K-STABLE SMOOTH FANO THREEFOLDS OF PICARD RANK TWO

IVAN CHELTSOV, ELENA DENISOVA, KENTO FUJITA

Abstract

We prove that all smooth Fano threefolds in the families №2.1, №2.2, №2.3, №2.4, №2.6 and №2.7 are K-stable, and we also prove that smooth Fano threefolds in the family № 2.5 that satisfy one very explicit generality condition are K-stable.

1. Introduction

Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which are labeled as №1.1, №1.2, ..., №9.1, №10.1. See [3], for the description of these families. In 76 families, K-polystable smooth Fano threefolds are classified [2, 3, 4, , 7, 8, 12, 15, 17]. The remaining 29 deformation families are
№ 1.9 , №1.10, № $2.1, \ldots$, №2.7, №2.9, ..., №2.21, №3.2, №3.4, ..., №3.8, №3.11. General members of these 29 families are K-polystable [3]. In this paper, we prove

Main Theorem. Let X be a smooth Fano threefold contained in one of the following deformation families: №2.1, №2.2, №2.3, №2.4, №2.6, №2.7. Then X is K-stable.
and
Auxiliary Theorem. Let X be a smooth Fano threefold in the deformation family №2.5. Recall that there exists the following Sarkisov link:

where V is a smooth cubic threefold in \mathbb{P}^{4}, the morphism π is a blow up of a smooth plane cubic curve, and ϕ is a morphism whose fibers are normal cubic surfaces. Suppose that
$(\star) \quad$ no fiber of the morphism ϕ has a $D u$ Val singular point of type \mathbb{D}_{5} or \mathbb{E}_{6}.
Then X is K-stable.
Let us describe the structure of this paper. In Section 2, we prove Auxiliary Theorem, and we prove that all smooth Fano threefolds in the families № 2.1 and № 2.3 are K-stable. In Sections 3, 4, 5, 6, we prove that all smooth Fano threefolds in the families №2.2, №2.4, №2.6, № 2.7 are K-stable, respectively. Note that Section 6 is very technical and long.

In this paper, we use two applications of the Abban-Zhuang theory [1] which have been discovered in [3, 15]. For the background material, we refer the reader to [3, 15, 19].
Acknowledgements. Cheltsov has been supported by EPSRC grant №EP/V054597/1. Fujita has been supported by JSPS KAKENHI Grant №22K03269. This paper has been written during Cheltsov's two month stay at l'Institut des Hautes Études Scientifiques. He thanks the institute for the hospitality and excellent working conditions.

[^0]
2. Families №2.1, №2.3, №2.5

Fix $d \in\{1,2,3\}$. Let V be one of the following smooth Fano threefolds:
$d=1$ a smooth sextic hypersurface in $\mathbb{P}(1,1,1,2,3)$;
$d=2$ a smooth quartic hypersurface in $\mathbb{P}(1,1,1,1,2)$;
$d=3$ a smooth cubic threefold in \mathbb{P}^{4}.
Then $-K_{V} \sim 2 H$ for an ample divisor $H \in \operatorname{Pic}(V)$ such that $H^{3}=d$ and $\operatorname{Pic}(V)=\mathbb{Z}[H]$.
Let S_{1} and S_{2} be two distinct surfaces in the linear system $|H|$, and let $\mathcal{C}=S_{1} \cap S_{2}$. Suppose that the curve \mathcal{C} is smooth. Then \mathcal{C} is an elliptic curve by the adjunction formula. Let $\pi: X \rightarrow V$ be the blow up of the curve \mathcal{C}, and let E be the π-exceptional surface.

- If $d=1$, then X is a smooth Fano threefold in the deformation family №2.1.
- If $d=2$, then X is a smooth Fano threefold in the deformation family №2.3.
- If $d=3$, then X is a smooth Fano threefold in the deformation family №2.5.

Moreover, all smooth Fano threefolds in these families can be obtained in this way.
Note that $\left(-K_{X}\right)^{3}=4 d$. Moreover, we have the following commutative diagram:

where $V \rightarrow \mathbb{P}^{1}$ is the rational map given by the pencil that is generated by S_{1} and S_{2}, and ϕ is a morphism whose general fiber is a smooth del Pezzo surface of degree d.

The goal of this section is to show that X is K-stable in the case when $d=1$ or $d=2$, and to show that X is K-stable in the case when $d=3$ and X satisfies the condition \star). To show that X is K-stable, it is enough to show that $\delta_{O}(X)>1$ for every point $O \in X$. This follows from the valuative criterion for K-stability [14, 16].

Lemma 2.1. Let O be a point in X, let A be the fiber of the morphism ϕ such that $O \in A$. Suppose that A has at most Du Val singularities at the point O. Then

$$
\delta_{O}(X) \geqslant\left\{\begin{array}{l}
\min \left\{\frac{16}{11}, \frac{16}{15} \delta_{O}(A)\right\} \text { if } O \notin E \\
\min \left\{\frac{16}{11}, \frac{16 \delta_{O}(A)}{\delta_{O}(A)+15}\right\} \text { if } O \in E
\end{array}\right.
$$

Proof. Let u be a non-negative real number. Then $-K_{X}-u A \sim_{\mathbb{R}}(2-u) A+E$, which implies that divisor $-K_{X}-u A$ is pseudoeffective if and only if $u \leqslant 2$. For every $u \in[0,2]$, let us denote by $P(u)$ the positive part of Zariski decomposition of the divisor $-K_{X}-u A$, and let us denote by $N(u)$ its negative part. Then

$$
P(u)=\left\{\begin{array}{l}
(2-u) A+E \text { if } 0 \leqslant u \leqslant 1, \\
(2-u) H \text { if } 1 \leqslant u \leqslant 2,
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
(u-1) E \text { if } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

Integrating, we get $S_{X}(A)=\frac{11}{16}$. Using [1, Theorem 3.3] and [3, Corollary 1.7.30], we get

$$
\begin{equation*}
\delta_{O}(X) \geqslant \min \left\{\frac{1}{S_{X}(A)}, \inf _{\substack{F / A \\ O \in C_{A}(F)}} \frac{A_{A}(F)}{S\left(W_{\bullet \bullet \bullet}^{A} ; F\right)}\right\}=\min \left\{\frac{16}{11}, \inf _{\substack{F / A \\ O \in C_{A}(F)}} \frac{A_{A}(F)}{S\left(W_{\bullet \bullet \bullet}^{A} ; F\right)}\right\} \tag{2.1}
\end{equation*}
$$

where the infimum is taken by all prime divisors F over the surface A with $O \in C_{A}(F)$, and $S\left(W_{\bullet, \bullet}^{A} ; F\right)$ can be computed using [3, Corollary 1.7.24] as follows:

$$
S\left(W_{\bullet, \bullet}^{A} ; F\right)=\frac{3}{4 d} \int_{1}^{2}\left(\left.P(u)\right|_{A}\right)^{2}(u-1) \operatorname{ord}_{F}\left(\left.E\right|_{A}\right) d u+\frac{3}{4 d} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{A}-v F\right) d v d u
$$

Now, let F be any prime divisor over the surface A such that $O \in C_{A}(F)$. Since

$$
\left.P(u)\right|_{A}=\left\{\begin{array}{l}
-K_{A} \text { if } 0 \leqslant u \leqslant 1 \\
(2-u)\left(-K_{A}\right) \text { if } 1 \leqslant u \leqslant 2
\end{array}\right.
$$

we have

$$
\begin{gathered}
S\left(W_{\bullet, \bullet}^{A} ; F\right)=\frac{3}{4 d} \int_{1}^{2} d(2-u)^{2}(u-1) \operatorname{ord}_{F}\left(\left.E\right|_{A}\right) d u+ \\
+\frac{3}{4 d} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v d u+\frac{3}{4 d} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left((2-u)\left(-K_{A}\right)-v F\right) d v d u= \\
=\frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{3}{4 d} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v+\frac{3}{4 d} \int_{1}^{2}(2-u)^{3} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v d u= \\
=\frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{3}{4 d} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v+\frac{3}{16 d} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v= \\
=\frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{15}{16 d} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v F\right) d v= \\
=\frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{15}{16} S_{A}(F) \leqslant \frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{15 A_{A}(F)}{16 \delta_{O}(A)} .
\end{gathered}
$$

Therefore, if $O \notin E$, then $\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)=0$, which implies that

$$
S\left(W_{\bullet, \bullet}^{A} ; F\right) \leqslant \frac{15 A_{A}(F)}{16 \delta_{P}(A)}
$$

Similarly, if $O \in E$, then $\operatorname{ord}_{F}\left(\left.E\right|_{A}\right) \leqslant A_{A}(F)$, because $\left(A,\left.E\right|_{A}\right)$ is \log canonical, so that

$$
S\left(W_{\bullet, \bullet}^{A}, F\right)=\frac{\operatorname{ord}_{F}\left(\left.E\right|_{A}\right)}{16}+\frac{15}{16} S_{A}(F) \leqslant \frac{A_{A}(F)}{16}+\frac{15 A_{A}(F)}{16 \delta_{P}(A)}=\frac{\delta_{P}(A)+15}{16 \delta_{P}(A)} A_{A}(F)
$$

Now, using (2.1), we obtain the required inequality.
Suppose X is not K-stable. Let us seek for a contradiction. Using the valuative criterion for K-stability [14, 16], we see that there exists a prime divisor \mathbf{F} over X such that

$$
\beta(\mathbf{F})=A_{X}(\mathbf{F})-S_{X}(\mathbf{F}) \leqslant 0
$$

where $A_{X}(\mathbf{F})$ is a \log discrepancy of the divisor \mathbf{F}, and $S_{X}(\mathbf{F})$ is defined in [14] or [3, § 1.2]. Let Z be the center of the divisor \mathbf{F} on X. Then Z is not a surface [3, Theorem 3.7.1]. We see that Z is an irreducible curve or a point. Let P be a point in Z. Then $\delta_{P}(X) \leqslant 1$.

Lemma 2.2. One has $P \notin E$.
Proof. Let us compute $S_{X}(E)$. Note that $S_{X}(E)<1$ by [3, Theorem 3.7.1]. Fix $u \in \mathbb{R}_{\geqslant 0}$. Then the divisor $-K_{X}-u E$ is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow u \leqslant 1$. Thus, we have

$$
S_{X}(E)=\frac{1}{4 d} \int_{0}^{1}\left(-K_{X}-u E\right)^{3} d u=\frac{1}{4 d} \int_{0}^{1} d\left(2 u^{3}-6 u+4\right) d u=\frac{3}{8}
$$

Suppose that $P \in E$. Let us seek for a contradiction.
Note that $E \cong \mathcal{C} \times \mathbb{P}^{1}$. Let \mathbf{s} be a fiber of the projection $\left.\phi\right|_{E}: E \rightarrow \mathbb{P}^{1}$ that contains P, and let \mathbf{f} be a fiber of the projection $\left.\pi\right|_{E}: E \rightarrow \mathcal{C}$. Fix $u \in[0,1]$ and take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{X}-\left.u E\right|_{E}-v \mathbf{s} \equiv(1+u-v) \mathbf{s}+d(1-u) \mathbf{f}
$$

Thus, the divisor $-K_{X}-\left.u E\right|_{E}-v$ s is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow v \leqslant 1+v$. Therefore, using [3, Corollary 1.7.26], we get

$$
S\left(W_{\bullet, \bullet}^{E} ; \mathbf{s}\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{1+u} 2 d(1-u)(1+u-v) d v d u=\frac{11}{16}
$$

Similarly, using [3, Theorem 1.7.30], we get

$$
S\left(W_{\bullet, \bullet, 0}^{E, \mathbf{s}}, P\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{1+u}(d(1-u))^{2} d v d u=\frac{5 d}{16} .
$$

Therefore, it follows from [3, Theorem 1.7.30] that

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(E)}, \frac{1}{S\left(W_{\bullet}^{E}, \mathbf{\bullet}\right)}, \frac{1}{S\left(W_{\bullet, \bullet, \bullet}^{E} ; P\right)}\right\}=\min \left\{\frac{8}{3}, \frac{16}{11}, \frac{16}{5 d}\right\} \geqslant \frac{16}{15}>1
$$

which is a contradiction.
Let A be the fiber of the del Pezzo fibration ϕ such that A passes through the point P. Then A is a del Pezzo surface of degree $d \in\{1,2,3\}$ that has at most isolated singularities. In particular, we see that A is normal. Applying Lemmas 2.1] and 2.2. we obtain
Corollary 2.3. One has $\delta_{P}(A) \leqslant \frac{15}{16}$.
Proof. Since $1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \delta_{P}(X)$, we get $\delta_{P}(A) \leqslant \frac{15}{16}$ by Lemmas 2.1 and 2.2.
Corollary 2.4. The surface A is singular.
Proof. If A is smooth, then $\delta_{P}(A) \geqslant \delta(A) \geqslant \frac{3}{2}$ [3, $\left.\S 2\right]$, which contradicts Corollary 2.3,
Let \bar{S} be a general surface in $|H|$ that passes through $\pi(P)$, and let S be the proper transform on X of the surface \bar{S}. Then

- the surface \bar{S} is a smooth del Pezzo surface of degree d,
- the surface \bar{S} intersects the curve \mathcal{C} transversally at d points,
- the induced morphism $\left.\pi\right|_{S}: S \rightarrow \bar{S}$ is a blow up of the points $\bar{S} \cap \mathcal{C}$.

Observe that $\left.\phi\right|_{S}: S \rightarrow \mathbb{P}^{1}$ is an elliptic fibration given by the pencil $\left|-K_{S}\right|$. Set $C=\left.A\right|_{S}$. Then C is a reduced curve of arithmetic genus 1 in $\left|-K_{S}\right|$ that has at most d components. In particular, if $d=1$, then C is irreducible. Therefore, the following cases may happen:
(1) the curve C is irreducible, and C is smooth at P,
(2) the curve C is irreducible, and C has an ordinary node at P,
(3) the curve C is irreducible, and C has an ordinary cusp at P,
(4) the curve C is reducible.

Fix $u \in \mathbb{R}_{\geqslant 0}$. Then $-K_{X}-u S$ is nef $\Longleftrightarrow u \leqslant 1 \Longleftrightarrow-K_{X}-u S$ is pseudoeffective. Using this, we see that

$$
S_{X}(S)=\frac{1}{4 d} \int_{0}^{1}\left(-K_{X}-u S\right)^{3} d u=\frac{1}{4 d} \int_{0}^{1} d(4-u)(1-u)^{2} d u=\frac{5}{16}<1
$$

which also follows from [3, Theorem 3.7.1]. Moreover, if $u \in[0,1]$, then

$$
\left.\left(-K_{X}-u S\right)\right|_{S} \sim_{\mathbb{R}}(1-u)\left(\left.\pi\right|_{S}\right)^{*}\left(-K_{\bar{S}}\right)-K_{S} \sim_{\mathbb{R}}(1-u) \sum_{i=1}^{d} \mathbf{e}_{i}+(2-u)\left(-K_{S}\right)
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are exceptional curves of the blow up $\left.\pi\right|_{S}: S \rightarrow \bar{S}$.
Lemma 2.5. Suppose that C is irreducible. Then C is singular at the point P.
Proof. As in the proof of Lemma [2.2, it follows from [3, Theorem 1.7.30] that

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(S)}, \frac{1}{S\left(W_{\bullet, 0}^{S} ; C\right)}, \frac{1}{S\left(W_{\bullet, 0,0}^{S} ; P\right)}\right\}
$$

where $S\left(W_{\bullet, \bullet}^{S} ; C\right)$ and $S\left(W_{\bullet, 0,0}^{S, C} ; P\right)$ are defined in [3, § 1.7]. Since we know that $S_{X}(S)<1$, we see that $S\left(W_{\bullet \bullet \bullet}^{S} ; C\right) \geqslant 1$ or $S\left(W_{\bullet \bullet \bullet \bullet}^{S, C} ; P\right) \geqslant 1$. Let us compute these numbers.

Let $P(u, v)$ be the positive part of the Zariski decomposition of $\left.\left(-K_{X}-u S\right)\right|_{S}-v C$, and let $N(u, v)$ be its negative part, where $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Since

$$
\left.\left(-K_{X}-u S\right)\right|_{S}-v C \sim_{\mathbb{R}}(1-u) \sum_{i=1}^{d} \mathbf{e}_{i}+(2-u-v) C
$$

we see that $\left.\left(-K_{X}-u S\right)\right|_{S}-v C$ is pseudoeffective $\Longleftrightarrow v \leqslant 2-u$. Moreover, we have

$$
P(u, v)=\left\{\begin{array}{l}
(1-u) \sum_{i=1}^{d} \mathbf{e}_{i}+(2-u-v) C \text { if } 0 \leqslant v \leqslant 1 \\
(2-u-v)\left(C+\sum_{i=1}^{d} \mathbf{e}_{i}\right) \text { if } 1 \leqslant v \leqslant 2-u
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1, \\
(v-1) \sum_{i=1}^{d} \mathbf{e}_{i} \text { if } 1 \leqslant v \leqslant 2-u .
\end{array}\right.
$$

Thus, it follows from [3, Corollary 1.7.26] that

$$
\begin{gathered}
S\left(W_{\bullet \bullet \bullet}^{S} ; C\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{2-u} P(u, v)^{2} d v d u= \\
=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{1} d(1-u)(3-u-2 v) d v d u+\frac{3}{4 d} \int_{0}^{1} \int_{1}^{2-u} d(2-u-v)^{2} d v d u=\frac{11}{16}<1 .
\end{gathered}
$$

Thus, we conclude that $S\left(W_{\bullet,, \bullet, \bullet}^{S, C} ; P\right) \geqslant 1$.

Since $P \notin \mathbf{e}_{1} \cup \cdots \cup \mathbf{e}_{d}$ by Lemma [2.2, it follows from [3, Theorem 1.7.30] that

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{2-u}(P(u, v) \cdot C)^{2} d v d u= \\
& =\frac{3}{4 d} \int_{0}^{1} \int_{0}^{1} d^{2}(u-1)^{2} d v d u+\frac{3}{4 d} \int_{0}^{1} \int_{1}^{2-u} d^{2}(2-u-v)^{2} d v d u=\frac{5 d}{16}<1,
\end{aligned}
$$

which is a contradiction.
Now, let us show that C is reducible for $d \in\{1,2\}$.
Lemma 2.6. Suppose that C is irreducible. Then $d=3$ and C has a cusp at P.
Proof. By Lemma 2.5, the curve C is singular at the point P.
Now, let $\sigma: \widetilde{S} \rightarrow S$ be the blow up of the point P, let \mathbf{f} be the σ-exceptional curve, and let $\widetilde{\mathbf{e}}_{1}, \ldots, \widetilde{\mathbf{e}}_{d}, \widetilde{C}$ be the proper transforms on \widetilde{S} of the curves $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}, C$, respectively. Then the curve \widetilde{C} is smooth, and it follows from [3, Remark 1.7.32] that

$$
\left.1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\inf _{O \in \mathbf{f}} \frac{1}{S\left(W_{\bullet, \bullet \bullet}, \mathbf{f}\right.} ; O\right), \frac{2}{S\left(V_{\bullet \bullet \bullet}^{S} ; \mathbf{f}\right)}, \frac{1}{S_{X}(S)}\right\}
$$

where $S\left(W_{\bullet, \mathbf{\bullet}, \mathbf{\bullet}}^{\widetilde{\mathbf{s}}} ; O\right)$ and $S\left(V_{\bullet, \bullet}^{S} ; \mathbf{f}\right)$ are defined in [3, § 1.7]. Since we know that $S_{X}(S)<1$, we see that $S\left(V_{\bullet, \bullet}^{S} ; \mathbf{f}\right) \geqslant 2$ or there exists a point $O \in \mathbf{f}$ such that $S\left(W_{\mathbf{0}, \mathbf{f}, \mathbf{f}}^{\widetilde{(}} ; O\right) \geqslant 1$.

Let us compute $S\left(V_{\bullet, \bullet}^{S} ; \mathbf{f}\right)$. Fix $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Since $\sigma^{*}(C) \sim \widetilde{C}+2 \mathbf{f}$, we get

$$
\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f} \sim_{\mathbb{R}}(2-u) \widetilde{C}+(4-2 u-v) \mathbf{f}+(1-u) \sum_{i=1}^{d} \widetilde{\mathbf{e}}_{i}
$$

Then $\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}$ is pseudoeffective $\Longleftrightarrow v \leqslant 4-2 u$.
Let $P(u, v)$ be the positive part of the Zariski decomposition of $\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}$, and let $N(u, v)$ be its negative part. Then

$$
P(u, v)=\left\{\begin{array}{l}
(2-u) \widetilde{C}+(4-2 u-v) \mathbf{f}+(1-u) \sum_{i=1}^{d} \widetilde{\mathbf{e}}_{i} \text { if } 0 \leqslant v \leqslant \frac{d-d u}{2}, \\
\frac{8+d-4 u-d u-2 v}{4} \widetilde{C}+(4-2 u-v) \mathbf{f}+(1-u) \sum_{i=1}^{d} \widetilde{\mathbf{e}}_{i} \text { if } \frac{1-u}{2} \leqslant v \leqslant \frac{4+d-d u}{2}, \\
\frac{4-2 u-v}{4-d}\left(2 \widetilde{C}+(4-d) \mathbf{f}+2 \sum_{i=1}^{d} \widetilde{\mathbf{e}}_{i}\right) \text { if } \frac{4+d-d u}{2} \leqslant v \leqslant 4-2 u,
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant \frac{d-d u}{2}, \\
\frac{2 v+d u-d}{4} \widetilde{C} \text { if } \frac{d-d u}{2} \leqslant v \leqslant \frac{4+d-d u}{2}, \\
\frac{2 v+d u-2 d}{4-d} \widetilde{C}+\frac{2 v+d u-4-d}{4-d} \sum_{i=1}^{d} \widetilde{\mathbf{e}}_{i} \text { if } \frac{4+d-d u}{2} \leqslant v \leqslant 4-2 u .
\end{array}\right.
$$

Thus, using [3, Corollary 1.7.26], we get

$$
\begin{aligned}
& S\left(W_{\bullet \bullet}^{S} ; \mathbf{f}\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{\frac{d-d u}{2}}\left(d u^{2}-4 d u-v^{2}+3 d\right) d v d u+ \\
&+\frac{3}{4 d} \int_{0}^{1} \int_{\frac{d-d u}{2}}^{\frac{4+d-d u}{2}} \frac{d(1-u)(12-d u+d-4 u-4 v)}{4} d v d u+ \\
&+\frac{3}{4 d} \int_{0}^{1} \int_{\frac{4+d-d u}{2}}^{4-2 u} \frac{d(4-2 u-v)^{2}}{4-d} d v d u=\frac{44+5 d}{32}<2 .
\end{aligned}
$$

Therefore, there exists a point $O \in \mathbf{f}$ such that $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}} ; O\right) \geqslant 1$.
Let us compute $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}, f} ; O\right)$. Observe that

$$
P(u, v) \cdot \mathbf{f}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant \frac{d-d u}{2}, \\
\frac{d-d u}{2} \text { if } \frac{d-d u}{2} \leqslant v \leqslant \frac{4+d-d u}{2}, \\
\frac{d(4-2 u-v)}{4-d} \text { if } \frac{4+d-d u}{2} \leqslant v \leqslant 4-2 u .
\end{array}\right.
$$

Thus, it follows from [3, Remark 1.7.32] that

$$
\begin{gathered}
S\left(W_{\bullet, \bullet, 0}^{\widetilde{S}, f} ; O\right)= \\
+\frac{3}{4 d} \int_{0}^{1} \int_{0}^{4-2 u}((P(u, v) \cdot \mathbf{f}))^{2} d v d u+ \\
=\frac{6}{4 d} \int_{0}^{1} \int_{0}^{4-2 u}(P(u, v) \cdot \mathbf{f}) \operatorname{ord}\left(\left.N(u, v)\right|_{\mathbf{f}}\right) d v d u= \\
\int_{0}^{\frac{d-d u}{2}} v^{2} d v d u+\frac{3}{4 d} \int_{\frac{d-d u}{2}}^{\frac{4+d-d u}{2}}\left(\frac{d-d u}{2}\right)^{2} d v d u+\frac{3}{4 d} \int_{0}^{1} \int_{\frac{4+d-d u}{2}}^{4-2 u}\left(\frac{d(4-2 u-v)}{4-d}\right)^{2} d v d u+ \\
\int_{0}^{1} \int_{0}^{4-2 u}(P(u, v) \cdot \mathbf{f}) \operatorname{ord}_{O}\left(\left.N(u, v)\right|_{\mathbf{f}}\right) d v d u= \\
=\frac{5 d}{32}+\frac{3}{2} \int_{0}^{1} \int_{0}^{4-2 u}(P(u, v) \cdot \mathbf{f}) \operatorname{ord}_{O}\left(\left.N(u, v)\right|_{\mathbf{f}}\right) d v d u .
\end{gathered}
$$

Therefore, if $O \notin \widetilde{C}$, we obtain $S\left(W_{\bullet, \mathbf{0}, \mathbf{f}}^{\widetilde{S}} ; O\right)=\frac{5 d}{32}$, which contradicts to $S\left(W_{\bullet, \mathbf{0}, \mathbf{\bullet}}^{\widetilde{S}, f} ; O\right) \geqslant 1$. Similarly, if $O \in \widetilde{C}$ and \widetilde{C} intersects the curve \mathbf{f} transversally at the point O, then

$$
S\left(W_{\bullet, \bullet \bullet \bullet}^{\widetilde{S}, \mathbf{f}} ; O\right)=\frac{5 d}{32}+\frac{6}{4 d} \int_{0}^{1} \int_{0}^{4-2 u}(P(u, v) \cdot \mathbf{f}) \operatorname{ord}_{O}\left(\left.N(u, v)\right|_{\mathbf{f}}\right) d v d u=\frac{44+5 d}{64}<1
$$

 which implies that C has a cusp at the point P.

Thus, to proceed, we may assume that $d=1$ or $d=2$.

Now, let us consider the following commutative diagram:

where ρ is the blow up of the point $\widetilde{C} \cap \mathbf{f}$, the morphism η is the blow up of the point in the ρ-exceptional curve that is contained in the the proper transform of the curve \widetilde{C}, the map ψ is the contraction of the proper transforms of both ($\sigma \circ \rho$)-exceptional curves, and v is the birational contraction of the proper transform of the η-exceptional curve. Let \mathscr{F} be the v-exceptional curve, let \mathscr{C} be the proper transform on \mathscr{S} of the curve C. Then \mathscr{F} and \mathscr{C} are smooth, $\mathscr{C}^{2}=-6, \mathscr{F}^{2}=-\frac{1}{6}, \mathscr{C} \cdot \mathscr{F}=1$, and $v^{*}(C)=\mathscr{C}+6 \mathscr{F}$.

Observe that \mathscr{F} contains two singular points of the surfaces \mathscr{S}, which are quotient singular points of type $\frac{1}{2}(1,1)$ and $\frac{1}{3}(1,1)$. Denote these points by Q_{2} and Q_{3}, respectively. Note that \mathscr{C} does not contain Q_{2} and Q_{3}. Write $\Delta_{\mathscr{F}}=\frac{1}{2} Q_{2}+\frac{2}{3} Q_{3}$. Then, since $A_{S}(\mathscr{F})=5$, it follows from [3, Remark 1.7.32] that

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\inf _{Q \in \mathscr{F}} \frac{1-\operatorname{ord}_{Q}\left(\Delta_{\mathscr{F}}\right)}{S\left(W_{\bullet, 0, \bullet}^{S}, \mathscr{\mathscr { O }} ; Q\right)}, \frac{5}{S\left(V_{\bullet, \bullet}^{S} ; \mathscr{F}\right)}, \frac{1}{S_{X}(S)}\right\} .
$$

But we already proved that $S_{X}(S)<1$. Hence, we conclude that $S\left(V_{\bullet, 0}^{S} ; \mathscr{F}\right) \geqslant 5$ or there exists a point $Q \in \mathscr{F}$ such that $S\left(W_{\bullet, \bullet, \bullet}^{\mathscr{F}} ; Q\right) \geqslant 1-\operatorname{ord}_{Q}\left(\Delta_{\mathscr{F}}\right)$.

Let us compute $S\left(V_{\bullet \bullet \bullet}^{S} ; \mathscr{F}\right)$. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
v^{*}\left(\left.P(u)\right|_{S}\right)-v \mathscr{F} \sim_{\mathbb{R}}(2-u) \mathscr{C}+(1-u) \sum_{i=1}^{d} \mathscr{E}_{i}+(12-6 u-v) \mathscr{F}
$$

where \mathscr{E}_{i} is the proper transform on \mathscr{S} of the (-1)-curve \mathbf{e}_{i}. Using this, we conclude that the divisor $v^{*}\left(\left.P(u)\right|_{S}\right)-v \mathscr{F}$ is pseudoeffective $\Longleftrightarrow v \leqslant 12-6 u$.

Let $\mathscr{P}(u, v)$ be the positive part of the Zariski decomposition of $v^{*}\left(\left.P(u)\right|_{S}\right)-v \mathscr{F}$, and let $\mathscr{N}(u, v)$ be its negative part. Then

$$
\mathscr{P}(u, v)=\left\{\begin{array}{l}
(2-u) \mathscr{C}+(1-u) \sum_{i=1}^{d} \mathscr{E}_{i}+(12-6 u-v) \mathscr{F} \text { if } 0 \leqslant v \leqslant d(1-u), \\
\frac{12+d-(6+d) u-v}{6} \mathscr{C}+(1-u) \sum_{i=1}^{d} \mathscr{E}_{i}+(12-6 u-v) \mathscr{F} \text { if } d(1-u) \leqslant v \leqslant 6+d-d u \\
\frac{12-6 u-v}{6-d}\left(\mathscr{C}+\sum_{i=1}^{d} \mathscr{E}_{i}+(6-d) \mathscr{F}\right) \text { if } 6+d-d u \leqslant v \leqslant 12-6 u
\end{array}\right.
$$

and

$$
\mathscr{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant d(1-u) \\
\frac{v+d(u-1)}{6} \mathscr{C} \text { if } d(1-u) \leqslant v \leqslant 6+d-d u \\
\frac{v+d u-2 d}{6-d} \mathscr{C}+\frac{v+d u-6-d}{6-d} \sum_{i=1}^{d} \mathscr{E}_{i} \text { if } 6+d-d u \leqslant v \leqslant 12-6 u
\end{array}\right.
$$

This gives

$$
\mathscr{P}(u, v)^{2}=\left\{\begin{array}{l}
\frac{6 d u^{2}-24 d u-v^{2}+18 d}{6} \text { if } 0 \leqslant v \leqslant d(1-u) \\
\frac{d(1-u)(18-(d+6) u+d-2 v)}{6} \text { if } d(1-u) \leqslant v \leqslant 6+d-d u \\
\frac{d(12-6 u-v)^{2}}{6(6-d)} \text { if } 6+d-d u \leqslant v \leqslant 12-6 u
\end{array}\right.
$$

Thus, using [3, Remark 1.7.30] and integrating, we get

$$
S\left(W_{\bullet, 0}^{\mathscr{S}}, \mathscr{F}\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{12-6 u} \mathscr{P}(u, v)^{2} d v d u=\frac{66+5 d}{16} \leqslant \frac{19}{4}<5=A_{S}(\mathscr{F})
$$

Now, using [3, Remark 1.7.32] again, we see that

$$
\begin{aligned}
& S\left(W_{\bullet, \ominus \bullet}^{\mathscr{S}, \mathscr{\mathscr { P }}} ; Q\right)=\frac{3}{4 d} \int_{0}^{1} \int_{0}^{12-6 u}((\mathscr{P}(u, v) \cdot \mathscr{F}))^{2} d v d u+ \\
& \quad+\frac{6}{4 d} \int_{0}^{1} \int_{0}^{12-6 u}(P(u, v) \cdot \mathscr{F}) \operatorname{ord}_{Q}\left(\left.\mathscr{N}(u, v)\right|_{\mathscr{F}}\right) d v d u .
\end{aligned}
$$

On the other hand, we have

$$
\mathscr{P}(u, v) \cdot \mathscr{F}=\left\{\begin{array}{l}
\frac{v}{6} \text { if } 0 \leqslant v \leqslant d(1-u), \\
\frac{d(1-u)}{6} \text { if } d(1-u) \leqslant v \leqslant 6+d-d u \\
\frac{d(12-6 u-v)}{6(6-d)} \text { if } 6+d-d u \leqslant v \leqslant 12-6 u
\end{array}\right.
$$

and

$$
\mathscr{N}(u, v) \cdot \mathscr{F}=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant d(1-u) \\
\frac{v-d(1-u)}{6} \text { if } d(1-u) \leqslant v \leqslant 6+d-d u \\
\frac{v+d u-2 d}{6-d} \text { if } 6+d-d u \leqslant v \leqslant 12-6 u
\end{array}\right.
$$

In particular, we have

$$
S\left(W_{\bullet, \bullet, \bullet}^{\mathscr{F}} ; Q\right)=\frac{5 d}{96}+\frac{6}{4 d} \int_{0}^{1} \int_{0}^{12-6 u}(P(u, v) \cdot \mathscr{F}) \operatorname{ord}_{Q}\left(\left.\mathscr{N}(u, v)\right|_{\mathscr{F}}\right) d v d u .
$$

Hence, if $Q \notin \mathscr{C}$, then $\frac{1}{3} \leqslant 1-\operatorname{ord}_{Q}\left(\Delta_{\mathscr{F}}\right) \leqslant S\left(W_{\bullet, \bullet, \bullet}^{\mathscr{F}} ; Q\right)=\frac{5 d}{96}<\frac{1}{3}$, which is absurd. Thus, we conclude that $Q=\mathscr{C} \cap \mathscr{F}$. Then

$$
\begin{aligned}
S\left(W_{\bullet, \bullet \bullet \bullet}^{\mathscr{F}} ; Q\right)=\frac{5 d}{96} & +\frac{6}{4 d} \int_{0}^{1} \int_{0}^{12-6 u}(P(u, v) \cdot \mathscr{F}) \operatorname{ord}_{Q}\left(\left.\mathscr{N}(u, v)\right|_{\mathscr{F}}\right) d v d u \leqslant \\
& \leqslant \frac{5 d}{96}+\frac{6}{4 d} \int_{0}^{1} \int_{0}^{12-6 u}(P(u, v) \cdot \mathscr{F})(\mathscr{N}(u, v) \cdot \mathscr{F}) d v d u=\frac{11}{16}<1
\end{aligned}
$$

which is a contradiction, since $S\left(W_{\bullet, 0, \mathscr{\bullet}}^{\mathscr{O}} ; Q\right) \geqslant 1-\operatorname{ord}_{Q}\left(\Delta_{\mathscr{F}}\right)=1$.
In particular, we conclude that either $d=2$ or $d=3$.

Corollary 2.7. All smooth Fano threefolds in the family №2.1 are K-stable.
Recall that A is the fiber of the del Pezzo fibration $\phi: X \rightarrow \mathbb{P}^{1}$ that passes through P. Note also that we have the following possibilities:

- $d=2$, and A is a double cover of \mathbb{P}^{2} branched over a reduced quartic curve;
- $d=3$, and A is a normal cubic surface in \mathbb{P}^{3}.

Observe that $C=S \cap A$, where S is a general surface in $\left|\pi^{*}(H)\right|$ that contains the point P. Since C is singular at P, the surface A must be singular at P, which confirms Corollary 2.4. Now, using classifications of reduced singular plane quartic curves and singular normal cubic surfaces [6], we see that $P=\operatorname{Sing}(A)$, and one of the following three cases holds:

- $d=2$, and A is a double cover of \mathbb{P}^{2} branched over 4 lines intersecting in a point;
- $d=3$, and A is a cone in \mathbb{P}^{3} over a smooth plane cubic curve;
- $d=3$, and A has Du Val singular point of type $\mathbb{D}_{4}, \mathbb{D}_{5}$, or \mathbb{E}_{6}.

Let us show that the first case is impossible.
Lemma 2.8. One has $d=3$.
Proof. Suppose that $d=2$. Then $P=\operatorname{Sing}(A)$, and A is a double cover of \mathbb{P}^{2} branched over a reduced reducible plane quartic curve that is a union of 4 distinct lines passing through one point. Let us seek for a contradiction.

Let $\alpha: \widetilde{X} \rightarrow X$ be the blow up of the point P, let E_{P} be the α-exceptional divisor, and let \widetilde{A} be the proper transform on \widetilde{X} of the surface A. Then $\widetilde{A} \cap E_{P}$ is a line $L \subset E_{P} \cong \mathbb{P}^{2}$, and the surface \widetilde{A} is singular along this line. Let $\beta: \bar{X} \rightarrow \widetilde{X}$ be the blow up of the line L, let E_{L} be the β-exceptional divisor, let \bar{A} be the proper transform on \bar{X} of the surface \widetilde{A}, and let \bar{E}_{P} be the proper transforms on \bar{X} of the surface E_{P}. Then

- $E_{L} \cong \mathbb{F}_{2}$,
- the intersection $\bar{E}_{P} \cap E_{L}$ is the (-2)-curve in E_{L},
- the surface \bar{A} is smooth, and the exists a \mathbb{P}^{1}-bundle $\bar{A} \rightarrow \mathcal{C}$,
- $\bar{A} \cap E_{L}$ is a smooth elliptic curve that is a section of the \mathbb{P}^{1}-bundle $\bar{A} \rightarrow \mathcal{C}$,
- the surfaces \bar{A} and \bar{E}_{P} are disjoint,
- $\bar{E}_{P} \cong \mathbb{P}^{2}$ and $\left.\bar{E}_{P}\right|_{\bar{E}_{P}} \cong \mathcal{O}_{\mathbb{P}^{2}}(-2)$.

There is a birational contraction $\gamma: \bar{X} \rightarrow \widehat{X}$ of the surface \bar{E}_{P} such that \widehat{X} is a projective threefold that has one singular point $O=\gamma\left(\bar{E}_{P}\right)$, which is a terminal cyclic quotient singularities of type $\frac{1}{2}(1,1,1)$. Thus, there exists the following commutative diagram

where σ is a birational morphism that contracts the surface $\gamma\left(E_{L}\right)$ to the point P.
Let $G=\gamma\left(E_{L}\right)$, let $\widehat{A}=\gamma(\bar{A})$, and let \widehat{E} be the proper transform on \widehat{X} of the surface E. Then $A_{X}(G)=4, \sigma^{*}\left(-K_{X}\right) \sim 2 \widehat{A}+\widehat{E}+8 G$ and $\sigma^{*}(A) \sim \widehat{A}+4 G$.

Note that $\widehat{A} \cong \bar{A}$ and $G \cong \mathbb{P}(1,1,2)$, so we can identify G with a quadric cone in \mathbb{P}^{3}. Note also that O is the vertex of the cone G. Moreover, by construction, we have $O \notin \widehat{A}$. Furthermore, the exists a \mathbb{P}^{1}-bundle $\widehat{A} \rightarrow \mathcal{C}$ such that $\left.G\right|_{\widehat{A}}$ is its section.

Let \mathbf{g} be a ruling of the quadric cone G, let \mathbf{l} be a fiber of the \mathbb{P}^{1}-bundle $\widehat{A} \rightarrow \mathcal{C}$, and let \mathbf{f} be a fiber of the \mathbb{P}^{1}-bundle $\left.\pi \circ \sigma\right|_{\widehat{E}}: \widehat{E} \rightarrow \mathcal{C}$. Then $\left.G\right|_{G} \sim_{\mathbb{Q}}-\mathbf{g}$ and $\left.\widehat{A}\right|_{G} \sim_{\mathbb{Q}} 4 \mathbf{g}$. Moreover, the intersections of the surfaces $G, \widehat{A}, \widehat{E}$ with the curves $\mathbf{g}, \mathbf{l}, \mathbf{f}$ are given here:

	G	\widehat{A}	\widehat{E}
\mathbf{g}	$-\frac{1}{2}$	2	0
\mathbf{l}	1	-4	1
\mathbf{f}	0	1	-1

Fix a non-negative real number u. We have $\sigma^{*}\left(-K_{X}\right)-u G \sim_{\mathbb{R}} 2 \widehat{A}+\widehat{E}+(8-u) G$, which implies that $\sigma^{*}\left(-K_{X}\right)-u G$ is pseudo-effective $\Longleftrightarrow u \in[0,8]$. Furthermore, if $u \in[0,8]$, then the Zariski decomposition of the divisor $\sigma^{*}\left(-K_{X}\right)-u G$ can be described as follows:

$$
P(u)=\left\{\begin{array}{l}
2 \widehat{A}+\widehat{E}+(8-u) G \text { if } 0 \leqslant u \leqslant 1 \\
\frac{9-u}{4} \widehat{A}+\widehat{E}+(8-u) G \text { if } 1 \leqslant u \leqslant 5 \\
\frac{8-u}{3}(\widehat{A}+\widehat{E}+3 G) \text { if } 5 \leqslant u \leqslant 8
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
\frac{u-1}{4} \widehat{A} \text { if } 1 \leqslant u \leqslant 5, \\
\frac{u-2}{3} \widehat{A}+\frac{u-5}{3} \widehat{E} \text { if } 5 \leqslant u \leqslant 8
\end{array}\right.
$$

where $P(u)$ and $N(u)$ are the positive and the negative parts of the decomposition. Then

$$
\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right)=P(u)^{3}=\left\{\begin{array}{l}
8-\frac{u^{3}}{8} \text { if } 0 \leqslant u \leqslant 1 \\
\frac{18-3 u}{2} \text { if } 1 \leqslant u \leqslant 5 \\
\frac{(8-u)^{3}}{18} \text { if } 5 \leqslant u \leqslant 8
\end{array}\right.
$$

Integrating, we get $S_{X}(G)=\frac{27}{8}<4=A_{X}(G)$. But [15, Corollary 4.18] gives

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{A_{X}(G)}{S_{X}(G)}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)\right\}=\min \left\{\frac{32}{27}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet}^{G}, \bullet\right)\right\}
$$

where $\delta_{Q}\left(G, V_{\bullet, 0}^{G}\right)$ is defined in [15]. Moreover, if Q is a point in G and Z is a smooth curve in G that passes through Q, then it follows from [15, Corollary 4.18] that

$$
\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right) \geqslant \min \left\{\frac{1}{S\left(V_{\bullet, \bullet}^{G} ; Z\right)}, \frac{1-\operatorname{ord}_{Q}\left(\Delta_{Z}\right)}{S\left(W_{\bullet, \bullet, \bullet}^{G, Z} ; Q\right)}\right\},
$$

where $S\left(V_{\bullet, \bullet}^{G} ; Z\right)$ and $S\left(W_{\bullet, \bullet \bullet}^{G, Z} ; Q\right)$ are defined in [15], and

$$
\Delta_{Z}=\left\{\begin{array}{l}
0 \text { if } O \notin Z \\
\frac{1}{2} O \text { if } O \in Z
\end{array}\right.
$$

Let us show that $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)>1$ for every $Q \in G$, which would imply a contradiction.
Let $\mathscr{C}=\left.\widehat{A}\right|_{G}$, and let ℓ be a curve in $|\mathbf{f}|$ that passes through Q. Then $O \notin \ell$ and $O \in \ell$, so that $\Delta_{\ell}=0$ and $\Delta_{\ell}=\frac{1}{2} O$. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.P(u)\right|_{G}-v \ell \sim_{\mathbb{R}}\left\{\begin{array}{l}
(u-v) \mathbf{g} \text { if } 0 \leqslant u \leqslant 1 \\
(1-v) \mathbf{g} \text { if } 1 \leqslant u \leqslant 5 \\
\frac{8-u-3 v}{3} \mathbf{g} \text { if } 5 \leqslant u \leqslant 8
\end{array}\right.
$$

Now, using [15, Theorem 4.8], we get

$$
\begin{aligned}
S\left(W_{\bullet, \bullet}^{G} ; \ell\right)=\frac{3}{8} \int_{0}^{8} & \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{G}-v \ell\right) d v d u=\frac{3}{8} \int_{0}^{1} \int_{0}^{u} \frac{(u-v)^{2}}{2} d v d u+ \\
& +\frac{3}{12} \int_{1}^{5} \int_{0}^{1} \frac{(1-v)^{2}}{4} d v d u+\frac{3}{12} \int_{5}^{8} \int_{0}^{\frac{8-u}{3}} \frac{(8-u-3 v)^{2}}{18} d v d u=\frac{5}{16} .
\end{aligned}
$$

Similarly, if $Q \notin \mathscr{C}$, then it follows from [15, Theorem 4.17] that

$$
\begin{aligned}
& S\left(W_{\bullet,,,}^{G, \ell} ; Q\right)=\frac{3}{8} \int_{0}^{1} \\
&+ \int_{0}^{u}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+\frac{3}{8} \int_{1}^{5} \int_{0}^{1}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+ \\
&+\frac{3}{8} \int_{5}^{8} \int_{0}^{\frac{8-u}{3}}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+F_{Q}=\frac{3}{8} \int_{0}^{1} \int_{0}^{u} \frac{(u-v)^{2}}{4} d v d u+ \\
&+\frac{3}{8} \int_{1}^{5} \int_{0}^{1} \frac{(1-v)^{2}}{4} d v d u+\frac{3}{8} \int_{5}^{8} \int_{0}^{\frac{8-u}{3}} \frac{(8-u-3 v)^{2}}{36} d v d u=\frac{5}{32}
\end{aligned}
$$

so that $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right)=\frac{5}{32}$, which implies that $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right) \geqslant \frac{16}{5}$. Likewise, if $Q \in \mathscr{C}$, then

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{G} ; \mathscr{C}\right)=\frac{3}{8} \int_{0}^{8}\left(P(u)^{2} \cdot G\right) \cdot \operatorname{ord}_{\mathscr{C}}\left(\left.N(u)\right|_{G}\right) d u+\frac{3}{8} \int_{0}^{8} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{G}-v \mathscr{C}\right) d v d u= \\
& =\frac{3}{8} \int_{1}^{5} \frac{u-1}{8} d u+\frac{3}{8} \int_{5}^{8} \frac{(u-2)(8-u)^{2}}{54} d u+\frac{3}{8} \int_{0}^{1} \int_{0}^{\frac{u}{4}} \frac{(u-4 v)^{2}}{2} d v d u+ \\
& \quad+\frac{3}{8} \int_{1}^{5} \int_{0}^{\frac{1}{4}} \frac{(1-4 v)^{2}}{2} d v d u+\frac{3}{8} \int_{5}^{8} \int_{0}^{\frac{8-u}{12}} \frac{(8-u-12 v)^{2}}{18} d v d u=\frac{11}{16}
\end{aligned}
$$

and

$$
\begin{gathered}
S\left(W_{\bullet, 0,0}^{G, \mathscr{C}} ; Q\right)=\frac{3}{8} \int_{0}^{1} \int_{0}^{\frac{u}{4}}\left(\left(\left.P(u)\right|_{G}-v \mathscr{C}\right) \cdot \mathscr{C}\right)^{2} d v d u+ \\
+\frac{3}{8} \int_{1}^{5} \int_{0}^{\frac{1}{4}}\left(\left(\left.P(u)\right|_{G}-v \mathscr{C}\right) \cdot \mathscr{C}\right)^{2} d v d u+\frac{3}{8} \int_{5}^{8} \int_{0}^{\frac{8-u}{12}}\left(\left(\left.P(u)\right|_{G}-v \mathscr{C}\right) \cdot \mathscr{C}\right)^{2} d v d u= \\
=\frac{3}{8} \int_{0}^{1} \int_{0}^{\frac{u}{4}}(2 u-8 v)^{2} d v d u+\frac{3}{8} \int_{1}^{5} \int_{0}^{\frac{1}{4}}(2-8 v)^{2} d v d u+ \\
+\frac{3}{8} \int_{5}^{8} \int_{0}^{\frac{8-u}{12}} \frac{(16-2 u-24 v)^{2}}{9} d v d u=\frac{5}{8} .
\end{gathered}
$$

This implies that $\delta_{Q}\left(G, V_{\bullet, 0}^{G}\right) \geqslant \min \left\{\frac{16}{11}, \frac{8}{5}\right\}=\frac{16}{12}$, which is a contradiction.

Corollary 2.9. All smooth Fano threefolds in the family №2.3 are K-stable.
We see that $d=3$, so that A is a singular cubic surface in \mathbb{P}^{3} such that $P=\operatorname{Sing}(A)$. Let $\sigma: \widehat{X} \rightarrow X$ be the blow up of the point P, and let G be the σ-exceptional surface. Denote by \widehat{A} and \widehat{E} the proper transforms on \widehat{X} of the surfaces A and E, respectively.

Lemma 2.10. The surface A has $D u$ Val singularities.
Proof. Suppose that A is a cone in \mathbb{P}^{3} with vertex P. Take $u \in \mathbb{R}_{\geqslant 0}$. Then

$$
\sigma^{*}\left(-K_{X}\right)-v G \sim_{\mathbb{R}} 2 \widehat{A}+\widehat{E}+(6-u) G
$$

Thus, the divisor $\sigma^{*}\left(-K_{X}\right)-v G$ is pseudo-effective $\Longleftrightarrow u \in[0,6]$. Moreover, if $u \in[0,6]$, then the Zariski decomposition of the divisor $\sigma^{*}\left(-K_{X}\right)-v G$ can be described as follows:

$$
P(u)=\left\{\begin{array}{l}
2 \widehat{A}+E+(6-u) G \text { if } 0 \leqslant u \leqslant 1 \\
\frac{7-u}{3} \widehat{A}+\widehat{E}+(6-u) G \text { if } 1 \leqslant u \leqslant 4 \\
\frac{6-u}{2}(\widehat{A}+\widehat{E}+2 G) \text { if } 4 \leqslant u \leqslant 6
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
\frac{u-1}{3} \widehat{A} \text { if } 1 \leqslant u \leqslant 4, \\
\frac{u-2}{2} \widehat{A}+\frac{u-4}{2} \widehat{E} \text { if } 4 \leqslant u \leqslant 6
\end{array}\right.
$$

where $P(u)$ and $N(u)$ are the positive and the negative parts of the Zariski decomposition, respectively. Using this, we compute

$$
S_{X}(G)=\frac{3}{12} \int_{0}^{1} u^{3} d u+\frac{3}{12} \int_{1}^{4} u d u+\frac{3}{12} \int_{4}^{6} \frac{u(6-u)^{2}}{4} d u=\frac{43}{16}<3=A_{X}(G)
$$

Let us apply [15, Theorem 4.8], [15, Corollary 4.17], [15, Corollary 4.18] using notations introduced in [15, § 4]. To start with, we apply [15, Corollary 4.18] to get

$$
\begin{equation*}
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{A_{X}(G)}{S_{X}(G)}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)\right\}=\min \left\{\frac{48}{43}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)\right\} \tag{2.2}
\end{equation*}
$$

where $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)$ is defined in [15, §4]. Let Q be an arbitrary point in the surface G, and let ℓ is a general line in $G \cong \mathbb{P}^{2}$ that contains Q. Then [15, Corollary 4.18] gives

$$
\delta_{Q}\left(G, V_{\bullet \bullet \bullet}^{G}\right) \geqslant \min \left\{\frac{1}{S\left(V_{\bullet, \bullet}^{G} ; \ell\right)}, \frac{1}{S\left(W_{\bullet, \bullet \bullet}^{G, \ell} ; Q\right)}\right\}
$$

where $S\left(V_{\bullet, \bullet}^{F} ; \ell\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right)$ are defined in [15, § 4]. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.P(u)\right|_{G}-v \ell \sim_{\mathbb{R}}\left\{\begin{array}{l}
(u-v) \ell \text { if } 0 \leqslant u \leqslant 1 \\
(1-v) \ell \text { if } 1 \leqslant u \leqslant 4 \\
\frac{6-u-2 v}{2} \ell \text { if } 4 \leqslant u \leqslant 6
\end{array}\right.
$$

Let $\mathscr{C}=\left.\widehat{A}\right|_{G}$. Then \mathscr{C} is a smooth cubic curve in $G \cong \mathbb{P}^{2}$. Let

$$
N^{\prime}(u)=\left.N(u)\right|_{G}=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1, \\
\frac{u-1}{3} \mathscr{C} \text { if } 1 \leqslant u \leqslant 4, \\
\frac{u-2}{2} \mathscr{C} \text { if } 4 \leqslant u \leqslant 6
\end{array}\right.
$$

Now, using [15, Theorem 4.8], we get

$$
\begin{aligned}
S\left(W_{\bullet, \bullet}^{G} ; \ell\right)=\frac{3}{12} & \int_{0}^{6} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{G}-v \ell\right) d v d u=\frac{3}{12} \int_{0}^{1} \int_{0}^{u}(u-v)^{2} d v d u+ \\
& +\frac{3}{12} \int_{1}^{4} \int_{0}^{1}(1-v)^{2} d v d u+\frac{3}{12} \int_{4}^{6} \int_{0}^{\frac{6-u}{2}}\left(\frac{6-u-2 v}{2}\right)^{2} d v d u=\frac{5}{16}
\end{aligned}
$$

Similarly, it follows from [15, Theorem 4.17] that

$$
\begin{aligned}
& S\left(W_{\bullet,, \bullet}^{G, \ell} ; Q\right)=\frac{3}{12} \int_{0}^{1} \int_{0}^{u}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+\frac{3}{12} \int_{1}^{4} \int_{0}^{1}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+ \\
& \quad+\frac{3}{12} \int_{4}^{6} \int_{0}^{\frac{6-u}{2}}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+F_{Q}=\frac{3}{12} \int_{0}^{1} \int_{0}^{u}(u-v)^{2} d v d u+ \\
& \quad+\frac{3}{12} \int_{1}^{4} \int_{0}^{1}(1-v)^{2} d v d u+\frac{3}{12} \int_{4}^{6} \int_{0}^{\frac{6-u}{2}}\left(\frac{6-u-2 v}{2}\right)^{2} d v d u+F_{Q}=\frac{5}{16}+F_{Q}
\end{aligned}
$$

where

$$
\begin{aligned}
F_{Q}= & \frac{6}{12} \int_{1}^{4} \int_{0}^{1}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right) \operatorname{ord}_{Q}\left(\left.N^{\prime}(u)\right|_{\ell}\right) d v d u+ \\
& +\frac{6}{12} \int_{4}^{6} \int_{0}^{\frac{6-u}{2}}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right) \operatorname{ord}_{Q}\left(\left.N^{\prime}(u)\right|_{\ell}\right) d v d u \leqslant \\
\leqslant & \frac{6}{12} \int_{1}^{4} \int_{0}^{1} \frac{(1-v)(u-1)}{3} d v d u+\frac{6}{12} \int_{4}^{6} \int_{0}^{\frac{6-u}{2}} \frac{(6-u-2 v)(u-2)}{4} d v d u=\frac{7}{12} .
\end{aligned}
$$

So, we have $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right) \leqslant \frac{43}{48}$. Then $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)>1$, which contradicts (2.21).
Thus, we see that P is a Du Val singular point of the surface A of type $\mathbb{D}_{4}, \mathbb{D}_{5}, \mathbb{E}_{6}$. Now, arguing as in the proof of [19, Lemma 9.11], we see that $\beta(\mathbf{F})>0$ if
(1) the inequality $\beta(G)>0$ holds,
(2) and for every prime divisor \mathbf{E} over X such that $C_{X}(\mathbf{E})$ is a curve containing P, the following inequality holds:

$$
\frac{A_{X}(\mathbf{E})}{S_{X}(\mathbf{E})} \geqslant \frac{4}{3}
$$

Since $\beta(\mathbf{F}) \leqslant 0$ by our assumption, we see that at least one of these conditions must fail.
Lemma 2.11. One has $\beta(G) \geqslant \frac{465}{2048}$.

Proof. Let \widehat{A} and \widehat{E} be the proper transforms on \widehat{X} of the surfaces A and E, respectively. Take $u \in \mathbb{R}_{\geqslant u}$. Then

$$
\sigma^{*}\left(-K_{X}\right)-u G \sim \sigma^{*}(2 H-E)-u G \sim \sigma^{*}(2 A+E)-u G \sim 2 \widehat{A}+\widehat{E}+(4-u) G
$$

which easily implies that the divisor $-K_{\hat{X}}-G$ is pseudoeffective $\Longleftrightarrow u \leqslant 4$, because we can contract the surfaces \widehat{A} and \widehat{E} simultaneously after flops. Then

$$
\beta(G)=A_{X}(G)-S_{X}(G)=3-\frac{1}{12} \int_{0}^{4} \operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right) d u
$$

Note that $\sigma^{*}\left(-K_{X}\right)-u G$ is nef for $u \in[0,1]$, because the divisor $-K_{X}$ is very ample. Thus, if $u \in[0,1]$, then

$$
\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right)=\left(\sigma^{*}\left(-K_{X}\right)-u G\right)^{3}=12-u^{3}
$$

Similarly, if $1 \leqslant u \leqslant \frac{3}{2}$, then

$$
\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right) \leqslant \leqslant \operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-G\right)=\left(\sigma^{*}\left(-K_{X}\right)-G\right)^{3}=11
$$

Finally, let us estimate $\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right)$ in the case when $4 \geqslant u>\frac{3}{2}$.
Let Z be a general hyperplane section of the cubic surface A that passes through P, and let \widehat{Z} be its proper transform on the threefold \widehat{X}. Then Z is an irreducible cuspidal cubic curve, and $\widehat{Z} \subset \widehat{A}$. Observe that $\left(\sigma^{*}\left(-K_{X}\right)-u G\right) \cdot \widehat{Z}=3-2 u$ and $\widehat{A} \cdot \widehat{Z}=-4$, so \widehat{A} is contained in the asymptotic base locus of the divisor $\sigma^{*}\left(-K_{X}\right)-u G$ for $u>\frac{3}{2}$. Moreover, if $\sigma^{*}\left(-K_{X}\right)-u G \sim_{\mathbb{R}} \widehat{D}+\lambda \widehat{A}$ for $\lambda \in \mathbb{R}_{\geqslant 0}$ and an effective \mathbb{R}-divisor \widehat{D} whose support does not contain \widehat{A}, then $\widehat{Z} \not \subset \widehat{D}$, which implies that

$$
0 \leqslant \widehat{D} \cdot \widehat{Z}=\left(\sigma^{*}\left(-K_{X}\right)-u G-\lambda \widehat{A}\right) \cdot \widehat{Z}=3-2 u-4 \lambda
$$

so that $\lambda \geqslant \frac{3-2 u}{4}$. Thus, if $4 \geqslant u>\frac{3}{2}$, then

$$
\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right) \leqslant \operatorname{vol}\left(\sigma^{*}(2 H-E)-u G-\frac{2 u-3}{4} \widehat{A}\right)
$$

Moreover, if $4 \geqslant u>\frac{3}{2}$, then

$$
\sigma^{*}(2 H-E)-u G-\frac{2 u-3}{4} \widehat{A} \sim_{\mathbb{R}} \frac{11-2 u}{4} \sigma^{*}(H)-\frac{7-2 u}{2} \sigma^{*}(E)-\frac{3}{2} G .
$$

Therefore, if $4 \geqslant u>\frac{3}{2}$, then

$$
\operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right) \leqslant \operatorname{vol}\left(\frac{11-2 u}{4} \sigma^{*}(H)-\frac{7-2 u}{2} \sigma^{*}(E)\right)=\operatorname{vol}\left(\frac{11-2 u}{4} H-\frac{7-2 u}{2} E\right) .
$$

Furthermore, if $\frac{7}{2} \geqslant u>\frac{3}{2}$, then $\frac{11-2 u}{4} H-\frac{7-2 u}{2} E$ is nef, so that

$$
\operatorname{vol}\left(\frac{11-2 u}{4} H-\frac{7-2 u}{2} E\right)=\left(\frac{11-2 u}{4} H-\frac{7-2 u}{2} E\right)^{3}=\frac{25-6 u}{16} .
$$

Similarly, if $4 \geqslant u>\frac{7}{2}$, then

$$
\operatorname{vol}\left(\frac{11-2 u}{4} H-\frac{7-2 u}{2} E\right)=\left(\frac{11-2 u}{4} H\right)^{3}=\frac{(11-2 u)^{3}}{256}
$$

Now, we can estimate $\beta(G)$ as follows

$$
\begin{aligned}
\beta(G)=3 & -\frac{1}{12} \int_{0}^{4} \operatorname{vol}\left(\sigma^{*}\left(-K_{X}\right)-u G\right) d u \geqslant 3-\frac{1}{12} \int_{0}^{1}\left(12-u^{3}\right) d u-\frac{1}{12} \int_{1}^{\frac{3}{2}} 11 d u- \\
& -\frac{1}{12} \int_{\frac{3}{2}}^{\frac{7}{2}} \frac{25-6 u}{16} d u-\frac{1}{12} \int_{\frac{7}{2}}^{4} \frac{(11-2 u)^{3}}{256} d u=3-\frac{5679}{2048}=\frac{465}{2048}
\end{aligned}
$$

as claimed.

Therefore, there exists a prime divisor \mathbf{E} over X such that $C_{X}(\mathbf{E})$ is a curve, $P \in C_{X}(\mathbf{E})$, and $A_{X}(\mathbf{E})<\frac{4}{3} S_{X}(\mathbf{E})$. Set $Z=C_{X}(\mathbf{E})$. Then $\delta_{O}(X)<\frac{4}{3}$ for every point $O \in Z$.

Lemma 2.12. One has $Z \subset A$, and Z is a line in the cubic surface A.
Proof. Let O be a general point in Z, and let A_{O} be the fiber of ϕ that passes through O. If $Z \not \subset A$, then A_{O} is smooth, so that $\delta_{O}\left(A_{O}\right) \geqslant \frac{3}{2}$ by [3, Lemma 2.13], which gives

$$
\frac{4}{3}>\frac{A_{X}(\mathbf{E})}{S_{X}(\mathbf{E})} \geqslant \delta_{O}(X) \geqslant \min \left\{\frac{16}{11}, \frac{16 \delta_{O}\left(A_{O}\right)}{16 \delta_{O}\left(A_{O}\right)+15}\right\} \geqslant \min \left\{\frac{16}{11}, \frac{16 \times \frac{3}{2}}{\frac{3}{2}+15}\right\}=\frac{16}{11}>\frac{4}{3}
$$

by Lemma [2.1. This shows that $Z \subset A$ and $A_{O}=A$.
To complete the proof of the lemma, we have to show that Z is a line in the surface A. Suppose that Z is not a line. Then the point O is not contained in a line in the surface A, because A contains finitely many lines [6]. Now, arguing as in the proof of [3, Lemma 2.13], we get $\delta_{O}(A) \geqslant \frac{3}{2}$. So, applying Lemma 2.1 again, we get a contradiction as above.

Now, our Auxiliary Theorem follows from the following lemma:
Lemma 2.13. The surface A does not have a singular point of type \mathbb{D}_{4}.
Proof. Suppose A has singularity of type \mathbb{D}_{4}. Then, it follows from [6] that, for a suitable choice of coordinates x, y, z, t on the projective space \mathbb{P}^{3}, one of the following cases hold:
(A) $A=\left\{t x^{2}=y^{3}-z^{3}\right\} \subset \mathbb{P}^{3}$,
(B) $A=\left\{t x^{2}=y^{3}-z^{3}+x y z\right\} \subset \mathbb{P}^{3}$.

Note that $P=[0: 0: 0: 1]$, and A contains 6 lines [6]. In case (A), these lines are

$$
\begin{aligned}
& L_{1}=\{x=y-z=0\}, \\
& L_{2}=\left\{x=y-\omega_{3} z=0\right\}, \\
& L_{3}=\left\{x=y+\omega_{3}^{2} z=0\right\}, \\
& L_{4}=\{t=y-z=0\} \\
& L_{5}=\left\{t=y+\omega_{3} z=0\right\}, \\
& L_{6}=\left\{t=y+\omega_{3}^{2} z=0\right\},
\end{aligned}
$$

where ω_{3} is a primitive cube root of unity. In case (B), these lines are

$$
\begin{aligned}
L_{1} & =\{x=y-z=0\} \\
L_{2} & =\left\{x=y-\omega_{3} z=0\right\} \\
L_{3} & =\left\{x=y-\omega_{3}^{2} z=0\right\} \\
L_{4} & =\{x+3(y-z)=y-z-9 t=0\} \\
L_{5} & =\left\{x+3 \omega_{3}\left(y-\omega_{3} z\right)=\omega_{3} y-\omega_{3}^{2} z-9 t=0\right\} \\
L_{6} & =\left\{x+3 \omega_{3}^{2}\left(y-\omega_{3}^{2} z\right)=\omega_{3}^{2} y-\omega_{3} z-9 t=0\right\}
\end{aligned}
$$

Note that $P=L_{1} \cap L_{3} \cap L_{3}, P \notin L_{4} \cup L_{5} \cup L_{6}$ and $-K_{A} \sim 2 L_{1}+L_{4} \sim 2 L_{2}+L_{5} \sim 2 L_{3}+L_{6}$.
By Lemma 2.12, we may assume that $Z=L_{1}$.
Recall that $S_{X}(A)=\frac{11}{16}$, see the proof of Lemma 2.1. Using [3, Theorem 1.7.30], we get

$$
\frac{4}{3}>\frac{A_{X}(\mathbf{E})}{S_{X}(\mathbf{E})} \geqslant \min \left\{\frac{1}{S_{X}(A)}, \frac{1}{S\left(W_{\bullet \bullet \bullet}^{A} ; L_{1}\right)}\right\}=\min \left\{\frac{16}{11}, \frac{1}{S\left(W_{\bullet, 0}^{A} ; L_{1}\right)}\right\}
$$

where $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)$ is defined in [3, § 1.7]. Therefore, we conclude that $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)<\frac{4}{3}$. Let us compute $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)$ using [3, Corollary 1.7.26].

To do this, we use notations introduced in the proof of Lemma 2.1 applied to $O=P$. Then, using [3, Corollary 1.7.26] and computations from the proof of Lemma 2.1, we get $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)=\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v L_{1}\right) d v d u+\frac{1}{4} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left((2-u)\left(-K_{A}\right)-v L_{1}\right) d v d u$, since $L_{1} \not \subset \operatorname{Supp}(N(u))$, since $L_{1} \not \subset E$. Let us compute $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)$. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{A}-v L_{1} \sim_{\mathbb{R}}(2-v) L_{1}+L_{4}
$$

Thus, the divisor $-K_{A}-v L_{1}$ is pseudoeffective $\Longleftrightarrow v \leqslant 2$, since $L_{4}^{2}=-1$. Fix $v \in[0,2]$. Let $P(u, v)$ be the positive part of the Zariski decomposition of the divisor $-K_{A}-v L_{1}$, and let $N(u, v)$ be its negative part. Then

$$
P(u, v)=\left\{\begin{array}{l}
(2-v) L_{1}+L_{4} \text { if } 0 \leqslant v \leqslant 1 \\
(2-v)\left(L_{1}+L_{4}\right) \text { if } 1 \leqslant v \leqslant 2
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1 \\
(v-1) L_{4} \text { if } 1 \leqslant v \leqslant 2
\end{array}\right.
$$

Thus, if $0 \leqslant v \leqslant 1$, then $\operatorname{vol}\left(-K_{A}-v L_{1}\right)=3-2 v$, because $L_{1}^{2}=0$ and $L_{1} \cdot L_{4}=0$. Similarly, if $1 \leqslant v \leqslant 2$, then $\operatorname{vol}\left(-K_{A}-v L_{1}\right)=(v-2)^{2}$. This gives

$$
\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(-K_{A}-v L_{1}\right) d v d u=\frac{1}{4} \int_{0}^{1} \int_{0}^{1}(3-2 v) d v d u+\frac{1}{4} \int_{0}^{1} \int_{1}^{2}(v-2)^{2} d v d u=\frac{7}{12}
$$

and

$$
\begin{gathered}
\frac{1}{4} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left((2-u)\left(-K_{A}\right)-v L_{1}\right) d v d u=\frac{1}{4} \int_{1}^{2} \int_{0}^{\infty}(2-u)^{3} \operatorname{vol}\left(\left(-K_{A}\right)-v L_{1}\right) d v d u= \\
\quad=\frac{1}{4} \int_{1}^{2} \int_{0}^{1}(2-u)^{3}(3-2 v) d v d u+\frac{1}{4} \int_{1}^{2} \int_{1}^{2}(2-u)^{3}(v-2)^{2} d v d u=\frac{7}{48}
\end{gathered}
$$

Combining, we get $S\left(W_{\bullet, \bullet}^{A} ; L_{1}\right)=\frac{35}{48}<\frac{3}{4}$. This is a contradiction.

3. Family №2.2.

Let R be a smooth surface of degree $(2,4)$ in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, let $\pi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ be a double cover ramified over surface R. Then X is a Fano threefold in the deformation family № 2.2. Moreover, all smooth Fano threefolds in this family can be obtained this way.

Let $\mathrm{pr}_{1}: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ and $\mathrm{pr}_{2}: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the projections to the first and the second factors, respectively. Set $p_{1}=\operatorname{pr}_{1} \circ \pi$ and $p_{2}=\operatorname{pr}_{2} \circ \pi$. We have the following commutative diagram:

where p_{1} is a fibration into del Pezzo surfaces of degree 2, and p_{2} is a conic bundle.
Lemma 3.1. Let S be a fiber of the morphism p_{1}. Then S is irreducible and normal.
Proof. Left to the reader.
Lemma 3.2. Let S be a fiber of the morphism p_{1}, let C be a fiber of the morphism p_{2}, and let P be a point in $S \cap C$. Then S or C is smooth at P.

Proof. Local computations.
Now, we are ready to prove that X is K-stable. Recall from [9] that $\operatorname{Aut}(X)$ is finite. Thus, the threefold X is K-stable if and only if it is K-polystable [19].

Let τ be the Galois involution of the double cover $\pi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$, and let $G=\langle\tau\rangle$. Suppose that X is not K-polystable. Then it follows from [20, Corollary 4.14] that there exists a G-invariant prime divisor \mathbf{F} over X such that

$$
\beta(\mathbf{F})=A_{X}(\mathbf{F})-S_{X}(\mathbf{F}) \leqslant 0
$$

Let Z be the center of this divisor on X. Then Z is not a surface by [3, Theorem 3.7.1]. Hence, we see that either Z is a G-invariant irreducible curve, or Z is a G-fixed point. Let us seek for a contradiction.

Let P be a general point in Z, and let S be the fiber of p_{1} that passes through P.
Lemma 3.3. The surface S is singular at P.
Proof. Suppose that S is smooth at P. Let C be a general curve in $\left|-K_{S}\right|$ that contains P. Then C is smooth. Applying [3, Theorem 1.7.30] to the flag $P \in C \subset S$, we get

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(S)}, \frac{1}{S\left(W_{\bullet, 0}^{S} ; C\right)}, \frac{1}{S\left(W_{\bullet, 0,0}^{S} ; P\right)}\right\} .
$$

Since $S_{X}(S)<1$ by [3, Theorem 3.7.1], we see that $S\left(W_{\bullet, 0}^{S} ; C\right) \geqslant 1$ or $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right) \geqslant 1$. We refer the reader to [3, §1.7] for definitions of $S_{X}(S), S\left(W_{\bullet \bullet \bullet}^{S} ; C\right), S\left(W_{\bullet, 0,0}^{S, C} ; P\right)$.

Note that [3, Theorem 1.7.30] requires S to have Du Val singularities, but S may have non-Du Val singularities. Nevertheless, we still can apply [3, Theorem 1.7.30] here, since the proof of [3, Theorem 1.7.30] remains valid in our case, because S is smooth along C.

Let us compute $S\left(W_{\bullet, \bullet}^{S} ; C\right)$ and $S\left(W_{\bullet,, 0,0}^{S, C} ; P\right)$. Take $u \in \mathbb{R}_{\geqslant 0}$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{X}-u S \text { is nef } \Longleftrightarrow-K_{X}-u S \text { is pseudoeffective } \Longleftrightarrow u \leqslant 1
$$

Similarly, if $u \in[0,1]$, then $\left.\left(-K_{X}-u S\right)\right|_{S}-v C \sim_{\mathbb{R}}(1-v)\left(-K_{S}\right)$, so
$\left.\left(-K_{X}-u S\right)\right|_{S}-v C$ is nef $\left.\Longleftrightarrow\left(-K_{X}-u S\right)\right|_{S}-v C$ is pseudoeffective $\Longleftrightarrow v \leqslant 1$.
Now, applying [3, Corollary 1.7.26], we get

$$
S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{3}{6} \int_{0}^{1} \int_{0}^{1}\left((1-v)\left(-K_{S}\right)\right)^{2} d v d u=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} 2(1-v)^{2} d v=\frac{1}{3}<1
$$

Similarly, using [3, Theorem 1.7.30], we get

$$
S\left(W_{\bullet, \bullet, \bullet}^{S, C}, P\right)=\frac{3}{6} \int_{0}^{1} \int_{0}^{1}\left((1-v)\left(-K_{S}\right) \cdot C\right)^{2} d v d u=\frac{2}{3}<1
$$

But we already know that $S\left(W_{\bullet, \bullet}^{S} ; C\right) \geqslant 1$ or $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right) \geqslant 1$. This is a contradiction.
If Z is a curve, then S is smooth at P by Lemma 3.1, because P is a general point in Z. Hence, we conclude that $Z=P$, because S is singular at the point P by Lemma 3.3, Recall that Z is G-invariant. This implies that $\tau(P) \in R$.

Let C be the fiber of p_{2} that passes through P. Then C is smooth at P by Lemma 3.2, because S is singular at P. Since $\tau(P) \in R$, we see that C is irreducible and smooth.

Let T be a sufficiently general surface in linear system $\left|\pi_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)\right|$ that contains C. Since C is smooth, it follows from Bertini's theorem that the surface T is smooth.

As in the proof of Lemma 3.3, it follows from [3, Theorem 1.7.30] that

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(T)}, \frac{1}{S\left(W_{\bullet, \bullet}^{T} ; C\right)}, \frac{1}{S\left(W_{\bullet, 0, \bullet}^{T, C} ; P\right)}\right\}
$$

Moreover, it follows from [3, Theorem 3.7.1] that $S_{X}(T)<1$. Thus, we conclude that

$$
\max \left\{S\left(W_{\bullet, \bullet}^{T} ; C\right), S\left(W_{\bullet \bullet, \bullet}^{T, C} ; P\right)\right\} \geqslant 1
$$

In fact, since P is the center of the divisor F on X, 3, Theorem 3.7.1] gives

$$
\begin{equation*}
\max \left\{S\left(W_{\bullet, \bullet}^{T} ; C\right), S\left(W_{\bullet \bullet, \bullet}^{T, C} ; P\right)\right\}>1 \tag{3.1}
\end{equation*}
$$

Now, let us compute $S\left(W_{\bullet, \bullet}^{T} ; C\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{T, C} ; P\right)$ using the results obtained in [3, § 1.7].
Take $u \in \mathbb{R}_{\geqslant 0}$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{X}-u T \text { is nef } \Longleftrightarrow-K_{X}-u T \text { is pseudoeffective } \Longleftrightarrow u \leqslant 1
$$

Similarly, if $u \in[0,1]$, then
$\left.\left(-K_{X}-u T\right)\right|_{T}-v C$ is nef $\left.\Longleftrightarrow\left(-K_{X}-u T\right)\right|_{T}-v C$ is pseudoeffective $\Longleftrightarrow v \leqslant 1-u$, because $\left.\left(-K_{X}-u T\right)\right|_{T}-\left.v C \sim_{\mathbb{R}} S\right|_{T}+(1-u-v) C$. So, using [3, Corollary 1.7.26], we get $S\left(W_{\bullet, \bullet}^{T} ; C\right)=\frac{3}{6} \int_{0}^{1} \int_{0}^{1-u}\left(\left.S\right|_{T}+(1-u-v) C\right)^{2} d v d u=\frac{1}{2} \int_{0}^{1} \int_{0}^{1-u} 4(1-u-v) d v d u=\frac{1}{3}<1$.
Hence, it follows from (3.1) that $S\left(W_{\bullet, 0,0}^{T, C}, P\right)>1$. Now, using [3, Theorem 1.7.30], we get

$$
S\left(W_{\bullet, \bullet, \bullet}^{T, C}, P\right)=\frac{3}{6} \int_{0}^{1} \int_{0}^{1-u}\left(\left(\left.S\right|_{T}+(1-u-v) C\right) \cdot C\right)^{2} d v d u=\frac{3}{6} \int_{0}^{1} \int_{0}^{1-u} 4 d v d u=1
$$

which is a contradiction. This shows that X is K -stable.
Corollary 3.4. All smooth Fano threefolds in the family №2. 2 are K-stable.

4. FAMILY №2.4.

Let \mathscr{S} and \mathscr{S}^{\prime} be smooth cubic surfaces in \mathbb{P}^{3} such that their intersection is a smooth curve of genus 10. Set $\mathscr{C}=\mathscr{S} \cap \mathscr{S}^{\prime}$, and let $\pi: X \rightarrow \mathbb{P}^{3}$ be the blow up of the curve \mathscr{C}. Then X is a smooth Fano threefold in the family №2.4, and every smooth Fano threefold in this family can be obtained in this way. Moreover, there exists a commutative diagram

where $\mathbb{P}^{3} \xrightarrow{\longrightarrow} \mathbb{P}^{1}$ is a map that is given by the pencil generated by the surfaces \mathscr{S} and \mathscr{S}^{\prime}, and ϕ is a fibration into cubic surfaces. Note that $-K_{X}^{3}=10$ and $\operatorname{Aut}(X)$ is finite [9].

Let $H=\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{3}}(1)\right)$, and let E be the π-exceptional surface. Then $-K_{X} \sim 4 H-E$, the morphism ϕ is given by the linear system $|3 H-E|$, and $E \cong \mathscr{S} \times \mathbb{P}^{1}$.

The goal of this section is to prove that X is K-stable. Suppose that X is not K -stable. Let us seek for a contradiction. First, using the valuative criterion for K-stability [14, 16], we see that there exists a prime divisor \mathbf{F} over X such that

$$
\beta(\mathbf{F})=A_{X}(\mathbf{F})-S_{X}(\mathbf{F}) \leqslant 0
$$

Let Z be the center of the divisor \mathbf{F} on X. Then Z is not a surface by [3, Theorem 3.7.1]. Therefore, either Z is an irreducible curve or Z is a point. Fix a point $P \in Z$.

Let A be the surface in $|3 H-E|$ that contains P. Fix $u \in \mathbb{R}_{\geqslant 0}$. Let $\mathscr{P}(u)$ be the positive part of the Zariski decomposition of $-K_{X}-u A$, and let $\mathscr{N}(u)$ be its negative part. Then

$$
-K_{X}-u A \sim_{\mathbb{R}}(4-3 u) H-(1-u) E \sim_{\mathbb{R}}\left(\frac{4}{3}-u\right) A+\frac{1}{3} E .
$$

This implies that $-K_{X}-u A$ is pseudoeffective $\Longleftrightarrow u \leqslant \frac{4}{3}$. Moreover, we have

$$
\mathscr{P}(u)=\left\{\begin{array}{l}
(4-3 u) H-(1-u) E \text { if } 0 \leqslant u \leqslant 1 \\
(4-3 u) H \text { if } 1 \leqslant v \leqslant \frac{4}{3}
\end{array}\right.
$$

and

$$
\mathscr{N}(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
(u-1) E \text { if } 1 \leqslant u \leqslant \frac{4}{3}
\end{array}\right.
$$

Integrating, we obtain $S_{X}(A)=\frac{67}{120}<1$, which also follows from [3, Theorem 3.7.1].
Note that $\pi(A)$ is a normal cubic surface in \mathbb{P}^{3}, and $\pi(A)$ is smooth along the curve \mathscr{C}. In particular, we see that $A \cong \pi(A)$, and A is smooth along the intersection $E \cap A$.

Lemma 4.1. The surface A is singular at the point P.
Proof. Suppose that A is smooth at P. Let C be a general curve in $\left|-K_{A}\right|$ that passes through the point P. Then C is a smooth irreducible elliptic curve. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.\mathscr{P}(u)\right|_{S}-v C \sim_{\mathbb{R}}\left\{\begin{array}{l}
(1-v) C \text { if } 0 \leqslant u \leqslant 1 \\
(4-3 u-v) C \text { if } 1 \leqslant u \leqslant \frac{4}{3} \\
20
\end{array}\right.
$$

Therefore, using [3, Corollary 1.7.26], we obtain

$$
S\left(W_{\bullet, \bullet}^{A} ; C\right)=\frac{3}{10} \int_{0}^{1} \int_{0}^{1} 3(1-v)^{2} d v d u+\frac{3}{10} \int_{1}^{\frac{4}{3}} \int_{0}^{4-3 u} 3(4-3 u-v)^{2} d v d u=\frac{13}{40} .
$$

Similarly, using [3, Theorem 1.7.30], we obtain

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet, 0}^{A, C} ; P\right) \leqslant \frac{3}{10} \int_{0}^{1} \int_{0}^{1}(3(1-v))^{2} d v d u+\frac{3}{10} \int_{1}^{\frac{4}{3}} \int_{0}^{4-3 u}(3(4-3 u-v))^{2} d v d u+ \\
&+\underbrace{\frac{6}{10} \int_{1}^{\frac{4}{3}} \int_{0}^{4-3 u} 3(4-3 u-v)(u-1) d v d u}_{\text {if } P \in E}=\frac{39}{40}+\frac{1}{120}=\frac{59}{60}
\end{aligned}
$$

Therefore, it follows from [3, Theorem 1.7.30] that

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(A)}, \frac{1}{S\left(W_{\bullet, \bullet}^{A} ; C\right)}, \frac{1}{S\left(W_{\bullet, \bullet \bullet}^{A,} ; P\right)}\right\} \geqslant \min \left\{\frac{120}{67}, \frac{40}{13}, \frac{60}{59}\right\}>1
$$

which is absurd.
Corollary 4.2. The point P is not contained in the surface E.
Since $A \cong \pi(A)$, we may consider A as a cubic surface in \mathbb{P}^{3}. Then

- either $\operatorname{mult}_{P}(A)=2$ and A has Du Val singularities.
- or $\operatorname{mult}_{P}(A)=3$ and A is a cone over a plane smooth cubic curve with vertex P.

Lemma 4.3. One has mult $(A) \neq 3$.
Proof. Let $\sigma: \widehat{X} \rightarrow X$ be a blow up of the point P, and let G be the σ-exceptional surface. Denote by \widehat{A} and \widehat{E} the proper transforms on \widehat{X} of the surfaces A and E, respectively. Suppose that $\operatorname{mult}_{P}(A)=3$. Take $u \in \mathbb{R}_{\geqslant 0}$. Then

$$
\sigma^{*}\left(-K_{X}\right)-v G \sim_{\mathbb{R}} \frac{1}{3} \widehat{E}+\frac{4}{3} \widehat{A}+(4-u) G
$$

Thus, the divisor $\sigma^{*}\left(-K_{X}\right)-v G$ is pseudo-effective $\Longleftrightarrow u \in[0,4]$. Moreover, if $u \in[0,4]$, then the Zariski decomposition of the divisor $\sigma^{*}\left(-K_{X}\right)-v G$ can be described as follows:

$$
P(u)=\left\{\begin{array}{l}
\frac{1}{3} \widehat{E}+\frac{4}{3} \widehat{A}+(4-u) G \text { if } 0 \leqslant u \leqslant 1 \\
\frac{1}{3} \widehat{E}+\frac{5-u}{3} \widehat{A}+(4-u) G \text { if } 1 \leqslant u \leqslant 4
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
\frac{u-1}{3} \widehat{A} \text { if } 1 \leqslant u \leqslant 4,
\end{array}\right.
$$

where $P(u)$ and $N(u)$ are the positive and the negative parts of the Zariski decomposition, respectively. Using this, we compute

$$
S_{X}(G)=\frac{3}{10} \int_{0}^{1} u^{3}, d u+\frac{3}{10} \int_{21}^{4} u d u=\frac{93}{40}<3=A_{X}(G)
$$

As in the proof of Lemma 2.10, let us use results obtained in [15, § 4] to get a contradiction. Namely, applying [15, Corollary 4.18], we get

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{A_{X}(G)}{S_{X}(G)}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)\right\}=\min \left\{\frac{40}{31}, \inf _{Q \in G} \delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)\right\}
$$

where $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)$ is defined in [15, §4]. So, there is $Q \in G$ such that $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right)<\frac{40}{31}$.
Let ℓ is a general line in $G \cong \mathbb{P}^{2}$ that contains Q. Then [15, Corollary 4.18] gives

$$
\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right) \geqslant \min \left\{\frac{1}{S\left(V_{\bullet, \bullet}^{F} ; \ell\right)}, \frac{1}{S\left(W_{\bullet, \bullet \bullet}^{G} ; Q\right)}\right\}
$$

Let us compute $S\left(V_{\bullet, \bullet}^{G} ; \ell\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right)$. Take $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.P(u)\right|_{G}-v \ell \sim_{\mathbb{R}}\left\{\begin{array}{l}
(u-v) \ell \text { if } 0 \leqslant u \leqslant 1 \\
(1-v) \ell \text { if } 1 \leqslant u \leqslant 4
\end{array}\right.
$$

Let $\mathscr{C}=\left.\widehat{A}\right|_{G}$. Then \mathscr{C} is a smooth cubic curve in $G \cong \mathbb{P}^{2}$. Let

$$
N^{\prime}(u)=\left.N(u)\right|_{G}=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
\frac{u-1}{3} \mathscr{C} \text { if } 1 \leqslant u \leqslant 4
\end{array}\right.
$$

Now, using [15, Theorem 4.8], we get

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{G} ; \ell\right)=\frac{3}{10} \int_{0}^{4} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{G}-v \ell\right) d v d u= \\
&=\frac{3}{10} \int_{0}^{1} \int_{0}^{u}(u-v)^{2} d v d u+\frac{3}{10} \int_{1}^{4} \int_{0}^{1}(1-v)^{2} d v d u=\frac{13}{40}
\end{aligned}
$$

Similarly, it follows from [15, Theorem 4.17] that $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right)$ can be computes as follows:

$$
\begin{array}{r}
\frac{3}{10} \int_{0}^{1} \int_{0}^{u}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+\frac{3}{10} \int_{1}^{4} \int_{0}^{1}\left(\left(\left.P(u)\right|_{G}-v \ell\right) \cdot \ell\right)^{2} d v d u+F_{Q}= \\
=\frac{3}{12} \int_{0}^{1} \int_{0}^{u}(u-v)^{2} d v d u+\frac{3}{10} \int_{1}^{4} \int_{0}^{1}(1-v)^{2} d v d u+F_{Q}=\frac{13}{40}+F_{Q}
\end{array}
$$

where $F_{Q}=0$ if $\left.Q \notin \widehat{A}\right|_{G}$, and

$$
F_{Q}=\frac{6}{10} \int_{1}^{4} \int_{0}^{1} \frac{(1-v)(u-1)}{3} d v d u=\frac{9}{20}
$$

otherwise. This gives $S\left(W_{\bullet, \bullet, \bullet}^{G, \ell} ; Q\right) \leqslant \frac{31}{40}$. Combining the estimates, we get $\delta_{Q}\left(G, V_{\bullet, \bullet}^{G}\right) \geqslant \frac{40}{31}$, which is a contradiction. This completes the proof of the lemma.

Hence, we see that the surface A has Du Val singularities. Let S be a general surface in the linear system $|H|$ that contains P. Then S is smooth, and $-K_{X}-u S \sim_{\mathbb{R}}(4-u) H-E$. Thus, the divisor $-K_{X}-u S$ is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow u \leqslant 1$. Then

$$
S_{X}(S)=\frac{3}{10} \int_{0}^{1}\left(-K_{X}-u S\right)^{3} d u=\frac{3}{10} \int_{0}^{1} u(1-u)(7-u) d u=\frac{13}{40}<1
$$

Let $C=\left.A\right|_{S}$. Then C is a reduced curve in $\left|-K_{S}\right|$ that is singular at P, and $C \cong \pi(C)$. Moreover, the curve $\pi(C)$ is a general hyperplane section of the cubic surface $\pi(A) \subset \mathbb{P}^{3}$
that passes through the point $\pi(P)$. Therefore, since $\pi(A)$ is not a cone by Lemma 4.3, we conclude that the curve C is irreducible. Hence, one of the following two cases holds:
(1) the curve C has an ordinary node at P,
(2) the curve C has an ordinary cusp at P.

Let $\Pi=\pi(S)$. Then Π is a plane in \mathbb{P}^{3} such that $\pi(P) \in \Pi$ and $\Pi \cap \pi(A)=\pi(C)$, and the morphism $\left.\pi\right|_{S}: S \rightarrow \Pi$ is a composition of blow ups of 9 intersection points $\Pi \cap \mathscr{C}$, which we denote by O_{1}, \ldots, O_{9}. Note that $\pi(C)$ is a reduced plane cubic curve that passes through these nine points, and $\pi(C)$ is smooth away from $\pi(P)$.

Lemma 4.4. The curve C cannot have an ordinary double point at the point P.
Proof. For each $i \in\{1, \ldots, 9\}$, let L_{i} be the proper transform on S of the line in Π that passes through P and O_{i}. Then $L_{i} \neq L_{j}$ for $i \neq j$, since $\pi(C)$ is irreducible. We have

$$
\left.\left(-K_{X}-u S\right)\right|_{S} \sim_{\mathbb{R}} \frac{1-u}{6} \sum_{i=1}^{9} L_{i}
$$

Let $\sigma: \widehat{S} \rightarrow S$ be the blow up of S at the point P, let \mathbf{f} be the σ-exceptional curve, let $\widehat{C}, \widehat{L}_{1}, \ldots, \widehat{L}_{9}$ be the proper transforms on \widehat{S} of the curves C, L_{1}, \ldots, L_{9}, respectively. Then $\widehat{L}_{1}, \ldots, \widehat{L}_{9}$ are disjoint. On the surface \widehat{S}, we have $\mathbf{f}^{2}=-1$ and $\widehat{C}^{2}=-4, \widehat{C} \cdot \widehat{L}_{1}=\cdots=\widehat{C} \cdot \widehat{L}_{9}=0, \widehat{C} \cdot \mathbf{f}=2, \widehat{L}_{1}^{2}=\cdots=\widehat{L}_{9}^{2}=-1, \widehat{L}_{1} \cdot \mathbf{f}=\cdots=\widehat{L}_{9} \cdot \mathbf{f}=1$.

Fix $u \in[0,1]$. Let v be a non-negative real number. Then

$$
\begin{equation*}
\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f} \sim_{\mathbb{R}} \frac{5+u}{6} \widehat{C}+\frac{1-u}{6} \sum_{i}^{9} \widehat{L}_{i}+\frac{19-7 u-6 v}{6} \mathbf{f} . \tag{4.1}
\end{equation*}
$$

Thus, the divisor $\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}$ is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow v \leqslant \frac{19-7 u}{6}$. Let $P(u, v)$ and $N(u, v)$ be the positive and the negative parts of its Zariski decomposition. Then, using (4.1), we compute

$$
\begin{gathered}
P(u, v)=\left\{\begin{array}{l}
\frac{5+u}{6} \widehat{C}+\frac{1-u}{6} \sum_{i}^{9} \widehat{L}_{i}+\frac{19-7 u-6 v}{6} \mathbf{f} \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2}, \\
\frac{19-7 u-6 v}{12} \widehat{C}+\frac{1-u}{6} \sum_{i}^{9} \widehat{L}_{i}+\frac{19-7 u-6 v}{6} \mathbf{f} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 3-u, \\
\frac{19-7 u-6 v}{12}\left(\widehat{C}+2 \sum_{i}^{9} \widehat{L}_{i}+2 \mathbf{f}\right) \text { if } 3-u \leqslant v \leqslant \frac{19-7 u}{6}, \\
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2}, \\
\frac{-3+3 u+2 v}{4} \widehat{C} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 3-u, \\
\frac{2 v+3}{4} \widehat{C}+(v+u-3) \sum_{i}^{9} \widehat{L}_{i} \text { if } 3-u \leqslant v \leqslant \frac{19-7 u}{6}, \\
23
\end{array}\right.
\end{array}, .\right.
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{vol}\left(\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}\right)=\left\{\begin{array}{l}
(1-u)(7-u)-v^{2} \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2} \\
\frac{(1-u)(37-13 u-12 v)}{4} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 3-u, \\
\frac{(19-7 u-6 v)^{2}}{4} \text { if } 3-u \leqslant v \leqslant \frac{19-7 u}{6}, \\
P(u, v) \cdot \mathbf{f}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2}, \\
\frac{3(1-u)}{2} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 3-u, \\
\frac{3(19-7 u-6 v)}{2} \text { if } 3-u \leqslant v \leqslant \frac{19-7 u}{6} .
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
(1)
\end{array}\right.\right.
\end{gathered}
$$

Now, using [3, Corollary 1.7.26], we get

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{\widehat{S}} ; \mathbf{f}\right)=\frac{3}{10} \int_{0}^{1} \int_{0}^{\frac{19-7 u}{6}} \operatorname{vol}\left(\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}\right) d u d v= \\
& =\frac{3}{10} \int_{0}^{1} \int_{0}^{\frac{3-3 u}{2}}\left((1-u)(7-u)-v^{2}\right) d v+\frac{3}{10} \int_{0}^{1} \int_{\frac{3-3 u}{2}}^{3-u} \frac{(1-u)(37-13 u-12 v)}{4} d v+ \\
& \quad+\frac{3}{10} \int_{0}^{1} \int_{3-u}^{\frac{19-7 u}{6}} \frac{(19-7 u-6 v)^{2}}{4} d v d u=\frac{767}{480}<2=A_{S}(\mathbf{f}) .
\end{aligned}
$$

Moreover, if Q is a point in \mathbf{f}, then [3, Remark 1.7.32] gives

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet, \bullet}^{\widehat{\mathbf{S}}, \mathbf{f}} ; Q\right)=F_{Q}+\frac{3}{10} \int_{0}^{1} \int_{0}^{\frac{19-7 u}{6}}(P(u, v) \cdot \mathbf{f})^{2} d v d u=F_{Q}+\frac{3}{10} \int_{0}^{1} \int_{0}^{\frac{3-3 u}{2}} v^{2} d v+ \\
+ & \frac{3}{10} \int_{0}^{1} \int_{\frac{3-3 u}{2}}^{3-u}\left(\frac{3(1-u)}{2}\right)^{2} d v+\frac{3}{10} \int_{0}^{1} \int_{3-u}^{\frac{19-7 u}{6}}\left(\frac{3(19-7 u-6 v)}{2}\right)^{2} d v d u=F_{Q}+\frac{147}{320},
\end{aligned}
$$

where

$$
F_{Q}=\frac{6}{10} \int_{0}^{1} \int_{0}^{\frac{19-7 u}{6}}(P(u, v) \cdot \mathbf{f}) \operatorname{ord}_{Q}\left(\left.N(u, v)\right|_{\mathbf{f}}\right) d v d u
$$

which implies the following assertions:

- if $Q \notin \widehat{C} \cup \widehat{L}_{1} \cup \cdots \cup \widehat{L}_{9}$, then $F_{Q}=0$;
- if $Q \in \widehat{L}_{1} \cup \cdots \cup \widehat{L}_{9}$, then

$$
F_{Q}=\frac{6}{10} \int_{0}^{1} \int_{3-u}^{\frac{19-7 u}{6}} \frac{3(19-7 u-6 v)(v+u-3)}{2} d v d u=\frac{1}{960}
$$

- if $Q \in \widehat{C}$ and \widehat{C} intersects \mathbf{f} transversally at P, then

$$
\begin{aligned}
F_{Q}= & \frac{6}{10} \int_{0}^{1} \int_{\frac{3-3 u}{2}}^{3-u} \frac{3(1-u)(2 v+3 u-3)}{8} d v d u+ \\
& \frac{6}{10} \int_{0}^{1} \int_{3-u}^{\frac{19-7 u}{6}} \frac{3(19-7 u-6 v)(2 v+3 u-3)}{8} d v d u=\frac{643}{1920} ;
\end{aligned}
$$

- if $Q \in \widehat{C}$ and \widehat{C} is tangent to \mathbf{f} at the point P, then $F_{Q}=\frac{643}{960}$.

Thus, if C has a node at P, then $S\left(W_{\bullet, \bullet, \bullet \bullet}^{\widehat{S}, \mathbf{f}} ; Q\right) \leqslant \frac{305}{384}$, so [3, Remark 1.7.32] gives
$\left.1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\inf _{Q \in \mathbf{f}} \frac{1}{S\left(W_{\bullet, \bullet \bullet \bullet}, \mathbf{f}\right.}, Q\right), \frac{2}{S\left(V_{\bullet, \bullet}^{S} ; \mathbf{f}\right)}, \frac{1}{S_{X}(S)}\right\} \geqslant \min \left\{\frac{384}{305}, \frac{960}{767}, \frac{40}{13}\right\}=\frac{960}{767}>1$,
which is a contradiction. This shows that C has a cusp at P.
Lemma 4.5. The curve C cannot have an ordinary cusp at the point P.
Proof. Suppose C has a cusp. Let L be an irreducible curve in S such that $\pi(L)$ is a line and $\pi(L) \cap \pi(C)=\pi(P)$. Then $\left.\left(-K_{X}-u S\right)\right|_{S} \sim_{\mathbb{R}}(1-u) L+C$.

Now, we consider the following commutative diagram:

where σ_{1} is the blow up of P, σ_{2} is the blow up of the point in the σ_{1}-exceptional curve contained in the proper transform of C, σ_{3} is the blow up of the point in the σ_{2}-exceptional curve contained in the proper transform of C, v is the birational contraction of the proper transforms of $\sigma_{1} \circ \sigma_{2}$-exceptional curves, and σ is the birational contraction of the proper transform of the σ_{3}-exceptional curve. Then \widehat{S} has two singular points:
(1) a cyclic quotient singularity of type $\frac{1}{2}(1,1)$, which we denote by Q_{2};
(2) a cyclic quotient singularity of type $\frac{1}{3}(1,1)$, which we denote by Q_{3}.

Let \mathbf{f} be the σ-exceptional curve, let \widehat{C} be the proper transform on \widehat{S} of the curve C, and let \widehat{L} be the proper transform of the curve L. Then the curves $\mathbf{f}, \widehat{C}, \widehat{L}$ are smooth. Moreover, it is not very difficult to check that $Q_{2} \in \mathbf{f} \ni Q_{3}, Q_{2} \notin \widehat{C} \not \supset Q_{3}, Q_{2} \in \widehat{L} \not \supset Q_{2}$. Further, we have $A_{S}(\mathbf{f})=5, \sigma^{*}(C) \sim \widehat{C}+6 \mathbf{f}, \sigma^{*}(L) \sim \widehat{L}+3 \mathbf{f}$. On the surface \widehat{S}, we have

$$
\widehat{L}^{2}=-\frac{1}{2}, \widehat{L} \cdot \widehat{C}=0, \widehat{C} \cdot \mathbf{f}=\frac{1}{2}, \widehat{C}^{2}=-6, \widehat{C} \cdot \mathbf{f}=1, \mathbf{f}^{2}=-\frac{1}{6} .
$$

Note that $Q_{2}=\mathbf{f} \cap \widehat{L}$, and \widehat{C} intersects \mathbf{f} transversally by one point.
Fix $u \in[0,1]$. Let v be a non-negative real number. Then

$$
\begin{equation*}
\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f} \sim_{\mathbb{R}}(1-u) \widehat{L}+\widehat{C}+(9-3 u-v) \mathbf{f} \tag{4.2}
\end{equation*}
$$

Thus, the divisor $\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}$ is pseudoeffective \Longleftrightarrow it is nef $\Longleftrightarrow v \leqslant 9-3 u$. Let $P(u, v)$ and $N(u, v)$ be the positive and the negative parts of its Zariski decomposition. Then using (4.2), we compute

$$
P(u, v)=\left\{\begin{array}{c}
(1-u) \widehat{L}+\widehat{C}+(9-3 u-v) \mathbf{f} \text { if } 0 \leqslant v \leqslant 3-3 u \\
(1-u) \widehat{L}+\frac{9-3 u-v}{6} \widehat{C}+(9-3 u-v) \mathbf{f} \text { if } 3-3 u \leqslant v \leqslant 8-2 u \\
\frac{9-3 u-v}{6}(6 \widehat{L}+\widehat{C}+6 \mathbf{f}) \text { if } 8-2 u \leqslant v \leqslant 9-3 u \\
25
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 3-3 u \\
\frac{v+3 u-3}{6} \widehat{C} \text { if } 3-3 u \leqslant v \leqslant 8-2 u, \\
\frac{v+3 u-3}{6} \widehat{C}+(v+2 u-8) \widehat{L} \text { if } 8-2 u \leqslant v \leqslant 9-3 u
\end{array}\right.
$$

This gives

$$
\operatorname{vol}\left(\sigma^{*}\left(\left.\left(-K_{X}-u S\right)\right|_{S}\right)-v \mathbf{f}\right)=\left\{\begin{array}{l}
(1-u)(7-u)-\frac{v^{2}}{6} \text { if } 0 \leqslant v \leqslant 3-3 u \\
\frac{(1-u)(17-5 u-2 v)}{2} \text { if } 3-3 u \leqslant v \leqslant 8-2 u \\
\frac{(9-3 u-v)^{2}}{2} \text { if } 8-2 u \leqslant v \leqslant 9-3 u
\end{array}\right.
$$

and

$$
P(u, v) \cdot \mathbf{f}=\left\{\begin{array}{l}
\frac{v}{6} \text { if } 0 \leqslant v \leqslant 3-3 u \\
\frac{1-u}{2} \text { if } 3-3 u \leqslant v \leqslant 8-2 u \\
\frac{9-3 u-v}{2} \text { if } 8-2 u \leqslant v \leqslant 9-3 u
\end{array}\right.
$$

Now, we use [3, Corollary 1.7.26] to get

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{\widehat{S}} ; \mathbf{f}\right)=\frac{3}{10} \int_{0}^{1} \int_{0}^{3-3 u}\left((1-u)(7-u)-\frac{v^{2}}{6}\right) d v+ \\
& \quad+\frac{3}{10} \int_{0}^{1} \int_{3-3 u}^{8-2 u} \frac{(1-u)(17-5 u-2 v)}{2} d v+\frac{3}{10} \int_{0}^{1} \int_{8-2 u}^{9-3 u} \frac{(9-3 u-v)^{2}}{2} d v d u=\frac{173}{40} .
\end{aligned}
$$

Similarly, if Q is a point in \mathbf{f}, then [3, Remark 1.7.32] gives

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet, \bullet}^{\widehat{S}, \mathbf{f}} ; Q\right)=F_{Q}+\frac{3}{10} \int_{0}^{1} \int_{0}^{9-3 u}(P(u, v) \cdot \mathbf{f})^{2} d v d u= \\
& =F_{Q}+\frac{3}{10} \int_{0}^{1} \int_{0}^{3-3 u}\left(\frac{v}{6}\right)^{2} d v d u+\frac{3}{10} \int_{0}^{1} \int_{3-3 u}^{8-2 u}\left(\frac{1-u}{2}\right)^{2} d v d u+ \\
& \\
& \quad+\frac{3}{10} \int_{0}^{1} \int_{8-2 u}^{9-3 u}\left(\frac{9-3 u-v}{2}\right)^{2} d v d u=F_{Q}+\frac{5}{32}
\end{aligned}
$$

where F_{Q} can be computes as follows:

- if $Q \neq \widehat{C} \cap \mathbf{f}$ and $Q \neq \widehat{L} \cap \mathbf{f}$, then $F_{Q}=0$;
- if $Q=\widehat{L} \cap \mathbf{f}$, then

$$
F_{Q}=\frac{6}{10} \int_{0}^{1} \int_{8-2 u}^{9-3 u} \frac{(9-3 u-v)(v+2 u-8)}{2} d v d u=\frac{1}{80}
$$

- if $Q=\widehat{C} \cap \mathbf{f}$, then

$$
\begin{aligned}
F_{Q}=\frac{6}{10} & \int_{0}^{1} \int_{3-3 u}^{8-2 u} \frac{(1-u)(v+3 u-3)}{12} d v+ \\
& +\frac{6}{10} \int_{0}^{1} \int_{8-2 u}^{9-3 u} \frac{(9-3 u-v)(v+3 u-3)}{12} d u d v=\frac{193}{480}
\end{aligned}
$$

Therefore, we conclude that

$$
S\left(W_{\bullet,,, 0}^{\widehat{S}, \mathbf{f}} ; Q\right)=\left\{\begin{array}{l}
\frac{5}{32} \text { if } Q \notin \widehat{C} \cup \widehat{L} \\
\frac{27}{80} \text { if } Q=\widehat{L} \cap \mathbf{f} \\
\frac{67}{120} \text { if } Q=\widehat{C} \cap \mathbf{f}
\end{array}\right.
$$

Let $\Delta_{\mathbf{f}}=\frac{1}{2} Q_{2}+\frac{2}{3} Q_{3}$. Then, using [3, Remark 1.7.32] and our computations, we get

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\inf _{Q \in \mathbf{f}} \frac{1-\operatorname{ord}_{Q}\left(\Delta_{\mathbf{f}}\right)}{S\left(W_{\bullet, \bullet \bullet \bullet}^{\widehat{S}, \mathbf{f}} ; Q\right)}, \frac{5}{S\left(V_{\bullet \bullet \bullet}^{S} ; \mathbf{f}\right)}, \frac{1}{S_{X}(S)}\right\} \geqslant \min \left\{\frac{40}{13}, \frac{200}{173}, \frac{120}{67}\right\}=\frac{200}{173}>1
$$

which is a contradiction.
Combining Lemmas 4.4 and 4.5, we obtain a contradiction.
Corollary 4.6. All smooth Fano threefolds in the family №2.4 are K-stable.

5. Family №2.6 (Verra threefolds)

Smooth Fano threefolds in the family №2.6 can be described as follows:
(a) smooth divisors of degree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$, which are known as Verra threefolds,
(b) double covers of the (unique) smooth divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of degree $(1,1)$ branched over smooth anticanonical K3 surfaces.
Note that every double cover of the smooth divisor in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of degree $(1,1)$ branched over a smooth anticanonical surface is K-stable [13, Example 4.4]. In fact, this also implies that general Verra threefold is K-stable [3, Example 3.5.8].

The goal of this section is to prove that all smooth Verra threefolds are K-stable.
Let X be a smooth divisor of degree $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$, let $\pi_{1}: X \rightarrow \mathbb{P}^{2}$ be the projection to the first factor of $\mathbb{P}^{2} \times \mathbb{P}^{2}$, and let $\pi_{2}: X \rightarrow \mathbb{P}^{2}$ be the projection to the second factor. Then π_{1} and π_{2} are conic bundles [18]. Set $H_{1}=\pi_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ and $H_{2}=\pi_{2}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$. Then

$$
-K_{X} \sim H_{1}+H_{2}
$$

and the group $\operatorname{Pic}(X)$ is generated by H_{1} and H_{2}. Note that the group $\operatorname{Aut}(X)$ is finite 9 . Thus, the threefold X is K-stable \Longleftrightarrow it is K-polystable. See [19] for details.

Lemma 5.1. Fix a point $P \in X . \operatorname{Let} C_{1}$ be the fiber of the conic bundle π_{1} that contains P, and let C_{2} be the fiber of the conic bundle π_{2} contains P. Then C_{1} or C_{2} is smooth at P.

Proof. Local computations.

Let Δ_{1} and Δ_{2} be the discriminant curves of the conic bundles π_{1} and π_{2}, respectively. Then Δ_{1} and Δ_{2} are reduced curves of degree 6 that have at most ordinary double points as singularities. For basic properties of the discriminant curves Δ_{1} and Δ_{2}, see [18, § 3.8]. In particular, we know that no line in \mathbb{P}^{2} can be an irreducible component of these curves.

Lemma 5.2. Fix a point $P \in X$. Let C_{2} be the fiber of the conic bundle π_{2} that contains P, let S be a general surface in $\left|H_{2}\right|$ that contains C_{2}. Then one of the following cases holds:
(1) C_{2} is smooth, S is smooth, the divisor $-K_{S}$ is ample;
(2) C_{2} is smooth, S is smooth, the divisor $-K_{S}$ is nef, the surface S has exactly four irreducible curves that have trivial intersection with the divisor $-K_{S}$, these curves are disjoint and none of them passes through P, and $C_{2} \subset \operatorname{Sing}\left(\pi_{1}^{-1}\left(\Delta_{1}\right)\right)$;
(3) C_{2} is singular and reduced, S is smooth, the divisor $-K_{S}$ is ample;
(4) C_{2} is not reduced, $P \notin \operatorname{Sing}(S) \subset \operatorname{Supp}\left(C_{2}\right)$, and $\operatorname{Sing}(S)$ consists of two points, which are ordinary double points of the surface S, and $-K_{S}$ is ample.

Proof. The assertion about the singularities of the surface S are local and well-known.
We have $-\left.K_{S} \sim H_{1}\right|_{S}$ and $K_{S}^{2}=2$, so S is a weak del Pezzo surface of degree 2, and the restriction $\left.\pi_{1}\right|_{S}: S \rightarrow \mathbb{P}^{2}$ is the anticanonical morphism. Let ℓ be an irreducible curve in the surface S such that

$$
-K_{S} \cdot \ell=0
$$

Then ℓ is an irreducible component of the fiber $\pi_{1}^{-1}\left(\pi_{1}(\ell)\right)$. But $\pi_{2}(\ell)$ is the line $\pi_{2}(S)$, which implies that the scheme fiber $\pi_{1}^{-1}\left(\pi_{1}(\ell)\right)$ is singular, which implies that $\pi_{1}(\ell) \in \Delta_{1}$. Since $\ell_{1} \cap C_{2} \neq \varnothing$ and $\pi_{2}(S)$ is a general line in \mathbb{P}^{2} that passes through the point $\pi_{2}(P)$, we see that $\pi_{1}\left(C_{2}\right) \subset \Delta_{1}$. This implies that C_{2} is irreducible and reduced.

Let $R=\pi_{1}^{-1}\left(\pi_{1}\left(C_{2}\right)\right)$. Then the surface R is singular along a curve that is isomorphic to the conic $\pi_{1}\left(C_{2}\right) \cong C_{2}$. Let $f: \widetilde{R} \rightarrow R$ be the blow up of this curve. Then \widetilde{R} is smooth, and the composition morphism $\pi_{1} \circ f$ induces a \mathbb{P}^{1}-bundle $\widetilde{R} \rightarrow \widetilde{C}_{2}$, where \widetilde{C}_{2} is double cover of the conic $\pi_{1}\left(C_{2}\right)$ that is branched over the eight points $\pi_{1}\left(C_{2}\right) \cap\left(\Delta_{1}-\pi_{1}\left(C_{2}\right)\right)$. In particular, we see that \widetilde{C}_{2} is an irrational curve, which implies that $C_{2}=\operatorname{Sing}(\widetilde{R})$.

Vice versa, if the fiber C_{2} is a smooth conic, and the conic $\pi_{1}\left(C_{2}\right)$ is an irreducible component of the discriminant curve Δ_{1}, then it follows from the Bertini theorem that

$$
S \cdot \pi_{1}^{-1}\left(\pi_{1}\left(C_{2}\right)\right)=2 C_{2}+\ell_{1}+\ell_{2}+\cdots+\ell_{k}
$$

where $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ are k distinct irreducible reduced curves in X that are irreducible components of the fibers of the natural projection $\pi_{1}^{-1}\left(\pi_{1}\left(C_{2}\right)\right) \rightarrow \pi_{1}\left(C_{2}\right)$. Since

$$
4=2 H_{2}^{2} \cdot H_{1}=H_{2} \cdot S \cdot \pi_{1}^{-1}\left(\pi_{1}\left(C_{2}\right)\right)=H_{2} \cdot\left(2 C_{2}+\sum_{i=1}^{k} \ell_{i}\right)=k
$$

we see that S contains exactly 4 irreducible curves that intersects trivially with $-K_{S}$. Now, the generality in the choice of S implies that none of these curves contains P.

Example 5.3. Actually, the case (2) in Lemma 5.2 can happen. Indeed, in the assumption and notations of Lemma 5.2 , let $P=([0: 0: 1],[0: 0: 1])$, and suppose that X is given by

$$
\left(u^{2}+2 u w+v^{2}+2 w^{2}\right) x^{2}+\left(u v-w^{2}\right) x y+\left(u w-2 u v+3 v^{2}+w^{2}\right) y^{2}+\left(u w+v^{2}\right) z^{2}=0
$$

where $([u: v: w],[x: y: z])$ are coordinates on $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Then the threefold X is smooth. For instance, this can be checked using the following Magma script:

```
Q:=RationalField();
```

PxP<x,y,z,u,v,w>:=ProductProjectiveSpace(Q, [2,2]);
X: =Scheme (PxP, [(u^2+2*u*w+v^2+2*W^2)*x^2+(u*v-w^2)*x*y+ + +
($\left.\left.\left.(-2 * \mathrm{v}+\mathrm{w}) * \mathrm{u}+3 * \mathrm{v}^{\wedge} 2+\mathrm{w}^{\wedge} 2\right) * \mathrm{y}^{\wedge} 2+\left(\mathrm{u} * \mathrm{w}+\mathrm{v}^{\wedge} 2\right) * \mathrm{z}^{\wedge} 2\right]\right)$;
IsNonsingular (X);

Observe that the fiber C_{1} is a singular reduced curve given by $u=v=2 x^{2}-x y+y^{2}=0$, the fiber C_{2} is a smooth curve that is given by $x=y=u w+v^{2}=0$, and the discriminant curve Δ_{1} is a union of the conic $\pi_{1}\left(C_{2}\right)$ and the irreducible quartic plane curve given by

$$
\begin{aligned}
& 8 u^{3} v-4 u^{3} w-11 u^{2} v^{2}+16 u^{2} v w-12 u^{2} w^{2}+8 u v^{3}- \\
&-28 u v^{2} w+14 u v w^{2}-16 u w^{3}-12 v^{4}-28 v^{2} w^{2}-7 w^{4}=0 .
\end{aligned}
$$

As in case (2) in Lemma 5.2, we have $C_{2}=\operatorname{Sing}\left(\pi_{1}^{-1}\left(\pi_{1}\left(C_{2}\right)\right)\right)$.
Let us prove that X is K -stable. Suppose it is not. Using the valuative criterion [14, 16], we see that there exists a prime divisor \mathbf{F} over X such that

$$
\beta(\mathbf{F})=A_{X}(\mathbf{F})-S_{X}(\mathbf{F}) \leqslant 0
$$

Let Z be the center of the divisor \mathbf{F} on X. Then Z is not a surface by [3, Theorem 3.7.1].
Let P be any point in Z, let C_{1} be the fiber of the conic bundle π_{1} that contains P, and let C_{2} be the fiber of the conic bundle π_{2} that contains P. By Lemma 5.1, at least one curve among C_{1} or C_{2} is smooth at P. We may assume that C_{2} is smooth at P.

Let S be a general surface in $\left|H_{2}\right|$ that contains C_{2}. Then S is smooth by Lemma 5.2., Moreover, one of the following three cases holds:
(1) C_{2} is smooth, the divisor $-K_{S}$ is ample;
(2) C_{2} is smooth, $\pi_{1}\left(C_{2}\right) \subset \Delta_{1}$, the divisor $-K_{S}$ is nef, the surface S has exactly four irreducible curves that have trivial intersection with the divisor $-K_{S}$, these curves are disjoint and none of them passes through P;
(3) C_{2} is singular and reduced, the divisor $-K_{S}$ is ample.

Let C be the curve in X that is defined as follows:

- if C_{2} is smooth and irreducible, we let $C=C_{2}$.
- if C_{2} is reducible, we let C be its irreducible component that contains P.

Note that $-\left.K_{S} \sim H_{1}\right|_{S}$ and $K_{S}^{2}=2$. Let $\eta: S \rightarrow \mathbb{P}^{2}$ be the restriction morphism $\left.\pi_{1}\right|_{S}$. Then η is an anticanonical morphism of the surface S, which is generically two-to-one. Hence, the morphism η induces an involution $\tau \in \operatorname{Aut}(S)$. We let $C^{\prime}=\tau(C)$.

Now, let u be a non-negative real number. Then we have $-K_{X}-u S \sim_{\mathbb{R}} H_{1}+(1-u) H_{2}$, so the divisor $-K_{X}-u S$ is nef \Longleftrightarrow it is pseudoeffective $\Longleftrightarrow u \leqslant 1$. Then $S_{X}(S)=\frac{5}{12}$. Now, let us use notations introduced in [3, § 1.7]. Using [3, Theorem 1.7.30], we get

$$
1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(S)}, \frac{1}{S\left(W_{\bullet, \bullet}^{S} ; C\right)}, \frac{1}{S\left(W_{\bullet, 0, \bullet}^{S, C} ; P\right)}\right\}
$$

where $S\left(W_{\bullet, \bullet}^{S} ; C\right)$ and $S\left(W_{\bullet, 0,0}^{S, C} ; P\right)$ are defined in [3, §1.7]. Hence, since $S_{X}(S)<1$, we get

$$
\begin{equation*}
\max \left\{S\left(W_{\bullet, \bullet}^{S} ; C\right), S\left(W_{\bullet \bullet \bullet \bullet}^{S, C} ; P\right)\right\} \geqslant 1 \tag{5.1}
\end{equation*}
$$

Moreover, if $Z=P$, then it also follows from [3, Theorem 1.7.30] that

$$
\begin{equation*}
\max \left\{S\left(W_{\bullet, \bullet}^{S} ; C\right), S\left(W_{\bullet \bullet \bullet \bullet}^{S, C} ; P\right)\right\}>1 \tag{5.2}
\end{equation*}
$$

Let us estimate $S\left(W_{\bullet, \bullet}^{S} ; C\right)$ and $S\left(W_{\bullet, 0,0}^{S, C} ; P\right)$ using results obtained in [3, § 1.7].
Let $P(u)=-K_{X}-u S$. Then [3, Corollary 1.7.26] gives

$$
S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right) d v d u
$$

Let $P(u, v)$ be the positive part of the Zariski decomposition of the divisor $\left.P(u)\right|_{S}-v C$, and let $N(u, v)$ be its negative part, where $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
S\left(W_{\bullet, 0, \bullet}^{S, C} ; P\right)=F_{P}+\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty}(P(u, v) \cdot C)^{2} d v d u
$$

by [3, Theorem 1.7.30], where

$$
F_{P}=\frac{1}{2} \int_{0}^{1} \int_{0}^{\infty}(P(u, v) \cdot C) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{C}\right) d v d u
$$

Lemma 5.4. Suppose that C_{2} is smooth, and $-K_{S}$ is ample. Then

$$
\begin{aligned}
S\left(W_{\bullet \bullet \bullet}^{S} ; C\right) & =\frac{13}{24} \\
S\left(W_{\bullet, \bullet, \bullet}^{S} ; P\right) & =1
\end{aligned}
$$

Proof. We have $C \cdot C^{\prime}=4$ and $\left(C^{\prime}\right)^{2}=C^{2}=0$. Fix $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.P(u)\right|_{S}-v C \sim_{\mathbb{Q}}\left(\frac{3}{2}-u-v\right) C+\frac{1}{2} C^{\prime}
$$

which implies that $\left.P(u)\right|_{S}-v C$ is pseudoeffective $\left.\Longleftrightarrow P(u)\right|_{S}-v C$ is nef $\Longleftrightarrow v \leqslant \frac{3}{2}-u$. If $0 \leqslant u \leqslant 1$ and $0 \leqslant v \leqslant \frac{3}{2}-u$, then $P(u, v)=\left(\frac{3}{2}-u-v\right) C+\frac{1}{2} C^{\prime}$ and $N(u, v)=0$, so $S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{1}{4} \int_{0}^{1} \int_{0}^{\frac{3}{2}-u}\left(\left(\frac{3}{2}-u-v\right) C+\frac{1}{2} C^{\prime}\right)^{2} d v d u=\frac{1}{4} \int_{0}^{1} \int_{0}^{\frac{3}{2}-u} 6-4 u-4 v d v d u=\frac{13}{24}$.
Similarly, we see that $F_{P}=0$ and $P(u, v) \cdot C=2$, which gives $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)=1$.
Lemma 5.5. Suppose that C_{2} is smooth, $-K_{S}$ is not ample. Then

$$
\begin{aligned}
S\left(W_{\bullet \bullet \bullet}^{S} ; C\right) & =\frac{7}{12}, \\
S\left(W_{\bullet, \bullet, \bullet}^{S} ; P\right) & =\frac{5}{6} .
\end{aligned}
$$

Proof. In this case, we have the following commutative diagram:

where ϕ is a birational map that contracts four disjoint (-2)-curves, and \bar{S} is a del Pezzo surface of degree 2 that has 4 isolated ordinary double points, and π is a double cover that is ramified in a reducible quartic curve that is a union of two irreducible conics such that $\eta(C)$ is one of these two conics. In particular, we have $C=\tau(C)$.

Let $E_{1}, E_{2}, E_{3}, E_{4}$ be the ϕ-exceptional curves. Fix $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
\left.P(u)\right|_{S}-v C \sim_{\mathbb{Q}}(2-u-v) C+\frac{1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}\right)
$$

so the divisor $\left.P(u)\right|_{S}-v C$ is pseudoeffective $\Longleftrightarrow v \leqslant 2-u$. Moreover, we have

$$
\begin{gathered}
P(u, v)=\left\{\begin{array}{l}
(2-u-v) C+\frac{1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}\right) \text { if } 0 \leqslant v \leqslant 1-u, \\
(2-u-v)\left(C+\frac{1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}\right)\right) \text { if } 1-u \leqslant v \leqslant 2-u,
\end{array}\right. \\
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1-u, \\
\frac{u+v-1}{2}\left(E_{1}+E_{2}+E_{3}+E_{4}\right) \text { if } 1-u \leqslant v \leqslant 2-u,
\end{array}\right. \\
\operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right)=\left\{\begin{array}{l}
(6-4 u)-4 \text { if } 0 \leqslant v \leqslant 1-u, \\
2(2-u-v)^{2} \text { if } 1-u \leqslant v \leqslant 2-u .
\end{array}\right.
\end{gathered}
$$

Now, integrating $\operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right)$, we obtain $S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{7}{12}$.
To compute $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)$, we first observe that $F_{P}=0$, because $P \notin E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$, since S is a general surface in $\left|H_{2}\right|$ that contains C_{2}. On the other hand, we have

$$
P(u, v) \cdot C=\left\{\begin{array}{l}
2 \text { if } 0 \leqslant v \leqslant 1-u \\
4-2 u-2 v \text { if } 1-u \leqslant v \leqslant 2-u
\end{array}\right.
$$

Hence, integrating $(P(u, v) \cdot C)^{2}$, we get $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)=\frac{5}{6}$ as required.
Lemma 5.6. Suppose that C_{2} is singular. Then

$$
\begin{gathered}
S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{3}{4} \\
S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right) \leqslant \frac{11}{12} .
\end{gathered}
$$

Proof. The curve C_{2} consists of two irreducible components: the curve C and another curve, which we denote by L. The curves C and L are smooth and intersects transversally at one point. Note that $P \neq C \cap L$, since C_{2} is smooth at the point P by assumption.

The intersections of the curves C, L and $C^{\prime}=\tau(C)$ on S are given in the table below.

\bullet	C	L	C^{\prime}
C	-1	1	2
L	1	-1	0
C^{\prime}	2	0	-1

Fix $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Since $C+C^{\prime} \sim-K_{S}$, we have

$$
\left.P(u)\right|_{S}-v C \sim_{\mathbb{Q}}(2-u-v) C+(1-u) L+C^{\prime}
$$

so $\left.P(u)\right|_{S}-v C$ is pseudoeffective $\Longleftrightarrow v \leqslant 2-u$. Moreover, if $0 \leqslant u \leqslant \frac{1}{2}$, then

$$
P(u, v)=\left\{\begin{array}{c}
(2-u-v) C+(1-u) L+C^{\prime} \text { if } 0 \leqslant v \leqslant 1 \\
(2-u-v)(C+L)+C^{\prime} \text { if } 1 \leqslant v \leqslant \frac{3}{2}-u \\
(2-u-v)\left(C+L+C^{\prime}\right) \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u \\
31
\end{array}\right.
$$

$$
\begin{aligned}
& N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1, \\
(v-1) L \text { if } 1 \leqslant v \leqslant \frac{3}{2}-u, \\
(v-1) L+(2 v+2 u-3) C^{\prime} \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u,
\end{array}\right. \\
& \operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right)=\left\{\begin{array}{l}
6-v^{2}-4 u-2 v \text { if } 0 \leqslant v \leqslant 1, \\
7-4 u-4 v \text { if } 1 \leqslant v \leqslant \frac{3}{2}-u, \\
4(u+v-2)^{2} \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u .
\end{array}\right.
\end{aligned}
$$

Similarly, if $\frac{1}{2} \leqslant u \leqslant 1$, then

$$
\begin{gathered}
P(u, v)=\left\{\begin{array}{l}
(2-u-v) C+(1-u) L+C^{\prime} \text { if } 0 \leqslant v \leqslant \frac{3}{2}-u, \\
(2-u-v)\left(C+2 C^{\prime}\right)+(1-u) L \text { if } \frac{3}{2}-u \leqslant v \leqslant 1, \\
(2-u-v)\left(C+L+C^{\prime}\right) \text { if } 1 \leqslant v \leqslant 2-u,
\end{array}\right. \\
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant \frac{3}{2}-u, \\
(2 v+2 u-3) C^{\prime} \text { if } \frac{3}{2}-u \leqslant v \leqslant 1, \\
(v-1) L+(2 v+2 u-3) C^{\prime} \text { if } 1 \leqslant v \leqslant 2-u,
\end{array}\right. \\
\operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right)=\left\{\begin{array}{l}
6-v^{2}-4 u-2 v \text { if } 0 \leqslant v \leqslant \frac{3}{2}-u, \\
(5-2 u-3 v)(3-2 u-v) \text { if } \frac{3}{2}-u \leqslant v \leqslant 1, \\
4(u+v-2)^{2} \text { if } 1 \leqslant v \leqslant 2-u .
\end{array}\right.
\end{gathered}
$$

Hence, integrating $\operatorname{vol}\left(\left.P(u)\right|_{S}-v C\right)$, we get $S\left(W_{\bullet, \bullet}^{S} ; C\right)=\frac{3}{4}$.
Now, let us compute $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)$. If $0 \leqslant u \leqslant \frac{1}{2}$, then

$$
P(u, v) \cdot C=\left\{\begin{array}{l}
1+v \text { if } 0 \leqslant v \leqslant 1 \\
2 \text { if } 1 \leqslant v \leqslant \frac{3}{2}-u \\
8-4 u-4 v \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u
\end{array}\right.
$$

Similarly, if $\frac{1}{2} \leqslant u \leqslant 1$, then

$$
P(u, v) \cdot C=\left\{\begin{array}{l}
1+v \text { if } 0 \leqslant v \leqslant \frac{3}{2}-u \\
7-4 u-3 v \text { if } \frac{3}{2}-u \leqslant v \leqslant 1 \\
8-4 u-4 v \text { if } 1 \leqslant v \leqslant 2-u
\end{array}\right.
$$

Then, integrating, we get $S\left(W_{\bullet, 0,0}^{S, C} ; P\right)=\frac{145}{192}+F_{P}$. To compute F_{P}, let us recall that $P \notin L$. Hence, if $P \notin C^{\prime}$, then $F_{P}=0$, which implies that $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)=\frac{145}{192}<\frac{11}{12}$ as required.

We may assume that $P \in C \cap C^{\prime}$. If C^{\prime} intersects C transversally at P, then

$$
\operatorname{ord}_{P}\left(\left.N(u, v)\right|_{C}\right)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \frac{3}{2}-u \\
2 u+2 v-3 \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u
\end{array}\right.
$$

which gives

$$
\begin{gathered}
F_{P}=\frac{1}{2} \int_{0}^{\frac{1}{2}} \int_{\frac{3}{2}-u}^{2-u}(8-4 u-4 v)(2 u+2 v-3) d v d u+ \\
+\frac{1}{2} \int_{\frac{1}{2}}^{1} \int_{1}^{\frac{3}{2}-u}(7-4 u-3 v)(2 u+2 v-3) d v d u+\frac{1}{2} \int_{\frac{1}{2}}^{1} \int_{\frac{3}{2}-u}^{2-u}(8-4 u-4 v)(2 u+2 v-3) d v d u=\frac{31}{384}
\end{gathered}
$$

so $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)=\frac{145}{192}+\frac{31}{384}=\frac{107}{128}<\frac{11}{12}$. If C^{\prime} is tangent to C at the point P, then

$$
\operatorname{ord}_{P}\left(\left.N(u, v)\right|_{C}\right)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \frac{3}{2}-u \\
2(2 u+2 v-3) \text { if } \frac{3}{2}-u \leqslant v \leqslant 2-u
\end{array}\right.
$$

which gives $F_{P}=\frac{31}{192}$, so $S\left(W_{\bullet, \bullet}^{S, C} ; P\right)=\frac{145}{192}+\frac{31}{192}=\frac{11}{12}$.
Now, using (5.2) and Lemmas 5.4, 5.5, 5.6, we see that Z is a curve.
Lemma 5.7. One has $H_{1} \cdot Z \geqslant 1$ and $H_{2} \cdot Z \geqslant 1$.
Proof. If $H_{2} \cdot Z=0$, then $Z=C$, which is impossible by (5.1) and Lemmas 5.4, 5.5, 5.6, Hence, we see that $H_{2} \cdot Z \geqslant 1$ and $\pi_{2}(Z)$ is a curve. Let us show that $H_{1} \cdot Z \geqslant 1$.

Suppose that $H_{1} \cdot Z=0$. Then Z must be an irreducible component of the curve C_{1}. If C_{1} is reduced, then arguing exactly as in the proofs of Lemmas 5.4, 5.5, 5.6, we obtain a contradiction with [3, Corollary 1.7.26]. Thus, we see that C_{1} is not reduced.

So far, the point P was a point in Z. Let us choose $P \in Z$ such that $\pi_{2}(P) \in \pi_{2}(Z) \cap \Delta_{2}$. Then C_{2} is singular. But it is smooth at P by Lemma 5.1, which fits our assumption above. Then $S\left(W_{\bullet, \bullet}^{S}, C\right)=\frac{3}{4}$ and $S\left(W_{\bullet, \bullet \bullet}^{S, C} ; P\right) \leqslant \frac{11}{12}$ by Lemma [5.6, which contradicts (5.1).

Both $\pi_{1}(Z)$ and $\pi_{2}(Z)$ are curves. Similar to what we did in the proof of Lemma 5.7, let us choose the point $P \in Z$ such that $\pi_{1}(P) \in \Delta_{1}$. Then C_{1} is singular at P, which implies that C_{2} is smooth at P by Lemma 5.1. Now, using (5.1) and Lemmas 5.5 and 5.6 , we see that $C=C_{2}$, the curve C_{2} is smooth, the divisor $-K_{S}$ is ample.

We see that S is a del Pezzo surface, and $\eta: S \rightarrow \mathbb{P}^{2}$ is a double cover ramified in a smooth quartic curve, so we are almost in the same position as in the proof of Lemma 5.4. But now, we have one small advantage: the point $\eta(P)$ is contained in the ramification divisor of the double cover η, because C_{1} is singular at P. Then $\left|-K_{S}\right|$ contains a unique curve that is singular at P. Denote this curve by R. We have the following possibilities:
(a) R is an irreducible curve that has a nodal singularity at P;
(b) R is an irreducible curve that has a cuspidal singularity at P;
(c) $R=R_{1}+R_{2}$ for two (-1)-curves in S that intersect transversally at P;
(d) $R=R_{1}+R_{2}$ for two (-1)-curves in S that are tangent at P.

Let $f: \widetilde{S} \rightarrow \underset{\widetilde{S}}{S}$ be the blow up of the point P. Denote by \widetilde{R} and \widetilde{C} the proper transforms on the surface \widetilde{S} of the curves R and C, respectively. Fix $u \in[0,1]$ and $v \in \mathbb{R}_{\geqslant 0}$. Then

$$
f^{*}\left(\left.P(u)\right|_{S}\right)-v E \sim_{\mathbb{Q}} \widetilde{R}+(1-u) \widetilde{C}+(3-u-v) E .
$$

Let $\widetilde{P}(u, v)$ be the positive part of the Zariski decomposition of $\widetilde{R}+(1-u) \widetilde{C}+(3-u-v) E$, and let $\widetilde{N}(u, v)$ its negative part. Then it follows from [3, Remark 1.7.32] that

$$
\begin{equation*}
\left.1 \geqslant \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})} \geqslant \min \left\{\frac{1}{S_{X}(S)}, \frac{2}{S\left(W_{\bullet, \bullet}(\tilde{S})\right.}, \inf _{O \in E} \frac{1}{S\left(W_{\bullet, \bullet, \bullet}(\widetilde{S}, E\right.} ; O\right)\right\}, \tag{5.3}
\end{equation*}
$$

where $S\left(W_{\bullet, \bullet}^{\widetilde{S}} ; E\right)$ and $S\left(W_{\bullet, \bullet, 0}^{\widetilde{S}, E} O\right)$ are defined in [3] similar to $S\left(W_{\bullet \bullet \bullet}^{S} ; C\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{S, C} ; P\right)$. These two numbers can be computed using [3, Remark 1.7.32]. Namely, we have

$$
S\left(W_{\bullet, \bullet}^{\widetilde{S}} ; E\right)=\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty}(\widetilde{P}(u, v))^{2} d v d u
$$

and

$$
S\left(W_{\bullet, 0, \bullet}^{\widetilde{S}, E} ; O\right)=\frac{1}{4} \int_{0}^{1} \int_{0}^{\infty}((\widetilde{P}(u, v) \cdot E))^{2} d v d u+F_{O}
$$

where O is a point in E and

$$
F_{O}=\frac{1}{2} \int_{0}^{1} \int_{0}^{\infty}(\widetilde{P}(u, v) \cdot E) \operatorname{ord}_{O}\left(\left.\widetilde{N}(u, v)\right|_{E}\right) d v d u
$$

Let us use these formulas to estimate $S\left(W_{\bullet, 0}^{\widetilde{S}} ; E\right)$ and $S\left(W_{\bullet, 0,0}^{\widetilde{S}, E} ; O\right)$.
If the curve R is irreducible, the intersections of the curves $\widetilde{C}, \widetilde{R}, E$ can be computed as follows: $\widetilde{C}^{2}=-1, \widetilde{C} \cdot \widetilde{R}=0, \widetilde{C} \cdot E=1, \widetilde{R}^{2}=-2, \widetilde{R} \cdot E=2, E^{2}=-1$. If R is reducible, then $\widetilde{R}=\widetilde{R}_{1}+\widetilde{R}_{2}$ for two smooth irreducible curves $\widetilde{R}_{1}+\widetilde{R}_{2}$ such that the intersection form of the curves $\widetilde{C}, \widetilde{R}_{1}, \widetilde{R}_{1}$ and E is given in the following table:

\bullet	\widetilde{C}	\widetilde{R}_{1}	\widetilde{R}_{1}	E
\widetilde{C}	-1	0	0	1
\widetilde{R}_{1}	0	-2	1	1
\widetilde{R}_{1}	0	1	-2	1
E	1	1	1	-1

Then $\widetilde{R}+(1-u) \widetilde{C}+(3-u-v) E$ is pseudoeffective $\Longleftrightarrow v \leqslant 3-u$. Moreover, we have

$$
\begin{gathered}
\widetilde{P}(u, v)=\left\{\begin{array}{l}
\widetilde{R}+(1-u) \widetilde{C}+(3-u-v) E \text { if } 0 \leqslant v \leqslant 2-u, \\
(1-u) \widetilde{C}+(3-u-v)(E+\widetilde{R}) \text { if } 2-u \leqslant v \leqslant 2, \\
(3-u-v)(E+\widetilde{R}+\widetilde{C}) \text { if } 2 \leqslant v \leqslant 3-u
\end{array}\right. \\
\widetilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-u, \\
(v+u-2) \widetilde{R} \text { if } 2-u \leqslant v \leqslant 2 \\
(v+u-2) \widetilde{R}+(v-2) \widetilde{C} \text { if } 2 \leqslant v \leqslant 3-u, \\
34
\end{array}\right.
\end{gathered}
$$

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
6-v^{2}-4 u \text { if } 0 \leqslant v \leqslant 2-u \\
14+2 u^{2}+4 u v+v^{2}-12 u-8 v \text { if } 2-u \leqslant v \leqslant 2 \\
2(3-u-v)^{2} \text { if } 2 \leqslant v \leqslant 3-u
\end{array}\right.
$$

Now, integrating, we obtain $S\left(W_{\bullet, \bullet}^{\widetilde{S}} ; E\right)=\frac{17}{12}$.
Fix a point $O \in E$. To estimate $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{S}, E} ; O\right)$, first we observe that

$$
\widetilde{P}(u, v) \cdot E=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant 2-u \\
4-2 u-v \text { if } 2-u \leqslant v \leqslant 2 \\
6-2 u-2 v \text { if } 2 \leqslant v \leqslant 3-u
\end{array}\right.
$$

Therefore, integrating $(\widetilde{P}(u, v) \cdot E)^{2}$, we obtain $S\left(W_{\bullet, 0, \bullet}^{Y, \widetilde{S}} ; O\right)=\frac{13}{24}+F_{O}$.
If $O \notin \widetilde{C} \cup \widetilde{R}$, then $F_{O}=0$. Similarly, if $O \in \widetilde{C}$, then $O \notin \widetilde{R}$, which gives

$$
F_{O}=\frac{1}{2} \int_{0}^{1} \int_{2}^{3-u}(6-2 u-2 v)(v-2) d v d u=\frac{1}{24}
$$

Finally, if $O \in \widetilde{R}$, then $O \notin \widetilde{C}$, which gives
$F_{O} \leqslant \frac{1}{2} \int_{0}^{1} \int_{2-u}^{2} 2(4-2 u-v)(v+u-2) d v d u+\frac{1}{2} \int_{0}^{1} \int_{2}^{3-u} 2(6-2 u-2 v)(v+u-2) d v d u=\frac{7}{24}$.
Summarizing, we get $S\left(W_{\bullet, 0,0}^{\widetilde{S}, E} ; O\right) \leqslant \frac{5}{6}$ for every point $O \in E$, which contradicts (5.3), because $S_{X}(S)=\frac{5}{12}$ and $S\left(W_{\bullet, \bullet}^{\widetilde{S}} ; E\right)=\frac{17}{12}<2$. This shows that X is K-stable.

Corollary 5.8. All smooth Fano threefolds in the family №2. 6 are K-stable.

6. Family №2.7

Now, let us fix three smooth quadric hypersurfaces $\mathscr{Q}, \mathscr{Q}^{\prime}$ and $\mathscr{Q}^{\prime \prime}$ in \mathbb{P}^{4} such that their intersection is a smooth curve of degree 8 and genus 5 . We set $\mathscr{C}=\mathscr{Q} \cap \mathscr{Q}^{\prime} \cap \mathscr{Q}^{\prime \prime}$. Let $\pi: X \rightarrow \mathscr{Q}$ be the blow up of the smooth curve \mathscr{C}. Then X is a smooth Fano threefold, which is contained in the family №2.7. Moreover, all smooth Fano threefolds in this family can be obtained in this way. Note that $-K_{X}^{3}=14$ and $\operatorname{Aut}(X)$ is finite [9.

The pencil generated by the surfaces $\left.\mathscr{Q}^{\prime}\right|_{\mathscr{Q}}$ and $\left.\mathscr{Q}^{\prime \prime}\right|_{\mathscr{Q}}$ gives a rational map $\mathscr{Q} \rightarrow \mathbb{P}^{1}$, which fits the following commutative diagram:

where ϕ is a fibration into quartic del Pezzo surfaces. Let E be the π-exceptional surface, and let $H=\pi^{*}\left(\left.\mathcal{O}_{\mathbb{P}^{4}}(1)\right|_{\mathscr{Q}}\right)$. Then $-K_{X} \sim 3 H-E$, the morphism ϕ is given by the linear system $|2 H-E|$, and $E \cong \mathscr{C} \times \mathbb{P}^{1}$.

Lemma 6.1. Let S be a fiber of the morphism ϕ. Then S has at most $D u$ Val singularities.
Proof. Since $\left.E\right|_{S}$ is a smooth curve, the surface S is smooth along $\left.E\right|_{S}$, which implies that it has at most isolated singularities. Hence, we conclude that S is normal and irreducible.

Note that $S \cong \pi(S)$. Suppose that the singularities of the surface $\pi(S)$ are not Du Val. Then it follows from [5, Theorem 1] that $\pi(S)$ is a cone in \mathbb{P}^{4} over a quartic elliptic curve.

Let P be the vertex of the cone $\pi(S)$, and let T_{P} be the hyperplane section of the quadric hypersurface \mathscr{Q} that is singular at P. Then T_{P} contains all lines in \mathscr{Q} that pass through P, which implies that T_{P} contains $\pi(S)$. This is impossible, since T_{P} is a quadric cone.

The goal of this section is to prove that X is K-stable. To do this, we fix a point $P \in X$. By [14, 16], to prove that X is K-stable, it is enough to show that $\delta_{P}(X)>1$.

Let S be the fiber of the morphism ϕ containing P. Then S is a quartic del Pezzo surface, and S has at most Du Val singularity at P by Lemma 6.1. Moreover, if S is singular at P, then P is a singular point of the surface S of type $\mathbb{A}_{1}, \mathbb{A}_{2}, \mathbb{A}_{3}, \mathbb{A}_{4}, \mathbb{D}_{4}$ or \mathbb{D}_{5}, see [11].

Lemma 6.2. If $\delta_{P}(S)>\frac{54}{55}$ or $P \in \operatorname{Sing}(S)$ and $\delta_{P}(S)>\frac{27}{28}$, then $\delta_{P}(X)>1$.
Proof. Take $u \in \mathbb{R}_{\geqslant 0}$. Since $S \sim 2 H-E$, we have

$$
-K_{X}-u S \sim_{\mathbb{R}}(3-2 u) H-(u-1) E \sim_{\mathbb{R}}\left(\frac{3}{2}-u\right) S+\frac{1}{2} E .
$$

Using this, we conclude that the divisor $-K_{X}-u S$ is pseudoeffective if and only if $u \leqslant \frac{3}{2}$. For $u \leqslant \frac{3}{2}$, let $P(u)$ be the positive part of Zariski decomposition of the divisor $-K_{X}-u S$, and let $N(u)$ be the negative part of Zariski decomposition of the divisor $-K_{X}-u S$. Then

$$
P(u)=\left\{\begin{array}{l}
-K_{X}-u S \text { if } 0 \leqslant u \leqslant 1 \\
(3-2 u) H \text { if } 1 \leqslant u \leqslant \frac{3}{2}
\end{array}\right.
$$

and

$$
N(u)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
(u-1) E \text { if } 1 \leqslant u \leqslant \frac{3}{2}
\end{array}\right.
$$

This gives

$$
S_{X}(S)=\frac{1}{14} \int_{0}^{\frac{3}{2}}(P(u))^{3} d u=\frac{1}{14} \int_{0}^{1}(14-12 u) d u+\frac{1}{14} \int_{1}^{\frac{3}{2}} 2(3-2 u)^{3} d u=\frac{33}{56}<1
$$

Now, using [1, Theorem 3.3] and [3, Corollary 1.7.30], we get

$$
\begin{equation*}
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(S)}, \inf _{\substack{F / S \\ P \in C_{S}(F)}} \frac{A_{S}(F)}{S\left(W_{\bullet, \bullet}^{S} ; F\right)}\right\} \tag{6.1}
\end{equation*}
$$

where the infimum is taken by all prime divisors F over the surface S such that $P \in C_{S}(F)$, and $S\left(W_{\bullet, \bullet}^{S} ; F\right)$ can be computed using [3, Corollary 1.7.24] as follows:

$$
S\left(W_{\bullet, \bullet}^{S} ; F\right)=\frac{3}{14} \int_{0}^{\frac{3}{2}}\left(\left.P(u)\right|_{S}\right)^{2} \operatorname{ord}_{F}\left(\left.N(u)\right|_{S}\right) d u+\frac{3}{14} \int_{0}^{\frac{3}{2}} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v F\right) d v d u
$$

Let $E_{S}=\left.E\right|_{S}$. Then $E_{S} \in\left|-2 K_{S}\right|$ and $E_{S} \cong \mathscr{C}$. Moreover, the surface S is smooth in a neighborhood of the curve E_{S}. Furthermore, we have

$$
\left.P(u)\right|_{S}=\left\{\begin{array}{c}
-K_{S} \text { if } 0 \leqslant u \leqslant 1 \\
(3-2 u)\left(-K_{S}\right) \text { if } 1 \leqslant u \leqslant \frac{3}{2} \\
36
\end{array}\right.
$$

and

$$
\left.N(u)\right|_{S}=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant u \leqslant 1 \\
(u-1) E_{S} \text { if } 1 \leqslant u \leqslant \frac{3}{2}
\end{array}\right.
$$

Let F be any prime divisor over S such that $P \in C_{S}(F)$. Then

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{S} ; F\right)=\frac{3}{14} \int_{1}^{\frac{3}{2}} 4(u-1)(3-2 u)^{2} \operatorname{ord}_{F}\left(E_{S}\right) d u+ \\
& \\
& +\frac{3}{14} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v d u+ \\
& \\
& \quad+\frac{3}{14} \int_{1}^{\frac{3}{2}} \int_{0}^{\infty} \operatorname{vol}\left((3-2 u)\left(-K_{S}\right)-v F\right) d v d u= \\
& =\frac{\operatorname{ord}_{F}\left(E_{S}\right)}{56}+\frac{3}{14} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v+\frac{3}{14} \int_{1}^{\frac{3}{2}}(3-2 u)^{3} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v d u= \\
& =\frac{\operatorname{ord}_{F}\left(E_{S}\right)}{56}+\frac{3}{14} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v+\frac{3}{112} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v= \\
& =\frac{\operatorname{ord}_{F}\left(E_{S}\right)}{56}+\frac{27}{112} \int_{0}^{\infty} \operatorname{vol}\left(-K_{S}-v F\right) d v=\frac{\operatorname{ord}_{F}\left(E_{S}\right)}{56}+\frac{27}{28} S_{S}(F) \leqslant \frac{A_{S}(F)}{56}+\frac{27 A_{S}(F)}{28 \delta_{P}(S)},
\end{aligned}
$$

because log pair $\left(S, E_{S}\right)$ is log canonical. Thus, if $\delta_{P}(S)>\frac{54}{55}$, then (6.1) gives $\delta_{P}(X)>1$. Similarly, if $P \in \operatorname{Sing}(S)$, then $P \notin E_{S}$, so that $\operatorname{ord}_{F}\left(E_{S}\right)=0$, which implies that

$$
S\left(W_{\bullet, \bullet}^{S} ; F\right)=\frac{27}{28} S_{S}(F) \leqslant \frac{27 A_{S}(F)}{28 \delta_{P}(S)}
$$

Hence, in this case, it follows from (6.1) that $\delta_{P}(X)>1$ provided that $\delta_{P}(S)>\frac{27}{28}$.
Corollary 6.3. If S is smooth, then $\delta_{P}(X)>1$.
Proof. If S is smooth, then $\delta(S)=\frac{4}{3}$ by [3, Lemma 2.12]. Now apply Lemma 6.2.
Corollary 6.4. If P is not contained in a line in S, then $\delta_{P}(X)>1$.
Proof. If P is not contained in a line in S, then P is a smooth point of the surface S, and the blow up of the surface S at this point is a (possibly singular) cubic surface in \mathbb{P}^{3}. Thus, arguing exactly as in the end of the proof of [3, Lemma 2.12], we obtain $\delta_{P}(S) \geqslant \frac{3}{2}$, which implies that $\delta_{P}(X)>1$ by Lemma 6.2,

Now, let T be a surface in the linear system $|H|$ such that $P \in T$, and let $\mathcal{Q}=\pi(T)$. Then \mathcal{Q} is a hyperplane section of the hypersurface \mathscr{Q}, so both \mathcal{Q} and T are irreducible. In the following, we will choose T such that the surface \mathcal{Q} is smooth, so that $\mathcal{Q} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Lemma 6.5. Suppose that T is a general surface in the linear system $|H|$ such that $P \in T$. Then the (scheme) intersection $S \cap T$ is an irreducible reduced curve.

Proof. Let $\rho: \widetilde{S} \rightarrow S$ be a blow up of the quartic del Pezzo surface S at the point P, and let Z be the proper transform of the curve $\left.T\right|_{S}$ on the surface \widetilde{S}. Then $|Z|$ has no base
points and gives the morphism $\eta: \widetilde{S} \rightarrow \mathbb{P}^{3}$ that fits the following commutative diagram:

where $S \xrightarrow{ } \mathbb{P}^{3}$ is a projection from P. Moreover, if P is a smooth point of the surface S, then $Z^{2}=3$, and the image of the morphism η is an irreducible cubic surface in \mathbb{P}^{3}. Similarly, if P is a singular point of the surface S, then we have $Z^{2}=4-\operatorname{mult}_{P}(S)=2$, and the image of the morphism η is an irreducible quadric surface. Therefore, we conclude that the curve Z must be irreducible and reduced (by Bertini theorem), which implies that the intersection $S \cap T$ is also irreducible and reduced.

Remark 6.6. Suppose that S is singular at P, and T is a general surface in $|H|$ that passes through the point P. Then, choosing appropriate coordinates $[x: y: z: t: w]$ on \mathbb{P}^{4}, we may assume that $\pi(P)=[0: 0: 0: 0: 1]$, and the surface $\pi(S)$ is given in \mathbb{P}^{4} by

$$
\left\{\begin{array}{l}
a t^{2}+b t x+f_{2}(x, y, z)=0 \\
w t=g_{2}(x, y, z)
\end{array}\right.
$$

where a and b are complex numbers, $f_{2}(x, y, z)$ and $g_{2}(x, y, z)$ are non-zero quadratic homogeneous polynomials. In the chart $w \neq 0$, the surface $\pi(S)$ is given by

$$
\left\{\begin{array}{l}
a t^{2}+b t x+f_{2}(x, y, z)=0 \\
t=g_{2}(x, y, z)
\end{array}\right.
$$

where now we consider x, y, z, t as affine coordinates on \mathbb{C}^{4}. Then $\pi(S) \cap \mathcal{Q}$ is cut out on the surface $\pi(S)$ by $c_{1} x+c_{2} y+c_{3} z+c_{4} t=0$, where $c_{1}, c_{2}, c_{3}, c_{4}$ are general numbers. The affine part of the surface $\pi(S)$ is isomorphic to the hypersurface in \mathbb{C}^{3} given by

$$
a g_{2}^{2}(x, y, z)+b x g_{2}(x, y, z)+f_{2}(x, y, z)=0
$$

and the affine part of the curve $\pi(S) \cap \mathcal{Q}$ is cut out by $c_{1} x+c_{2} y+c_{3} z+c_{4} g_{2}(x, y, z)=0$. If P is a singular point of the surface S of type \mathbb{D}_{4} or \mathbb{D}_{5}, then $S \cap T$ has an ordinary cusp at the point P, which easily implies that the intersection $S \cap T$ is reduced and irreducible. Similarly, if P is a Du Val singular point of the surface S of type $\mathbb{A}_{1}, \mathbb{A}_{2}, \mathbb{A}_{3}$ or \mathbb{A}_{4}, then the intersection $S \cap T$ has an isolated ordinary double singularity at P.

Observe that the morphism $\pi: X \rightarrow \mathscr{Q}$ induces a birational morphism $\varpi: T \rightarrow \mathcal{Q}$, and the morphism $\phi: X \rightarrow \mathbb{P}^{1}$ induces a fibration $\varphi: T \rightarrow \mathbb{P}^{1}$ that both fit the following commutative diagram:

where $\mathcal{Q} \rightarrow \mathbb{P}^{1}$ is a map given by the pencil generated by the curves $\left.\mathscr{Q}^{\prime}\right|_{\mathcal{Q}}$ and $\left.\mathscr{Q}^{\prime \prime}\right|_{\mathcal{Q}}$. In the following, we will always choose $T \in|H|$ such that the quadric surface \mathcal{Q} is smooth, and T is either smooth or has one isolated ordinary singularity, which would imply that a general fiber of the induced fibration $\varphi: T \rightarrow \mathbb{P}^{1}$ is a smooth elliptic curve. Let $\mathcal{C}=\left.S\right|_{T}$. Then \mathcal{C} is the fiber of the (elliptic) fibration φ that contains the point P.

Let u be a non-negative real number. Then $-K_{X}-u T \sim_{\mathbb{R}}(3-u) H-E \sim_{\mathbb{R}}(1-u) H+S$, which implies that $-K_{X}-u T$ is nef $\Longleftrightarrow-K_{X}-u T$ is pseudoeffective $\Longleftrightarrow u \in[0,1]$. Integrating, we get $S_{X}(T)=\frac{9}{28}<1$. For simplicity, we let $P(u)=-K_{X}-u T$.

Lemma 6.7. Suppose that S is singular at P. Then $\delta_{P}(X)>1$.
Proof. Now, let us choose $T \in|H|$ such that T is a general surface in $|H|$ that contains P. Then T and \mathcal{Q} are smooth, and ϖ is a blow up of the eight intersection points $\mathscr{C} \cap \mathcal{Q}$. Moreover, by Lemma 6.5, the curve \mathcal{C} is an irreducible singular curve of arithmetic genus 1 . Thus, we have $P=\operatorname{Sing}(\mathcal{C})$. Furthermore, using Remark 6.6, we see that

- either \mathcal{C} has an isolated ordinary double singularity at P,
- or the curve \mathcal{C} has an ordinary cusp at the point P.

Recall that \mathcal{Q} is a smooth quadric surface, so that it contains exactly two lines that pass though $\pi(P)$. Since T is chosen to be general, these lines are disjoint from $\mathscr{C} \cap \mathcal{Q}$. Denote by L_{1} and L_{2} the proper transforms of these lines on T. Then

$$
\left.\left.P(u)\right|_{T} \sim_{\mathbb{R}}((1-u) H+S)\right|_{T} \sim_{\mathbb{R}}(1-u)\left(L_{1}+L_{2}\right)+\mathcal{C} .
$$

Now, we let $\sigma: \widetilde{T} \rightarrow T$ be the blow up of the point P, we let e be the σ-exceptional curve, and we denote by $\widetilde{\mathcal{C}}, \widetilde{L}_{1}, \widetilde{L}_{2}$ the proper transforms on \widetilde{T} of the curves $\mathcal{C}, L_{1}, L_{2}$, respectively. Take a non-negative real number v. Then

$$
\begin{equation*}
\sigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{e} \sim_{\mathbb{R}} \widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(4-2 u-v) \mathbf{e} \tag{6.2}
\end{equation*}
$$

Note that the curves $\widetilde{\mathcal{C}}, \widetilde{L}_{1}, \widetilde{L}_{2}$ are disjoint. Moreover, we have $\widetilde{L}_{1}^{2}=\widetilde{L}_{2}^{2}=-1$ and $\widetilde{\mathcal{C}}^{2}=-4$. Thus, using (6.2), we see that $\sigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{e}$ is pseudoeffective $\Longleftrightarrow v \leqslant 4-2 u$.

Let $\widetilde{P}(u, v)$ be the positive part of Zariski decomposition of the divisor $\sigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{e}$, and let $\widetilde{N}(u, v)$ be its negative part. Then it follows from [3, Remark 1.7.32] that

$$
\begin{equation*}
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(T)}, \frac{2}{S\left(W_{\bullet, \bullet}^{\widetilde{T}} ; \mathbf{e}\right)}, \inf _{O \in \mathbf{e}} \frac{1}{S\left(W_{\bullet, \bullet \bullet \bullet}^{\widetilde{T}} ; O\right)}\right\} \tag{6.3}
\end{equation*}
$$

where $S\left(W_{\bullet, \bullet}^{\widetilde{T}} ; \mathbf{e}\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{T}, \mathbf{e}} ; O\right)$ are defined in [3, § 1.7], and these two numbers can be computed using formulas described in [3, Remark 1.7.32]. Namely, we have

$$
S\left(W_{\bullet, \bullet}^{\widetilde{T}} ; \mathbf{e}\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{4-2 u}(\widetilde{P}(u, v))^{2} d v d u
$$

and
$S\left(W_{\bullet, 0, \mathbf{\bullet}}^{\widetilde{T}, \mathbf{e}} ; O\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{4-2 u}((\widetilde{P}(u, v) \cdot \mathbf{e}))^{2} d v d u+\frac{3}{7} \int_{0}^{1} \int_{0}^{4-2 u}(\widetilde{P}(u, v) \cdot \mathbf{e}) \operatorname{ord}_{O}\left(\left.\widetilde{N}(u, v)\right|_{\mathbf{e}}\right) d v d u$,
where O is a point in e. Moreover, using (6.2), we compute $\widetilde{P}(u, v)$ and $\widetilde{N}(u, v)$ as follows:

$$
\widetilde{P}(u, v)=\left\{\begin{array}{l}
\widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(4-2 u-v) \mathbf{e} \text { if } 0 \leqslant v \leqslant 2-2 u \\
\frac{4-2 u-v}{2} \widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(4-2 u-v) \mathbf{e} \text { if } 2-2 u \leqslant v \leqslant 3-u, \\
\frac{4-2 u-v}{2}\left(\widetilde{\mathcal{C}}+2\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+2 \mathbf{e}\right) \text { if } 3-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

and

$$
\widetilde{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 2-2 u \\
\frac{v-2+2 u}{2} \widetilde{\mathcal{C}} \text { if } 2-2 u \leqslant v \leqslant 3-u \\
\frac{v-2+2 u}{2} \widetilde{\mathcal{C}}+(v-3+u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right) \text { if } 3-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

Thus, we have

$$
(\widetilde{P}(u, v))^{2}=\left\{\begin{array}{l}
2(1-u)(5-u)-v^{2} \text { if } 0 \leqslant v \leqslant 2-2 u \\
2(1-u)(7-3 u-2 v) \text { if } 2-2 u \leqslant v \leqslant 3-u \\
2(4-2 u-v)^{2} \text { if } 3-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

and

$$
\widetilde{P}(u, v) \cdot \mathbf{e}=\left\{\begin{array}{l}
v \text { if } 0 \leqslant v \leqslant 2-2 u \\
2(1-u) \text { if } 2-2 u \leqslant v \leqslant 3-u \\
2(4-2 u-v) \text { if } 3-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

Now, integrating, we get $S\left(W_{\bullet, 0}^{\widetilde{T}} ; \mathbf{e}\right)=\frac{51}{28}<2$.
Let O be an arbitrary point in e. If $O \notin \widetilde{L}_{1} \cup \widetilde{L}_{2} \cup \widetilde{\mathcal{C}}$, then we compute $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{T}, \mathbf{e}} ; O\right)=\frac{4}{7}$. Similarly, if $O \in \widetilde{L}_{1} \cup \widetilde{L}_{2}$, then $S\left(W_{\bullet, 0,0}^{\widetilde{T}, \mathbf{e}} ; O\right)=\frac{17}{28}$. Finally, if $O \in \widetilde{\mathcal{C}}$, then

$$
\begin{aligned}
S\left(W_{\bullet, \mathbf{\bullet}, \mathbf{\bullet}}^{\widetilde{T}, \mathbf{e}} ; O\right) & =\frac{4}{7}+\frac{3}{7} \int_{0}^{1} \int_{2-2 u}^{3-u} 2(1-u) \frac{v-2+2 u}{2} \operatorname{ord}_{O}\left(\left.\widetilde{\mathcal{C}}\right|_{\mathbf{e}}\right) d v d u+ \\
& +\frac{3}{7} \int_{0}^{1} \int_{3-u}^{4-2 u} 2(4-2 u-v) \frac{v-2+2 u}{2} \operatorname{ord}_{O}\left(\left.\widetilde{\mathcal{C}}\right|_{\mathbf{e}}\right) d v d u=\frac{4}{7}+\frac{17}{56} \operatorname{ord}_{O}\left(\left.\widetilde{\mathcal{C}}\right|_{\mathbf{e}}\right) .
\end{aligned}
$$

Hence, if $\widetilde{\mathcal{C}}$ intersects e transversally, then $S\left(W_{\bullet, 0,0}^{\widetilde{T}, \mathbf{e}} ; O\right)<1$, so that $\delta_{P}(X)>1$ by (6.3).
Therefore, to complete the proof of the lemma, we may assume that $\widetilde{\mathcal{C}}$ is tangent to \mathbf{e}. This means that \mathcal{C} has a cusp at P, and the intersection $\widetilde{\mathcal{C}} \cap \mathbf{e}$ consists of a single point.

Now, as in the proof of Lemma 4.5, we consider the following commutative diagram:

where γ is a composition of the blow up of the point $\widetilde{\mathcal{C}} \cap \mathbf{e}$ with the blow up of the unique intersection point of the proper transforms of the curves $\widetilde{\mathcal{C}}$ and \mathbf{e}, v is the birational contraction of all $(\sigma \circ \gamma)$-exceptional curves that are not (-1)-curve, and ς is the birational contraction of the proper transform of the unique γ-exceptional curve that is (-1)-curve. Then \widehat{T} has two singular points:
(1) a cyclic quotient singularity of type $\frac{1}{2}(1,1)$, which we denote by O_{2};
(2) a cyclic quotient singularity of type $\frac{1}{3}(1,1)$, which we denote by O_{3}.

Let \mathbf{f} be the ς-exceptional curve, let $\widehat{\mathcal{C}}$ be the proper transform on \widehat{T} of the curve \mathcal{C}, and let \widehat{L}_{1} and \widehat{L}_{2} be the proper transforms on \widehat{T} of the curves L_{1} and L_{2}, respectively.

Then the curves $\mathbf{f}, \widehat{\mathcal{C}}, \widehat{L}_{1}, \widehat{L}_{2}$ are smooth, and the curve \mathbf{f} contains both points O_{2} and O_{3}, which are not contained in $\widehat{\mathcal{C}}$. Moreover, we have

$$
\widehat{L}_{1} \cap \widehat{L}_{2}=\widehat{L}_{1} \cap \mathbf{f}=\widehat{L}_{2} \cap \mathbf{f}=O_{3} .
$$

Furthermore, we have $A_{T}(\mathbf{f})=5, \varsigma^{*}(\mathcal{C}) \sim \widehat{\mathcal{C}}+6 \mathbf{f}, \varsigma^{*}\left(L_{1}\right) \sim \widehat{L}_{1}+2 \mathbf{f}, \varsigma^{*}\left(L_{2}\right) \sim \widehat{L}_{2}+2 \mathbf{f}$, and the intersection form of the curves $\mathbf{f}, \widehat{\mathcal{C}}, \widehat{L}_{1}$ and \widehat{L}_{2} is given in the following table:

	\mathbf{f}	$\widehat{\mathcal{C}}$	\widehat{L}_{1}	\widehat{L}_{2}
\mathbf{f}	$-\frac{1}{6}$	1	$\frac{1}{3}$	$\frac{1}{3}$
$\widehat{\mathcal{C}}$	1	-6	0	0
\widehat{L}_{1}	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
\widehat{L}_{2}	$\frac{1}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$

For a non-negative real number v, we have

$$
\varsigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{f} \sim_{\mathbb{R}} \widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(10-4 u-v) \mathbf{f},
$$

which implies that the divisor $\varsigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{f}$ is pseudoeffective if and only if $v \leqslant 10-4 u$, because the intersection form of the curves $\widehat{\mathcal{C}}, \widehat{L}_{1}, \widehat{L}_{2}$ is negative definite.

Let $\widehat{P}(u, v)$ be the positive part of Zariski decomposition of the divisor $\varsigma^{*}\left(\left.P(u)\right|_{T}\right)-v \mathbf{f}$, and let $\widehat{N}(u, v)$ be its negative part. Set $\Delta_{\mathbf{f}}=\frac{1}{2} O_{2}+\frac{2}{3} O_{3}$. By [3, Remark 1.7.32], we get

$$
\begin{equation*}
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(T)}, \frac{5}{S\left(W_{\bullet, \bullet}^{\widehat{T}} ; \mathbf{f}\right)}, \inf _{O \in \mathbf{f}} \frac{1-\operatorname{ord}_{O}\left(\Delta_{\mathbf{f}}\right)}{S\left(W_{\bullet, \bullet, \bullet}^{\widehat{\widehat{T}}, \mathbf{f}} ; O\right)}\right\}, \tag{6.4}
\end{equation*}
$$

where $S\left(W_{\bullet, \bullet}^{\widehat{T}} ; \mathbf{f}\right)$ and $S\left(W_{\bullet \bullet, \mathbf{~}}^{\widehat{T}, \mathbf{f}} ; O\right)$ are defined as $S\left(W_{\bullet, \bullet}^{\widetilde{T}} ; \mathbf{e}\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{\widetilde{T}, \mathbf{e}} ; O\right)$ used earlier. Moreover, it follows from [3, Remark 1.7.32] that

$$
S\left(W_{\bullet, \bullet}^{\widehat{T}} ; \mathbf{f}\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{10-4 u}(\widehat{P}(u, v))^{2} d v d u
$$

and
$S\left(W_{\bullet, \bullet, \bullet}^{\widehat{T} \mathbf{f}} ; O\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{10-4 u}((\widehat{P}(u, v) \cdot \mathbf{f}))^{2} d v d u+\frac{3}{7} \int_{0}^{1} \int_{0}^{10-4 u}(\widehat{P}(u, v) \cdot \mathbf{f}) \operatorname{ord}_{O}\left(\left.\widehat{N}(u, v)\right|_{\mathbf{f}}\right) d v d u$.
Moreover, we compute $\widehat{P}(u, v)$ and $\widehat{N}(u, v)$ as follows:

$$
\widehat{P}(u, v)=\left\{\begin{array}{l}
\widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(10-4 u-v) \mathbf{f} \text { if } 0 \leqslant v \leqslant 4-4 u \\
\frac{10-4 u-v}{6} \widetilde{\mathcal{C}}+(1-u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right)+(10-4 u-v) \mathbf{f} \text { if } 4-4 u \leqslant v \leqslant 9-3 u, \\
\frac{10-4 u-v}{6}\left(\widehat{\mathcal{C}}+6\left(\widehat{L}_{1}+\widehat{L}_{2}\right)+6 \mathbf{f}\right) \text { if } 9-3 u \leqslant v \leqslant 10-4 u,
\end{array}\right.
$$

and

$$
\widehat{N}(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 4-4 u \\
\frac{v-4+4 u}{6} \widehat{\mathcal{C}} \text { if } 4-4 u \leqslant v \leqslant 9-3 u, \\
\frac{v-4+4 u}{6} \widehat{\mathcal{C}}+(v-9+3 u)\left(\widetilde{L}_{1}+\widetilde{L}_{2}\right) \text { if } 9-3 u \leqslant v \leqslant 10-4 u .
\end{array}\right.
$$

This gives

$$
(\widehat{P}(u, v))^{2}=\left\{\begin{array}{l}
2(1-u)(5-u)-\frac{v^{2}}{6} \text { if } 0 \leqslant v \leqslant 4-4 u \\
\frac{2(1-u)(19-7 u-2 v)}{3} \text { if } 4-4 u \leqslant v \leqslant 9-3 u \\
\frac{2(10-4 u-v)^{2}}{3} \text { if } 9-3 u \leqslant v \leqslant 10-4 u
\end{array}\right.
$$

and

$$
\widehat{P}(u, v) \cdot \mathbf{f}=\left\{\begin{array}{l}
\frac{v}{6} \text { if } 0 \leqslant v \leqslant 4-4 u \\
\frac{2(1-u)}{3} \text { if } 4-4 u \leqslant v \leqslant 9-3 u \\
\frac{2(10-4 u-v)}{3} \text { if } 9-3 u \leqslant v \leqslant 10-4 u .
\end{array}\right.
$$

Now, integrating, we get $S\left(W_{\bullet, 0}^{\widehat{T}} ; \mathbf{f}\right)=\frac{135}{28}<A_{T}(\mathbf{f})=5$.
Let O be a point in \mathbf{f}. If $O \notin \widehat{L}_{1} \cup \widehat{L}_{2} \cup \widehat{\mathcal{C}}$, then

$$
\begin{aligned}
S\left(W_{\bullet, 0,0}^{\widehat{T}, \mathbf{f}} ; O\right)=\frac{3}{14} \int_{0}^{1} & \int_{0}^{4-4 u}\left(\frac{v}{6}\right)^{2} d v d u+\frac{3}{14} \int_{0}^{1} \int_{4-4 u}^{9-3 u}\left(\frac{2(1-u)}{3}\right)^{2} d v d u+ \\
& +\frac{3}{14} \int_{0}^{1} \int_{9-3 u}^{10-4 u}\left(\frac{2(10-4 u-v)}{3}\right)^{2} d v d u=\frac{13}{63}
\end{aligned}
$$

Similarly, if $O=\mathbf{f} \cap \widetilde{\mathcal{C}}$, then

$$
\begin{aligned}
S\left(W_{\bullet,, \bullet}^{\widehat{T}, \mathbf{f}} ; O\right) & =\frac{13}{63}+\frac{3}{7} \int_{0}^{1} \int_{4-4 u}^{9-3 u} \frac{2(1-u)}{3} \times \frac{v-4+4 u}{6} d v d u+ \\
& +\frac{3}{7} \int_{0}^{1} \int_{9-3 u}^{10-4 u} \frac{2(10-4 u-v)}{3} \times \frac{v-4+4 u}{6} d v d u=\frac{13}{63}+\frac{193}{504}=\frac{33}{56}
\end{aligned}
$$

Likewise, if $O=O_{3}$, we compute $S\left(W_{\bullet,, \mathbf{,}, \mathbf{\bullet}}^{\widehat{T},} ; O\right)=\frac{3}{14}$. So, using (6.4), we get $\delta_{P}(X)>1$.
Thus, to prove that $\delta_{P}(X)>1$, we may assume that S is singular, but $P \notin \operatorname{Sing}(S)$.
Lemma 6.8. Suppose that $P \notin E$. Then $\delta_{P}(X)>1$.
Proof. By Corollary [6.4, we may assume that S contains a line L that passes through P. Then $\pi(L)$ is a line in \mathscr{Q}. Note that $\pi(L) \cap \mathscr{C} \neq \varnothing$, and one of the following cases holds:
Case 1: the line $\pi(L)$ intersects the curve \mathscr{C} transversally at 2 points,
Case 2: the line $\pi(L)$ is tangent to the curve \mathscr{C} at their single intersection point.
Now, let us choose T to be a sufficiently general surface in $|H|$ that passes through L. If the intersection $\pi(L) \cap \mathscr{C}$ consists of two points, then $\varpi: T \rightarrow \mathcal{Q}$ is a blow up of eight distinct points of the transversal intersection $\mathcal{Q} \cap \mathscr{C}$, which implies that T is smooth. On the other hand, if $L \cap \mathscr{C}$ consists of one point, then T has one ordinary double point, which is not contained in the curve L. We have $\mathcal{C}=\left.S\right|_{T}=L+Z$, where Z is a smooth rational irreducible curve such that $\pi(Z)$ is a smooth twisted cubic in \mathscr{Q} that intersects the curve \mathscr{C} transversally by six distinct points, which we denote by $Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}$.

Moreover, if $\pi(L) \cap \mathscr{C}$ consists of two distinct points, we denote these points by Q_{1} and Q_{2}. Likewise, if $\pi(L) \cap \mathscr{C}$ consists of one point, we let $Q_{1}=Q_{2}=\pi(Z) \cap \mathscr{C}$. Then
Case 1: the morphism $\varpi: T \rightarrow \mathcal{Q}$ is the blow up of the points $Q_{1}, Q_{2}, \ldots, Q_{8}$,
Case 2: the morphism $\varpi: T \rightarrow \mathcal{Q}$ is a composition of the blow up of the points Q_{3}, \ldots, Q_{8} with a weighted blow up with weights $(1,2)$ of the point $Q_{1}=Q_{2}$.
Since T is a general surface in $|H|$ that contains the line L, we may assume that $P \notin Z$. Likewise, we may assume further that Z is contained in the smooth locus of the surface T. Moreover, we may also assume that the quadric surface \mathcal{Q} does not contain lines that pass through one point in the set $\left\{Q_{1}, Q_{2}, \pi(P)\right\}$ and one point in $\left\{Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}\right\}$. Indeed, let $\mathcal{Q}^{\prime}, \mathcal{Q}^{\prime \prime}, \mathcal{Q}^{\prime \prime \prime}$ be the hyperplane sections of the quadric \mathscr{Q} that are singular at the points $Q_{1}, Q_{2}, \pi(P)$, respectively. Then $\mathcal{Q}^{\prime}, \mathcal{Q}^{\prime \prime}, \mathcal{Q}^{\prime \prime \prime}$ are cones, $\pi(L) \subset \mathcal{Q}^{\prime} \cap \mathcal{Q}^{\prime \prime} \cap \mathcal{Q}^{\prime \prime \prime}$, and every line in \mathscr{Q} containing a point in $\left\{Q_{1}, Q_{2}, \pi(P)\right\}$ is a ruling of one of these cones. On the other hand, we have $\mathscr{C} \not \subset \mathcal{Q}^{\prime} \cup \mathcal{Q}^{\prime \prime} \cup \mathcal{Q}^{\prime \prime \prime}$, because \mathscr{C} is not contained in a hyperplane. This implies that the quadric threefold \mathscr{Q} contains at most finitely many lines that pass through a point in $\left\{Q_{1}, Q_{2}, \pi(P)\right\}$ and a point in $\mathscr{C} \backslash\left\{Q_{1}, Q_{2}\right\}$. Therefore, we can choose the surface $T \in|H|$ such that $L \subset T$, but $\mathcal{Q}=\pi(T)$ does not contain any of these lines.

Let us identify $\mathcal{Q}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ such that the line $\pi(L)$ is a curve in \mathcal{Q} of degree $(0,1)$. Denote by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{8}$ the ϖ-exceptional curves such that $\varpi\left(\mathbf{e}_{1}\right)=Q_{1}, \ldots, \varpi\left(\mathbf{e}_{8}\right)=Q_{8}$. Let $\mathbf{g}_{3}, \ldots, \mathbf{g}_{8}$ be the strict transforms on T of the curves in \mathcal{Q} of degree $(1,0)$ that pass through the points Q_{3}, \ldots, Q_{8}, respectively. Then $L, Z, \mathbf{e}_{1}, \ldots, \mathbf{e}_{8}, \mathbf{g}_{3}, \ldots, \mathbf{g}_{8}$ are smooth irreducible rational curves. In Case 1, their intersections are given in the following table:

	L	Z	\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}	\mathbf{e}_{4}	\mathbf{e}_{5}	\mathbf{e}_{6}	\mathbf{e}_{7}	\mathbf{e}_{8}	\mathbf{g}_{3}	\mathbf{g}_{4}	\mathbf{g}_{5}	\mathbf{g}_{6}	\mathbf{g}_{7}	\mathbf{g}_{8}
L	-2	2	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Z	2	-2	0	0	1	1	1	1	1	1	0	0	0	0	0	0
\mathbf{e}_{1}	1	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{e}_{2}	1	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
\mathbf{e}_{3}	0	1	0	0	-1	0	0	0	0	0	1	0	0	0	0	0
\mathbf{e}_{4}	0	1	0	0	0	-1	0	0	0	0	0	1	0	0	0	0
\mathbf{e}_{5}	0	1	0	0	0	0	-1	0	0	0	0	0	1	0	0	0
\mathbf{e}_{6}	0	1	0	0	0	0	0	-1	0	0	0	0	0	1	0	0
\mathbf{e}_{7}	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	1	0
\mathbf{e}_{8}	0	1	0	0	0	0	0	0	0	-1	0	0	0	0	0	1
\mathbf{g}_{3}	1	0	0	0	1	0	0	0	0	0	-1	0	0	0	0	0
\mathbf{g}_{4}	1	0	0	0	0	1	0	0	0	0	0	-1	0	0	0	0
\mathbf{g}_{5}	1	0	0	0	0	0	1	0	0	0	0	0	-1	0	0	0
\mathbf{g}_{6}	1	0	0	0	0	0	0	1	0	0	0	0	0	-1	0	0
\mathbf{g}_{7}	1	0	0	0	0	0	0	0	1	0	0	0	0	0	-1	0
\mathbf{g}_{8}	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-1

In Case 2, we have $\mathbf{e}_{1}=\mathbf{e}_{2}$, and \mathbf{e}_{1} contains the singular point of T, so that $\mathbf{e}_{1}^{2}=-\frac{1}{2}$. The remaining intersection numbers are exactly the same as in Case 1.

Observe that $P \notin Z \cup \mathbf{g}_{3} \cup \mathbf{g}_{4} \cup \mathbf{g}_{5} \cup \mathbf{g}_{6} \cup \mathbf{g}_{7} \cup \mathbf{g}_{8} \cup \mathbf{e}_{1} \cup \mathbf{e}_{2}$, since $P \notin E$ by assumption.
Recall that $P(u)=-K_{X}-u T$ is nef $\Longleftrightarrow P(u)$ is pseudoeffective $\Longleftrightarrow u \in[0,1]$. Let v be a non-negative real number. Then, in both Cases 1 and 2 , we have

$$
\begin{equation*}
\left.P(u)\right|_{T}-v L \sim_{\mathbb{R}} \frac{9-5 u-4 v}{4} L+\frac{3+u}{4} Z+\frac{5-5 u}{4}\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \tag{6.5}
\end{equation*}
$$

which implies that the divisor $\left.P(u)\right|_{T}-v L$ is pseudoeffective $\Longleftrightarrow v \leqslant \frac{9-5 u}{4}$.
Let $P(u, v)$ be the positive part of Zariski decomposition of the divisor $\left.P(u)\right|_{T}-v L$, and let $N(u, v)$ be its negative part. Then it follows from [3, Theorem 1.7.30] that

$$
\begin{equation*}
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(T)}, \frac{1}{S\left(W_{\bullet, \bullet}^{T} ; L\right)}, \frac{1}{S\left(W_{\bullet, \bullet, \bullet}^{T, L} ; P\right)}\right\} \tag{6.6}
\end{equation*}
$$

where

$$
S\left(W_{\bullet,}^{T} ; L\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{\frac{9-5 u}{4}}(P(u, v))^{2} d v d u
$$

and

$$
S\left(W_{\bullet, \bullet, \bullet}^{T, L} ; P\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{\frac{9-5 u}{4}}((P(u, v) \cdot L))^{2} d v d u+\frac{3}{7} \int_{0}^{1} \int_{0}^{\frac{9-5 u}{4}}(P(u, v) \cdot L) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{L}\right) d v d u
$$

Let us compute $S\left(W_{\bullet, \bullet}^{T} ; L\right)$ and $S\left(W_{\bullet \bullet,, \bullet}^{T, L} ; P\right)$. If $0 \leqslant u \leqslant \frac{1}{3}$, then, using (6.5), we get

$$
\begin{gathered}
P(u, v)=\left\{\begin{array}{l}
\frac{9-5 u-4 v}{4} L+\frac{3+u}{4} Z+\frac{5-5 u}{4}\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 0 \leqslant v \leqslant 1, \\
\frac{9-5 u-4 v}{4}\left(L+\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{3+u}{4} Z+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 1 \leqslant v \leqslant \frac{3-3 u}{2}, \\
\frac{9-5 u-4 v}{4}\left(L+Z+\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 2-u, \\
\frac{9-5 u-4 v}{4}\left(L+Z+\mathbf{e}_{1}+\mathbf{e}_{2}+\sum_{i=3}^{8} \mathbf{g}_{i}\right) \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}, \\
N(u, v)=\left\{\begin{array}{l}
0 \text { if } 0 \leqslant v \leqslant 1, \\
(v-1)\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) \text { if } 1 \leqslant v \leqslant \frac{3-3 u}{2}, \\
(v-1)\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{2 v+3 u-3}{2} Z \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 2-u, \\
(v-1)\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{2 v+3 u-3}{2} Z+(v-2+u) \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4},
\end{array}\right.
\end{array},\right.
\end{gathered}
$$

$$
(P(u, v))^{2}=\left\{\begin{array}{l}
2 u^{2}+(2 v-12) u-2 v^{2}-2 v+10 \text { if } 0 \leqslant v \leqslant 1 \\
2 u^{2}+(2 v-12) u-6 v+12 \text { if } 1 \leqslant v \leqslant \frac{3-3 u}{2} \\
\frac{13 u^{2}+16 u v+4 v^{2}-42 u-24 v+33}{2} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 2-u \\
\frac{(9-5 u-4 v)^{2}}{2} \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}
\end{array}\right.
$$

and

$$
P(u, v) \cdot L=\left\{\begin{array}{l}
1-u+2 v \text { if } 0 \leqslant v \leqslant 1 \\
3-u \text { if } 1 \leqslant v \leqslant \frac{3-3 u}{2} \\
6-4 u-2 v \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 2-u \\
2(9-5 u-4 v) \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}
\end{array}\right.
$$

Similarly, if $\frac{1}{3} \leqslant u \leqslant 1$, then, using (6.5), we get

$$
\begin{aligned}
& P(u, v)=\left\{\begin{array}{l}
\frac{9-5 u-4 v}{4} L+\frac{3+u}{4} Z+\frac{5-5 u}{4}\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2}, \\
\frac{9-5 u-4 v}{4}(L+Z)+\frac{5-5 u}{4}\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 1, \\
\frac{9-5 u-4 v}{4}\left(L+Z+\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{1-u}{4} \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 1 \leqslant v \leqslant 2-u, \\
\frac{9-5 u-4 v}{4}\left(L+Z+\mathbf{e}_{1}+\mathbf{e}_{2}+\sum_{i=3}^{8} \mathbf{g}_{i}\right) \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}, \\
N(u, v)=
\end{array}\right. \\
& \begin{array}{l}
\frac{2 v+3 u-3}{2} Z \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 1, \\
(v-1)\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{2 v+3 u-3}{2} Z \text { if } 1 \leqslant v \leqslant 2-u, \\
(v-1)\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)+\frac{2 v+3 u-3}{2} Z+(v-2+u) \sum_{i=3}^{8} \mathbf{g}_{i} \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}, \\
\end{array} \\
&(P(u, v))^{2}=\left\{\begin{array}{l}
\frac{3 u^{2}+(2 v-12) u-2 v^{2}-2 v+10 \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2},}{2} \frac{(1-u)(29-13 u-16 v)}{2} \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 1,
\end{array}\right. \\
& \frac{2 u^{2}+16 u v+4 v^{2}-42 u-24 v+33}{2} \text { if } 1 \leqslant v \leqslant 2-u, \\
& \frac{(9-5 u-4 v)^{2}}{2} \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4},
\end{aligned}
$$

and

$$
P(u, v) \cdot L=\left\{\begin{array}{l}
1-u+2 v \text { if } 0 \leqslant v \leqslant \frac{3-3 u}{2} \\
4-4 u \text { if } \frac{3-3 u}{2} \leqslant v \leqslant 1 \\
6-4 u-2 v \text { if } 1 \leqslant v \leqslant 2-u \\
2(9-5 u-4 v) \text { if } 2-u \leqslant v \leqslant \frac{9-5 u}{4}
\end{array}\right.
$$

Therefore, we have $P \notin \operatorname{Supp}(N(u, v))$, because $P \notin Z \cup \mathbf{g}_{3} \cup \mathbf{g}_{4} \cup \mathbf{g}_{5} \cup \mathbf{g}_{6} \cup \mathbf{g}_{7} \cup \mathbf{g}_{8} \cup \mathbf{e}_{1} \cup \mathbf{e}_{2}$. So, integrating $(P(u, v))^{2}$ and $(P(u, v) \cdot L)^{2}$, we get $S\left(W_{\bullet, \bullet}^{T} ; L\right)=\frac{423}{448}$ and $S\left(W_{\bullet, \bullet \bullet}^{T, L} ; P\right)=\frac{79}{84}$, which implies that $\delta_{P}(X)>1$ by (6.6).

By Lemma 6.8, to show that $\delta_{P}(X)>1$, we may assume that $P \in E$. Then $\pi(P) \in \mathscr{C}$. Now, let us choose T to be a sufficiently general surface in $|H|$ that contains the point P, so that \mathcal{Q} is a sufficiently general hyperplane section of the quadric \mathscr{Q} that contains $\pi(P)$. Then T is smooth, and $\varpi: T \rightarrow \mathcal{Q}$ is a blow up of eight points of the intersection $\mathcal{Q} \cap \mathscr{C}$.

Let $Q_{1}=\pi(P)$, let Q_{2}, \ldots, Q_{8} be the remaining seven points of the intersection $\mathcal{Q} \cap \mathscr{C}$, and let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{8}$ be the ϖ-exceptional curves such that $\varpi\left(\mathbf{e}_{1}\right)=Q_{1}, \ldots, \varpi\left(\mathbf{e}_{8}\right)=Q_{8}$. For every $u \in[0,1]$, we set

$$
t(u)=\inf \left\{v \in \mathbb{R}_{\geqslant 0} \mid \text { the divisor }\left.P(u)\right|_{T}-v \mathbf{e}_{1} \text { is pseudo-effective }\right\} .
$$

Then $t(u)$ is not very easy to compute explicitly in terms of $u \in[0,1]$. Fix $v \in[0, t(u)]$. Let $P(u, v)$ be the positive part of the Zariski decomposition of the divisor $\left.P(u)\right|_{T}-v \mathbf{e}_{1}$, and let $N(u, v)$ be its negative part. Then it follows from [3, Theorem 1.7.30] that

$$
\begin{equation*}
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(T)}, \frac{1}{S\left(W_{\bullet, \bullet}^{T} ; \mathbf{e}_{1}\right)}, \frac{1}{S\left(W_{\bullet, 0, \bullet}^{T, \mathbf{e}_{1}} ; P\right)}\right\} \tag{6.7}
\end{equation*}
$$

where

$$
S\left(W_{\bullet, \bullet}^{T} ; \mathbf{e}_{1}\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{t(u)}(P(u, v))^{2} d v d u
$$

and

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet, \bullet}^{T, \mathbf{e}_{1}} ; P\right)=\frac{3}{14} \int_{0}^{1} \int_{0}^{t(u)}\left(\left(P(u, v) \cdot \mathbf{e}_{1}\right)\right)^{2} d v d u+ \\
& +\frac{3}{7} \int_{0}^{1} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{\mathbf{e}_{1}}\right) d v d u .
\end{aligned}
$$

Let us compute $S\left(W_{\bullet \bullet \bullet}^{T} ; \mathbf{e}_{1}\right)$ and $S\left(W_{\bullet, \bullet, \bullet}^{T, \mathbf{e}_{1}} ; P\right)$. This will take a while.
Recall that $\varphi: T \rightarrow \mathbb{P}^{1}$ is an elliptic fibration, which is given by the linear system $\left|-K_{T}\right|$. As in the proof of Lemma 6.8, let us identify $\mathcal{Q}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Lemma 6.9. Let F be a curve in $\left|-K_{T}\right|$. Then F is irreducible and reduced.
Proof. Suppose that F is reducible or non-reduced. Then the curve $\pi(F)$ is also reducible or non-reduced, and every irreducible component of the curve F is a smooth (-2)-curve. But $\pi(F)$ is a curve in \mathcal{Q} of degree $(2,2)$ that passes through the points $Q_{1}, Q_{2}, \ldots, Q_{8}$. Therefore, we have one of the following possibilities:
(1) \mathcal{Q} contains a line that passes through Q_{1} and one point among Q_{2}, \ldots, Q_{8},
(2) \mathcal{Q} contains a line that passes through two points among Q_{2}, \ldots, Q_{8},
(3) \mathcal{Q} contains a conic that passes through Q_{1} and three points among Q_{2}, \ldots, Q_{8}.

Recall that \mathcal{Q} is a general hyperplane section of the quadric \mathscr{Q} that contains $Q_{1}=\pi(P)$. As we already mentioned in the proof of Lemma 6.8, the quadric \mathscr{Q} contains finitely many lines that pass through Q_{1} and a point in $\mathscr{C} \backslash Q_{1}$. Thus, since \mathcal{Q} is assumed to be general, the quadric \mathcal{Q} does not contain any of these lines, so that \mathcal{Q} does not contain a line that passes through Q_{1} and a point among Q_{2}, \ldots, Q_{8}.

Similarly, a parameter count implies that \mathcal{Q} does not contain secant lines of the curve \mathscr{C}, so that \mathcal{Q} does not contain a line that passes through two points among Q_{2}, \ldots, Q_{8},

Finally, we suppose that \mathcal{Q} contains an irreducible conic C that passes through Q_{1} and three points among Q_{2}, \ldots, Q_{8}. Let $\rho: \mathscr{Q} \rightarrow \mathbb{P}^{3}$ be a linear projection from the point Q_{1}. Then $\rho(\mathscr{C})$ is a curve of degree 7, and the induced map $\mathscr{C} \rightarrow \rho(\mathscr{C})$ is an isomorphism, because \mathscr{C} is an intersection of quadrics. Similarly, all points $\rho\left(Q_{2}\right), \ldots, \rho\left(Q_{8}\right)$ are distinct. Then $\rho(C)$ is a three-secant line of the curve $\rho(\mathscr{C})$. Note that $\rho(\mathscr{C})$ contains one-parameter family of three-secants [10, Appendix A]. But $\rho(\mathcal{Q})$ is a general plane in \mathbb{P}^{3}, which implies that $\rho(\mathcal{Q})$ does not contain three-secant lines of the curve $\rho(\mathscr{C})$ - a contradiction.

Corollary 6.10. Let γ be a class in the group $\operatorname{Pic}(T)$ such that $-K_{T} \cdot \gamma=1$ and $\gamma^{2}=-1$. Then the linear system $|\gamma|$ consists of a unique (-1)-curve.

Proof. Apply the Riemann-Roch theorem, Serre duality and Lemma 6.9,
Let us use Corollary 6.10, to describe infinitely many (-1)-curves in the surface T. Namely, let ℓ_{1} and ℓ_{2} be any curves in $\mathcal{Q}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ of degrees $(1,0)$ and $(0,1)$, respectively. For $n \in \mathbb{Z}_{\geqslant 0}$ and $i \in\{2,3,4,5,6,7,8\}$, let $B_{n, 1,1}, B_{n, 1,2}, B_{n, 2, i}, B_{n, 3}, B_{n, 4, i}$ be the classes

$$
\varpi^{*}\left(a_{1} \ell_{1}+a_{2} \ell_{2}\right)-\sum_{i=1}^{8} b_{i} \mathbf{e}_{i} \in \operatorname{Pic}(T),
$$

where $a_{1}, a_{2}, b_{1}, \ldots, b_{8}$ are non-negative integers given in the following table:

	a_{1}	a_{2}	b_{1}	$b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}$
$B_{n, 1,1}$	$14 n^{2}+7 n+1$	$14 n^{2}+7 n$	$7 n^{2}+7 n+1$	$\forall j b_{j}=7 n^{2}+3 n$
$B_{n, 1,2}$	$14 n^{2}+7 n$	$14 n^{2}+7 n+1$	$7 n^{2}+7 n+1$	$\forall j b_{j}=7 n^{2}+3 n$
$B_{n, 2, i}$	$14 n^{2}+13 n+3$	$14 n^{2}+13 n+3$	$7 n^{2}+10 n+3$	$b_{i}=7 n^{2}+6 n+2$ $\forall j \neq i b_{j}=7 n^{2}+6 n+1$
$B_{n, 3}$	$14 n^{2}+21 n+7$	$14 n^{2}+21 n+7$	$7 n^{2}+14 n+6$	$\forall j b_{j}=7 n^{2}+10 n+3$
$B_{n, 4, i}$	$14 n^{2}+29 n+15$	$14 n^{2}+29 n+15$	$7 n^{2}+18 n+11$	$b_{i}=7 n^{2}+14 n+6$ $\forall j \neq i b_{j}=7 n^{2}+14 n+7$

By Corollary 6.10, each linear system $\left|B_{n, 1,1}\right|,\left|B_{n, 1,2}\right|,\left|B_{n, 2, i}\right|,\left|B_{n, 3}\right|,\left|B_{n, 4, i}\right|$ contains a unique (-1)-curve. Hence, we can identify the classes $B_{n, 1,1}, B_{n, 1,2}, B_{n, 2, i}, B_{n, 3}, B_{n, 4, i}$ with (-1)-curves in $\left|B_{n, 1,1}\right|,\left|B_{n, 1,2}\right|,\left|B_{n, 2, i}\right|,\left|B_{n, 3}\right|,\left|B_{n, 4, i}\right|$, respectively. Set

$$
\begin{aligned}
& B_{n, 1}=B_{n, 1,1}+B_{n, 1,2} \\
& B_{n, 2}=B_{n, 2,2}+B_{n, 2,3}+B_{n, 2,4}+B_{n, 2,5}+B_{n, 2,6}+B_{n, 2,7}+B_{n, 2,8} \\
& B_{n, 4}=B_{n, 4,2}+B_{n, 4,3}+B_{n, 4,4}+B_{n, 4,5}+B_{n, 4,6}+B_{n, 4,7}+B_{n, 4,8}
\end{aligned}
$$

Note that irreducible components of each curve $B_{n, 1}, B_{n, 2}, B_{n, 4}$ are disjoint (-1)-curves, and $B_{n, 1} \cap B_{n, 2}=\varnothing, B_{n, 2} \cap B_{n, 3}=\varnothing, B_{n, 3} \cap B_{n, 4}=\varnothing, B_{n, 4} \cap B_{n+1,1}=\varnothing$ for each $n \geqslant 0$.

Now, we let $I_{0,1}^{\prime}=\left[0, \frac{1}{3}\right]$ and $I_{0,1}^{\prime \prime}=\left[\frac{1}{3}, \frac{3}{8}\right]$. For every $n \in \mathbb{Z}_{>0}$, we also let

$$
\begin{aligned}
& I_{n, 1}^{\prime}=\left[\frac{-1+4 n+14 n^{2}}{6 n+14 n^{2}}, \frac{1+13 n+21 n^{2}}{3+16 n+21 n^{2}}\right], \\
& I_{n, 1}^{\prime \prime}=\left[\frac{1+13 n+21 n^{2}}{3+16 n+21 n^{2}}, \frac{3+35 n+49 n^{2}}{8+42 n+49 n^{2}}\right] .
\end{aligned}
$$

For every $n \in \mathbb{Z}_{\geqslant 0}$, we let

$$
\begin{aligned}
& I_{n, 2}^{\prime}=\left[\frac{3+35 n+49 n^{2}}{8+42 n+49 n^{2}}, \frac{3+22 n+28 n^{2}}{6+26 n+28 n^{2}}\right], \\
& I_{n, 2}^{\prime \prime}=\left[\frac{3+22 n+28 n^{2}}{6+26 n+28 n^{2}}, \frac{2+7 n}{3+7 n}\right], \\
& I_{n, 3}^{\prime}=\left[\frac{2+7 n}{3+7 n}, \frac{21+50 n+28 n^{2}}{26+54 n+28 n^{2}}\right], \\
& I_{n, 3}^{\prime \prime}=\left[\frac{21+50 n+28 n^{2}}{26+54 n+28 n^{2}}, \frac{39+91 n+49 n^{2}}{48+98 n+49 n^{2}}\right], \\
& I_{n, 4}^{\prime}=\left[\frac{39+91 n+49 n^{2}}{48+98 n+49 n^{2}}, \frac{19+41 n+21 n^{2}}{23+44 n+21 n^{2}}\right], \\
& I_{n, 4}^{\prime \prime}=\left[\frac{19+41 n+21 n^{2}}{23+44 n+21 n^{2}}, \frac{17+32 n+14 n^{2}}{20+34 n+14 n^{2}}\right] .
\end{aligned}
$$

Set $I_{n, 1}=I_{n, 1}^{\prime} \cup I_{n, 1}^{\prime \prime}, I_{n, 2}=I_{n, 2}^{\prime} \cup I_{n, 2}^{\prime \prime}, I_{n, 3}=I_{n, 3}^{\prime} \cup I_{n, 3}^{\prime \prime}, I_{n, 4}=I_{n, 4}^{\prime} \cup I_{n, 4}^{\prime \prime}$. Then

$$
[0,1)=\bigcup_{n \in \mathbb{Z} \geqslant 0}\left(I_{n, 1} \cup I_{n, 2} \cup I_{n, 3} \cup I_{n, 4}\right)
$$

the intervals $I_{n, 1}, I_{n, 2}, I_{n, 3}, I_{n, 4}$ have positive volumes, and all their interiors are disjoint. Let us analyze $P(u, v)$ and $N(u, v)$ when u is contained in one of these intervals.

First, we deal with $u \in I_{n, 1}$. If $u \in I_{n, 1}^{\prime}$ and $v \in\left[0, \frac{2+14 n+28 n^{2}-u\left(1+14 n+28 n^{2}\right)}{1+7 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)}{8+28 n+21 n^{2}} \mathbf{e}_{1}+ \\
& \quad+\frac{3+35 n+49 n^{2}-u\left(8+42 n+49 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 1}+\frac{1-4 n-14 n^{2}+u\left(6 n+14 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 2}
\end{aligned}
$$

and $N(u, v)=0$. The same holds if $u \in I_{n, 1}^{\prime \prime}$ and $v \in\left[0, \frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}\right]$. Then

$$
\begin{aligned}
(P(u, v))^{2} & =10-12 u+2 u^{2}-2 v-v^{2} \\
P(u, v) \cdot \mathbf{e}_{1} & =1+v
\end{aligned}
$$

Similarly, if $u \in I_{n, 1}^{\prime}$ and $v \in\left[\frac{2+14 n+28 n^{2}-u\left(1+14 n+28 n^{2}\right)}{1+7 n+7 n^{2}}, \frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)}{8+28 n+21 n^{2}} \mathbf{e}_{1}+ \\
& +\frac{\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right)\left(1+7 n+7 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 1}+ \\
& +\frac{1-4 n-14 n^{2}+u\left(6 n+14 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 2}
\end{aligned}
$$

and

$$
N(u, v)=\left(u\left(1+14 n+28 n^{2}\right)+v\left(1+7 n+7 n^{2}\right)-2-14 n-28 n^{2}\right) B_{n, 1} .
$$

Then

$$
\begin{aligned}
& (P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+ \\
& \quad+2\left(u\left(1+14 n+28 n^{2}\right)+v\left(1+7 n+7 n^{2}\right)-2-14 n-28 n^{2}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& P(u, v) \cdot \mathbf{e}_{1}=5+56 n+280 n^{2}+588 n^{3}+392 n^{4}- \\
& \quad-2 u\left(1+7 n+7 n^{2}\right)\left(1+14 n+28 n^{2}\right)-v\left(1+28 n+126 n^{2}+196 n^{3}+98 n^{4}\right) .
\end{aligned}
$$

Likewise, if $u \in I_{n, 1}^{\prime \prime}$ and $v \in\left[\frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}, \frac{2+14 n+28 n^{2}-u\left(1+14 n+28 n^{2}\right)}{1+7 n+7 n^{2}}\right]$, then

$$
\begin{gathered}
P(u, v)=\frac{\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right.}{8+28 n+21 n^{2}} \mathbf{e}_{1}+ \\
+\frac{\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right)(1+n)(3+7 n)}{8+28 n+21 n^{2}} B_{n, 2}+ \\
+\frac{3+35 n+49 n^{2}-u\left(8+42 n+49 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 1}
\end{gathered}
$$

and

$$
N(u, v)=\left(u\left(6+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26 n-28 n^{2}\right) B_{n, 2} .
$$

Then

$$
\begin{aligned}
(P(u, v))^{2}=10- & 12 u+2 u^{2}-2 v-v^{2}+ \\
& +7\left(u\left(6+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26-28 n^{2}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& P(u, v) \cdot \mathbf{e}_{1}=148+1036 n+2751 n^{2}+3234 n^{3}+1372 n^{4}- \\
& \quad-14 u(1+n)(1+2 n)(3+7 n)^{2}-v\left(62+420 n+994 n^{2}+980 n^{3}+343 n^{4}\right) .
\end{aligned}
$$

If $u \in I_{n, 1}^{\prime}$ and $v \in\left[\frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}, \frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)}{8+28 n+21 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)}{8+28 n+21 n^{2}} \mathbf{e}_{1}+ \\
& +\frac{\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right)\left(1+7 n+7 n^{2}\right)}{8+28 n+21 n^{2}} B_{n, 1}+ \\
& +\frac{\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right)(1+n)(3+7 n)}{8+28 n+21 n^{2}} B_{n, 2}
\end{aligned}
$$

and

$$
\begin{aligned}
N(u, v)=(u(1+ & \left.\left.14 n+28 n^{2}\right)+v\left(1+7 n+7 n^{2}\right)-2-14 n-28 n^{2}\right) B_{n, 1}+ \\
& +\left(u\left(6+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26 n-28 n^{2}\right) B_{n, 2} .
\end{aligned}
$$

The same holds if $u \in I_{n, 1}^{\prime \prime}$ and $v \in\left[\frac{2+14 n+28 n^{2}-u\left(1+14 n+28 n^{2}\right)}{1+7 n+7 n^{2}}, \frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)}{8+28 n+21 n^{2}}\right]$.
In both cases, we have

$$
\begin{aligned}
(P(u, v))^{2} & =\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right)^{2}, \\
P(u, v) \cdot \mathbf{e}_{1} & =\left(8+28 n+21 n^{2}\right)\left(19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)-v\left(8+28 n+21 n^{2}\right)\right) .
\end{aligned}
$$

Hence, if $u \in I_{n, 1}$, then

$$
t(u)=\frac{19+70 n+84 n^{2}-u\left(16+70 n+84 n^{2}\right)}{8+28 n+21 n^{2}}
$$

Now, we deal with $u \in I_{n, 2}$. If $u \in I_{n, 2}^{\prime}$ and $v \in\left[0, \frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)}{7(1+n)(1+2 n)} \mathbf{e}_{1}+ \\
& +\frac{(1+n)(2+7 n)-u(1+n)(3+7 n)}{7(1+n)(1+2 n)} B_{n, 2}+\frac{u\left(8+42 n+49 n^{2}\right)-3-35 n-49 n^{2}}{7(1+n)(1+2 n)} B_{n, 3}
\end{aligned}
$$

and $N(u, v)=0$. The same holds if $u \in I_{n, 2}^{\prime \prime}$ and $v \in\left[0, \frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}\right]$. Then

$$
\begin{aligned}
(P(u, v))^{2} & =10-12 u+2 u^{2}-2 v-v^{2} \\
P(u, v) \cdot \mathbf{e}_{1} & =v+1
\end{aligned}
$$

If $u \in I_{n, 2}^{\prime}$ and $v \in\left[\frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}, \frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}\right]$, then

$$
\begin{gathered}
P(u, v)=\frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)}{7(1+n)(1+2 n)} \mathbf{e}_{1}+ \\
+\frac{(1+n)(3+7 n)\left(17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)}{7(1+n)(1+2 n)} B_{n, 2}+ \\
+\frac{u\left(8+42 n+49 n^{2}\right)-3-35 n-49 n^{2}}{7(1+n)(1+2 n)} B_{n, 3}, \\
50
\end{gathered}
$$

Similarly, if $u \in I_{n, 2}^{\prime \prime}$ and $v \in\left[\frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}, \frac{7+26 n+28 n^{3}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{17+56+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)}{7(1+n)(1+2 n)} \mathbf{e}_{1}+ \\
& +\frac{\left(6+14 n+7 n^{2}\right)\left(17+56+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)}{7(1+n)(1+2 n)} B_{n, 3}+ \\
& +\frac{(1+n)(2+7 n)-u(1+n)(3+7 n)}{7(1+n)(1+2 n)} B_{n, 2}, \\
& N(u, v)=\left(u\left(14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right) B_{n, 3},
\end{aligned}
$$

$$
(P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+
$$

$$
+\left(u\left(14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right)^{2}
$$

$$
P(u, v) \cdot \mathbf{e}_{1}=7(1+n)\left(13+53 n+70 n^{2}+28 n^{3}\right)-
$$

$$
-14 u(1+n)(1+2 n)\left(6+14 n+7 n^{2}\right)-7 v(1+n)^{2}\left(5+14 n+7 n^{2}\right)
$$

Likewise, if $u \in I_{n, 2}^{\prime}$ and $v \in\left[\frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}, \frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)}{7(1+n)(1+2 n)}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-v(7(1+n)(1+2 n))}{7(1+n)(1+2 n)} \mathbf{e}_{1}+ \\
& +\frac{(1+n)(3+7 n)\left(17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)}{7(1+n)(1+2 n)} B_{n, 2}+ \\
& +\frac{\left(6+14 n+7 n^{2}\right)\left(17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)}{7(1+n)(1+2 n)} B_{n, 3}
\end{aligned}
$$

and

$$
\begin{aligned}
N(u, v)=(u(6 & \left.\left.+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26 n-28 n^{2}\right) B_{n, 2}+ \\
& +\left(u\left(14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right) B_{n, 3} .
\end{aligned}
$$

$$
\begin{aligned}
& N(u, v)=\left(u\left(6+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26 n-28 n^{2}\right) B_{n, 2}, \\
& (P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+ \\
& +7\left(u\left(6+26 n+28 n^{2}\right)+v\left(3+10 n+7 n^{2}\right)-7-26 n-28 n^{2}\right)^{2}, \\
& P(u, v) \cdot \mathbf{e}_{1}=148+1036 n+2751 n^{2}+3234 n^{3}+1372 n^{4}- \\
& -14 u(1+n)(1+2 n)(3+7 n)^{2}- \\
& -v\left(62+420 n+994 n^{2}+980 n^{3}+343 n^{4}\right) .
\end{aligned}
$$

The same holds if $u \in I_{n, 2}^{\prime \prime}$ and $v \in\left[\frac{7+26 n+28 n^{2}-u\left(6+26 n+28 n^{2}\right)}{3+10 n+7 n^{2}}, \frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)}{7(1+n)(1+2 n)}\right]$. Moreover, in both cases, we have

$$
P(u, v) \cdot \mathbf{e}_{1}=14(1+n)(1+2 n)\left(17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)
$$

and

$$
(P(u, v))^{2}=2\left(17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)-7 v(1+n)(1+2 n)\right)^{2} .
$$

Thus, if $u \in I_{n, 2}$, then

$$
t(u)=\frac{17+56 n+56 n^{2}-u\left(15+56 n+56 n^{2}\right)}{7(1+n)(1+2 n)}
$$

Now, we deal with $u \in I_{n, 3}$. If $u \in I_{n, 3}^{\prime}$ and $v \in\left[0, \frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)}{7(1+n)(3+2 n)} \mathbf{e}_{1}+ \\
+ & \frac{39+91 n+49 n^{2}-u\left(48+98 n+49 n^{2}\right)}{7(1+n)(3+2 n)} B_{n, 3}+\frac{u(1+n)(3+7 n)-(1+n)(2+7 n)}{7(1+n)(3+2 n)} B_{n, 4}
\end{aligned}
$$

and $N(u, v)=0$. The same holds if $u \in I_{n, 3}^{\prime \prime}$ and $v \in\left[0, \frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}\right]$. Then

$$
\begin{aligned}
(P(u, v))^{2} & =10-12 u+2 u^{2}-2 v-v^{2}, \\
P(u, v) \cdot \mathbf{e}_{1} & =1+v .
\end{aligned}
$$

If $u \in I_{n, 3}^{\prime}$ and $v \in\left[\frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}, \frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}\right]$, then

$$
\begin{gathered}
P(u, v)=\frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)}{7(1+n)(3+2 n)} \mathbf{e}_{1}+ \\
+\frac{\left(6+14 n+7 n^{2}\right)\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right)}{7(1+n)(3+2 n)} B_{n, 3}+ \\
+\frac{u(1+n)(3+7 n)-(1+n)(2+7 n)}{7(1+n)(3+2 n)} B_{n, 4}
\end{gathered}
$$

$$
N(u, v)=\left(u\left(14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right) B_{n, 3}
$$

$$
(P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+
$$

$$
+\left(u\left(14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right)^{2}
$$

$$
P(u, v) \cdot \mathbf{e}_{1}=7(1+n)\left(13+53 n+70 n^{2}+28 n^{3}\right)-
$$

$$
-14 u(1+n)(1+2 n)\left(6+14 n+7 n^{2}\right)-7 v(1+n)^{2}\left(5+14 n+7 n^{2}\right)
$$

Similarly, if $u \in I_{n, 3}^{\prime \prime}$ and $v \in\left[\frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}, \frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)}{7(1+n)(3+2 n)} \mathbf{e}_{1}+ \\
& +\frac{(1+n)(11+7 n)\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right)}{7(1+n)(3+2 n)} B_{n, 4}+ \\
& +\frac{39+91 n+49 n^{2}-u\left(48+98 n+49 n^{2}\right)}{7(1+n)(3+2 n)} B_{n, 3}, \\
& N(u, v)=\left(u\left(30+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right) B_{n, 4} \\
& \begin{array}{r}
(P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+ \\
\quad+7\left(u\left(30+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right)^{2}
\end{array} \\
& \begin{array}{r}
P(u, v) \cdot \mathbf{e}_{1}=2388+8372 n+10983 n^{2}+6370 n^{3}+1372 n^{4}- \\
-14 u(1+n)^{2}(11+7 n)(15+14 n)-v\left(846+2772 n+3346 n^{2}+1764 n^{3}+343 n^{4}\right)
\end{array}
\end{aligned}
$$

If $u \in I_{n, 3}^{\prime}$ and $v \in\left[\frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}, \frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)}{7(1+n)(3+2 n)}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)}{7(1+n)(3+2 n)} \mathbf{e}_{1}+ \\
+ & \frac{\left(6+14 n+7 n^{2}\right)\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right)}{7(1+n)(3+2 n)} B_{n, 3}+ \\
+ & \frac{(1+n)(11+7 n)\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right)}{7(1+n)(3+2 n)} B_{n, 4}
\end{aligned}
$$

and

$$
\begin{aligned}
N(u, v)=(u(& \left.\left.14+42 n+28 n^{2}\right)+v\left(6+14 n+7 n^{2}\right)-15-42 n-28 n^{2}\right) B_{n, 3}+ \\
& +\left(u\left(30+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right) B_{n, 4} .
\end{aligned}
$$

The same holds if $u \in I_{u, 3}^{\prime \prime}$ and $v \in\left[\frac{15+42 n+28 n^{2}-u\left(14+42 n+28 n^{2}\right)}{6+14 n+7 n^{2}}, \frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)}{7(1+n)(3+2 n)}\right]$.
In both cases, we have

$$
P(u, v) \cdot \mathbf{e}_{1}=14(1+n)(3+2 n)\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right) .
$$ and

$$
(P(u, v))^{2}=2\left(59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)-7 v(1+n)(3+2 n)\right)^{2} .
$$

Therefore, if $u \in I_{n, 3}$, then

$$
t(u)=\frac{59+112 n+56 n^{2}-u\left(57+112 n+56 n^{2}\right)}{7(1+n)(3+2 n)} .
$$

Finally, we deal with $u \in I_{n, 4}$. If $u \in I_{n, 4}^{\prime}$ and $v \in\left[0, \frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)}{36+56 n+21 n^{2}} \mathbf{e}_{1}+ \\
+ & \frac{17+32 n+14 n^{2}-u\left(20+34 n+14 n^{2}\right)}{36+56 n+21 n^{2}} B_{n, 4}+\frac{u\left(48+98 n+49 n^{2}\right)-39-91 n-49 n^{2}}{36+56 n+21 n^{2}} B_{n+1,1}
\end{aligned}
$$

and $N(u, v)=0$. The same holds when $u \in I_{n, 4}^{\prime \prime}$ and $v \in\left[0, \frac{44+70 n+28 n^{2}-u\left(43+70 n+28 n^{2}\right)}{15+21 n+7 n^{2}}\right]$.
In both cases, we compute

$$
\begin{aligned}
(P(u, v))^{2} & =10-12 u+2 u^{2}-2 v-v^{2} \\
P(u, v) \cdot \mathbf{e}_{1} & =1+v
\end{aligned}
$$

If $u \in I_{n, 4}^{\prime}$ and $v \in\left[\frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}, \frac{44+70 n+28 n^{2}-u\left(43+70 n+28 n^{2}\right)}{15+21 n+7 n^{2}}\right]$, then

$$
\begin{gathered}
P(u, v)=\frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)}{36+56 n+21 n^{2}} \mathbf{e}_{1}+ \\
+\frac{(1+n)(11+7 n)\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)}{36+56 n+21 n^{2}} B_{n, 4}+ \\
+\frac{u\left(48+98 n+49 n^{2}\right)-39-91 n-49 n^{2}}{36+56 n+21 n^{2}} B_{n+1,1} \\
N(u, v)=\left(u\left(30+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right) B_{n, 4}, \\
(P(u, v))^{2}=10-12 u+2 u^{2}-2 v-v^{2}+ \\
+7\left(u\left(30+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right)^{2} \\
\begin{array}{r}
P(u, v) \cdot \mathbf{e}_{1}=2388+8372 n+10983 n^{2}+6370 n^{2}+1372 n^{4}- \\
-14 u(1+n)^{2}(11+7 n)(15+14 n)- \\
-v\left(846+2772 n+3346 n^{2}+1764 n^{3}+343 n^{4}\right)
\end{array}
\end{gathered}
$$

If $u \in I_{n, 4}^{\prime \prime}$ and $v \in\left[\frac{44+70 n+28 n^{2}-u\left(43+70 n+28 n^{2}\right)}{15+21 n+7 n^{2}}, \frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}\right]$, then

$$
\begin{gathered}
P(u, v)=\frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)}{36+56 n+21 n^{2}} \mathbf{e}_{1}+ \\
+\frac{\left(15+21 n+7 n^{2}\right)\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)}{36+56 n+21 n^{2}} B_{n+1,1}+ \\
+\frac{17+32 n+14 n^{2}-u\left(20+34 n+14 n^{2}\right)}{36+56 n+21 n^{2}} B_{n, 4}
\end{gathered}
$$

and

$$
N(u, v)=\left(u\left(43+70 n+28 n^{2}\right)+v\left(15+21 n+7 n^{2}\right)-44-70 n-28 n^{2}\right) B_{n+1,1} .
$$

Moreover, in this case, we have

$$
\begin{aligned}
(P(u, v))^{2}= & 10-12 u+2 u^{2}-2 v-v^{2}+ \\
& +2\left(u\left(43+70 n+28 n^{2}\right)+v\left(15+21 n+7 n^{2}\right)-44-70 n-28 n^{2}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& P(u, v) \cdot \mathbf{e}_{1}=1321+3948 n+4396 n^{2}+2156 n^{3}+392 n^{4}- \\
& -2 u\left(15+21 n+7 n^{2}\right)\left(43+70 n+28 n^{2}\right)- \\
& -v\left(449+1260 n+1302 n^{2}+588 n^{3}+98 n^{4}\right) .
\end{aligned}
$$

If $u \in I_{n, 4}^{\prime}$ and $v \in\left[\frac{44+70 n+28 n^{2}-u\left(43+70 n+28 n^{2}\right)}{15+21 n+7 n^{2}}, \frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)}{36+56 n+21 n^{2}}\right]$, then

$$
\begin{aligned}
& P(u, v)=\frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)}{36+56 n+21 n^{2}} \mathbf{e}_{1}+ \\
+ & \frac{(1+n)(11+7 n)\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)}{36+56 n+21 n^{2}} B_{n, 4}+ \\
+ & \frac{\left(15+21 n+7 n^{2}\right)\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)}{36+56 n+21 n^{2}} B_{n+1,1}
\end{aligned}
$$

and

$$
\begin{aligned}
N(u, v)=(u(30 & \left.\left.+58 n+28 n^{2}\right)+v\left(11+18 n+7 n^{2}\right)-31-58 n-28 n^{2}\right) B_{n, 4}+ \\
& +\left(u\left(43+70 n+28 n^{2}\right)+v\left(15+21 n+7 n^{2}\right)-44-70 n-28 n^{2}\right) B_{n+1,1} .
\end{aligned}
$$

The same holds when $u \in I_{n 4}^{\prime \prime}$ and $v \in\left[\frac{31+58 n+28 n^{2}-u\left(30+58 n+28 n^{2}\right)}{11+18 n+7 n^{2}}, \frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)}{36+56 n+21 n^{2}}\right]$. Moreover, in both cases, we have
$P(u, v) \cdot \mathbf{e}_{1}=\left(36+56 n+21 n^{2}\right)\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)$
and

$$
(P(u, v))^{2}=\left(103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)-v\left(36+56 n+21 n^{2}\right)\right)^{2}
$$

Thus, if $u \in I_{n, 4}$, then

$$
t(u)=\frac{103+182 n+84 n^{2}-u\left(100+182 n+84 n^{2}\right)}{36+56 n+21 n^{2}} .
$$

Now, we are ready to compute $S\left(W_{\bullet}^{T}, \boldsymbol{\bullet}, \mathbf{e}_{1}\right)$. Namely, for every $i \in\{1,2,3,4\}$, we set

$$
S_{n, i}=\frac{3}{14} \int_{I_{n, i}} \int_{0}^{t(u)}(P(u, v))^{2} d v d u
$$

Then

$$
S\left(W_{\bullet, \bullet}^{T} ; \mathbf{e}_{1}\right)=\sum_{n=0}^{\infty}\left(S_{n, 1}+S_{n, 2}+S_{n, 3}+S_{n, 4}\right)
$$

On the other hand, integrating, we get

$$
S_{n, 1}=\left\{\begin{array}{l}
\frac{84365}{114688} \text { if } n=0, \\
\frac{\left(8+28 n+21 n^{2}\right) A_{n, 1}}{448 n^{4}(1+n)(2+7 n)^{4}(3+7 n)^{4}(4+7 n)^{4}\left(1+7 n+7 n^{2}\right)} \text { if } n \geqslant 1,
\end{array}\right.
$$

where

$$
\begin{aligned}
A_{n, 1}= & 1536+109312 n+2935552 n^{2}+42681728 n^{3}+386407488 n^{4}+2335296292 n^{5}+ \\
& +9789648099 n^{6}+29038364761 n^{7}+61312905318 n^{8}+91454579804 n^{9}+ \\
& +94035837280 n^{10}+63317750608 n^{11}+25088413952 n^{12}+4427367168 n^{13} .
\end{aligned}
$$

Similarly, we get

$$
S_{n, 2}=\frac{(1+2 n) A_{n, 2}}{4(1+n)(2+7 n)^{4}(3+7 n)^{4}(4+7 n)^{4}\left(6+14 n+7 n^{2}\right)},
$$

where

$$
\begin{aligned}
& A_{n, 2}=1618654+31459234 n+271069253 n^{2}+1362423916 n^{3}+4419070194 n^{4}+9654348284 n^{5}+ \\
& +14368501182 n^{6}+14362052096 n^{7}+9209328422 n^{8}+3412762192 n^{9}+553420896 n^{10}
\end{aligned}
$$

Likewise, we get

$$
S_{n, 3}=\frac{(3+2 n) A_{n, 3}}{4(1+n)(3+7 n)^{4}(6+7 n)^{4}(8+7 n)^{4}(11+7 n)\left(6+14 n+7 n^{2}\right)},
$$

where

$$
\begin{aligned}
A_{n, 3}= & 1167997914+15454923336 n+91492878645 n^{2}+319934133575 n^{3}+ \\
+ & 734395997090 n^{4}+1162203105378 n^{5}+1294197714054 n^{6}+1014406754242 n^{7}+ \\
& +548632346402 n^{8}+195059453722 n^{9}+41045383120 n^{10}+3873946272 n^{11} .
\end{aligned}
$$

Finally, we get

$$
S_{n, 4}=\frac{\left(36+56 n+21 n^{2}\right) A_{n, 4}}{448(1+n)^{4}(6+7 n)^{4}(8+7 n)^{4}(10+7 n)^{4}(11+7 n)\left(15+21 n+7 n^{2}\right)}
$$

where

$$
\begin{aligned}
& \quad A_{n, 4}=365613573312+4021500121920 n+20341847967024 n^{2}+ \\
& +62650071283024 n^{3}+131072047236004 n^{4}+196698030664492 n^{5}+217823761840153 n^{6}+ \\
& +180219167765455 n^{7}+111395400841326 n^{8}+50802960251820 n^{9}+16615457209344 n^{10}+ \\
& +3690223711216 n^{11}+498816700928 n^{12}+30991570176 n^{13} .
\end{aligned}
$$

Then, adding, we get

$$
S\left(W_{\bullet, \bullet}^{T} ; \mathbf{e}_{1}\right)=\sum_{n=0}^{\infty}\left(S_{n, 1}+S_{n, 2}+S_{n, 3}+S_{n, 4}\right) \approx 0.976712233 \ldots<1
$$

Finally, let us compute $S\left(W_{\mathbf{\bullet}, \mathbf{\bullet}, \mathbf{\bullet}}^{T, \mathbf{e}_{1}} ; P\right)$. For every $i \in\{1,2,3,4\}$, we set

$$
\begin{aligned}
& M_{n, i}^{\prime}=\frac{3}{14} \int_{I_{n, i}^{\prime}} \int_{0}^{t(u)}\left(\left(P(u, v) \cdot \mathbf{e}_{1}\right)\right)^{2} d v d u \\
& M_{n, i}^{\prime \prime}=\frac{3}{14} \int_{I_{n, i}^{\prime \prime}} \int_{0}^{t(u)}\left(\left(P(u, v) \cdot \mathbf{e}_{1}\right)\right)^{2} d v d u
\end{aligned}
$$

Then

$$
S\left(W_{\bullet, \bullet, \bullet}^{T, \mathbf{e}_{1}} ; P\right)=\sum_{n=0}^{\infty} \sum_{i=1}^{4}\left(M_{n, i}^{\prime}+M_{n, i}^{\prime \prime}\right)+\frac{3}{7} \int_{0}^{1} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{\mathbf{e}_{1}}\right) d v d u
$$

On the other hand, integrating, we get

$$
M_{n, 1}^{\prime}=\left\{\begin{array}{l}
\frac{1403}{22268} \text { if } n=0, \\
\frac{(1+n) A_{n, 1}^{\prime}}{448 n^{4}(1+3 n)^{4}(3+7 n)^{4}\left(1+7 n+7 n^{2}\right)} \text { if } n \geqslant 1,
\end{array}\right.
$$

where

$$
\begin{aligned}
A_{n, 1}^{\prime}=1 & +81 n+2535 n^{2}+37209 n^{3}+301046 n^{4}+1459736 n^{5}+ \\
& +4420190 n^{6}+8425410 n^{7}+9821448 n^{8}+6392736 n^{9}+1778112 n^{10}
\end{aligned}
$$

Similarly, we get

$$
M_{n, 1}^{\prime \prime}=\frac{\left(1+7 n+7 n^{2}\right) A_{n, 1}^{\prime \prime}}{28(1+n)(1+3 n)^{4}(2+7 n)^{4}(3+7 n)^{4}(4+7 n)^{4}},
$$

where

$$
\begin{aligned}
& A_{n, 1}^{\prime \prime}=480574+12906866 n+157271760 n^{2}+1149521334 n^{3}+5612285145 n^{4}+ \\
& \quad+19278934535 n^{5}+47770884833 n^{6}+86016481159 n^{7}+111679016743 n^{8}+ \\
& \quad+101939513907 n^{9}+62077730148 n^{10}+22635902898 n^{11}+3735591048 n^{12}
\end{aligned}
$$

Likewise, we have

$$
M_{n, 2}^{\prime}=\frac{\left(6+14 n+7 n^{2}\right) A_{n, 2}^{\prime}}{224(1+n)(1+2 n)^{3}(2+7 n)^{4}(3+7 n)^{4}(4+7 n)^{4}}
$$

and

$$
M_{n, 2}^{\prime \prime}=\frac{11780+111142 n+430951 n^{2}+875637 n^{3}+978656 n^{4}+566832 n^{5}+131712 n^{6}}{224(1+2 n)^{3}(3+7 n)^{4}\left(6+14 n+7 n^{2}\right)}
$$

where

$$
\begin{aligned}
A_{n, 2}^{\prime}= & 1561176+35176776 n+356105548 n^{2}+2137950448 n^{3}+ \\
& +8458603286 n^{4}+23158717414 n^{5}+44778314889 n^{6}+61151030584 n^{7}+ \\
& +57807289939 n^{8}+36026947376 n^{9}+13321631568 n^{10}+2213683584 n^{11}
\end{aligned}
$$

Similarly, we have

$$
M_{n, 3}^{\prime}=\frac{(11+7 n) A_{n, 3}^{\prime}}{224(1+n)^{3}(3+7 n)_{57}^{4}(13+14 n)^{4}\left(6+14 n+7 n^{2}\right)},
$$

where

$$
\begin{aligned}
A_{n, 3}^{\prime} & =13726028+164541190 n+859036123 n^{2}+2564002455 n^{3}+4823323519 n^{4}+ \\
& +5933644367 n^{5}+4776917782 n^{6}+2428774768 n^{7}+708314208 n^{8}+90354432 n^{9} .
\end{aligned}
$$

Likewise, we have

$$
M_{n, 3}^{\prime \prime}=\frac{\left(6+14 n+7 n^{2}\right) A_{n, 3}^{\prime \prime}}{224(1+n)^{3}(6+7 n)^{4}(8+7 n)^{4}(11+7 n)(13+14 n)^{4}},
$$

where

$$
\begin{aligned}
A_{n, 3}^{\prime \prime}= & 67760261208+703706084640 n+3313300067388 n^{2}+9335574166156 n^{3}+ \\
+ & 17489294547578 n^{4}+22873117200584 n^{5}+21308562209725 n^{6}+14139587568253 n^{7}+ \\
& +6548997703738 n^{8}+2016283621072 n^{9}+371345421216 n^{10}+30991570176 n^{11} .
\end{aligned}
$$

Similarly, we see that

$$
M_{n, 4}^{\prime}=\frac{\left(15+21 n+7 n^{2}\right) A_{n, 4}^{\prime}}{28(1+n)^{4}(6+7 n)^{4}(8+7 n)^{4}(11+7 n)(23+21 n)^{4}}
$$

where

$$
\begin{gathered}
A_{n, 4}^{\prime}=88135013250+967134809574 n+4853884596732 n^{2}+ \\
+14732868828434 n^{3}+30120687035243 n^{4}+43697011451345 n^{5}+46124583653603 n^{6}+ \\
+35692827118809 n^{7}+20096052100397 n^{8}+8028312817917 n^{9}+ \\
+2160120347280 n^{10}+351456857766 n^{11}+26149137336 n^{12} .
\end{gathered}
$$

Finally, we have

$$
M_{n, 4}^{\prime \prime}=\frac{(11+7 n) A_{n, 4}^{\prime \prime}}{448(1+n)^{4}(10+7 n)^{4}(23+21 n)^{4}\left(15+21 n+7 n^{2}\right)},
$$

where

$$
\begin{gathered}
A_{n, 4}^{\prime \prime}=7582266167+59702225967 n+210973884925 n^{2}+440580768679 n^{3}+ \\
+602090743422 n^{4}+562572998512 n^{5}+363945674554 n^{6}+160955181870 n^{7}+ \\
+46566357768 n^{8}+7957643904 n^{9}+609892416 n^{10}
\end{gathered}
$$

Now, adding terms together, we see that

$$
\begin{equation*}
S\left(W_{\bullet, \bullet, \bullet}^{T, \mathbf{e}_{1}} ; P\right) \leqslant 0.974+\frac{3}{7} \int_{0}^{1} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{\mathbf{e}_{1}}\right) d v d u \tag{6.8}
\end{equation*}
$$

Now, for every $i \in\{1,2,3,4\}$ and any irreducible component ℓ of the curve $B_{n, i}$, we let

$$
\begin{aligned}
F_{n, i} & =\frac{3}{7} \int_{0}^{1} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{\ell}(N(u, v))\left(\ell \cdot \mathbf{e}_{1}\right) d v d u= \\
& =\frac{3}{7} \int_{I_{n, i-1}} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{\ell}(N(u, v))\left(\ell \cdot \mathbf{e}_{1}\right) d v d u+ \\
& +\frac{3}{7} \int_{I_{n, i}} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{\ell}(N(u, v))\left(\ell \cdot \mathbf{e}_{1}\right) d v d u+ \\
& +\frac{3}{7} \int_{I_{n, i+1}} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{\ell}(N(u, v))\left(\ell \cdot \mathbf{e}_{1}\right) d v d u
\end{aligned}
$$

where $I_{0,0}=\varnothing$ and $I_{n, 5}=I_{n+1,1}$. Since irreducible components of $B_{n, i}$ are disjoint, we get

$$
\frac{3}{7} \int_{0}^{1} \int_{0}^{t(u)}\left(P(u, v) \cdot \mathbf{e}_{1}\right) \operatorname{ord}_{P}\left(\left.N(u, v)\right|_{\mathbf{e}_{1}}\right) d v d u \leqslant \sum_{n=0}^{\infty} \sum_{i=1}^{4} F_{n, i}
$$

On the other hand, each $F_{n, i}$ is not difficult to compute. For instance, we have

$$
\begin{aligned}
F_{0,1}=\frac{3}{7} \int_{0}^{\frac{1}{3}} \int_{2-u}^{\frac{7-6 u}{3}} & (v+u-2)(5-2 u-v) d v d u+ \\
+ & \frac{3}{7} \int_{0}^{\frac{1}{3}} \int_{\frac{7-6 u}{3}}^{\frac{19-16 u}{8}} 8(u+v-2)(19-16 u-8 v) d v d u+ \\
& +\frac{3}{7} \int_{\frac{1}{3}}^{\frac{3}{8}} \int_{2-u}^{\frac{19-16 u}{8}} 8(u+v-2)(19-16 u-8 v) d v d u=\frac{281}{32256} .
\end{aligned}
$$

Similarly, we see that

$$
F_{n, 1}=\frac{3\left(1+7 n+7 n^{2}\right)^{2}}{2 n^{2}(1+3 n)(-1+7 n)(1+7 n)(2+7 n)(3+7 n)^{2}(4+7 n)(2+21 n)}
$$

for $n \geqslant 1$. Likewise, we get

$$
F_{n, 2}=\left\{\begin{array}{l}
\frac{5}{3584} \text { if } n=0, \\
\frac{1+n}{112 n(1+2 n)(1+3 n)(2+7 n)(3+7 n)^{2}(4+7 n)} \text { if } n \geqslant 1
\end{array}\right.
$$

Likewise, for every $n \geqslant 0$, we have

$$
F_{n, 3}=\frac{15\left(6+14 n+7 n^{2}\right)^{2}}{4(1+n)^{2}(1+2 n)(2+7 n)(3+7 n)^{2}(4+7 n)(6+7 n)(8+7 n)(13+14 n)}
$$

and

$$
F_{n, 4}=\frac{(11+7 n)^{2}}{112(1+n)^{2}(3+7 n)(6+7 n)(8+7 n)(10+7 n)(13+14 n)(23+21 n)}
$$

Now, one can easily check that the total sum of all $F_{n, 1}, F_{n, 2}, F_{n, 3}, F_{n, 4}$ is at most 0.014. This and (6.8) give $S\left(W_{\bullet, \bullet, \bullet}^{T, \mathbf{e}_{1}} ; P\right) \leqslant 0.974+0.014=0.988$. Using (6.7), we get $\delta_{P}(X)>1$.

Corollary 6.11. All smooth Fano threefolds in the family №2.7 are K-stable.

References

[1] H. Abban, Z. Zhuang, K-stability of Fano varieties via admissible flags, Forum of Mathematics Pi 10 (2022), 1-43.
[2] H. Abban, Z. Zhuang, Seshadri constants and K-stability of Fano manifolds, Duke Mathematical Journal, to appear.
[3] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß, N. Viswanathan, The Calabi problem for Fano threefolds, Lecture Notes in Mathematics, Cambridge University Press, to appear.
[4] G. Belousov, K. Loginov, K-stability of Fano threefolds of rank 4 and degree 24, preprint, arXiv:2206.12208 (2022).
[5] L. Brenton, On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of \mathbb{C}^{2} and to 3-dimensional rational singularities, Mathematische Annalen 248 (1980), 117-124.
[6] J. Bruce, T. Wall, On the classification of cubic surfaces, Journal of the London Mathematical Society 19 (1979), 245-256.
[7] I. Cheltsov, K. Fujita, T. Kishimoto, T. Okada, K-stable divisors in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{2}$ of degree $(1,1,2)$, preprint, arXiv:2206.08539 (2022).
[8] I. Cheltsov, J. Park, K-stable Fano threefolds of rank 2 and degree 30, European Journal of Mathematics, to appear.
[9] I. Cheltsov, V. Przyjalkowski, C. Shramov, Fano threefolds with infinite automorphism groups, Izvestiya: Mathematics 83 (2019), 860-907.
[10] I. Cheltsov, C. Shramov, Weakly-exceptional singularities in higher dimensions, Journal fur die Reine und Angewandte Mathematik 689 (2014), 201-241.
[11] D. Coray, M. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proceedings of the London Mathematical Society 57 (1988), 25-87.
[12] E. Denisova, On K-stability of \mathbb{P}^{3} blown up along the disjoint union of a twisted cubic curve and a line, preprint, arXiv:2202.04421, 2022.
[13] R. Dervan, On K-stability of finite covers, Bulletin of the London Mathematical Society 48 (2016), 717-728.
[14] K. Fujita, A valuative criterion for uniform K-stability of \mathbb{Q}-Fano varieties, Journal für die Reine und Angewandte Mathematik 751 (2019), 309-338.
[15] K. Fujita, On K-stability for Fano threefolds of rank 3 and degree 28, International Mathematics Research Notices, to appear.
[16] C. Li, K-semistability is equivariant volume minimization, Duke Mathematical Journal 166 (2017), 3147-3218.
[17] Y. Liu, K-stability of Fano threefolds of rank 2 and degree 14 as double covers, preprint, arXiv:2204.06709, 2022.
[18] Yu. Prokhorov, The rationality problem for conic bundles, Russian Mathematical Surveys 73 (2018), 375-456.
[19] C. Xu, K-stability of Fano varieties: an algebro-geometric approach, The EMS Surveys in Mathematical Sciences 8 (2021), 265-354.
[20] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Inventiones Mathematicae 226 (2021), 195-223.

Ivan Cheltsov,
University of Edinburgh, Edinburgh, Scotland
Elena Denisova,
University of Edinburgh, Edinburgh, Scotland
Kento Fujita,
Osaka University, Osaka, Japan

[^0]: Throughout this paper, all varieties are assumed to be projective and defined over \mathbb{C}.

