K-STABLE FANO THREEFOLDS OF RANK 2 AND DEGREE 30

IVAN CHELTSOV AND JIHUN PARK

Abstract. We find all K-stable smooth Fano threefolds in the family №2.22.

Let X be a smooth Fano threefold. Then X belongs to one of the 105 families, which are labeled as №1.1, №1.2, ..., №9.1, №10.1. See [2], for the description of these families. If X is a general member of the family № \mathscr{N}, then [2, Main Theorem] gives

$$
X \text { is K-polystable } \Longleftrightarrow \mathscr{N} \notin\left\{\begin{array}{l}
2.23,2.26,2.28,2.30,2.31,2.33,2.35,2.36, \\
3.14,3.16,3.18,3.21,3.22,3.23 \\
3.24,3.26,3.28,3.29,3.30,3.31 \\
4.5,4.8,4.9,4.10,4.11,4.12 \\
5.2
\end{array}\right\}
$$

The goal of this note is to find all K-polystable smooth Fano threefolds in the family №2.22. This family contains both K-polystable and non-K-polystable smooth Fano threefolds, and a conjectural characterization of all K-polystable members has been given in [2, § 7.4]. We will confirm this conjecture - this will complete the description of all K-polystable smooth Fano threefolds of Picard rank 2 and degree 30 started in [2].

Starting from now, we suppose that X is a smooth Fano threefold in the family №2.22. Then X can be described both as the blow up of \mathbb{P}^{3} along a smooth twisted quartic curve, and the blow up of V_{5}, the unique smooth threefold №1.15, along an irreducible conic. More precisely, there are a smooth twisted quartic curve $C_{4} \subset \mathbb{P}^{3}$, a smooth conic $C \subset V_{5}$, and a commutative diagram

where π is the blow up of \mathbb{P}^{3} along C_{4}, ϕ is the blow up of V_{5} along C, and ψ is given by the linear system of cubic surfaces containing C_{4}. Here, V_{5} is embedded in \mathbb{P}^{6} as described in [2, §5.10]. All smooth Fano threefolds in the family № 2.22 can be obtained in this way.

The curve C_{4} is contained in a unique smooth quadric surface $Q \subset \mathbb{P}^{3}$, and ϕ contracts the proper transform of this surface. Note that $\operatorname{Aut}(X) \cong \operatorname{Aut}\left(\mathbb{P}^{3}, C_{4}\right) \cong \operatorname{Aut}\left(Q, C_{4}\right)$. Choosing appropriate coordinates on \mathbb{P}^{3}, we may assume that Q is given by $x_{0} x_{3}=x_{1} x_{2}$, where $\left[x_{0}: x_{1}: x_{2}: x_{3}\right]$ are coordinates on \mathbb{P}^{3}. Fix the isomorphism $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ given by

$$
([u: v],[x: y]) \mapsto[x u: x v: y u: y x],
$$

where $([u: v],[x: y])$ are coordinates in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Swapping $[u: v]$ and $[x: y]$ if necessary, we may assume that C_{4} is a divisor of degree $(1,3)$ in Q, so that C_{4} is given in Q by

$$
u f_{3}(x, y)=v g_{3}(x, y)
$$

for some non-zero cubic homogeneous polynomials $f_{3}(x, y)$ and $g_{3}(x, y)$.

Let $\sigma: C_{4} \rightarrow \mathbb{P}^{1}$ be the map given by the projection $([u: v],[x: y]) \mapsto[u: v]$. Then σ is a triple cover, which is ramified over at least two points. After an appropriate change of coordinates $[u: v]$, we may assume that σ is ramified over $[1: 0]$ and $[0: 1]$. Then both f_{3} and g_{3} have multiple zeros in \mathbb{P}^{1}. Changing coordinates $[x: y]$, we may assume that these zeros are $[0: 1]$ and $[1: 0]$, respectively. Keeping in mind that the curve C_{4} is smooth, we see that C_{4} is given by

$$
u\left(x^{3}+a x^{2} y\right)=v\left(y^{3}+b y^{2} x\right)
$$

for some complex numbers a and b, after a suitable scaling of the coordinates. If $a=b=0$, then the curve C_{4} is given by $u x^{3}=v y^{3}$, which gives $\operatorname{Aut}(X) \cong \operatorname{Aut}\left(Q, C_{4}\right) \cong \mathbb{G}_{m} \rtimes \boldsymbol{\mu}_{2}$. In this case, the threefold X is known to be K-polystable [2, § 4.4].

Example. Suppose that $a b=0$, but $a \neq 0$ or $b \neq 0$. We can scale the coordinates further and swap them if necessary, and assume that the curve C_{4} is given by $u x^{3}=v\left(y^{3}+y^{2} x\right)$. In this case, the threefold X is not K-polystable [2, § 7.4].

A conjecture in [2, §7.4] says that the non-K-polystable Fano threefold described in this example is the unique non-K-polystable smooth Fano threefold in the family № 2.2 . Let us show that this is indeed the case. To do this, we may assume that $a \neq 0$ and $b \neq 0$. Then, scaling the coordinates, we may assume that C_{4} is given by

$$
(\star) \quad u\left(x^{3}+\lambda x^{2} y\right)=v\left(y^{3}+\lambda y^{2} x\right)
$$

for some non-zero complex number λ. Since the curve C_{4} is smooth, we must have $\lambda \neq \pm 1$. Moreover, if $\lambda= \pm 3$, then we can change the coordinates on Q in such a way that C_{4} would be given by $u x^{3}=v\left(y^{3}+y^{2} x\right)$, so that X is not K-polystable in this case.

We know from [2] that X is K -stable if C_{4} is given by (\star) with λ sufficiently general. In particular, we know from [2, § 4.4] that the threefold X is K-stable when $\lambda= \pm \sqrt{3}$. Our main result is the following theorem.
Theorem. Suppose that C_{4} is given in (\star with $\lambda \notin\{0, \pm 1, \pm 3\}$. Then X is K-stable.
Let us prove this theorem. We suppose that C_{4} is given by with $\lambda \notin\{0, \pm 1, \pm 3\}$. Then the triple cover $\sigma: C_{4} \rightarrow \mathbb{P}^{1}$ is ramified in four distinct points $P_{1}, P_{2}, P_{3}, P_{4}$, which implies that $\operatorname{Aut}\left(Q, C_{4}\right)$ is a finite group, since $\operatorname{Aut}\left(Q, C_{4}\right) \subset \operatorname{Aut}\left(C_{4}, P_{1}+P_{2}+P_{3}+P_{4}\right)$. Without loss of generality, we may assume that

$$
\begin{aligned}
& P_{1}=([1: 0],[0: 1])=[0: 1: 0: 0] \\
& P_{2}=([0: 1],[1: 0])=[0: 0: 1: 0],
\end{aligned}
$$

where we use both the coordinates on $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{3} simultaneously.
Observe that the group $\operatorname{Aut}\left(Q, C_{4}\right)$ contains an involution τ that is given by

$$
([u: v],[x: y]) \mapsto([v: u],[y: x]) .
$$

Let us identify $\operatorname{Aut}\left(\mathbb{P}^{3}, C_{4}\right)=\operatorname{Aut}\left(Q, C_{4}\right)$ using the isomorphism $Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ fixed above. Then τ is given by $\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{3}: x_{2}: x_{1}: x_{0}\right]$. Note that τ swaps P_{1} and P_{2}, and the τ-fixed points in C_{4} are ([1:1],[1:1]) and ([1:-1],[1:-1]), which are not ramification points of the triple cover σ. This shows that τ swaps the points P_{3} and P_{4}. In fact, the group $\operatorname{Aut}\left(Q, C_{4}\right)$ is larger than its subgroup $\langle\tau\rangle \cong \boldsymbol{\mu}_{2}$. Indeed, one can change coordinates $([u: v],[x: y])$ on Q such that $P_{1}=([1: 0],[0: 1]), P_{4}=([0: 1],[1: 0])$, and the curve C_{4} is given by

$$
u\left(x^{3}+\lambda^{\prime} x^{2} y\right)=v\left(y^{3}+\lambda^{\prime} y^{2} x\right)
$$

for some complex number $\lambda^{\prime} \notin\{0, \pm 1, \pm 3\}$. This gives an involution $\iota \in \operatorname{Aut}\left(Q, C_{4}\right)$ such that $\iota\left(P_{1}\right)=P_{4}$ and $\iota\left(P_{2}\right)=P_{3}$. Let G be the subgroup $\langle\tau, \iota\rangle \subset \operatorname{Aut}\left(Q, C_{4}\right)=\operatorname{Aut}\left(\mathbb{P}^{3}, C_{4}\right)$. Then $G \cong \boldsymbol{\mu}_{2}^{2}$. Note that the group $\operatorname{Aut}\left(\mathbb{P}^{3}, C_{4}\right)$ can be larger for some $\lambda \in \mathbb{C} \backslash\{0, \pm 1, \pm 3\}$. For instance, if $\lambda= \pm \sqrt{3}$, then $\operatorname{Aut}\left(\mathbb{P}^{3}, C_{4}\right) \cong \mathfrak{A}_{4}$, c.f. [2, Example 4.4.6].

The G-action on C_{4} is faithful, so that the curve C_{4} does not contains G-fixed points. Hence, the quadric Q does not G-fixed points, since otherwise Q would contain a G invariant curve of degree $(1,0)$, which would intersect C_{4} by a G-fixed point. This implies that the space \mathbb{P}^{3} contains exactly four G-fixed points. Denote these points by $O_{1}, O_{2}, O_{3}, O_{4}$. These four points are not co-planar. For every $1 \leqslant i<j \leqslant 4$, let $L_{i j}$ be the line in \mathbb{P}^{3} that passes through O_{i} and O_{j}. Then the lines $L_{12}, L_{13}, L_{14}, L_{23}, L_{24}, L_{34}$ are G-invariant, and they are the only G-invariant lines in \mathbb{P}^{3}. For each $1 \leqslant i \leqslant 4$, let Π_{i} be the plane in \mathbb{P}^{3} determined by the three points $\left\{O_{1}, O_{2}, O_{3}, O_{4}\right\} \backslash\left\{O_{i}\right\}$. Then the four planes $\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi_{4}$ are the only G-invariant planes in \mathbb{P}^{3}.
Remark. Each plane Π_{i} intersects C_{4} at four distinct points. Indeed, if $\left|\Pi_{i} \cap C_{4}\right|<4$, then $\Pi_{i} \cap C_{4}$ is a G-orbit of length 2 , and Π_{i} is tangent to C_{4} at both the points of this orbit. Therefore, without loss of generality, we may assume that the intersection $\Pi_{i} \cap C_{4}$ is just the fixed locus of the involution τ. Then $\Pi_{i} \cap C_{4}=([1: 1],[1: 1]) \cup([1:-1],[1:-1])$, so that $\left.\Pi_{i}\right|_{Q}$ is a smooth conic that is given by $a(v x-u y)=b(u x-v y)$ for some $[a: b] \in \mathbb{P}^{1}$. But the conic $\left.\Pi_{i}\right|_{Q}$ cannot tangent C_{4} at the points $([1: 1],[1: 1])$ and $([1:-1],[1:-1])$, so that $\left|\Pi_{i} \cap C_{4}\right|=4$.

The curve C_{4} contains exactly three G-orbits of length 2 , and these G-orbits are just the fixed loci of the involutions $\tau, \iota, \tau \circ \iota$ described earlier. Let L, L^{\prime} and $L^{\prime \prime}$ be the three lines in \mathbb{P}^{3} such that $L \cap C_{4}, L^{\prime} \cap C_{4}$ and $L^{\prime \prime} \cap C_{4}$ are the fixed loci of the involutions τ, ι and $\tau \circ \iota$, respectively. Then L, L^{\prime} and $L^{\prime \prime}$ are G-invariant lines, so that they are three lines among $L_{12}, L_{13}, L_{14}, L_{23}, L_{24}, L_{34}$. In fact, one can show that the lines L, L^{\prime}, $L^{\prime \prime}$ meet at one point. Therefore, we may assume that $L \cap L^{\prime} \cap L^{\prime \prime}=O_{4}$ and $L=L_{14}$, $L^{\prime}=L_{24}, L^{\prime \prime}=L_{34}$. Then
$\Pi_{1} \cap C_{4}=\left(L^{\prime} \cap C_{4}\right) \cup\left(L^{\prime \prime} \cap C_{4}\right), \Pi_{2} \cap C_{4}=\left(L \cap C_{4}\right) \cup\left(L^{\prime \prime} \cap C_{4}\right), \Pi_{3} \cap C_{4}=\left(L \cap C_{4}\right) \cup\left(L^{\prime} \cap C_{4}\right)$. On the other hand, the intersection $\Pi_{4} \cap C_{4}$ is a G-orbit of length 4 .

Since C_{4} is G-invariant, the action of the group G lifts to the threefold X, so that we also identify G with a subgroup of the group $\operatorname{Aut}(X)$. Let E be the π-exceptional surface,
let \widetilde{Q} be the proper transform of the quadric Q on the threefold X, let H_{1}, H_{2}, H_{3} and H_{4} be the proper transforms on X of the G-invariant planes $\Pi_{1}, \Pi_{2}, \Pi_{3}$ and Π_{4}, respectively, and let H be the proper transform on X of a general hyperplane in \mathbb{P}^{3}. Then

$$
-K_{X} \sim 2 \widetilde{Q}+E \sim \widetilde{Q}+2 H_{1} \sim \widetilde{Q}+2 H_{2} \sim \widetilde{Q}+2 H_{3} \sim \widetilde{Q}+2 H_{4} \sim 4 H-E
$$

and the surfaces $E, \widetilde{Q}, H_{1}, H_{2}, H_{3}, H_{4}$ are G-invariant. Observe that $\widetilde{Q} \cong Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and $H_{1}, H_{2}, H_{3}, H_{4}$ are smooth del Pezzo surfaces of degree 5 .

Claim. Let S be a possibly reducible G-invariant surface in X such that $-K_{X} \sim_{\mathbb{Q}} \mu S+\Delta$, where Δ is an effective \mathbb{Q}-divisor, and μ is a positive rational number such that $\mu>\frac{4}{3}$. Then S is one of the surfaces $\widetilde{Q}, H_{1}, H_{2}, H_{3}, H_{4}$.

Proof. This follows from the fact that the cone $\operatorname{Eff}(X)$ is generated by E and \widetilde{Q}.
Suppose X is not K-stable. Since $\operatorname{Aut}(X)$ is finite, the threefold X is not K-polystable. Then, by [3, Corollary 4.14], there is a G-invariant prime divisor F over X with $\beta(F) \leqslant 0$, see [2, § 1.2] for the precise definition of $\beta(F)$. Let us seek for a contradiction.

Let Z be the center of F on X. Then Z is not a surface by [2, Theorem 3.7.1], so that Z is either a G-invariant irreducible curve or a G-fixed point. In the latter case, the point $\pi(Z)$ must be one of the G-fixed points $O_{1}, O_{2}, O_{3}, O_{4}$, so that the point Z is not contained in $\widetilde{Q} \cup E$. Let us use Abban-Zhuang theory [1] to show that Z does not lie on $\widetilde{Q} \cup E$ in the former case.

Lemma. The center Z cannot be contained in $\widetilde{Q} \cup E$.
Proof. We suppose that $Z \subset \widetilde{Q} \cup E$. Then Z is an irreducible G-invariant curve, because neither \widetilde{Q} nor E contains G-fixed points. Let us use notations introduced in [2, § 1.7]. Namely, we fix $u \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{X}-u \widetilde{Q} \sim_{\mathbb{R}}(4-2 u) H+(u-1) E \sim_{\mathbb{R}}(1-u) \widetilde{Q}+2 H,
$$

so that $-K_{X}-u \widetilde{Q}$ is nef for $0 \leqslant u \leqslant 1$, and not pseudo-effective for $u>2$. Thus, we have

$$
P\left(-K_{X}-u \widetilde{Q}\right)= \begin{cases}-K_{X}-u \widetilde{Q} & \text { if } 0 \leqslant u \leqslant 1 \\ (4-2 u) H & \text { if } 1 \leqslant u \leqslant 2\end{cases}
$$

and

$$
N\left(-K_{X}-u \widetilde{Q}\right)= \begin{cases}0 & \text { if } 0 \leqslant u \leqslant 1 \\ (u-1) E & \text { if } 1 \leqslant u \leqslant 2\end{cases}
$$

If $Z \subset \widetilde{Q}$, then [2, Corollary 1.7.26] gives

$$
1 \geqslant \frac{A_{X}(F)}{S_{X}(F)} \geqslant \min \left\{\frac{1}{S_{X}(\widetilde{Q})}, \frac{1}{S\left(W_{\bullet} \widetilde{\bullet}_{\bullet} ; Z\right)}\right\},
$$

where

$$
S_{X}(\widetilde{Q})=\frac{1}{\left(-K_{X}\right)^{3}} \int_{0}^{2} \operatorname{vol}\left(-K_{X}-u \widetilde{Q}\right) d u=\frac{1}{\left(-K_{X}\right)^{3}} \int_{0}^{2}\left(P\left(-K_{X}-u \widetilde{Q}\right)\right)^{3} d u
$$

and

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{\widetilde{Q}} ; Z\right)=\frac{3}{\left(-K_{X}\right)^{3}}\left\{\int_{0}^{2}\left(P\left(-K_{X}-u \widetilde{Q}\right)^{2} \cdot \widetilde{Q}\right) \cdot \operatorname{ord}_{Z}\left(\left.N\left(-K_{X}-u \widetilde{Q}\right)\right|_{\widetilde{Q}}\right) d u+\right. \\
&\left.+\int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P\left(-K_{X}-u \widetilde{Q}\right)\right|_{\widetilde{Q}}-v Z\right) d v d u\right\}
\end{aligned}
$$

Therefore, we conclude that $S\left(W_{\bullet \bullet}^{\widetilde{Q}} ; Z\right) \geqslant 1$, because $S_{X}(\widetilde{Q})<1$, see [2, Theorem 3.7.1]. Similarly, if $Z \subset E$, then we get $S\left(W_{\bullet, \bullet}^{E} ; Z\right) \geqslant 1$.

Fix an isomorphism $\widetilde{Q} \cong Q \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $\left.E\right|_{\widetilde{Q}}$ is a divisor in \widetilde{Q} of degree $(1,3)$. For $(a, b) \in \mathbb{R}^{2}$, let $\mathcal{O}_{\widetilde{Q}}(a, b)$ be the class of a divisor of degree (a, b) in $\operatorname{Pic}(\widetilde{Q}) \otimes \mathbb{R}$. Then

$$
\left.P\left(-K_{X}-u \widetilde{Q}\right)\right|_{\widetilde{Q}} \sim_{\mathbb{R}} \begin{cases}\mathcal{O}_{\widetilde{Q}}(3-u, u+1) & \text { if } 0 \leqslant u \leqslant 1 \\ \mathcal{O}_{\widetilde{Q}}(4-2 u, 4-2 u) & \text { if } 1 \leqslant u \leqslant 2\end{cases}
$$

Therefore, if $Z=E \cap \widetilde{Q}$, then

$$
\left.\left.\left.\begin{array}{rl}
S\left(W_{\bullet, \bullet}^{\widetilde{Q}} ; Z\right)= & \frac{1}{10}\left\{\int_{1}^{2} 2(4-2 u)^{2}(u-1) d u\right.
\end{array}+\int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(3-u-v, u+1-3 v)\right) d v d u\right\} 口 \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(4-2 u-v, 4-2 u-3 v)\right) d v d u\right\}\right\}
$$

To estimate $S\left(W_{\bullet, \boldsymbol{Q}}^{\widetilde{Q}} ; Z\right)$ in the case when $Z \subset \mathbb{Q}$ and $Z \neq E \cap \widetilde{Q}$, observe that $|Z-\Delta| \neq \varnothing$, where Δ is the diagonal curve in \widetilde{Q}. Indeed, this follows from the fact that \widetilde{Q} contains neither G-invariant curves of degree $(0,1)$ nor G-invariant curves of degree $(1,0)$, which in turns easily follows from the fact that the curve $C_{4} \cong \mathbb{P}^{1}$ does not have G-fixed points.

Thus, if $Z \subset \widetilde{Q}$ and $Z \neq E \cap \widetilde{Q}$, then

$$
\begin{aligned}
S\left(W_{\bullet, \bullet}^{\widetilde{Q}} ; Z\right) \leqslant & \frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P\left(-K_{X}-u \widetilde{Q}\right)\right|_{\tilde{Q}}-v \Delta\right) d v d u \\
= & \frac{1}{10}\left\{\int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(3-u-v, u+1-v)\right) d v d u+\right. \\
& \left.+\int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\mathcal{O}_{\widetilde{Q}}(4-2 u-v, 4-2 u-v)\right) d v d u\right\} \\
= & \frac{1}{10}\left\{\int_{0}^{1} \int_{0}^{u+1} 2(u+1-v)(3-u-v) d v d u+\int_{1}^{2} \int_{0}^{4-2 u} 2(4-2 u-v)^{2} d v d u\right\} \\
= & \frac{17}{30}
\end{aligned}
$$

Therefore, $Z \not \subset \widetilde{Q}$, and hence $Z \subset E$ and $Z \neq \widetilde{Q} \cap E$.
One has $E \cong \mathbb{F}_{n}$ for some integer $n \geqslant 0$. It follows from the argument as in the proof of [2, Lemma 4.4.16] that n is either 0 or 2 . Indeed, let \mathbf{s} be the section of the projection $E \rightarrow C_{4}$ such that $\mathbf{s}^{2}=-n$, and let \mathbf{l} be its fiber. Then $-\left.E\right|_{E} \sim \mathbf{s}+k \mathbf{l}$ for some integer k. But

$$
-n+2 k=E^{3}=-c_{1}\left(\mathcal{N}_{C_{4} / \mathbb{P}^{3}}\right)=-14,
$$

so that $k=\frac{n-14}{2}$. Then

$$
\left.\left.\widetilde{Q}\right|_{E} \sim(2 H-E)\right|_{E} \sim \mathbf{s}+(k+8) \mathbf{l}=\mathbf{s}+\frac{n+2}{2} \mathbf{l}
$$

which implies that $\left.\widetilde{Q}\right|_{E} \nsim \mathbf{s}$. Moreover, we know that $\left.\widetilde{Q}\right|_{E}$ is a smooth irreducible curve, since the quadric surface Q is smooth. Thus, since $\left.\widetilde{Q}\right|_{E} \neq \mathbf{s}$, we have

$$
0 \leqslant\left.\widetilde{Q}\right|_{E} \cdot \mathbf{s}=\left(\mathbf{s}+\frac{n+2}{2} \mathbf{l}\right) \cdot \mathbf{s}=-n+\frac{n+2}{2}=\frac{2-n}{2}
$$

so that $n=0$ or $n=2$. Now, let us show that $S\left(W_{\bullet, \bullet}^{E} ; Z\right)<1$ in both cases.
For $u \geqslant 0$,

$$
-K_{X}-u E \sim 2 \widetilde{Q}+(1-u) E
$$

so that $-K_{X}-u E$ is pseudo-effective if and only if $u \leqslant 1$, and it is nef if and only if $u \leqslant \frac{1}{3}$. Furthermore, if $\frac{1}{3} \leqslant u \leqslant 1$, then

$$
P\left(-K_{X}-u E\right)=(2-2 u)(3 H-E)
$$

and $N\left(-K_{X}-u E\right)=(3 u-1) \widetilde{Q}$. Thus, if $n=0$, we have

$$
\left.P\left(-K_{X}-u E\right)\right|_{E}= \begin{cases}(1+u) \mathbf{s}+(9-7 u) \mathbf{l} & \text { if } 0 \leqslant u \leqslant \frac{1}{3} \\ (2-2 u) \mathbf{s}+(10-10 u) \mathbf{l} & \text { if } \frac{1}{3} \leqslant u \leqslant 1\end{cases}
$$

Similarly, if $n=2$, then

$$
\left.P\left(-K_{X}-u E\right)\right|_{E}= \begin{cases}(1+u) \mathbf{s}+(10-6 u) \mathbf{l} & \text { if } 0 \leqslant u \leqslant \frac{1}{3} \\ (2-2 u) \mathbf{s}+(12-12 u) \mathbf{l} & \text { if } \frac{1}{3} \leqslant u \leqslant 1\end{cases}
$$

Recall that $Z \neq \widetilde{Q} \cap E$. Moreover, we have $Z \nsim 1$, since $\pi(Z)$ is not one of the G-fixed points $O_{1}, O_{2}, O_{3}, O_{4}$. Thus, using [2, Corollary 1.7.26], we get

$$
S\left(W_{\bullet, \bullet}^{E} ; Z\right)=\frac{1}{10} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{E}-v Z\right) d v d u \leqslant \frac{1}{10} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{E}-v \mathbf{s}\right) d v d u
$$

because the divisor $|Z-\mathbf{s}| \neq \varnothing$.
Consequently, if $n=0$, then

$$
\begin{aligned}
& S\left(W_{\bullet, 0}^{E} ; Z\right) \leqslant \\
& \frac{1}{10}\left\{\int_{0}^{\frac{1}{3}} \int_{0}^{\infty} \operatorname{vol}((1+u) \mathbf{s}+(9-7 u) \mathbf{l}-v \mathbf{s}) d v d u+\right. \\
& \left.+\quad \int_{\frac{1}{3}}^{1} \int_{0}^{\infty} \operatorname{vol}((2-2 u) \mathbf{s}+(10-10 u) \mathbf{l}-v \mathbf{s}) d v d u\right\} \\
& =\frac{1}{10}\left\{\int_{0}^{\frac{1}{3}} \int_{0}^{1+u} 2(1+u-v)(9-7 u) d v d u+\int_{\frac{1}{3}}^{1} \int_{0}^{2-2 u} 2(2-2 u-v)(10-10 u) d v d u\right\} \\
& =\frac{1783}{3240} .
\end{aligned}
$$

Similarly, if $n=2$, then

$$
\begin{aligned}
& S\left(W_{\bullet, 0}^{E} ; Z\right) \leqslant \\
& \frac{1}{10}\left\{\int_{0}^{\frac{1}{3}} \int_{0}^{\infty} \operatorname{vol}((1+u) \mathbf{s}+(10-6 u) \mathbf{l}-v \mathbf{s}) d v d u+\right. \\
& \left.\qquad+\int_{\frac{1}{3}}^{1} \int_{0}^{\infty} \operatorname{vol}((2-2 u) \mathbf{s}+(12-12 u) \mathbf{l}-v \mathbf{s}) d v d u\right\} \\
& =\frac{1}{10}\left\{\int_{0}^{\frac{1}{3}} \int_{0}^{1+u} 2(1+u-v)(10-6 u) d v d u+\int_{\frac{1}{3}}^{1} \int_{0}^{2-2 u} 2(2-2 u-v)(12-12 u) d v d u\right\} \\
& =\frac{1043}{1620} .
\end{aligned}
$$

In both cases, we have $S\left(W_{\bullet, \bullet}^{E} ; Z\right)<1$, which is a contradiction.
Now, we prove our main technical result using Abban-Zhuang theory, see also [2, § 1.7].
Proposition. The center Z is not contained in $H_{1} \cup H_{2} \cup H_{3} \cup H_{4}$.

Proof. Suppose that $Z \subset H_{1} \cup H_{2} \cup H_{3} \cup H_{4}$. Without loss of generality, we may assume that either $Z \subset H_{1}$ or $Z \subset H_{4}$. We will only consider the case when $Z \subset H_{1}$, because the proof is very similar and simpler in the other case. Thus, we assume that $Z \subset H_{1}$. Then $\pi(Z) \subset \Pi_{1}$. Therefore, we see that one of the following two subcases are possible:

- either $\pi(Z)$ is one of the G-fixed points O_{2}, O_{3}, O_{4},
- or Z is a G-invariant irreducible curve in H_{1}.

We will deal with these subcases separately. In both subcases, we let $S=H_{1}$ for simplicity. Recall that S is a smooth del Pezzo surface of degree 5 , the surface S is G-invariant, and the action of the group G on the surface S is faithful. Note also that $Z \not \subset \widetilde{Q}$ by Lemma.

Let us use notations introduced in [2, § 1.7]. Take $u \in \mathbb{R}_{\geqslant 0}$. Then

$$
-K_{X}-u S \sim_{\mathbb{R}}(4-u) H-E \sim_{\mathbb{R}} \widetilde{Q}+(2-u) H \sim_{\mathbb{R}}(u-1) \widetilde{Q}+(2-u)(3 H-E)
$$

Let $P(u)=P\left(-K_{X}-u S\right)$ and $N(u)=N\left(-K_{X}-u S\right)$. Then

$$
P(u)= \begin{cases}-K_{X}-u S & \text { if } 0 \leqslant u \leqslant 1 \\ (2-u)(3 H-E) & \text { if } 1 \leqslant u \leqslant 2\end{cases}
$$

and

$$
N(u)= \begin{cases}0 & \text { if } 0 \leqslant u \leqslant 1 \\ (u-1) \widetilde{Q} & \text { if } 1 \leqslant u \leqslant 2\end{cases}
$$

Note that $S_{X}(S)<1$, see [2, Theorem 3.7.1]. In fact, one can compute $S_{X}(S)=\frac{17}{30}$.
Let $\varphi: S \rightarrow \Pi_{1}$ be birational morphism induced by π. Then φ is a G-equivariant blow up of the four intersection points $\Pi_{1} \cap C_{4}$. Let ℓ be the proper transform on S of a general line in Π_{1}, and let $e_{1}, e_{2}, e_{3}, e_{4}$ be φ-exceptional curves, and let $\ell_{i j}$ be the proper transform on the surface S of the line in Π_{1} that passes through $\varphi\left(e_{i}\right)$ and $\varphi\left(e_{j}\right)$, where $1 \leqslant i<j \leqslant 4$. Then the cone $\overline{\mathrm{NE}(S)}$ is generated by the curves $e_{1}, e_{2}, e_{3}, e_{4}, \ell_{12}, \ell_{13}, \ell_{14}$, $\ell_{23}, \ell_{24}, \ell_{34}$. Recall also that

$$
\Pi_{1} \cap C_{4}=\left(L_{24} \cap C_{4}\right) \cup\left(L_{34} \cap C_{4}\right) .
$$

Therefore, we may assume that $L_{24} \cap C_{4}=\varphi\left(e_{1}\right) \cup \varphi\left(e_{2}\right)$ and $L_{34} \cap C_{4}=\varphi\left(e_{3}\right) \cup \varphi\left(e_{4}\right)$, so that we have $\varphi\left(\ell_{12}\right)=L_{24}$ and $\varphi\left(\ell_{34}\right)=L_{34}$.

Observe that, the group $\operatorname{Pic}^{G}(S)$ is generated by the divisor classes $\ell, e_{1}+e_{2}, e_{3}+e_{4}$, because both $L_{24} \cap C_{4}$ and $L_{34} \cap C_{4}$ are G-orbits of length 2 . Therefore, if Z is a curve, then $\varphi(Z)$ is a curve of degree $d \geqslant 1$, so that $Z \sim d \ell-m_{12}\left(e_{1}+e_{2}\right)-m_{34}\left(e_{3}+e_{4}\right)$ for some non-negative integers m_{12} and m_{34}, which gives

$$
\begin{aligned}
Z & \sim\left(d-2 m_{12}\right) \ell+m_{12}\left(2 \ell-e_{1}-e_{2}-e_{3}-e_{4}\right)+\left(m_{12}-m_{34}\right)\left(e_{3}+e_{4}\right) \\
& \sim\left(d-2 m_{12}\right)\left(\ell_{12}+e_{1}+e_{2}\right)+m_{12}\left(\ell_{12}+\ell_{34}\right)+\left(m_{12}-m_{34}\right)\left(e_{3}+e_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Z & \sim\left(d-2 m_{34}\right) \ell+m_{34}\left(2 \ell-e_{1}-e_{2}-e_{3}-e_{4}\right)+\left(m_{34}-m_{12}\right)\left(e_{1}+e_{2}\right) \\
& \sim\left(d-2 m_{34}\right)\left(\ell_{34}+e_{3}+e_{4}\right)+m_{34}\left(\ell_{12}+\ell_{34}\right)+\left(m_{34}-m_{12}\right)\left(e_{1}+e_{2}\right) .
\end{aligned}
$$

Moreover, if $Z \neq \ell_{12}$ and $Z \neq \ell_{34}$, then $d-2 m_{12}=Z \cdot \ell_{12} \geqslant 0$ and $d-2 m_{34}=Z \cdot \ell_{34} \geqslant 0$. Hence, if Z is a curve, then $\left|Z-\ell_{12}\right| \neq \varnothing$ or $\left|Z-\ell_{34}\right| \neq \varnothing$.

On the other hand, if Z is a curve, then [2, Corollary 1.7.26] gives

$$
1 \geqslant \frac{A_{X}(F)}{S_{X}(F)} \geqslant \min \left\{\frac{1}{S_{X}(S)}, \frac{1}{S\left(W_{\bullet, \bullet}^{S} ; Z\right)}\right\}=\min \left\{\frac{30}{17}, \frac{1}{S\left(W_{\bullet, \bullet}^{S} ; Z\right)}\right\}
$$

where

$$
S\left(W_{\bullet, \bullet}^{S} ; Z\right)=\frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v Z\right) d v d u
$$

because $Z \not \subset \widetilde{Q}$. Moreover, if $S\left(W_{\bullet, \bullet}^{S} ; Z\right)=1$, then [2, Corollary 1.7.26] gives

$$
1 \geqslant \frac{A_{X}(E)}{S_{X}(E)}=\frac{1}{S_{X}(S)}=\frac{30}{17},
$$

which is absurd. Thus, if Z is a curve, then $S\left(W_{\bullet, \bullet}^{S} ; Z\right)>1$, which gives

$$
\begin{aligned}
& 1<S\left(W_{\bullet, \bullet}^{S} ; Z\right)=\frac{1}{30} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v Z\right) d v d u \\
& \quad \leqslant \max \left\{\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u, \frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{34}\right) d v d u\right\}
\end{aligned}
$$

because $\left|Z-\ell_{12}\right| \neq \varnothing$ or $\left|Z-\ell_{34}\right| \neq \varnothing$. Note also that

$$
S\left(W_{\bullet, \bullet}^{S} ; \ell_{12}\right)=\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u=\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{34}\right) d v d u
$$

Hence, if Z is a curve, then

$$
1<S\left(W_{\bullet, \bullet}^{S} ; Z\right) \leqslant S\left(W_{\bullet, \bullet}^{S} ; \ell_{12}\right)=\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u
$$

Let us compute $S\left(W_{\bullet, \bullet}^{S} ; \ell_{12}\right)$. For $0 \leqslant u \leqslant 1$ and $v \geqslant 0$, we have

$$
\left.P(u)\right|_{S}-v \ell_{12}=\left.\left(-K_{X}-u S\right)\right|_{S}-v \ell_{12} \sim_{\mathbb{R}}(4-u-v) \ell-(1-v)\left(e_{1}+e_{2}\right)-e_{3}-e_{4}
$$

Therefore, if $0 \leqslant v \leqslant 1$, then this divisor is nef, and its volume is $u^{2}+2 u v-v^{2}-8 u-4 v+12$. Similarly, if $1 \leqslant v \leqslant 2-u$, then its Zariski decomposition is

$$
\left.P(u)\right|_{S}-v \ell_{12} \sim_{\mathbb{R}} \underbrace{(4-u-v) \ell-e_{3}-e_{4}}_{\text {positive part }}+\underbrace{(v-1)\left(e_{1}+e_{2}\right)}_{\text {negative part }},
$$

so that its volume is $u^{2}+2 u v+v^{2}-8 u-8 v+14$. Likewise, if $2-u \leqslant v \leqslant 3-u$, then the Zariski decomposition of the divisor $\left.P(u)\right|_{S}-v \ell_{12}$ is

$$
\left.P(u)\right|_{S}-v \ell_{12} \sim_{\mathbb{R}} \underbrace{(3-u-v)\left(2 \ell-e_{3}-e_{4}\right)}_{\text {positive part }}+\underbrace{(v-1)\left(e_{1}+e_{2}\right)+(v-2+u) \ell_{34}}_{\text {negative part }},
$$

so that its volume is $2(3-u-v)^{2}$. If $v>3-u$, then $\left.P(u)\right|_{S}-v \ell_{12}$ is not pseudo-effective, so that the volume of this divisor is zero. Thus, we have

$$
\begin{aligned}
& \frac{1}{10} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& = \\
& =\frac{1}{10} \int_{0}^{1} \int_{0}^{3-u} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& = \\
& \quad+\int_{0}^{1} \int_{0}^{1}\left(u^{2}+2 u v-v^{2}-8 u-4 v+12\right) d v d u+ \\
& = \\
& \quad \frac{107}{120}
\end{aligned}
$$

Similarly, if $1 \leqslant u \leqslant 2$, then

$$
\left.P(u)\right|_{S}-v \ell_{12} \sim_{\mathbb{R}}(6-3 u-v) \ell+(v+u-2)\left(e_{1}+e_{2}\right)+(u-2)\left(e_{3}+e_{4}\right) .
$$

If $0 \leqslant v \leqslant 2-u$, this divisor is nef, and its volume is $5 u^{2}+2 u v-v^{2}-20 u-4 v+20$. Likewise, if $2-u \leqslant v \leqslant 4-2 u$, then its Zariski decomposition is

$$
\left.P(u)\right|_{S}-v \ell_{12} \sim_{\mathbb{R}} \underbrace{(4-2 u-)\left(2 \ell-e_{3}-e_{4}\right)}_{\text {positive part }}+\underbrace{(v-2+u)\left(e_{1}+e_{2}+\ell_{34}\right)}_{\text {negative part }},
$$

and its volume is $2(v-2+u)^{2}$. If $v>4-2 u$, this divisor is not pseudo-effective, so that

$$
\begin{aligned}
& \frac{1}{10} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& \quad=\frac{1}{10} \int_{1}^{2} \int_{0}^{4-2 u} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& \quad=\frac{1}{10}\left\{\int_{1}^{2} \int_{0}^{2-u}\left(5 u^{2}+2 u v-v^{2}-20 u-4 v+20\right) d v d u+\int_{1}^{2} \int_{2-u}^{4-2 u} 2(v-2+u)^{2} d v d u\right\} \\
& \quad=\frac{19}{24}
\end{aligned}
$$

Therefore, we see that

$$
\begin{aligned}
S\left(W_{\bullet, \bullet}^{S} ; \ell_{12}\right) & =\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& =\frac{1}{10} \int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u+\frac{1}{10} \int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v \ell_{12}\right) d v d u \\
& =\frac{107}{120}+\frac{19}{24}=1
\end{aligned}
$$

which implies, in particular, that Z is not a curve.

Hence, we see that $\pi(Z)$ is one of the points O_{2}, O_{3}, O_{4}. Without loss of generality, we may assume that either $\pi(Z)=O_{2}$ or $\pi(Z)=O_{4}$, so that $Z \in \ell_{12}$ in both subcases. Now, using [2, Theorem 1.7.30], we see that

$$
1 \geqslant \frac{A_{X}(F)}{S_{X}(F)} \geqslant \min \left\{\frac{1}{S\left(W_{\bullet, 0, \bullet}^{S, \ell_{12}} ; Z\right)}, \frac{1}{S\left(W_{\bullet, \bullet} ; \ell_{12}\right)}, \frac{1}{S_{X}(S)}\right\}=\min \left\{\frac{1}{S\left(W_{0},, \ell_{12} ; Z\right)}, 1\right\}
$$

where $S\left(W_{\bullet, \bullet \bullet}^{S, \ell_{12}} ; Z\right)$ is defined in [2, § 1.7]. In fact, [2, Theorem 1.7.30] implies the strict inequality $S\left(W_{\bullet, \bullet, \bullet}^{S, \ell_{12}} ; Z\right)<1$, because $S_{X}(S)<1$. Let us compute $S\left(W_{\bullet, 0, \bullet}^{S, \ell_{12}} ; Z\right)$.

For $0 \leqslant u \leqslant 2$ and $v \geqslant 0$, let $P(u, v)$ be the positive part of the Zariski decomposition of the divisor $\left.P(u)\right|_{S}-v \ell_{12}$, and let $N(u, v)$ be its negative part.

If $0 \leqslant u \leqslant 1$, then

$$
P(u, v)=\left\{\begin{array}{lr}
(4-u-v) \ell-(1-v)\left(e_{1}+e_{2}\right)-e_{3}-e_{4} & \text { if } 0 \leqslant v \leqslant 1 \\
(4-u-v) \ell-e_{3}-e_{4} & \text { if } 1 \leqslant v \leqslant 2-u \\
(3-u-v)\left(2 \ell-e_{3}-e_{4}\right) & \text { if } 2-u \leqslant v \leqslant 3-u
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leqslant v \leqslant 1 \\
(v-1)\left(e_{1}+e_{2}\right) & \text { if } 1 \leqslant v \leqslant 2-u \\
(v-1)\left(e_{1}+e_{2}\right)+(v-2+u) \ell_{34} & \text { if } 2-u \leqslant v \leqslant 3-u
\end{array}\right.
$$

Similarly, if $1 \leqslant u \leqslant 2$, then

$$
P(u, v)=\left\{\begin{array}{lr}
(6-3 u-v) \ell+(v+u-2)\left(e_{1}+e_{2}\right)+(u-2)\left(e_{3}+e_{4}\right) & \text { if } 0 \leqslant v \leqslant 2-u \\
(v-2+u)\left(e_{1}+e_{2}+\ell_{34}\right) & \text { if } 2-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

and

$$
N(u, v)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leqslant v \leqslant 1, \\
(v-2+u)\left(e_{1}+e_{2}+\ell_{34}\right) & \text { if } 2-u \leqslant v \leqslant 4-2 u
\end{array}\right.
$$

Recall from [2, Theorem 1.7.30] that

$$
S\left(W_{\bullet, \bullet}^{S, \ell_{12}} ; Z\right)=F_{Z}\left(W_{\bullet, \bullet}^{S, \ell_{12}}\right)+\frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{2} \int_{0}^{\infty}\left(P(u, v) \cdot \ell_{12}\right)^{2} d v d u
$$

for

$$
F_{Z}\left(W_{\bullet, \bullet}^{S, \ell_{12}}\right)=\frac{6}{\left(-K_{X}\right)^{3}} \int_{0}^{2} \int_{0}^{\infty}\left(P(u, v) \cdot \ell_{12}\right) \operatorname{ord}_{Z}\left(\left.N_{S}^{\prime}(u)\right|_{\ell_{12}}+\left.N(u, v)\right|_{\ell_{12}}\right) d v d u
$$

where $N_{S}^{\prime}(u)$ is the part of the divisor $\left.N(u)\right|_{S}$ whose support does not contain ℓ_{12}, so that $N_{S}^{\prime}(u)=\left.N(u)\right|_{S}$ in our case, which implies that $\operatorname{ord}_{Z}\left(\left.N_{S}^{\prime}(u)\right|_{\ell_{12}}\right)=0$ for $0 \leqslant u \leqslant 2$, because $Z \notin \widetilde{Q}$. Thus, if $\pi(Z)=O_{2}$, then $Z \notin \ell_{34} \cup e_{1} \cup e_{2}$, which gives $F_{Z}\left(W_{\bullet, \bullet}^{S, \ell} \ell_{12}\right)=0$.

On the other hand, if $\pi(Z)=O_{4}$, then $Z=\ell_{12} \cap \ell_{34}$ and $Z \notin e_{1} \cup e_{2}$, so that

$$
\begin{aligned}
F_{Z}\left(W_{\bullet \bullet}^{S, \ell_{12}}\right)= & \frac{1}{5} \int_{0}^{2} \int_{0}^{\infty}\left(P(u, v) \cdot \ell_{12}\right) \operatorname{ord}_{Z}\left(\left.N(u, v)\right|_{\ell_{12}}\right) d v d u \\
= & \frac{1}{5}\left\{\int_{0}^{1} \int_{2-u}^{3-u}(6-2 u-2 v+6)(v-2+u) d v d u+\right. \\
& \left.\quad+\int_{1}^{2} \int_{2-u}^{4-2 u}(8-4 u-2 v+8)(v-2+u) d v d u\right\} \\
= & \frac{1}{12}
\end{aligned}
$$

Therefore, we see that

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{S, \ell_{12}} ; Z\right) \leqslant \frac{1}{12}+\frac{1}{10} \int_{0}^{2} \int_{0}^{\infty}\left(P(u, v) \cdot \ell_{12}\right)^{2} d v d u \\
& \quad=\frac{1}{12}+\frac{1}{10}\left\{\int_{0}^{1} \int_{0}^{1}(2-u+v)^{2} d v d u+\int_{0}^{1} \int_{1}^{2-u}(4-u-v)^{2} d v d u+\right. \\
& \left.\quad+\int_{0}^{1} \int_{2-u}^{3-u}(6-2 u-2 v)^{2} d v d u+\int_{1}^{2} \int_{0}^{2-u}(2-u+v)^{2} d v d u+\int_{1}^{2} \int_{2-u}^{4-2 u}(8-4 u-2 v)^{2} d v d u\right\} \\
& \quad=1
\end{aligned}
$$

However, as we already mentioned, one has $S\left(W_{\bullet, 0}^{S, \ell_{12}} ; Z\right)<1$ by [2, Theorem 1.7.30]. The obtained contradiction completes the proof of Proposition.

Corollary. Both Z and $\pi(Z)$ are irreducible curves, and $\pi(Z)$ is not entirely contained in $\Pi_{1} \cup \Pi_{2} \cup \Pi_{3} \cup \Pi_{4} \cup Q$.

Using [2, Lemma 1.4.4], we see that $\alpha_{G, Z}(X)<\frac{3}{4}$. Now, using [2, Lemma 1.4.1], we see that there are a G-invariant effective \mathbb{Q}-divisor D on the threefold X and a positive rational number $\mu<\frac{3}{4}$ such that $D \sim_{\mathbb{Q}}-K_{X}$ and Z is contained in the locus $\operatorname{Nklt}(X, \mu D)$. Moreover, it follows from Claim that $\operatorname{Nklt}(X, \mu D)$ does not contain G-irreducible surfaces except maybe for $\widetilde{Q}, H_{1}, H_{2}, H_{3}, H_{3}$. Now, applying [2, Corollary A.1.13] to $\left(\mathbb{P}^{3}, \mu \pi(D)\right)$, we see that $\pi(Z)$ must be a G-invariant line in \mathbb{P}^{3}. But this is impossible by Corollary, since all G-invariant lines in \mathbb{P}^{3} are contained in $\Pi_{1} \cup \Pi_{2} \cup \Pi_{3} \cup \Pi_{4}$.

The obtained contradiction completes the proof of our Theorem.
Acknowledgements. Ivan Cheltsov has been supported by Leverhulme grant RPG-2021-229. Jihun Park has been supported by IBS-R003-D1, Institute for Basic Science in Korea.

References

[1] H. Abban, Z. Zhuang, K-stability of Fano varieties via admissible flags, arXiv:2003.13788 (2020).
[2] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß, N. Viswanathan, The Calabi problem for Fano threefolds, MPIM preprint 2021-31.
[3] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), 195223.

Ivan Cheltsov
School of Mathematics, The University of Edinburgh
Edinburgh EH9 3JZ, Scotland
I.Cheltsov@ed.ac.uk

Jihun Park
Center for Geometry and Physics, Institute for Basic Science
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
Department of Mathematics, POSTECH
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
wlog@postech.ac.kr

