
KUMMER QUARTIC DOUBLE SOLIDS

IVAN CHELTSOV

Abstract. We study equivariant birational geometry of (rational) quartic double solids
ramified over (singular) Kummer surfaces.

A Kummer quartic surface is an irreducible normal surface in P3 of degree 4 that has
the maximal possible number of 16 singular points, which are ordinary double singularities.
Any such surface is the Kummer variety of the Jacobian surface of a smooth genus 2 curve.
Vice versa, the Jacobian surface of a smooth genus 2 curve admits a natural involution
such that the quotient surface is a Kummer quartic surface in P3.
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Figure 1. A Kummer surface by Patrice Jeener.

Let S be a Kummer surface in P3, and let C be the smooth genus 2 curve such that

(1) S ∼= J
(
C
)
/〈τ〉,

where τ is the involution of the Jacobian J(C ) that sends a point P to the point −P .
Recall from [22, 28, 20, 17] that the quartic surface S can be given by the equation

(2) a(x4
0 + x4

1 + x4
2 + x4

3) + 2b(x2
0x

2
1 + x2

2x
2
3)+

+ 2c(x2
0x

2
2 + x2

1x
2
3) + 2d(x2

0x
2
3 + x2

1x
2
2) + 4ex0x1x2x3 = 0

for some [a : b : c : d : e] ∈ P4 such that

(3) a(a2 + e2 − b2 − c2 − d2) + 2bcd = 0.

Throughout this paper, all varieties are assumed to be projective and defined over C.
1
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2 IVAN CHELTSOV

Note that the curve C is hyperelliptic, and equation (3) defines a cubic threefold in P4,
which is projectively equivalent to the Segre cubic threefold [28, 17].

Using a formula from the book [7] implemented in Magma [27], we can easily extract
an equation of the surface S from the curve C . However, the resulting equation may
differ from (2). For instance, if C is the unique genus 2 curve such that Aut(C ) ∼= µ2.S4,
then C is isomorphic to the curve{

z2 = xy(x4 − y4)
}
⊂ P(1, 1, 3)

where x, y, z are homogeneous coordinates on P(1, 1, 3) of weights 1, 1, 2, respectively.
In this case, Magma produces the following Kummer quartic surface:{

x4
0 + 2x2

0x2x3 − 2x2
0x

2
2 + 4x0x

2
2x2 − 4x0x2x

2
3 + x2

2x
2
3 − 2x2x

2
2x3 + x4

2 = 0} ⊂ P3,

which is projectively equivalent to the surface given by (2) with parameters a = b = 1,
c = d = −1, e = −4 that do not satisfy (3). But this surface is projectively equivalent to

(4)
{
x4

0 + x4
1 + x4

2 + x4
3 − 4ix0x1x2x3 = 0

}
⊂ P3,

which is given by (2) with parameters a = 1, b = c = d = 0, e = −i that do satisfy (3).
Here, we use the following Magma code provided to us by Michela Artebani:

R<x>:=PolynomialRing(Rationals());

C:=HyperellipticCurve(x^5-x);

GroupName(GeometricAutomorphismGroup(C));

KummerSurfaceScheme(C);

It is not very difficult to recover the hyperelliptic curve C from the quartic surface S .
Indeed, P3 contains exactly 16 planes Π1, . . . ,Π16 such that S |Πi = 2Ci for each of them,
where Ci is a smooth conic, called trope. One can show that

• each plane Πi contains exactly six singular points of the surface S ,
• each singular point of the surface S is contained in six planes among Π1, . . . ,Π16.

Moreover, for every trope Ci, there exists a double cover C → Ci which is ramified over
the six points Ci ∩ Sing(S ). This gives us an algorithm how to recover C from S .

Example 5. Suppose that the surface S is given by the equation (2) with

a = 2,

b = −t2 − 1,

c = −t2 − 1,

d = −t2 − 1,

e = t3 + 3t,

where t ∈ C \ {±1,±
√

3i}. Then the surface S is given by the following equation:

(6) x4
0+x4

1+x4
2+x4

3+2(t3+3t)x0x1x2x3 = (t2+1)(x2
0x

2
1+x2

2x
2
3+x2

0x
2
2+x2

1x
2
3+x2

0x
2
3+x2

1x
2
2).

Its singular locus Sing(S ) consists of the following 16 points:

[1 : 1 : 1 : t], [−1 : 1 : −1 : t], [−1 : −1 : 1 : t], [1 : −1 : −1 : t],

[1 : 1 : t : 1], [1 : −1 : t : −1], [−1 : −1 : t : 1], [−1 : 1 : t : −1],

[t : 1 : 1 : 1], [t : −1 : 1 : −1], [t : 1 : −1 : −1], [t : −1 : −1 : 1],

[1 : t : 1 : 1], [−1 : t : −1 : 1], [1 : t : −1 : −1], [−1 : t : 1 : −1].
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Moreover, the planes Π1, . . . ,Π16 are listed in the following table:

Π1 =
{
x0 + x1 + x2 + tx3 = 0

}
Π2 =

{
x0 − x1 + x2 − tx3 = 0

}
Π3 =

{
x0 + x1 − x2 − tx3 = 0

}
Π4 =

{
x0 − x1 − x2 + tx3 = 0

}
Π5 =

{
x0 + x1 + tx2 + x3 = 0

}
Π6 =

{
x0 − x1 + tx2 − x3 = 0

}
Π7 =

{
x0 − tx2 + x1 − x3 = 0

}
Π8 =

{
x0 − x1 − tx2 + x3 = 0

}
Π9 =

{
x0 + tx1 + x2 + x3 = 0

}
Π10 =

{
x0 − tx1 − x2 + x3 = 0

}
Π11 =

{
x0 − tx1 + x2 − x3 = 0

}
Π12 =

{
x0 + tx1 − x2 − x3 = 0

}
Π13 =

{
tx0 + x1 + x2 + x3 = 0

}
Π14 =

{
tx0 − x1 − x2 + x3 = 0

}
Π15 =

{
tx0 − x1 + x2 − x3 = 0

}
Π16 =

{
tx0 + x1 − x2 − x3 = 0

}
Then the trope C1 is the smooth conic{

x0 + x1 + x2 + tx3 = tx1x3 + tx2x3 + x2
1 + x1x2 + x2

2 − x2
3 = 0

}
⊂ P3.

This conic contains the following six singular points of our surface:

[1 : −1 : t : −1], [−1 : 1 : t : −1], [t : −1 : 1 : −1],
[t : 1 : −1 : −1], [1 : t : −1 : −1], [−1 : t : 1 : −1].

Projecting from [t : 1 : −1 : −1], we get an isomorphism C1
∼= P1 that maps these points to

[t+ 1 : −2], [1 : 0], [−1 : 1], [1− t : 1 + t], [0 : 1], [t− 1 : 2].

Therefore, the hyperelliptic curve C is isomorphic to the curve{
z2 = xy

(
x− y

)(
(t− 1)x+ 2y

)(
2x− (t+ 1)y

)(
(t+ 1)x− (t− 1)y

)}
⊂ P(1, 1, 3).

In particular, it follows from [6] or Magma computations that

Aut
(
C
) ∼=


µ2.S4 if t ∈ {0,±i, 1± 2i,−1± 2i},
µ2.D12 if t ∈ {0,±3},
µ2 ×S3 if t is general.

For instance, to identify Aut(C ) in the case when t = i, one can use the following script:

K:=CyclotomicField(4);

R<x>:=PolynomialRing(K);

i:=Roots(x^2+1,K)[1,1];

t:=i;

f:=x*(x-1)*((t-1)*x+2)*(2*x-(t+1))*((t+1)*x-(t-1));

C:=HyperellipticCurve(f);

GroupName(GeometricAutomorphismGroup(C));

In this example, we assume that t 6∈ {±1,±
√

3i}, because

• if t = ±1 or t =∞, then the equation (6) defines a union of 4 planes,
• if t = ±

√
3i, the equation (6) defines a double quadric.

These are semistable degenerations with minimal PGL4(C)-orbits [32, Theorem 2.4].
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Let Aut(P3,S ) be the subgroup in PGL4(C) consisting of projective transformations
that leave S invariant. Then Aut(P3,S ) contains a subgroup H ∼= µ4

2 generated by

A1 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , A2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , A3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

The action of this subgroup on S is induced by the translations of J(C ) by two-torsion
points, so Sing(S ) is an H-orbit. Similarly, we see that H acts transitively on the set

(7)
{

Π1,Π2,Π3,Π4,Π5,Π6,Π7,Π8,Π9,Π10,Π11,Π12,Π13,Π14,Π15,Π16

}
.

If S is general, then Aut(P3,S ) = H, and Aut(C ) is generated by the hyperelliptic
involution [23]. However, if S is special, then Aut(P3,S ) can be larger than H.

Example 8. Let us use assumptions and notations of Example 5. For t ∈ C\{±1,±
√

3i},
the group Aut(P3,S ) contains the subgroup isomorphic to µ4

2 oS3 generated by

A1, A2, A3, A4,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

In fact, this is the whole group Aut(P3,S ) if t is general. On the other hand, if t = 0,
then it follows from [8] that Aut(P3,S ) ∼= µ4

2 o D12, and this group is generated by

A1, A2, A3, A4,


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

If t = ±i, then S is the surface (4), and Aut(P3,S ) ∼= µ4
2 oS4 is generated by

A1, A2, A3, A4,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


i 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 1

 .

Example 9. Suppose that S is given by the equation (2) with

a = 2ζ3
5 + 2ζ2

5 + 6ζ5 − 1,

b = 4ζ3
5 + 4ζ2

5 − 10ζ5 + 9,

c = −6ζ3
5 − 6ζ2

5 + 4ζ5 + 3,

d = 11,

e = −20ζ3
5 + 24ζ2

5 − 16ζ5 + 10.

Then Aut(C ) ∼= µ2 × µ5 and Aut(P3,S ) ∼= µ4
2 o µ5, which is generated by

A1, A2, A3, A4,


−i 0 0 i
0 1 1 0
1 0 0 1
0 −i i 0

 .
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Looking at Examples 5, 8 and 9, one can spot a relation between Aut(S ) and Aut(C ).
In fact, this relation holds for all Kummer surfaces in P3 by the following well-known result,
about which we learned from Igor Dolgachev.

Lemma 10. Let ι ∈ Aut(C ) be the hyperelliptic involution of the curve C . Then

Aut
(
P3,S

) ∼= µ4
2 o

(
Aut(C )/〈ι〉

)
.

Proof. Let us identify C with the theta divisor in J(C ) via the Abel–Jacobi map whose
base point is one of the fixed points of the involution ι (one of the six Weierstrass points).
Then the linear system |2C | gives a morphism J(C )→ P3 whose image is the surface S .
Taking the Stein factorization of the morphism J(C )→ S , we get the isomorphism (1).

On the other hand, elements in Aut(C ) give automorphisms in Aut(J(C )) that leave
the linear system |2C | invariant. This gives us a homomorphism Aut(C )→ Aut(P3,S ),
whose kernel is the hyperelliptic involution ι, since ι induces the involution τ ∈ Aut(J(C )).

The image of the group Aut(C ) in Aut(P3,S ) normalizes the subgroup H, because
elements in H are induced by the translations of the Jacobian J(C ) by two-torsion points.
This gives a monomorphism ϑ : µ4

2 o (Aut(C )/〈ι〉)→ Aut(P3,S ).
We claim that ϑ is an epimorphism. Indeed, the action of an element g ∈ Aut(P3,S ) on

the surface S lifts to its its action on the Jacobian J(C ) that leaves [2C ] invariant,
so composing g with some h ∈ H, we obtain an element g ◦h that preserves the class [C ].
Thus, since [C ] is a principal polarization, the composition g ◦ h preserves C , and it acts
faithfully on C , since C generates J(C ). This gives g ◦ h ∈ im(ϑ), so ϑ is surjective. �

Since Aut(C ) is isomorphic to a group among µ2, µ2
2, D8, D12, µ2.D12, µ2.S4, µ2×µ5,

we conclude that Aut(P3,S ) is isomorphic to one of the following groups:

µ4
2, µ4

2 o µ2, µ4
2 o µ2

2, µ4
2 oS3, µ4

2 o D12, µ4
2 oS4, µ4

2 o µ5.

Note that the group Aut(S ) is always larger that Aut(P3,S ) [23].

Remark 11 ([4, 28, 20]). Let N be the normalizer of the subgroup H in the group PGL4(C).
Then Aut(C ) ⊂ N, and there is a non-split exact sequence 1 −→ H −→ N −→ S6 −→ 1,
which can be described as follows. Let

B1 =


i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

 and B2 =


−i 0 0 i
0 1 1 0
1 0 0 1
0 −i i 0

 .

Then 〈B1, B2〉 ∈ N. Since B2
1 ∈ H, B5

2 = (B1B2)6 = [B1, B2]3 = IdP3 , [B1, B2B1B2]2 ∈ H,
the images of B1 and B2 in the quotient N/H generate the whole group N/H ∼= S6. Set

S1 =
{
x4

0 + x4
1 + x4

2 + x4
3 − 6

(
x2

0x
2
1 + x2

2x
2
3

)
− 6
(
x2

0x
2
2 + x2

1x
2
3

)
− 6
(
x2

0x
2
3 + x2

1x
2
2

)
= 0
}
,

S2 =
{
x4

0 + x4
1 + x4

2 + x4
3 − 6

(
x2

0x
2
1 + x2

2x
2
3

)
+ 6
(
x2

0x
2
2 + x2

1x
2
3

)
+ 6
(
x2

0x
2
3 + x2

1x
2
2

)
= 0
}
,

S3 =
{
x4

0 + x4
1 + x4

2 + x4
3 + 6

(
x2

0x
2
1 + x2

2x
2
3

)
− 6
(
x2

0x
2
2 + x2

1x
2
3

)
+ 6
(
x2

0x
2
3 + x2

1x
2
2

)
= 0
}
,

S4 =
{
x4

0 + x4
1 + x4

2 + x4
3 + 6

(
x2

0x
2
1 + x2

2x
2
3

)
+ 6
(
x2

0x
2
2 + x2

1x
2
3

)
− 6
(
x2

0x
2
3 + x2

1x
2
2

)
= 0
}
,

S5 =
{
x4

0 + x4
1 + x4

2 + x4
3 − 12x0x1x2x3 = 0

}
,

S6 =
{
x4

0 + x4
1 + x4

2 + x4
3 + 12x0x1x2x3 = 0

}
.
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Then S1, S2, S3, S4, S5, S6 are H-invariant surfaces, and the quotient N/H permutes them.
For instance, the transformation B1 acts on the set {S1, S2, S3, S4, S5, S6} as (1 2)(3 4)(5 6),
and B2 acts as the permutation (1 2 6 3 5). This gives an explicit isomorphism N/H ∼= S6.

Remark 12. The quotient Aut(S )/H naturally linearly acts on the threefold (3) fixing
the point [a : b : c : d : e] that corresponds to S . Projecting the threefold from this point,
we obtain a (rational) double cover of P3 that is branched along the surface S .

Let π : X → P3 be the double cover branched along the surface S . Set H = π∗(OP3(1)).
Then Pic(X) = Z[H], H3 = 2 and −KX ∼ 2H, so X is a del Pezzo threefold of degree 2,
which has 16 ordinary double points. We say thatX is a Kummer quartic double solid [33].

The threefold X is a hypersurface in P(1, 1, 1, 1, 2) given by

(13) w2 = a(x4
0 + x4

1 + x4
2 + x4

3) + 2b(x2
0x

2
1 + x2

2x
2
3)+

+ 2c(x2
0x

2
2 + x2

1x
2
3) + 2d(x2

0x
2
3 + x2

1x
2
2) + 4ex0x1x2x3 = 0,

where we consider x0, x1, x2, x3 as homogeneous coordinates on P(1, 1, 1, 1, 2) of weight 1,
and w is a homogeneous coordinate on P(1, 1, 1, 1, 2) of weight 2.

It is well-known that the threefold X is rational [31, 33, 29, 11], see also Remark 12.
Moreover, it follows from [29] that there exists the following commutative diagram:

(14) X̂

η
��

ϕ // X

π
��

P3 χ // P3

where η is a blow up of six distinct points that are contained in a twisted cubic C3 ⊂ P3,
the morphism ϕ is a contraction of the proper transform of the curve C3 and proper
transforms of 15 lines in P3 that pass through two blown up points, and χ is a rational
map given by the linear system of quadric surfaces that pass through six blown up points.

Corollary 15 ([15, 19]). One has Cl(X) ∼= Z7.

Remark 16. The vertices of the quadric cones in P3 that pass through six blown up points
in the diagram (14) span a quartic surface S which is known as the Weddle surface [22, 33].
This surface has nodes at the six blown points, and χ induces a birational map S 99K S .
On the other hand, the double cover of P3 branched along S is irrational [33, 11].

Let σ ∈ Aut(X) be the Galois involution of the double cover π. Then σ is contained
in the center of the group Aut(X). Moreover, since π is Aut(X)-equivariant, it induces
a homomorphism υ : Aut(X)→ Aut(P3,S ) with ker(υ) = 〈σ〉, so we have exact sequence

1 // 〈σ〉 // Aut(X)
υ // Aut

(
P3,S

)
// 1.

The main result of this paper is the following theorem (cf. [2, 3, 10]).

Theorem 17. Let G be any subgroup in Aut(X) such that ClG(X) ∼= Z and H ⊆ υ(G).
Then the Fano threefold X is G-birationally super-rigid.

Corollary 18. Let G be any subgroup in Aut(X) such that G contains σ and H ⊆ υ(G).
Then X is G-birationally super-rigid.
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The condition ClG(X) ∼= Z in Theorem 17 simply means that X is a G-Mori fibre space,
which is required by the definition of G-birational super-rigidity (see [13, Definition 3.1.1]).
The condition H ⊆ υ(G) does not imply that ClG(X) ∼= Z, see Examples 28 and 29 below.
The following example shows that we cannot remove the condition H ⊆ υ(G).

Example 19. Observe that Cl〈σ〉(X) ∼= Z. Let S1 and S2 be two general surfaces in |H|,
and let C = S1 ∩ S2. Then C is a smooth irreducible 〈σ〉-invariant curve, π(C) is a line,
and there exists 〈σ〉-commutative diagram

V
α

��

β

  
X // P1

where α is the blow up of the curve C, the dashed arrow 99K is given by the pencil
generated by the surfaces S1 and S2, and β is a fibration into del Pezzo surfaces of degree 2.
Therefore, the threefold X is not 〈σ〉-birationally rigid.

Let G be a subgroup in Aut(X) such that υ(G) contains H. Before proving Theorem 17,
let us explain how to check the condition ClG(X) ∼= Z. For a homomorphism ρ : H→ µ2,
consider the action of the group H on the threefold X given by

A1 : [x0 : x1 : x2 : x3 : w] 7→ [−x0 : x1 : −x2 : x3 : ρ(A1)w],

A2 : [x0 : x1 : x2 : x3 : w] 7→ [−x0 : x1 : −x2 : x3 : ρ(A2)w],

A3 : [x0 : x1 : x2 : x3 : w] 7→ [x1 : x2 : x3 : x2 : ρ(A3)w],

A4 : [x0 : x1 : x2 : x3 : w] 7→ [x3 : x2 : x1 : x0 : ρ(A4)w].

This gives a lift of the subgroup H to Aut(X). Let Hρ be the resulting subgroup in Aut(X).
Since H ⊂ υ(G), we may assume that Hρ ⊂ G. If ρ is trivial, we let H = Hρ for simplicity.

For every plane Πi, one has π∗(Πi) = Π+
i + Π−i , where Π+

i and Π−i are two irreducible
surfaces such that Π+

i 6= Π−i and σ(Π+
i ) = Π−i . Note that we do not have a canonical way

to distinguish between the surfaces Π+
i and Π−i . Namely, if π∗(Πi) is given by{

hi(x0, x1, x2, x3) = 0,

w2 = g2
i (x0, x1, x2, x3),

where hi is a linear polynomial such that Πi = {hi = 0}, and gi is a quadratic polynomial
such that the trope Ci is given by hi = gi = 0, then

Π±i =
{
w ± gi(x0, x1, x2, x3) = hi(x0, x1, x2, x3)

}
⊂ P(1, 1, 1, 1, 2).

But the choice of ± here is not uniquely defined, because we can always swap gi with −gi.
On the other hand, since H acts transitively on the set (7), the set{

Π+
1 ,Π

−
1 ,Π

+
2 ,Π

−
2 ,Π

+
3 ,Π

−
3 . . . ,Π

+
14,Π

−
14,Π

+
15,Π

−
15,Π

+
16,Π

−
16

}
splits into two Hρ-orbits consisting of 16 surfaces such that each of them contains exactly
one surface among Π+

i and Π−i for every i. Hence, we may assume that these Hρ-orbits are{
Π+

1 ,Π
+
2 ,Π

+
3 ,Π

+
4 ,Π

+
5 ,Π

+
6 ,Π

+
7 ,Π

+
8 ,Π

+
9 ,Π

+
10,Π

+
11,Π

+
12,Π

+
13,Π

+
14,Π

+
15,Π

+
16

}
and {

Π−1 ,Π
−
2 ,Π

−
3 ,Π

−
4 ,Π

−
5 ,Π

−
6 ,Π

−
7 ,Π

−
8 ,Π

−
9 ,Π

−
10,Π

−
11,Π

−
12,Π

−
13,Π

−
14,Π

−
15,Π

−
16

}
.
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Note that the surfaces Π+
1 ,Π

−
1 , . . . ,Π

+
16,Π

−
16 are not Q-Cartier divisors on X, and their

strict transforms on the threefold X̂ in (14) can be described as follows:

(a) six of them are η-exceptional surfaces;
(b) another six of them are strict transforms of quadric cones in P3 that contain all

blown up points and are singular at one of them;
(c) the remaining twenty of them are proper transforms of the planes in P3 that pass

through three blown up points.

Note also that σ acts birationally on X̂ as a composition of flops of ϕ-contracted curves.
Moreover, it is not difficult to see that σ swaps six surfaces in (a) with six surfaces in (b),
and σ maps the strict transform of the plane in P3 that passes through three blown up
points to the strict transform of the plane that passes through other blown up points.

Corollary 20. The surfaces Π+
1 ,Π

−
1 , . . . ,Π

+
16,Π

−
16 generate the group Cl(X).

Corollary 21. Either ClH
ρ

(X) ∼= Z or ClH
ρ

(X) ∼= Z2.

Now, we are ready to state a criterion for ClG(X) ∼= Z. To do this, we set

Π± =
16∑
i=1

Π±i .

Then Π+ and Π− are Hρ-invariant divisors, σ(Π+) = Π− and Π+ + Π− ∼ 16H.

Lemma 22. One has ClG(X) ∼= Z is at least one of the following conditions is satisfied:

(i) the group G swaps Π+ and Π−;
(ii) the divisor Π+ is Cartier;

(iii) the divisor Π− is Cartier;
(iv) the surfaces Π+

1 , . . . ,Π
+
16 generate the group Cl(X);

(v) the surfaces Π−1 , . . . ,Π
−
16 generate the group Cl(X).

Proof. The assertion follows from Corollary 21, since we assume that Hρ ⊂ G. �

This lemma is easy to apply if we fix S and the group G ⊂ Aut(X) such that H ⊂ υ(G).
For instance, to check whether the surfaces Π+

1 , . . . ,Π
+
16 generate the group Cl(X) or not,

we can use the fact that Cl(X) ∼= Z7 is naturally equipped with an intersection form [29].
Namely, fix a smooth del Pezzo surface S ∈ |H|, and let

D1 •D2 = D1

∣∣
S
·D2

∣∣
S
∈ Z

for any two Weil divisors D1 and D2 in Cl(X). Then

Π±i • Π±j =


0 if i 6= j and Π±i ∩ Π±j does not contain curves,

1 if i 6= j and Π±i ∩ Π±j contains a curve,

− 1 if i = j and Π±i = Π±j ,

2 if i = j and Π±i 6= Π±j ,

where two ± in Π±i and Π±j are independent.

Remark 23. Let Λ be the sublattice in Cl(X) consisting of divisors D such that D•H = 0.
Then Λ is isomorphic to a root lattice of type D6 by [29, Theorem 1.7], and the natural
homomorphism Aut(X)→ Aut(Λ) is injective by [29], where Aut

(
Λ
) ∼= (µ5

2 oS6) o µ2.
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Applying Lemma 22, we get

Corollary 24. If rank(Π+
i • Π+

j ) = 7 or rank(Π−i • Π−j ) = 7, then ClH
ρ

(X) ∼= Z.

Let us show how to apply Corollary 24 in the case when S is the surface (6).

Example 25. Let us use assumptions and notations of Example 5. Suppose, in addition,
that ρ : H→ µ2 is the trivial homomorphism. Therefore, we have Hρ = H. Set t = 2s

s2+1
.

Observe that π∗(Π1) is given in P(1, 1, 1, 1, 2) by the following equations:
x0 + x1 + x2 +

2s

s2 + 1
x3 = 0,

w2 =
(s2 − 1)2

(s2 + 1)4

(
(s2 + 1)x2

1 + (s2 + 1)x1x2 + 2sx1x3 + (s2 + 1)x2
2 + 2sx2x3 − (s2 + 1)x2

3

)2
.

Thus, without loss of generality, we may assume that the surface Π+
1 is given by

x0 + x1 + x2 +
2s

s2 + 1
x3 = 0,

w =
s2 − 1

(s2 + 1)2

(
(s2 + 1)x2

1 + (s2 + 1)x1x2 + 2sx1x3 + (s2 + 1)x2
2 + 2sx2x3 − (s2 + 1)x2

3

)
.

Then the defining equations of the remaining surfaces Π+
2 , . . . ,Π

+
16 are listed in Figure 2.

Now, the intersection matrix (Π+
i • Π+

j ) can be computed as follows:

−1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0
1 −1 1 1 0 1 0 1 1 0 1 0 0 0 1 1
1 1 −1 1 1 0 1 0 0 1 0 1 0 0 1 1
1 1 1 −1 0 1 0 1 0 1 0 1 1 1 0 0
1 0 1 0 −1 1 1 1 1 1 0 0 1 0 1 0
0 1 0 1 1 −1 1 1 0 0 1 1 1 0 1 0
1 0 1 0 1 1 −1 1 0 0 1 1 0 1 0 1
0 1 0 1 1 1 1 −1 1 1 0 0 0 1 0 1
1 1 0 0 1 0 0 1 −1 1 1 1 1 0 0 1
0 0 1 1 1 0 0 1 1 −1 1 1 0 1 1 0
1 1 0 0 0 1 1 0 1 1 −1 1 0 1 1 0
0 0 1 1 0 1 1 0 1 1 1 −1 1 0 0 1
1 0 0 1 1 1 0 0 1 0 0 1 −1 1 1 1
1 0 0 1 0 0 1 1 0 1 1 0 1 −1 1 1
0 1 1 0 1 1 0 0 0 1 1 0 1 1 −1 1
0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 −1


The rank of this matrix is 7. Therefore, we conclude that ClH(X) ∼= Z by Corollary 24.
Note that we can also prove this using Lemma 22(ii). To do this, it is enough to show that
the divisor Π+ is a Cartier divisor, which can be done locally at any point in Sing(X).
For instance, let P = [t : 1 : 1 : 1 : 0] ∈ Sing(X). Among Π+

1 , . . . ,Π
+
16, only

Π+
2 ,Π

+
3 ,Π

+
7 ,Π

+
8 ,Π

+
10,Π

+
11

pass through P . Choosing a generator of the local class group ClP (X) ∼= Z, we see that
the classes of the surfaces Π+

2 , Π+
3 , Π+

7 , Π+
8 , Π+

10, Π+
11 are 1, −1, 1, −1, 1, −1, respectively.

Hence, we see that Π+ is locally Cartier at P , which implies that Π+ is globally Cartier,
because the group H acts transitively on the set Sing(X).
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Example 26. Let us use assumptions and notations of Example 5. Then Aut(X) contains
a unique subgroup G such that G ∼= υ(G) ∼= µ4

2 o µ3, and υ(G) is generated by

A1, A2, A3, A4,


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 .

One can check that G contains the subgroup H = Hρ, where ρ is a trivial homomorphism.
Therefore, it follows from Example 25 that ClG(X) ∼= Z.

If ClG(X) ∼= Z2, then exists a uniquely determined G-Sarkisov link

(27) V
ς //

ϕ

xx
$
��

V

$
��

ϕ

&&
Z X

σ // X Z

where $ is a G-equivariant small resolution, ς flops $-contracted curves, and

• either ϕ is a G-extremal birational contraction, and Z is a Fano threefold,
• or ϕ is a conic bundle, and Z is a surface,
• or ϕ is a del Pezzo fibration, and Z ∼= P1.

Note that ClG(X) ∼= Z2 is indeed possible. Let us give two (related) examples.

Example 28. Let us use all assumptions and notations of Example 25, and let G = Hρ,
where the homomorphism ρ is defined by ρ(A1) = −1, ρ(A2) = 1, ρ(A3) = −1, ρ(A4) = 1.
Then, arguing as in Example 25, we compute ClG(X) ∼= Z2. What is (27) in this case?

Example 29. Let us use all assumptions and notations of Example 9. Then

Aut(X) ∼= µ2 × Aut
(
P3,S

) ∼= µ2 ×
(
µ4

2 o µ5

)
,

and the group Aut(X) contains a unique subgroup isomorphic to Aut(P3,S ) ∼= µ4
2 oµ5.

Suppose that G is this subgroup. It follows from Remark 23 that Cl(X)⊗Q is a faithful
seven-dimensional G-representation. Using this, it is easy to see that Cl(X)⊗Q splits as
a sum of an irreducible five-dimensional representation and two trivial one-dimensional
representations. Hence, we conclude that ClG(X) ∼= Z2. What is (27) in this case?

Before proving Theorem 17, let us prove its two baby cases, which follow from [14, 12].

Proposition 30. Suppose G = Aut(X), and S is the quartic surface from Example 9.
Then ClG(X) ∼= Z and X is G-birationally super-rigid.

Proof. Since σ ∈ G, we get ClG(X) ∼= Z. Let us show that X is G-birationally super-rigid.
Note that the υ(G)-equivariant birational geometry of the projective space P3 has been

studied in [14]. In particular, we know from [14, Corollary 4.7] and [14, Theorem 4.16] that

• P3 does not contain υ(G)-orbits of length less that 16,
• P3 does not contain υ(G)-invariant curves of degree less than 8.

Let M be a G-invariant linear system on X such that M has no fixed components.
Choose a positive integer n such thatM⊂ |nH|. Then, by [13, Corollary 3.3.3], to prove
that the threefold X is G-birationally super-rigid it is enough to show that (X, 2

n
M) has

canonical singularities. Suppose that the singularities of this log pair are not canonical.
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Let Z be a center of non-canonical singularities of the pair (X, 2
n
M) that has the largest

dimension. Since the linear systemM does not have fixed components, we conclude that
either Z is an irreducible curve, or Z is a point. In both cases, we have

multZ
(
M
)
>
n

2
by [24, Theorem 4.5].

Let M1 and M2 be general surfaces in M. If Z is a curve, then

M1 ·M2 = (M1 ·M2)ZZ + ∆

where Z is the G-irreducible curve in X whose irreducible component is the curve Z,
and ∆ is an effective one-cycle whose support does not contain Z , which gives

2n2 = n2H2 = H ·M1 ·M2 =
(
M1 ·M2

)
Z
Z + ∆ =

=
(
M1 ·M2

)
Z

(
H ·Z

)
+H ·∆ >

(
M1 ·M2

)
Z

(H ·Z ) >

> mult2
Z

(
M
)(
H ·Z

)
>
n2

4

(
H ·Z

)
>
n2

4
deg
(
π(Z )

)
,

so π(Z ) is a υ(G)-invariant curve of degree 6 7, which contradicts [14, Theorem 4.16].
We see that Z is a point, and (X, 2

n
M) is canonical away from finitely many points.

We claim that Z 6∈ Sing(X). Indeed, suppose Z is a singular point of the threefold X.
Let h : X → X be the blow up of the locus Sing(X), let E1, . . . , E16 be the h-exceptional
surfaces, let M1 and M1 be the proper transforms on X of the surfaces M1 and M2,
respectively. Write E = E1 + · · ·+ E16. Since Sing(X) is a G-orbit, we have

M1 ∼M2 ∼ h∗(H)− εE
for some integer ε > 0. Using [16, Theorem 3.10] or [9, Theorem 1.7.20], we get ε > n

2
.

On the other hand, the linear system |h∗(3H)− E| is not empty and does not have base
curves away from the locus E1 ∪ E2 ∪ · · · ∪ E16, because Sing(S ) is cut out by cubic
surfaces in P3. In particular, the divisor h∗(3H)− E is nef, so

0 6
(
h∗(3H)− E

)
·M1 ·M2 =

(
h∗(3H)− E

)
·
(
h∗(3nH)− εE

)2
= 6n2 − 32ε,

which is impossible, since ε > n
2
. So, we see that Z is a smooth point of the threefold X.

Then the pair (X, 3
n
M) is not log canonical at Z. Let µ be the largest rational number

such that the log pair (X,µM) is log canonical. Then µ < 3
n

and

OrbG(Z) ⊆ Nklt
(
X,µM

)
.

Observe that Nklt(X,µM) is at most one-dimensional, sinceM has no fixed components.
Moreover, this locus is G-invariant, because M is G-invariant.

We claim that Nklt(X,µM) does not contain curves. Indeed, suppose this is not true.
Then Nklt(X,µM) contains a G-irreducible curve C. We write M1 · M2 = mC + Ω,
where m is a non-negative integer, and Ω is an effective one-cycle whose support does not
contain the curve C. Then it follows from [16, Theorem 3.1] that

m >
4

µ2
>

4n2

9
.

Therefore, we have

2n2 = n2H3 = H ·M1 ·M2 = m
(
H · C

)
+H · Ω > m

(
H · C

)
>

4n2

9

(
H · C

)
,
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which implies that H · C 6 4. Then π(C) is a υ(G)-invariant curve in P3 of degree 6 4,
which contradicts [14, Theorem 4.16]. Thus, the locus Nklt(X,µM) contains no curves.

Let I be the multiplier ideal sheaf of the pair (X,µM), and let L be the corresponding
subscheme in X. Then L is a zero-dimensional (reduced) subscheme such that

OrbG
(
Z
)
⊆ Supp

(
L
)

= Nklt
(
X,µM

)
.

Applying Nadel’s vanishing [26, Theorem 9.4.8], we get

h1
(
X, I ⊗ OX(H)

)
= 0.

This gives

4 = h0
(
X,OX(H)

)
> h0

(
OL ⊗OX(H)

)
= h0

(
OL
)
> |OrbG(Z)|.

In particular, we conclude that the length of the υ(G)-orbit of the point π(Z) is at most 4,
which is impossible by [14, Corollary 4.7]. �

Proposition 31. Suppose that S is the surface from Example 5, and G is the subgroup
described in Example 26. Then ClG(X) ∼= Z and X is G-birationally super-rigid.

Proof. Recall from Example 26 that G ∼= µ4
2 o µ3 and ClG(X) ∼= Z.

The υ(G)-equivariant geometry of the projective space P3 has been studied in [12].
In particular, we know from [12] that P3 does not contain υ(G)-orbits of length 1, 2 or 3,
and the only υ(G)-orbits in P3 of length 4 are

Σ4 =
{

[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]
}
,

Σ′4 =
{

[1 : 1 : 1 : −1], [1 : 1 : −1 : 1], [1 : −1 : 1 : 1], [−1 : 1 : 1 : 1]
}
,

Σ′′4 =
{

[1 : 1 : 1 : 1], [1 : 1 : −1 : −1], [1 : −1 : −1 : 1], [−1 : −1 : 1 : 1]
}

We also know from [12] the classification of υ(G)-invariant curves in P3 of degree at most 7.
To present it, let L4, L′4, L′′4, L′′′4 , L6, L′6, L′′6, L′′′6 , L′′′′6 be υ(G)-irreducible curves in P3

whose irreducible components are the lines{
2x0 + (1 +

√
3i)x2 − (1−

√
3i)x3 = 2x1 + (1−

√
3i)x2 + (1 +

√
3i)x3 = 0

}
,{

2x0 + (1−
√

3i)x2 − (1 +
√

3i)x3 = 2x1 + (1 +
√

3i)x2 + (1−
√

3i)x3 = 0
}
,{

2x0 − (1−
√

3i)x2 + (1 +
√

3i)x3 = 2x1 + (1 +
√

3i)x2 + (1−
√

3i)x3 = 0
}
,{

2x0 − (1 +
√

3i)x2 + (1−
√

3i)x3 = 2x1 + (1−
√

3i)x2 + (1 +
√

3i)x3 = 0
}
,{

x0 = x1 = 0
}
,{

x0 + x1 = x2 − x3 = 0
}
,{

x0 + x1 = x2 + x3 = 0
}
,{

x0 + ix2 = x1 + ix3 = 0
}
,{

x0 + ix3 = x1 + ix2 = 0
}
,

respectively. Then the curves L4, L′4, L′′4, L′′′4 , L6, L′6, L′′6, L′′′6 , L′′′′6 are unions of 4, 4, 4,
4, 6, 6, 6, 6, 6 lines, respectively. Moreover, it follows from [12] that

L4, L′4, L′′4, L′′′4 , L6, L′6, L′′6, L′′′6 , L′′′′6
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are the only υ(G)-invariant curves in P3 of degree at most 7.
Now, using the defining equation of the surface S , one can check that any irreducible

component of any curve among L4, L′4, L′′4, L′′′4 , L6, L′6, L′′6, L′′′6 , L′′′′6 intersects the quartic
surface S transversally by 4 distinct points, so that its preimage in X via the double
cover π is a smooth elliptic curve. Thus, if C is a G-invariant curve in X, then H ·C > 8.

Suppose that X is not G-birationally super-rigid. It follows from [13, Corollary 3.3.3]
that there are a positive integer n and a G-invariant linear subsystem M ⊂ |nH| such
that M does not have fixed components, but the log pair (X, 2

n
M) is not canonical.

Arguing as in the proof of Proposition 30, we see that the log pair (X, 2
n
M) is canonical

away from finitely many points. Let P be a point in X that is a center of non-canonical
singularities of the log pair (X, 2

n
M). Now, arguing as in the proof of Proposition 30 again,

we see that P is a smooth point of the threefold X.
Then the log pair (X, 3

n
M) is not log canonical at P . Let µ be the largest rational

number such that (X,µM) is log canonical. Then µ < 3
n

and

OrbG(P ) ⊆ Nklt
(
X,µM

)
.

Observe that Nklt(X,µM) is at most one-dimensional, sinceM has no fixed components.
Moreover, this locus is G-invariant, because M is G-invariant. Furthermore, arguing as
in the proof of Proposition 30, we see that

dim
(

Nklt
(
X,µM

))
= 0.

Let I be the multiplier ideal sheaf of the pair (X,µM), and let L be the corresponding
subscheme in X. Then L is a zero-dimensional (reduced) subscheme such that

OrbG
(
P
)
⊆ Supp

(
L
)

= Nklt
(
X,µM

)
.

On the other hand, applying Nadel’s vanishing theorem [26, Theorem 9.4.8], we get

h1
(
X, I ⊗ OX(H)

)
= 0.

This gives

4 = h0
(
X,OX(H)

)
> h0

(
OL ⊗OX(H)

)
= h0

(
OL
)
> |OrbG(P )|.

Thus, we conclude that |OrbG(P )| = 4 and

π(P ) ∈ Σ4 ∪ Σ′4 ∪ Σ′′4.

Let M1 and M2 be two general surfaces inM. Using [30] or [16, Corollary 3.4], we get

(32)
(
M1 ·M2

)
P
> n2.

Let S be a linear subsystem in |3H| that consists of all surfaces that are singular at every
point of the G-orbit OrbG(P ). Then its base locus does not contain curves, which implies
that there is a surface S ∈ S that does not contain components of the cycle M1 ·M2.
Thus, using (32) and multP (S) > 2, we get

6n2 = S ·M1 ·M2 >
∑

O∈OrbG(P )

2
(
M1 ·M2

)
O

= 2|OrbG(P )|
(
M1 ·M2

)
P

= 8
(
M1 ·M2

)
P
> 8n2,

which is absurd. This completes the proof of Proposition 31. �
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In the remaining part of the paper, we prove Theorem 17, and consider one application.
Let us recall from [22, 28, 20, 18, 1] basic facts about the H-equivariant geometry of P3. Set

Q1 =
{
x2

0 + x2
1 + x2

2 + x2
3 = 0

}
,

Q2 =
{
x2

0 + x2
1 = x2

2 + x2
3

}
,

Q3 =
{
x2

0 − x2
1 = x2

2 − x2
3

}
,

Q4 =
{
x2

0 − x2
1 = x2

3 − x2
2

}
,

Q5 =
{
x0x2 + x1x3 = 0

}
,

Q6 =
{
x0x3 + x1x2 = 0

}
,

Q7 =
{
x0x1 + x2x3 = 0

}
,

Q8 =
{
x0x2 = x1x3

}
,

Q9 =
{
x0x3 = x1x2

}
,

Q10 =
{
x0x1 = x2x3

}
.

Then Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10 are all H-invariant quadric surfaces in P3.
These quadrics are smooth, and H ∼= µ4

2 acts naturally on each quadric Qi ∼= P1 × P1.
For a non-trivial element g ∈ H, the locus of its fixed points in P3 consists of two skew

lines, which we will denote by Lg and L′g. For two non-trivial elements g 6= h in H, one has{
Lg, L

′
g

}
∩
{
Lh, L

′
h

}
= ∅.

In total, this gives 30 lines `1, . . . , `30, whose equations are listed in the following table:

`1 =
{
x0 = x1 = 0

}
`2 =

{
x2 = x3 = 0

}
`3 =

{
x0 = x2 = 0

}
`4 =

{
x1 = x3 = 0

}
`5 =

{
x0 = x3 = 0

}
`6 =

{
x1 = x2 = 0

}
`7 =

{
x0 + x1 = x2 + x3 = 0

}
`8 =

{
x0 − x1 = x2 − x3 = 0

}
`9 =

{
x0 + x2 = x1 + x3 = 0

}
`10 =

{
x0 − x2 = x1 − x3 = 0

}
`11 =

{
x0 + x3 = x1 + x2 = 0

}
`12 =

{
x0 − x3 = x1 − x2 = 0

}
`13 =

{
x0 + x1 = x2 − x3 = 0

}
`14 =

{
x0 − x1 = x2 + x3 = 0

}
`15 =

{
x0 + x2 = x1 − x3 = 0

}
`16 =

{
x0 − x2 = x1 + x3 = 0

}
`17 =

{
x0 + x3 = x1 − x2 = 0

}
`18 =

{
x0 − x3 = x1 + x2 = 0

}
`19 =

{
x0 + ix1 = x2 + ix3 = 0

}
`20 =

{
x0 − ix1 = x2 − ix3 = 0

}
`21 =

{
x0 + ix2 = x1 + ix3 = 0

}
`22 =

{
x0 − ix2 = x1 − ix3 = 0

}
`23 =

{
x0 + ix3 = x1 + ix2 = 0

}
`24 =

{
x0 − ix3 = x1 − ix2 = 0

}
`25 =

{
x0 − ix1 = x2 + ix3 = 0

}
`26 =

{
x0 + ix1 = x2 − ix3 = 0

}
`27 =

{
x0 + ix2 = x1 − ix3 = 0

}
`28 =

{
x0 − ix2 = x1 + ix3 = 0

}
`29 =

{
x0 + ix3 = x1 − ix2 = 0

}
`30 =

{
x0 − ix3 = x1 + ix2 = 0

}
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Note that `1, . . . , `30 are irreducible components of the curves L6, L′6, L′′6, L′′′6 , L′′′′6 which
have been introduced in the proof of Proposition 31. One can check that

• for every k ∈ {1, . . . , 15}, the curve `2k−1 + `2k is H-irreducible,
• each line among `1, . . . , `30 is contained in 4 quadrics among Q1, . . . ,Q10,
• each quadric among Q1, . . . ,Q10 contains 12 lines among `1, . . . , `30,
• every two quadrics among Q1, . . . ,Q10 intersect by 4 lines among `1, . . . , `30.

The incidence relation between `1, . . . , `30 and Q1, . . . ,Q10 is presented in Figure 3.
Now, let us describe the intersection points of the lines `1, . . . , `30. To do this, we set

Σ1
4 =

{
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]

}
,

Σ2
4 =

{
[1 : 1 : 1 : −1], [1 : 1 : −1 : 1], [1 : −1 : 1 : 1], [−1 : 1 : 1 : 1]

}
,

Σ3
4 =

{
[1 : 1 : 1 : 1], [−1 : −1 : 1 : 1], [1 : −1 : −1 : 1], [−1 : 1 : −1 : 1]

}
,

Σ4
4 =

{
[0 : 0 : 1 : 1], [1 : 1 : 0 : 0], [0 : 0 : −1 : 1], [1 : −1 : 0 : 0]

}
,

Σ5
4 =

{
[1 : 0 : 1 : 0], [0 : 1 : 0 : 1], [−1 : 0 : 1 : 0], [0 : −1 : 0 : 1]

}
,

Σ6
4 =

{
[0 : 1 : 1 : 0], [1 : 0 : 0 : 1], [0 : −1 : 1 : 0], [−1 : 0 : 0 : 1]

}
,

Σ7
4 =

{
[i : 0 : 0 : 1], [0 : i : 1 : 0], [−i : 0 : 0 : 1], [0 : −i : 1 : 0]

}
,

Σ8
4 =

{
[i : 0 : 1 : 0], [0 : i : 0 : 1], [0 : −i : 0 : 1], [−i : 0 : 1 : 0]

}
,

Σ9
4 =

{
[i : 1 : 0 : 0], [0 : 0 : i : 1], [−i : 1 : 0 : 0], [0 : 0 : −i : 1]

}
,

Σ10
4 =

{
[i : i : 1 : 1], [−i : −i : 1 : 1], [i : −i : −1 : 1], [−i : i : −1 : 1]

}
,

Σ11
4 =

{
[1 : i : i : 1], [1 : −i : −i : 1], [−1 : −i : i : 1], [−1 : i : −i : 1]

}
,

Σ12
4 =

{
[1 : i : −i : 1], [−1 : i : i : 1], [−1 : −i : −i : 1], [1 : −i : i : 1]

}
,

Σ13
4 =

{
[i : 1 : i : 1], [−i : 1 : −i : 1], [−i : −1 : i : 1], [i : −1 : −i : 1]

}
,

Σ14
4 =

{
[i : 1 : −i : 1], [i : −1 : i : 1], [−i : −1 : −i : 1], [−i : 1 : i : 1]

}
,

Σ15
4 =

{
[i : i : −1 : 1], [−i : −i : −1 : 1], [i : −i : 1 : 1], [−i : i : 1 : 1]

}
.

Then the subsets Σ1
4, . . . ,Σ

15
4 are H-orbits of length 4. Moreover, one has

Σ1
4 ∪ Σ2

4 ∪ · · · ∪ Σ15
4 = Sing

(
`1 + `2 + · · ·+ `30

)
.

So, for every `i and `j such that `i 6= `j and `i∩`j 6= ∅, one has `i∩`j ∈ Σ1
4∪Σ2

4∪· · ·∪Σ15
4 .

Furthermore, one can also check that

• every line among `1, . . . , `30 contains 6 points in Σ1
4 ∪ Σ2

4 ∪ · · · ∪ Σ15
4 ,

• every point in Σ1
4 ∪ Σ2

4 ∪ · · · ∪ Σ15
4 is contained in 3 lines among `1, . . . , `30.

As in Remark 11, let N be the normalizer of the subgroup H in the group PGL4(C).
Then Aut(C ) ⊂ N and N ∼= H.S6, see Remark 11. Moreover, one can show that

• the group N acts transitively on the set {Q1, . . . ,Q10},
• the group N acts transitively on the set {`1, . . . , `30},
• the group N acts transitively on the set {Σ1

4, . . . ,Σ
15
4 }.

Now, we are ready to describe H-orbits in P3. They can be described as follows:

(1) Σ1
4, . . . ,Σ

15
4 are H-orbits of length 4;

(2) H-orbit of every point in (`1 ∪ `2 ∪ · · · ∪ `30) \ (Σ1
4 ∪ Σ2

4 ∪ · · · ∪ Σ15
4 ) has length 8;

(3) H-orbit of every point in P3 \ (`1 ∪ `2 ∪ · · · ∪ `30) has length 16.
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Lemma 33. The surface S does not contain H-orbits of length 4.

Proof. The assertion follows from [34, Theorem 3], since the H-action on the minimal res-
olution of the quartic surface S is symplectic. Alternatively, we can check this explicitly.
Indeed, it is enough to check that S does not contain Σ1

4, since the group N transitively
permutes the orbits Σ1

4, . . . ,Σ
15
4 . If Σ1

4 ⊂ S , then S is given by (2) with a = bcd = 0,
which implies that S has non-isolated singularities. �

Corollary 34. Every line among `1, . . . , `30 intersects S transversally by 4 points.

Proof. Fix k ∈ {1, . . . , 15}. If |`2k−1 ∩S | < 4, then the subset (`2k−1 ∪ `2k)∩S contains
an H-orbit of length 4, which contradicts Lemma 33. Therefore, we have |`2k−1 ∩S | = 4.
Similarly, we see that |`2k ∩S | = 4. �

Now, let us prove one result that plays a crucial role in the proof of Theorem 17.

Lemma 35. Let C be a possibly reducible H-irreducible curve in P3 such that deg(C) < 8.
Then one of the following two possibilities hold:

(a) either C = `2k−1 + `2k for some k ∈ {1, . . . , 15};
(b) or C is a union of 4 disjoint lines and C ⊂ Qi for some i ∈ {1, . . . , 10}.

Proof. Intersecting C with quadric surfaces Q1, . . . ,Q10, we conclude that deg(C) is even.
This gives deg(C) ∈ {2, 4, 6}.

Suppose that C is reducible. Since |H| = 16, we have the following possibilities:

(i) C is a union of 2 lines,
(ii) C is a union of 4 lines,

(iii) C is a union of 2 irreducible conics,
(iv) C is a union of 3 irreducible conics.
(v) C is a union of 2 irreducible plane cubics,

(vi) C is a union of 2 twisted cubics,

Since P3 does not have H-orbits of length 2 and 3, cases (iii), (iv) and (v) are impossible.
Similarly, case (vi) is also impossible, because µ3

2 cannot faithfully act on a rational curve.
Thus, either C is a union of 2 lines, or C is a union of 4 lines.

Suppose that C = L1 +L2, where L1 and L2 are lines. Then StabH(L1) ∼= µ3
2, and this

group cannot act faithfully on L1
∼= P1. Therefore, there exists a non-trivial g ∈ StabH(L1)

such that g pointwise fixes the line L1. But this means that L1 is one of the lines `1, . . . , `30,
so we have C = `2k−1 + `2k for some k ∈ {1, . . . , 15} as required.

Suppose C = L1 +L2 +L3 +L4, where L1, L2, L3, L4 are lines. Then StabH(L1) ∼= µ2
2.

Note that StabH(L1) must act faithfully on L1, because L1 is not one of the lines `1, . . . , `30.
This implies that L1 does not have StabH(L1)-fixed points, which implies that P3 also does
not have StabH(L1)-fixed points. All subgroups in H isomorphic to µ2 with these property
are conjugated by the action of the group N. Thus, we may assume that

StabH
(
L1

)
= 〈A1A2, A3〉.

This subgroup leaves invariant rulings of the quadric surface Q8
∼= P1×P1. To be precise,

for every [λ : µ] ∈ P1, the group 〈A1A2, A3〉 leaves invariant the line{
λx0 + µx3 = λx1 + µx2 = 0

}
⊂ Q8,

and these are all 〈A1A2, A3〉-invariant lines in P3. So, the lines L1, L2, L3, L4 are disjoint,
and all of them are contained in the quadric Q8. Thus, we are done in this case.
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Therefore, to complete the proof of the lemma, we may assume that C is irreducible.
Observe that the curve C is not planar, because P3 does not contain H-invariant planes.
Moreover, the curve C is singular: otherwise its genus is 6 4 by the Castelnuovo bound,
but H cannot faithfully act on a smooth curve of genus less than 5 by [12, Lemma 3.2].
Therefore, we conclude that deg(C) = 6, since otherwise the curve C would be planar.

We claim that the curve C does not contain H-orbits of length 4. Suppose that it does.
Since N transitively permutes the orbits Σ1

4, . . . ,Σ
15
4 , we may assume that Σ1

4 ⊂ C. Then

Σ1
4 ⊂ Sing(C),

because the stabilizer in H of a smooth point in C must be a cyclic group [35, Lemma 2.7].
Let ι : P3 99K P3 be the standard Cremona involution, which is given by

[x0 : x1 : x2 : x3] 7→ [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2].

Then ι centralizes H. On the other hand, the curve ι(C) is a conic, because deg(C) = 6,
and C is singular at every point of the H-orbit Σ1

4. But P3 contains no H-invariant conics,
because it contains no H-invariant planes. Thus, C contains no H-orbits of length 4.

Note that Q1 ∩ Q2 ∩ · · · ∩ Q10 = ∅. So, at least one quadric among Q1, . . . ,Q10 does
not contain the curve C. Without loss of generality, we may assume that C 6⊂ Q1. Then

12 = Q1 · C > |Q1 ∩ C|,

which implies that the intersection Q1 ∩ C is an H-orbit of length 8, because we already
proved that C does not contain H-orbits of length 4. For a point P ∈ Q1 ∩ C, we have

12 = Q1 · C = |OrbH(P )|
(
Q1 · C

)
P

= 8
(
Q1 · C

)
P
,

which is impossible, since 12 is not divisible by 8. �

Corollary 36. Let Q be any quadric among Q1, . . . ,Q10, and let C = S |Q. Then

(i) either C is a smooth curve of degree 8 and genus 9,
(ii) or C = L4 + L′4 for H-irreducible curves L4 and L′4 consisting of 4 disjoint lines

such that the intersection L4 ∩ L′4 is an H-orbit of length 16.

Proof. If C is reducible or non-reduced, Lemma 35 and Corollary 33 imply the assertion.
Thus, we may assume that C is irreducible and reduced. Then its arithmetic genus is 9.
If C is smooth, we are done. If C is singular, then the genus of it normalization is 6 1,
because C does not contain H-orbits of length 4 by Corollary 33. But H cannot faithfully
act on a smooth curve of genus less than 5 by [12, Lemma 3.2]. �

Now, we are ready to prove Theorem 17.

Proof of Theorem 17. Let G be a subgroup in Aut(X) such that ClG(X) ∼= Z and

H ⊆ υ(G),

so G contains a subgroup Hρ for some homomorphism ρ : H → µ2. We must prove that
the threefold X is G-birationally super-rigid. Suppose it is not G-birationally super-rigid.
Then there are a positive integer n and a G-invariant linear subsystem M ⊂ |nH| such
that the linear systemM does not have fixed components, but (X, 2

n
M) is not canonical.

Starting from this moment, we are going to forget about the group G. In the following,
we will work only with its subgroup Hρ. Note that υ(Hρ) = H.
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Let Z be the center of non-canonical singularities of the log pair (X, 2
n
M) that has

maximal dimension. We claim that Z must be a point. Indeed, suppose that Z is a curve.
Let M be sufficiently general surface in the linear system M. Then

(37) multZ
(
M
)
>
n

2

by [24, Theorem 4.5]. Let us seek for a contradiction.
Let Z be an Hρ-irreducible curve in X whose irreducible components is the curve Z,

Then, arguing as in the proof of Proposition 30, we see that

H ·Z 6 7.

In particular, we conclude that π(Z ) is a H-invariant curve of degree 6 7. By Lemma 35,
the curve π(Z) is a line, and one of the following two possibilities hold:

(a) either π(Z ) = `2k−1 + `2k for some k ∈ {1, . . . , 15};
(b) or π(Z ) is a union of 4 disjoint lines and π(Z ) ⊂ Qi for some i ∈ {1, . . . , 10}.

Let us deal with these two cases separately.
Suppose we are in case (a). Without loss of generality, we may assume π(Z ) = `1 + `2.

Let C1 and C2 be the preimages on the threefold X of the lines `1 and `2, respectively.
Then it follows from Corollary 34 that C1 and C2 are smooth irreducible elliptic curves.
In particular, the curves C1 and C2 are disjoint and

Z = C1 + C2.

Let f : X̃ → X be the blow up of the curves C1 and C2, let E1 and E2 be the f -exceptional

surfaces such that f(E1) = C1 and f(E2) = C2, and let M̃ be the proper transform on

the threefold X̃ of the surface M . Then |f ∗(2H)− E1 − E2| is base point free, so

0 6
(
f ∗(2H)− E1 − E2

)2 · M̃ =

=
(
f ∗(2H)− E1 − E2

)2 ·
(
f ∗(nH)−multZ

(
M
)
(E1 + E2)

)
= 4n− 8multZ

(
M
)
,

which contradicts (37). This shows that case (a) is impossible.
Suppose we are in case (b). Without loss of generality, we may assume that π(Z ) ⊂ Q1.

Let S be the preimage of the quadric surface Q1 via the double cover π. Then it follows
from Corollary 36 that S is an irreducible normal surface such that

(i) either S is a smooth K3 surface,
(ii) or S is a singular K3 surface that has 16 ordinary double points.

Note that Z ⊂ S by construction. Let C be the preimage in X of a sufficiently general
line in the quadric Q1 that intersect the line π(Z). Then C is a smooth irreducible elliptic
curve, which is contained in the smooth locus of the K3 surface S. Observe that H ·C = 2.
Moreover, we also have |C ∩Z | > 4. Thus, since C 6⊂ Supp(M), we get

2n = nH · C = M · C >
∑

O∈C∩Z

multO(M) > multZ
(
M
)
|C ∩Z | > 4multZ

(
M
)
,

which contradicts (37). This shows that case (b) is also impossible.
Hence, we see that Z is a point. In particular, the pair (X, 2

n
M) is canonical away from

finitely many points. Now, arguing as in the proof of Proposition 30, we get Z 6∈ Sing(X).
Let M1 and M2 be two general surfaces inM. Using [30] or [16, Corollary 3.4], we get

(38)
(
M1 ·M2

)
Z
> n2.
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Let P = π(Z). Then, arguing as in the proof of Proposition 31, we get |OrbH(P )| 6= 4.
We claim that |OrbH(P )| 6= 8. Indeed, suppose |OrbH(P )| = 8. Then

P ∈ `1 ∪ `2 ∪ · · · ∪ `30.

Without loss of generality, we may assume that P ∈ `1. Let C1 and C2 be the preimages
on the threefold X of the lines `1 and `2, respectively. Recall that C1 and C2 are smooth
irreducible elliptic curves, and the curve C1 + C2 is Hρ-irreducible. Write

M1 ·M2 = m(C1 + C2) + ∆,

where m is a non-negative integer, and ∆ is an effective one-cycle whose support does not
contain the curves C1 and C2. Then m 6 n2

2
, because

2n2 = H ·M1 ·M2 = mH · (C1 + C2) +H ·∆ 6 mH · (C1 + C2) = 4m.

On the other hand, since C1 and C2 are smooth curves, it follows from (38) that

(39) multO
(
∆
)
> n2 −m

for every point O ∈ OrbHρ(Z). Note also that Z ∈ C1 and |OrbHρ(Z)| > 8.
Let D be the linear subsystem in |2H| that consists of surfaces passing through C1∪C2.

Then, as we already implicitly mentioned, the linear system D does not have base curves
except for C1 and C2. Therefore, if D is a general surface in D, then D does not contain
irreducible components of the one-cycle ∆, so (39) gives

4n2 − 8m = D ·∆ >
∑

O∈OrbHρ (Z)

multO
(
∆
)

=

= |OrbHρ(Z)|multZ
(
∆
)
> |OrbHρ(Z)|(n2 −m) > 8(n2 −m),

which is absurd. This shows that |OrbH(P )| 6= 8.
In particular, we see that |OrbHρ(Z)| = |OrbH(P )| = 16 and P 6∈ `1 ∪ `2 ∪ · · · ∪ `30.
We claim that P 6∈ Q1 ∪Q2 ∪ · · · ∪Q10. Indeed, suppose that P ∈ Q1 ∪Q2 ∪ · · · ∪Q10.

Without loss of generality, we may assume that

π(Z) = P ∈ Q1.

As above, denote by S the preimage of the quadric surface Q1 via the double cover π.
Then S is a K3 surface with at most ordinary double singularities, and it follows from
the inversion of adjunction [24, Theorem 5.50] that (S, 2

n
M|S) is not log canonical at Z.

Let λ be the largest rational number such that (S, λM|S) is log canonical at Z. Then

OrbHρ(Z) ⊆ Nklt
(
S, λM|S

)
.

Note that the locus Nklt(S, λM|S) is Hρ-invariant, because M and S are Hρ-invariant.
Suppose Nklt(S, λM|S) contains an Hρ-irreducible curve C that passes through Z.

This means that λM|S = C + Ω, where Ω is an effective Q-linear system on S. Then

H · C 6 H · (C + Ω) = 4nλ < 8,

hence π(C) is a union of 4 disjoint lines in Q1 by Lemma 35, since P 6∈ `1 ∪ `2 ∪ · · · ∪ `30.
Let C be the preimage in X of a general line in Q1 that intersect π(C). Then

4 6 C · C 6 C · (C + Ω) = λn
(
H · C

)
= 2λn < 4,

which is absurd. So, the locus Nklt(S, λM|S) contains no curves that pass through Z.
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Let IS be the multiplier ideal sheaf of the pair (S, λM|S), let LS be the corresponding
subscheme in S. Then

Supp
(
LS
)

= Nklt
(
S, λM|S

)
.

Now, applying Nadel’s vanishing theorem [26, Theorem 9.4.8], we get

h1
(
S, IS ⊗OS(2H|S)

)
= 0.

Now, using the Riemann–Roch theorem and Serre’s vanishing, we obtain

10 = h0
(
S,OS(2H|S)

)
> h0

(
OLS ⊗OS(2H|S)

)
> |OrbHρ(Z)|.

because LS has at least |OrbHρ(Z)| disjoint zero-dimensional components, whose supports
are points in OrbHρ(Z), because OrbHρ(Z) ⊆ Nklt(S, λM|S), and Nklt(S, λM|S) does not
contain curves that are not disjoint from OrbHρ(Z). Hence, we see that |OrbHρ(Z)| 6 10,
which is impossible, since |OrbHρ(Z)| = 16. This shows that

π(Z) = P 6∈ Q1 ∪Q2 ∪ · · · ∪ Q10.

Let us summarize what we proved so far. Recall thatM is a mobile Hρ-invariant linear
subsystem in |nH|, the log pair (X, 2

n
M) is canonical away from finitely many points, but

the singularities of the pair (X, 2
n
M) are not canonical at the point Z ∈ X such that

• Z 6∈ Sing(X),
• π(Z) 6∈ `1 ∪ `2 ∪ · · · ∪ `30,
• π(Z) 6∈ Q1 ∪Q2 ∪ · · · ∪ Q10,
• |OrbHρ(Z)| = |OrbH(π(Z))| = 16.

By Lemma 35, π(Z) is not contained in any H-invariant curve whose degree is at most 7.
Let us use this and Nadel’s vanishing [26, Theorem 9.4.8] to derive a contradiction.

As in the proofs of Propositions 30 and 31, we observe that (X, 3
n
M) is not log canonical

at the point Z, because X is smooth at Z. Let µ be the largest rational number such that
the log pair (X,µM) is log canonical at Z. Then µ < 3

n
and

OrbHρ(Z) ⊆ Nklt
(
X,µM

)
.

Moreover, if the locus Nklt(X,µM) contains an Hρ-irreducible curve C, then arguing as
in the proof of Proposition 30, we see that

deg
(
π(C)

)
6 H · C 6 4,

which implies that the curve C does not pass through Z. Hence, we conclude that every
point of the orbit OrbHρ(Z) is an isolated irreducible component of the locus Nklt(X,µM).

Let I be the multiplier ideal sheaf of the pair (X,µM), and let L be the corresponding
subscheme in X. Then

Supp
(
L
)

= Nklt
(
X,µM

)
,

so the subscheme L contains at least |OrbHρ(Z)| = 16 zero-dimensional components whose
supports are points in the orbit OrbHρ(Z). On the other hand, we have

h1
(
X, I ⊗ OX(H)

)
= 0

by Nadel’s vanishing theorem [26, Theorem 9.4.8]. This gives

4 = h0
(
X,OX(H)

)
> h0

(
OL ⊗OX(H)

)
> |OrbHρ(Z)| = 16,

which is absurd. The obtained contradiction completes the proof of Theorem 17. �
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Let us conclude this paper with one application of Theorem 17, which was the initial
motivation for this paper — we were looking for various embeddings µ4

2 oµ3 ↪→ Bir(P3).

Example 40 (cf. Examples 5, 8, 26). LetG48,50 be the subgroup in PGL4(C) generated by

A1 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , A2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

A3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , A5 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 .

Then one can check that G48,50
∼= µ4

2 oµ3 and the GAP ID of the group G48,50 is [48,50].

For every t ∈ C\{±1,±
√

3i}, let St be the quartic surface in P3 given by the equation (6),
i.e. the surface St is the quartic surface in P3 given by the following equation:

x4
0 +x4

1 +x4
2 +x4

3−(t2 +1)(x2
0x

2
1 +x2

2x
2
3 +x2

0x
2
2 +x2

1x
2
3 +x2

0x
2
3 +x2

1x
2
2)+2(t3 +3t)x0x1x2x3 = 0.

Then St is G48,50-invariant, and St has 16 ordinary double singularities (see Example 5).
Now, let Xt be the hypersurface in P(1, 1, 1, 1, 2) that is given by

w2 = x4
0+x4

1+x4
2+x4

3−(t2+1)(x2
0x

2
1+x2

2x
2
3+x2

0x
2
2+x2

1x
2
3+x2

0x
2
3+x2

1x
2
2)+2(t3+3t)x0x1x2x3,

where we consider x0, x1, x2, x3 as homogeneous coordinates on P(1, 1, 1, 1, 2) of weight 1,
and w is a coordinate of weight 2. Consider the faithful action G48,50 y Xt given by

A1 : [x0 : x1 : x2 : x3 : w] 7→ [−x0 : x1 : −x2 : x3 : w],

A2 : [x0 : x1 : x2 : x3 : w] 7→ [−x0 : x1 : −x2 : x3 : w],

A3 : [x0 : x1 : x2 : x3 : w] 7→ [x1 : x2 : x3 : x2 : w],

A4 : [x0 : x1 : x2 : x3 : w] 7→ [x3 : x2 : x1 : x0 : w],

A5 : [x0 : x1 : x2 : x3 : w] 7→ [x1 : x2 : x0 : x3 : w].

Since the threefold Xt is G48,50-invariant, this gives an embedding G48,50 ↪→ Aut(Xt).
Then it follows from Theorem 17 that the threefold Xt is G48,50-birationally super-rigid.

In particular, for any t1 6= t2 in C \ {±1,±
√

3i}, the following conditions are equivalent:

• the threefolds Xt1 and Xt2 are G48,50-birational;
• the surfaces St1 and St2 are projectively equivalent.

Recall that Xt is rational. For t ∈ C \ {±1,±
√

3i}, fix a birational map χt : P3 99K Xt,
and consider the monomorphism ηt : G48,50 ↪→ Bir(P3) that is given by g 7→ χ−1

t ◦ g ◦ χt.
Then, for any t1 6= t2 in C \ {±1,±

√
3i}, we have the following assertion:

ηt1(G48,50) and ηt1(G48,50) are conjugate in Bir(P3) ⇐⇒ Xt1 and Xt2 are G48,50-birational.

Thus, if t1 6= t2 are general, then ηt1(G48,50) and ηt1(G48,50) are not conjugate in Bir(P3).
Similarly, we see that ηt(G48,50) is not conjugate in Bir(P3) to the group G48,50 ⊂ PGL4(C),
which also follows from [12]. Can we show this using other obstructions [5, 25, 21]?
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Figure 2. Defining equations of the surfaces Π+
1 , . . . ,Π

+
16 in Example 25.

Π+
1

x0 + x1 + x2 + 2s
s2+1

x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

1 + (s2 + 1)x1x2 + 2sx1x3 + (s2 + 1)x2
2 + 2sx2x3 − (s2 + 1)x2

3

)
Π+

2

x0 − x1 + x2 + 2s
s2+1

x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

1 − (s2 + 1)x1x2 + 2sx1x3 + (s2 + 1)x2
2 − 2sx2x3 − (s2 + 1)x2

3

)
= 0

Π+
3

x0 + x1 − x2 − 2s
s2+1

x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

1 − (s2 + 1)x1x2 − 2sx1x3 + (s2 + 1)x2
2 + 2sx2x3 − (s2 + 1)x2

3

)
= 0

Π+
4

x0 − x1 − x2 + 2s
s2+1

x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

1 + (s2 + 1)x1x2 − 2sx1x3 + (s2 + 1)x2
2 − 2sx2x3 − (s2 + 1)x2

3

)
= 0

Π+
5

x0 + x1 + 2s
s2+1

x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx2x0 + (s2 + 1)x3x0 − (s2 + 1)x2
2 + 2sx2x3 + (s2 + 1)x2

3

)
= 0

Π+
6

x0 − x1 + 2s
s2+1

x2 − x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx2x0 − (s2 + 1)x3x0 − (s2 + 1)x2
2 − 2sx2x3 + (s2 + 1)x2

3

)
= 0

Π+
7

2s
s2+1

x2 − x1 − x0 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx2x0 − (s2 + 1)x3x0 − (s2 + 1)x2
2 + 2sx2x3 + (s2 + 1)x2

3

)
= 0

Π+
8

x0 − x1 − 2s
s2+1

x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx2x0 + (s2 + 1)x3x0 − (s2 + 1)x2
2 − 2sx2x3 + (s2 + 1)x2

3

)
= 0

Π+
9

x0 + 2s
s2+1

x1 + x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx1x0 + (s2 + 1)x3x0 − (s2 + 1)x2
1 + 2sx1x3 + (s2 + 1)x2

3

)
= 0

Π+
10

x0 − 2s
s2+1

x1 − x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx1x0 + (s2 + 1)x3x0 − (s2 + 1)x2
1 − 2sx1x3 + (s2 + 1)x2

3

)
= 0

Π+
11

x0 − 2s
s2+1

x1 + x2 − x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx1x0 − (s2 + 1)x3x0 − (s2 + 1)x2
1 + 2sx1x3 + (s2 + 1)x2

3

)
= 0

Π+
12

x0 + 2s
s2+1

x1 − x2 − x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx1x0 − (s2 + 1)x3x0 − (s2 + 1)x2
1 − 2sx1x3 + (s2 + 1)x2

3

)
= 0

Π+
13

2s
s2+1

x0 + x1 + x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx1x0 − 2sx2x0 − (s2 + 1)x2
1 − (s2 + 1)x1x2 − (s2 + 1)x2

2

)
= 0

Π+
14

2s
s2+1

x0 − x1 − x2 + x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx1x0 + 2sx2x0 − (s2 + 1)x2
1 − (s2 + 1)x1x2 − (s2 + 1)x2

2

)
= 0

Π+
15

2s
s2+1

x0 − x1 + x2 − x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 + 2sx1x0 − 2sx2x0 − (s2 + 1)x2
1 + (s2 + 1)x1x2 − (s2 + 1)x2

2

)
= 0

Π+
16

2s
s2+1

x0 + x1 − x2 − x3 = 0

w = s2−1
(s2+1)2

(
(s2 + 1)x2

0 − 2sx1x0 + 2sx2x0 − (s2 + 1)x2
1 + (s2 + 1)x1x2 − (s2 + 1)x2

2

)
= 0
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Figure 3. Ten H-invariant quadrics in P3 and thirty lines in them.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

`1 − − − − + + − + + −
`2 − − − − + + − + + −
`3 − − − − − + + − + +

`4 − − − − − + + − + +

`5 − − − − + − + + − +

`6 − − − − + − + + − +

`7 − − + + − − − + + −
`8 − − + + − − − + + −
`9 − + + − − − − − + +

`10 − + + − − − − − + +

`11 − + − + − − − + − +

`12 − + − + − − − + − +

`13 − − + + + + − − − −
`14 − − + + + + − − − −
`15 − + + − − + + − − −
`16 − + + − − + + − − −
`17 − + − + + − + − − −
`18 − + − + + − + − − −
`19 + + − − + − − − + −
`20 + + − − + − − − + −
`21 + − − + − − + − + −
`22 + − − + − − + − + −
`23 + − + − + − + + − −
`24 + − + − − − + + − −
`25 + + − − − + − + − −
`26 + + − − − + − + − −
`27 + − − + − + − − − +

`28 + − − + − + − − − +

`29 + − + − + − − − − +

`30 + − + − + − − − − +
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