u=1-c<1
$$

Note that $S \cong \mathbb{P}^{2}$. Let ℓ be a general line in S that passes through P, and let v be a non-negative real number. Then $\left.(L-u S)\right|_{S}-v \ell$ is a divisor of degree $3-2 c-v$. Thus, we have

$$
\left.(L-u S)\right|_{S}-v \ell \text { is pseudoeffective }\left.\Longleftrightarrow(L-u S)\right|_{S}-v \ell \text { is nef } \Longleftrightarrow v \in[0,3-2 c] .
$$

Now, following [1, 3, 16], we set

$$
S_{L}\left(W_{\bullet, \bullet}^{S}, \ell\right)=\frac{3}{L^{3}} \int_{0}^{2-2 c 3-2 c} \int_{0}^{3}\left(\left.(L-u S)\right|_{S}-v \ell\right)^{2} d v d u
$$

and

$$
\left.S_{L}\left(W_{\bullet,, \bullet,}^{S, \ell} ; P\right)=\frac{3}{L^{3}} \int_{0}^{2-2 c} \int_{0}^{3-2 c}\left(\left.(L-u S)\right|_{S}-v \ell\right) \cdot \ell\right)^{2} d v d u
$$

Integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{S} ; \ell\right)=S_{L}\left(W_{\bullet, \bullet, \bullet}^{S, \ell} ; P\right)=\frac{3-2 c}{3}$. Thus, it follows from [1, 3, 16] that

$$
\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{1-\operatorname{ord}_{P}\left(\left.\Delta_{S}\right|_{\ell}\right)}{S_{L}\left(W_{\bullet, \bullet, \bullet}^{S} ; P\right)}, \frac{1}{S_{L}\left(W_{\bullet, \bullet}^{S} ; \ell\right)}, \frac{1}{S_{L}(S)}\right\}=\frac{3}{3-2 c}>1
$$

since $\operatorname{ord}_{P}\left(\left.\Delta_{S}\right|_{\ell}\right)=0$, because $P \notin R$ by assumption.
Thus, to prove Theorem [2.1, we may assume that $P \in R$.
Lemma 2.3. Let \mathbf{f} be the fiber of the projection $Y \rightarrow \mathbb{P}^{2}$ such that $P \in \mathbf{f}$. Suppose that $\mathbf{f} \not \subset R$. Then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Proof. Let S be a general surface in Y of degree $(0,1)$ that contains \mathbf{f}, let $R_{S}=\left.R\right|_{S}$, let $\Delta_{S}=c R_{S}$. Then $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and R_{S} is a smooth curve such that $R_{S} \sim 2 \mathbf{s}+2 \mathbf{f}$, where \mathbf{s} is the smooth curve in the surface S such that $\mathbf{s}^{2}=0, \mathbf{s} \cdot \mathbf{f}=1$ and $P \in \mathbf{s}$. Note that $\left.L\right|_{S} \sim_{\mathbb{R}}(2-2 c) \mathbf{s}+(3-2 c) \mathbf{f}$.

Take $u \in \mathbb{R}_{\geqslant 0}$. Then $L-u S$ is pseudoeffective $\Longleftrightarrow L-u S$ is nef $\Longleftrightarrow u \in[0,3-2 c]$, so

$$
S_{L}(S)=\frac{1}{L^{3}} \int_{0}^{3-2 c}(L-u S)^{3} d u=\frac{1}{L^{3}} \int_{0}^{3-2 c} 6(1-c)(3-2 c-u)^{2} d u=\frac{3-2 c}{3}<1 .
$$

Note that $\left.(L-u S)\right|_{S} \sim_{\mathbb{R}}(2-2 c) \mathbf{s}+(3-2 c-u) \mathbf{f}$.
Now, let $\alpha: \widetilde{S} \rightarrow S$ be the blow up of the point P, let e be the exceptional curve of the blow up α, let $\widetilde{\mathbf{s}}, \widetilde{\mathbf{f}}$ and $R_{\widetilde{S}}$ be the proper transforms on \widetilde{S} of the curves \mathbf{s}, \mathbf{f} and R_{S}, respectively. Set $\Delta_{\widetilde{S}}=c R_{\widetilde{S}}$. Then \widetilde{S} is the smooth del Pezzo surface of degree $7, \widetilde{\mathbf{s}} \cap \widetilde{\mathbf{f}}=\varnothing$, and $\widetilde{\mathbf{s}}, \widetilde{\mathbf{f}}$, e are (-1)-curves in \widetilde{S}. Let v be a non-negative real number. Then

$$
\alpha^{*}\left(\left.(L-u S)\right|_{S}\right)-v \mathbf{e} \sim_{\mathbb{R}}(2-2 c) \widetilde{\mathbf{s}}+(3-2 c-u) \widetilde{\mathbf{f}}+(5-4 c-u-v) \mathbf{e},
$$

and it is pseudoeffective $\Longleftrightarrow v \leqslant 5-4 c-u$. For $v \in[0,5-4 c-u]$, we let $\widetilde{P}(u, v)$ be the positive part of the Zariski decomposition of $\alpha^{*}\left(\left.(L-u S)\right|_{S}\right)-v \mathbf{e}$, and we let $\widetilde{N}(u, v)$ be its negative part. As in the proof of Lemma 2.2, we set

$$
S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{e}\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{5-4 c-u}(\widetilde{P}(u, v))^{2} d v d u
$$

Similarly, for every point $O \in \mathbf{e}$, we set

$$
S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}, \mathbf{e}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{5-4 c-u}(\widetilde{P}(u, v) \cdot \mathbf{e})^{2} d v d u+F_{O}\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}, \mathbf{e}},\right.
$$

where

$$
F_{O}\left(W_{\bullet, \bullet, \mathbf{\bullet}}^{\widetilde{S}, \mathbf{e}}\right)=\frac{6}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{5-4 c-u}(\widetilde{P}(u, v) \cdot \mathbf{e}) \cdot \operatorname{ord}_{O}\left(\left.\widetilde{N}(u, v)\right|_{\mathbf{e}}\right) d v d u
$$

Then it follows from [1, 3, 16] that

$$
\begin{equation*}
\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\min _{O \in \mathbf{e}} \frac{1-\operatorname{ord}_{O}\left(\left.\Delta_{\tilde{S}}\right|_{\mathbf{e}}\right)}{S_{L}\left(W_{\bullet,, \bullet \bullet} \tilde{S}, O\right)}, \frac{A_{S, \Delta_{S}}(\mathbf{e})}{S_{L}\left(W_{\bullet, 0} ; \mathbf{e}\right)}, \frac{1}{S_{L}(S)}\right\} \tag{2.1}
\end{equation*}
$$

where $A_{S, \Delta_{S}}(\mathbf{e})=2-c$. On the other hand, if $0 \leqslant u \leqslant 1$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widetilde{\mathbf{s}}+(3-2 c-u) \widetilde{\mathbf{f}}+(5-4 c-u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 2-2 c \\
(2-2 c) \widetilde{\mathbf{s}}+(5-4 c-u-v)(\widetilde{\mathbf{f}}+\mathbf{e}) \text { if } 2-2 c \leqslant v \leqslant 3-2 c-u \\
(5-4 c-u-v)(\widetilde{\mathbf{s}}+\widetilde{\mathbf{f}}+\mathbf{e}) \text { if } 3-2 c-u \leqslant v \leqslant 5-4 c-u
\end{array}\right.
$$

and

$$
\widetilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-2 c, \\
(v+2 c-2) \widetilde{\mathbf{f}} \text { if } 2-2 c \leqslant v \leqslant 3-2 c-u, \\
(v+2 c-2) \widetilde{\mathbf{f}}+(v+u-3+2 c) \widetilde{\mathbf{s}} \text { if } 3-2 c-u \leqslant v \leqslant 5-4 c-u,
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u-v^{2}-20 c-4 u+12 \text { if } 0 \leqslant v \leqslant 2-2 c \\
4(1-c)(4-3 c-u-v) \text { if } 2-2 c \leqslant v \leqslant 3-2 c-u \\
(5-4 c-u-v)^{2} \text { if } 3-2 c-u \leqslant v \leqslant 5-4 c-u \\
4
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant 2-2 c \\
2-2 c \text { if } 2-2 c \leqslant v \leqslant 3-2 c-u \\
5-4 c-u-v \text { if } 3-2 c-u \leqslant v \leqslant 5-4 c-u
\end{array}\right.
$$

Similarly, if $1 \leqslant u \leqslant 3-2 c$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widetilde{\mathbf{s}}+(3-2 c-u) \widetilde{\mathbf{f}}+(5-4 c-u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
(5-4 c-u-v)(\widetilde{\mathbf{s}}+\mathbf{e})+(3-2 c-u) \widetilde{\mathbf{f}} \text { if } 3-2 c-u \leqslant v \leqslant 2-2 c \\
(5-4 c-u-v)(\widetilde{\mathbf{s}}+\widetilde{\mathbf{f}}+\mathbf{e}) \text { if } 2-2 c \leqslant v \leqslant 5-4 c-u
\end{array}\right.
$$

and

$$
\tilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
(v+u-3+2 c) \widetilde{\mathbf{s}} \text { if } 3-2 c-u \leqslant v \leqslant 2-2 c \\
(v+2 c-2) \widetilde{\mathbf{f}}+(v+u-3+2 c) \widetilde{\mathbf{s}} \text { if } 2-2 c \leqslant v \leqslant 5-4 c-u,
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u-v^{2}-20 c-4 u+12 \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
(3-2 c-u)(7-6 c-u-2 v) \text { if } 3-2 c-u \leqslant v \leqslant 2-2 c \\
(5-4 c-u-v)^{2} \text { if } 2-2 c \leqslant v \leqslant 5-4 c-u
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
3-2 c-u \text { if } 3-2 c-u \leqslant v \leqslant 2-2 c \\
5-4 c-u-v \text { if } 2-2 c \leqslant v \leqslant 5-4 c-u
\end{array}\right.
$$

Thus, integrating, we get $S_{L}\left(W_{\bullet,}, ; \mathbf{e}\right)=\frac{6-5 c}{3}$ and

$$
S_{L}\left(W_{\bullet, 0,0}^{\widetilde{\sim}, \mathbf{e}} ; O\right)=\left\{\begin{array}{l}
1-c-\frac{2(5-3 c)(1-c)^{2}}{3(3-2 c)^{2}} \text { if } O \notin \widetilde{\mathbf{f}} \cup \widetilde{\mathbf{s}} \\
1-c \text { if } O \in \widetilde{\mathbf{s}} \\
\frac{3-2 c}{3} \text { if } O \in \widetilde{\mathbf{f}}
\end{array}\right.
$$

Therefore, if $\widetilde{\mathbf{s}} \cap R_{\widetilde{S}} \cap \mathbf{e}=\varnothing$ and $\widetilde{\mathbf{f}} \cap R_{\widetilde{S}} \cap \mathbf{e}=\varnothing$, then (2.1) gives $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Thus, to complete the proof, we may assume that either $\widetilde{\mathbf{s}} \cap R_{\widetilde{S}} \cap \mathbf{e} \neq \varnothing$ or $\widetilde{\mathbf{f}} \cap R_{\widetilde{S}} \cap \mathbf{e} \neq \varnothing$. Then exactly one of the following two (mutually excluding) cases holds:
(Ω) the curve $\widetilde{\mathbf{s}}$ contains the point $R_{\widetilde{S}} \cap \mathbf{e}$, i.e. the curves \mathbf{s} and R_{S} are tangent at P,
(\diamond) the curve $\widetilde{\mathbf{f}}$ contains the point $R_{\widetilde{S}} \cap \mathbf{e}$, i.e. the curves \mathbf{f} and R_{S} are tangent at P.
In both cases, we consider the following commutative diagram:

where β is the blow up of the intersection point $R_{\widetilde{S}} \cap \mathbf{e}$, the map γ is the contraction of the proper transform of the curve \mathbf{e} to an ordinary double point of the surface \widehat{S}, and ρ is the contraction of the proper transform of the β-exceptional curve. Then \widehat{S} is a singular del Pezzo surface of degree 6 , and ρ is a weighted blow up of the point P with weights $(1,2)$.

Let $\widehat{\mathbf{f}}, \widehat{\mathbf{s}}$ and $R_{\widehat{S}}$ be the proper transforms on the surface \widehat{S} of the curves \mathbf{f}, \mathbf{s} and R_{S}, respectively, and let \mathbf{z} be the ρ-exceptional curve. In the case ((Ω), we have

$$
\rho^{*}\left(\left.(L-u S)\right|_{S}\right)-v \mathbf{z} \sim_{\mathbb{R}}(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(7-6 c-u-v) \mathbf{z}
$$

and the intersections of the curves $\mathbf{z}, \widehat{\mathbf{f}}$ and $\widehat{\mathbf{s}}$ are given in the following table:

	\mathbf{z}	$\widehat{\mathbf{f}}$	$\widehat{\mathbf{s}}$
\mathbf{z}	$-\frac{1}{2}$	$\frac{1}{2}$	1
$\widehat{\mathbf{f}}$	$\frac{1}{2}$	$-\frac{1}{2}$	0
$\widehat{\mathbf{s}}$	1	0	-2

Similarly, in the case (\diamond), we have

$$
\rho^{*}\left(\left.(L-u S)\right|_{S}\right)-v \mathbf{z} \sim_{\mathbb{R}}(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(8-6 c-2 u-v) \mathbf{z}
$$

and the intersections of the curves $\mathbf{z}, \widehat{\mathbf{f}}$ and $\widehat{\mathbf{s}}$ are given in the following table:

	\mathbf{z}	$\widehat{\mathbf{f}}$	$\widehat{\mathbf{s}}$
\mathbf{z}	$-\frac{1}{2}$	1	$\frac{1}{2}$
$\widehat{\mathbf{f}}$	1	-2	0
$\widehat{\mathbf{s}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$

In both cases, let $\widehat{t}(u)$ be the largest $v \in \mathbb{R}_{\geqslant 0}$ such that $\rho^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{z}$ is pseudoeffective. Then

$$
\widehat{t}(u)=\left\{\begin{array}{l}
7-6 c-u \text { in the case }(\diamond) \\
8-6 c-2 u \text { in the case }(\diamond) .
\end{array}\right.
$$

For each $v \in[0, \widehat{t}(u)]$, let $\widehat{P}(u, v)$ be the positive part of the Zariski decomposition of this divisor, and let $\widehat{N}(u, v)$ be its negative part. Set

$$
S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{z}\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{\widehat{t}(u)}(\widehat{P}(u, v))^{2} d v d u
$$

Similarly, for every point $O \in \mathbf{z}$, we set

$$
S\left(W_{\bullet, 0, \boldsymbol{\bullet}}^{\widehat{S}, \mathbf{z}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c \widehat{t}(u)} \int_{0}^{\widehat{p}}(\widehat{P}(u, v) \cdot \mathbf{z})^{2} d v d u+F_{O}\left(W_{\bullet, 0, \boldsymbol{\bullet}}^{\widehat{S}}\right),
$$

where

$$
F_{O}\left(W_{\bullet,,, \mathbf{\bullet}}^{\widehat{S}, \mathbf{z}}\right)=\frac{6}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{\widehat{t}(u)}(\widehat{P}(u, v) \cdot \mathbf{z}) \cdot \operatorname{ord}_{O}\left(\left.\widehat{N}(u, v)\right|_{\mathbf{z}}\right) d v d u .
$$

Let Q be the singular point of the surface \widehat{S}. Then $Q \notin R_{\widehat{S}}$, since

$$
Q=\left\{\begin{array}{c}
\widehat{\mathbf{f}} \cap \mathbf{z} \text { in the case }(\diamond) \\
\widehat{\mathbf{s}} \cap \mathbf{z} \text { in the case }(\diamond) \\
6
\end{array}\right.
$$

Let $\Delta_{\widehat{S}}=c R_{\widehat{S}}$ and $\Delta_{\mathbf{z}}=\frac{1}{2} Q+\left.\Delta_{\widehat{S}}\right|_{\mathbf{z}}$. Then it follows from [1, 3, [16] that

$$
\begin{equation*}
\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\min _{O \in \mathbf{z}} \frac{A_{\mathbf{z}, \Delta_{\mathbf{z}}}(O)}{S_{L}\left(W_{\bullet, \bullet \bullet \bullet}, O\right)}, \frac{A_{S, \Delta_{S}}(\mathbf{z})}{S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{z}\right)}, \frac{A_{Y, \Delta_{Y}}(S)}{S_{L}(S)}\right\}, \tag{2.2}
\end{equation*}
$$

where $A_{Y, \Delta_{Y}}(S)=1, A_{S, \Delta_{S}}(\mathbf{z})=3-2 c$ and $A_{\mathbf{z}, \Delta_{\mathbf{z}}}(O)=1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{z}}\right)$ for every point $O \in \mathbf{z}$.
Let us compute $S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{z}\right)$ and $S_{L}\left(W_{\bullet, \bullet, \bullet}^{\widehat{S}, \mathbf{z}} ; O\right)$ for every point $O \in \mathbf{z}$.
First, we deal with the case (Ω). In this case, if $c \leqslant \frac{1}{2}$ or if $c>\frac{1}{2}$ and $2 c-1 \leqslant u \leqslant 3-2 c$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(7-6 c-u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
\frac{7-6 c-u-v}{2}(\widehat{\mathbf{s}}+2 \mathbf{z})+(3-2 c-u) \widehat{\mathbf{f}} \text { if } 3-2 c-u \leqslant v \leqslant 4-4 c \\
\frac{7-6 c-u-v}{2}(\widehat{\mathbf{s}}+2 \mathbf{z}+2 \widehat{\mathbf{f}}) \text { if } 4-4 c \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
\frac{v+u+2 c-3}{2} \widehat{\mathbf{s}} \text { if } 3-2 c-u \leqslant v \leqslant 4-4 c \\
\frac{v+u+2 c-3}{2} \widehat{\mathbf{s}}+(v-4+4 c) \widehat{\mathbf{f}} \text { if } 4-4 c \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u+12-20 c-4 u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
\frac{(3-2 c-u)(11-10 c-u-2 v)}{2} \text { if } 3-2 c-u \leqslant v \leqslant 4-4 c \\
\frac{(7-6 c-u-v)^{2}}{2} \text { if } 4-4 c \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 3-2 c-u \\
\frac{3-u-2 c}{2} \text { if } 3-2 c-u \leqslant v \leqslant 4-4 c, \\
\frac{7-6 c-u-v}{2} \text { if } 4-4 c \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

Similarly, in the case (Ω), if $c>\frac{1}{2}$ and $0 \leqslant u \leqslant 2 c-1$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(7-6 c-u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 4-4 c \\
(2-2 c) \widehat{\mathbf{s}}+(7-6 c-u-v)(\widehat{\mathbf{f}}+\widehat{\mathbf{z}}) \text { if } 4-4 c \leqslant v \leqslant 3-2 c-u \\
\frac{7-6 c-u-v}{2}(\widehat{\mathbf{s}}+2 \mathbf{z}+2 \widehat{\mathbf{f}}) \text { if } 3-2 c-u \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 4-4 c \\
(v-4+4 c) \widehat{\mathbf{f}} \text { if } 4-4 c \leqslant v \leqslant 3-2 c-u \\
\frac{v+u+2 c-3}{2} \widehat{\mathbf{s}}+(v-4+4 c) \widehat{\mathbf{f}} \text { if } 3-2 c-u \leqslant v \leqslant 7-6 c-u \\
7
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u+12-20 c-4 u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 4-4 c \\
4(1-c)(5-4 c-u-v) \text { if } 4-4 c \leqslant v \leqslant 3-2 c-u \\
\frac{(7-6 c-u-v)^{2}}{2} \text { if } 3-2 c-u \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 4-4 c \\
2-2 c \text { if } 4-4 c \leqslant v \leqslant 3-2 c-u \\
\frac{7-6 c-u-v}{2} \text { if } 3-2 c-u \leqslant v \leqslant 7-6 c-u
\end{array}\right.
$$

Now, integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{z}\right)=3-\frac{8}{3} c<3-2 c=A_{S, \Delta_{S}}(\mathbf{z})$ and

$$
S_{L}\left(W_{\bullet, \bullet, \bullet}^{\widehat{S}, \mathbf{z}} ; O\right)=\left\{\begin{array}{l}
1-c-\frac{68 c^{2}-124 c+57}{96(1-c)} \text { if } O \notin \widehat{\mathbf{f}} \cup \widehat{\mathbf{s}} \text { and } c \leqslant \frac{1}{2} \\
1-c-\frac{8(2-c)(1-c)^{2}}{3(3-2 c)^{2}} \\
1-c \text { if } O \in \widehat{\mathbf{s}}, \\
\frac{1}{2}-\frac{c}{3} \text { if } O \in \widehat{\mathbf{f}} \cup \widehat{\mathbf{f}} \text { and } c>\frac{1}{2}
\end{array}\right.
$$

Hence, using (2.2), we obtain $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Now, we deal with the case (\diamond). If $0 \leqslant u \leqslant 2-c$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(8-6 c-2 u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 2-2 c \\
(2-2 c) \widehat{\mathbf{s}}+\frac{8-6 c-2 u-v}{2}(\widehat{\mathbf{f}}+2 \mathbf{z}) \text { if } 2-2 c \leqslant v \leqslant 6-4 c-2 u \\
\frac{8-6 c-2 u-v}{2}(2 \widehat{\mathbf{s}}+\widehat{\mathbf{f}}+2 \mathbf{z}) \text { if } 6-4 c-2 u \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-2 c \\
\frac{v-2+2 c}{2} \widehat{\mathbf{f}} \text { if } 2-2 c \leqslant v \leqslant 6-4 c-2 u, \\
\frac{v-2+2 c}{2} \widehat{\mathbf{f}}+(v+2 u-6+4 c) \widehat{\mathbf{s}} \text { if } 6-4 c-2 u \leqslant v \leqslant 8-6 c-2 u,
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u+12-20 c-4 u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 2-2 c \\
2(1-c)(7-5 c-2 u-v) \text { if } 2-2 c \leqslant v \leqslant 6-4 c-2 u \\
\frac{(8-6 c-2 u-v)^{2}}{2} \text { if } 6-4 c-2 u \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 2-2 c \\
1-c \text { if } 2-2 c \leqslant v \leqslant 6-4 c-2 u \\
\frac{8-6 c-2 u-v}{2} \\
8
\end{array}\right.
$$

Similarly, if $2-c \leqslant u \leqslant 3-2 c$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{s}}+(3-2 c-u) \widehat{\mathbf{f}}+(8-6 c-2 u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 6-4 c-2 u \\
(8-6 c-2 u-v)(\widehat{\mathbf{s}}+\mathbf{z})+(3-2 c-u) \widehat{\mathbf{f}} \text { if } 6-4 c-2 u \leqslant v \leqslant 2-2 c \\
\frac{8-6 c-2 u-v}{2}(2 \widehat{\mathbf{s}}+\widehat{\mathbf{f}}+2 \mathbf{z}) \text { if } 2-2 c \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 6-4 c-2 u \\
(v+2 u-6+4 c) \widehat{\mathbf{s}} \text { if } 6-4 c-2 u \leqslant v \leqslant 2-2 c \\
\frac{v-2+2 c}{2} \widehat{\mathbf{f}}+(v+2 u-6+4 c) \widehat{\mathbf{s}} \text { if } 2-2 c \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
8 c^{2}+4 c u+12-20 c-4 u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 6-4 c-2 u \\
2(3-2 c-u)(5-4 c-u-v) \text { if } 6-4 c-2 u \leqslant v \leqslant 2-2 c \\
\frac{(8-6 c-2 u-v)^{2}}{2} \text { if } 2-2 c \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 6-4 c-2 u \\
3-2 c-u \text { if } 6-4 c-2 u \leqslant v \leqslant 2-2 c \\
\frac{8-6 c-2 u-v}{2} \text { if } 2-2 c \leqslant v \leqslant 8-6 c-2 u
\end{array}\right.
$$

Now, integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{z}\right)=3-\frac{7}{3} c<3-2 c=A_{S, \Delta_{S}}(\mathbf{z})$ and

$$
S_{L}\left(W_{\bullet, 0,0}^{\widehat{S}, \mathbf{z}} ; O\right)=\left\{\begin{array}{l}
1-c-\frac{(1-c)\left(31 c^{2}-90 c+65\right)}{12(3-2 c)^{2}} \text { if } O \notin \widehat{\mathbf{f}} \cup \widehat{\mathbf{s}} \\
\frac{1}{2}-\frac{c}{2} \text { if } O \in \widehat{\mathbf{s}} \\
1-\frac{2 c}{3} \text { if } O \in \widehat{\mathbf{f}}
\end{array}\right.
$$

Hence, using (2.2), we get $\delta_{P}\left(Y, \Delta_{Y}\right)>1$. This completes the proof of the lemma.
Finally, we prove
Lemma 2.4. Let \mathbf{f} be the fiber of the projection $Y \rightarrow \mathbb{P}^{2}$ such that $P \in \mathbf{f}$. Suppose that $\mathbf{f} \subset R$. Then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.

Proof. Let $\nu: \mathscr{Y} \rightarrow Y$ be the blow up of the smooth curve \mathbf{f}, let E be the ν-exceptional surface. Take $u \in \mathbb{R}_{\geqslant 0}$. Then $\nu^{*}(L)-u E$ is pseudoeffective $\Longleftrightarrow \nu^{*}(L)-u E$ is nef $\Longleftrightarrow u \leqslant 3-2 c$, so $S_{L}(E)=\frac{1}{L^{3}} \int_{0}^{3-2 c}\left(\nu^{*}(L)-u E\right)^{3} d u=\frac{1}{6(1-c)(3-2 c)^{2}} \int_{0}^{3-2 c} 6(1-c)(3-2 c-u)(3-2 c+u) d u=2-\frac{4}{3} c$,
which gives

$$
\delta_{P}\left(Y, \Delta_{Y}\right) \leqslant \frac{A_{Y, \Delta_{Y}}(E)}{S_{L}(E)}=1+\frac{c}{2(3-2 c)}
$$

Now, let $R_{\mathscr{Y}}$ be the proper transform on \mathscr{Y} of the surface R, let $R_{E}=\left.R_{\mathscr{Y}}\right|_{E}$, let $\Delta_{E}=c R_{E}$, and let \mathbf{l} be the fiber of the projection $E \rightarrow \mathbf{f}$ such that $\nu(\mathbf{l})=P$. Then R_{E} is a smooth curve, which implies that $\left(E, \Delta_{E}\right)$ has Kawamata \log terminal singularities. For every point $\mathscr{P} \in \mathbf{l}$, set

$$
\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right)=\inf _{\substack{F / E, \mathscr{P} \in C_{E}(F)}} \frac{A_{E, \Delta_{E}}(F)}{S\left(W_{\bullet, \bullet}^{E} ; F\right)}
$$

where the infimum is taken over all prime divisors F over E whose centers on E contain \mathscr{P}, and

$$
S\left(W_{\bullet, \bullet}^{E} ; F\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{\infty} \operatorname{vol}\left(\left.\left(\nu^{*}(L)-u E\right)\right|_{E}-v F\right) d v d u
$$

Then it follows from [1, 3, 16] that
$\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\inf _{\mathscr{P} \in \mathbf{1}} \delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right), \frac{A_{Y, \Delta_{Y}}(E)}{S_{L}(E)}\right\}=\min \left\{\inf _{\mathscr{P} \in \mathbf{1}} \delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right), 1+\frac{c}{2(3-2 c)}\right\}$.
Thus, to complete the proof, it is enough to show that $\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, 0}^{E}\right)>1$ for every point $\mathscr{P} \in \mathbf{l}$.
Fix a point $\mathscr{P} \in \mathbf{l}$. Let \mathbf{s} be the smooth curve in $E \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $\mathbf{s}^{2}=0, \mathbf{s} \cdot \mathbf{l}=1, \mathscr{P} \in \mathbf{s}$. Then $\left.E\right|_{E} \sim-\mathbf{s}, R_{E} \sim 2 \mathbf{l}+\mathbf{s}$, and $\left.\left(\nu^{*}(L)-u E\right)\right|_{E} \sim_{\mathbb{R}}(2-2 c) \mathbf{l}+u \mathbf{s}$.

Let $\alpha: \widetilde{E} \rightarrow E$ be the blow up of the point \mathscr{P}, let e be the exceptional curve of the blow up α, and let $\widetilde{\mathbf{s}}, \widetilde{\mathbf{l}}, R_{\widetilde{E}}$ be the proper transforms on \widetilde{E} of the curves s, l, R_{E}, respectively. Set $\Delta_{\widetilde{E}}=c R_{\widetilde{E}}$. Then \widetilde{E} is a smooth del Pezzo surface of degree $7, \widetilde{\mathbf{s}} \cap \widetilde{\mathbf{l}}=\varnothing$, and $\widetilde{\mathbf{s}}, \widetilde{\mathbf{l}}$, e are all (-1)-curves in \widetilde{E}. Let v be a non-negative real number. Then

$$
\alpha^{*}\left(\left.\left(\nu^{*}(L)-u E\right)\right|_{E}\right)-v \mathbf{e} \sim_{\mathbb{R}}(2-2 c) \widetilde{\mathbf{l}}+u \widetilde{\mathbf{s}}+(2-2 c+u-v) \mathbf{e}
$$

and it is pseudoeffective $\Longleftrightarrow v \leqslant 2-2 c+u$. For $v \in[0,2-2 c+u]$, let $\widetilde{P}(u, v)$ be the positive part of the Zariski decomposition of this divisor, and let $\widetilde{N}(u, v)$ be its negative part. Set

$$
S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{e}\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+u}(\widetilde{P}(u, v))^{2} d v d u
$$

Likewise, for every point $O \in \mathbf{e}$, we set

$$
S\left(W_{\bullet, 0, \bullet}^{\widetilde{E}, \mathbf{e}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+u}(\widetilde{P}(u, v) \cdot \mathbf{e})^{2} d v d u+F_{O}\left(W_{\bullet,,, \mathbf{\bullet}}^{\widetilde{E}, \mathbf{e}}\right),
$$

where

$$
F_{O}\left(W_{\bullet, \bullet, \mathbf{\bullet}}^{\widetilde{E}, \mathbf{e}}\right)=\frac{6}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+u}(\widetilde{P}(u, v) \cdot \mathbf{e}) \cdot \operatorname{ord}_{O}\left(\left.\widetilde{N}(u, v)\right|_{\mathbf{e}}\right) d v d u
$$

Then it follows from [1, 3, 16] that

$$
\begin{equation*}
\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right) \geqslant \min \left\{\min _{O \in \mathbf{e}} \frac{1-\operatorname{ord}_{O}\left(\left.\Delta_{\tilde{E}}\right|_{\mathbf{e}}\right)}{S_{L}\left(W_{\bullet, 0, \bullet}^{\widetilde{E}} ; \mathbf{e} ; O\right)}, \frac{A_{E, \Delta_{E}}(\mathbf{e})}{S_{L}\left(W_{\bullet}^{E} ; \mathbf{e}\right)}\right\}, \tag{2.3}
\end{equation*}
$$

where

$$
A_{E, \Delta_{E}}(\mathbf{e})=\left\{\begin{array}{l}
2-c \text { if } \mathscr{P} \in R_{E} \\
2 \text { if } \mathscr{P} \notin R_{E} \\
10
\end{array}\right.
$$

On the other hand, if $0 \leqslant u \leqslant 2-2 c$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widetilde{\mathbf{l}}+u \widetilde{\mathbf{s}}+(2-2 c+u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant u \\
(2-2 c+u-v)(\mathbf{e}+\widetilde{\mathbf{l}})+u \widetilde{\mathbf{s}} \text { if } u \leqslant v \leqslant 2-2 c \\
(2-2 c+u-v)(\mathbf{e}+\widetilde{\mathbf{l}}+\widetilde{\mathbf{s}}) \text { if } 2-2 c \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

and

$$
\widetilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant u \\
(v-u) \widetilde{\mathbf{l}} \text { if } u \leqslant v \leqslant 2-2 c \\
(v-u) \widetilde{\mathbf{l}}+(v-2+2 c) \widetilde{\mathbf{s}} \text { if } 2-2 c \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
(4-4 c) u-v^{2} \quad \text { if } 0 \leqslant v \leqslant u \\
u(4-4 c+u-2 v) \text { if } u \leqslant v \leqslant 2-2 c \\
(2-2 c+u-v)^{2} \text { if } 2-2 c \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant u \\
u \text { if } u \leqslant v \leqslant 2-2 c \\
2-2 c+u-v \text { if } 2-2 c \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

Similarly, if $2-2 c \leqslant u \leqslant 3-2 c$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widetilde{\mathbf{l}}+u \widetilde{\mathbf{s}}+(2-2 c+u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 2-2 c \\
(2-2 c) \widetilde{\mathbf{l}}+(2-2 c+u-v)(\mathbf{e}+\widetilde{\mathbf{s}}) \text { if } 2-2 c \leqslant v \leqslant u \\
(2-2 c+u-v)(\mathbf{e}+\widetilde{\mathbf{l}}+\widetilde{\mathbf{s}}) \text { if } u \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

and

$$
\widetilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-2 c \\
(v-2+2 c) \widetilde{\mathbf{s}} \text { if } 2-2 c \leqslant v \leqslant u, \\
(v-u) \widetilde{\mathbf{l}}+(v-2+2 c) \widetilde{\mathbf{s}} \text { if } u \leqslant v \leqslant 2-2 c+u,
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
(4-4 c) u-v^{2} \text { if } 0 \leqslant v \leqslant 2-2 c \\
4(1-c)(1-c+u-v) \text { if } 2-2 c \leqslant v \leqslant u \\
(2-2 c+u-v)^{2} \text { if } u \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant 2-2 c \\
2-2 c \text { if } 2-2 c \leqslant v \leqslant u \\
2-2 c+u-v \text { if } u \leqslant v \leqslant 2-2 c+u
\end{array}\right.
$$

Thus, integrating, we get $S_{L}\left(W_{\bullet, 0}^{E} ; \mathbf{e}\right)=2-\frac{5}{3} c<2-c$ and

$$
S_{L}\left(W_{\bullet,,, \bullet}^{\widetilde{E}, \mathbf{e}} ; O\right)=\left\{\begin{array}{l}
1-c-\frac{2(5-3 c)(1-c)^{2}}{3(3-2 c)^{2}} \text { if } O \notin \widetilde{\mathbf{l}} \cup \widetilde{\mathbf{s}} \\
1-\frac{2}{3} c \text { if } O \in \widetilde{\mathbf{s}} \\
1-c \text { if } O \in \widetilde{\mathbf{l}} \\
11
\end{array}\right.
$$

Therefore, if $\mathscr{P} \notin R_{E}$, then (2.3) gives $\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right)>1$. Similarly, if $\mathscr{P} \in R_{E}$, then $\widetilde{\mathbf{l}} \cap R_{\widetilde{E}}=\varnothing$, the set $\widetilde{\mathbf{s}} \cap R_{\widetilde{E}} \cap \mathbf{e}$ consists of at most 1 point, and (2.3) gives $\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right)>1$ if $\widetilde{\mathbf{s}} \cap R_{\widetilde{E}} \cap \mathbf{e}=\varnothing$.

To complete the proof, we may assume that the intersection $\widetilde{\mathbf{s}} \cap R_{\widetilde{E}} \cap \mathbf{e}$ consists of one point, which means that the curves \mathbf{s} and R_{E} are tangent at the point P. As in the proof of Lemma 2.3, let us consider the following commutative diagram:

where β is the blow up of the point $\widetilde{\mathbf{s}} \cap R_{\widetilde{E}} \cap \mathbf{e}$, the morphism γ is the contraction of the proper transform of the curve \mathbf{e} to an ordinary double point of the surface \widehat{E}, and ρ is the contraction of the proper transform of the β-exceptional curve.

Let $\widehat{\mathbf{s}}, \widehat{\mathbf{l}}, R_{\widehat{E}}$ be the proper transforms on \widehat{E} of the curves $\mathbf{s}, \mathbf{l}, R_{E}$, respectively. Then $R_{\widehat{E}} \cap \widehat{\mathbf{s}}=\varnothing$, and the curves $\widehat{\mathbf{s}}, \widehat{\mathbf{l}}, R_{\widehat{E}}$ are smooth. Let \mathbf{z} be the ρ-exceptional curve. Then $R_{\widehat{E}} \cap \widehat{\mathbf{l}} \cap \mathbf{z}=\varnothing, \mathbf{z} \cong \mathbb{P}^{1}$, and the intersections of the curves $\mathbf{z}, \widehat{\mathbf{s}}$ and $\widehat{\mathbf{l}}$ are given in the following table:

	\mathbf{z}	$\widehat{\mathbf{s}}$	$\widehat{\mathbf{l}}$
\mathbf{z}	$-\frac{1}{2}$	1	$\frac{1}{2}$
$\widehat{\mathbf{s}}$	1	-2	0
$\widehat{\mathbf{l}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$

Furthermore, we have

$$
\rho^{*}\left(\left.\left(\nu^{*}(L)-u E\right)\right|_{E}\right)-v \mathbf{z} \sim_{\mathbb{R}}(2-2 c) \widehat{\mathbf{l}}+u \widehat{\mathbf{s}}+(2-2 c+2 u-v) \mathbf{z}
$$

and it is pseudoeffective $\Longleftrightarrow v \leqslant 2-2 c+2 u$. For $v \in[0,2-2 c+2 u]$, let $\widehat{P}(u, v)$ be the positive part of the Zariski decomposition of this divisor, and let $\widehat{N}(u, v)$ be its negative part. Set

$$
S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{z}\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+2 u}(\widehat{P}(u, v))^{2} d v d u
$$

Similarly, for every point $O \in \mathbf{z}$, we set

$$
S\left(W_{\bullet, \bullet, \bullet}^{\widehat{E}, \mathbf{Z}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+2 u}(\widehat{P}(u, v) \cdot \mathbf{z})^{2} d v d u+F_{O}\left(W_{\bullet, \bullet, \bullet}^{\widehat{E}, \mathbf{Z}}\right),
$$

where

$$
F_{O}\left(W_{\bullet, 0, \bullet}^{\widehat{E}, \mathbf{\mathbf { O }}}\right)=\frac{6}{L^{3}} \int_{0}^{3-2 c} \int_{0}^{2-2 c+2 u}(\widehat{P}(u, v) \cdot \mathbf{z}) \cdot \operatorname{ord}_{O}\left(\left.\widehat{N}(u, v)\right|_{\mathbf{z}}\right) d v d u .
$$

Let Q be the singular point of the surface \widehat{E}. Then $Q=\widehat{\mathbf{l}} \cap \mathbf{z}$. Let $\Delta_{\widehat{E}}=c R_{\widehat{E}}$ and $\Delta_{\mathbf{z}}=\frac{1}{2} Q+\left.\Delta_{\widehat{E}}\right|_{\mathbf{z}}$. Then it follows from [1, 3, 16] that

$$
\begin{equation*}
\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right) \geqslant \min \left\{\min _{O \in \mathbf{z}} \frac{A_{\mathbf{z}, \Delta_{\mathbf{z}}}(O)}{S_{L}\left(W_{\bullet, \bullet, \bullet}^{E} ; O\right)}, \frac{A_{E, \Delta_{E}}(\mathbf{z})}{S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{z}\right)}\right\} \tag{2.4}
\end{equation*}
$$

where $A_{E, \Delta_{E}}(\mathbf{z})=3-2 c$ and $A_{\mathbf{z}, \Delta_{\mathbf{z}}}(O)=1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{z}}\right)$. On the other hand, if $0 \leqslant u \leqslant 1-c$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{l}}+u \widehat{\mathbf{s}}+(2-2 c+2 u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 2 u \\
(2-2 c+2 u-v)(\mathbf{z}+\widehat{\mathbf{l}})+u \widehat{\mathbf{s}} \text { if } 2 u \leqslant v \leqslant 2-2 c \\
(2-2 c+2 u-v)(\mathbf{z}+\widehat{\mathbf{l}}+\widehat{\mathbf{s}}) \text { if } 2-2 c \leqslant v \leqslant 2-2 c+2 u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2 u \\
(v-2 u) \widehat{\mathbf{l}} \text { if } 2 u \leqslant v \leqslant 2-2 c, \\
(v-2 u) \widehat{\mathbf{l}}+\frac{v-2+2 c^{\widehat{\mathbf{s}}}}{2} \text { if } 2-2 c \leqslant v \leqslant 2-2 c+2 u,
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}= \begin{cases}(4-4 c) u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 2 u \\ 2 u(2-2 c+u-v) & \text { if } 2 u \leqslant v \leqslant 2-2 c \\ \frac{(2-2 c+2 u-v)^{2}}{2} & \text { if } 2-2 c \leqslant v \leqslant 2-2 c+2 u\end{cases}
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 2 u \\
u \text { if } 2 u \leqslant v \leqslant 2-2 c \\
\frac{2-2 c+2 u-v}{2} \text { if } 2-2 c \leqslant v \leqslant 1+u
\end{array}\right.
$$

Similarly, if $1-c \leqslant u \leqslant 3-2 c$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-2 c) \widehat{\mathbf{l}}+u \widehat{\mathbf{s}}+(2-2 c+2 u-v) \mathbf{z} \text { if } 0 \leqslant v \leqslant 2-2 c \\
\frac{2-2 c+2 u-v}{2}(2 \mathbf{z}+\widehat{\mathbf{s}})+(2-2 c) \widehat{\mathbf{l}} \text { if } 2-2 c \leqslant v \leqslant 2 u \\
\frac{2-2 c+2 u-v}{2}(2 \mathbf{z}+2 \widehat{\mathbf{l}}+\widehat{\mathbf{s}}) \text { if } 2 u \leqslant v \leqslant 2-2 c+2 u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-2 c \\
\frac{v-2+2 c}{2} \widehat{\mathbf{s}} \text { if } 2-2 c \leqslant v \leqslant 2 u \\
(v-2 u) \widehat{\mathbf{l}}+\frac{v-2+2 c}{2} \widehat{\mathbf{s}} \text { if } 2 u \leqslant v \leqslant 2-2 c+2 u
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
(4-4 c) u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 2-2 c \\
2(1-c)(1-c+2 u-v) \text { if } 2-2 c \leqslant v \leqslant 2 u \\
\frac{(2-2 c+2 u-v)^{2}}{2} \text { if } 2 u \leqslant v \leqslant 1+2 u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{z}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 2-2 c \\
1-c \text { if } 2-2 c \leqslant v \leqslant 2 u \\
\frac{2-2 c+2 u-v}{2} \text { if } 2 u \leqslant v \leqslant 1+u
\end{array}\right.
$$

Now, integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{z}\right)=3-\frac{7}{3} c<3-2 c=A_{E, \Delta_{E}}(\mathbf{z})$ and

$$
S_{L}\left(W_{\bullet,, 0,0}^{\widehat{E}, \mathbf{Z}} ; O\right)=\left\{\begin{array}{l}
1-c-\frac{(1-c)\left(31 c^{2}-90 c+65\right)}{12(3-2 c)^{2}} \text { if } O \notin \widehat{\mathbf{l}} \cup \widehat{\mathbf{s}} \\
\frac{1}{2}-\frac{c}{2} \text { if } O \in \widehat{\mathbf{l}}, \\
1-\frac{2 c}{3} \text { if } O \in \widehat{\mathbf{s}}
\end{array}\right.
$$

Hence, using (2.4), we get $\delta_{\mathscr{P}}\left(E, \Delta_{E} ; W_{\bullet, \bullet}^{E}\right)>1$, which gives $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.
Now, combining Lemmas 2.2, 2.3 and 2.4, we obtain Theorem 2.1.

3. Smooth Fano 3-folds in the family №3.4

Let $Y=\mathbb{P}^{1} \times \mathbb{F}_{1}$. Identify $Y=\left(\mathbb{A}^{2} \backslash 0\right)^{3} / \mathbb{G}_{m}^{3}$ for the \mathbb{G}_{m}^{3}-action

$$
\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right),\left(z_{0}, z_{1}\right)\right) \mapsto\left(\left(\lambda x_{0}, \lambda x_{1}\right),\left(\left(\mu y_{0}, \mu y_{1}\right), \frac{\nu z_{0}}{\mu}, \nu z_{1}\right),\right)
$$

where $(\lambda, \mu, \nu) \in \mathbb{G}_{m}^{3}$, and $\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right),\left(z_{0}, z_{1}\right)\right)$ are coordinates on $\left(\mathbb{A}^{2}\right)^{3}$. We will use

- $\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]\right)$ as coordinates on $\mathbb{P}^{1} \times \mathbb{F}_{1}$,
- $\left[x_{0}: x_{1}\right]$ as coordinates on the first factor of $Y=\mathbb{P}^{1} \times \mathbb{F}_{1}$,
- $\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]$ as coordinates on the second factor of $Y=\mathbb{P}^{1} \times \mathbb{F}_{1}$,
- $\left[y_{0}: y_{1}\right]$ as coordinates on the base of the natural projection $\mathbb{F}_{1} \rightarrow \mathbb{P}^{1}$.

To distinguish the first factor of $Y=\mathbb{P}^{1} \times \mathbb{F}_{1}$ and the base of the natural projection $\mathbb{F}_{1} \rightarrow \mathbb{P}^{1}$, we will use notations $\mathbb{P}_{x_{0}, x_{1}}^{1}$ and $\mathbb{P}_{y_{0}, y_{1}}^{1}$ for them, respectively. Then $Y=\mathbb{P}_{x_{0}, x_{1}}^{1} \times \mathbb{F}_{1}$, and we have the following commutative diagram:

where π_{1} and π_{2} are projections to the first and the second factors, respectively, ϕ is the \mathbb{P}^{1}-bundle

$$
\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]\right) \mapsto\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right),
$$

the morphism ψ is the $\mathbb{P}^{1} \times \mathbb{P}^{1}$-bundle $\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]\right) \mapsto\left[y_{0}: y_{1}\right]$, and all other morphisms are natural projections. Let F be a fiber of the morphism π_{1}, let S be a fiber of the morphism ψ, let E be the exceptional surface of the birational contraction $Y \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1} \times \mathbb{P}^{2}$ given by

$$
\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]\right) \mapsto\left(\left[x_{0}: x_{1}\right] ;\left[y_{0} z_{0}: y_{1} z_{0}: z_{1}\right]\right)
$$

let R be a smooth surface in $|2 F+2 E+2 S|$, and let $\eta: X \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1} \times \mathbb{F}_{1}$ be a double cover ramified in the surface R. Then X is a smooth Fano threefold in the family №3.4.

Recall that X is K-stable $\Longleftrightarrow X$ is K-polystable, because $\operatorname{Aut}(X)$ is finite [9]. Let $\Delta_{Y}=\frac{1}{2} R$. Then it follows from [12, 15, 21, 25] that
X is K-polystable $\Longleftrightarrow\left(Y, \Delta_{Y}\right)$ is K-polystable.
The goal of this section is to prove the following result.
Theorem 3.1. The log Fano pair $\left(Y, \Delta_{Y}\right)$ is K-stable.

Before proving Theorem 3.1, observe that $E=\left\{z_{0}=0\right\} \subset Y$, and R is given in Y by

$$
\begin{align*}
& x_{0}^{2}\left(\left(a_{0} y_{0}^{2}+b_{0} y_{0} y_{1}+c_{0} y_{1}^{2}\right) z_{0}^{2}+\left(d_{0} y_{0}+e_{0} y_{1}\right) z_{0} z_{1}+f_{0} z_{1}^{2}\right)+ \tag{3.1}\\
& \quad+x_{0} x_{1}\left(\left(a_{1} y_{0}^{2}+b_{1} y_{0} y_{1}+c_{1} y_{1}^{2}\right) z_{0}^{2}+\left(d_{1} y_{0}+e_{1} y_{1}\right) z_{0} z_{1}+f_{1} z_{1}^{2}\right)+ \\
& \\
& +x_{1}^{2}\left(\left(a_{2} y_{0}^{2}+b_{2} y_{0} y_{1}+c_{2} y_{1}^{2}\right) z_{0}^{2}+\left(d_{2} y_{0}+e_{2} y_{1}\right) z_{0} z_{1}+f_{2} z_{1}^{2}\right)=0
\end{align*}
$$

where $a_{0}, b_{0}, c_{0}, d_{0}, e_{0}, f_{0}, a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}, a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}$ are some numbers.
Lemma 3.2. Set $R_{E}=\left.R\right|_{E}, R_{S}=\left.R\right|_{S}, R_{F}=\left.R\right|_{F}$. Then
(i) R_{E} is a disjoint union of two fibers of the projection $\left.\pi_{1}\right|_{E}: E \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1}$,
(ii) the curve R_{S} is reduced,
(iii) if R_{F} is reduced, then it has one or two ordinary double points,
(iv) if R_{F} is not reduced, then $\operatorname{Sing}\left(R_{F}\right)=F \cap E$.

Let P be a point in $F \cap S$ such that $P \notin E$ and $P \in R$, let Z be the fiber of ϕ that contains P, and let C be the fiber of π_{2} that contains P. Then
(v) if $Z \subset R$, then R_{F} and R_{S} are singular at some points in Z,
(vi) if $C \subset R$, then R_{S} is singular at some point in C.
(vii) at least one of the surfaces R_{F} and R_{S} is smooth at P,
(viii) if R_{S} is singular at P, and $Z \not \subset R$, then R_{F} is smooth.

Proof. First, let us choose appropriate coordinates on Y such that $F=\left\{x_{1}=0\right\}$ and $S=\left\{y_{1}=0\right\}$. To prove (i), observe that

$$
R_{E}=\left\{z_{0}=0, f_{0} x_{0}^{2}+f_{1} x_{0} x_{1}+f_{2} x_{1}^{2}=0\right\} \subset Y
$$

Moreover, if $f_{0} x_{0}^{2}+f_{1} x_{0} x_{1}+f_{2} x_{1}^{2}$ is a square, then R is singular. This proves (i).
Let us prove (ii). Using (3.1), we see that $R_{S}=\{f=0\} \subset S$ for

$$
f=x_{0}^{2}\left(a_{0} z_{0}^{2}+d_{0} z_{0} z_{1}+f_{0} z_{1}^{2}\right)+x_{0} x_{1}\left(a_{1} z_{0}^{2}+d_{1} z_{0} z_{1}+f_{1} z_{1}^{2}\right)+x_{1}^{2}\left(a_{2} z_{0}^{2}+d_{2} z_{0} z_{1}+f_{2} z_{1}^{2}\right)
$$

where we consider $\left(\left[x_{0}: x_{1}\right],\left[z_{0}: z_{1}\right]\right)$ as coordinates on $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Hence, if R_{S} is not reduced, then $f=g h^{2}$ for a non-constant polynomial h and a polynomial g. Then we can rewrite (3.1) as
$y_{1}\left(x_{0}^{2}\left(\left(b_{0} y_{0}+c_{0} y_{1}\right) z_{0}^{2}+e_{0} z_{0} z_{1}\right)+x_{0} x_{1}\left(\left(b_{1} y_{0}+c_{1} y_{1}\right) z_{0}^{2}+e_{1} z_{0} z_{1}\right)+x_{1}^{2}\left(\left(b_{2} y_{0}+c_{2} y_{1}\right) z_{0}^{2}+e_{2} z_{0} z_{1}\right)\right)+g h^{2}=0$, which implies that the surface R is singular at every point of the non-empty subset

$$
\left\{y_{1}=0, x_{0}^{2}\left(b_{0} y_{0} z_{0}^{2}+e_{0} z_{0} z_{1}\right)+x_{0} x_{1}\left(b_{1} y_{0} z_{0}^{2}+e_{1} z_{0} z_{1}\right)+x_{1}^{2}\left(b_{2} y_{0} z_{0}^{2}+e_{2} z_{0} z_{1}\right), h=0\right\} \subset Y
$$

which is impossible by assumption. Hence, we see that R_{S} is reduced. This proves (ii).
Let us prove (iii) and (iv). Identify $F=\mathbb{F}_{1}$ with coordinates $\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]$. Then

$$
R_{F}=\left\{\left(a_{0} y_{0}^{2}+b_{0} y_{0} y_{1}+c_{0} y_{1}^{2}\right) z_{0}^{2}+\left(d_{0} y_{0}+e_{0} y_{1}\right) z_{0} z_{1}+f_{0} z_{1}^{2}=0\right\} \subset F .
$$

Let $v: \mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$ be the blow up $\left[y_{0}: y_{1} ; z_{0}: z_{1}\right] \mapsto\left[y_{0} z_{0}: y_{1} z_{0}: z_{1}\right]$, and let e be its exceptional curve. Then $v\left(R_{F}\right)$ is a reduced conic. Furthermore, if $f_{0} \neq 0$, then $R_{F} \cap \mathbf{e}=\varnothing$, and either R_{F} is smooth, or the curve R_{F} is a union of two smooth irreducible curves intersecting transversally at one point. Thus, we may assume that $f_{0}=0$. Then $v\left(R_{F}\right)$ contains $v(\mathbf{e})$, and $R_{F}=\mathbf{e}+R_{F}^{\prime}$, where

$$
R_{F}^{\prime}=\left\{\left(a_{0} y_{0}^{2}+b_{0} y_{0} y_{1}+c_{0} y_{1}^{2}\right) z_{0}+\left(d_{0} y_{0}+e_{0} y_{1}\right) z_{1}=0\right\} \subset F
$$

If $d_{0} \neq 0$ or $e_{0} \neq 0$, then R_{F}^{\prime} is the proper transform of the conic $v\left(R_{F}\right)$, which is smooth at $v(\mathbf{e})$. In this case, if $v\left(R_{F}\right)$ is irreducible, then the curve R_{F}^{\prime} is smooth, and R_{F} has one ordinary double point - the intersection point $\mathbf{e} \cap R_{F}^{\prime}$. Similarly, if $v\left(R_{F}\right)$ is reducible, then R_{F} has two ordinary double points - the intersection point $\mathbf{e} \cap R_{F}^{\prime}$, and the unique singular point of the curve R_{F}^{\prime}.

Finally, if $d_{0}=0$ and $e_{0}=0$, then $R_{F}=2 \mathbf{e}+\mathbf{l}+\mathbf{l}^{\prime}$, where $\mathbf{l}+\mathbf{l}^{\prime}=\left\{a_{0} y_{0}^{2}+b_{0} y_{0} y_{1}+c_{0} y_{1}^{2}=0\right\} \subset F$, so that \mathbf{l} and \mathbf{l}^{\prime} are distinct fibers of the projection $\mathbb{F}_{1} \rightarrow \mathbb{P}_{y_{0}, y_{1}}^{1}$. This proves (iii) and (iv).

Now, choosing appropriate coordinates on Y, we may assume that $P=([1: 0],[1: 0 ; 1: 0])$. Then $a_{0}=0$, since $P \in R$. Note also that $Z=\left\{x_{1}=0, y_{1}=0\right\}$ and $C=\left\{y_{1}=0, z_{1}=0\right\}$.

Both assertions (v) and (vi) are obvious. Now, let us prove (vii). In the affine chart $x_{0} y_{0} z_{0} \neq 0$, the surface R is given by

$$
a_{1} x+b_{0} y+d_{0} z+\text { higher order terms }=0,
$$

where $x=\frac{x_{1}}{x_{0}}, y=\frac{y_{1}}{y_{0}}, z=\frac{z_{1}}{z_{0}}$. which implies that $\left(a_{1}, b_{0}, d_{0}\right) \neq(0,0,0)$, because R is smooth at P. If R_{F} is singular at P, then $b_{0}=0$ and $d_{0}=0$. If R_{S} is singular at P, then $a_{1}=0$ and $d_{0}=0$. Hence, if both R_{F} and R_{S} are singular at P, then $\left(a_{1}, b_{0}, d_{0}\right)=(0,0,0)$. This proves (vii).

Let's prove (viii). Suppose that R_{S} is singular at P, and $Z \not \subset R$. Then $a_{1}=d_{0}=0$ and $b_{0} f_{0} \neq 0$. Observe that $R_{F} \cap \mathbf{e}=\varnothing$, since $f_{0} \neq 0$. Now, computing the defining equation of the conic $v\left(R_{F}\right)$, we see that this conic is smooth, because $b_{0} f_{0} \neq 0$. Then R_{F} is also smooth. This proves (viii).
3.1. The proof. Set $L=-\left(K_{Y}+\Delta_{Y}\right)$. Then $L \sim_{\mathbb{Q}} F+E+2 S$ and $L^{3}=9$. To prove Theorem 3.1, we must show that $\beta_{Y, \Delta_{Y}}(\mathbf{E})=A_{Y, \Delta_{Y}}(\mathbf{E})-S_{L}(\mathbf{E})>0$ for every prime divisor \mathbf{E} over Y, where

$$
S_{L}(\mathbf{E})=\frac{1}{L^{3}} \int_{0}^{\infty} \operatorname{vol}(L-u \mathbf{E}) d u
$$

Fix a prime divisor \mathbf{F} over Y. Let us show that $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$. Set $\mathfrak{C}=C_{Y}(\mathbf{F})$. Then
(1) either \mathfrak{C} is a point,
(2) or \mathfrak{C} is an irreducible curve,
(3) or \mathfrak{C} is an irreducible surface.

In each case, let P be some point in \mathfrak{C}. If $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$, then $\delta_{P}\left(Y, \Delta_{Y}\right) \leqslant 1$, where

$$
\delta_{P}\left(Y, \Delta_{Y}\right)=\inf _{\substack{\mathbf{E} / Y \\ P \in C_{Y}(\mathbf{E})}} \frac{A_{Y, \Delta_{Y}}(\mathbf{E})}{S_{L}(\mathbf{E})}
$$

where the infimum is taken over all prime divisors \mathbf{E} over Y whose centers on Y contain P.
Changing coordinates on Y, we may assume that $P=([1: 0],[1: 0 ; a: b])$ for some $[a: b] \in \mathbb{P}^{1}$ such that $a b=0$. Thus, we have the following two possibilities:
(\&) $P=([1: 0],[1: 0 ; 0: 1]) \in E$,
($\boldsymbol{(}) P=([1: 0],[1: 0 ; 1: 0]) \notin E$.
Moreover, we can choose S to be the fiber of the morphism $\psi: Y \rightarrow \mathbb{P}_{y_{0}, y_{1}}^{1}$ that contains the point P, and we can choose F to be the fiber of the morphism $\pi_{1}: Y \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1}$ that contains P. Then

$$
\begin{aligned}
E & =\left\{z_{0}=0\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}, \\
S & =\left\{y_{1}=0\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}, \\
F & =\left\{x_{1}=0\right\} \cong \mathbb{F}_{1}
\end{aligned}
$$

Lemma 3.3. Suppose that \mathfrak{C} is a surface. Then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$.
Proof. Since $\mathfrak{C} \sim n_{F} F+n_{E} E+n_{S} S$ for some non-negative integers n_{F}, n_{E}, n_{S} that are not all zero, we have

$$
\beta_{Y, \Delta_{Y}}(\mathbf{F})=\beta_{Y, \Delta_{Y}}(\mathfrak{C}) \geqslant \min \underset{16}{\left\{\beta_{Y, \Delta_{Y}}(F), \beta_{Y, \Delta_{Y}}(E), \beta_{Y, \Delta_{Y}}(S)\right\}, ., ~}
$$

but $\beta_{Y, \Delta_{Y}}(F)=\frac{1}{2}, \beta_{Y, \Delta_{Y}}(E)=\frac{4}{9}, \beta_{Y, \Delta_{Y}}(S)=\frac{2}{9}$. Indeed, let us compute $\beta_{Y, \Delta_{Y}}(E)$. Take $u \in \mathbb{R}_{\geqslant 0}$. Then $L-u E$ is pseudoeffective $\Longleftrightarrow L-u E$ is nef $\Longleftrightarrow u \in[0,1]$. Using this, we compute

$$
\beta_{Y, \Delta_{Y}}(E)=1-S_{L}(E)=1-\frac{1}{L^{3}} \int_{0}^{1}(L-u E)^{3} d u=1-\frac{1}{9} \int_{0}^{1} 6 u(1+u) d u=\frac{4}{9} .
$$

Similarly, we compute $\beta_{Y, \Delta_{Y}}(F)=\frac{1}{2}$ and $\beta_{Y, \Delta_{Y}}(S)=\frac{2}{9}$.
Let $R_{E}=\left.R\right|_{E}$ and $\Delta_{E}=\frac{1}{2} R_{E}$. Then, by Lemma 3.2, the curve R_{E} is a union of two distinct fibers of the morphisms $\left.\pi_{1}\right|_{E}: E \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1}$.

Lemma 3.4. Suppose that $P \in E$. Then $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant 1$. Moreover, if $\mathfrak{C} \subset E$, then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$. Proof. Take $u \in \mathbb{R}_{\geqslant 0}$. From the proof of Lemma 3.3, we know that

$$
L-u E \text { is pseudoeffective } \Longleftrightarrow L-u E \text { is nef } \Longleftrightarrow u \in[0,1] .
$$

Let \mathbf{l} and \mathbf{s} be some fibers of the morphisms $\left.\pi_{1}\right|_{E}: E \rightarrow \mathbb{P}_{x_{0}, x_{1}}^{1}$ and $\left.\psi\right|_{E}: E \rightarrow \mathbb{P}_{y_{0}, y_{1}}^{1}$, respectively. Choose \mathbf{l} and \mathbf{s} such that $P \in \mathbf{l} \cap \mathbf{s}$. Take $v \in \mathbb{R}_{\geqslant 0}$. Then $\left.(L-u E)\right|_{E}-v \mathbf{l} \sim_{\mathbb{R}}(1-v) \mathbf{l}+(1+u) \mathbf{s}$, and this divisor is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow v \in[0,1]$. Now, following [1, 3, 16], we set

$$
S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{l}\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{1}\left(\left.(L-u E)\right|_{E}-v \mathbf{l}\right)^{2} d v d u
$$

and

$$
\left.S_{L}\left(W_{\bullet, 0, \bullet}^{E, \mathbf{l}} ; P\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{1}\left(\left.(L-u E)\right|_{E}-v \mathbf{l}\right) \cdot \mathbf{l}\right)^{2} d v d u .
$$

Integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{l}\right)=\frac{1}{2}$ and $S_{L}\left(W_{\bullet, \mathbf{,}, \boldsymbol{\bullet}}^{E, \mathbf{l}} ; P\right)=\frac{7}{9}$.
If 1 is not an irreducible component of the curve R_{E}, then it follows from [1, 3, 16] that

$$
\left.\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{1}{S_{L}\left(W_{\bullet, 0,0}^{E, 1} ; P\right)}, \frac{1}{S_{L}\left(W_{\bullet}^{E} ; \boldsymbol{\bullet}\right.} \mathbf{l}\right), \frac{1}{S_{L}(E)}\right\}=\frac{9}{7}
$$

because we computed $S_{L}(E)=\frac{5}{9}$ in the proof of Lemma 3.3. Similarly, if $\mathbf{l} \subset \operatorname{Supp}\left(R_{E}\right)$, then

$$
\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{1}{S_{L}\left(W_{\bullet, 0, \bullet}^{E,} ; P\right)}, \frac{1-\operatorname{ord}_{\mathbf{l}}\left(\Delta_{E}\right)}{S_{L}\left(W_{\bullet}^{E} ; \mathbf{\bullet}\right)}, \frac{1}{S_{L}(E)}\right\}=1
$$

Moreover, if $\mathfrak{C}=P$, then it follows from [1, 3, 16] that $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$.
Thus, we see that $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant 1$. In particular, we have $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \geqslant 0$.
To complete the proof, we may assume that \mathfrak{C} is a curve in E. Let us show that $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$. Suppose that $\beta_{Y, \Delta_{Y}}(\mathbf{F})=0$. Let us seek for a contradiction. As above, we let

$$
S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathfrak{C}\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.L\right|_{E}-v \mathfrak{C}\right) d v d u
$$

Then it follows from [1, 3, 16] that

$$
1=\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})}>\frac{1-\operatorname{ord}_{\mathfrak{C}}\left(\Delta_{E}\right)}{S_{L}\left(W_{\bullet, 0}^{E} ; \mathfrak{C}\right)}
$$

If \mathfrak{C} is an irreducible component of the curve R_{E}, then $\mathfrak{C}=\mathbf{l}$, so $S_{L}\left(W_{\bullet, 0}^{E} ; \mathbf{l}\right)=\frac{1}{2}$ and $\operatorname{ord}_{\mathbf{l}}\left(\Delta_{E}\right)=\frac{1}{2}$, which gives us a contradiction. Thus, we have $\operatorname{ord}_{\mathfrak{C}}\left(\Delta_{E}\right)=0$, which gives $S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathfrak{C}\right)>1$. But

$$
S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathfrak{C}\right) \leqslant \min \left\{S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{l}\right), S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{s}\right)\right\}
$$

because $|\mathfrak{C}-\mathbf{l}| \neq \varnothing$ or $|\mathfrak{C}-\mathbf{s}| \neq \varnothing$. Hence, we conclude that $S_{L}\left(W_{\bullet, \mathbf{0}}^{E} ; \mathbf{s}\right)>1$.
Let us compute $S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{s}\right)$. For $v \in \mathbb{R}_{\geqslant 0}$, we have $\left.(L-u E)\right|_{E}-v \mathbf{s} \sim_{\mathbb{R}} \mathbf{l}+(1+u-v) \mathbf{s}$, and this divisor is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow v \in[0,1+u]$. Hence, we have

$$
1<S_{L}\left(W_{\bullet, \bullet}^{E} ; \mathbf{s}\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{1-u}(\mathbf{l}+(1+u-v) \mathbf{s})^{2} d v d u=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{1+u} 2(1+u-v) d v d u=\frac{7}{9}
$$

which is a contradiction.
Let $R_{F}=\left.R\right|_{F}$ and $\Delta_{F}=\frac{1}{2} R_{F}$. Set $Z=S \cdot F$. Then $Z=\left\{x_{1}=0, y_{1}=0\right\} \subset Y$.
Lemma 3.5. Suppose that R_{F} is smooth. Then $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant 1$. If $\mathfrak{C}=P$, then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$.
Proof. We recall that $F=\left\{x_{1}=0\right\} \subset Y$. Let us identify $F=\mathbb{F}_{1}$ with coordinates $\left[y_{0}: y_{1} ; z_{0}: z_{1}\right]$. Let $v: F \rightarrow \mathbb{P}^{2}$ be the blow up $\left[y_{0}: y_{1} ; z_{0}: z_{1}\right] \mapsto\left[y_{0} z_{0}: y_{1} z_{0}: z_{1}\right]$, and let e be its exceptional curve. Then $R_{F} \cap \mathbf{e}=\varnothing$, and $v\left(R_{F}\right)$ is a smooth conic in \mathbb{P}^{2}. Moreover, we have

$$
R_{F} \sim 2(Z+\mathbf{e})
$$

and Z is the fiber of the natural projection $F \rightarrow \mathbb{P}_{y_{0}, y_{1}}^{1}$ over the point $[0: 1]$.
Take $u \in \mathbb{R}_{\geqslant 0}$. Then $L-u F$ is pseudoeffective $\Longleftrightarrow L-u F$ is nef $\Longleftrightarrow u \leqslant 1$. Set

$$
\delta_{P}\left(F, \Delta_{F} ; W_{\bullet, \bullet}^{F}\right)=\inf _{\substack{\mathbf{f} / F, P \in C_{F}(\mathbf{f})}} \frac{A_{F, \Delta_{F}}(\mathbf{f})}{S_{L}\left(W_{\bullet, \bullet}^{F} ; \mathbf{f}\right)},
$$

where

$$
S_{L}\left(W_{\bullet, \bullet}^{F} ; \mathbf{f}\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.(L-u F)\right|_{F}-v \mathbf{f}\right) d v d u
$$

and the infimum is taken over all prime divisors \mathbf{f} over the surface F whose centers on F contain P. Then it follows from [1, 3, 16] that

$$
\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\delta_{P}\left(F, \Delta_{F} ; W_{\bullet, \bullet}^{F}\right), \frac{1}{S_{L}(F)}\right\} .
$$

Further, if both these inequalities are equalities and $\mathfrak{C}=P$, then [1, 3, 16] gives $\delta_{P}\left(Y, \Delta_{Y}\right)=\frac{1}{S_{L}(F)}$. Moreover, we know from the proof of Lemma 3.3 that $S_{L}(F)=\frac{1}{2}$. Hence, to complete the proof, it is enough to show that $\delta_{P}\left(F, \Delta_{F} ; W_{\bullet, \bullet}^{F}\right) \geqslant 1$. Let us do this.

Note that $\left(F, \Delta_{F}\right)$ is a \log Fano pair. Recall from [3] that its δ-invariant is the number

$$
\delta\left(F, \Delta_{F}\right)=\inf _{\mathbf{f} / F} \frac{A_{F, \Delta_{F}}(\mathbf{f})}{S_{F, \Delta_{F}}(\mathbf{f})},
$$

where

$$
S_{F, \Delta_{F}}(\mathbf{f})=\frac{1}{\left(K_{F}+\Delta_{F}\right)^{2}} \int_{0}^{\infty} \operatorname{vol}\left(-\left(K_{F}+\Delta_{F}\right)-v \mathbf{f}\right) d v
$$

and the infimum is taken over all prime divisors \mathbf{f} over the surface F. We claim that $\delta\left(F, \Delta_{F}\right) \geqslant 1$. Indeed, either one can check this explicitly similar to what is done in [3, § 2], or one can use the fact that the double cover of the surface F branched over the curve R_{F} is a smooth del Pezzo of degree 6,
which is known to be K-polystable, so $\left(F, \Delta_{F}\right)$ is also K-polystable [15], which gives $\delta\left(F, \Delta_{F}\right) \geqslant 1$. Then, using the idea of the proof of [7, Nemuro Lemma], we get

$$
\begin{aligned}
& S_{L}\left(W_{\bullet, \bullet}^{F}, \mathbf{f}\right)=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.(L-u F)\right|_{F}-v \mathbf{f}\right) d v d u=\frac{3}{L^{3}} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.L\right|_{F}-v \mathbf{f}\right) d v d u= \\
& = \\
& =\frac{3}{L^{3}} \int_{0}^{\infty} \operatorname{vol}\left(\left.L\right|_{F}-v \mathbf{f}\right) d v=\frac{1}{\left(K_{F}+\Delta_{F}\right)^{2}} \int_{0}^{\infty} \operatorname{vol}\left(-\left(K_{F}+\Delta_{F}\right)-v \mathbf{f}\right) d v d u \leqslant A_{F, \Delta_{F}}(\mathbf{f})
\end{aligned}
$$

for every divisor \mathbf{f} over the surface F. This exactly means that $\delta_{P}\left(F, \Delta_{F} ; W_{\bullet, \bullet}^{F}\right) \geqslant 1$.
Let $R_{S}=\left.R\right|_{S}$ and $\Delta_{S}=\frac{1}{2} R_{S}$. Recall that $S=\left\{y_{1}=0\right\}$ and $Z=\left\{x_{1}=0, y_{1}=0\right\} \subset S$. Set

$$
C=\left\{y_{1}=0, a z_{1}=b z_{0}\right\} \subset Y .
$$

Then Z and C are rulings of the surface $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $P=Z \cap C$.
Lemma 3.6. Suppose that $P \notin E$. Then
(1) if $\mathfrak{C} \subset S$ and \mathfrak{C} is a curve, then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$,
(2) if $P \notin R$, then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$,
(3) if $P \in R$ and R_{S} is smooth at P, then $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant 1$,
(4) if $P \in R, R_{S}$ is smooth at P, and $\mathfrak{C}=P$, then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$,
(5) if $P \in R, R_{S}$ is smooth at P, and $Z \not \subset \operatorname{Supp}\left(R_{S}\right)$, then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$.

Proof. Let u be a non-negative real number. Then $L-u S$ is pseudoeffective if and only if $u \leqslant 2$. For $u \in[0,2]$, let $P(u)$ be the positive part of the Zariski decomposition of the divisor $L-u S$, and let $N(u)$ be the negative part of the Zariski decomposition of the divisor $L-u S$. Then

$$
P(u) \sim_{\mathbb{R}}\left\{\begin{array}{l}
F+E+(2-u) S \text { for } 0 \leqslant u \leqslant 1 \\
F+(2-u)(E+S) \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { for } 0 \leqslant u \leqslant 1, \\
(u-1) E \text { for } 1 \leqslant u \leqslant 2 .
\end{array}\right.
$$

Observe that $R_{S} \sim 2(Z+C)$ and

$$
\left.P(u)\right|_{S} \sim_{\mathbb{R}}\left\{\begin{array}{l}
Z+C \text { for } 0 \leqslant u \leqslant 1 \\
Z+(2-u) C \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

Let G be an irreducible curve in S that passes though P. Take $v \in \mathbb{R}_{\geqslant 0}$. Set

$$
t(u)=\inf \left\{v \in \mathbb{R}_{\geqslant 0} \mid \text { the divisor }\left.P(u)\right|_{S}-v G \text { is pseudoeffective }\right\} .
$$

Since $S \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, the divisor $\left.P(u)\right|_{S}-v G$ is nef $\Longleftrightarrow v \leqslant t(u)$. Set

$$
S_{L}\left(W_{\bullet, 0}^{S} ; G\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{t(u)}\left(\left.P(u)\right|_{S}-v G\right)^{2} d v d u
$$

and

$$
S_{L}\left(W_{\bullet, 0,0}^{S, G} ; P\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{t(u)}\left(\left(\left.P(u)\right|_{S}-v G\right) \cdot G\right)^{2} d v d u .
$$

If $G=\mathfrak{C}$ is a curve in S, it follows from [1, 3, 16] that

$$
\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \min \left\{\frac{1-\operatorname{ord}_{\mathfrak{C}}\left(\Delta_{S}\right)}{S_{L}\left(W_{\bullet, \bullet}^{S} ; G\right)}, \frac{1}{S_{L}(S)}\right\}
$$

Moreover, if this inequality is an equality, it further follows from [1, 3, 16] that

$$
\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})}=\frac{1}{S_{L}(S)}
$$

On the other hand, we know from the proof of Lemma 3.3 that $S_{L}(S)=\frac{7}{9}$. Moreover, we have

$$
S_{L}\left(W_{\bullet \bullet \bullet}^{S} ; G\right) \leqslant \min \left\{S_{L}\left(W_{\bullet, \bullet}^{S} ; Z\right), S_{L}\left(W_{\bullet, \bullet}^{S} ; C\right)\right\} .
$$

Therefore, to prove assertion (1), it is enough to check that $S_{L}\left(W_{\bullet, \bullet}^{S} ; Z\right) \leqslant \frac{1}{2}$ and $S_{L}\left(W_{\bullet, \bullet} ; C\right) \leqslant \frac{1}{2}$. This is not difficult. Indeed, if $G=Z$, then $t(u)=1$ for every $u \in[0,2]$, and

$$
S_{L}\left(W_{\bullet, \bullet}^{S} ; Z\right)=\frac{1}{3} \int_{0}^{1} \int_{0}^{1} 2(1-v) d u d u+\frac{1}{3} \int_{1}^{2} \int_{0}^{1} 2(1-v)(2-u) d u d u=\frac{1}{2}
$$

Similarly, if $G=C$, then

$$
t(u)=\left\{\begin{array}{l}
1 \text { for } 0 \leqslant u \leqslant 1 \\
2-u \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

and

$$
S_{L}\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{1}{3} \int_{0}^{1} \int_{0}^{1} 2(1-v) d u d u+\frac{1}{3} \int_{1}^{2} \int_{0}^{2-u} 2(2-u-v) d u d u=\frac{4}{9}
$$

This proves (1).
Let G be one of the curves Z or C. If $G \not \subset \operatorname{Supp}\left(R_{S}\right)$, then it follows from [1, 3, 16] that

$$
\begin{equation*}
\frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{1-\operatorname{ord}_{P}\left(\left.\Delta_{S}\right|_{G}\right)}{S_{L}\left(W_{\bullet,, 0 ;}^{S, G} ; P\right)}, \frac{1}{S_{L}\left(W_{\bullet, 0}^{S} ; G\right)}, \frac{1}{S_{L}(S)}\right\} . \tag{3.2}
\end{equation*}
$$

On the other hand, we compute

$$
S_{L}\left(W_{\bullet, \bullet, 0}^{S, G} ; P\right)=\left\{\begin{array}{l}
\frac{4}{9} \text { if } G=Z, \\
\frac{1}{2} \text { if } G=C
\end{array}\right.
$$

If $P \notin R$, then $Z \not \subset \operatorname{Supp}\left(R_{S}\right)$ and $C \not \subset \operatorname{Supp}\left(R_{S}\right)$, so (3.2) gives $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \frac{9}{7}$. This proves (2).
Now, we suppose that $P \in R$ and R_{S} is smooth at P. Then $Z \not \subset \operatorname{Supp}\left(R_{S}\right)$ or $C \not \subset \operatorname{Supp}\left(R_{S}\right)$.
Moreover, if $Z \not \subset \operatorname{Supp}\left(R_{S}\right)$ and R_{S} intersects Z transversally at P, then (3.2) gives $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \frac{9}{8}$.
Therefore, to prove (3), (4) and (5) we may assume that

- either Z is an irreducible component of the curve R_{S},
- or the curve R_{S} is tangent to Z at the point P.

Then C is not an irreducible component of the curve R_{S}, and R_{S} intersects C transversally at P. Hence, using (3.2), we obtain $\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant 1$. This proves (3).

We have $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \geqslant 0$. If $\mathfrak{C}=P$ and $\beta_{Y, \Delta_{Y}}(\mathbf{F})=0$, then both inequalities in (3.2) are equalities. In this case, it follows from [1, 3, 16] that $\delta_{P}\left(Y, \Delta_{Y}\right)=\frac{1}{S_{L}(S)}=\frac{9}{7}$, which contradicts $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$. Therefore, if $\mathfrak{C}=P$, then $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$. This proves (4).

Finally, let us prove (5). We suppose that Z is not an irreducible component of the curve R_{S}. Then R_{S} is tangent to the curve Z at the point P. Let $\alpha: \widetilde{S} \rightarrow S$ be the blow up of the point P,
and let $\beta: \bar{S} \rightarrow \widetilde{S}$ be the blow up of the intersection point of the α-exceptional curve and the proper transform of the curve Z. Then there exists the following commutative diagram:

where γ is the contraction of the proper transform of the α-exceptional curve to an ordinary double point of the surface \widehat{S}, and ρ is the contraction of the proper transform of the β-exceptional curve. Then \widehat{S} is a singular del Pezzo surface of degree 6 , and ρ is a weighted blow up with weights $(1,2)$.

Denote by $\widehat{Z}, \widehat{C}, R_{\widehat{S}}$ the proper transforms on \widehat{S} via ρ of the curves Z, C, R_{S}, respectively. Let \mathbf{e} be the ρ-exceptional curve, and let

$$
\widehat{t}(u)=\inf \left\{v \in \mathbb{R}_{\geqslant 0} \mid \text { the divisor } \rho^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e} \text { is pseudoeffective }\right\} .
$$

Observe that

$$
\rho^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e} \sim_{\mathbb{R}}\left\{\begin{array}{l}
\widehat{Z}+\widehat{C}+(3-v) \mathbf{e} \text { for } u \in[0,1] \\
\widehat{Z}+(2-u) \widehat{C}+(4-u-v) \mathbf{e} \text { for } u \in[1,2]
\end{array}\right.
$$

Thus, we conclude that

$$
\widehat{t}(u)=\left\{\begin{array}{l}
3 \text { for } u \in[0,1], \\
4-u \text { for } u \in[1,2] .
\end{array}\right.
$$

Now, for every $u \in[0,2]$ and every $v \in[0, \widehat{t}(u)]$, we let $\widehat{P}(u, v)$ be the positive part of the Zariski decomposition of the divisor $\rho^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e}$, and let $\widehat{N}(u, v)$ be its negative part. Let

$$
S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{e}\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{\widehat{t}(u)}(\widehat{P}(u, v))^{2} d v d u
$$

For every point $O \in \mathbf{e}$, let

$$
S\left(W_{\bullet, 0, \bullet}^{\widehat{S}, \mathbf{e}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{\widehat{t}(u)}(\widehat{P}(u, v) \cdot \mathbf{e})^{2} d v d u+F_{O}\left(W_{\bullet, 0, \mathbf{\bullet}}^{\widehat{S}, \mathbf{e}}\right)
$$

where

$$
F_{O}\left(W_{\bullet, 0, \mathbf{\bullet}}^{\widehat{\widehat{S}} \mathbf{e}}\right)=\frac{6}{L^{3}} \int_{0}^{2} \int_{0}^{\widehat{t}(u)}(\widehat{P}(u, v) \cdot \mathbf{e}) \cdot \operatorname{ord}_{O}\left(\left.\widehat{N}(u, v)\right|_{\mathbf{e}}\right) d v d u .
$$

Let Q be the singular point of the surface \widehat{S}. Then $Q=\widehat{C} \cap \mathbf{e}$. Let $\Delta_{\widehat{S}}=\frac{1}{2} R_{\widehat{S}}$ and $\Delta_{\mathbf{e}}=\frac{1}{2} Q+\left.\Delta_{\widehat{S}}\right|_{\mathbf{e}}$. Then it follows from [1, 3, 16] that

$$
\begin{equation*}
\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\min _{O \in \mathbf{e}} \frac{A_{\mathbf{e}, \Delta_{\mathbf{e}}}(O)}{S_{L}\left(W_{\substack{\mathbf{S}, \mathbf{e}, \mathbf{0}}} ; O\right)}, \frac{A_{S, \Delta_{S}}(\mathbf{e})}{S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{e}\right)}, \frac{A_{Y, \Delta_{Y}}(S)}{S_{L}(S)}\right\}, \tag{3.3}
\end{equation*}
$$

where $A_{Y, \Delta_{Y}}(S)=1, A_{S, \Delta_{S}}(\mathbf{e})=2 A_{\mathbf{e}, \Delta_{\mathbf{e}}}(O)=1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{e}}\right)$. Moreover, if $0 \leqslant u \leqslant 1$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
\widehat{Z}+\widehat{C}+(3-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 1 \\
\widehat{C}+\frac{3-v}{2}(\widehat{Z}+2 \mathbf{e}) \text { if } 1 \leqslant v \leqslant 2 \\
\frac{3-v}{2}(2 \widehat{C}+\widehat{Z}+2 \mathbf{e}) \text { if } 2 \leqslant v \leqslant 3
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1 \\
\frac{v-1}{2} \widehat{Z} \text { if } 1 \leqslant v \leqslant 2 \\
\frac{v-1}{2} \widehat{Z}+(v-2) \widehat{C} \text { if } 2 \leqslant v \leqslant 3
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
2-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 1 \\
\frac{5}{2}-v \text { if } 1 \leqslant v \leqslant 2 \\
\frac{(3-v)^{2}}{2} \text { if } 2 \leqslant v \leqslant 3
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 1 \\
\frac{1}{2} \text { if } 1 \leqslant v \leqslant 2 \\
\frac{3-v}{2} \text { if } 2 \leqslant v \leqslant 3
\end{array}\right.
$$

Similarly, if $1 \leqslant u \leqslant 2$, then

$$
\widehat{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
\widehat{Z}+(2-u) \widehat{C}+(4-u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 2-u \\
\frac{4-u-v}{2}(\widehat{Z}+2 \mathbf{e})+(2-u) \widehat{C} \text { if } 2-u \leqslant v \leqslant 2 \\
\frac{4-u-v}{2}(2 \widehat{C}+\widehat{Z}+2 \mathbf{e}) \text { if } 2 \leqslant v \leqslant 4-u
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-u \\
\frac{v+u-2}{2} \widehat{Z} \text { if } 2-u \leqslant v \leqslant 2 \\
\frac{v+u-2}{2} \widehat{Z}+(v-2) \widehat{C} \text { if } 2 \leqslant v \leqslant 4-u
\end{array}\right.
$$

which gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
4-2 u-\frac{v^{2}}{2} \text { if } 0 \leqslant v \leqslant 2-u \\
\frac{(u-2)(u+2 v-6)}{2} \text { if } 2-u \leqslant v \leqslant 2 \\
\frac{(4-u-v)^{2}}{2} \text { if } 2 \leqslant v \leqslant 4-u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
\frac{v}{2} \text { if } 0 \leqslant v \leqslant 2-u \\
1-\frac{u}{2} \text { if } 2-u \leqslant v \leqslant 2 \\
\frac{4-u-v}{2} \text { if } 2 \leqslant v \leqslant 4-u
\end{array}\right.
$$

Now, integrating, we get $S_{L}\left(W_{\bullet, \bullet}^{S} ; \mathbf{e}\right)=\frac{13}{9}<2=A_{S, \Delta_{S}}(\mathbf{e})$ and

$$
S_{L}\left(W_{\bullet,, \bullet \bullet}^{\widehat{S}, \mathbf{e}} ; O\right)=\left\{\begin{array}{l}
\frac{3}{16} \text { if } O \notin \widehat{Z} \cup \widehat{C} \\
\frac{2}{9} \text { if } O \in \widehat{C} \\
\frac{1}{2} \text { if } O \in \widehat{Z}
\end{array}\right.
$$

Hence, using (3.3), we obtain $\delta_{P}\left(Y, \Delta_{Y}\right)>1$ as required.
Now, we are ready to prove
Lemma 3.7. Suppose that $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$. Then \mathfrak{C} is a point.
Proof. Suppose \mathfrak{C} is not a point. By Lemma 3.3, the center \mathfrak{C} is not a surface. Then \mathfrak{C} is a curve. We may assume that P is a general point in \mathfrak{C}. By Lemma 3.4, we have $\mathfrak{C} \not \subset E$, so $P \notin E$ either.

If $\psi(\mathfrak{C})=\mathbb{P}_{y_{0}, y_{1}}^{1}$, then S is a general fiber of the morphism ψ, which implies that R_{S} is smooth, so that $Z \not \subset R$ by Lemma 3.2. Then $\delta_{P}\left(Y, \Delta_{Y}\right)>1$ by Lemma 3.6, which contradicts $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$. Thus, we see that $\psi(\mathfrak{C})$ is point in $\mathbb{P}_{y_{0}, y_{1}}^{1}$. This means that $\mathfrak{C} \subset S$.

Now, applying Lemma 3.6, we get $\beta_{Y, \Delta_{Y}}(\mathbf{F})>0$, which is a contradiction.
Now, we suppose that $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$. Let us seek for a contradiction. First, applying Lemma 3.7, we see that the center $\mathfrak{C}=C_{Y}(\mathbf{F})$ is a point. Using notations we introduced earlier, we have $P=\mathfrak{C}$. Moreover, applying Lemmas 3.2, 3.4, 3.5, 3.6, we obtain the following assertions:

- $P \notin E$ by Lemma 3.4,
- R_{F} is singular by Lemma 3.5.
- $P \in R$ by Lemma 3.6.
- R_{S} is singular at P by Lemma 3.6,
- R_{F} is smooth at P by Lemma 3.2,
- $Z \subset R$ by Lemma 3.6.

In particular, the curve R_{S} is reducible. Namely, we have $R_{S}=Z+T$, where T is a possibly reducible reduced curve in $|Z+2 C|$ such that $P \in T$.

Lemma 3.8. The curve R_{S} does not have an ordinary double singularity at P.
Proof. Suppose that R_{S} has an ordinary double singularity at P. Let us seek for a contradiction. Let us use notations introduced in the proof of Lemma 3.6. Then we have

$$
\left.P(u)\right|_{S} \sim_{\mathbb{R}}\left\{\begin{array}{l}
C+Z \text { for } 0 \leqslant u \leqslant 1 \\
(2-u) C+Z \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

Let $\alpha: \widetilde{S} \rightarrow S$ be the blow up of the point P, let e be the α-exceptional curve. For $u \in[0,2]$, let

$$
\widetilde{t}(u)=\max \left\{v \in \mathbb{R}_{\geqslant 0} \mid \alpha^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e} \text { is pseudoeffective }\right\} .
$$

For $v \in[0, \widetilde{t}(u)]$, let $\widetilde{P}(u, v)$ be the positive part of the Zariski decomposition of $\alpha^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e}$, and let $\widetilde{N}(u, v)$ be the negative part of the Zariski decomposition of this divisor. Set

$$
S\left(W_{\bullet, \bullet}^{S} ; \mathbf{e}\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{\tilde{t}(u)} \widetilde{P}(u, v)^{2} d v d u
$$

Then, for every point $O \in \mathbf{e}$, we set

$$
S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}, \mathbf{e}} ; O\right)=\frac{3}{L^{3}} \int_{0}^{2} \int_{0}^{\tilde{t}(u)}(\widetilde{P}(u, v) \cdot \mathbf{e})^{2} d v d u+F_{O}\left(W_{\bullet, 0, \bullet}^{\widetilde{S}, \mathbf{e}}\right),
$$

where

$$
F_{O}\left(W_{\bullet,, \bullet, \mathbf{\bullet}}^{\widetilde{S}, \mathbf{e}}\right)=\frac{6}{L^{3}} \int_{0}^{2} \int_{0}^{\tilde{t}(u)}(\widetilde{P}(u, v) \cdot \mathbf{e}) \cdot \operatorname{ord}_{O}\left(\left.\widetilde{N}(u, v)\right|_{\mathbf{e}}\right) d v d u .
$$

Let $\widetilde{C}, \widetilde{Z}, \widetilde{T}$ be the proper transforms on \widetilde{S} of the curves C, Z, T, respectively. Set $\Delta_{\widetilde{S}}=\frac{1}{2} \widetilde{Z}+\frac{1}{2} \widetilde{T}$. Then \widetilde{Z} and \widetilde{T} intersect e transversally at two distinct points, since T and Z do not tangent at P. Set $\Delta_{\mathbf{e}}=\left.\Delta_{\tilde{S}}\right|_{\mathbf{e}}$. Then it follows from [1, 3, 16] that

$$
\left.1 \geqslant \frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\min _{O \in \mathbf{e}} \frac{A_{\mathbf{e}, \Delta_{\mathbf{e}}}(O)}{S\left(W_{\bullet}^{\tilde{S}, \mathbf{e}, \bullet} ; O\right)}, \frac{A_{S, \Delta_{S}}(\mathbf{e})}{S\left(W_{\bullet}, \mathbf{\bullet}\right.} ; \mathbf{e}\right), \frac{A_{Y, \Delta_{Y}}(S)}{S_{L}(S)}\right\},
$$

and not all inequalities here are equalities. Note that $A_{Y, \Delta_{Y}}(S)=1, A_{S, \Delta_{S}}(\mathbf{e})=1$, and

$$
A_{\mathbf{e}, \Delta_{\mathbf{e}}}(O)=1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{e}}\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } O=\widetilde{Z} \cap \mathbf{e} \\
\frac{1}{2} \text { if } O=\widetilde{T} \cap \mathbf{e} \\
1 \text { if } O \notin \widetilde{Z} \cup \widetilde{T}
\end{array}\right.
$$

Since $S_{L}(S)=\frac{7}{9}$, we conclude that $S\left(W_{\bullet}{ }_{\bullet} ; \mathbf{e}\right)>1$ or there exists a point $O \in \mathbf{e}$ such that

$$
S\left(W_{\bullet, \mathbf{\bullet}, \mathbf{\bullet}}^{\tilde{S}, \mathbf{e}} ; O\right)>1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{e}}\right)
$$

Let us compute $S\left(W_{\mathbf{\bullet}, \mathbf{\bullet}}^{S} ; \mathbf{e}\right)$, and let us compute $S\left(W_{\mathbf{\bullet}, \mathbf{,}, \mathbf{\bullet}}^{\widetilde{S}, \mathbf{e}} ; O\right)$ for every point $O \in \mathbf{e}$.
Let v be a non-negative real number. Then

$$
\alpha^{*}\left(\left.P(u)\right|_{S}\right)-v \mathbf{e} \sim_{\mathbb{R}}\left\{\begin{array}{l}
\widetilde{C}+\widetilde{Z}+(2-v) \mathbf{e} \text { for } 0 \leqslant u \leqslant 1 \\
(2-u) \widetilde{C}+\widetilde{Z}+(3-u-v) \mathbf{e} \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

Since \widetilde{Z} and \widetilde{C} are disjoint (-1)-curves in \widetilde{S}, we have

$$
\widetilde{t}(u)=\left\{\begin{array}{l}
2 \text { for } 0 \leqslant u \leqslant 1 \\
3-u \text { for } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

Furthermore, if $0 \leqslant u \leqslant 1$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
\widetilde{C}+\widetilde{Z}+(2-v) \mathbf{e} \text { for } 0 \leqslant v \leqslant 1 \\
(2-v)(\widetilde{C}+\widetilde{Z}+\mathbf{e}) \text { for } 1 \leqslant v \leqslant 2 \\
24
\end{array}\right.
$$

and

$$
\tilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { for } 0 \leqslant v \leqslant 1 \\
(v-1)(\widetilde{C}+\widetilde{Z}) \text { for } 1 \leqslant v \leqslant 2
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
2-v^{2} \text { for } 0 \leqslant v \leqslant 1 \\
(2-v)^{2} \text { for } 1 \leqslant v \leqslant 2
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { for } 0 \leqslant v \leqslant 1 \\
2-v \text { for } 1 \leqslant v \leqslant 2
\end{array}\right.
$$

Similarly, if $1 \leqslant u \leqslant 2$, then

$$
\widetilde{P}(u, v) \sim_{\mathbb{R}}\left\{\begin{array}{l}
(2-u) \widetilde{C}+\widetilde{Z}+(3-u-v) \mathbf{e} \text { for } 0 \leqslant v \leqslant 2-u \\
(2-u) \widetilde{C}+(3-u-v)(\widetilde{Z}+\mathbf{e}) \text { for } 2-u \leqslant v \leqslant 1 \\
(3-u-v)(\widetilde{C}+\widetilde{Z}+\mathbf{e}) \text { for } 1 \leqslant v \leqslant 3-u
\end{array}\right.
$$

and

$$
\tilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { for } 0 \leqslant v \leqslant 2-u \\
(v+u-2) \widetilde{Z} \text { for } 2-u \leqslant v \leqslant 1 \\
(v+u-2) \widetilde{Z}+(v-1) \widetilde{C} \text { for } 1 \leqslant v \leqslant 3-u
\end{array}\right.
$$

which gives

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
4-2 u-v^{2} \text { for } 0 \leqslant v \leqslant 2-u \\
(2-u)(4-u-2 v) \text { for } 2-u \leqslant v \leqslant 1 \\
(3-u-v)^{2} \text { for } 1 \leqslant v \leqslant 3-u
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { for } 0 \leqslant v \leqslant 2-u \\
2-u \text { for } 2-u \leqslant v \leqslant 1 \\
3-u-v \text { for } 1 \leqslant v \leqslant 3-u
\end{array}\right.
$$

Therefore, integrating, we get $S\left(W_{\bullet, \bullet}^{\widetilde{S}} ; \mathbf{e}\right)=\frac{17}{18}<1$ and

$$
S\left(W_{\bullet, 0, \bullet}^{\widetilde{S}, \mathbf{e}} ; O\right)=\frac{11}{36}+F_{O}\left(W_{\bullet, 0, \mathbf{\bullet}}^{\widetilde{S}, \mathbf{e}}\right)=\left\{\begin{array}{l}
\frac{11}{36} \text { if } O \notin \widetilde{C} \cup \widetilde{Z} \\
\frac{4}{9} \text { if } O \in \widetilde{C} \\
\frac{1}{2} \text { if } O \in \widetilde{Z}
\end{array}\right.
$$

which gives $S\left(W_{\mathbf{0}, \mathbf{0}, \mathbf{0}}^{\tilde{S},} ; O\right) \leqslant 1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{e}}\right)$ for every point $O \in \mathbf{e}$. This is a contradiction.
Now, using Lemma 3.8, we see that one of the following two remaining cases occurs:
$\left(\mathbb{A}_{3}\right) R_{S}=Z+T$, where T is a smooth curve in $|Z+2 C|$ that is tangent to Z at the point P,
$\left(\mathbb{D}_{4}\right) R_{S}=Z+T=Z+C+T^{\prime}$, where T^{\prime} is a smooth curve in $|Z+C|$ such that $P \in T^{\prime}$.
This imposes certain constraints on the equation (3.1), which can be listed as follows:

- $a_{0}=0$, since $P=([1: 0],[1: 0 ; 1: 0]) \in R$,
- $a_{1}=0$ and $d_{0}=0$, since R_{S} is singular at P,
- $f_{0}=0$ and $d_{0}=0$, since $Z \subset R$,
- $d_{1}=0$, since R_{S} does not have ordinary double point at P.

Changing coordinates on Y, we can simplified (3.1) a bit more. First, we may assume that $b_{0}=1$, since R is smooth at P. Second, we have $R \cap E=\left\{z_{0}=0, x_{1}\left(f_{2} x_{0}+f_{1} x_{1}\right)=0\right\}$, but $R \cap E$ is smooth. Hence, we can change the coordinate x_{0} such that $f_{2}=0$ and $f_{1}=1$. This simplifies (3.1) as

$$
\begin{align*}
& x_{0}^{2}\left(\left(c_{0} y_{1}^{2}+y_{0} y_{1}\right) z_{0}^{2}+e_{0} y_{1} z_{0} z_{1}\right)+ \tag{3.4}\\
& \quad+x_{0} x_{1}\left(\left(b_{1} y_{0} y_{1}+c_{1} y_{1}^{2}\right) z_{0}^{2}+e_{1} y_{1} z_{0} z_{1}+z_{1}^{2}\right)+ \\
& \quad+x_{1}^{2}\left(\left(a_{2} y_{0}^{2}+b_{2} y_{0} y_{1}+c_{2} y_{1}^{2}\right) z_{0}^{2}+\left(d_{2} y_{0}+e_{2} y_{1}\right) z_{0} z_{1}\right)=0 .
\end{align*}
$$

Recall that $S=\left\{y_{1}=0\right\} \subset Y$, so we can identify $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$ with coordinates $\left(\left[x_{0}: x_{1}\right],\left[z_{0}: z_{1}\right]\right)$. Using this identification, we see that $Z=\left\{x_{1}=0\right\} \subset S, C=\left\{z_{1}=0\right\} \subset S$, and

$$
T=\left\{a_{2} x_{1} z_{0}^{2}+d_{2} x_{1} z_{0} z_{1}+x_{0} z_{1}^{2}=0\right\} \subset S
$$

that T is irreducible $\Longleftrightarrow a_{2} \neq 0$. Further, if $a_{2}=0$, then $T=C+T^{\prime}$ for $T^{\prime}=\left\{d_{2} s x+t y=0\right\}$, where $d_{2} \neq 0$, since R_{S} is reduced. Thus, the cases $\left(\mathbb{A}_{3}\right)$ and $\left(\mathbb{D}_{4}\right)$ can be described as follows:
$\left(\mathbb{A}_{3}\right) a_{2} \neq 0$,
$\left(\mathbb{D}_{4}\right) a_{2}=0$ and $d_{2} \neq 0$.
We will exclude the remaining cases $\left(\mathbb{D}_{4}\right)$ and $\left(\mathbb{A}_{3}\right)$ in Sections 3.2 and 3.3, respectively.
3.2. Exclusion of the case $\left(\mathbb{D}_{4}\right)$. Let us continue the proof of Theorem 3.1started in Section 3.1, Now, we assume that the surface R is given by (3.4) and we have $a_{2}=0$, i.e. we are in the case $\left(\mathbb{D}_{4}\right)$. In the chart $\mathbb{A}_{x, y, z}^{3}=\left\{x_{0} y_{0} z_{0} \neq 0\right\}$ with coordinates $x=\frac{x_{1}}{x_{0}}, y=\frac{y_{1}}{y_{0}}, z=\frac{z_{1}}{z_{0}}$, we have $P=(0,0,0)$, and the surface R is given by the following equation:

$$
y+x z^{2}+d_{2} x^{2} z+\left(b_{1} x y+e_{0} y z+b_{2} x^{2} y+e_{1} x y z+e_{2} x^{2} y z+c_{0} y^{2}+c_{1} x y^{2}+c_{2} x^{2} y^{2}\right)=0
$$

where $y+x z^{2}+d_{2} x^{2} z$ is the smallest degree term for the weights $\mathrm{wt}(x)=1, \operatorname{wt}(y)=3, \operatorname{wt}(z)=1$. Let $\lambda: W_{0} \rightarrow Y$ be the corresponding weighted blow up of the point P with weights $(1,3,1)$, and let G be the λ-exceptional surface. Then $G \cong \mathbb{P}(1,3,1)$.

Let $R_{W_{0}}, F_{W_{0}}$ and $S_{W_{0}}$ be the proper transforms on Y of the surfaces R, S and F, respectively. Set $R_{G}=\left.R_{W_{0}}\right|_{G}, \Delta_{G}=\frac{1}{2} R_{G}$ and $\Delta_{W_{0}}=\frac{1}{2} R_{W_{0}}$. Note that

$$
\left.\left(K_{W_{0}}+\Delta_{W_{0}}+G\right)\right|_{G} \sim_{\mathbb{Q}} K_{G}+\Delta_{G}
$$

Let us also consider (x, y, z) as coordinates on $G \cong \mathbb{P}(1,3,1)$ with $\operatorname{wt}(x)=1, \operatorname{wt}(y)=3, \operatorname{wt}(z)=1$. Then $\left.F_{W_{0}}\right|_{G}=\{x=0\},\left.S_{W_{0}}\right|_{G}=\{y=0\}$, and

$$
R_{G}=\left\{y+x z^{2}+d_{2} x^{2} z=0\right\} \subset R
$$

Recall from the end of Section 3.1 that $d_{2} \neq 0$. Since $\operatorname{ord}_{G}(R)=3$, we have $A_{Y, \Delta_{Y}}(G)=\frac{7}{2}$. Then

$$
\delta_{P}\left(Y, \Delta_{Y}\right) \leqslant \frac{A_{Y, \Delta_{Y}}(G)}{S_{L}(G)}=\frac{7}{2 S_{L}(G)}
$$

where

$$
S_{L}(G)=\frac{1}{L^{3}} \int_{0}^{\infty} \operatorname{vol}\left(\lambda^{*}(L)-u G\right) d u
$$

Let us compute $S_{L}(G)$. To do this, note that Y is toric, and the blow up $\lambda: W_{0} \rightarrow Y$ is also toric for the torus action on Y with an open orbit $\left\{x_{0} y_{0} z_{0} x_{1} y_{1} z_{1} \neq 0\right\} \subset Y$, so the threefold W_{0} is toric, and G is a torus invariant divisor. Let us present toric data for the threefolds Y and W_{0}.

Let Σ_{Y} be the simplicial fan in \mathbb{R}^{3} defined by the following data:

- the list of primitive generators of rays of Σ_{Y} is

$$
v_{1}=(1,0,0), v_{2}=(0,0,1), v_{3}=(0,1,0), v_{4}=(0,0,-1), v_{5}=(0,-1,1), v_{6}=(-1,0,0)
$$

- the list of maximal cones of Σ_{Y} is

$$
[1,2,3],[1,3,4],[1,4,5],[1,2,5],[2,3,6],[3,4,6],[4,5,6],[2,5,6]
$$

where $[i, j, k]$ is the cone generated by the rays v_{i}, v_{j}, and v_{k}.
Then Y is defined by Σ_{Y}. Let $\Sigma_{W_{0}}$ be the simplicial fan in \mathbb{R}^{3} defined by the following data:

- the list of primitive generators of rays in $\Sigma_{W_{0}}$ is

$$
\begin{array}{llll}
v_{0}=(1,3,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), & v_{3}=(0,1,0), \\
v_{4}=(0,0,-1), & v_{5}=(0,-1,1), & v_{6}=(-1,0,0) ; &
\end{array}
$$

- the list of maximal cones in $\Sigma_{W_{0}}$ is

$$
[0,1,3],[0,1,4],[0,3,4],[1,2,3],[1,2,5],[1,4,5],[2,3,6],[2,5,6],[3,4,6],[4,5,6] .
$$

Then the toric threefold W_{0} is given by the fan $\Sigma_{W_{0}}$, which can be diagramed as follows:

Let us compute $S_{L}(G)$. Let P_{L} be the convex polytope in the dual space of \mathbb{R}^{3} associated to L. Then, since L corresponds to the lattice point ($1,2,1$), we have

$$
P_{L}=\left\{x_{1} \geqslant-1, x_{3} \geqslant-1, x_{2} \geqslant-2,-x_{3} \geqslant 0,-x_{2}+x_{3} \geqslant 0,-x_{1} \geqslant 0\right\} .
$$

Thus, since G corresponds to $v_{0}=(1,3,-1)$, it follows from [5, Corollary 7.7] that

$$
S_{L}(G)=-\min _{v \in P_{L} \cap \mathbb{Z}^{3}} v \cdot(1,3,-1)+\frac{3!}{L^{3}} \iiint_{P_{L}}\left(x_{1}, x_{2}, x_{3}\right) \cdot(1,3,-1) d x_{1} d x_{2} d x_{3}=\frac{59}{18} .
$$

where \cdot is the standard inner product in \mathbb{R}^{3}. Consequently, we obtain $\frac{A_{Y, \Delta_{Y}}(G)}{S_{L}(G)}=\frac{63}{58}$
Now, let us exclude the case $\left(\mathbb{D}_{4}\right)$ using the results obtained in [1, 3, 16]. To do this, we must find the Zariski decomposition of the divisor $\lambda^{*}(L)-u G$ for every $u \in \mathbb{R}_{\geqslant 0}$. First, let us compute intersections of torus invariant divisors in W_{0}. Let T_{i} be the torus invariant divisor corresponding to the ray v_{i}. Then $T_{0}=G$, and it follows from [10, §6.4] that

$$
T_{i} T_{j} T_{k}=\left\{\begin{array}{l}
\frac{1}{|[i, j, k]|} \quad \text { if }[i, j, k] \text { belongs to the list of maximal cones in } \Sigma_{W_{0}} \tag{3.5}\\
0 \quad \text { otherwise },
\end{array}\right.
$$

where $|[i, j, k]|$ stands for the absolute value of the determinant of the 3×3 matrix given by v_{i}, v_{j}, v_{k}. This gives $T_{0} T_{1} T_{4}=\frac{1}{3}$ and

$$
T_{0} T_{1} T_{3}=T_{0} T_{3} T_{4}=T_{1} T_{2} T_{3}=T_{1} T_{4} T_{5}=T_{1} T_{2} T_{5}=T_{2} T_{3} T_{6}=T_{3} T_{4} T_{6}=T_{4} T_{5} T_{6}=T_{2} T_{5} T_{6}=1,
$$

while all other $T_{i} T_{j} T_{k}=0$ with distinct indices i, j, k. The characters $\chi_{1}, \chi_{2}, \chi_{3}$ corresponding to the lattice points $(1,0,0),(0,1,0),(0,0,1)$ in the dual lattice generate the following relations among the torus invariant divisors:

$$
\begin{align*}
& 0 \sim \operatorname{div}\left(\chi_{1}\right)=T_{0}+T_{1}-T_{6} \\
& 0 \sim \operatorname{div}\left(\chi_{2}\right)=3 T_{0}+T_{3}-T_{5} \tag{3.6}\\
& 0 \sim \operatorname{div}\left(\chi_{3}\right)=-T_{0}+T_{2}-T_{4}+T_{5}
\end{align*}
$$

Now, using these relations, we can determine the intersection numbers $T_{i}^{2} T_{j}$ for $i \neq j$. For instance, we have $T_{3}^{2} T_{6}=\left(T_{5}-3 T_{0}\right) T_{3} T_{6}=0$ and $T_{2}^{2} T_{6}=\left(T_{0}+T_{4}-T_{5}\right) T_{2} T_{6}=-1$.

For all possible indices $i \neq j$, let us denote by $T_{i} T_{j}$ the torus invariant curve that is given by the intersection of the divisors T_{i} and T_{j} provided that $T_{i} \cap T_{j} \neq \varnothing$. Note that
$T_{i} \cap T_{j} \neq \varnothing \Longleftrightarrow$ the 2-dimensional cone generated by v_{i} and v_{j} belongs to the fan $\Sigma_{W_{0}}$.
If $T_{i} \cap T_{j} \neq \varnothing$, then $T_{i} T_{j}$ is not necessarily reduced, but its support coincides with the torus invariant curve that corresponds to the 2 -dimensional cone generated by the rays v_{i} and v_{j}, which we will denote by $\left\lfloor T_{i} T_{j}\right\rfloor$.

Let u be a non-negative real number. For simplicity, set $L_{u}=\lambda^{*}(L)-u T_{0}$. Then

$$
L_{u}=(7-u) T_{0}+T_{1}+T_{2}+2 T_{3} .
$$

Now, we can compute the intersection of the \mathbb{R}-divisor L_{u} with each torus invariant curve in W_{0}. For instance we have

$$
\begin{aligned}
& L_{u} T_{0} T_{1}=\left((7-u) T_{0}+T_{1}+T_{2}+2 T_{3}\right) T_{0} T_{1}=(7-u) T_{0}^{2} T_{1}+T_{0} T_{1}^{2}+T_{0} T_{1} T_{2}+2 T_{0} T_{1} T_{3}=\frac{u}{3} \\
& L_{u} T_{0} T_{3}=\left((7-u) T_{0}+T_{1}+T_{2}+2 T_{3}\right) T_{0} T_{3}=(7-u) T_{0}^{2} T_{3}+T_{0} T_{1} T_{3}+T_{0} T_{2} T_{3}+2 T_{0} T_{3}^{2}=u \\
& L_{u} T_{0} T_{4}=\left((7-u) T_{0}+T_{1}+T_{2}+2 T_{3}\right) T_{0} T_{4}=(7-u) T_{0}^{2} T_{4}+T_{0} T_{1} T_{4}+T_{0} T_{2} T_{4}+2 T_{0} T_{3} T_{4}=\frac{u}{3}
\end{aligned}
$$

Similarly, we compute

$$
\begin{array}{lllll}
L_{u} T_{1} T_{2}=1, & L_{u} T_{1} T_{3}=1-u, & L_{u} T_{1} T_{4}=\frac{6-u}{3}, & L_{u} T_{1} T_{5}=1, & L_{u} T_{2} T_{3}=1,
\end{array} \quad L_{u} T_{2} T_{5}=1, ~ 子, ~ L_{u} T_{4} T_{5}=1, \quad L_{u} T_{4} T_{6}=2, \quad L_{u} T_{5} T_{6}=1 .
$$

Therefore, we see that L_{u} is nef for $0 \leqslant u \leqslant 1$.
To find Zariski decomposition of the divisor L_{u} for small $u>1$, we must perform a small birational map $W_{0} \rightarrow W_{1}$ along the two torus invariant curves $\left\lfloor T_{1} T_{3}\right\rfloor$ and $\left\lfloor T_{3} T_{4}\right\rfloor$, because these are the only curves that intersect L_{u} negatively for small $u>1$. The corresponding change of fans can be diagramed as follows:

The toric 3 -fold W_{1} is defined by the simplicial fan $\Sigma_{W_{1}}$ in \mathbb{R}^{3} determined by the following data:

- the list of primitive generators of rays of $\Sigma_{W_{1}}$ is

$$
\begin{array}{llll}
v_{0}=(1,3,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), & v_{3}=(0,1,0), \\
v_{4}=(0,0,-1), & v_{5}=(0,-1,1), & v_{6}=(-1,0,0) ; &
\end{array}
$$

- the list of maximal cones of $\Sigma_{W_{1}}$ is

$$
[0,1,2],[0,2,3],[0,3,6],[0,4,6],[0,1,4],[1,4,5],[1,2,5],[2,3,6],[4,5,6],[2,5,6] .
$$

On the 3 -fold W_{1}, we use the same notations for the transformed L_{u}, the torus invariant divisors and curves as on W_{0}. Since the formula (3.5) is valid on W_{1}, we get

$$
\begin{aligned}
& T_{0} T_{1} T_{2}=T_{0} T_{1} T_{4}=T_{0} T_{4} T_{6}=\frac{1}{3}, \\
& T_{0} T_{2} T_{3}=T_{0} T_{3} T_{6}=T_{1} T_{4} T_{5}=T_{1} T_{2} T_{5}=T_{2} T_{3} T_{6}=T_{4} T_{5} T_{6}=T_{2} T_{5} T_{6}=1,
\end{aligned}
$$

and all other $T_{i} T_{j} T_{k}=0$ with distinct indices i, j, k. Since we have the same list of primitive generators of rays as on $\Sigma_{W_{0}}$, the relations (3.6) are valid on W_{1}. This gives

$$
\begin{array}{llll}
L_{u} T_{0} T_{1}=\frac{1}{3}, & L_{u} T_{0} T_{2}=\frac{u-1}{3}, & L_{u} T_{0} T_{3}=2-u, & L_{u} T_{0} T_{4}=\frac{1}{3},
\end{array} L_{u} T_{0} T_{6}=\frac{u-1}{3}, ~ \begin{array}{lll}
L_{u} T_{1} T_{2}=\frac{4-u}{3}, & L_{u} T_{1} T_{4}=\frac{6-u}{3}, & L_{u} T_{1} T_{5}=1, \\
L_{u} T_{2} T_{3}=2-u, & L_{u} T_{2} T_{5}=1 \\
L_{2} T_{6}=1, & L_{u} T_{3} T_{6}=2-u, & L_{u} T_{4} T_{5}=1,
\end{array} L_{u} T_{4} T_{6}=\frac{7-u}{3}, \quad L_{u} T_{5} T_{6}=1 .
$$

Therefore, the divisor L_{u} is nef for $1 \leqslant u \leqslant 2$.
The unique torus invariant surface T_{3} that contains $\left\lfloor T_{0} T_{3}\right\rfloor,\left\lfloor T_{2} T_{3}\right\rfloor,\left\lfloor T_{3} T_{6}\right\rfloor$ is of Picard rank 1 . Since $\left(L_{u}-a T_{3}\right) T_{0} T_{3}=2-u+3 a$ for any non-negative real number a, the Nakayama-Zariski decomposition $L_{u}=P(u)+N(u)$ for $u>2$ on the 3-fold W_{1} must satisfy

$$
N(u) \geqslant \frac{u-2}{3} T_{3},
$$

where $P(u)$ is the positive part of the decomposition, and $N(u)$ is the negative part. Set

$$
P_{u}^{1}=L_{u}-\frac{u-2}{3} T_{3}=(7-u) T_{0}+T_{1}+T_{2}+\frac{8-u}{3} T_{3} .
$$

Then

$$
\begin{array}{lllll}
P_{u}^{1} T_{0} T_{1}=\frac{1}{3}, & P_{u}^{1} T_{0} T_{2}=\frac{1}{3}, & P_{u}^{1} T_{0} T_{3}=0, & P_{u}^{1} T_{0} T_{4}=\frac{1}{3}, & P_{u}^{1} T_{0} T_{6}=\frac{1}{3} \\
P_{u}^{1} T_{1} T_{2}=\frac{4-u}{3}, & P_{u}^{1} T_{1} T_{4}=\frac{6-u}{3}, & P_{u}^{1} T_{1} T_{5}=1, & P_{u}^{1} T_{2} T_{3}=0, & P_{u}^{1} T_{2} T_{5}=1 \\
P_{u}^{1} T_{2} T_{6}=\frac{5-u}{3}, & P_{u}^{1} T_{3} T_{6}=0, & P_{u}^{1} T_{4} T_{5}=1, & P_{u}^{1} T_{4} T_{6}=\frac{7-u}{3}, & P_{u}^{1} T_{5} T_{6}=1 .
\end{array}
$$

Therefore, if $2 \leqslant u \leqslant 4$, then P_{u}^{1} is nef, and hence $L_{u}=P_{u}^{1}+\frac{u-2}{3} T_{3}$ is the Zariski decomposition, i.e. P_{u}^{1} is the positive part, and $\frac{u-2}{3} T_{3}$ is the negative part.

For small enough $u>4$, the curve $\left\lfloor T_{1} T_{2}\right\rfloor$ is the only curve in W_{1} that intersects P_{u}^{1} negatively. Let $W_{1} \rightarrow W_{2}$ be the small birational map of this curve. Then the change of fans can be diagramed as follows:

The toric 3-fold W_{2} is defined by the simplicial fan $\Sigma_{W_{2}}$ in \mathbb{R}^{3} determined by the following data:

- the list of primitive generators of rays of $\Sigma_{W_{2}}$ is

$$
\begin{array}{llll}
v_{0}=(1,3,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), & v_{3}=(0,1,0), \\
v_{4}=(0,0,-1), & v_{5}=(0,-1,1), & v_{6}=(-1,0,0) ; &
\end{array}
$$

- the list of maximal cones of $\Sigma_{W_{2}}$ is

$$
[0,1,5],[0,2,5],[0,2,3],[0,3,6],[0,4,6],[0,1,4],[1,4,5],[2,3,6],[4,5,6],[2,5,6] .
$$

As before, we keep the same notations for the transformed L_{u} and P_{u}^{1}, the torus invariant divisors and curves on W_{2}. It follows from (3.5) that

$$
\begin{aligned}
& T_{0} T_{4} T_{6}=T_{0} T_{1} T_{4}=\frac{1}{3} \\
& T_{0} T_{1} T_{5}=\frac{1}{2} \\
& T_{0} T_{2} T_{5}=T_{0} T_{2} T_{3}=T_{0} T_{3} T_{6}=T_{1} T_{4} T_{5}=T_{2} T_{3} T_{6}=T_{4} T_{5} T_{6}=T_{2} T_{5} T_{6}=1
\end{aligned}
$$

and all other $T_{i} T_{j} T_{k}=0$ with distinct i, j, k. We have

$$
P_{u}^{1}=(7-u) T_{0}+T_{1}+T_{2}+\frac{8-u}{3} T_{3},
$$

and we compute

$$
\begin{array}{lllll}
P_{u}^{1} T_{0} T_{1}=\frac{6-u}{6}, & P_{u}^{1} T_{0} T_{2}=\frac{5-u}{3}, & P_{u}^{1} T_{0} T_{3}=0, & P_{u}^{1} T_{0} T_{4}=\frac{1}{3}, & P_{u}^{1} T_{0} T_{5}=\frac{u-4}{2}, \\
P_{u}^{1} T_{0} T_{6}=\frac{1}{3}, & P_{u}^{1} T_{1} T_{4}=\frac{6-u}{3}, & P_{u}^{1} T_{1} T_{5}=\frac{6-u}{2}, & P_{u}^{1} T_{2} T_{3}=0, & P_{u}^{1} T_{2} T_{5}=5-u \\
P_{u}^{1} T_{2} T_{6}=\frac{5-u}{3}, & P_{u}^{1} T_{3} T_{6}=0, & P_{u}^{1} T_{4} T_{5}=1, & P_{u}^{1} T_{4} T_{6}=\frac{7-u}{3}, & P_{u}^{1} T_{5} T_{6}=1 .
\end{array}
$$

Hence, if $u \in[4,5]$, then P_{u}^{1} is nef on W_{2}, so $L_{u}=P_{u}^{1}+\frac{u-2}{3} T_{3}$ is the required Zariski decomposition.
Observe that T_{2} is the unique torus invariant surface that contains the curves $T_{0} T_{2}, T_{2} T_{5}, T_{2} T_{6}$, and $T_{0} T_{2}$ is nef on T_{2}, since $\left(\left.T_{0}\right|_{T_{2}}\right)^{2}=T_{0}^{2} T_{2}=0$. For non-negative real numbers a and b, we have

$$
\begin{aligned}
& \left(P_{u}^{1}-a T_{2}-b T_{3}\right) T_{0} T_{2}=\frac{5-u}{3}+a-b, \\
& \left(P_{u}^{1}-a T_{2}-b T_{3}\right) T_{0} T_{3}=-a+3 b .
\end{aligned}
$$

These intersections are non-negative for $a \geqslant \frac{u-5}{2}$ and $b \geqslant \frac{u-5}{6}$. Therefore, the Nakayama-Zariski decomposition $L_{u}=P(u)+N(u)$ on W_{2} satisfies

$$
N(u) \geqslant \frac{u-2}{3} T_{3}+\left(\frac{u-5}{2} T_{2}+\frac{u-5}{6} T_{3}\right)=\frac{u-5}{2} T_{2}+\frac{u-3}{2} T_{3},
$$

where $P(u)$ stands for the positive part, and $N(u)$ stands for the negative part. Put

$$
P_{u}^{2}=P_{u}^{1}-\left(\frac{u-5}{2} T_{2}+\frac{u-5}{6} T_{3}\right)
$$

Then

$$
\begin{array}{lllll}
P_{u}^{2} T_{0} T_{1}=\frac{6-u}{6}, & P_{u}^{2} T_{0} T_{2}=0, & P_{u}^{2} T_{0} T_{3}=0, & P_{u}^{2} T_{0} T_{4}=\frac{1}{3}, & P_{u}^{2} T_{0} T_{5}=\frac{1}{2} \\
P_{u}^{2} T_{0} T_{6}=\frac{7-u}{6}, & P_{u}^{2} T_{1} T_{4}=\frac{6-u}{3}, & P_{u}^{2} T_{1} T_{5}=\frac{6-u}{2}, & P_{u}^{2} T_{2} T_{3}=0, & P_{u}^{2} T_{2} T_{5}=0 \\
P_{u}^{2} T_{2} T_{6}=0, & P_{u}^{2} T_{3} T_{6}=0, & P_{u}^{2} T_{4} T_{5}=1, & P_{u}^{2} T_{4} T_{6}=\frac{7-u}{3}, & P_{u}^{2} T_{5} T_{6}=\frac{7-u}{2}
\end{array}
$$

Hence, the divisor P_{u}^{2} is nef for $u \in[5,6]$, which implies that $P(u)=P_{u}^{2}$ and

$$
N(u)=\frac{u-5}{2} T_{2}+\frac{u-3}{2} T_{3}
$$

This gives the Zariski decomposition of the divisor L_{u} on the 3 -fold W_{2} for $u \in[5,6]$.
The surface T_{1} is the unique torus invariant surface that contains the curves $T_{0} T_{1}, T_{1} T_{4}, T_{1} T_{5}$, it has Picard rank 1, and it is disjoint from T_{2} and T_{3}. But

$$
\left(P_{u}^{2}-a T_{1}\right) T_{0} T_{1}=\frac{6-u}{6}+\frac{a}{6} .
$$

Therefore, the Nakayama-Zariski decomposition $L_{u}=P(u)+N(u)$ on W_{2} for $u>6$ satisfies

$$
N(u) \geqslant(u-6) T_{1}+\frac{u-5}{2} T_{2}+\frac{u-3}{2} T_{3}
$$

where $P(u)$ is the positive part, and $N(u)$ is the negative part. Set $P_{u}^{3}=P_{u}^{2}-(u-6) T_{1}$. Then

$$
\begin{array}{llll}
P_{u}^{3} T_{0} T_{1}=0, & P_{u}^{3} T_{0} T_{2}=0, & P_{u}^{3} T_{0} T_{3}=0, & P_{u}^{3} T_{0} T_{4}=\frac{7-u}{3},
\end{array} P_{u}^{3} T_{0} T_{5}=\frac{7-u}{2}, ~ 子 \quad P_{u}^{3} T_{2} T_{3}=0, \quad P_{u}^{3} T_{2} T_{5}=0, ~\left(P_{u}^{3} T_{1} T_{5}=0, \quad P_{u}^{3} T_{1} T_{4}=0, \quad T_{6}=\frac{7-u}{6}, \quad P_{u}^{3} T_{3} T_{6}=0, \quad P_{u}^{3} T_{4} T_{5}=7-u, \quad P_{u}^{3} T_{4} T_{6}=\frac{7-u}{3}, \quad P_{u}^{3} T_{5} T_{6}=\frac{7-u}{2} .\right.
$$

Then $P(u)=P_{u}^{3}$ is the positive part of the Zariski decomposition of L_{u} on W_{2} for $u \in[6,7]$, and the negative part is

$$
N(u)=(u-6) T_{1}+\frac{u-5}{2} T_{2}+\frac{u-3}{2} T_{3} .
$$

If $u>7$, then L_{u} is not pseudoeffective.
Remark 3.9. The toric varieties W_{0}, W_{1}, W_{2} are projective. Indeed, the variety W_{0} is obtained by taking a weighted blowup of a projective variety. On W_{1}, the transformed $L_{\frac{3}{2}}$ is an ample divisor. On W_{2}, we can obtain an ample divisor from $P_{\frac{9}{2}}^{1}+\frac{1}{m} T_{2}$ by taking sufficiently large integer m.

To apply [1, 3, 16], we must consider a common partial resolution of the 3-folds W_{0}, W_{1}, W_{2}. Namely, let \widetilde{W} be the toric 3 -fold defined by the simplicial fan $\Sigma_{\widetilde{W}}$ in \mathbb{R}^{3} given by

- the list of primitive generators of rays of $\Sigma_{\widetilde{W}}$ is

$$
\begin{array}{lll}
v_{0}=(1,3,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), \\
v_{6}=(-1,0,0), & v_{7}=(0,3,-1), & v_{8}=(1,3,0), \\
v_{6}=(1,0), & v_{4}=(1,2,0), & v_{10}=(1,0,-2) ;
\end{array}
$$

- the list of maximal cones of $\Sigma_{\widetilde{W}}$ is

$[0,1,4]$,	$[0,1,9]$,	$[0,3,7]$,	$[0,3,8]$,	$[0,4,7]$,	$[0,8,9]$,	$[1,4,5]$,	$[1,5,10]$,	$[1,9,10]$,
$[2,3,6]$,	$[2,3,8]$,	$[2,5,6]$,	$[2,5,10]$,	$[2,8,10]$,	$[3,6,7]$,	$[4,5,6]$,	$[4,6,7]$,	$[8,9,10]$.

The fan $\Sigma_{\widetilde{W}}$ can be diagramed as follows:

Then there exists the following commutative diagram:

where ζ_{0}, ζ_{1} and ζ_{2} are toric birational morphisms.
Let us denote by \widetilde{T}_{i} the torus invariant divisor on \widetilde{W} corresponding to the ray v_{i} in the fan $\Sigma_{\widetilde{W}}$. Then the formula (3.5) implies that

$$
\begin{align*}
& \widetilde{T}_{1} \widetilde{T}_{9} \widetilde{T}_{10}=\frac{1}{4} \\
& \widetilde{T}_{0} \widetilde{T}_{1} \widetilde{T}_{4}=\widetilde{T}_{0} \widetilde{T}_{4} \widetilde{T}_{7}=\widetilde{T}_{2} \widetilde{T}_{8} \widetilde{T}_{10}=\widetilde{T}_{4} \widetilde{T}_{6} \widetilde{T}_{7}=\frac{1}{3} \\
& \widetilde{T}_{0} \widetilde{T}_{1} \widetilde{T}_{9}=\widetilde{T}_{1} \widetilde{T}_{5} \widetilde{T}_{10}=\widetilde{T}_{8} \widetilde{T}_{9} \widetilde{T}_{10}=\frac{1}{2} \tag{3.7}\\
& \widetilde{T}_{0} \widetilde{T}_{3} \widetilde{T}_{7}=\widetilde{T}_{0} \widetilde{T}_{3} \widetilde{T}_{8}=\widetilde{T}_{0} \widetilde{T}_{8} \widetilde{T}_{9}=\widetilde{T}_{1} \widetilde{T}_{4} \widetilde{T}_{5}=\widetilde{T}_{2} \widetilde{T}_{3} \widetilde{T}_{6}=1, \\
& \widetilde{T}_{2} \widetilde{T}_{3} \widetilde{T}_{8}=\widetilde{T}_{2} \widetilde{T}_{5} \widetilde{T}_{6}=\widetilde{T}_{2} \widetilde{T}_{5} \widetilde{T}_{10}=\widetilde{T}_{3} \widetilde{T}_{6} \widetilde{T}_{7}=\widetilde{T}_{4} \widetilde{T}_{5} \widetilde{T}_{6}=1,
\end{align*}
$$

and other $\widetilde{T}_{i} \widetilde{T}_{j} \widetilde{T}_{k}$ with distinct indices i, j, k are 0 . Further, the characters $\chi_{1}, \chi_{2}, \chi_{3}$ corresponding to the lattice points $(1,0,0),(0,1,0),(0,0,1)$ in the dual lattice yield the following relations:

$$
\begin{align*}
& 0 \sim \operatorname{div}\left(\chi_{1}\right)=\widetilde{T}_{0}+\widetilde{T}_{1}-\widetilde{T}_{6}+\widetilde{T}_{8}+\widetilde{T}_{9}+\widetilde{T}_{10} \\
& 0 \sim \operatorname{div}\left(\chi_{2}\right)=3 \widetilde{T}_{0}+\widetilde{T}_{3}-\widetilde{T}_{5}+3 \widetilde{T}_{7}+3 \widetilde{T}_{8}+2 \widetilde{T}_{9}, \tag{3.8}\\
& 0 \sim \operatorname{div}\left(\chi_{3}\right)=-\widetilde{T}_{0}+\widetilde{T}_{2}-\widetilde{T}_{4}+\widetilde{T}_{5}-\widetilde{T}_{7}+2 \widetilde{T}_{10} .
\end{align*}
$$

Moreover, we have

$$
\begin{array}{ll}
\zeta_{0}^{*}\left(T_{0}\right)=\widetilde{T}_{0}, & \zeta_{0}^{*}\left(T_{1}\right)=\widetilde{T}_{1}+\widetilde{T}_{8}+\widetilde{T}_{9}+\widetilde{T}_{10}, \\
\zeta_{0}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+2 \widetilde{T}_{10}, & \zeta_{0}^{*}\left(T_{3}\right)=\widetilde{T}_{3}+3 \widetilde{T}_{7}+3 \widetilde{T}_{8}+2 \widetilde{T}_{9}, \\
\zeta_{1}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+\widetilde{T}_{7}+\widetilde{T}_{8}+\frac{2}{3} \widetilde{T}_{9}, & \zeta_{1}^{*}\left(T_{1}\right)=\widetilde{T}_{1}+\frac{1}{3} \widetilde{T}_{9}+\widetilde{T}_{10}, \\
\zeta_{1}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+\widetilde{T}_{8}+\frac{2}{3} \widetilde{T}_{9}+2 \widetilde{T}_{10}, & \zeta_{1}^{*}\left(T_{3}\right)=\widetilde{T}_{3}, \\
\zeta_{2}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+\widetilde{T}_{7}+\widetilde{T}_{8}+\widetilde{T}_{9}+\widetilde{T}_{10}, & \zeta_{2}^{*}\left(T_{1}\right)=\widetilde{T}_{1}, \\
\zeta_{2}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+\widetilde{T}_{8}, & \zeta_{2}^{*}\left(T_{3}\right)=\widetilde{T}_{3} .
\end{array}
$$

Let us briefly explain how we get these expressions. For instance, the divisor T_{0} on W_{0} does not contain centers of ζ_{0}-exceptional surfaces, so $\zeta_{0}^{*}\left(T_{0}\right)=\widetilde{T}_{0}$. Similarly, the divisor T_{0} on W_{2} contains centers of the following ζ_{2}-exceptional divisors: $\widetilde{T}_{7}, \widetilde{T}_{8}, \widetilde{T}_{9}, \widetilde{T}_{10}$, which implies that

$$
\zeta_{2}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+a_{7} \widetilde{T}_{7}+a_{8} \widetilde{T}_{8}+a_{9} \widetilde{T}_{9}+a_{10} \widetilde{T}_{10}
$$

for some positive rational numbers $a_{7}, a_{8}, a_{9}, a_{10}$. Then we obtain

$$
\begin{aligned}
& 0=\left(\widetilde{T}_{0}+a_{7} \widetilde{T}_{7}+a_{8} \widetilde{T}_{8}+a_{9} \widetilde{T}_{9}+a_{10} \widetilde{T}_{10}\right) \widetilde{T}_{3} \widetilde{T}_{7}=1-a_{7} \\
& 0=\left(\widetilde{T}_{0}+a_{7} \widetilde{T}_{7}+a_{8} \widetilde{T}_{8}+a_{9} \widetilde{T}_{9}+a_{10} \widetilde{T}_{10}\right) \widetilde{T}_{3} \widetilde{T}_{8}=1-a_{8} \\
& 0=\left(\widetilde{T}_{0}+a_{7} \widetilde{T}_{7}+a_{8} \widetilde{T}_{8}+a_{9} \widetilde{T}_{9}+a_{10} \widetilde{T}_{10}\right) \widetilde{T}_{8} \widetilde{T}_{10}=-\frac{1}{3} a_{8}+\frac{1}{2} a_{9}-\frac{1}{6} a_{10}, \\
& 0=\left(\widetilde{T}_{0}+a_{7} \widetilde{T}_{7}+a_{8} \widetilde{T}_{8}+a_{9} \widetilde{T}_{9}+a_{10} \widetilde{T}_{10}\right) \widetilde{T}_{1} \widetilde{T}_{10}=\frac{1}{4} a_{8}-\frac{1}{4} a_{10},
\end{aligned}
$$

which gives $a_{7}=a_{8}=a_{9}=a_{10}=1$. Here, all intersections are derived from (3.7) and (3.8).
For every $u \in[0,7]$, the Zariski decomposition of the divisor $\zeta_{0}^{*}\left(L_{u}\right)$ exists on the 3-fold \widetilde{W}. Let $P_{\widehat{W}}(u)$ and $N_{\widetilde{W}}(u)$ be its positive and negative parts, respectively. Then their expressions as linear combinations of the torus invariant divisors on \widetilde{W} are given in Table 1 .

We now consider the toric surface \widetilde{T}_{0}. Its fan is the image of the fan $\Sigma_{\widetilde{W}}$ under the quotient lattice homomorphism $\mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3} / \mathbb{Z} v_{0} \cong \mathbb{Z}^{2}$. We may assume that $v_{1} \mapsto w_{1}=(1,0)$ and $v_{3} \mapsto w_{4}=(0,1)$, which determines the quotient homomorphism. Then the list of primitive generators of the rays in the fan consists of

$$
w_{1}=(1,0), w_{2}=(1,2), w_{3}=(1,3), w_{4}=(0,1), w_{5}=(-1,0), w_{6}=(-1,-3)
$$

Let ζ be the restriction morphism $\left.\zeta_{0}\right|_{\widetilde{T}_{0}}: \widetilde{T}_{0} \rightarrow T_{0}$. Then ζ contracts the torus invariant curves defined by w_{5}, w_{3}, w_{2}, since ζ_{0} contracts $\left\lfloor\widetilde{T}_{0} \widetilde{T}_{7}\right\rfloor,\left\lfloor\widetilde{T}_{0} \widetilde{T}_{8}\right\rfloor,\left\lfloor\widetilde{T}_{0} \widetilde{T}_{9}\right\rfloor$. This can be illustrated as follows.

Let $\alpha_{1}, \ldots, \alpha_{6}$ be the torus invariant curves in \widetilde{T}_{0} defined by the rays w_{1}, \ldots, w_{6}, respectively. Set $\bar{\alpha}_{1}=\zeta\left(\alpha_{1}\right), \bar{\alpha}_{4}=\zeta\left(\alpha_{4}\right), \bar{\alpha}_{6}=\zeta\left(\alpha_{6}\right)$. Note that $\alpha_{1}+\alpha_{2}+\alpha_{3}=\alpha_{5}+\alpha_{6}$ and $2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}=3 \alpha_{6}$. With these relations, [10, §6.4] yields the following intersection matrix:

$$
A:=\left(\alpha_{i} \alpha_{j}\right)=\left(\begin{array}{cccccc}
-\frac{1}{6} & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{3} \\
\frac{1}{2} & -\frac{3}{2} & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0
\end{array}\right) .
$$

It follows from [10, Lemma 12.5.2] that

$$
\left.\widetilde{T}_{1}\right|_{\widetilde{T}_{0}}=\alpha_{1},\left.\widetilde{T}_{3}\right|_{\widetilde{T}_{0}}=\alpha_{4},\left.\widetilde{T}_{4}\right|_{\widetilde{T}_{0}}=\alpha_{6},\left.\widetilde{T}_{7}\right|_{\widetilde{T}_{0}}=\alpha_{5},\left.\widetilde{T}_{8}\right|_{\widetilde{T}_{0}}=\alpha_{3},\left.\widetilde{T}_{9}\right|_{\widetilde{T}_{0}}=\alpha_{2}
$$

Moreover, (3.8) implies

$$
\left.\widetilde{T}_{0}\right|_{\widetilde{T}_{0}}=-\left.\left(\widetilde{T}_{1}-\widetilde{T}_{6}+\widetilde{T}_{8}+\widetilde{T}_{9}+\widetilde{T}_{10}\right)\right|_{\widetilde{T}_{0}}=-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)
$$

Set $\widetilde{P}(u)=\left.P_{\widetilde{W}}(u)\right|_{\widetilde{T}_{0}}$ and $\widetilde{N}(u)=\left.N_{\widetilde{W}}(u)\right|_{\widetilde{T}_{0}}$. Then we can express $\widetilde{P}(u)$ and $\widetilde{N}(u)$ as linear combinations of the curves $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$. These expressions are presented in Table 2.

We are ready to apply [1, 3, 16] to estimate $\delta_{P}\left(Y, \Delta_{Y}\right)$ from below. Let Q be a point in $G=T_{0}$, let C be a smooth curve in G such that $Q \in C \not \subset \Delta_{G}$, and let \widetilde{C} be its proper transform on \widetilde{T}_{0}. Then ζ induces an isomorphism $\widetilde{C} \cong C$. For every $u \in[0,7]$, let

$$
t(u)=\inf \left\{v \in \mathbb{R}_{\geqslant 0} \mid \widetilde{P}(u)-v C \text { is pseudoeffective }\right\} .
$$

For every $v \in[0, t(u)]$, let $P(u, v)$ be the positive part of the Zariski decomposition of $\widetilde{P}(u)-v C$, and let $N(u, v)$ be its negative part. Set

$$
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)=\frac{3}{L^{3}} \int_{0}^{7}(\widetilde{P}(u))^{2} \operatorname{ord}_{C}(\widetilde{N}(u)) d u+\frac{3}{L^{3}} \int_{0}^{7} \int_{0}^{t(u)}(P(u, v))^{2} d v d u
$$

Now, we write $\zeta^{*}(C)=\widetilde{C}+\Sigma$ for an effective \mathbb{R}-divisor Σ on the surface \widetilde{T}_{0}. For every $u \in[0,7]$, write $\widetilde{N}(u)=d(u) C+N^{\prime}(u)$, where $d(u)=\operatorname{ord}_{C}(\widetilde{N}(u))$, and $N^{\prime}(u)$ is an effective \mathbb{R}-divisor on \widetilde{T}_{0}.

Now, as in [15, Definition 4.16], we set

$$
F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)=\frac{6}{L^{3}} \int_{0}^{7} \int_{0}^{t(u)}(P(u, v) \cdot \widetilde{C}) \cdot \operatorname{ord}_{Q}\left(\left.\left(N^{\prime}(u)+N(u, v)-(v+d(u)) \Sigma\right)\right|_{\widetilde{C}}\right) d v d u
$$

where we consider Q as a point in \widetilde{C} using the isomorphism $\widetilde{C} \cong C$ induced by ζ. Finally, we set

$$
S\left(W_{\bullet, \bullet, \bullet}^{G, C}, Q\right)=\frac{3}{L^{3}} \int_{0}^{7} \int_{0}^{t(u)}(P(u, v) \cdot \widetilde{C})^{2} d v d u+F_{Q}\left(W_{\bullet, \bullet \bullet \bullet}^{G, C}\right)
$$

We have $\left.\left(K_{G}+C+\Delta_{G}\right)\right|_{C} \sim_{\mathbb{R}} K_{C}+\Delta_{C}$ for an effective divisor Δ_{C} known as the different [23], which can be computed locally near any point in C. Using [16, Corollary 4.18], we obtain

$$
\delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{A_{Y, \Delta_{Y}}(G)}{S_{L}(G)}, \inf _{Q \in G} \min \left\{\frac{A_{G, \Delta_{G}}(C)}{S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)}, \frac{A_{C, \Delta_{C}}(Q)}{S\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right)}\right\}\right\},
$$

where $A_{G, \Delta_{G}}(C)=1$, because $C \not \subset \Delta_{G}$ by assumption. On the other hand, we assumed that there exists a prime divisor \mathbf{F} over Y such that $\beta_{Y, \Delta_{Y}}(\mathbf{F}) \leqslant 0$. Moreover, we proved that $C_{Y}(\mathbf{F})=P$, so

$$
1 \geqslant \frac{A_{Y, \Delta_{Y}}(\mathbf{F})}{S_{L}(\mathbf{F})} \geqslant \delta_{P}\left(Y, \Delta_{Y}\right) \geqslant \min \left\{\frac{A_{Y, \Delta_{Y}}(G)}{S_{L}(G)}, \inf _{Q \in G} \min \left\{\frac{A_{G, \Delta_{G}}(C)}{S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)}, \frac{A_{C, \Delta_{C}}(Q)}{S\left(W_{\bullet, \bullet, \bullet}^{G} ; Q\right)}\right\}\right\} .
$$

Therefore, since $\frac{A_{Y, \Delta_{Y}}(G)}{S_{L}(G)}=\frac{63}{58}$, it follows from [16, Corollary 4.18] and [1, Theorem 3.3] that

$$
\inf _{Q \in G} \min \left\{\frac{A_{G, \Delta_{G}}(C)}{S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)}, \frac{A_{C, \Delta_{C}}(Q)}{S\left(W_{\bullet, \bullet \bullet}^{G, C} ; Q\right)}\right\}<1
$$

Therefore, to exclude the case $\left(\mathbb{D}_{4}\right)$, it is enough to show that for every point $Q \in G$, there exists a smooth irreducible curve $C \subset G$ such that $Q \in C \not \subset \Delta_{G}$ and

$$
\begin{equation*}
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right) \leqslant 1 \leqslant \frac{A_{C, \Delta_{C}}(Q)}{S\left(W_{\bullet,,, \bullet}^{G, C} ; Q\right)} \tag{3.9}
\end{equation*}
$$

This is what we will do in the rest of this section.
Let Q be a point in $G=T_{0} \cong \mathbb{P}(1,3,1)$. Recall that $\bar{\alpha}_{1}, \bar{\alpha}_{4}, \bar{\alpha}_{6}$ are all torus invariant curves in G. Let $Q_{14}=\bar{\alpha}_{1} \cap \bar{\alpha}_{4}, Q_{16}=\bar{\alpha}_{1} \cap \bar{\alpha}_{6}, Q_{46}=\bar{\alpha}_{4} \cap \bar{\alpha}_{6}$, where Q_{16} is the singular point of the surface G. Recall that R_{G} meets the curve $\bar{\alpha}_{4}$ transversally at three distinct points including Q_{14} and Q_{46}. Let us denote by Q_{4} the point in $R_{G} \cap \bar{\alpha}_{4}$ that is different from Q_{14} and Q_{46}.

Now, let us choose the curve C. If $Q \in \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}$, we choose C as follows:

- if $Q \in \bar{\alpha}_{1}, Q \neq Q_{14}, Q \neq Q_{16}$, we let $C=\bar{\alpha}_{1}$,
- if $Q \in \bar{\alpha}_{4}, Q \neq Q_{14}, Q \neq Q_{46}$, we let $C=\bar{\alpha}_{4}$,
- if $Q \in \bar{\alpha}_{6}, Q \neq Q_{16}, Q \neq Q_{46}$, we let $C=\bar{\alpha}_{6}$,
- if $Q=Q_{14}$, we let $C=\bar{\alpha}_{1}$ or $C=\bar{\alpha}_{4}$,
- if $Q=Q_{16}$, we let $C=\bar{\alpha}_{1}$ or $C=\bar{\alpha}_{6}$,
- if $Q=Q_{46}$, we let $C=\bar{\alpha}_{4}$ or $C=\bar{\alpha}_{6}$.

Similarly, if $Q \notin \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}$, there exists a unique curve $\bar{\alpha}_{0} \in\left|\mathcal{O}_{G}(1)\right|$ such that $\bar{\alpha}_{0}$ contains Q. In this case, we let $C=\bar{\alpha}_{0}$, and we let α_{0} be the proper transform of the curve $\bar{\alpha}_{0}$ on the surface \widetilde{T}_{0}. Then the divisor Σ and the different Δ_{C} can be described as follows:
$\left(\bar{\alpha}_{1}\right)$ if $C=\bar{\alpha}_{1}$, then $\Sigma=\alpha_{2}+\alpha_{3}$ and $\Delta_{C}=\frac{2}{3} Q_{16}+\frac{1}{2} Q_{14}$,
$\left(\bar{\alpha}_{4}\right)$ if $C=\bar{\alpha}_{4}$, then $\Sigma=2 \alpha_{2}+3 \alpha_{3}+3 \alpha_{5}$ and $\Delta_{C}=\frac{1}{2} Q_{14}+\frac{1}{2} Q_{46}+\frac{1}{2} Q_{4}$,
$\left(\bar{\alpha}_{6}\right)$ if $C=\bar{\alpha}_{6}$, then $\Sigma=\alpha_{5}$ and $\Delta_{C}=\frac{1}{2} Q_{46}+\frac{2}{3} Q_{16}$,
$\left(\bar{\alpha}_{0}\right)$ if $C=\bar{\alpha}_{0}$, then $\Sigma=0$ and $\Delta_{C}=\left.\Delta_{G}\right|_{C}+\frac{2}{3} Q_{16}$.

In the last case, we have $\operatorname{ord}_{Q}\left(\Delta_{C}\right) \leqslant \frac{1}{2}$, because the curves $\bar{\alpha}_{0}$ and R_{G} meet transversally.
In each possible case, we compute $t(u)$ as follows in Table 3.
For each $u \in[0,7]$ and $v \in[0, t(u)]$, we can express the divisors $P(u, v)$ and $N(u, v)$ as linear combinations of the curves $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$. These expressions are listed in Tables 4, 5, 6, 7,

We now regard the divisor $P(u, v)$ as a row vector $\mathbf{p}(u, v) \in \mathbb{R}^{6}$ defined as

$$
\mathbf{p}(u, v)=\left(c_{1}(u, v), c_{2}(u, v), c_{3}(u, v), c_{4}(u, v), c_{5}(u, v), c_{6}(u, v)\right)
$$

where $P(u, v)=c_{1}(u, v) \alpha_{1}+c_{2}(u, v) \alpha_{2}+c_{3}(u, v) \alpha_{3}+c_{4}(u, v) \alpha_{4}+c_{5}(u, v) \alpha_{5}+c_{6}(u, v) \alpha_{6}$. Then

$$
(P(u, v))^{2}=\mathbf{p}(u, v) A \mathbf{p}(u, v)^{T} .
$$

Thus, we have

$$
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)=\frac{3}{9} \int_{0}^{7} \mathbf{p}(u, 0) A \mathbf{p}(u, 0)^{T} \cdot d(u) d u+\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)} \mathbf{p}(u, v) A \mathbf{p}(u, v)^{T} d v d u
$$

Now, integrating we get

$$
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } C=\bar{\alpha}_{1}, \\
\frac{7}{9} \text { if } C=\bar{\alpha}_{4}, \\
\frac{4}{9} \text { if } C=\bar{\alpha}_{6}, \\
\frac{11}{36} \text { if } C=\bar{\alpha}_{0} .
\end{array}\right.
$$

In each case, we have $S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)<1$ as required for (3.9).
To present a formula for $S_{L}\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right)$, let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}, \boldsymbol{e}_{6}$ be the standard basis for \mathbb{R}^{6}, and let $\boldsymbol{e}_{0}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$. If $C=\bar{\alpha}_{i}$ for $i \in\{1,4,6,0\}$, then

$$
S_{L}\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right)=\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{i}^{T}\right)^{2} d v d u+F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right),
$$

where

$$
F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)=\frac{6}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{i}^{T}\right) \cdot \operatorname{ord}_{Q}\left(\left.\left(N^{\prime}(u)+N(u, v)-(v+d(u)) \Sigma\right)\right|_{\widetilde{C}} d v d u\right.
$$

In particular, if $Q \notin \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}$, then $C=\bar{\alpha}_{0}$, so that

$$
S_{L}\left(W_{\bullet, 0, \bullet}^{G, C} ; Q\right)=\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{0}^{T}\right)^{2} d v d u=\frac{5}{24}<\frac{1}{2} \leqslant 1-\operatorname{ord}_{Q}\left(\Delta_{C}\right)=A_{C, \Delta_{C}}(Q),
$$

which gives (3.9). Similarly, if $Q \in \bar{\alpha}_{1}$ and $C=\bar{\alpha}_{1}$, then
$S_{L}\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right)=\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{1}^{T}\right)^{2} d v d u+F_{Q}\left(W_{\bullet,, \bullet}^{G, C}\right)=\frac{4}{27}+F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)=\left\{\begin{array}{l}\frac{83}{108} \text { if } Q=Q_{14}, \\ \frac{4}{27} \text { if } Q \neq Q_{14},\end{array}\right.$
while $\Delta_{C}=\frac{2}{3} Q_{16}+\frac{1}{2} Q_{14}$. This gives (3.9) for $Q \in \bar{\alpha}_{1} \backslash\left\{Q_{14}\right\}$. If $Q \in \bar{\alpha}_{6} \backslash\left\{Q_{16}\right\}$ and $C=\bar{\alpha}_{6}$, then

$$
S_{L}\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right)=\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{6}^{T}\right)^{2} d v d u+F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)== \begin{cases}\frac{126}{162} & \text { if } Q=Q_{46} \\ \frac{25}{162} & \text { if } Q \neq Q_{46}\end{cases}
$$

while $\Delta_{C}=\frac{1}{2} Q_{46}+\frac{2}{3} Q_{16}$, which gives (3.9) for $Q \in \bar{\alpha}_{6} \backslash\left\{Q_{46}, Q_{16}\right\}$. If $Q \in \bar{\alpha}_{4}$ and $C=\bar{\alpha}_{4}$, then

$$
S_{L}\left(W_{\bullet, \bullet, 0}^{G, C} ; Q\right)=\frac{3}{9} \int_{0}^{7} \int_{0}^{t(u)}\left(\mathbf{p}(u, v) A \boldsymbol{e}_{4}^{T}\right)^{2} d v d u+F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } Q=Q_{46}, \\
\frac{8}{18} \text { if } Q=Q_{14}, \\
\frac{11}{36} \text { if } Q \neq Q_{46} \text { and } Q \neq Q_{14},
\end{array}\right.
$$

while $\Delta_{C}=\frac{1}{2} Q_{14}+\frac{1}{2} Q_{46}+\frac{1}{2} Q_{4}$. This gives (3.9) for $Q \in \bar{\alpha}_{4}$.
Therefore, we see that (3.9) holds for every $Q \in G$ for an appropriate choice of the curve C, which excludes the case $\left(\mathbb{D}_{4}\right)$ as we explained earlier.
3.3. Exclusion of the case $\left(\mathbb{A}_{3}\right)$. Let us finish the proof of Theorem 3.1. Now, we assume that the surface R is given by the equation (3.4) with $a_{2} \neq 0$. In the chart $\mathbb{A}_{x, y, z}^{3}=\left\{x_{0} y_{0} z_{0} \neq 0\right\}$ with coordinates $x=\frac{x_{1}}{x_{0}}, y=\frac{y_{1}}{y_{0}}, z=\frac{z_{1}}{z_{0}}$, we have $P=(0,0,0)$, and the surface R is given by

$$
y+x z^{2}+a_{2} x^{2}+\left(e_{0} y z+d_{2} x^{2} z+b_{1} x y+e_{1} x y z+c_{0} y^{2}+b_{2} x^{2} y+e_{2} x^{2} y z+c_{1} x y^{2}+c_{2} x^{2} y^{2}\right)=0
$$

where $y+x z^{2}+a_{2} x^{2}$ is the smallest degree term for the weights $\mathrm{wt}(x)=2, \operatorname{wt}(y)=4, \operatorname{wt}(z)=1$. Let $\lambda: W_{0} \rightarrow Y$ be the corresponding weighted blow up of the point P with weights $(2,4,1)$, and let G be the λ-exceptional surface. Then $G \cong \mathbb{P}(1,2,1)$, and we can also consider (x, y, z) as global coordinates on G with $\operatorname{wt}(x)=1, \operatorname{wt}(y)=2, \operatorname{wt}(z)=1$.

Let $R_{W_{0}}, F_{W_{0}}$ and $S_{W_{0}}$ be the proper transforms on W_{0} of the surfaces R, S and F, respectively. Set $R_{G}=\left.R_{W_{0}}\right|_{G}$, let n_{G} be the curve $\{z=0\} \subset G$, set $\Delta_{G}=\frac{1}{2} R_{G}+\frac{1}{2} n_{G}$ and $\Delta_{W_{0}}=\frac{1}{2} R_{W_{0}}$. Then

$$
\left.\left(K_{W_{0}}+\Delta_{W_{0}}+G\right)\right|_{G} \sim_{\mathbb{Q}} K_{G}+\Delta_{G} .
$$

Note that $\left.F_{W_{0}}\right|_{G}=\{x=0\},\left.S_{W_{0}}\right|_{G}=\{y=0\}$ and $R_{G}=\left\{y+x z+a_{2} x^{2}=0\right\}$.
The remaining part of this subsection is very similar to what has been done in Section 3.2, so we will omit some details here. We have $A_{Y, \Delta_{Y}}(G)=5$. Using [5, Corollary 7.7], we get $S_{Y, \Delta_{Y}}(G)=\frac{41}{9}$.

Both 3-folds Y and W_{0} are toric, and the weighted blow up λ is also toric. Let Σ_{Y} and $\Sigma_{W_{0}}$ be the fans of the 3 -folds Y and W_{0}, respectively. Then the fan Σ_{Y} is presented in Section 3.2, and the fan $\Sigma_{W_{0}}$ is the simplicial fan in \mathbb{R}^{3} defined by the following data:

- the list of primitive generators of rays in $\Sigma_{W_{0}}$ is

$$
\begin{array}{llll}
v_{0}=(2,4,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), & v_{3}=(0,1,0), \\
v_{4}=(0,0,-1), & v_{5}=(0,-1,1), & v_{6}=(-1,0,0) ; &
\end{array}
$$

- the list of maximal cones in $\Sigma_{W_{0}}$ is

$$
[0,1,3],[0,1,4],[0,3,4],[1,2,3],[1,2,5],[1,4,5],[2,3,6],[2,5,6],[3,4,6],[4,5,6],
$$

where $[i, j, k]$ is the cone generated by the rays v_{i}, v_{j}, and v_{k}.
As in Section 3.2, let us denote by T_{i} the torus invariant divisor that corresponds to the ray v_{i}. Note that T_{0} is the exceptional divisor G.

Take $u \in \mathbb{R}_{\geqslant 0}$. As in Section 3.2, we let $L_{u}=\lambda^{*}(L)-u T_{0}$. Then

$$
L_{u} \sim_{\mathbb{R}}(10-u) T_{07}+T_{1}+T_{2}+2 T_{3},
$$

which implies that L_{u} is pseudoeffective if and only if $u \in[0,10]$.
Let W_{1}, W_{2}, W_{3} be the toric 3 -folds defined by the simplicial fans $\Sigma_{W_{1}}, \Sigma_{W_{2}}, \Sigma_{W_{3}}$ in \mathbb{R}^{3}, respectively, which are determined by the following data:

- the list of primitive generators of rays of the fans $\Sigma_{W_{1}}, \Sigma_{W_{2}}, \Sigma_{W_{3}}$ is

$$
\begin{array}{llll}
v_{0}=(2,4,-1), & v_{1}=(1,0,0), & v_{2}=(0,0,1), & v_{3}=(0,1,0), \\
v_{4}=(0,0,-1), & v_{5}=(0,-1,1), & v_{6}=(-1,0,0) ; &
\end{array}
$$

- the list of maximal cones of $\Sigma_{W_{1}}$ is

$$
[0,1,2],[0,2,3],[0,1,4],[0,3,4],[1,4,5],[1,2,5],[2,3,6],[3,4,6],[4,5,6],[2,5,6] ;
$$

- the list of maximal cones of $\Sigma_{W_{2}}$ is

$$
[0,3,4],[0,4,6],[0,1,2],[0,2,3],[0,1,4],[1,4,5],[1,2,5],[2,3,6],[4,5,6],[2,5,6] ;
$$

- the list of maximal cones of $\Sigma_{W_{3}}$ is

$$
[0,1,5],[0,2,5],[0,3,6],[0,4,6],[0,2,3],[0,1,4],[1,4,5],[2,3,6],[4,5,6],[2,5,6] .
$$

Then W_{1}, W_{2}, W_{3} are projective, and there are small birational maps $W_{0} \rightarrow W_{1} \rightarrow W_{2} \rightarrow W_{3}$, which can be illustrated by the following self-explanatory toric diagrams:

As in Section 3.2, let us use the same notations for the corresponding torus invariant divisors and torus invariant curves on each 3 -fold W_{i}. Similarly, we will use the same notation for the strict transforms of the divisor L_{u} on each 3-fold W_{i}. As in Section 3.2, we see that

- L_{u} is nef on W_{0} for $u \in[0,1]$;
- L_{u} is nef on W_{1} for $u \in[1,2]$;
- L_{u} is nef on W_{2} for $u \in[2,3]$.

Moreover, the Zariski decomposition of the divisor L_{u} exists on the 3-fold W_{2} for each $u \in[3,5]$, and the Zariski decomposition exists on W_{3} for $u \in[5,10]$. Let us denote by $P(u)$ its positive part, and let us denote by $N(u)$ its negative part. Then $P(u)=L_{u}-N(u)$, where

$$
N(u)=\left\{\begin{array}{l}
\frac{u-3}{4} T_{3} \text { for } u \in[3,5], \\
\frac{u-3}{4} T_{3} \text { for } u \in[5,7], \\
\frac{u-7}{3} T_{2}+\frac{u-4}{3} T_{3} \text { for } u \in[7,8], \\
\frac{u-8}{2} T_{1}+\frac{u-7}{3} T_{2}+\frac{u-4}{3} T_{3} \text { for } u \in[8,10] .
\end{array}\right.
$$

Here, the divisor $L_{u}-\frac{u-3}{4} T_{3}$ is nef on W_{2} for $u \in[3,5]$, and it is nef on W_{3} for [5, 7].
Now, let us consider a common partial toric resolution \widetilde{W} of the toric 3 -folds W_{0}, W_{1}, W_{2} and W_{3}. Namely, let \widetilde{W} be the toric 3 -fold defined by the simplicial fan $\Sigma_{\widetilde{W}}$ in \mathbb{R}^{3} given by the following data:

- the list of primitive generators of rays of $\Sigma_{\widetilde{W}}$ is
$v_{0}=(2,4,-1), \quad v_{1}=(1,0,0), \quad v_{2}=(0,0,1), \quad v_{3}=(0,1,0), \quad v_{4}=(0,0,-1), \quad v_{5}=(0,-1,1)$, $v_{6}=(-1,0,0), \quad v_{7}=(0,4,-1), \quad v_{8}=(1,2,0), \quad v_{9}=(2,3,0), \quad v_{10}=(2,0,3)$;
- the list of maximal cones of $\Sigma_{\widetilde{W}}$ is
$[0,1,4], \quad[0,1,9], \quad[0,3,7], \quad[0,3,8]$,
$[0,4,7], \quad[0,8,9], \quad[1,4,5], \quad[1,5,10]$,
[1, 9, 10],
$[2,3,6], \quad[2,3,8], \quad[2,5,6], \quad[2,5,10], \quad[2,8,10], \quad[3,6,7], \quad[4,5,6], \quad[4,6,7], \quad[8,9,10]$.

The fan $\Sigma_{\widetilde{W}}$ can be diagramed as follows:

Then there exists the following toric commutative diagram

where $\zeta_{0}, \zeta_{1}, \zeta_{2}, \zeta_{3}$ are toric birational morphisms.
Let \widetilde{T}_{i} be the torus invariant divisor on \widetilde{W} corresponding to the ray v_{i} in the fan $\Sigma_{\widetilde{W}}$. Then

$$
\begin{array}{ll}
\zeta_{0}^{*}\left(T_{0}\right)=\widetilde{T}_{0}, & \zeta_{0}^{*}\left(T_{1}\right)=\widetilde{T}_{1}+\widetilde{T}_{8}+2 \widetilde{T}_{9}+2 \widetilde{T}_{10}, \\
\zeta_{0}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+3 \widetilde{T}_{10}, & \zeta_{0}^{*}\left(T_{3}\right)=\widetilde{T}_{3}+4 \widetilde{T}_{7}+2 \widetilde{T}_{8}+3 \widetilde{T}_{9}, \\
\zeta_{1}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+\frac{1}{2} \widetilde{T}_{8}+\frac{3}{4} \widetilde{T}_{9}, & \zeta_{1}^{*}\left(T_{1}\right)=\widetilde{T}_{1}+\frac{1}{2} \widetilde{T}_{9}+2 \widetilde{T}_{10} \\
\zeta_{1}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+\frac{1}{2} \widetilde{T}_{8}+\frac{3}{4} \widetilde{T}_{9}+3 \widetilde{T}_{10}, & \zeta_{1}^{*}\left(T_{3}\right)=\widetilde{T}_{3}+4 \widetilde{T}_{7} \\
\zeta_{2}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+\widetilde{T}_{7}+\frac{1}{2} \widetilde{T}_{8}+\frac{3}{4} \widetilde{T}_{9}, & \zeta_{2}^{*}\left(T_{1}\right)=\widetilde{T}_{1}+\frac{1}{2} \widetilde{T}_{9}+2 \widetilde{T}_{10}, \\
\zeta_{2}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+\frac{1}{2} \widetilde{T}_{8}+\frac{3}{4} \widetilde{T}_{9}+3 \widetilde{T}_{10}, & \zeta_{2}^{*}\left(T_{3}\right)=\widetilde{T}_{3} \\
\zeta_{3}^{*}\left(T_{0}\right)=\widetilde{T}_{0}+\widetilde{T}_{7}+\frac{1}{2} \widetilde{T}_{8}+\widetilde{T}_{9}+\widetilde{T}_{10}, & \zeta_{3}^{*}\left(T_{1}\right)=\widetilde{T}_{1} \\
\zeta_{3}^{*}\left(T_{2}\right)=\widetilde{T}_{2}+\frac{1}{2} \widetilde{T}_{8}, & \zeta_{3}^{*}\left(T_{3}\right)=\widetilde{T}_{3}
\end{array}
$$

On the 3-fold \widetilde{W}, the Zariski decomposition of the divisor $\zeta_{0}^{*}\left(L_{u}\right)$ does exist for every $u \in[0,10]$. Let $P_{\widehat{W}}(u)$ be its positive part, and let $N_{\widetilde{W}}(u)$ be its negative part. We can express them as linear combinations of the torus invariant divisors. These expressions are presented in Table 8 .

Fix the quotient homomorphism $\mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3} / \mathbb{Z} v_{0} \cong \mathbb{Z}^{2}$ such that $v_{1} \mapsto(1,0)$ and $v_{3} \mapsto(0,1)$. Then $\Sigma_{\widetilde{W}}$ is mapped to the fan in \mathbb{R}^{2} whose rays are generated by the following vectors:

$$
w_{1}=(1,0), w_{2}=(2,3), w_{3}=(1,2), w_{4}=(0,1), w_{5}=(-1,0), w_{6}=(-1,-2)
$$

This two-dimensional fan defines the surface \widetilde{T}_{0}. Let $\zeta=\left.\zeta_{0}\right|_{\widetilde{T}_{0}}: \widetilde{T}_{0} \rightarrow T_{0}$ be the restriction map. Then ζ is described by a map from the fan of the toric surface \widetilde{T}_{0} to the fan of the surface T_{0}, which can be illustrated by the following toric picture:

It contracts the curves of the rays w_{5}, w_{3}, w_{2} to points on the surface T_{0}.
Let $\alpha_{1}, \ldots, \alpha_{6}$ be the torus invariant curves in \widetilde{T}_{0} defined by w_{1}, \ldots, w_{6}, respectively. Then
$\left.\widetilde{T}_{1}\right|_{\widetilde{T}_{0}}=\alpha_{1},\left.\widetilde{T}_{3}\right|_{\widetilde{T}_{0}}=\alpha_{4},\left.\widetilde{T}_{4}\right|_{\widetilde{T}_{0}}=\frac{1}{2} \alpha_{6},\left.\widetilde{T}_{7}\right|_{\widetilde{T}_{0}}=\frac{1}{2} \alpha_{5},\left.\widetilde{T}_{8}\right|_{\widetilde{T}_{0}}=\alpha_{3},\left.\widetilde{T}_{9}\right|_{\widetilde{T}_{0}}=\alpha_{2},\left.\widetilde{T}_{0}\right|_{\widetilde{T}_{0}}=-\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}\right)$.
Set $\bar{\alpha}_{1}=\zeta\left(\alpha_{1}\right), \bar{\alpha}_{4}=\zeta\left(\alpha_{4}\right), \bar{\alpha}_{6}=\zeta\left(\alpha_{6}\right)$. Then $\bar{\alpha}_{1}=\{x=0\}, \bar{\alpha}_{4}=\{y=0\}, \bar{\alpha}_{6}=n_{G}=\{z=0\}$.
Set $Q_{14}=\bar{\alpha}_{1} \cap \bar{\alpha}_{4}, Q_{16}=\bar{\alpha}_{1} \cap \bar{\alpha}_{6}, Q_{46}=\bar{\alpha}_{4} \cap \bar{\alpha}_{6}$. Then Q_{16} is the singular point of the surface G. Note that the curve R_{G} meets $\bar{\alpha}_{1}$ transversally at Q_{14}, it meets the curve $\bar{\alpha}_{4}$ transversally at two distinct points (one of them is Q_{14}), and R_{G} meets the curve $\bar{\alpha}_{6}$ transversally at a single point, which is different from Q_{16} and Q_{46}. Let Q_{4} be the point in $R_{G} \cap \bar{\alpha}_{4}$ that is different from Q_{14}, and let Q_{6} be the intersection point $R_{G} \cap \bar{\alpha}_{6}$.

Arguing as in Section 3.2, we obtain the following intersection matrix:

$$
A:=\left(\alpha_{i} \alpha_{j}\right)=\left(\begin{array}{cccccc}
-\frac{1}{6} & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & -\frac{2}{3} & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0
\end{array}\right)
$$

Now, set $\widetilde{P}(u)=\left.P_{\widetilde{W}}(u)\right|_{\widetilde{T}_{0}}$ and $\widetilde{N}(u)=\left.N_{\widetilde{W}}(u)\right|_{\widetilde{T}_{0}}$. We can express $\widetilde{P}(u)$ and $\widetilde{N}(u)$ as linear combinations of the curves $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$. These expressions are presented in Table 9 ,

Let Q be a point in the surface $G=T_{0}$, let C be a smooth curve in G that passes through P, and let \widetilde{C} be its proper transform on \widetilde{T}_{0}. For every $u \in[0,10]$, let

$$
t(u)=\inf \left\{v \in \mathbb{R}_{\geqslant 0} \mid \widetilde{P}(u)-v C \text { is pseudoeffective }\right\} .
$$

For every $v \in[0, t(u)]$, let $P(u, v)$ be the positive part of the Zariski decomposition of $\widetilde{P}(u)-v C$, and let $N(u, v)$ be its negative part. Set

$$
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right)=\frac{3}{L^{3}} \int_{0}^{10}(\widetilde{P}(u))^{2} \operatorname{ord}_{C}(\widetilde{N}(u)) d u+\frac{3}{L^{3}} \int_{0}^{10} \int_{0}^{t(u)}(P(u, v))^{2} d v d u
$$

Now, we write $\zeta^{*}(C)=\widetilde{C}+\Sigma$ for an effective \mathbb{R}-divisor Σ on the surface \widetilde{T}_{0}. For every $u \in[0,10]$, write $\widetilde{N}(u)=d(u) C+N^{\prime}(u)$, where $d(u)=\operatorname{ord}_{C}(\widetilde{N}(u))$, and $N^{\prime}(u)$ is an effective divisor on \widetilde{T}_{0}. Set

$$
S\left(W_{\bullet, \bullet \bullet}^{G, C} ; Q\right)=\frac{3}{L^{3}} \int_{0}^{10} \int_{0}^{t(u)}(P(u, v) \cdot \widetilde{C})^{2} d v d u+F_{Q}\left(W_{\bullet, \bullet, \bullet}^{G, C}\right)
$$

for

$$
F_{Q}\left(W_{\bullet,, \bullet \bullet}^{G, C}\right)=\frac{6}{L^{3}} \int_{0}^{10} \int_{0}^{t(u)}(P(u, v) \cdot \widetilde{C}) \cdot \operatorname{ord}_{Q}\left(\left.\left(N^{\prime}(u)+N(u, v)-(v+d(u)) \Sigma\right)\right|_{\widetilde{C}}\right) d v d u
$$

where we consider Q as a point in \widetilde{C} using the isomorphism $\widetilde{C} \cong C$ induced by ζ.
If $C \not \subset \operatorname{Supp}\left(\Delta_{G}\right)$, we have $\left.\left(K_{G}+C+\Delta_{G}\right)\right|_{C} \sim_{\mathbb{R}} K_{C}+\Delta_{C}$, where Δ_{C} is an effective divisor known as the different. If $C \not \subset \operatorname{Supp}\left(\Delta_{G}\right)$, we still can define the different Δ_{C} using

$$
\left.\left(K_{G}+C+\Delta_{G}-\operatorname{ord}_{C}\left(\Delta_{G}\right)\right)\right|_{C} \sim_{\mathbb{R}} K_{C}+\Delta_{C}
$$

The different Δ_{C} can be computed locally near any point in C. Now, arguing as in Section 3.2, we see that to exclude the case $\left(\mathbb{A}_{3}\right)$, it is enough to show that for every point $Q \in G$, there exists a smooth irreducible curve $C \subset G$ passing through Q such that

$$
\begin{equation*}
S_{L}\left(W_{\bullet, \bullet}^{G} ; C\right) \leqslant A_{G, \Delta_{G}}(C) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(W_{\bullet, \bullet, \bullet}^{G, C} ; Q\right) \leqslant A_{C, \Delta_{C}}(Q) \tag{3.11}
\end{equation*}
$$

Let us do this in the rest of this section, which would complete the proof of Theorem 3.1.
Let Q be a point in $G=T_{0} \cong \mathbb{P}(1,2,1)$. Let us choose the curve C as follows. If $Q \in \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}$, we let C be a curve among $\bar{\alpha}_{1}, \bar{\alpha}_{4}, \bar{\alpha}_{6}$ that contains Q. If $Q \notin \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}$, then there is a unique curve $\bar{\alpha}_{0} \in\left|\mathcal{O}_{G}(1)\right|$ that contains Q. In this case, we let $C=\bar{\alpha}_{0}$, and we denote by α_{0} the proper transform of the curve $\bar{\alpha}_{0}$ on the surface \widetilde{T}_{0}. Then Σ and Δ_{C} can be described as follows:
$\left(\bar{\alpha}_{1}\right)$ if $C=\bar{\alpha}_{1}$, then $\Sigma=2 \alpha_{2}+\alpha_{3}$ and $\Delta_{C}=\frac{1}{2} Q_{16}+\frac{1}{2} Q_{14}$,
$\left(\bar{\alpha}_{4}\right)$ if $C=\bar{\alpha}_{4}$, then $\Sigma=3 \alpha_{2}+2 \alpha_{3}+2 \alpha_{5}$ and $\Delta_{C}=\frac{1}{2} Q_{14}+\frac{1}{2} Q_{4}$,
$\left(\bar{\alpha}_{6}\right)$ if $C=\bar{\alpha}_{6}$, then $\Sigma=\alpha_{5}$ and $\Delta_{C}=\frac{3}{4} Q_{16}+\frac{1}{2} Q_{6}$,
$\left(\bar{\alpha}_{0}\right)$ if $C=\bar{\alpha}_{0}$, then $\Sigma=0$ and $\Delta_{C}=\left.\Delta_{G}\right|_{C}+\frac{3}{4} Q_{16}$.
In the last case, we have $\operatorname{ord}_{Q}\left(\Delta_{C}\right) \leqslant \frac{1}{2}$, because $\bar{\alpha}_{0}$ and R_{G} meet transversally.
In each possible case, we compute $t(u)$ in Table 10 .
For each $u \in[0,10]$ and $v \in[0, t(u)]$, we can express both divisors $P(u, v)$ and $N(u, v)$ as linear combinations of the curves $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$. They are listed in Tables 11, 12, (13, (14,

Now, arguing as in Section 3.2, we compute

$$
S_{L}\left(W_{\bullet \bullet}^{G} ; C\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } C=\bar{\alpha}_{1} \\
\frac{7}{9} \text { if } C=\bar{\alpha}_{4} \\
\frac{2}{9} \text { if } C=\bar{\alpha}_{6} \\
\frac{3}{16} \text { if } C=\bar{\alpha}_{0}
\end{array}\right.
$$

This gives (3.10). Note that $A_{G, \Delta_{G}}\left(\bar{\alpha}_{6}\right)=\frac{1}{2}$.
If $Q \in \alpha_{1} \backslash\left\{Q_{14}\right\}$, let $C=\bar{\alpha}_{1}$, then $S_{L}\left(W_{\bullet,,, \bullet}^{G, \bar{\alpha}_{1}} ; Q\right)=\frac{1}{9}$. If $Q \in \bar{\alpha}_{4} \backslash\left\{Q_{46}\right\}$, let $C=\bar{\alpha}_{4}$, then

$$
S_{L}\left(W_{\bullet, \bullet, \bullet}^{G,,_{4}} ; Q\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } Q=Q_{14} \\
\frac{3}{16} \text { if } Q \neq Q_{14}
\end{array}\right.
$$

If $Q \in \bar{\alpha}_{6} \backslash\left\{Q_{16}\right\}$, we let $C=\bar{\alpha}_{1}$, which gives

$$
S_{L}\left(W_{\bullet,, \bullet \bullet}^{G, \bar{\alpha}_{6}} ; Q\right)=\left\{\begin{array}{lll}
\frac{7}{9} & \text { if } \quad Q=Q_{46} \\
\frac{2}{9} & \text { if } \quad Q \neq Q_{46}
\end{array}\right.
$$

If $\left.Q \notin \bar{\alpha}_{1} \cup \bar{\alpha}_{4} \cup \bar{\alpha}_{6}\right)$, we let $C=\bar{\alpha}_{0}$, which gives $S_{L}\left(W_{\bullet,, \circ \bullet}^{G, \bar{\alpha}_{0}} ; Q\right)=\frac{1729}{6912}$. In each case we get (3.11). This excludes the case $\left(\mathbb{A}_{3}\right)$, and completes the proof of Theorem 3.1.

Appendix A. Tables

Table 1: Zariski decomposition of the divisor $\zeta_{0}^{*}\left(L_{u}\right)$

u	$P_{\widetilde{W}}(u) \& N_{\widetilde{W}}(u)$	\widetilde{T}_{0}	\widetilde{T}_{1}	\widetilde{T}_{2}	\widetilde{T}_{3}	\widetilde{T}_{7}	\widetilde{T}_{8}	\widetilde{T}_{9}	\widetilde{T}_{10}
$[0,1]$	$P_{\widetilde{W}}(u)$	$7-u$	1	1	2	6	7	5	3
	$N_{\widetilde{W}}(u)$	0	0	0	0	0	0	0	0
$[1,2]$	$P_{\widetilde{W}}(u)$	$7-u$	1	1	2	$7-u$	$8-u$	$\frac{17-2 u}{3}$	3
	$N_{\widetilde{W}}(u)$	0	0	0	0	$u-1$	$u-1$	$\frac{2}{3}(u-1)$	0
$[2,4]$	$P_{\widetilde{W}}(u)$	$7-u$	1	1	$\frac{8-u}{3}$	$7-u$	$8-u$	$\frac{17-2 u}{3}$	3
	$N_{\widetilde{W}}(u)$	0	0	0	$\frac{u-2}{3}$	$u-1$	$u-1$	$\frac{2}{3}(u-1)$	0
$[4,5]$	$P_{\widetilde{W}}(u)$	$7-u$	1	1	$\frac{8-u}{3}$	$7-u$	$8-u$	$7-u$	$7-u$
	$N_{\widetilde{W}}(u)$	0	0	0	$\frac{u-2}{3}$	$u-1$	$u-1$	$u-2$	$u-4$
$[5,6]$	$P_{\widetilde{W}}(u)$	$7-u$	1	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	$\frac{3}{2}(7-u)$	$7-u$	$7-u$
	$N_{\widetilde{W}}(u)$	0	0	$\frac{u-5}{2}$	$\frac{u-3}{2}$	$u-1$	$\frac{3 u-7}{2}$	$u-2$	$u-4$
$[6,7]$	$P_{\widetilde{W}}(u)$	$7-u$	$7-u$	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	$\frac{3}{2}(7-u)$	$7-u$	$7-u$
	$N_{\widetilde{W}}(u)$	0	$u-6$	$\frac{u-5}{2}$	$\frac{u-3}{2}$	$u-1$	$\frac{3 u-7}{2}$	$u-2$	$u-4$

Table 2: Expressions for $\widetilde{P}(u)$ and $\widetilde{N}(u)$

u		α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\widetilde{P}(u)$	$u-6$	$u-2$	u	2	6	0
	$\widetilde{N}(u)$	0	0	0	0	0	0
$[1,2]$	$\widetilde{P}(u)$	$u-6$	$\frac{u-4}{3}$	1	2	$7-u$	0
	$\widetilde{N}(u)$	0	$\frac{2}{3}(u-1)$	$u-1$	0	$u-1$	0
$[2,4]$	$\widetilde{P}(u)$	$u-6$	$\frac{u-4}{3}$	1	$\frac{8-u}{3}$	$7-u$	0
	$\widetilde{N}(u)$	0	$\frac{2}{3}(u-1)$	$u-1$	$\frac{u-}{3}$	$u-1$	0
$[4,5]$	$\widetilde{P}(u)$	$u-6$	0	1	$\frac{8-u}{3}$	$7-u$	0
	$\widetilde{N}(u)$	0	$u-2$	$u-1$	$\frac{u-2}{3}$	$u-1$	0
$[5,6]$	$\widetilde{P}(u)$	$6-u$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	0
	$\widetilde{N}(u)$	0	$u-2$	$\frac{3 u-7}{2}$	$\frac{u-3}{2}$	$u-1$	0
$[6,7]$	$\widetilde{P}(u)$	0	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	0
	$\widetilde{N}(u)$	$u-6$	$u-2$	$\frac{3 u-7}{2}$	$\frac{u-3}{2}$	$u-1$	0

Table 3: Values of $t(u)$

C^{u}	$[0,1]$	$[1,2]$	$[2,4]$	$[4,5]$	$[5,6]$	$[6,7]$
$\bar{\alpha}_{1}$	u	1	1	1	1	$7-u$
$\bar{\alpha}_{4}$	$\frac{u}{3}$	$\frac{u}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{9-u}{6}$	$\frac{7-u}{2}$
$\bar{\alpha}_{6}$	u	1	1	1	$\frac{7-u}{2}$	$\frac{7-u}{2}$
$\bar{\alpha}_{0}$	u	1	1	$\frac{7-u}{3}$	$\frac{7-u}{3}$	$\frac{7-u}{3}$

Table 4: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{1}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$[0, u]$	$P(u, v)$	$u-6-v$	$u-2-v$	$u-v$	2	6	0
		$N(u, v)$	0	v	v	0	0	0
$[1,2]$	$[0, u-1]$	$P(u, v)$	$u-6-v$	$\frac{u-4-v}{3}$	1	2	$7-u$	0
		$N(u, v)$	0	$\frac{v}{3}$	0	0	0	0
$[1,2]$	$[u-1,1]$	$P(u, v)$	$u-6-v$	$u-2-v$	$u-v$	2	$7-u$	0
		$N(u, v)$	0	$\frac{3 v-2 u+2}{3}$	$v-u+1$	0	0	0

$[2,4]$	$[0,1]$	$P(u, v)$	$u-6-v$	$\frac{u-4-v}{3}$	1	$\frac{8-u}{3}$	$7-u$	0
		$N(u, v)$	0	$\frac{v}{3}$	0	0	0	0
$[4,5]$	$[0, u-4]$	$P(u, v)$	$u-6-v$	0	1	$\frac{8-u}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[4,5]$	$[u-4,1]$	$P(u, v)$	$u-6-v$	$\frac{u-4-v}{3}$	1	$\frac{8-u}{3}$	$7-u$	0
		$N(u, v)$	0	$\frac{u-4-v}{6}$	0	0	0	0
$[5,6]$	$[0,1]$	$P(u, v)$	$6-u-v$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[6,7]$	$[0,7-u]$	$P(u, v)$	$-v$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0

Table 5: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{4}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\left[0, \frac{u}{3}\right]$	$P(u, v)$	$u-6$	$u-2-2 v$	$u-3 v$	$2-v$	$6-3 v$	0
		$N(u, v)$	0	$2 v$	$3 v$	0	$3 v$	0
$[1,2]$	$\left[0, \frac{u-1}{3}\right]$	$P(u, v)$	$u-6$	$\frac{u-4}{3}$	1	$2-v$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[1,2]$	$\left[\frac{u-1}{3}, \frac{u}{3}\right]$	$P(u, v)$	$u-6$	$u-2-2 v$	$u-3 v$	$2-v$	$6-3 v$	0
		$N(u, v)$	0	$\frac{6 v-2 u+2}{3}$	$3 v-u+1$	0	$3 v-u+1$	0
$[2,4]$	$\left[0, \frac{1}{3}\right]$	$P(u, v)$	$u-6$	$\frac{u-4}{3}$	1	$\frac{8-u-3 v}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[2,4]$	$\left[\frac{1}{3}, \frac{2}{3}\right]$	$P(u, v)$	$u-6$	$\frac{u-2-6 v}{3}$	$2-3 v$	$\frac{8-u-3 v}{3}$	$8-u-3 v$	0
		$N(u, v)$	0	$\frac{6 v-2}{3}$	$3 v-1$	0	$3 v-1$	0
$[4,5]$	$\left[0, \frac{5-u}{3}\right]$	$P(u, v)$	$u-6$	0	1	$\frac{8-u-3 v}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[4,5]$	$\left[\frac{5-u}{3}, \frac{1}{3}\right]$	$P(u, v)$	$u-6$	0	$\frac{8-u-3 v}{3}$	$\frac{8-u-3 v}{3}$	$7-u$	0
		$N(u, v)$	0	0	$\frac{3 v+u-5}{3}$	0	0	0
$[4,5]$	$\left[\frac{1}{3}, \frac{u-2}{6}\right]$	$P(u, v)$	$u-6$	0	$\frac{8-u-3 v}{3}$	$\frac{8-u-3 v}{3}$	$8-u-3 v$	0
		$N(u, v)$	0	0	$\frac{3 v+u-5}{3}$	0	$3 v-1$	0
$[4,5]$	$\left[\frac{u-2}{6}, \frac{2}{3}\right]$	$P(u, v)$	$u-6$	$\frac{u-2-6 v}{3}$	$2-3 v$	$\frac{8-u-3 v}{3}$	$8-u-3 v$	0
		$N(u, v)$	0	$\frac{6 v+2-u}{3}$	$3 v-1$	0	$3 v-1$	0

$[5,6]$	$\left[0, \frac{7-u}{6}\right]$	$P(u, v)$	$u-6$	0	$\frac{7-u-2 v}{2}$	$\frac{7-u-2 v}{2}$	$7-u$	0
		$N(u, v)$	0	0	v	0	0	0
$[5,6]$	$\left[\frac{7-u}{6}, \frac{1}{2}\right]$	$P(u, v)$	$u-6$	0	$\frac{7-u-2 v}{2}$	$\frac{7-u-2 v}{2}$	$\frac{21-3 u-6 v}{2}$	0
		$N(u, v)$	0	0	v	0	$\frac{6 v+u-7}{2}$	0
$[5,6]$	$\left[\frac{1}{2}, \frac{9-u}{6}\right]$	$P(u, v)$	$u-6$	$1-2 v$	$\frac{9-u-6 v}{2}$	$\frac{7-u-2 v}{2}$	$\frac{21-3 u-6 v}{2}$	0
		$N(u, v)$	0	$2 v-1$	$3 v-1$	0	$\frac{6 v+u-7}{2}$	0
$[6,7]$	$\left[0, \frac{7-u}{6}\right]$	$P(u, v)$	0	0	$\frac{7-u-2 v}{2}$	$\frac{7-u-2 v}{2}$	$7-u$	0
		$N(u, v)$	0	0	v	0	0	0
$[6,7]$	$\left[\frac{7-u}{6}, \frac{7-u}{2}\right]$	$P(u, v)$	0	0	$\frac{7-u-2 v}{2}$	$\frac{7-u-2 v}{2}$	$\frac{21-3 u-6 v}{2}$	0
		$N(u, v)$	0	0	0	0	$\frac{6 v+u-7}{2}$	0

Table 6: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{6}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$[0, u]$	$P(u, v)$	$u-6$	$u-2$	u	2	$6-v$	$-v$
		$N(u, v)$	0	0	0	0	v	0
$[1,2]$	$[0, u-1]$	$P(u, v)$	$u-6$	$\frac{u-4}{3}$	1	2	$7-u$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[1,2]$	$[u-1,1]$	$P(u, v)$	$u-6$	$\frac{u-4}{3}$	1	2	$6-v$	$-v$
		$N(u, v)$	0	0	0	0	$v-u+1$	0
$[2,4]$	$[0,1]$	$P(u, v)$	$u-6$	$\frac{u-4}{3}$	1	$\frac{8-u}{3}$	$7-u$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[4,5]$	$\left[0, \frac{6-u}{2}\right]$	$P(u, v)$	$u-6$	0	1	$\frac{8-u}{3}$	$7-u$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[4,5]$	$\left[\frac{6-u}{2}, 1\right]$	$P(u, v)$	$-2 v$	0	1	$\frac{8-u}{3}$	$7-u$	$-v$
		$N(u, v)$	$2 v-6+u$	0	0	0	0	0
$[5,6]$	$\left[0, \frac{6-u}{2}\right]$	$P(u, v)$	$6-u$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[5,6]$	$\left[\frac{6-u}{2}, \frac{7-u}{2}\right]$	$P(u, v)$	$-2 v$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	$-v$
		$N(u, v)$	$2 v+u-6$	0	0	0	0	0
$[6,7]$	$\left[0, \frac{7-u}{2}\right]$	$P(u, v)$	$-2 v$	0	$\frac{7-u}{2}$	$\frac{7-u}{2}$	$7-u$	$-v$
		$N(u, v)$	$2 v$	0	0	0	0	0

Table 7: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{0}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$[0, u]$	$P(u, v)$	$u-6-v$	$u-2-v$	$u-v$	2	6	0
		$N(u, v)$	0	0	0	0	0	0
$[1,2]$	$[0,2-u]$	$P(u, v)$	$u-6-v$	$\frac{u-4-3 v}{3}$	$1-v$	2	$7-u$	0
		$N(u, v)$	0	0	0	0	0	0
$[1,2]$	$[2-u, 1]$	$P(u, v)$	$u-6-v$	$\frac{u-4-3 v}{3}$	$1-v$	$\frac{8-u-v}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	$\frac{v+u-2}{3}$	0	0
$[2,4]$	$[0,1]$	$P(u, v)$	$u-6-v$	$\frac{u-4-3 v}{3}$	$1-v$	$\frac{8-u-v}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	$\frac{v}{3}$	0	0
$[4,5]$	$[0,5-u]$	$P(u, v)$	$u-6-v$	$-v$	$1-v$	$\frac{8-u-v}{3}$	$7-u$	0
		$N(u, v)$	0	0	0	$\frac{v}{3}$	0	0
$[4,5]$	$\left[5-u, \frac{6-u}{2}\right]$	$P(u, v)$	$u-6-v$	$-v$	$\frac{7-u-3 v}{2}$	$\frac{7-u-v}{2}$	$7-u$	0
		$N(u, v)$	0	0	$\frac{u+v-5}{2}$	$\frac{u+3 v-5}{6}$	0	0
$[4,5]$	$\left[\frac{6-u}{2}, \frac{7-u}{3}\right]$	$P(u, v)$	$-3 v$	$-v$	$\frac{7-u-3 v}{2}$	$\frac{7-u-v}{2}$	$7-u$	0
		$N(u, v)$	$u-6+2 v$	0	$\frac{u+v-5}{2}$	$\frac{u+3 v-5}{6}$	0	0
$[5,6]$	$\left[0, \frac{6-u}{2}\right]$	$P(u, v)$	$u-6-v$	$-v$	$\frac{7-u-3 v}{2}$	$\frac{7-u-v}{2}$	$7-u$	0
		$N(u, v)$	0	0	$\frac{v}{2}$	$\frac{v}{2}$	0	0
$[5,6]$	$\left[\frac{6-u}{2}, \frac{7-u}{3}\right]$	$P(u, v)$	$-3 v$	$-v$	$\frac{7-u-3 v}{2}$	$\frac{7-u-v}{2}$	$7-u$	0
		$N(u, v)$	$u-6+2 v$	0	$\frac{v}{2}$	$\frac{v}{2}$	0	0
$[6,7]$	$\left[0, \frac{7-u}{3}\right]$	$P(u, v)$	$-2 v$	$-v$	$\frac{7-u-3 v}{2}$	$\frac{7-u-v}{2}$	$7-u$	0
		$N(u, v)$	$2 v$	0	$\frac{v}{2}$	$\frac{v}{2}$	0	0

Table 8: Zariski decomposition of the divisor $\zeta_{0}^{*}\left(L_{u}\right)$

u	$P_{\widetilde{W}}(u) \& N_{\widetilde{W}}(u)$	\widetilde{T}_{0}	\widetilde{T}_{1}	\widetilde{T}_{2}	\widetilde{T}_{3}	\widetilde{T}_{7}	\widetilde{T}_{8}	\widetilde{T}_{9}	\widetilde{T}_{10}
$[0,1]$	$P_{\widetilde{W}}(u)$	$10-u$	1	1	2	8	5	8	5
	$N_{\widetilde{W}}(u)$	0	0	0	0	0	0	0	0
$[1,2]$	$P_{\widetilde{W}}(u)$	$10-u$	1	1	2	8	$\frac{11-u}{2}$	$\frac{35-3 u}{4}$	5
	$N_{\widetilde{W}}(u)$	0	0	0	0	0	$\frac{u-1}{2}$	$\frac{3(u-1)}{4}$	0
$[2,3]$	$P_{\widetilde{W}}(u)$	$10-u$	1	1	2	$10-u$	$\frac{11-u}{2}$	$\frac{35-3 u}{4}$	5
	$N_{\widetilde{W}}(u)$	0	0	0	0	$u-2$	$\frac{u-1}{2}$	$\frac{3(u-1)}{4}$	0

$[3,5]$	$P_{\widetilde{W}}(u)$	$10-u$	1	1	$\frac{11-u}{4}$	$10-u$	$\frac{11-u}{2}$	$\frac{35-3 u}{4}$	5
	$N_{\widetilde{W}}(u)$	0	0	0	$\frac{u-3}{4}$	$u-2$	$\frac{u-1}{2}$	$\frac{3(u-1)}{4}$	0
$[5,7]$	$P_{\widetilde{W}}(u)$	$10-u$	1	1	$\frac{11-u}{4}$	$10-u$	$\frac{11-u}{2}$	$10-u$	$10-u$
	$N_{\widetilde{W}}(u)$	0	0	0	$\frac{u-3}{4}$	$u-2$	$\frac{u-1}{2}$	$u-2$	$u-5$
$[7,8]$	$P_{\widetilde{W}}(u)$	$10-u$	1	$\frac{10-u}{3}$	$\frac{10-u}{3}$	$10-u$	$\frac{2(10-u)}{3}$	$10-u$	$10-u$
	$N_{\widetilde{W}}(u)$	0	0	$\frac{u-7}{3}$	$\frac{u-4}{3}$	$u-2$	$\frac{2 u-5}{3}$	$u-2$	$u-5$
$[8,10]$	$P_{\widetilde{W}}(u)$	$10-u$	$\frac{10-u}{2}$	$\frac{10-u}{3}$	$\frac{10-u}{3}$	$10-u$	$\frac{2(10-u)}{3}$	$10-u$	$10-u$
	$N_{\widetilde{W}}(u)$	0	$\frac{u-8}{2}$	$\frac{u-7}{3}$	$\frac{u-4}{3}$	$u-2$	$\frac{2 u-5}{3}$	$u-2$	$u-5$

Table 9: Expressions for $\widetilde{P}(u)$ and $\widetilde{N}(u)$

u	$\widetilde{P}(u) \& \widetilde{N}(u)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	$u-2$	$\frac{u}{2}$	2	4	0
	$\widetilde{N}(u)$	0	0	0	0	0	0
$[1,2]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	2	4	0
	$\widetilde{N}(u)$	0	$\frac{3(u-1)}{4}$	$\frac{u-1}{2}$	0	0	0
$[2,3]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	2	$\frac{10-u}{2}$	0
	$\widetilde{N}(u)$	0	$\frac{3(u-1)}{4}$	$\frac{u-1}{2}$	0	$\frac{u-2}{2}$	0
$[3,5]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	0
	$\widetilde{N}(u)$	0	$\frac{3(u-1)}{4}$	$\frac{u-1}{2}$	$\frac{u-3}{4}$	$\frac{u-2}{2}$	0
$[5,7]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	0	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	0
	$\widetilde{N}(u)$	0	$u-2$	$\frac{u-1}{2}$	$\frac{u-3}{4}$	$\frac{u-2}{2}$	0
$[7,8]$	$\widetilde{P}(u)$	$\frac{u-8}{2}$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	0
	$\widetilde{N}(u)$	0	$u-2$	$\frac{2 u-5}{3}$	$\frac{u-4}{3}$	$\frac{u-2}{2}$	0
$[8,10]$	$\widetilde{P}(u)$	0	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	0
	$\widetilde{N}(u)$	$\frac{u-8}{2}$	$u-2$	$\frac{2 u-5}{3}$	$\frac{u-4}{3}$	$\frac{u-2}{2}$	0

Table 10: Values of $t(u)$

C	$[0,1]$	$[1,2]$	$[2,3]$	$[3,5]$	$[5,6]$	$[6,7]$	$[7,8]$	$[8,10]$
$\bar{\alpha}_{1}$	$\frac{u}{2}$	$\frac{u}{2}$	1	1	1	1	1	$\frac{10-u}{2}$
$\bar{\alpha}_{4}$	$\frac{u}{4}$	$\frac{u}{4}$	$\frac{u}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{16-u}{12}$	$\frac{10-u}{3}$

$\bar{\alpha}_{6}$	$\frac{u}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{10-u}{6}$	$\frac{10-u}{6}$
$\bar{\alpha}_{0}$	$\frac{u}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{10-u}{8}$	$\frac{10-u}{8}$	$\frac{10-u}{8}$

Table 11: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{1}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\left[0, \frac{u}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$u-2-2 v$	$\frac{u}{2}-v$	2	4	0
		$N(u, v)$	0	$2 v$	v	0	0	0
$[1,2]$	$\left[0, \frac{u-1}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$\frac{u-5-2 v}{4}$	$\frac{1}{2}$	2	4	0
		$N(u, v)$	0	$\frac{v}{2}$	0	0	0	0
$[1,2]$	$\left[\frac{u-1}{2}, \frac{u}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$u-2-2 v$	$\frac{u-2 v}{2}$	2	4	0
		$N(u, v)$	0	$\frac{3-3 u+8 v}{4}$	$\frac{2 v-u+1}{2}$	0	0	0
$[2,3]$	$\left[0, \frac{u-1}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$\frac{u-5-2 v}{4}$	$\frac{1}{2}$	2	$\frac{10-u}{2}$	0
		$N(u, v)$	0	$\frac{v}{2}$	0	0	0	0
$[2,3]$	$\left[\frac{u-1}{2}, 1\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$u-2-2 v$	$\frac{u-2 v}{2}$	2	$\frac{10-u}{2}$	0
		$N(u, v)$	0	$\frac{3-3 u+8 v}{4}$	$\frac{2 v-u+1}{2}$	0	0	0
$[3,5]$	$[0,1]$	$P(u, v)$	$\frac{u-8}{2}-v$	$\frac{u-5-2 v}{4}$	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	$\frac{v}{2}$	0	0	0	0
$[5,7]$	$\left[0, \frac{u-5}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	0	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	0	0	0	0
$[5,7]$	$\left[\frac{u-5}{2}, 1\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$\frac{u-5-2 v}{4}$	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	$\frac{2 v-u+5}{4}$	0	0	0	0
$[7,8]$	$[0,1]$	$P(u, v)$	$\frac{u-8}{2}-v$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	0	0	0	0
$[8,10]$	$\left[0, \frac{10-u}{2}\right]$	$P(u, v)$	$-v$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	0	0	0	0

Table 12: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{4}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\left[0, \frac{u}{4}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$u-2-3 v$	$\frac{u}{2}-2 v$	$2-v$	$4-2 v$	0
		$N(u, v)$	0	$3 v$	$2 v$	0	$2 v$	0

$[1,2]$	[0, u-1 ${ }^{4}$]	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{u-5}{4} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} 2-v \\ 0 \end{gathered}$	$\begin{gathered} 4-2 v \\ 2 v \end{gathered}$	0 0
$[1,2]$	$\left[\frac{u-1}{4}, \frac{u}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \hline \frac{u-8}{2} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} u-2-3 v \\ \frac{3(4 v-u+1)}{4} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{u}{2}-2 v \\ & \frac{4 v-u+1}{2} \\ & \hline \end{aligned}$	$\begin{gathered} 2-v \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 4-2 v \\ 2 v \\ \hline \end{gathered}$	0 0
$[2,3]$	[0, $\frac{u-2}{4}$]	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \hline \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{u-5}{4} \\ 0 \end{gathered}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} 2-v \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[2,3]$	$\left[\frac{u-2}{4}, \frac{u-1}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{u-5}{4} \\ 0 \end{gathered}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} 2-v \\ 0 \end{gathered}$	$\begin{array}{r} 4-2 v \\ \frac{4 v-u+2}{2} \\ \hline \end{array}$	0 0
$[2,3]$	$\left[\frac{u-1}{4}, \frac{u}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \hline \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} u-2-3 v \\ \frac{3(4 v-u+1)}{4} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{u}{2}-2 v \\ & \frac{4 v-u+1}{2} \end{aligned}$	$\begin{gathered} 2-v \\ 0 \end{gathered}$	$\begin{array}{r} 4-2 v \\ \frac{4 v-u+2}{2} \\ \hline \end{array}$	0 0
$[3,5]$	$\left[0, \frac{1}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2} \\ 0 \end{gathered}$	$\begin{aligned} & \hline \frac{u-5}{4} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \hline \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[3,5]$	$\left[\frac{1}{4}, \frac{1}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{u-5}{4} \\ 0 \end{gathered}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \\ \hline \end{gathered}$	0 0
$[3,5]$	$\left[\frac{1}{2}, \frac{3}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \hline \frac{u-8}{2} \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{u+1-12 v}{4} \\ & \frac{3(2 v-1)}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{3-2 v}{2} \\ & 2 v-1 \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \\ \hline \end{gathered}$	0 0
[5, 6]	$\left[0, \frac{1}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \hline \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
[5, 6]	$\left[\frac{1}{4}, \frac{7-u}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2} \\ 0 \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \\ \hline \end{gathered}$	0 0
[5, 6]	$\left[\frac{7-u}{4}, \frac{1+u}{12}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{11-u-4 v}{8} \\ & \frac{4 v+u-7}{8} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \\ \hline \end{gathered}$	0 0
[5, 6]	$\left[\frac{1+u}{12}, \frac{3}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{1+u-6 v}{4} \\ \frac{12 v+u-1}{4} \\ \hline \end{gathered}$	$\begin{gathered} \frac{3-4 v}{2} \\ 2 v-1 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \\ \hline \end{gathered}$	0 0
$[6,7]$	$\left[0, \frac{7-u}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \hline \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[6,7]$	$\left[\frac{7-u}{4}, \frac{1}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \hline \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{11-u-4 v}{8} \\ & \frac{4 v+u-7}{8} \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[6,7]$	$\left[\frac{1}{4}, \frac{1+u}{12}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{11-u-4 v}{8} \\ & \frac{4 v+u-7}{8} \end{aligned}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \end{gathered}$	0 0
$[6,7]$	$\left[\frac{1+u}{12}, \frac{3}{4}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{aligned} & \frac{u-8}{2} \\ & 0 \end{aligned}$	$\begin{gathered} \frac{1+u-6 v}{4} \\ \frac{12 v+u-1}{4} \end{gathered}$	$\begin{gathered} \frac{3-4 v}{2} \\ 2 v-1 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-4 v}{2} \\ \frac{4 v-1}{2} \end{gathered}$	0 0

$[7,8]$	$\left[0, \frac{10-u}{12}\right]$	$P(u, v)$	$\frac{u-8}{2}$	0	$\frac{10-u-3 v}{6}$	$\frac{10-u-3 v}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	$\frac{v}{2}$	0	0	0
$[7,8]$	$\left[\frac{10-u}{12}, \frac{2}{3}\right]$	$P(u, v)$	$\frac{u-8}{2}$	0	$\frac{10-u-3 v}{6}$	$\frac{10-u-3 v}{3}$	$\frac{2(10-u-3 v)}{3}$	0
		$N(u, v)$	0	0	$\frac{v}{2}$	0	$\frac{12 v+u-10}{6}$	0
$[7,8]$	$\left[\frac{2}{3}, \frac{16-u}{12}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$2-3 v$	$\frac{16-u-12 v}{6}$	$\frac{10-u-3 v}{3}$	$\frac{2(10-u-3 v)}{3}$	0
		$N(u, v)$	0	$3 v-2$	$2 v-1$	0	$\frac{12 v+u-10}{6}$	0
$[8,10]$	$\left[0, \frac{10-u}{12}\right]$	$P(u, v)$	0	0	$\frac{10-u-3 v}{6}$	$\frac{10-u-3 v}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	$\frac{v}{2}$	0	0	0
$[8,10]$	$\left[\frac{10-u}{12}, \frac{10-u}{3}\right]$	$P(u, v)$	0	0	$\frac{10-u-3 v}{6}$	$\frac{10-u-3 v}{3}$	$\frac{2(10-u-3 v)}{3}$	0
		$N(u, v)$	0	0	$\frac{v}{2}$	0	$\frac{12 v+u-10}{6}$	0

Table 13: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{6}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	$\left[0, \frac{u}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$u-2$	$\frac{u}{2}$	2	$4-v$	$-v$
		$N(u, v)$	0	0	0	0	v	0
$[1,2]$	$\left[0, \frac{1}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{u}{2}$	2	$4-v$	$-v$
		$N(u, v)$	0	0	0	0	v	0
$[2,3]$	$\left[0, \frac{u-2}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	2	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[2,3]$	$\left[\frac{u-2}{2}, \frac{1}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	$\frac{10-u}{2}$	$4-v$	$-v$
		$N(u, v)$	0	0	0	0	$\frac{2 v+2-u}{2}$	0
$[3,5]$	$\left[0, \frac{1}{2}\right]$	$P(u, v)$	$\frac{u-8}{2}$	$\frac{u-5}{4}$	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[5,7]$	$\left[0, \frac{8-u}{6}\right]$	$P(u, v)$	$\frac{u-8}{2}$	0	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[5,7]$	$\left[\frac{8-u}{6}, \frac{1}{2}\right]$	$P(u, v)$	$-3 v$	0	$\frac{1}{2}$	$\frac{11-u}{4}$	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	$\frac{6 v+u-8}{2}$	0	0	0	0	0
$[7,8]$	$\left[0, \frac{8-u}{6}\right]$	$P(u, v)$	$\frac{u-8}{2}$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	0	0	0	0	0	0
$[7,8]$	$\left[\frac{8-u}{6}, \frac{10-u}{6}\right]$	$P(u, v)$	$-3 v$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	$-v$
		$N(u, v)$	$\frac{6 v+u-8}{2}$	0	0	0	0	0

$[8,10]$	$\left[0, \frac{10-u}{6}\right]$	$P(u, v)$	$-3 v$	0	$\frac{10-u}{6}$	$\frac{10-u}{3}$	$\frac{10-u}{2}$	$-v$
	$N(u, v)$	$3 v$	0	0	0	0	0	

Table 14: Expressions for $P(u, v)$ and $N(u, v)$ in the case $C=\bar{\alpha}_{0}$

u	v	$P(u, v) \& N(u, v)$	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}
$[0,1]$	[0, $\frac{u}{2}$]	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} u-2-2 v \\ 0 \end{gathered}$	$\begin{gathered} \frac{u}{2}-v \\ 0 \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	4	0 0
[1, 2]	$\left[0, \frac{1}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{u-5-8 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	0 0
[2, 3]	$\left[0, \frac{3-u}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{u-5-8 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
[2,3]	$\left[\frac{3-u}{2}, \frac{1}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{u-5-8 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{aligned} & \frac{11-u-2 v}{4} \\ & \frac{2 v+u-3}{4} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[3,5]$	$\left[0, \frac{1}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \\ & \hline \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{u-5-8 v}{4} \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{1}{2}-v \\ 0 \end{gathered}$	$\frac{11-u-2 v}{4}$ $\frac{v}{2}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[5,6]$	$\left[0, \frac{8-u}{6}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \\ & \hline \end{aligned}$	$\frac{u-8}{2}-v$ 0	$-2 v$ 0	$\begin{gathered} \hline \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-2 v}{4} \\ \frac{v}{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$[5,6]$	$\left[\frac{8-u}{6}, \frac{1}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} -4 v \\ \frac{6 v+u-8}{2} \\ \hline \end{gathered}$	$\begin{gathered} -2 v \\ 0 \end{gathered}$	$\begin{gathered} \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-2 v}{4} \\ \frac{v}{2} \\ \hline \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[6, \frac{13}{2}\right]$	$\left[0, \frac{8-u}{6}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} -2 v \\ 0 \end{gathered}$	$\begin{gathered} \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{11-u-2 v}{4} \\ \frac{v}{2} \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[6, \frac{13}{2}\right]$	$\left[\frac{8-u}{6}, \frac{7-u}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} -4 v \\ \frac{6 v+u-8}{2} \end{gathered}$	$-2 v$ 0	$\frac{1}{2}-v$ 0	$\frac{11-u-2 v}{4}$ $\frac{v}{2}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[6, \frac{13}{2}\right]$	$\left[\frac{7-u}{2}, \frac{10-u}{8}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} -4 v \\ \frac{6 v+u-8}{2} \end{gathered}$	$\begin{gathered} -2 v \\ 0 \end{gathered}$	$\begin{aligned} & \frac{10-u-8 v}{6} \\ & \frac{2 v+u-7}{6} \end{aligned}$	$\begin{aligned} & \frac{10-u-2 v}{3} \\ & \frac{8 v+u-7}{12} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[\frac{13}{2}, 7\right]$	$\left[0, \frac{7-u}{2}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \hline-2 v \\ 0 \end{gathered}$	$\begin{gathered} \hline \frac{1}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} \frac{11-u-2 v}{4} \\ \frac{v}{2} \\ \hline \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[\frac{13}{2}, 7\right]$	$\left[\frac{7-u}{2}, \frac{8-u}{6}\right]$	$\begin{aligned} & P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} \frac{u-8}{2}-v \\ 0 \end{gathered}$	$\begin{gathered} -2 v \\ 0 \end{gathered}$	$\begin{aligned} & \frac{10-u-8 v}{6} \\ & \frac{2 v+u-7}{6} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{10-u-2 v}{3} \\ \frac{8 v+u-7}{12} \\ \hline \end{gathered}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0
$\left[\frac{13}{2}, 7\right]$	$\left[\frac{8-u}{6}, \frac{10-u}{8}\right]$	$\begin{aligned} & \hline P(u, v) \\ & N(u, v) \end{aligned}$	$\begin{gathered} -4 v \\ \frac{6 v+u-8}{2} \\ \hline \end{gathered}$	$\begin{gathered} -2 v \\ 0 \end{gathered}$	$\begin{gathered} \frac{10-u-8 v}{6} \\ \frac{2 v+u-7}{6} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{10-u-2 v}{3} \\ & \frac{8 v+u-7}{12} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{10-u}{2} \\ 0 \end{gathered}$	0 0

$[7,8]$	$\left[0, \frac{8-u}{6}\right]$	$P(u, v)$	$\frac{u-8}{2}-v$	$-2 v$	$\frac{10-u-8 v}{6}$	$\frac{10-u-2 v}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	0	0	$\frac{v}{3}$	$\frac{2 v}{3}$	0	0
$[7,8]$	$\left[\frac{8-u}{6}, \frac{10-u}{8}\right]$	$P(u, v)$	$-4 v$	$-2 v$	$\frac{10-u-8 v}{6}$	$\frac{10-u-2 v}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	$\frac{6 v+u-8}{2}$	0	$\frac{v}{3}$	$\frac{2 v}{3}$	0	0
$[8,10]$	$\left[0, \frac{10-u}{8}\right]$	$P(u, v)$	$-4 v$	$-2 v$	$\frac{10-u-8 v}{6}$	$\frac{10-u-2 v}{3}$	$\frac{10-u}{2}$	0
		$N(u, v)$	$3 v$	0	$\frac{v}{3}$	$\frac{2 v}{3}$	0	0

References

[1] H. Abban, Z. Zhuang, K-stability of Fano varieties via admissible flags, Forum of Mathematics Pi 10 (2022), 1-43.
[2] H. Abban, Z. Zhuang, Seshadri constants and K-stability of Fano manifolds, Duke Mathematical Journal, to appear.
[3] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß, N. Viswanathan, The Calabi problem for Fano threefolds, Lecture Notes in Mathematics 485, Cambridge University Press, 2023.
[4] G. Belousov, K. Loginov, K-stability of Fano threefolds of rank 4 and degree 24, preprint, arXiv:2206.12208 (2022).
[5] H. Blum, M. Jonsson, Thresholds, valuations, and K-stability, Advances in Mathematics 365 (2020), 107062.
[6] I. Cheltsov, E. Denisova, K. Fujita, K-stable smooth Fano threefolds of Picard rank two, preprint, arXiv:2210.14770
[7] I. Cheltsov, K. Fujita, T. Kishimoto, T. Okada, K-stable divisors in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{2}$ of degree $(1,1,2)$, Nagoya Mathematical Journal, to appear.
[8] I. Cheltsov, J. Park, K-stable Fano threefolds of rank 2 and degree 30, European Journal of Mathematics 8 (2022), 834-852.
[9] I. Cheltsov, V. Przyjalkowski, C. Shramov, Fano 3-folds with infinite automorphism groups, Izvestia: Mathematics 83 (2019), 860-907.
[10] D. Cox, J. Little, H. Schenck, Toric varieties, American Mathematical Society, Graduate Studies in Mathematics 124 (2011).
[11] E. Denisova, On K-stability of \mathbb{P}^{3} blown up along the disjoint union of a twisted cubic curve and a line, preprint, arXiv:2202.04421, 2022.
[12] R. Dervan, On K-stability of finite covers, Bulletin of the London Mathematical Society 48 (2016), 717-728.
[13] K. Fujita, On K-stability and the volume functions of \mathbb{Q}-Fano varieties, Proceedings of the London Mathematical Society 113 (2016), 541-582.
[14] K. Fujita, A valuative criterion for uniform K-stability of \mathbb{Q}-Fano varieties, Journal für die Reine und Angewandte Mathematik 751 (2019), 309-338.
[15] K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto Journal of Mathematics 59 (2019), 399-418.
[16] K. Fujita, On K-stability for Fano threefolds of rank 3 and degree 28, International Mathematics Research Notices, to appear.
[17] L. Giovenzana, T. Duarte Guerreiro, N. Viswanathan, On K-stability of \mathbb{P}^{3} blown up along a $(2,3)$ complete intersection, to appear on Arxiv today.
[18] V. Iskovskikh, Yu. Prokhorov, Fano varieties, Encyclopaedia of Mathematical Sciences 47, Springer, Berlin, 1999.
[19] C. Li, K-semistability is equivariant volume minimization, Duke Mathematical Journal 166 (2017), 3147-3218.
[20] Y. Liu, K-stability of Fano threefolds of rank 2 and degree 14 as double covers, Mathematische Zeitschrift, to appear.
[21] Y. Liu, Z. Zhu, Equivariant K-stability under finite group action, International Journal of Mathematics 33 (2022), paper No. 2250007.
[22] J. Malbon, K-stable Fano threefolds of rank 2 and degree 28, to appear on Arxiv today.
[23] Yu. Prokhorov, Lectures on complements on log surfaces, Mathematical Society of Japan Memoirs 10 (2001).
[24] C. Xu, Y. Liu, K-stability of cubic threefolds, Duke Mathematical Journal 168 (2019), 2029-2073.
[25] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Inventiones mathematicae 226 (2021), 195-223.

Ivan Cheltsov
University of Edinburgh, Edinburgh, Scotland
i.cheltsov@ed.ac.uk

Kento Fujita
Osaka University, Osaka, Japan
fujita@math.sci.osaka-u.ac.jp
Takashi Kishimoto
Saitama University, Saitama, Japan
kisimoto.takasi@gmail.com
Jihun Park
Institute for Basic Science, Pohang, Korea
POSTECH, Pohang, Korea
wlog@postech.ac.kr

