KUMMER QUARTIC DOUBLE SOLIDS

IVAN CHELTSOV

Abstract

We study equivariant birational geometry of (rational) quartic double solids ramified over (singular) Kummer surfaces.

A Kummer quartic surface is an irreducible normal surface in \mathbb{P}^{3} of degree 4 that has the maximal possible number of 16 singular points, which are ordinary double singularities. Any such surface is the Kummer variety of the Jacobian surface of a smooth genus 2 curve. Vice versa, the Jacobian surface of a smooth genus 2 curve admits a natural involution such that the quotient surface is a Kummer quartic surface in \mathbb{P}^{3}.

[^0]Figure 1. A Kummer surface by Patrice Jeener.
Let \mathscr{S} be a Kummer surface in \mathbb{P}^{3}, and let \mathscr{C} be the smooth genus 2 curve such that

$$
\begin{equation*}
\mathscr{S} \cong \mathrm{J}(\mathscr{C}) /\langle\tau\rangle, \tag{1}
\end{equation*}
$$

where τ is the involution of the Jacobian $\mathrm{J}(\mathscr{C})$ that sends a point P to the point $-P$. Recall from [22, 28, 20, 17] that the quartic surface \mathscr{S} can be given by the equation

$$
\begin{align*}
a\left(x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right)+2 b(& \left.x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)+ \tag{2}\\
& +2 c\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)+2 d\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)+4 e x_{0} x_{1} x_{2} x_{3}=0
\end{align*}
$$

for some $[a: b: c: d: e] \in \mathbb{P}^{4}$ such that

$$
\begin{equation*}
a\left(a^{2}+e^{2}-b^{2}-c^{2}-d^{2}\right)+2 b c d=0 \tag{3}
\end{equation*}
$$

Throughout this paper, all varieties are assumed to be projective and defined over \mathbb{C}.

Note that the curve \mathscr{C} is hyperelliptic, and equation (3) defines a cubic threefold in \mathbb{P}^{4}, which is projectively equivalent to the Segre cubic threefold [28, 17].

Using a formula from the book [7] implemented in Magma [27], we can easily extract an equation of the surface \mathscr{S} from the curve \mathscr{C}. However, the resulting equation may differ from (2). For instance, if \mathscr{C} is the unique genus 2 curve such that $\operatorname{Aut}(\mathscr{C}) \cong \boldsymbol{\mu}_{2} \cdot \mathfrak{S}_{4}$, then \mathscr{C} is isomorphic to the curve

$$
\left\{z^{2}=x y\left(x^{4}-y^{4}\right)\right\} \subset \mathbb{P}(1,1,3)
$$

where x, y, z are homogeneous coordinates on $\mathbb{P}(1,1,3)$ of weights $1,1,2$, respectively. In this case, Magma produces the following Kummer quartic surface:

$$
\left\{x_{0}^{4}+2 x_{0}^{2} x_{2} x_{3}-2 x_{0}^{2} x_{2}^{2}+4 x_{0} x_{2}^{2} x_{2}-4 x_{0} x_{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}-2 x_{2} x_{2}^{2} x_{3}+x_{2}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

which is projectively equivalent to the surface given by (2) with parameters $a=b=1$, $c=d=-1, e=-4$ that do not satisfy (3). But this surface is projectively equivalent to

$$
\begin{equation*}
\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-4 i x_{0} x_{1} x_{2} x_{3}=0\right\} \subset \mathbb{P}^{3}, \tag{4}
\end{equation*}
$$

which is given by (2) with parameters $a=1, b=c=d=0, e=-i$ that do satisfy (3). Here, we use the following Magma code provided to us by Michela Artebani:

```
R<x>:=PolynomialRing(Rationals());
C:=HyperellipticCurve(x^5-x);
GroupName(GeometricAutomorphismGroup(C));
KummerSurfaceScheme(C);
```

It is not very difficult to recover the hyperelliptic curve \mathscr{C} from the quartic surface \mathscr{S}. Indeed, \mathbb{P}^{3} contains exactly 16 planes $\Pi_{1}, \ldots, \Pi_{16}$ such that $\left.\mathscr{S}\right|_{\Pi_{i}}=2 \mathcal{C}_{i}$ for each of them, where \mathcal{C}_{i} is a smooth conic, called trope. One can show that

- each plane Π_{i} contains exactly six singular points of the surface \mathscr{S},
- each singular point of the surface \mathscr{S} is contained in six planes among $\Pi_{1}, \ldots, \Pi_{16}$. Moreover, for every trope \mathcal{C}_{i}, there exists a double cover $\mathscr{C} \rightarrow \mathcal{C}_{i}$ which is ramified over the six points $\mathcal{C}_{i} \cap \operatorname{Sing}(\mathscr{S})$. This gives us an algorithm how to recover \mathscr{C} from \mathscr{S}.

Example 5. Suppose that the surface \mathscr{S} is given by the equation (2) with

$$
\left\{\begin{array}{l}
a=2 \\
b=-t^{2}-1 \\
c=-t^{2}-1, \\
d=-t^{2}-1, \\
e=t^{3}+3 t
\end{array}\right.
$$

where $t \in \mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$. Then the surface \mathscr{S} is given by the following equation:
(6) $x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+2\left(t^{3}+3 t\right) x_{0} x_{1} x_{2} x_{3}=\left(t^{2}+1\right)\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}+x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)$.

Its singular locus $\operatorname{Sing}(\mathscr{S})$ consists of the following 16 points:

$$
\begin{aligned}
& {[1: 1: 1: t],[-1: 1:-1: t],[-1:-1: 1: t],[1:-1:-1: t],} \\
& {[1: 1: t: 1],[1:-1: t:-1],[-1:-1: t: 1],[-1: 1: t:-1],} \\
& {[t: 1: 1: 1],[t:-1: 1:-1],[t: 1:-1:-1],[t:-1:-1: 1],} \\
& {[1: t: 1: 1],[-1: t:-1: 1],[1: t:-1:-1],[-1: t: 1:-1] .}
\end{aligned}
$$

Moreover, the planes $\Pi_{1}, \ldots, \Pi_{16}$ are listed in the following table:

$\Pi_{1}=\left\{x_{0}+x_{1}+x_{2}+t x_{3}=0\right\}$	$\Pi_{2}=\left\{x_{0}-x_{1}+x_{2}-t x_{3}=0\right\}$
$\Pi_{3}=\left\{x_{0}+x_{1}-x_{2}-t x_{3}=0\right\}$	$\Pi_{4}=\left\{x_{0}-x_{1}-x_{2}+t x_{3}=0\right\}$
$\Pi_{5}=\left\{x_{0}+x_{1}+t x_{2}+x_{3}=0\right\}$	$\Pi_{6}=\left\{x_{0}-x_{1}+t x_{2}-x_{3}=0\right\}$
$\Pi_{7}=\left\{x_{0}-t x_{2}+x_{1}-x_{3}=0\right\}$	$\Pi_{8}=\left\{x_{0}-x_{1}-t x_{2}+x_{3}=0\right\}$
$\Pi_{9}=\left\{x_{0}+t x_{1}+x_{2}+x_{3}=0\right\}$	$\Pi_{10}=\left\{x_{0}-t x_{1}-x_{2}+x_{3}=0\right\}$
$\Pi_{11}=\left\{x_{0}-t x_{1}+x_{2}-x_{3}=0\right\}$	$\Pi_{12}=\left\{x_{0}+t x_{1}-x_{2}-x_{3}=0\right\}$
$\Pi_{13}=\left\{t x_{0}+x_{1}+x_{2}+x_{3}=0\right\}$	$\Pi_{14}=\left\{t x_{0}-x_{1}-x_{2}+x_{3}=0\right\}$
$\Pi_{15}=\left\{t x_{0}-x_{1}+x_{2}-x_{3}=0\right\}$	$\Pi_{16}=\left\{t x_{0}+x_{1}-x_{2}-x_{3}=0\right\}$

Then the trope \mathcal{C}_{1} is the smooth conic

$$
\left\{x_{0}+x_{1}+x_{2}+t x_{3}=t x_{1} x_{3}+t x_{2} x_{3}+x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-x_{3}^{2}=0\right\} \subset \mathbb{P}^{3} .
$$

This conic contains the following six singular points of our surface:

$$
\begin{aligned}
& {[1:-1: t:-1],[-1: 1: t:-1],[t:-1: 1:-1],} \\
& {[t: 1:-1:-1],[1: t:-1:-1],[-1: t: 1:-1] .}
\end{aligned}
$$

Projecting from $[t: 1:-1:-1]$, we get an isomorphism $\mathcal{C}_{1} \cong \mathbb{P}^{1}$ that maps these points to

$$
[t+1:-2],[1: 0],[-1: 1],[1-t: 1+t],[0: 1],[t-1: 2] .
$$

Therefore, the hyperelliptic curve \mathscr{C} is isomorphic to the curve

$$
\left\{z^{2}=x y(x-y)((t-1) x+2 y)(2 x-(t+1) y)((t+1) x-(t-1) y)\right\} \subset \mathbb{P}(1,1,3)
$$

In particular, it follows from [6] or Magma computations that

$$
\operatorname{Aut}(\mathscr{C}) \cong\left\{\begin{array}{l}
\boldsymbol{\mu}_{2} \cdot \mathfrak{S}_{4} \text { if } t \in\{0, \pm i, 1 \pm 2 i,-1 \pm 2 i\} \\
\boldsymbol{\mu}_{2} \cdot \mathrm{D}_{12} \text { if } t \in\{0, \pm 3\} \\
\boldsymbol{\mu}_{2} \times \mathfrak{S}_{3} \text { if } t \text { is general. }
\end{array}\right.
$$

For instance, to identify $\operatorname{Aut}(\mathscr{C})$ in the case when $t=i$, one can use the following script:

```
K:=CyclotomicField(4);
R<x>:=PolynomialRing(K);
i:=Roots(x^2+1,K)[1,1];
t:=i;
f:=x*(x-1)*((t-1)*x+2)*(2*x-(t+1))*((t+1)*x-(t-1));
C:=HyperellipticCurve(f);
GroupName(GeometricAutomorphismGroup(C));
```

In this example, we assume that $t \notin\{ \pm 1, \pm \sqrt{3} i\}$, because

- if $t= \pm 1$ or $t=\infty$, then the equation (6) defines a union of 4 planes,
- if $t= \pm \sqrt{3} i$, the equation (6) defines a double quadric.

These are semistable degenerations with minimal $\mathrm{PGL}_{4}(\mathbb{C})$-orbits [32, Theorem 2.4].

Let $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ be the subgroup in $\mathrm{PGL}_{4}(\mathbb{C})$ consisting of projective transformations that leave \mathscr{S} invariant. Then $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ contains a subgroup $\mathbb{H} \cong \boldsymbol{\mu}_{2}^{4}$ generated by
$A_{1}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), A_{2}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), A_{3}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right), A_{4}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.
The action of this subgroup on \mathscr{S} is induced by the translations of $\mathrm{J}(\mathscr{C})$ by two-torsion points, so $\operatorname{Sing}(\mathscr{S})$ is an \mathbb{H}-orbit. Similarly, we see that \mathbb{H} acts transitively on the set

$$
\begin{equation*}
\left\{\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi_{4}, \Pi_{5}, \Pi_{6}, \Pi_{7}, \Pi_{8}, \Pi_{9}, \Pi_{10}, \Pi_{11}, \Pi_{12}, \Pi_{13}, \Pi_{14}, \Pi_{15}, \Pi_{16}\right\} . \tag{7}
\end{equation*}
$$

If \mathscr{S} is general, then $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)=\mathbb{H}$, and $\operatorname{Aut}(\mathscr{C})$ is generated by the hyperelliptic involution [23]. However, if \mathscr{S} is special, then $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ can be larger than \mathbb{H}.
Example 8. Let us use assumptions and notations of Example 5. For $t \in \mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$, the group $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ contains the subgroup isomorphic to $\boldsymbol{\mu}_{2}^{4} \rtimes \mathfrak{S}_{3}$ generated by

$$
A_{1}, A_{2}, A_{3}, A_{4},\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In fact, this is the whole group $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ if t is general. On the other hand, if $t=0$, then it follows from [8] that $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2}^{4} \rtimes \mathrm{D}_{12}$, and this group is generated by

$$
A_{1}, A_{2}, A_{3}, A_{4},\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

If $t= \pm i$, then \mathscr{S} is the surface (4), and $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2}^{4} \rtimes \mathfrak{S}_{4}$ is generated by

$$
A_{1}, A_{2}, A_{3}, A_{4},\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Example 9. Suppose that \mathscr{S} is given by the equation (2) with

$$
\left\{\begin{array}{l}
a=2 \zeta_{5}^{3}+2 \zeta_{5}^{2}+6 \zeta_{5}-1 \\
b=4 \zeta_{5}^{3}+4 \zeta_{5}^{2}-10 \zeta_{5}+9 \\
c=-6 \zeta_{5}^{3}-6 \zeta_{5}^{2}+4 \zeta_{5}+3 \\
d=11 \\
e=-20 \zeta_{5}^{3}+24 \zeta_{5}^{2}-16 \zeta_{5}+10
\end{array}\right.
$$

Then $\operatorname{Aut}(\mathscr{C}) \cong \boldsymbol{\mu}_{2} \times \boldsymbol{\mu}_{5}$ and $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{5}$, which is generated by

$$
A_{1}, A_{2}, A_{3}, A_{4},\left(\begin{array}{cccc}
-i & 0 & 0 & i \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & -i & i & 0
\end{array}\right)
$$

Looking at Examples 5,8 and 9 , one can spot a relation between $\operatorname{Aut}(\mathscr{S})$ and $\operatorname{Aut}(\mathscr{C})$. In fact, this relation holds for all Kummer surfaces in \mathbb{P}^{3} by the following well-known result, about which we learned from Igor Dolgachev.

Lemma 10. Let $\iota \in \operatorname{Aut}(\mathscr{C})$ be the hyperelliptic involution of the curve \mathscr{C}. Then

$$
\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2}^{4} \rtimes(\operatorname{Aut}(\mathscr{C}) /\langle\iota\rangle)
$$

Proof. Let us identify \mathscr{C} with the theta divisor in $\mathrm{J}(\mathscr{C})$ via the Abel-Jacobi map whose base point is one of the fixed points of the involution ι (one of the six Weierstrass points). Then the linear system $|2 \mathscr{C}|$ gives a morphism $\mathrm{J}(\mathscr{C}) \rightarrow \mathbb{P}^{3}$ whose image is the surface \mathscr{S}. Taking the Stein factorization of the morphism $\mathrm{J}(\mathscr{C}) \rightarrow \mathscr{S}$, we get the isomorphism (1).

On the other hand, elements in $\operatorname{Aut}(\mathscr{C})$ give automorphisms in $\operatorname{Aut}(\mathrm{J}(\mathscr{C}))$ that leave the linear system $|2 \mathscr{C}|$ invariant. This gives us a homomorphism $\operatorname{Aut}(\mathscr{C}) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$, whose kernel is the hyperelliptic involution ι, since ι induces the involution $\tau \in \operatorname{Aut}(\mathrm{J}(\mathscr{C}))$.

The image of the group $\operatorname{Aut}(\mathscr{C})$ in $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ normalizes the subgroup \mathbb{H}, because elements in \mathbb{H} are induced by the translations of the Jacobian $\mathrm{J}(\mathscr{C})$ by two-torsion points. This gives a monomorphism $\vartheta: \boldsymbol{\mu}_{2}^{4} \rtimes(\operatorname{Aut}(\mathscr{C}) /\langle\iota\rangle) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$.

We claim that ϑ is an epimorphism. Indeed, the action of an element $g \in \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ on the surface \mathscr{S} lifts to its its action on the Jacobian $\mathrm{J}(\mathscr{C})$ that leaves [$2 \mathscr{C}$] invariant, so composing g with some $h \in \mathbb{H}$, we obtain an element $g \circ h$ that preserves the class $[\mathscr{C}]$. Thus, since $[\mathscr{C}]$ is a principal polarization, the composition $g \circ h$ preserves \mathscr{C}, and it acts faithfully on \mathscr{C}, since \mathscr{C} generates $\mathrm{J}(\mathscr{C})$. This gives $g \circ h \in \operatorname{im}(\vartheta)$, so ϑ is surjective.

Since $\operatorname{Aut}(\mathscr{C})$ is isomorphic to a group among $\boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{2}^{2}, \mathrm{D}_{8}, \mathrm{D}_{12}, \boldsymbol{\mu}_{2} \cdot \mathrm{D}_{12}, \boldsymbol{\mu}_{2} \cdot \mathfrak{S}_{4}, \boldsymbol{\mu}_{2} \times \boldsymbol{\mu}_{5}$, we conclude that $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ is isomorphic to one of the following groups:

$$
\boldsymbol{\mu}_{2}^{4}, \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{2}^{2}, \boldsymbol{\mu}_{2}^{4} \rtimes \mathfrak{S}_{3}, \boldsymbol{\mu}_{2}^{4} \rtimes \mathrm{D}_{12}, \boldsymbol{\mu}_{2}^{4} \rtimes \mathfrak{S}_{4}, \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{5} .
$$

Note that the group $\operatorname{Aut}(\mathscr{S})$ is always larger that $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ [23].
Remark 11 ([4, 28, 20]). Let \mathfrak{N} be the normalizer of the subgroup \mathbb{H} in the group $\mathrm{PGL}_{4}(\mathbb{C})$. Then $\operatorname{Aut}(\mathscr{C}) \subset \mathfrak{N}$, and there is a non-split exact sequence $1 \longrightarrow \mathbb{H} \longrightarrow \mathfrak{N} \longrightarrow \mathfrak{S}_{6} \longrightarrow 1$, which can be described as follows. Let

$$
B_{1}=\left(\begin{array}{cccc}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } B_{2}=\left(\begin{array}{cccc}
-i & 0 & 0 & i \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & -i & i & 0
\end{array}\right)
$$

Then $\left\langle B_{1}, B_{2}\right\rangle \in \mathfrak{N}$. Since $B_{1}^{2} \in \mathbb{H}, B_{2}^{5}=\left(B_{1} B_{2}\right)^{6}=\left[B_{1}, B_{2}\right]^{3}=\operatorname{Id}_{\mathbb{P}^{3}},\left[B_{1}, B_{2} B_{1} B_{2}\right]^{2} \in \mathbb{H}$, the images of B_{1} and B_{2} in the quotient $\mathfrak{N} / \mathbb{H}$ generate the whole group $\mathfrak{N} / \mathbb{H} \cong \mathfrak{S}_{6}$. Set

$$
\begin{aligned}
& S_{1}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-6\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)-6\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)-6\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)=0\right\}, \\
& S_{2}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-6\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)+6\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)+6\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)=0\right\}, \\
& S_{3}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+6\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)-6\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)+6\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)=0\right\}, \\
& S_{4}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+6\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)+6\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)-6\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)=0\right\}, \\
& S_{5}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-12 x_{0} x_{1} x_{2} x_{3}=0\right\}, \\
& S_{6}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+12 x_{0} x_{1} x_{2} x_{3}=0\right\} .
\end{aligned}
$$

Then $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ are \mathbb{H}-invariant surfaces, and the quotient $\mathfrak{N} / \mathbb{H}$ permutes them. For instance, the transformation B_{1} acts on the set $\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$ as (12)(34)(56), and B_{2} acts as the permutation (12635). This gives an explicit isomorphism $\mathfrak{N} / \mathbb{H} \cong \mathfrak{S}_{6}$.

Remark 12. The quotient $\operatorname{Aut}(\mathscr{S}) / \mathbb{H}$ naturally linearly acts on the threefold (3) fixing the point $[a: b: c: d: e]$ that corresponds to \mathscr{S}. Projecting the threefold from this point, we obtain a (rational) double cover of \mathbb{P}^{3} that is branched along the surface \mathscr{S}.

Let $\pi: X \rightarrow \mathbb{P}^{3}$ be the double cover branched along the surface \mathscr{S}. Set $H=\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{3}}(1)\right)$. Then $\operatorname{Pic}(X)=\mathbb{Z}[H], H^{3}=2$ and $-K_{X} \sim 2 H$, so X is a del Pezzo threefold of degree 2, which has 16 ordinary double points. We say that X is a Kummer quartic double solid [33].

The threefold X is a hypersurface in $\mathbb{P}(1,1,1,1,2)$ given by

$$
\begin{align*}
w^{2}=a\left(x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right) & +2 b\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}\right)+ \tag{13}\\
& +2 c\left(x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}\right)+2 d\left(x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)+4 e x_{0} x_{1} x_{2} x_{3}=0
\end{align*}
$$

where we consider $x_{0}, x_{1}, x_{2}, x_{3}$ as homogeneous coordinates on $\mathbb{P}(1,1,1,1,2)$ of weight 1 , and w is a homogeneous coordinate on $\mathbb{P}(1,1,1,1,2)$ of weight 2 .

It is well-known that the threefold X is rational [31, 33, 29, 11], see also Remark 12 , Moreover, it follows from [29] that there exists the following commutative diagram:

where η is a blow up of six distinct points that are contained in a twisted cubic $C_{3} \subset \mathbb{P}^{3}$, the morphism φ is a contraction of the proper transform of the curve C_{3} and proper transforms of 15 lines in \mathbb{P}^{3} that pass through two blown up points, and χ is a rational map given by the linear system of quadric surfaces that pass through six blown up points.

Corollary 15 ([15, [19]). One has $\mathrm{Cl}(X) \cong \mathbb{Z}^{7}$.
Remark 16. The vertices of the quadric cones in \mathbb{P}^{3} that pass through six blown up points in the diagram (14) span a quartic surface \mathfrak{S} which is known as the Weddle surface [22, 33]. This surface has nodes at the six blown points, and χ induces a birational map $\mathfrak{S} \rightarrow \mathscr{S}$. On the other hand, the double cover of \mathbb{P}^{3} branched along \mathfrak{S} is irrational [33, 11].

Let $\sigma \in \operatorname{Aut}(X)$ be the Galois involution of the double cover π. Then σ is contained in the center of the group $\operatorname{Aut}(X)$. Moreover, since π is $\operatorname{Aut}(X)$-equivariant, it induces a homomorphism $v: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right)$ with $\operatorname{ker}(v)=\langle\sigma\rangle$, so we have exact sequence

$$
1 \longrightarrow\langle\sigma\rangle \longrightarrow \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \longrightarrow 1
$$

The main result of this paper is the following theorem (cf. [2, 3, 10]).
Theorem 17. Let G be any subgroup in $\operatorname{Aut}(X)$ such that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ and $\mathbb{H} \subseteq v(G)$. Then the Fano threefold X is G-birationally super-rigid.

Corollary 18. Let G be any subgroup in $\operatorname{Aut}(X)$ such that G contains σ and $\mathbb{H} \subseteq v(G)$. Then X is G-birationally super-rigid.

The condition $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ in Theorem 17 simply means that X is a G-Mori fibre space, which is required by the definition of G-birational super-rigidity (see [13, Definition 3.1.1]). The condition $\mathbb{H} \subseteq v(G)$ does not imply that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$, see Examples 28 and 29 below. The following example shows that we cannot remove the condition $\mathbb{H} \subseteq v(G)$.

Example 19. Observe that $\mathrm{Cl}^{\langle\sigma\rangle}(X) \cong \mathbb{Z}$. Let S_{1} and S_{2} be two general surfaces in $|H|$, and let $C=S_{1} \cap S_{2}$. Then C is a smooth irreducible $\langle\sigma\rangle$-invariant curve, $\pi(C)$ is a line, and there exists $\langle\sigma\rangle$-commutative diagram

where α is the blow up of the curve C, the dashed arrow \rightarrow is given by the pencil generated by the surfaces S_{1} and S_{2}, and β is a fibration into del Pezzo surfaces of degree 2 . Therefore, the threefold X is not $\langle\sigma\rangle$-birationally rigid.

Let G be a subgroup in $\operatorname{Aut}(X)$ such that $v(G)$ contains \mathbb{H}. Before proving Theorem 17 , let us explain how to check the condition $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$. For a homomorphism $\rho: \mathbb{H} \rightarrow \boldsymbol{\mu}_{2}$, consider the action of the group \mathbb{H} on the threefold X given by

$$
\begin{aligned}
& A_{1}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[-x_{0}: x_{1}:-x_{2}: x_{3}: \rho\left(A_{1}\right) w\right], \\
& A_{2}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[-x_{0}: x_{1}:-x_{2}: x_{3}: \rho\left(A_{2}\right) w\right], \\
& A_{3}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[x_{1}: x_{2}: x_{3}: x_{2}: \rho\left(A_{3}\right) w\right], \\
& A_{4}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[x_{3}: x_{2}: x_{1}: x_{0}: \rho\left(A_{4}\right) w\right] .
\end{aligned}
$$

This gives a lift of the subgroup \mathbb{H} to $\operatorname{Aut}(X)$. Let \mathbb{H}^{ρ} be the resulting subgroup in $\operatorname{Aut}(X)$. Since $\mathbb{H} \subset v(G)$, we may assume that $\mathbb{H}^{\rho} \subset G$. If ρ is trivial, we let $\mathbb{H}=\mathbb{H}^{\rho}$ for simplicity.

For every plane Π_{i}, one has $\pi^{*}\left(\Pi_{i}\right)=\Pi_{i}^{+}+\Pi_{i}^{-}$, where Π_{i}^{+}and Π_{i}^{-}are two irreducible surfaces such that $\Pi_{i}^{+} \neq \Pi_{i}^{-}$and $\sigma\left(\Pi_{i}^{+}\right)=\Pi_{i}^{-}$. Note that we do not have a canonical way to distinguish between the surfaces Π_{i}^{+}and Π_{i}^{-}. Namely, if $\pi^{*}\left(\Pi_{i}\right)$ is given by

$$
\left\{\begin{array}{l}
h_{i}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0 \\
w^{2}=g_{i}^{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
\end{array}\right.
$$

where h_{i} is a linear polynomial such that $\Pi_{i}=\left\{h_{i}=0\right\}$, and g_{i} is a quadratic polynomial such that the trope \mathcal{C}_{i} is given by $h_{i}=g_{i}=0$, then

$$
\Pi_{i}^{ \pm}=\left\{w \pm g_{i}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=h_{i}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \subset \mathbb{P}(1,1,1,1,2)
$$

But the choice of \pm here is not uniquely defined, because we can always swap g_{i} with $-g_{i}$.
On the other hand, since \mathbb{H} acts transitively on the set (7), the set

$$
\left\{\Pi_{1}^{+}, \Pi_{1}^{-}, \Pi_{2}^{+}, \Pi_{2}^{-}, \Pi_{3}^{+}, \Pi_{3}^{-} \ldots, \Pi_{14}^{+}, \Pi_{14}^{-}, \Pi_{15}^{+}, \Pi_{15}^{-}, \Pi_{16}^{+}, \Pi_{16}^{-}\right\}
$$

splits into two \mathbb{H}^{ρ}-orbits consisting of 16 surfaces such that each of them contains exactly one surface among Π_{i}^{+}and Π_{i}^{-}for every i. Hence, we may assume that these \mathbb{H}^{ρ}-orbits are

$$
\left\{\Pi_{1}^{+}, \Pi_{2}^{+}, \Pi_{3}^{+}, \Pi_{4}^{+}, \Pi_{5}^{+}, \Pi_{6}^{+}, \Pi_{7}^{+}, \Pi_{8}^{+}, \Pi_{9}^{+}, \Pi_{10}^{+}, \Pi_{11}^{+}, \Pi_{12}^{+}, \Pi_{13}^{+}, \Pi_{14}^{+}, \Pi_{15}^{+}, \Pi_{16}^{+}\right\}
$$

and

$$
\left\{\Pi_{1}^{-}, \Pi_{2}^{-}, \Pi_{3}^{-}, \Pi_{4}^{-}, \Pi_{5}^{-}, \Pi_{6}^{-}, \Pi_{7}^{-}, \Pi_{8}^{-}, \Pi_{9}^{-}, \Pi_{10}^{-}, \Pi_{11}^{-}, \Pi_{12}^{-}, \Pi_{13}^{-}, \Pi_{14}^{-}, \Pi_{15}^{-}, \Pi_{16}^{-}\right\} .
$$

Note that the surfaces $\Pi_{1}^{+}, \Pi_{1}^{-}, \ldots, \Pi_{16}^{+}, \Pi_{16}^{-}$are not \mathbb{Q}-Cartier divisors on X, and their strict transforms on the threefold \widehat{X} in $\sqrt{14}$ can be described as follows:
(a) six of them are η-exceptional surfaces;
(b) another six of them are strict transforms of quadric cones in \mathbb{P}^{3} that contain all blown up points and are singular at one of them;
(c) the remaining twenty of them are proper transforms of the planes in \mathbb{P}^{3} that pass through three blown up points.
Note also that σ acts birationally on \widehat{X} as a composition of flops of φ-contracted curves. Moreover, it is not difficult to see that σ swaps six surfaces in (a) with six surfaces in (b), and σ maps the strict transform of the plane in \mathbb{P}^{3} that passes through three blown up points to the strict transform of the plane that passes through other blown up points.

Corollary 20. The surfaces $\Pi_{1}^{+}, \Pi_{1}^{-}, \ldots, \Pi_{16}^{+}, \Pi_{16}^{-}$generate the group $\mathrm{Cl}(X)$.
Corollary 21. Either $\mathrm{Cl}^{\mathbb{H}^{\rho}}(X) \cong \mathbb{Z}$ or $\mathrm{Cl}^{\mathbb{H}^{\rho}}(X) \cong \mathbb{Z}^{2}$.
Now, we are ready to state a criterion for $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$. To do this, we set

$$
\Pi^{ \pm}=\sum_{i=1}^{16} \Pi_{i}^{ \pm}
$$

Then Π^{+}and Π^{-}are \mathbb{H}^{ρ}-invariant divisors, $\sigma\left(\Pi^{+}\right)=\Pi^{-}$and $\Pi^{+}+\Pi^{-} \sim 16 H$.
Lemma 22. One has $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ is at least one of the following conditions is satisfied:
(i) the group G swaps Π^{+}and Π^{-};
(ii) the divisor Π^{+}is Cartier;
(iii) the divisor Π^{-}is Cartier;
(iv) the surfaces $\Pi_{1}^{+}, \ldots, \Pi_{16}^{+}$generate the group $\mathrm{Cl}(X)$;
(v) the surfaces $\Pi_{1}^{-}, \ldots, \Pi_{16}^{-}$generate the group $\mathrm{Cl}(X)$.

Proof. The assertion follows from Corollary 21, since we assume that $\mathbb{H}^{\rho} \subset G$.
This lemma is easy to apply if we fix \mathscr{S} and the group $G \subset \operatorname{Aut}(X)$ such that $\mathbb{H} \subset v(G)$. For instance, to check whether the surfaces $\Pi_{1}^{+}, \ldots, \Pi_{16}^{+}$generate the group $\mathrm{Cl}(X)$ or not, we can use the fact that $\mathrm{Cl}(X) \cong \mathbb{Z}^{7}$ is naturally equipped with an intersection form [29]. Namely, fix a smooth del Pezzo surface $S \in|H|$, and let

$$
D_{1} \bullet D_{2}=\left.\left.D_{1}\right|_{S} \cdot D_{2}\right|_{S} \in \mathbb{Z}
$$

for any two Weil divisors D_{1} and D_{2} in $\mathrm{Cl}(X)$. Then

$$
\Pi_{i}^{ \pm} \bullet \Pi_{j}^{ \pm}=\left\{\begin{array}{l}
0 \text { if } i \neq j \text { and } \Pi_{i}^{ \pm} \cap \Pi_{j}^{ \pm} \text {does not contain curves, } \\
1 \text { if } i \neq j \text { and } \Pi_{i}^{ \pm} \cap \Pi_{j}^{ \pm} \text {contains a curve, } \\
-1 \text { if } i=j \text { and } \Pi_{i}^{ \pm}=\Pi_{j}^{ \pm} \\
2 \text { if } i=j \text { and } \Pi_{i}^{ \pm} \neq \Pi_{j}^{ \pm}
\end{array}\right.
$$

where two \pm in $\Pi_{i}^{ \pm}$and $\Pi_{j}^{ \pm}$are independent.
Remark 23. Let Λ be the sublattice in $\mathrm{Cl}(X)$ consisting of divisors D such that $D \bullet H=0$. Then Λ is isomorphic to a root lattice of type D_{6} by [29, Theorem 1.7], and the natural homomorphism $\operatorname{Aut}(X) \rightarrow \operatorname{Aut}(\Lambda)$ is injective by [29], where $\operatorname{Aut}(\Lambda) \cong\left(\boldsymbol{\mu}_{2}^{5} \rtimes \mathfrak{S}_{6}\right) \rtimes \boldsymbol{\mu}_{2}$.

Applying Lemma 22, we get
Corollary 24. If $\operatorname{rank}\left(\Pi_{i}^{+} \bullet \Pi_{j}^{+}\right)=7$ or $\operatorname{rank}\left(\Pi_{i}^{-} \bullet \Pi_{j}^{-}\right)=7$, then $\mathrm{Cl}^{\mathbb{H}^{\rho}}(X) \cong \mathbb{Z}$.
Let us show how to apply Corollary 24 in the case when \mathscr{S} is the surface (6).
Example 25. Let us use assumptions and notations of Example 5. Suppose, in addition, that $\rho: \mathbb{H} \rightarrow \boldsymbol{\mu}_{2}$ is the trivial homomorphism. Therefore, we have $\mathbb{H}{ }^{\rho}=\mathbb{H}$. Set $t=\frac{2 s}{s^{2}+1}$. Observe that $\pi^{*}\left(\Pi_{1}\right)$ is given in $\mathbb{P}(1,1,1,1,2)$ by the following equations:
$\left\{\begin{array}{l}x_{0}+x_{1}+x_{2}+\frac{2 s}{s^{2}+1} x_{3}=0, \\ w^{2}=\frac{\left(s^{2}-1\right)^{2}}{\left(s^{2}+1\right)^{4}}\left(\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right)^{2} .\end{array}\right.$
Thus, without loss of generality, we may assume that the surface Π_{1}^{+}is given by

$$
\left\{\begin{array}{l}
x_{0}+x_{1}+x_{2}+\frac{2 s}{s^{2}+1} x_{3}=0 \\
w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right)
\end{array}\right.
$$

Then the defining equations of the remaining surfaces $\Pi_{2}^{+}, \ldots, \Pi_{16}^{+}$are listed in Figure 2 , Now, the intersection matrix $\left(\Pi_{i}^{+} \bullet \Pi_{j}^{+}\right)$can be computed as follows:

$$
\left(\begin{array}{cccccccccccccccc}
-1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & -1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & -1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & -1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & -1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & -1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & -1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & -1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & -1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & -1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & -1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & -1
\end{array}\right)
$$

The rank of this matrix is 7 . Therefore, we conclude that $\mathrm{Cl}^{\mathbb{H}}(X) \cong \mathbb{Z}$ by Corollary 24 Note that we can also prove this using Lemma 22(ii). To do this, it is enough to show that the divisor Π^{+}is a Cartier divisor, which can be done locally at any point in $\operatorname{Sing}(X)$. For instance, let $P=[t: 1: 1: 1: 0] \in \operatorname{Sing}(X)$. Among $\Pi_{1}^{+}, \ldots, \Pi_{16}^{+}$, only

$$
\Pi_{2}^{+}, \Pi_{3}^{+}, \Pi_{7}^{+}, \Pi_{8}^{+}, \Pi_{10}^{+}, \Pi_{11}^{+}
$$

pass through P. Choosing a generator of the local class group $\mathrm{Cl}_{P}(X) \cong \mathbb{Z}$, we see that the classes of the surfaces $\Pi_{2}^{+}, \Pi_{3}^{+}, \Pi_{7}^{+}, \Pi_{8}^{+}, \Pi_{10}^{+}, \Pi_{11}^{+}$are $1,-1,1,-1,1,-1$, respectively. Hence, we see that Π^{+}is locally Cartier at P, which implies that Π^{+}is globally Cartier, because the group \mathbb{H} acts transitively on the set $\operatorname{Sing}(X)$.

Example 26. Let us use assumptions and notations of Example 5. Then Aut (X) contains a unique subgroup G such that $G \cong v(G) \cong \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{3}$, and $v(G)$ is generated by

$$
A_{1}, A_{2}, A_{3}, A_{4},\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

One can check that G contains the subgroup $\mathbb{H}=\mathbb{H}^{\rho}$, where ρ is a trivial homomorphism. Therefore, it follows from Example 25 that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$.

If $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}^{2}$, then exists a uniquely determined G-Sarkisov link

where ϖ is a G-equivariant small resolution, ς flops ϖ-contracted curves, and

- either φ is a G-extremal birational contraction, and Z is a Fano threefold,
- or φ is a conic bundle, and Z is a surface,
- or φ is a del Pezzo fibration, and $Z \cong \mathbb{P}^{1}$.

Note that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}^{2}$ is indeed possible. Let us give two (related) examples.
Example 28. Let us use all assumptions and notations of Example 25, and let $G=\mathbb{H}^{\rho}$, where the homomorphism ρ is defined by $\rho\left(A_{1}\right)=-1, \rho\left(A_{2}\right)=1, \rho\left(A_{3}\right)=-1, \rho\left(A_{4}\right)=1$. Then, arguing as in Example 25, we compute $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}^{2}$. What is 27) in this case?

Example 29. Let us use all assumptions and notations of Example 9, Then

$$
\operatorname{Aut}(X) \cong \boldsymbol{\mu}_{2} \times \operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2} \times\left(\boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{5}\right)
$$

and the group $\operatorname{Aut}(X)$ contains a unique subgroup isomorphic to $\operatorname{Aut}\left(\mathbb{P}^{3}, \mathscr{S}\right) \cong \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{5}$. Suppose that G is this subgroup. It follows from Remark 23 that $\operatorname{Cl}(X) \otimes \mathbb{Q}$ is a faithful seven-dimensional G-representation. Using this, it is easy to see that $\mathrm{Cl}(X) \otimes \mathbb{Q}$ splits as a sum of an irreducible five-dimensional representation and two trivial one-dimensional representations. Hence, we conclude that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}^{2}$. What is (27) in this case?

Before proving Theorem 17, let us prove its two baby cases, which follow from [14, 12].
Proposition 30. Suppose $G=\operatorname{Aut}(X)$, and \mathscr{S} is the quartic surface from Example 9 . Then $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ and X is G-birationally super-rigid.
Proof. Since $\sigma \in G$, we get $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$. Let us show that X is G-birationally super-rigid.
Note that the $v(G)$-equivariant birational geometry of the projective space \mathbb{P}^{3} has been studied in [14]. In particular, we know from [14, Corollary 4.7] and [14, Theorem 4.16] that

- \mathbb{P}^{3} does not contain $v(G)$-orbits of length less that 16 ,
- \mathbb{P}^{3} does not contain $v(G)$-invariant curves of degree less than 8 .

Let \mathcal{M} be a G-invariant linear system on X such that \mathcal{M} has no fixed components. Choose a positive integer n such that $\mathcal{M} \subset|n H|$. Then, by [13, Corollary 3.3.3], to prove that the threefold X is G-birationally super-rigid it is enough to show that $\left(X, \frac{2}{n} \mathcal{M}\right)$ has canonical singularities. Suppose that the singularities of this \log pair are not canonical.

Let Z be a center of non-canonical singularities of the pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ that has the largest dimension. Since the linear system \mathcal{M} does not have fixed components, we conclude that either Z is an irreducible curve, or Z is a point. In both cases, we have

$$
\operatorname{mult}_{Z}(\mathcal{M})>\frac{n}{2}
$$

by [24, Theorem 4.5].
Let M_{1} and M_{2} be general surfaces in \mathcal{M}. If Z is a curve, then

$$
M_{1} \cdot M_{2}=\left(M_{1} \cdot M_{2}\right)_{Z} \mathscr{Z}+\Delta
$$

where \mathscr{Z} is the G-irreducible curve in X whose irreducible component is the curve Z, and Δ is an effective one-cycle whose support does not contain \mathscr{Z}, which gives

$$
\begin{aligned}
& 2 n^{2}=n^{2} H^{2}= H \cdot M_{1} \cdot M_{2}=\left(M_{1} \cdot M_{2}\right)_{Z} \mathscr{Z}+\Delta= \\
&=\left(M_{1} \cdot M_{2}\right)_{Z}(H \cdot \mathscr{Z})+H \cdot \Delta \geqslant\left(M_{1} \cdot M_{2}\right)_{Z}(H \cdot \mathscr{Z}) \geqslant \\
& \geqslant \operatorname{mult}_{Z}^{2}(\mathcal{M})(H \cdot \mathscr{Z})>\frac{n^{2}}{4}(H \cdot \mathscr{Z}) \geqslant \frac{n^{2}}{4} \operatorname{deg}(\pi(\mathscr{Z})),
\end{aligned}
$$

so $\pi(\mathscr{Z})$ is a $v(G)$-invariant curve of degree $\leqslant 7$, which contradicts [14, Theorem 4.16].
We see that Z is a point, and $\left(X, \frac{2}{n} \mathcal{M}\right)$ is canonical away from finitely many points.
We claim that $Z \notin \operatorname{Sing}(X)$. Indeed, suppose Z is a singular point of the threefold X. Let $h: \bar{X} \rightarrow X$ be the blow up of the locus $\operatorname{Sing}(X)$, let E_{1}, \ldots, E_{16} be the h-exceptional surfaces, let \bar{M}_{1} and \bar{M}_{1} be the proper transforms on \bar{X} of the surfaces M_{1} and M_{2}, respectively. Write $E=E_{1}+\cdots+E_{16}$. Since $\operatorname{Sing}(X)$ is a G-orbit, we have

$$
\bar{M}_{1} \sim \bar{M}_{2} \sim h^{*}(H)-\epsilon E
$$

for some integer $\epsilon \geqslant 0$. Using [16, Theorem 3.10] or [9, Theorem 1.7.20], we get $\epsilon>\frac{n}{2}$. On the other hand, the linear system $\left|h^{*}(3 H)-E\right|$ is not empty and does not have base curves away from the locus $E_{1} \cup E_{2} \cup \cdots \cup E_{16}$, because $\operatorname{Sing}(\mathscr{S})$ is cut out by cubic surfaces in \mathbb{P}^{3}. In particular, the divisor $h^{*}(3 H)-E$ is nef, so

$$
0 \leqslant\left(h^{*}(3 H)-E\right) \cdot \bar{M}_{1} \cdot \bar{M}_{2}=\left(h^{*}(3 H)-E\right) \cdot\left(h^{*}(3 n H)-\epsilon E\right)^{2}=6 n^{2}-32 \epsilon
$$

which is impossible, since $\epsilon>\frac{n}{2}$. So, we see that Z is a smooth point of the threefold X.
Then the pair $\left(X, \frac{3}{n} \mathcal{M}\right)$ is not \log canonical at Z. Let μ be the largest rational number such that the \log pair $(X, \mu \mathcal{M})$ is \log canonical. Then $\mu<\frac{3}{n}$ and

$$
\operatorname{Orb}_{G}(Z) \subseteq \operatorname{Nklt}(X, \mu \mathcal{M})
$$

Observe that $\operatorname{Nklt}(X, \mu \mathcal{M})$ is at most one-dimensional, since \mathcal{M} has no fixed components. Moreover, this locus is G-invariant, because \mathcal{M} is G-invariant.

We claim that $\operatorname{Nklt}(X, \mu \mathcal{M})$ does not contain curves. Indeed, suppose this is not true. Then $\operatorname{Nklt}(X, \mu \mathcal{M})$ contains a G-irreducible curve C. We write $M_{1} \cdot M_{2}=m C+\Omega$, where m is a non-negative integer, and Ω is an effective one-cycle whose support does not contain the curve C. Then it follows from [16, Theorem 3.1] that

$$
m \geqslant \frac{4}{\mu^{2}}>\frac{4 n^{2}}{9}
$$

Therefore, we have

$$
2 n^{2}=n^{2} H^{3}=H \cdot M_{1} \cdot M_{2}=m(H \cdot C)+H \cdot \Omega \geqslant m(H \cdot C)>\frac{4 n^{2}}{9}(H \cdot C)
$$

which implies that $H \cdot C \leqslant 4$. Then $\pi(C)$ is a $v(G)$-invariant curve in \mathbb{P}^{3} of degree $\leqslant 4$, which contradicts [14, Theorem 4.16]. Thus, the locus $\operatorname{Nklt}(X, \mu \mathcal{M})$ contains no curves.

Let \mathcal{I} be the multiplier ideal sheaf of the pair $(X, \mu \mathcal{M})$, and let \mathcal{L} be the corresponding subscheme in X. Then \mathcal{L} is a zero-dimensional (reduced) subscheme such that

$$
\operatorname{Orb}_{G}(Z) \subseteq \operatorname{Supp}(\mathcal{L})=\operatorname{Nklt}(X, \mu \mathcal{M})
$$

Applying Nadel's vanishing [26, Theorem 9.4.8], we get

$$
h^{1}\left(X, \mathcal{I} \otimes \mathcal{O}_{X}(H)\right)=0
$$

This gives

$$
4=h^{0}\left(X, \mathcal{O}_{X}(H)\right) \geqslant h^{0}\left(\mathcal{O}_{\mathcal{L}} \otimes \mathcal{O}_{X}(H)\right)=h^{0}\left(\mathcal{O}_{\mathcal{L}}\right) \geqslant\left|\operatorname{Orb}_{G}(Z)\right| .
$$

In particular, we conclude that the length of the $v(G)$-orbit of the point $\pi(Z)$ is at most 4 , which is impossible by [14, Corollary 4.7].

Proposition 31. Suppose that \mathscr{S} is the surface from Example 5, and G is the subgroup described in Example 26. Then $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ and X is G-birationally super-rigid.

Proof. Recall from Example 26 that $G \cong \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{3}$ and $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$.
The $v(G)$-equivariant geometry of the projective space \mathbb{P}^{3} has been studied in [12]. In particular, we know from [12] that \mathbb{P}^{3} does not contain $v(G)$-orbits of length 1,2 or 3 , and the only $v(G)$-orbits in \mathbb{P}^{3} of length 4 are

$$
\begin{aligned}
& \Sigma_{4}=\{[1: 0: 0: 0],[0: 1: 0: 0],[0: 0: 1: 0],[0: 0: 0: 1]\} \\
& \Sigma_{4}^{\prime}=\{[1: 1: 1:-1],[1: 1:-1: 1],[1:-1: 1: 1],[-1: 1: 1: 1]\}, \\
& \Sigma_{4}^{\prime \prime}=\{[1: 1: 1: 1],[1: 1:-1:-1],[1:-1:-1: 1],[-1:-1: 1: 1]\}
\end{aligned}
$$

We also know from [12] the classification of $v(G)$-invariant curves in \mathbb{P}^{3} of degree at most 7 . To present it, let $\mathcal{L}_{4}, \mathcal{L}_{4}^{\prime}, \mathcal{L}_{4}^{\prime \prime}, \mathcal{L}_{4}^{\prime \prime \prime}, \mathcal{L}_{6}, \mathcal{L}_{6}^{\prime}, \mathcal{L}_{6}^{\prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime \prime}$ be $v(G)$-irreducible curves in \mathbb{P}^{3} whose irreducible components are the lines

$$
\begin{array}{r}
\left\{2 x_{0}+(1+\sqrt{3} i) x_{2}-(1-\sqrt{3} i) x_{3}=2 x_{1}+(1-\sqrt{3} i) x_{2}+(1+\sqrt{3} i) x_{3}=0\right\}, \\
\left\{2 x_{0}+(1-\sqrt{3} i) x_{2}-(1+\sqrt{3} i) x_{3}=2 x_{1}+(1+\sqrt{3} i) x_{2}+(1-\sqrt{3} i) x_{3}=0\right\}, \\
\left\{2 x_{0}-(1-\sqrt{3} i) x_{2}+(1+\sqrt{3} i) x_{3}=2 x_{1}+(1+\sqrt{3} i) x_{2}+(1-\sqrt{3} i) x_{3}=0\right\}, \\
\left\{2 x_{0}-(1+\sqrt{3} i) x_{2}+(1-\sqrt{3} i) x_{3}=2 x_{1}+(1-\sqrt{3} i) x_{2}+(1+\sqrt{3} i) x_{3}=0\right\}, \\
\left\{x_{0}=x_{1}=0\right\}, \\
\left\{x_{0}+x_{1}=x_{2}-x_{3}=0\right\}, \\
\left\{x_{0}+x_{1}=x_{2}+x_{3}=0\right\}, \\
\left\{x_{0}+i x_{2}=x_{1}+i x_{3}=0\right\}, \\
\left\{x_{0}+i x_{3}=x_{1}+i x_{2}=0\right\},
\end{array}
$$

respectively. Then the curves $\mathcal{L}_{4}, \mathcal{L}_{4}^{\prime}, \mathcal{L}_{4}^{\prime \prime}, \mathcal{L}_{4}^{\prime \prime \prime}, \mathcal{L}_{6}, \mathcal{L}_{6}^{\prime}, \mathcal{L}_{6}^{\prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime \prime}$ are unions of $4,4,4$, $4,6,6,6,6,6$ lines, respectively. Moreover, it follows from [12] that

$$
\mathcal{L}_{4}, \mathcal{L}_{4}^{\prime}, \mathcal{L}_{4}^{\prime \prime}, \mathcal{L}_{4}^{\prime \prime \prime}, \mathcal{L}_{6}, \mathcal{L}_{6}^{\prime}, \mathcal{L}_{6}^{\prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime \prime}
$$

are the only $v(G)$-invariant curves in \mathbb{P}^{3} of degree at most 7 .
Now, using the defining equation of the surface \mathscr{S}, one can check that any irreducible component of any curve among $\mathcal{L}_{4}, \mathcal{L}_{4}^{\prime}, \mathcal{L}_{4}^{\prime \prime}, \mathcal{L}_{4}^{\prime \prime \prime}, \mathcal{L}_{6}, \mathcal{L}_{6}^{\prime}, \mathcal{L}_{6}^{\prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime \prime}$ intersects the quartic surface \mathscr{S} transversally by 4 distinct points, so that its preimage in X via the double cover π is a smooth elliptic curve. Thus, if C is a G-invariant curve in X, then $H \cdot C \geqslant 8$.

Suppose that X is not G-birationally super-rigid. It follows from [13, Corollary 3.3.3] that there are a positive integer n and a G-invariant linear subsystem $\mathcal{M} \subset|n H|$ such that \mathcal{M} does not have fixed components, but the \log pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ is not canonical.

Arguing as in the proof of Proposition 30, we see that the \log pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ is canonical away from finitely many points. Let P be a point in X that is a center of non-canonical singularities of the \log pair $\left(X, \frac{2}{n} \mathcal{M}\right)$. Now, arguing as in the proof of Proposition 30 again, we see that P is a smooth point of the threefold X.

Then the \log pair $\left(X, \frac{3}{n} \mathcal{M}\right)$ is not \log canonical at P. Let μ be the largest rational number such that $(X, \mu \mathcal{M})$ is \log canonical. Then $\mu<\frac{3}{n}$ and

$$
\operatorname{Orb}_{G}(P) \subseteq \operatorname{Nklt}(X, \mu \mathcal{M})
$$

Observe that $\operatorname{Nklt}(X, \mu \mathcal{M})$ is at most one-dimensional, since \mathcal{M} has no fixed components. Moreover, this locus is G-invariant, because \mathcal{M} is G-invariant. Furthermore, arguing as in the proof of Proposition 30, we see that

$$
\operatorname{dim}(\operatorname{Nklt}(X, \mu \mathcal{M}))=0
$$

Let \mathcal{I} be the multiplier ideal sheaf of the pair $(X, \mu \mathcal{M})$, and let \mathcal{L} be the corresponding subscheme in X. Then \mathcal{L} is a zero-dimensional (reduced) subscheme such that

$$
\operatorname{Orb}_{G}(P) \subseteq \operatorname{Supp}(\mathcal{L})=\operatorname{Nklt}(X, \mu \mathcal{M})
$$

On the other hand, applying Nadel's vanishing theorem [26, Theorem 9.4.8], we get

$$
h^{1}\left(X, \mathcal{I} \otimes \mathcal{O}_{X}(H)\right)=0
$$

This gives

$$
4=h^{0}\left(X, \mathcal{O}_{X}(H)\right) \geqslant h^{0}\left(\mathcal{O}_{\mathcal{L}} \otimes \mathcal{O}_{X}(H)\right)=h^{0}\left(\mathcal{O}_{\mathcal{L}}\right) \geqslant\left|\operatorname{Orb}_{G}(P)\right| .
$$

Thus, we conclude that $\left|\operatorname{Orb}_{G}(P)\right|=4$ and

$$
\pi(P) \in \Sigma_{4} \cup \Sigma_{4}^{\prime} \cup \Sigma_{4}^{\prime \prime}
$$

Let M_{1} and M_{2} be two general surfaces in \mathcal{M}. Using [30] or [16, Corollary 3.4], we get

$$
\begin{equation*}
\left(M_{1} \cdot M_{2}\right)_{P}>n^{2} . \tag{32}
\end{equation*}
$$

Let \mathcal{S} be a linear subsystem in $|3 H|$ that consists of all surfaces that are singular at every point of the G-orbit $\operatorname{Orb}_{G}(P)$. Then its base locus does not contain curves, which implies that there is a surface $S \in \mathcal{S}$ that does not contain components of the cycle $M_{1} \cdot M_{2}$. Thus, using (32) and $\operatorname{mult}_{P}(S) \geqslant 2$, we get
$6 n^{2}=S \cdot M_{1} \cdot M_{2} \geqslant \sum_{O \in \operatorname{Orb}_{G}(P)} 2\left(M_{1} \cdot M_{2}\right)_{O}=2\left|\operatorname{Orb}_{G}(P)\right|\left(M_{1} \cdot M_{2}\right)_{P}=8\left(M_{1} \cdot M_{2}\right)_{P}>8 n^{2}$,
which is absurd. This completes the proof of Proposition 31 .

In the remaining part of the paper, we prove Theorem 17, and consider one application. Let us recall from [22, 28, 20, 18, 1] basic facts about the \mathbb{H}-equivariant geometry of \mathbb{P}^{3}. Set

$$
\begin{aligned}
\mathcal{Q}_{1} & =\left\{x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0\right\}, \\
\mathcal{Q}_{2} & =\left\{x_{0}^{2}+x_{1}^{2}=x_{2}^{2}+x_{3}^{2}\right\}, \\
\mathcal{Q}_{3} & =\left\{x_{0}^{2}-x_{1}^{2}=x_{2}^{2}-x_{3}^{2}\right\}, \\
\mathcal{Q}_{4} & =\left\{x_{0}^{2}-x_{1}^{2}=x_{3}^{2}-x_{2}^{2}\right\}, \\
\mathcal{Q}_{5} & =\left\{x_{0} x_{2}+x_{1} x_{3}=0\right\}, \\
\mathcal{Q}_{6} & =\left\{x_{0} x_{3}+x_{1} x_{2}=0\right\}, \\
\mathcal{Q}_{7} & =\left\{x_{0} x_{1}+x_{2} x_{3}=0\right\}, \\
\mathcal{Q}_{8} & =\left\{x_{0} x_{2}=x_{1} x_{3}\right\}, \\
\mathcal{Q}_{9} & =\left\{x_{0} x_{3}=x_{1} x_{2}\right\}, \\
\mathcal{Q}_{10} & =\left\{x_{0} x_{1}=x_{2} x_{3}\right\} .
\end{aligned}
$$

Then $\mathcal{Q}_{1}, \mathcal{Q}_{2}, \mathcal{Q}_{3}, \mathcal{Q}_{4}, \mathcal{Q}_{5}, \mathcal{Q}_{6}, \mathcal{Q}_{7}, \mathcal{Q}_{8}, \mathcal{Q}_{9}, \mathcal{Q}_{10}$ are all \mathbb{H}-invariant quadric surfaces in \mathbb{P}^{3}. These quadrics are smooth, and $\mathbb{H} \cong \boldsymbol{\mu}_{2}^{4}$ acts naturally on each quadric $\mathcal{Q}_{i} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

For a non-trivial element $g \in \mathbb{H}$, the locus of its fixed points in \mathbb{P}^{3} consists of two skew lines, which we will denote by L_{g} and L_{g}^{\prime}. For two non-trivial elements $g \neq h$ in \mathbb{H}, one has

$$
\left\{L_{g}, L_{g}^{\prime}\right\} \cap\left\{L_{h}, L_{h}^{\prime}\right\}=\varnothing
$$

In total, this gives 30 lines $\ell_{1}, \ldots, \ell_{30}$, whose equations are listed in the following table:

$\ell_{1}=\left\{x_{0}=x_{1}=0\right\}$	$\ell_{2}=\left\{x_{2}=x_{3}=0\right\}$
$\ell_{3}=\left\{x_{0}=x_{2}=0\right\}$	$\ell_{4}=\left\{x_{1}=x_{3}=0\right\}$
$\ell_{5}=\left\{x_{0}=x_{3}=0\right\}$	$\ell_{6}=\left\{x_{1}=x_{2}=0\right\}$
$\ell_{7}=\left\{x_{0}+x_{1}=x_{2}+x_{3}=0\right\}$	$\ell_{8}=\left\{x_{0}-x_{1}=x_{2}-x_{3}=0\right\}$
$\ell_{9}=\left\{x_{0}+x_{2}=x_{1}+x_{3}=0\right\}$	$\ell_{10}=\left\{x_{0}-x_{2}=x_{1}-x_{3}=0\right\}$
$\ell_{11}=\left\{x_{0}+x_{3}=x_{1}+x_{2}=0\right\}$	$\ell_{12}=\left\{x_{0}-x_{3}=x_{1}-x_{2}=0\right\}$
$\ell_{13}=\left\{x_{0}+x_{1}=x_{2}-x_{3}=0\right\}$	$\ell_{14}=\left\{x_{0}-x_{1}=x_{2}+x_{3}=0\right\}$
$\ell_{15}=\left\{x_{0}+x_{2}=x_{1}-x_{3}=0\right\}$	$\ell_{16}=\left\{x_{0}-x_{2}=x_{1}+x_{3}=0\right\}$
$\ell_{17}=\left\{x_{0}+x_{3}=x_{1}-x_{2}=0\right\}$	$\ell_{18}=\left\{x_{0}-x_{3}=x_{1}+x_{2}=0\right\}$
$\ell_{19}=\left\{x_{0}+i x_{1}=x_{2}+i x_{3}=0\right\}$	$\ell_{20}=\left\{x_{0}-i x_{1}=x_{2}-i x_{3}=0\right\}$
$\ell_{21}=\left\{x_{0}+i x_{2}=x_{1}+i x_{3}=0\right\}$	$\ell_{22}=\left\{x_{0}-i x_{2}=x_{1}-i x_{3}=0\right\}$
$\ell_{23}=\left\{x_{0}+i x_{3}=x_{1}+i x_{2}=0\right\}$	$\ell_{24}=\left\{x_{0}-i x_{3}=x_{1}-i x_{2}=0\right\}$
$\ell_{25}=\left\{x_{0}-i x_{1}=x_{2}+i x_{3}=0\right\}$	$\ell_{26}=\left\{x_{0}+i x_{1}=x_{2}-i x_{3}=0\right\}$
$\ell_{27}=\left\{x_{0}+i x_{2}=x_{1}-i x_{3}=0\right\}$	$\ell_{28}=\left\{x_{0}-i x_{2}=x_{1}+i x_{3}=0\right\}$
$\ell_{29}=\left\{x_{0}+i x_{3}=x_{1}-i x_{2}=0\right\}$	$\ell_{30}=\left\{x_{0}-i x_{3}=x_{1}+i x_{2}=0\right\}$

Note that $\ell_{1}, \ldots, \ell_{30}$ are irreducible components of the curves $\mathcal{L}_{6}, \mathcal{L}_{6}^{\prime}, \mathcal{L}_{6}^{\prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime}, \mathcal{L}_{6}^{\prime \prime \prime \prime}$ which have been introduced in the proof of Proposition 31. One can check that

- for every $k \in\{1, \ldots, 15\}$, the curve $\ell_{2 k-1}+\ell_{2 k}$ is \mathbb{H}-irreducible,
- each line among $\ell_{1}, \ldots, \ell_{30}$ is contained in 4 quadrics among $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$,
- each quadric among $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$ contains 12 lines among $\ell_{1}, \ldots, \ell_{30}$,
- every two quadrics among $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$ intersect by 4 lines among $\ell_{1}, \ldots, \ell_{30}$.

The incidence relation between $\ell_{1}, \ldots, \ell_{30}$ and $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$ is presented in Figure 3 .
Now, let us describe the intersection points of the lines $\ell_{1}, \ldots, \ell_{30}$. To do this, we set

$$
\begin{aligned}
\Sigma_{4}^{1} & =\{[1: 0: 0: 0],[0: 1: 0: 0],[0: 0: 1: 0],[0: 0: 0: 1]\}, \\
\Sigma_{4}^{2} & =\{[1: 1: 1:-1],[1: 1:-1: 1],[1:-1: 1: 1],[-1: 1: 1: 1]\}, \\
\Sigma_{4}^{3} & =\{[1: 1: 1: 1],[-1:-1: 1: 1],[1:-1:-1: 1],[-1: 1:-1: 1]\}, \\
\Sigma_{4}^{4} & =\{[0: 0: 1: 1],[1: 1: 0: 0],[0: 0:-1: 1],[1:-1: 0: 0]\}, \\
\Sigma_{4}^{5} & =\{[1: 0: 1: 0],[0: 1: 0: 1],[-1: 0: 1: 0],[0:-1: 0: 1]\}, \\
\Sigma_{4}^{6} & =\{[0: 1: 1: 0],[1: 0: 0: 1],[0:-1: 1: 0],[-1: 0: 0: 1]\}, \\
\Sigma_{4}^{7} & =\{[i: 0: 0: 1],[0: i: 1: 0],[-i: 0: 0: 1],[0:-i: 1: 0]\}, \\
\Sigma_{4}^{8} & =\{[i: 0: 1: 0],[0: i: 0: 1],[0:-i: 0: 1],[-i: 0: 1: 0]\}, \\
\Sigma_{4}^{9} & =\{[i: 1: 0: 0],[0: 0: i: 1],[-i: 1: 0: 0],[0: 0:-i: 1]\}, \\
\Sigma_{4}^{10} & =\{[i: i: 1: 1],[-i:-i: 1: 1],[i:-i:-1: 1],[-i: i:-1: 1]\}, \\
\Sigma_{4}^{11} & =\{[1: i: i: 1],[1:-i:-i: 1],[-1:-i: i: 1],[-1: i:-i: 1]\}, \\
\Sigma_{4}^{12} & =\{[1: i:-i: 1],[-1: i: i: 1],[-1:-i:-i: 1],[1:-i: i: 1]\}, \\
\Sigma_{4}^{13} & =\{[i: 1: i: 1],[-i: 1:-i: 1],[-i:-1: i: 1],[i:-1:-i: 1]\}, \\
\Sigma_{4}^{14} & =\{[i: 1:-i: 1],[i:-1: i: 1],[-i:-1:-i: 1],[-i: 1: i: 1]\}, \\
\Sigma_{4}^{15} & =\{[i: i:-1: 1],[-i:-i:-1: 1],[i:-i: 1: 1],[-i: i: 1: 1]\} .
\end{aligned}
$$

Then the subsets $\Sigma_{4}^{1}, \ldots, \Sigma_{4}^{15}$ are \mathbb{H}-orbits of length 4 . Moreover, one has

$$
\Sigma_{4}^{1} \cup \Sigma_{4}^{2} \cup \cdots \cup \Sigma_{4}^{15}=\operatorname{Sing}\left(\ell_{1}+\ell_{2}+\cdots+\ell_{30}\right)
$$

So, for every ℓ_{i} and ℓ_{j} such that $\ell_{i} \neq \ell_{j}$ and $\ell_{i} \cap \ell_{j} \neq \varnothing$, one has $\ell_{i} \cap \ell_{j} \in \Sigma_{4}^{1} \cup \Sigma_{4}^{2} \cup \cdots \cup \Sigma_{4}^{15}$. Furthermore, one can also check that

- every line among $\ell_{1}, \ldots, \ell_{30}$ contains 6 points in $\Sigma_{4}^{1} \cup \Sigma_{4}^{2} \cup \cdots \cup \Sigma_{4}^{15}$,
- every point in $\Sigma_{4}^{1} \cup \Sigma_{4}^{2} \cup \cdots \cup \Sigma_{4}^{15}$ is contained in 3 lines among $\ell_{1}, \ldots, \ell_{30}$.

As in Remark 11, let \mathfrak{N} be the normalizer of the subgroup \mathbb{H} in the group $\mathrm{PGL}_{4}(\mathbb{C})$. Then $\operatorname{Aut}(\mathscr{C}) \subset \mathfrak{N}$ and $\mathfrak{N} \cong \mathbb{H}$. \mathfrak{S}_{6}, see Remark 11. Moreover, one can show that

- the group \mathfrak{N} acts transitively on the set $\left\{\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}\right\}$,
- the group \mathfrak{N} acts transitively on the set $\left\{\ell_{1}, \ldots, \ell_{30}\right\}$,
- the group \mathfrak{N} acts transitively on the set $\left\{\Sigma_{4}^{1}, \ldots, \Sigma_{4}^{15}\right\}$.

Now, we are ready to describe \mathbb{H}-orbits in \mathbb{P}^{3}. They can be described as follows:
(1) $\Sigma_{4}^{1}, \ldots, \Sigma_{4}^{15}$ are \mathbb{H}-orbits of length 4 ;
(2) \mathbb{H}-orbit of every point in $\left(\ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30}\right) \backslash\left(\Sigma_{4}^{1} \cup \Sigma_{4}^{2} \cup \cdots \cup \Sigma_{4}^{15}\right)$ has length 8;
(3) \mathbb{H}-orbit of every point in $\mathbb{P}^{3} \backslash\left(\ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30}\right)$ has length 16 .

Lemma 33. The surface \mathscr{S} does not contain \mathbb{H}-orbits of length 4 .
Proof. The assertion follows from [34, Theorem 3], since the \mathbb{H}-action on the minimal resolution of the quartic surface \mathscr{S} is symplectic. Alternatively, we can check this explicitly. Indeed, it is enough to check that \mathscr{S} does not contain Σ_{4}^{1}, since the group \mathfrak{N} transitively permutes the orbits $\Sigma_{4}^{1}, \ldots, \Sigma_{4}^{15}$. If $\Sigma_{4}^{1} \subset \mathscr{S}$, then \mathscr{S} is given by (2) with $a=b c d=0$, which implies that \mathscr{S} has non-isolated singularities.

Corollary 34. Every line among $\ell_{1}, \ldots, \ell_{30}$ intersects \mathscr{S} transversally by 4 points.
Proof. Fix $k \in\{1, \ldots, 15\}$. If $\left|\ell_{2 k-1} \cap \mathscr{S}\right|<4$, then the subset $\left(\ell_{2 k-1} \cup \ell_{2 k}\right) \cap \mathscr{S}$ contains an \mathbb{H}-orbit of length 4 , which contradicts Lemma 33. Therefore, we have $\left|\ell_{2 k-1} \cap \mathscr{S}\right|=4$. Similarly, we see that $\left|\ell_{2 k} \cap \mathscr{S}\right|=4$.

Now, let us prove one result that plays a crucial role in the proof of Theorem 17.
Lemma 35. Let C be a possibly reducible \mathbb{H}-irreducible curve in \mathbb{P}^{3} such that $\operatorname{deg}(C)<8$. Then one of the following two possibilities hold:
(a) either $C=\ell_{2 k-1}+\ell_{2 k}$ for some $k \in\{1, \ldots, 15\}$;
(b) or C is a union of 4 disjoint lines and $C \subset \mathcal{Q}_{i}$ for some $i \in\{1, \ldots, 10\}$.

Proof. Intersecting C with quadric surfaces $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$, we conclude that $\operatorname{deg}(C)$ is even. This gives $\operatorname{deg}(C) \in\{2,4,6\}$.

Suppose that C is reducible. Since $|\mathbb{H}|=16$, we have the following possibilities:
(i) C is a union of 2 lines,
(ii) C is a union of 4 lines,
(iii) C is a union of 2 irreducible conics,
(iv) C is a union of 3 irreducible conics.
(v) C is a union of 2 irreducible plane cubics,
(vi) C is a union of 2 twisted cubics,

Since \mathbb{P}^{3} does not have \mathbb{H}-orbits of length 2 and 3 , cases (iii), (iv) and (v) are impossible. Similarly, case (vi) is also impossible, because $\boldsymbol{\mu}_{2}^{3}$ cannot faithfully act on a rational curve. Thus, either C is a union of 2 lines, or C is a union of 4 lines.

Suppose that $C=L_{1}+L_{2}$, where L_{1} and L_{2} are lines. Then $\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right) \cong \boldsymbol{\mu}_{2}^{3}$, and this group cannot act faithfully on $L_{1} \cong \mathbb{P}^{1}$. Therefore, there exists a non-trivial $g \in \operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right)$ such that g pointwise fixes the line L_{1}. But this means that L_{1} is one of the lines $\ell_{1}, \ldots, \ell_{30}$, so we have $C=\ell_{2 k-1}+\ell_{2 k}$ for some $k \in\{1, \ldots, 15\}$ as required.

Suppose $C=L_{1}+L_{2}+L_{3}+L_{4}$, where $L_{1}, L_{2}, L_{3}, L_{4}$ are lines. Then $\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right) \cong \boldsymbol{\mu}_{2}^{2}$. Note that $\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right)$ must act faithfully on L_{1}, because L_{1} is not one of the lines $\ell_{1}, \ldots, \ell_{30}$. This implies that L_{1} does not have $\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right)$-fixed points, which implies that \mathbb{P}^{3} also does not have $\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right)$-fixed points. All subgroups in \mathbb{H} isomorphic to $\boldsymbol{\mu}^{2}$ with these property are conjugated by the action of the group \mathfrak{N}. Thus, we may assume that

$$
\operatorname{Stab}_{\mathbb{H}}\left(L_{1}\right)=\left\langle A_{1} A_{2}, A_{3}\right\rangle .
$$

This subgroup leaves invariant rulings of the quadric surface $\mathcal{Q}_{8} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. To be precise, for every $[\lambda: \mu] \in \mathbb{P}^{1}$, the group $\left\langle A_{1} A_{2}, A_{3}\right\rangle$ leaves invariant the line

$$
\left\{\lambda x_{0}+\mu x_{3}=\lambda x_{1}+\mu x_{2}=0\right\} \subset \mathcal{Q}_{8}
$$

and these are all $\left\langle A_{1} A_{2}, A_{3}\right\rangle$-invariant lines in \mathbb{P}^{3}. So, the lines $L_{1}, L_{2}, L_{3}, L_{4}$ are disjoint, and all of them are contained in the quadric \mathcal{Q}_{8}. Thus, we are done in this case.

Therefore, to complete the proof of the lemma, we may assume that C is irreducible. Observe that the curve C is not planar, because \mathbb{P}^{3} does not contain \mathbb{H}-invariant planes. Moreover, the curve C is singular: otherwise its genus is $\leqslant 4$ by the Castelnuovo bound, but \mathbb{H} cannot faithfully act on a smooth curve of genus less than 5 by [12, Lemma 3.2]. Therefore, we conclude that $\operatorname{deg}(C)=6$, since otherwise the curve C would be planar.

We claim that the curve C does not contain \mathbb{H}-orbits of length 4 . Suppose that it does. Since \mathfrak{N} transitively permutes the orbits $\Sigma_{4}^{1}, \ldots, \Sigma_{4}^{15}$, we may assume that $\Sigma_{4}^{1} \subset C$. Then

$$
\Sigma_{4}^{1} \subset \operatorname{Sing}(C),
$$

because the stabilizer in \mathbb{H} of a smooth point in C must be a cyclic group [35, Lemma 2.7]. Let $\iota: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{3}$ be the standard Cremona involution, which is given by

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{1} x_{2} x_{3}: x_{0} x_{2} x_{3}: x_{0} x_{1} x_{3}: x_{0} x_{1} x_{2}\right]
$$

Then ι centralizes \mathbb{H}. On the other hand, the curve $\iota(C)$ is a conic, because $\operatorname{deg}(C)=6$, and C is singular at every point of the \mathbb{H}-orbit Σ_{4}^{1}. But \mathbb{P}^{3} contains no \mathbb{H}-invariant conics, because it contains no \mathbb{H}-invariant planes. Thus, C contains no \mathbb{H}-orbits of length 4 .

Note that $\mathcal{Q}_{1} \cap \mathcal{Q}_{2} \cap \cdots \cap \mathcal{Q}_{10}=\varnothing$. So, at least one quadric among $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$ does not contain the curve C. Without loss of generality, we may assume that $C \not \subset \mathcal{Q}_{1}$. Then

$$
12=\mathcal{Q}_{1} \cdot C \geqslant\left|\mathcal{Q}_{1} \cap C\right|
$$

which implies that the intersection $\mathcal{Q}_{1} \cap C$ is an \mathbb{H}-orbit of length 8 , because we already proved that C does not contain \mathbb{H}-orbits of length 4 . For a point $P \in \mathcal{Q}_{1} \cap C$, we have

$$
12=\mathcal{Q}_{1} \cdot C=\left|\operatorname{Orb}_{\mathbb{H}}(P)\right|\left(\mathcal{Q}_{1} \cdot C\right)_{P}=8\left(\mathcal{Q}_{1} \cdot C\right)_{P},
$$

which is impossible, since 12 is not divisible by 8 .
Corollary 36. Let \mathcal{Q} be any quadric among $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{10}$, and let $C=\left.\mathscr{S}\right|_{\mathcal{Q}}$. Then
(i) either C is a smooth curve of degree 8 and genus 9 ,
(ii) or $C=\mathcal{L}_{4}+\mathcal{L}_{4}^{\prime}$ for \mathbb{H}-irreducible curves \mathcal{L}_{4} and \mathcal{L}_{4}^{\prime} consisting of 4 disjoint lines such that the intersection $\mathcal{L}_{4} \cap \mathcal{L}_{4}^{\prime}$ is an \mathbb{H}-orbit of length 16.

Proof. If C is reducible or non-reduced, Lemma 35 and Corollary 33 imply the assertion. Thus, we may assume that C is irreducible and reduced. Then its arithmetic genus is 9 . If C is smooth, we are done. If C is singular, then the genus of it normalization is $\leqslant 1$, because C does not contain \mathbb{H}-orbits of length 4 by Corollary 33. But \mathbb{H} cannot faithfully act on a smooth curve of genus less than 5 by [12, Lemma 3.2].

Now, we are ready to prove Theorem 17.
Proof of Theorem 17. Let G be a subgroup in $\operatorname{Aut}(X)$ such that $\mathrm{Cl}^{G}(X) \cong \mathbb{Z}$ and

$$
\mathbb{H} \subseteq v(G)
$$

so G contains a subgroup \mathbb{H}^{ρ} for some homomorphism $\rho: \mathbb{H} \rightarrow \boldsymbol{\mu}_{2}$. We must prove that the threefold X is G-birationally super-rigid. Suppose it is not G-birationally super-rigid. Then there are a positive integer n and a G-invariant linear subsystem $\mathcal{M} \subset|n H|$ such that the linear system \mathcal{M} does not have fixed components, but $\left(X, \frac{2}{n} \mathcal{M}\right)$ is not canonical.

Starting from this moment, we are going to forget about the group G. In the following, we will work only with its subgroup \mathbb{H}^{ρ}. Note that $v\left(\mathbb{H}^{\rho}\right)=\mathbb{H}$.

Let Z be the center of non-canonical singularities of the \log pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ that has maximal dimension. We claim that Z must be a point. Indeed, suppose that Z is a curve. Let M be sufficiently general surface in the linear system \mathcal{M}. Then

$$
\begin{equation*}
\operatorname{mult}_{Z}(M)>\frac{n}{2} \tag{37}
\end{equation*}
$$

by [24, Theorem 4.5]. Let us seek for a contradiction.
Let \mathscr{Z} be an \mathbb{H}^{ρ}-irreducible curve in X whose irreducible components is the curve Z, Then, arguing as in the proof of Proposition 30, we see that

$$
H \cdot \mathscr{Z} \leqslant 7 .
$$

In particular, we conclude that $\pi(\mathscr{Z})$ is a \mathbb{H}-invariant curve of degree $\leqslant 7$. By Lemma 35 , the curve $\pi(Z)$ is a line, and one of the following two possibilities hold:
(a) either $\pi(\mathscr{Z})=\ell_{2 k-1}+\ell_{2 k}$ for some $k \in\{1, \ldots, 15\}$;
(b) or $\pi(\mathscr{Z})$ is a union of 4 disjoint lines and $\pi(\mathscr{Z}) \subset \mathcal{Q}_{i}$ for some $i \in\{1, \ldots, 10\}$.

Let us deal with these two cases separately.
Suppose we are in case (a). Without loss of generality, we may assume $\pi(\mathscr{Z})=\ell_{1}+\ell_{2}$. Let C_{1} and C_{2} be the preimages on the threefold X of the lines ℓ_{1} and ℓ_{2}, respectively. Then it follows from Corollary 34 that C_{1} and C_{2} are smooth irreducible elliptic curves. In particular, the curves C_{1} and C_{2} are disjoint and

$$
\mathscr{Z}=C_{1}+C_{2} .
$$

Let $f: \widetilde{X} \rightarrow X$ be the blow up of the curves C_{1} and C_{2}, let E_{1} and E_{2} be the f-exceptional surfaces such that $f\left(E_{1}\right)=C_{1}$ and $f\left(E_{2}\right)=C_{2}$, and let \widetilde{M} be the proper transform on the threefold \widetilde{X} of the surface M. Then $\left|f^{*}(2 H)-E_{1}-E_{2}\right|$ is base point free, so

$$
\begin{aligned}
0 \leqslant & \left(f^{*}(2 H)-E_{1}-E_{2}\right)^{2} \cdot \widetilde{M}= \\
& =\left(f^{*}(2 H)-E_{1}-E_{2}\right)^{2} \cdot\left(f^{*}(n H)-\operatorname{mult}_{Z}(M)\left(E_{1}+E_{2}\right)\right)=4 n-8 \operatorname{mult}_{Z}(M)
\end{aligned}
$$

which contradicts (37). This shows that case (a) is impossible.
Suppose we are in case (b). Without loss of generality, we may assume that $\pi(\mathscr{Z}) \subset \mathcal{Q}_{1}$. Let S be the preimage of the quadric surface \mathcal{Q}_{1} via the double cover π. Then it follows from Corollary 36 that S is an irreducible normal surface such that
(i) either S is a smooth K3 surface,
(ii) or S is a singular K3 surface that has 16 ordinary double points.

Note that $\mathscr{Z} \subset S$ by construction. Let \mathcal{C} be the preimage in X of a sufficiently general line in the quadric \mathcal{Q}_{1} that intersect the line $\pi(Z)$. Then \mathcal{C} is a smooth irreducible elliptic curve, which is contained in the smooth locus of the K3 surface S. Observe that $H \cdot \mathcal{C}=2$. Moreover, we also have $|\mathcal{C} \cap \mathscr{Z}| \geqslant 4$. Thus, since $\mathcal{C} \not \subset \operatorname{Supp}(M)$, we get

$$
2 n=n H \cdot \mathcal{C}=M \cdot \mathcal{C} \geqslant \sum_{O \in C \cap \mathscr{Z}} \operatorname{mult}_{O}(M) \geqslant \operatorname{mult}_{Z}(M)|\mathcal{C} \cap \mathscr{Z}| \geqslant 4 \operatorname{mult}_{Z}(M)
$$

which contradicts (37). This shows that case (b) is also impossible.
Hence, we see that Z is a point. In particular, the pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ is canonical away from finitely many points. Now, arguing as in the proof of Proposition 30 , we get $Z \notin \operatorname{Sing}(X)$.

Let M_{1} and M_{2} be two general surfaces in \mathcal{M}. Using [30] or [16, Corollary 3.4], we get

$$
\begin{equation*}
\left(M_{1} \cdot M_{2}\right)_{Z}>n^{2} . \tag{38}
\end{equation*}
$$

Let $P=\pi(Z)$. Then, arguing as in the proof of Proposition 31, we get $\left|\operatorname{Orb}_{\mathbb{H}}(P)\right| \neq 4$. We claim that $\left|\operatorname{Orb}_{\mathbb{H}}(P)\right| \neq 8$. Indeed, suppose $\left|\operatorname{Orb}_{\mathbb{H}}(P)\right|=8$. Then

$$
P \in \ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30} .
$$

Without loss of generality, we may assume that $P \in \ell_{1}$. Let C_{1} and C_{2} be the preimages on the threefold X of the lines ℓ_{1} and ℓ_{2}, respectively. Recall that C_{1} and C_{2} are smooth irreducible elliptic curves, and the curve $C_{1}+C_{2}$ is \mathbb{H}^{ρ}-irreducible. Write

$$
M_{1} \cdot M_{2}=m\left(C_{1}+C_{2}\right)+\Delta,
$$

where m is a non-negative integer, and Δ is an effective one-cycle whose support does not contain the curves C_{1} and C_{2}. Then $m \leqslant \frac{n^{2}}{2}$, because

$$
2 n^{2}=H \cdot M_{1} \cdot M_{2}=m H \cdot\left(C_{1}+C_{2}\right)+H \cdot \Delta \leqslant m H \cdot\left(C_{1}+C_{2}\right)=4 m
$$

On the other hand, since C_{1} and C_{2} are smooth curves, it follows from (38) that

$$
\begin{equation*}
\operatorname{mult}_{O}(\Delta)>n^{2}-m \tag{39}
\end{equation*}
$$

for every point $O \in \operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)$. Note also that $Z \in C_{1}$ and $\left|\operatorname{Orb}_{\mathbb{H}^{\mu} \rho}(Z)\right| \geqslant 8$.
Let \mathcal{D} be the linear subsystem in $|2 H|$ that consists of surfaces passing through $C_{1} \cup C_{2}$. Then, as we already implicitly mentioned, the linear system \mathcal{D} does not have base curves except for C_{1} and C_{2}. Therefore, if D is a general surface in \mathcal{D}, then D does not contain irreducible components of the one-cycle Δ, so (39) gives

$$
\begin{aligned}
4 n^{2}-8 m=D \cdot \Delta \geqslant & \sum_{O \in \operatorname{Orb}_{\mathbb{H} \rho}(Z)} \operatorname{mult}_{O}(\Delta)= \\
& =\left|\operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)\right| \operatorname{mult}_{Z}(\Delta)>\left|\operatorname{Orb}_{\mathbb{H}^{\rho} \rho}(Z)\right|\left(n^{2}-m\right) \geqslant 8\left(n^{2}-m\right)
\end{aligned}
$$

which is absurd. This shows that $\left|\operatorname{Orb}_{H}(P)\right| \neq 8$.
In particular, we see that $\left|\operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)\right|=\left|\operatorname{Orb}_{\mathbb{H}}(P)\right|=16$ and $P \notin \ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30}$.
We claim that $P \notin \mathcal{Q}_{1} \cup \mathcal{Q}_{2} \cup \cdots \cup \mathcal{Q}_{10}$. Indeed, suppose that $P \in \mathcal{Q}_{1} \cup \mathcal{Q}_{2} \cup \cdots \cup \mathcal{Q}_{10}$. Without loss of generality, we may assume that

$$
\pi(Z)=P \in \mathcal{Q}_{1}
$$

As above, denote by S the preimage of the quadric surface \mathcal{Q}_{1} via the double cover π. Then S is a K3 surface with at most ordinary double singularities, and it follows from the inversion of adjunction [24, Theorem 5.50] that $\left(S,\left.\frac{2}{n} \mathcal{M}\right|_{S}\right)$ is not \log canonical at Z. Let λ be the largest rational number such that $\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$ is \log canonical at Z. Then

$$
\operatorname{Orb}_{\mathbb{H} \rho}(Z) \subseteq \operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)
$$

Note that the locus $\operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$ is \mathbb{H}^{ρ}-invariant, because \mathcal{M} and S are \mathbb{H}^{ρ}-invariant.
Suppose $\operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$ contains an \mathbb{H}^{ρ}-irreducible curve C that passes through Z. This means that $\left.\lambda \mathcal{M}\right|_{S}=C+\Omega$, where Ω is an effective \mathbb{Q}-linear system on S. Then

$$
H \cdot C \leqslant H \cdot(C+\Omega)=4 n \lambda<8
$$

hence $\pi(C)$ is a union of 4 disjoint lines in \mathcal{Q}_{1} by Lemma 35, since $P \notin \ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30}$. Let \mathcal{C} be the preimage in X of a general line in \mathcal{Q}_{1} that intersect $\pi(C)$. Then

$$
4 \leqslant \mathcal{C} \cdot C \leqslant \mathcal{C} \cdot(C+\Omega)=\lambda n(H \cdot \mathcal{C})=2 \lambda n<4
$$

which is absurd. So, the locus $\operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$ contains no curves that pass through Z.

Let \mathcal{I}_{S} be the multiplier ideal sheaf of the pair $\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$, let \mathcal{L}_{S} be the corresponding subscheme in S. Then

$$
\operatorname{Supp}\left(\mathcal{L}_{S}\right)=\operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)
$$

Now, applying Nadel's vanishing theorem [26, Theorem 9.4.8], we get

$$
h^{1}\left(S, \mathcal{I}_{S} \otimes \mathcal{O}_{S}\left(\left.2 H\right|_{S}\right)\right)=0
$$

Now, using the Riemann-Roch theorem and Serre's vanishing, we obtain

$$
10=h^{0}\left(S, \mathcal{O}_{S}\left(\left.2 H\right|_{S}\right)\right) \geqslant h^{0}\left(\mathcal{O}_{\mathcal{L}_{S}} \otimes \mathcal{O}_{S}\left(\left.2 H\right|_{S}\right)\right) \geqslant\left|\operatorname{Orb}_{\mathbb{H} \rho}(Z)\right|
$$

because \mathcal{L}_{S} has at least $\left|\operatorname{Orb}_{\mathbb{H} \rho}(Z)\right|$ disjoint zero-dimensional components, whose supports are points in $\operatorname{Orb}_{\mathbb{H}^{\rho} \rho}(Z)$, because $\operatorname{Orb}_{\mathbb{H}^{\mu} \rho}(Z) \subseteq \operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$, and $\operatorname{Nklt}\left(S,\left.\lambda \mathcal{M}\right|_{S}\right)$ does not contain curves that are not disjoint from $\operatorname{Orb}_{\mathbb{H}^{\rho} \rho}(Z)$. Hence, we see that $\left|\operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)\right| \leqslant 10$, which is impossible, since $\left|\operatorname{Orb}_{\mathbb{H} \rho}(Z)\right|=16$. This shows that

$$
\pi(Z)=P \notin \mathcal{Q}_{1} \cup \mathcal{Q}_{2} \cup \cdots \cup \mathcal{Q}_{10}
$$

Let us summarize what we proved so far. Recall that \mathcal{M} is a mobile \mathbb{H}^{ρ}-invariant linear subsystem in $|n H|$, the \log pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ is canonical away from finitely many points, but the singularities of the pair $\left(X, \frac{2}{n} \mathcal{M}\right)$ are not canonical at the point $Z \in X$ such that

- $Z \notin \operatorname{Sing}(X)$,
- $\pi(Z) \notin \ell_{1} \cup \ell_{2} \cup \cdots \cup \ell_{30}$,
- $\pi(Z) \notin \mathcal{Q}_{1} \cup \mathcal{Q}_{2} \cup \cdots \cup \mathcal{Q}_{10}$,
- $\left|\operatorname{Orb}_{\mathbb{H} \rho}(Z)\right|=\left|\operatorname{Orb}_{\mathbb{H}}(\pi(Z))\right|=16$.

By Lemma 35, $\pi(Z)$ is not contained in any \mathbb{H}-invariant curve whose degree is at most 7 . Let us use this and Nadel's vanishing [26, Theorem 9.4.8] to derive a contradiction.

As in the proofs of Propositions 30 and 31 , we observe that $\left(X, \frac{3}{n} \mathcal{M}\right)$ is not \log canonical at the point Z, because X is smooth at Z. Let μ be the largest rational number such that the \log pair $(X, \mu \mathcal{M})$ is \log canonical at Z. Then $\mu<\frac{3}{n}$ and

$$
\operatorname{Orb}_{\mathbb{H} \rho}(Z) \subseteq \operatorname{Nklt}(X, \mu \mathcal{M})
$$

Moreover, if the locus $\operatorname{Nklt}(X, \mu \mathcal{M})$ contains an \mathbb{H}^{ρ}-irreducible curve C, then arguing as in the proof of Proposition 30, we see that

$$
\operatorname{deg}(\pi(C)) \leqslant H \cdot C \leqslant 4
$$

which implies that the curve C does not pass through Z. Hence, we conclude that every point of the orbit $\operatorname{Orb}_{\mathbb{H} \rho}(Z)$ is an isolated irreducible component of the locus $\operatorname{Nklt}(X, \mu \mathcal{M})$.

Let \mathcal{I} be the multiplier ideal sheaf of the pair $(X, \mu \mathcal{M})$, and let \mathcal{L} be the corresponding subscheme in X. Then

$$
\operatorname{Supp}(\mathcal{L})=\operatorname{Nklt}(X, \mu \mathcal{M})
$$

so the subscheme \mathcal{L} contains at least $\left|\operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)\right|=16$ zero-dimensional components whose supports are points in the orbit $\operatorname{Orb}_{\mathbb{H}^{\rho}}(Z)$. On the other hand, we have

$$
h^{1}\left(X, \mathcal{I} \otimes \mathcal{O}_{X}(H)\right)=0
$$

by Nadel's vanishing theorem [26, Theorem 9.4.8]. This gives

$$
4=h^{0}\left(X, \mathcal{O}_{X}(H)\right) \geqslant h^{0}\left(\mathcal{O}_{\mathcal{L}} \otimes \mathcal{O}_{X}(H)\right) \geqslant\left|\operatorname{Orb}_{\mathbb{H} \rho}(Z)\right|=16
$$

which is absurd. The obtained contradiction completes the proof of Theorem 17.

Let us conclude this paper with one application of Theorem 17, which was the initial motivation for this paper - we were looking for various embeddings $\boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{3} \hookrightarrow \operatorname{Bir}\left(\mathbb{P}^{3}\right)$.
Example 40 (cf. Examples 5, 8, 26). Let $G_{48,50}$ be the subgroup in $\mathrm{PGL}_{4}(\mathbb{C})$ generated by

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
A_{3}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), A_{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), A_{5}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Then one can check that $G_{48,50} \cong \boldsymbol{\mu}_{2}^{4} \rtimes \boldsymbol{\mu}_{3}$ and the GAP ID of the group $G_{48,50}$ is [48,50]. For every $t \in \mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$, let S_{t} be the quartic surface in \mathbb{P}^{3} given by the equation (6), i.e. the surface S_{t} is the quartic surface in \mathbb{P}^{3} given by the following equation:
$x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-\left(t^{2}+1\right)\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}+x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)+2\left(t^{3}+3 t\right) x_{0} x_{1} x_{2} x_{3}=0$.
Then S_{t} is $G_{48,50}$-invariant, and S_{t} has 16 ordinary double singularities (see Example 5). Now, let X_{t} be the hypersurface in $\mathbb{P}(1,1,1,1,2)$ that is given by
$w^{2}=x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-\left(t^{2}+1\right)\left(x_{0}^{2} x_{1}^{2}+x_{2}^{2} x_{3}^{2}+x_{0}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{0}^{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2}\right)+2\left(t^{3}+3 t\right) x_{0} x_{1} x_{2} x_{3}$, where we consider $x_{0}, x_{1}, x_{2}, x_{3}$ as homogeneous coordinates on $\mathbb{P}(1,1,1,1,2)$ of weight 1 , and w is a coordinate of weight 2 . Consider the faithful action $G_{48,50} \curvearrowright X_{t}$ given by

$$
\begin{aligned}
& A_{1}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[-x_{0}: x_{1}:-x_{2}: x_{3}: w\right], \\
& A_{2}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[-x_{0}: x_{1}:-x_{2}: x_{3}: w\right], \\
& A_{3}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[x_{1}: x_{2}: x_{3}: x_{2}: w\right], \\
& A_{4}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[x_{3}: x_{2}: x_{1}: x_{0}: w\right], \\
& A_{5}:\left[x_{0}: x_{1}: x_{2}: x_{3}: w\right] \mapsto\left[x_{1}: x_{2}: x_{0}: x_{3}: w\right] .
\end{aligned}
$$

 Then it follows from Theorem 17 that the threefold X_{t} is $G_{48,50}$-birationally super-rigid. In particular, for any $t_{1} \neq t_{2}$ in $\mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$, the following conditions are equivalent:

- the threefolds $X_{t_{1}}$ and $X_{t_{2}}$ are $G_{48,50}$-birational;
- the surfaces $S_{t_{1}}$ and $S_{t_{2}}$ are projectively equivalent.

Recall that X_{t} is rational. For $t \in \mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$, fix a birational map $\chi_{t}: \mathbb{P}^{3} \rightarrow X_{t}$, and consider the monomorphism $\eta_{t}: G_{48,50} \hookrightarrow \operatorname{Bir}\left(\mathbb{P}^{3}\right)$ that is given by $g \mapsto \chi_{t}^{-1} \circ g \circ \chi_{t}$. Then, for any $t_{1} \neq t_{2}$ in $\mathbb{C} \backslash\{ \pm 1, \pm \sqrt{3} i\}$, we have the following assertion:
$\eta_{t_{1}}\left(G_{48,50}\right)$ and $\eta_{t_{1}}\left(G_{48,50}\right)$ are conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right) \Longleftrightarrow X_{t_{1}}$ and $X_{t_{2}}$ are $G_{48,50}$-birational. Thus, if $t_{1} \neq t_{2}$ are general, then $\eta_{t_{1}}\left(G_{48,50}\right)$ and $\eta_{t_{1}}\left(G_{48,50}\right)$ are not conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$. Similarly, we see that $\eta_{t}\left(G_{48,50}\right)$ is not conjugate in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ to the group $G_{48,50} \subset \operatorname{PGL}_{4}(\mathbb{C})$, which also follows from [12]. Can we show this using other obstructions [5, 25, 21]?

Acknowledgments. We would like to thank Michela Artebani, Arnaud Beauville, Fabrizio Catanese, Igor Dolgachev, Yuri Prokhorov, Andrei Trepalin for helpful comments.

References

[1] Y. Antonsen, Desmic systems and desmic surfaces, Master's Thesis, University of Oslo, 2016.
[2] A. Avilov, Biregular and birational geometry of quartic double solids with 15 nodes, Izv. Math. 83 (2019), 415-423.
[3] A. Avilov, Birational rigidity of G-del Pezzo threefolds of degree 2, to appear.
[4] H. Blichfeldt, Finite collineation groups, University of Chicago Press, Chicago, 1917.
[5] F. Bogomolov, Yu. Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group, I, Cent. European J. Math. 11 (2013), 2099-2105.
[6] G. Cardona, J. Gonzalez, J. C. Lario, A. Rio, On curves of genus 2 with Jacobian of GL_{2}-type, Manuscripta Math. 98 (1999), 37-54.
[7] J. Cassels, V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, Cambridge University Press, 1996.
[8] F. Catanese, Kummer quartic surfaces, strict self-duality, and more, arXiv:2101.10501, 2021.
[9] I. Cheltsov, Birationally rigid Fano varieties, Russ. Math. Surv. 60 (2005), 875-965.
[10] I. Cheltsov, V. Przyjalkowski, C. Shramov, Quartic double solids with icosahedral symmetry, Eur. J. Math. 2, 96-119 (2016).
[11] I. Cheltsov, V. Przyjalkowski, C. Shramov, Which quartic double solids are rational?, J. Algebr. Geom. 28 (2019), 201-243.
[12] I. Cheltsov, A. Sarikyan, Equivariant pliability of the projective space, arXiv:2202.09319 (2022).
[13] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, CRC Press, Boca Raton, FL, 2016.
[14] I. Cheltsov, C. Shramov, Finite collineation groups and birational rigidity, Sel. Math. 25, Paper No. 71, 68 p. (2019).
[15] H. Clemens, Double solids, Adv. in Math. 47 (1983), 107-230.
[16] A. Corti, Singularities of linear systems and 3-fold birational geometry, Explicit birational geometry of 3-folds. Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 281, 259-312 (2000).
[17] I. Dolgachev, Classical Algebraic Geometry: a modern view, Cambridge University Press, 639 pages.
[18] D. Eklund, Curves on Heisenberg invariant quartic surfaces in projective 3-space, Eur. J. Math. 4 (2018), 931-952.
[19] S. Endrass, On the divisor class group of double solids, Manuscr. Math. 99 (1999), 341-358.
[20] M. Gonzalez-Dorrego, $(16,6)$ configurations and geometry of Kummer surfaces in \mathbb{P}^{3}, Memoirs of the AMS 512, 1994.
[21] B. Hassett, A. Kresch, Yu. Tschinkel, Symbols and equivariant birational geometry in small dimensions, Rationality of Varieties, Progress in Mathematics 342, Birkhäuser (2021), 201-236.
[22] R. Hudson, Kummer's quartic surface, Cambridge University Press, 1905.
[23] J. H. Keum, Automorphisms of Jacobian Kummer surfaces, Compos. Math. 107 (1997), 269-289.
[24] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge University Press (1998).
[25] M. Kontsevich, V. Pestun, Yu. Tschinkel, Equivariant birational geometry and modular symbols, to appear in J. Eur. Math. Soc.
[26] R. Lazarsfeld, Positivity in Algebraic Geometry II, Springer-Verlag, Berlin, 2004.
[27] W. Bosma, J. Cannon, C. Fieker, A. Steel, Handbook of Magma functions, (2010), 5017 pages.
[28] I. Nieto, The singular $H_{2,2}$-invariant quartic surfaces in \mathbb{P}^{3}, Geom. Dedicata 57 (1995), 157-170.
[29] Yu. Prokhorov, G-Fano threefolds. I., Adv. Geom. 13 (2013), 389-418.
[30] A. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134 (1998), 401-426.
[31] J. Semple, L. Roth, Introduction to algebraic geometry, Oxford University Press, 1949, 446 p.
[32] J. Shah, Degenerations of K3 surfaces of degree 4, Trans. Amer. Math. Soc. 263 (1981), 271-308.
[33] R. Varley, Weddle's surfaces, Humbert's curves, and a certain 4-dimensional abelian variety, Am. J. Math. 108 (1986), 931-951.
[34] G. Xiao, Galois covers between K3 surfaces, Annales de l'Institut Fourier 46 (1996) 73-88.
[35] H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a \mathbb{G}_{m}-action, Osaka J. Math. 42 (2005), 931-974.

Ivan Cheltsov
The University of Edinburgh, Edinburgh, Scotland
I.Cheltsov@ed.ac.uk

Figure 2. Defining equations of the surfaces $\Pi_{1}^{+}, \ldots, \Pi_{16}^{+}$in Example 25 .

Π_{1}^{+}	$\begin{gathered} x_{0}+x_{1}+x_{2}+\frac{2 s}{s^{2}+1} x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right) \end{gathered}$
Π_{2}^{+}	$\begin{gathered} x_{0}-x_{1}+x_{2}+\frac{2 s}{s^{2}+1} x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{1}^{2}-\left(s^{2}+1\right) x_{1} x_{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}-2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{3}^{+}	$\begin{gathered} x_{0}+x_{1}-x_{2}-\frac{2 s}{s^{2}+1} x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{1}^{2}-\left(s^{2}+1\right) x_{1} x_{2}-2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{4}^{+}	$\begin{gathered} x_{0}-x_{1}-x_{2}+\frac{2 s}{s^{2}+1} x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}-2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{2}^{2}-2 s x_{2} x_{3}-\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{5}^{+}	$\begin{gathered} x_{0}+x_{1}+\frac{2 s}{s^{2}+1} x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{2} x_{0}+\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{6}^{+}	$\begin{gathered} x_{0}-x_{1}+\frac{2 s}{s^{2}+1} x_{2}-x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{2}^{2}-2 s x_{2} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{7}^{+}	$\begin{gathered} \frac{2 s}{s^{2}+1} x_{2}-x_{1}-x_{0}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{2}^{2}+2 s x_{2} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{8}^{+}	$\begin{gathered} x_{0}-x_{1}-\frac{2 s}{s^{2}+1} x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{2} x_{0}+\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{2}^{2}-2 s x_{2} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{9}^{+}	$\begin{gathered} x_{0}+\frac{2 s}{s^{2}+1} x_{1}+x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{1} x_{0}+\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{1}^{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{10}^{+}	$\begin{gathered} x_{0}-\frac{2 s}{s^{2}+1} x_{1}-x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{1} x_{0}+\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{1}^{2}-2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{11}^{+}	$\begin{gathered} x_{0}-\frac{2 s}{s^{2}+1} x_{1}+x_{2}-x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{1} x_{0}-\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{1}^{2}+2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{12}^{+}	$\begin{gathered} x_{0}+\frac{2 s}{s^{2}+1} x_{1}-x_{2}-x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{1} x_{0}-\left(s^{2}+1\right) x_{3} x_{0}-\left(s^{2}+1\right) x_{1}^{2}-2 s x_{1} x_{3}+\left(s^{2}+1\right) x_{3}^{2}\right)=0 \end{gathered}$
Π_{13}^{+}	$\begin{gathered} \frac{2 s}{s^{2}+1} x_{0}+x_{1}+x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{1} x_{0}-2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{1}^{2}-\left(s^{2}+1\right) x_{1} x_{2}-\left(s^{2}+1\right) x_{2}^{2}\right)=0 \end{gathered}$
Π_{14}^{+}	$\begin{gathered} \frac{2 s}{s^{2}+1} x_{0}-x_{1}-x_{2}+x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{1} x_{0}+2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{1}^{2}-\left(s^{2}+1\right) x_{1} x_{2}-\left(s^{2}+1\right) x_{2}^{2}\right)=0 \end{gathered}$
Π_{15}^{+}	$\begin{gathered} \frac{2 s}{s^{2}+1} x_{0}-x_{1}+x_{2}-x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}+2 s x_{1} x_{0}-2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}-\left(s^{2}+1\right) x_{2}^{2}\right)=0 \end{gathered}$
Π_{16}^{+}	$\begin{gathered} \frac{2 s}{s^{2}+1} x_{0}+x_{1}-x_{2}-x_{3}=0 \\ w=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\left(\left(s^{2}+1\right) x_{0}^{2}-2 s x_{1} x_{0}+2 s x_{2} x_{0}-\left(s^{2}+1\right) x_{1}^{2}+\left(s^{2}+1\right) x_{1} x_{2}-\left(s^{2}+1\right) x_{2}^{2}\right)=0 \end{gathered}$

Figure 3. Ten \mathbb{H}-invariant quadrics in \mathbb{P}^{3} and thirty lines in them.

	\mathcal{Q}_{1}	\mathcal{Q}_{2}	\mathcal{Q}_{3}	\mathcal{Q}_{4}	\mathcal{Q}_{5}	\mathcal{Q}_{6}	\mathcal{Q}_{7}	\mathcal{Q}_{8}	\mathcal{Q}_{9}	\mathcal{Q}_{10}
ℓ_{1}	-	-	-	-	+	+	-	+	+	-
ℓ_{2}	-	-	-	-	+	+	-	+	+	-
ℓ_{3}	-	-	-	-	-	+	+	-	+	+
ℓ_{4}	-	-	-	-	-	+	+	-	+	+
ℓ_{5}	-	-	-	-	+	-	+	+	-	+
ℓ_{6}	-	-	-	-	+	-	+	+	-	+
ℓ_{7}	-	-	+	+	-	-	-	+	+	-
ℓ_{8}	-	-	+	+	-	-	-	+	+	-
ℓ_{9}	-	+	+	-	-	-	-	-	+	+
ℓ_{10}	-	+	+	-	-	-	-	-	+	+
ℓ_{11}	-	+	-	+	-	-	-	+	-	+
ℓ_{12}	-	+	-	+	-	-	-	+	-	+
ℓ_{13}	-	-	+	+	+	+	-	-	-	-
ℓ_{14}	-	-	+	+	+	+	-	-	-	-
ℓ_{15}	-	+	+	-	-	+	+	-	-	-
ℓ_{16}	-	+	+	-	-	+	+	-	-	-
ℓ_{17}	-	+	-	+	+	-	+	-	-	-
ℓ_{18}	-	+	-	+	+	-	+	-	-	-
ℓ_{19}	+	+	-	-	+	-	-	-	+	-
ℓ_{20}	+	+	-	-	+	-	-	-	+	-
ℓ_{21}	+	-	-	+	-	-	+	-	+	-
ℓ_{22}	+	-	-	+	-	-	+	-	+	-
ℓ_{23}	+	-	+	-	+	-	+	+	-	-
ℓ_{24}	+	-	+	-	-	-	+	+	-	-
ℓ_{25}	+	+	-	-	-	+	-	+	-	-
ℓ_{26}	+	+	-	-	-	+	-	+	-	-
ℓ_{27}	+	-	-	+	-	+	-	-	-	+
ℓ_{28}	+	-	-	+	-	+	-	-	-	+
ℓ_{29}	+	-	+	-	+	-	-	-	-	+
ℓ_{30}	+	-	+	-	+	-	-	-	-	+
	-	-	-	-	+					

[^0]:

