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DELTA INVARIANTS OF SINGULAR DEL PEZZO SURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Abstract. We estimate δ-invariants of some singular del Pezzo surfaces with quotient singu-
larities, which we studied ten years ago. As a result, we show that each of these surfaces admits
an orbifold Kähler–Einstein metric.

All varieties are assumed to be complex, projective and normal unless otherwise stated.

1. Introduction

Let Sd be a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) of degree d,
where a0 6 a1 6 a2 6 a4. Then Sd is given by a quasihomogeneous polynomial equation of
degree d

f
(
x, y, z, t

)
= 0 ⊂ P(a0, a1, a2, a3) ∼= Proj

(
C
[
x, y, z, t

])
,

where wt(x) = a0, wt(y) = a1, wt(z) = a2, wt(t) = a3. Here, being quasismooth simply means
that the above equation defines a singularity only at the origin in C4, which implies that Sd has
at most cyclic quotient singularities. On the other hand, being well-formed implies that

KSd
∼Q OP(a0,a1,a2,a3)

(
d− a0 − a1 − a2 − a3

)
,

see [Do82, Theorem 3.3.4], [IF00, 6.14].
Put I = a0+a1+a2+a3−d and suppose that I is positive. Then Sd is a del Pezzo surfaces with

at most quotient singularities. Such singular del Pezzo surfaces with orbifold Kähler–Einstein
metrics drew attention from Riemannian geometers because they may lift to Sasakian–Einstein
5-manifolds through S1-bundle structures. Through this passage, Boyer, Galicki and Nakamaye
yielded a significant amount of examples towards classification of simply-connected Sasakian–
Einstein 5-manifolds (see [BGN03, BG08]).

In [P18], Paemurru presented an algorithm that produce the (infinite) list of all possibilities
for the quintuple (a0, a1, a2, a3, d) for every fixed I > 1. For I = 1, this list has been found much
earlier by Johnson and Kollár in [JK01]. In this case, we have the following trichotomy:

• the surface Sd is smooth and

(
a0, a1, a2, a3, d

)
∈
{
(1, 1, 1, 1, 3), (1, 1, 1, 2, 4), (1, 1, 2, 3, 6)

}
;

• the surface Sd is singular and

(
a0, a1, a2, a3, d

)
= (2, 2n + 1, 2n + 1, 4n + 1, 8n + 4)

where n is a positive integer;
1
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• the surface Sd is singular and (a0, a1, a2, a3, d) is one of the following quintuples:

(1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (1, 3, 5, 8, 16), (2, 3, 5, 9, 18),

(3, 3, 5, 5, 15), (3, 5, 7, 11, 25), (3, 5, 7, 14, 28), (3, 5, 11, 18, 36),

(5, 14, 17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100), (7, 11, 27, 37, 81),

(7, 11, 27, 44, 88), (9, 15, 17, 20, 60), (9, 15, 23, 23, 69), (11, 29, 39, 49, 127),

(11, 49, 69, 128, 256), (13, 23, 35, 57, 127), (13, 35, 81, 128, 256).

In [JK01], Johnson and Kollár also proved the following result:

Theorem 1.1 ([JK01, Theorem 8]). Suppose that Sd with I = 1 is singular and the quintuple
(a0, a1, a2, a3, d) is not one of the following four quintuples:

(1.2) (1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (1, 3, 5, 8, 16), (2, 3, 5, 9, 18).

Then Sd admits an orbifold Kähler–Einstein metric.

Its proof uses the criterion given by the α-invariant (for the definition, see [CS08, Defini-
tion 1.2]) of the surface Sd [T87, N90, DK01]. It says that Sd admits an (orbifold) Kähler–
Einstein metric if the inequality

(1.3) α
(
Sd

)
>

2

3

holds, where α(Sd) is the α-invariant of the surface Sd. Indeed, Johnson and Kollár verified (1.3)
in the case when I = 1, the surface Sd is singular, and the quintuple (a0, a1, a2, a3, d) is not one
of the four exceptions (1.2). Two of the four remaining cases (1.2) have been treated in [A02]
by Araujo, who proved the following result:

Theorem 1.4 ([A02, Theorem 4.1]). In the following two cases:

• (a0, a1, a2, a3, d) = (1, 2, 3, 5, 10),
• (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the equation of Sd contains yzt,

the inequality α(Sd) >
2
3 holds. In particular, Sd admits an orbifold Kähler–Einstein metric.

If (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the defining equation of the surface Sd does not contain
the monomial yzt, then α(Sd) =

8
15 < 2

3 by [CPS10, Theorem 1.10], so that the criterion by the
α-invariant could not be applied.

We have dealt with the other two cases of (1.2) in [CPS10]. We succeeded in estimating
their α-invariants from below by large enough numbers for the criterion (1.3). To be precise, we
proved the following result exactly ten years ago:

Theorem 1.5 ([CPS10, Theorem 1.10]). Suppose that (a0, a1, a2, a3, d) = (1, 3, 5, 8, 16)
or (2, 3, 5, 9, 18). Then α(Sd) > 2

3 . In particular, the surface Sd admits an orbifold Kähler–
Einstein metric.

Corollary 1.6. Suppose that I = 1. Then Sd admits an orbifold Kähler–Einstein metric except
possibly the case when (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the defining equation of the surface
Sd does not contain yzt.

In [CPS10], we also intensively investigated the cases with I > 2. In fact, the problem of
existence of an orbifold Kähler–Einstein metric on the surface Sd with I > 2 was first studied by
Boyer, Galicki and Nakamaye in [BGN03]. They observed that the criterion (1.3) cannot be ap-
plied to Sd in the case when I > 3

2a0, since α(Sd) 6
a0
I
. Moreover, in the case when 2 6 I < 3

2a0,
they obtained the following classification result.
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Theorem 1.7 ([BGN03, Theorem 4.5],[CS13, Theorem 1.10]). Suppose that 2 6 I < 3
2a0. Then

we have the following trichotomy:

(1) there is a non-negative integer k < I and a positive integer a > I + k such that
(
a0, a1, a2, a3, d

)
=
(
I − k, I + k, a, a+ k, 2a+ k + I

)
;

(2) the quintuple (a0, a1, a2, a3, d) belongs to one of the following infinite series:
• (3, 3n, 3n + 1, 3n + 1, 9n + 3),
• (3, 3n + 1, 3n + 2, 3n + 2, 9n + 6),
• (3, 3n + 1, 3n + 2, 6n + 1, 12n + 5),
• (3, 3n + 1, 6n + 1, 9n, 18n + 3),
• (3, 3n + 1, 6n + 1, 9n + 3, 18n + 6),
• (4, 2n + 3, 2n + 3, 4n + 4, 8n + 12),
• (4, 2n + 3, 4n + 6, 6n + 7, 12n + 18),
• (6, 6n + 3, 6n + 5, 6n + 5, 18n + 15),
• (6, 6n + 5, 12n + 8, 18n + 9, 36n + 24),
• (6, 6n + 5, 12n + 8, 18n + 15, 36n + 30),
• (8, 4n + 5, 4n + 7, 4n + 9, 12n + 23),
• (9, 3n + 8, 3n + 11, 6n + 13, 12n + 35),

where n is a positive integer;
(3) the quintuple (a0, a1, a2, a3, d) lies in the sporadic set

(2, 3, 4, 7, 14), (3, 4, 5, 10, 20), (3, 4, 6, 7, 18), (3, 4, 10, 15, 30), (5, 13, 19, 22, 57),

(5, 13, 19, 35, 70), (6, 9, 10, 13, 36), (7, 8, 19, 25, 57), (7, 8, 19, 32, 64),

(9, 12, 13, 16, 48), (9, 12, 19, 19, 57), (9, 19, 24, 31, 81), (10, 19, 35, 43, 105),

(11, 21, 28, 47, 105), (11, 25, 32, 41, 107), (11, 25, 34, 43, 111), (11, 43, 61, 113, 226),

(13, 18, 45, 61, 135), (13, 20, 29, 47, 107), (13, 20, 31, 49, 111), (13, 31, 71, 113, 226),

(14, 17, 29, 41, 99), (5, 7, 11, 13, 33), (5, 7, 11, 20, 40), (11, 21, 29, 37, 95),

(11, 37, 53, 98, 196), (13, 17, 27, 41, 95), (13, 27, 61, 98, 196), (15, 19, 43, 74, 148),

(9, 11, 12, 17, 45), (10, 13, 25, 31, 75), (11, 17, 20, 27, 71), (11, 17, 24, 31, 79),

(11, 31, 45, 83, 166), (13, 14, 19, 29, 71), (13, 14, 23, 33, 79), (13, 23, 51, 83, 166),

(11, 13, 19, 25, 63), (11, 25, 37, 68, 136), (13, 19, 41, 68, 136), (11, 19, 29, 53, 106),

(13, 15, 31, 53, 106), (11, 13, 21, 38, 76), (3, 7, 8, 13, 29), (3, 10, 11, 19, 41),

(5, 6, 8, 9, 24), (5, 6, 8, 15, 30), (2, 3, 4, 5, 12), (7, 10, 15, 19, 45),

(7, 18, 27, 37, 81), (7, 15, 19, 32, 64), (7, 19, 25, 41, 82), (7, 26, 39, 55, 117).

Boyer, Galicki and Nakamaye proved that α(Sd) 6
2
3 in the case when

(
a0, a1, a2, a3, d

)
=
(
I − k, I + k, a, a + k, 2a + k + I

)

for some non-negative integer k < I and some positive integer a > I + k. Moreover, they
estimated the α-invariants for some infinite series in Theorem 1.7(2), and for many sporadic
cases in Theorem 1.7(3). In [CS13, CPS10], we evaluated the α-invariants for all infinite series
in Theorem 1.7(2) and all sporadic cases in Theorem 1.7(3). This gave

Theorem 1.8 ([CS13, CPS10]). Suppose that (a0, a1, a2, a3, d) is one of the quintuples listed in
Theorem 1.7(2),(3). Then α(Sd) >

2
3 except for the following six cases:
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(1) (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and equation of Sd does not contain yzt;
(2) (a0, a1, a2, a3, d) = (7, 10, 15, 19, 45);
(3) (a0, a1, a2, a3, d) = (7, 18, 27, 37, 81);
(4) (a0, a1, a2, a3, d) = (7, 15, 19, 32, 64);
(5) (a0, a1, a2, a3, d) = (7, 19, 25, 41, 82);
(6) (a0, a1, a2, a3, d) = (7, 26, 39, 55, 117).

Meanwhile, since 2010 we have witnessed dramatic developments in the study of the Yau–
Tian–Donaldson conjecture concerning the existence of Kähler-Einstein metrics on Fano mani-
folds and stability. The challenge to the conjecture has been highlighted by Chen, Donaldson,
Sun and Tian who have completed the proof for the case of Fano manifolds with anticanoni-
cal polarisations [CDS15, T15]. Following this celebrated achievement, useful technologies have
been introduced to determine whether given Fano varieties are Kähler-Einstein or not, via the
theorem of Chen-Donaldson-Sun and Tian. For instance, Fujita improved the criterion (1.3)
for smooth Fano varieties. In particular, his [F18, Theorem 1.2] shows that if the surface Sd is
smooth and α(Sd) >

2
3 , then Sd admits a Kähler–Einstein metric.

Corollary 1.9 ([T90]). Suppose that I = 1 and Sd is smooth. Then Sd is Kähler–Einstein.

Proof. By [C08, Theorem 1.7], one has α(Sd) >
2
3 . Use [F18, Theorem 1.2]. �

Recently Fujita and Odaka introduced a new invariant of Fano varieties, which they called
δ-invariant (for the definition, see [FO18, Definition 1.2]), that serves as a strong criterion for
uniform K-stability (see [FO18]).

Theorem 1.10 ([FO18, BJ17]). Let X be a Fano variety with at most Kawamata log terminal
singularities. Then X is uniformly K-stable if and only if δ(X) > 1.

This powerful tool has been practiced for smooth del Pezzo surfaces in [PW18, CZ18], and
therein its effectiveness has been presented. Around the same time, Li, Tian and Wang proved
in [LTW17] that the result of Chen, Donaldson, Sun and Tian also holds for some singular Fano
varieties. In particular, it holds for del Pezzo surfaces with quotient singularities. This gives

Theorem 1.11. If δ(Sd) > 1, then Sd admits an (orbifold) Kähler–Einstein metric.

Now we are strongly reinforced by these new technologies, so that we could complete the
assertions of Corollary 1.6 and Theorem 1.8 in terms of the δ-invariants and existence of Kähler–
Einstein metrics as follows:

Theorem 1.12. Suppose that I = 1 or (a0, a1, a2, a3, d) is one of the quintuples listed in
Theorem 1.7(2),(3). Then

δ
(
Sd

)
>

65

64
.

In particular, the surface Sd admits an orbifold Kähler–Einstein metric.

This theorem is the main result of the present paper. By [BJ17, Theorem B], we know that

(1.13) δ
(
Sd

)
>

3

2
α
(
Sd

)
.

Therefore, it follows from [CPS10, Theorem 1.10] and [PW18, Main Theorem] that to prove
Theorem 1.12, we have only to show that δ(Sd) >

65
64 for the surfaces Sd in P(a0, a1, a2, a3) of

types:

(1) (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the equation of Sd contains yzt;
(2) (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and equation of Sd does not contain yzt;
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(3) (a0, a1, a2, a3, d) = (7, 10, 15, 19, 45);
(4) (a0, a1, a2, a3, d) = (7, 18, 27, 37, 81);
(5) (a0, a1, a2, a3, d) = (7, 15, 19, 32, 64);
(6) (a0, a1, a2, a3, d) = (7, 19, 25, 41, 82);
(7) (a0, a1, a2, a3, d) = (7, 26, 39, 55, 117).

According to the similarity of their proofs, we handle these seven types of del Pezzo surfaces in
three cases as follows:

Case A. (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the equation of Sd contains yzt;
(a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and equation of Sd does not contain yzt;

Case B. (a0, a1, a2, a3, d) = (7, 15, 19, 32, 64);
(a0, a1, a2, a3, d) = (7, 19, 25, 41, 82);

Case C. (a0, a1, a2, a3, d) = (7, 10, 15, 19, 45);
(a0, a1, a2, a3, d) = (7, 18, 27, 37, 81);
(a0, a1, a2, a3, d) = (7, 26, 39, 55, 117).

We will handle each of these cases separately in Sections 3, 4 and 5, respectively. In Section 2,
we will present some results that will be used in the proof of Theorem 1.12.

It would be interesting to study the problem of existence of an orbifold Kähler–Einstein metric
on Sd in the remaining cases with α(Sd) 6

2
3 . In some of these cases, the del Pezzo surface Sd

is indeed not Kähler–Einstein. For instance, the surface Sd does not admit an orbifold Kähler–
Einstein metric in the case when

I > 3a0.

This follows from the obstruction found by Gauntlett, Martelli, Sparks, Yau [GMSY07]. On the
other hand, we expect the following to be true:

Conjecture 1.14. If I = 2, then Sd admits an orbifold Kähler–Einstein metric.

We believe that this conjecture can be proven using a similar approach to the one we
use in the proof of Theorem 1.12. Note also that the list of all possible values of the
quintuple (a0, a1, a2, a3, d) with I = 2 is known. It is contained in [CS13, Corollary 1.14]
and [P18, Table 2]. Thus, one can prove Conjecture 1.14 by case by case analysis. In fact, in
some of these cases we already know that δ(Sd) >

65
64 by Theorem 1.12.

Acknowledgements. We started to work on this paper during our stay at the Erwin
Schrödinger International Institute for Mathematics and Physics in Vienna in August 2018.
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5-100. Jihun Park was supported by IBS-R003-D1, Institute for Basic Science in Korea. Con-
stantin Shramov was supported by the Russian Academic Excellence Project “5-100” and Young
Russian Mathematics award.

2. Basic tools

Let S be a surface with at most cyclic quotient singularities, let C be an irreducible reduced
curve on S, let P be a point of the curve C, and let D be an effective R-divisor on the surface S.
In this section, we present a few of well-known (local and global) results that will be used in the
proof of Theorem 1.12. We start with

Lemma 2.1 ([K97]). Suppose that P is a smooth point of the surface S, and the singularities
of the log pair (S,D) are not log canonical at P . Then multP (D) > 1.

This immediately implies
5



Corollary 2.2. If P is a smooth point of the surface S, the log pair (S,D) is not log canonical
at P , and C is not contained in the support of the divisor D, then D · C > 1.

To state an analogue of this result in the case when S is singular at P , recall that S has a
cyclic quotient singularity of type 1

n
(a, b) at the point P , where a and b are coprime positive

integers that are also coprime to n. Thus, if n = 1, then P is a smooth point of the surface S.
For n > 1, Corollary 2.2 can be generalized as follows:

Lemma 2.3. Suppose that the log pair (S,D) is not log canonical at P , and C is not contained
in the support of the divisor D. Then D · C > 1

n
.

Proof. This follows from [CPS10, Lemma 2.2] and [CPS10, Lemma 2.3], cf. [BMO]. �

In general, the curve C may be contained in the support of the divisor D. Thus, we write

D = aC +∆,

where a is a non-negative real number, and ∆ is an effective R-divisor on S whose support does
not contain the curve C. Then we have the following useful result:

Lemma 2.4. Suppose that a 6 1, the surface S is smooth at the point P , the curve C is also
smooth at P , and the log pair (S,D) is not log canonical at P . Then

C ·∆ >
(
C ·∆

)
P
> 1,

where
(
C ·∆

)
P
is the local intersection number of C and ∆ at P .

Proof. This is a special case of a much more general result, known as the inversion of adjunction
(see [S93, P01]). �

The inversion of adjunction also holds for singular varieties. In our two-dimensional case, it
can be stated as follows:

Lemma 2.5. Suppose that a 6 1, the log pair (S,C) is purely log terminal at P , and the log
pair (S,D) is not log canonical at P . Then

C ·∆ >
1

n
.

Proof. The required inequality follows from a more general version of the inverse of adjunction
(see [S93, P01]). See also the proof of [CPS10, Lemma 2.5]. �

By our assumption, the surface S has a cyclic quotient singularity of type 1
n
(a, b) at the

point P . Thus, locally near P , the surface S is a quotient of C2 by the group Zn that acts on C2

as (
x, y
)
7→
(
ωax, ωby

)
,

where ω is a primitive nth root of unity. We can consider x and y as weighted coordinates
around the point P .

Remark 2.6. The pair (S,C) has purely log terminal singularity at P if and only if C is given
by x = 0 or y = 0 for an appropriate choice of weighted coordinates x and y. This follows
from [P01, Theorem 2.1.2], see also [K97, § 9.6]. Geometrically, this means that C is smooth
at P , and its proper transform on the minimal resolution of singularities of the singular point P
intersects the tail curve in the chain of exceptional curves. If (S,C) has purely log terminal
singularities, then

(
KS + C

)
· C = −2 +

∑

O∈C

nO − 1

nO

,

where we assume that S has a cyclic quotient singularity of index nO at the point O.
6



Let f : S̃ → S be the weighted blow up of the point P with wt(x) = a and wt(y) = b, and let E

be the exceptional curve of the morphism f . Then S̃ has at most cyclic quotient singularities,

one has E ∼= P1, and the log pair (S̃, E) has purely log terminal singularities. Moreover, the

curve E has at most two singular points of the surface S̃. One of then is a singular point of type
1
a
(n,−b), and another is a singular point of type 1

b
(−a, n). Furthermore, we have

K
S̃
∼Q f∗

(
KS

)
+

a+ b− n

n
E.

If the curve C is locally given by x = 0 near the point P , then

C̃ ∼Q f∗
(
C
)
−

a

n
E,

where C̃ is the proper transform of the curve C on the surface S̃. For more properties of weighted
blow ups and their defining equations, see [P01, Section 3] or [BMO].

Denote by D̃ the proper transform of the divisor D via f . Then

D̃ ∼R f∗
(
D
)
−mE

for some non-negative rational number m. If C is not contained in the support of the divisor D,
we can estimate m using

0 6 D̃ · C̃ =
(
f∗
(
D
)
−mE

)
· C̃ = D · C −mE · C̃,

where D · C and E · C̃ can be computed in every case. Note that

K
S̃
+ D̃ +

(
m−

a+ b− n

n

)
E ∼R f∗

(
KS +D

)
.

This implies

Proposition 2.7. The log pair (S,D) is log canonical at P if and only if the log pair
(
S̃, D̃ +

(
m−

a+ b− n

n

)
E

)

is log canonical along the curve E.

So far, we considered only local properties of the divisor D on the surface S. These properties
will be used later to prove Theorem 1.12. However, the nature of this theorem is global, so that
we will need one global result that is due to Fujita and Odaka. To state it, we remind the reader
of what the volume vol(D) of the R-divisor D is. If D is a Cartier divisor, then its volume is
simply the number

vol(D) = lim sup
k∈N

h0(OS(kD)

k2/2!
,

where the lim sup can be replaced by limit (see [L04, Example 11.4.7]). Likewise, if D is a
Q-divisor, we can define its volume using the identity

vol(D) =
vol
(
λD
)

λ2

for an appropriate positive rational number λ. One can show that the volume vol(D) only
depends on the numerical equivalence class of the divisor D. Moreover, the volume function can
be continuously extended to R-divisors (see [L04] for details).

7



If D is not pseudoeffective, then vol(D) = 0. If D is pseudoeffective, its volume can be
computed using its Zariski decomposition [P03, BKS04]. Namely, if D is pseudoeffective, then
there exists a nef R-divisor N on the surface S such that

D ∼R N +

r∑

i=1

aiCi,

where each Ci is an irreducible curve on S with N ·Ci = 0, each ai is a non-negative real number,
and the intersection form of the curves C1, . . . , Cr is negative definite. Such decomposition is
unique, and it follows from [BKS04, Corollary 3.2] that

(2.8) vol
(
D
)
= vol

(
N
)
= N2.

Recall that D = aC+∆, where a is a non-negative real number, and ∆ is an effective divisor
whose support does not contain the curve C. Let

τ = sup
{
x ∈ R>0

∣∣∣ D − xC is pseudoeffective
}
.

Then a 6 τ . However, to prove Theorem 1.12, we have to find a better bound for a under an
additional assumption that D is an ample Q-divisor of k-basis type for k ≫ 1 (for the definition,
see [FO18, Definition 1.1] and the proof of Theorem 2.9 below). One such estimate is given by
the following very special case of [FO18, Lemma 2.2].

Theorem 2.9. Suppose that D is a big Q-divisor of k-basis type for k ≫ 1. Then

a 6
1

D2

∫ τ

0
vol
(
D − xC

)
dx+ ǫk,

where ǫk is a small constant depending on k such that ǫk → 0 as k → ∞.

Proof. Let us give a sketch of the proof that shows the nature of the required bound. First,
recall from [FO18] that being k-basis type simply means that

D =
1

kdk

dk∑

i=1

{
si = 0

}
,

where dk = h0(S,OS(kD)) and s1, . . . , sdk are linearly independent sections in H0(S,OS(kD)).
Here, we assume that kD is a Cartier divisor and k ≫ 0.

Let M be a positive rational number such that M > τ . We may assume that kM is an
integer. Then there is a filtration of vector spaces

0 = H0
(
S,OS(kD − (kM + 1)C)

)
⊆ H0

(
S,OS(kD − kMC)

)
⊆

⊆ H0
(
S,OS(kD − (kM − 1)C)

)
⊆ . . . ⊆ H0

(
S,OS(kD − 3C)

)
⊆

⊆ H0
(
S,OS(kD − 2C)

)
⊆ H0

(
S,OS(kD − C)

)
⊆ H0

(
S,OS(kD)

)
.

Let ri = h0(S,OS(kD − iC)). Then

0 = rkM+1 6 rkM 6 rkM−1 6 . . . 6 r3 6 r2 6 r1 6 r0 = dk.

Since the sections s1, . . . , sdk are linearly independent, we see that at most r1 of them are
contained in

H0
(
S,OS(kD − C

)
.

8



Among them at most r2 are contained in H0(S,OS(kD − 2C)). Among them at most r3 are
contained in H0(S,OS(kD − 3C)) etc. Finally, at most rkM sections among s1, . . . , sdk are
contained in

H0
(
S,OS(kD − kMC

)
,

and there are no sections in H0(OS(kD − (kM + 1)C) = 0. Then

• at most r1 sections among s1, . . . , sdk vanish at C;
• at most r2 sections among s1, . . . , sdk vanish at C with order > 2;
• at most r3 sections among s1, . . . , sdk vanish at C with order > 3;
• . . .
• at most rkM−1 sections among s1, . . . , sdk vanish at C with order > kM − 1;
• at most rkM sections among s1, . . . , sdk vanish at C with order kM ;
• no sections among s1, . . . , sdk vanish at C with order > kM + 1.

This immediately implies that the the order of vanishing of the product s1 · s2 · s3 · . . . · sdn at
the curve C is at most

kMrkM + (kM − 1)
(
rkM−1 − rkM

)
+ (kM − 2)

(
rkM−2 − rkM−1

)
+ . . .

. . . + 4
(
r4 − r5

)
+ 3
(
r3 − r4

)
+ 2
(
r2 − r3

)
+
(
r1 − r2

)
=

kM∑

i=1

ri.

Then we have

a 6
r1 + r2 + . . .+ rkM−1 + rkM

kr0
.

As k → ∞, the right hand side in this inequality goes to

1

D2

∫ τ

0
vol
(
D − xC

)
dx,

which gives the bound on a. For a detailed proof, we refer the reader to [FO18]. �

Corollary 2.10. Suppose that D is a big Q-divisor of k-basis type for k ≫ 1, and

C ∼Q µD

for some positive rational number µ. Then

a 6
1

3µ
+ ǫk,

where ǫk is a small constant depending on k such that ǫk → 0 as k → ∞.

Proof. Using Theorem 2.9, we get

a 6
1

D2

∫
∞

0
vol
(
D − λC

)
dλ+ ǫk,

where ǫk is a small constant depending on k such that ǫk → 0 as k → ∞. But

∫
∞

0
vol
(
D − λC

)
dλ =

∫
∞

0
vol
(
(1− λµ)D

)
dλ = D2

∫ 1

µ

0
(1− λµ)2dλ =

D2

3µ
.

This implies the assertion. �
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3. Case A

In this section, we consider two types of quasismooth hypersurfaces as follows:

• S15 : a quasismooth hypersurface in P(1, 3, 5, 7) of degree 15;
• S12 : a quasismooth hypersurface in P(2, 3, 4, 5) of degree 12.

By suitable coordinate changes, S15 may be assumed to be given by

z3 + y5 + xt2 + b1yzt+ b2xy
3z + b3x

2yz2 + b4x
2y2t+

+ b5x
3zt+ b6x

3y4 + b7x
4y2z + b8x

5z2 + b9x
5yt+ b10x

6y3+

+ b11x
7yz + b12x

8t+ b13x
9y2 + b14x

10z + b15x
12y + b16x

15 = 0

and S12 by

z(z − x2)(z − ǫx2) + y4 + xt2 + b1yzt+ b2xy
2z + b3x

2yt+ b4x
3y2 = 0,

where ǫ (ǫ 6= 0 and ǫ 6= 1), b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15 and b16
are constants. Note that the surface S15 has the only singular point at Ot = [0 : 0 : 0 : 1].
Meanwhile, S12 has exactly four singular points at Ox = [1 : 0 : 0 : 0], Ot = [0 : 0 : 0 : 1],
Q1 = [1 : 0 : 1 : 0] and Q2 = [1 : 0 : ǫ : 0].

In the sequel, we use S for the surfaces S15 and S12 if properties or conditions are satisfies by
both the surfaces.

Denote by Cx the curve in S cut out by the equation x = 0. Then the curve Cx is reduced
and irreducible in both the cases. It is easy to check

lct
(
S15, Cx

)
=





1 if a1 6= 0,

8

15
if a1 = 0,

lct
(
S12, Cx

)
=





1 if a1 6= 0,

7

12
if a1 = 0,

where lct
(
S,Cx

)
is the log canonical threshold of Cx on S. Moreover, one has α(S) = lct(S,Cx)

by [CPS10, Theorem 1.10], so that (1.13) gives

Corollary 3.1. If b1 6= 0, then δ(S) > 3
2 .

From now on, we suppose that b1 = 0.

Proposition 3.2. Let D be an effective Q-divisor on S such that

D ∼Q −KS .

Write D = aCx +∆, where a is a non-negative number, and ∆ is an effective Q-divisor on the
surface S whose support does not contain the curve Cx. Suppose also that a 6 8

21 . Then the

log pair (S, 65D) is log canonical.

Corollary 3.3. One has δ(S) > 6
5 .

Proof. Let D be a Q-divisor of k-basis type divisor on S with k ≫ 0. Write D = aCx + ∆,
where a is a non-negative number, and ∆ is an effective Q-divisor on the surface S whose support
does not contain the curve Cx. By Corollary 2.10, we have a 6 8

21 for k ≫ 0. Thus, the log

pair (S, 65D) is log canonical for k ≫ 0 by Proposition 3.2. This implies that δ(S) > 6
5 by

Corollary 3.1. �
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To prove Proposition 3.2, we fix an effective Q-divisor D on the surface S such that

D ∼Q −KS .

Write D = aCx +∆, where a is a non-negative number, and ∆ is an effective Q-divisor on the
surface S whose support does not contain the curve Cx. Suppose also that a 6 8

21 . Let us show

that the log pair (S, 65D) is log canonical.

Lemma 3.4. The log pair (S, 65D) is log canonical outside Cx.

Proof. The required assertion follows from [CPS10, Lemma 2.7]. For convenience of the reader,
let us give the detailed proof here. Let P be a point in S \Cx. Since P 6∈ Cx, there are complex
numbers c1 and c2 such that P satisfies the following system of equations:

{
z + c1x

5 = 0

y + c2x
3 = 0 for S15;

{
y2 + c1x

3 = 0

z + c2x
2 = 0 for S12.

Let P be the pencil of curves that is given by

ν
(
z + c1x

5
)
+ µ

(
yx2 + c2x

5
)
= 0 on S15,

ν
(
y2 + c1x

3
)
+ µ

(
zx+ c2x

3
)
= 0 on S12

for [ν : µ] ∈ P1. Then the base locus of the pencil P consists of finitely many points. Moreover,
by construction, the point P is one of them. Let C be a general curve in P. Then

C ·D 6
5

6
,

so that (S, 65D) is log canonical at P by Corollary 2.2 if P is a smooth point of the surface S.
This verifies the statement for S15.

For S12, we suppose that (S12,
6
5D) is not log canonical at P . Then P must be one of the

points Ox, Q1,Q2. Observe that the point P belongs to the curve Cy cut by y = 0. Moreover,
the curve Cy is irreducible and the log pair (S12,

6
5 ·

2
3Cy) is log canonical. Thus, it follows from

[CS08, Remark 2.22] that there exists an effective Q-divisor D′ on the surface S12 such that

D′ ∼Q −KS12
,

the log pair (S12,
6
5D

′) is not log canonical at the point P , and the support of the divisor D′

does not contain the curve Cy. However,

D′ · Cy =
6

10
,

which is impossible by Lemma 2.3 since (S12,
6
5D

′) is not log canonical at the point P . This
completes the proof for S12. �

Lemma 3.5. The log pair (S, 65D) is log canonical at a point in Cx \ {Ot}.

Proof. Let P be a point in Cx \{Ot}. Observe that P is a smooth point of the surface S, and Cx

is smooth at the point P . Note also that 6
5a < 1. Thus, we can apply Lemma 2.4 to (S, 65D)

and the curve Cx at the point P . Indeed, since
(
Cx ·∆

)
P
6 Cx ·∆ =

1− a

7
6

5

6
on S15,
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(
Cx ·∆

)
P
6 Cx ·∆ =

1− 2a

5
6

5

6
on S12,

the log pair (S, 65D) must be log canonical at P . �

Note that S15 (resp. S12) has singularity of type 1
7(3, 5) (resp. 1

5 (3, 4)) at the point Ot. In
the chart defined by t = 1, the surface S15 is given by

z3 + y5 + x+ b2xy
3z + b3x

2yz2 + b4x
2y2+

+ b5x
3z + b6x

3y4 + b7x
4y2z + b8x

5z2 + b9x
5y + b10x

6y3+

+ b11x
7yz + b12x

8 + b13x
9y2 + b14x

10z + b15x
12y + b16x

15 = 0,

and S12 by

z(z − x2)(z − ǫx2) + y4 + x+ a1yz + a2xy
2z + a3x

2y + a4x
3y2 = 0.

Thus, in a neighborhood of the point Ot, we may regard y and z as local weighted coordinates
with wt(y) = 3 and wt(z) = 5 for S15 and with wt(y) = 3 and wt(z) = 4 for S12.

Let f : S̃ → S be the weighted blow up at the singular point Ot with weights wt(y) = 3,
wt(z) = 5 for S15 and with weights wt(y) = 3, wt(z) = 4 for S12. Denote by E the exceptional
curve of the blow up f . Then

K
S̃15

∼Q f∗
(
KS15

)
+

1

7
E;

K
S̃12

∼Q f∗
(
KS12

)
+

2

5
E.

The surface S has two singular points in E. One is a point of type 1
3 (1, 1), and the other is a

singular point of type 1
5(1, 1) on S̃15 ( 1

4(1, 1) on S̃12). Denote the former by O3 and the latter
by O. Observe that

E2 = −
7

15
on S̃15;

E2 = −
5

12
on S̃12;

and E ∼= P1.
Let C̃x be the proper transform of the curve Cx on the surface S̃. Then

C̃x ∼Q f∗
(
Cx

)
− cE for S15,

where c = 15
7 for S15 and c = 12

5 for S12, and the intersection E ∩ C̃x consists of a single point,

which is different from O3 and O. Note that the curves E and C̃x intersect transversally at the

point E ∩ C̃x.

Denote by ∆̃ be the proper transform of the Q-divisor ∆ on the surface S̃. Then

∆̃ ∼Q f∗
(
∆
)
−mE

for some non-negative rational number m. To estimate it, observe that

0 6 C̃x · ∆̃ =
(
f∗
(
Cx

)
− cE

)
·
(
f∗
(
∆
)
−mE

)
= Cx ·∆−m = Cx · (D − aCx)−m,

so that m 6 1−a
7 for S15 and m 6 1−2a

5 for S12. Now we are ready to prove

Lemma 3.6. The log pair (S, 65D) is log canonical at Ot.
12



Proof. Suppose that the log pair (S, 65D) is not log canonical at Ot. Let us seek for a contradic-

tion. Let λ = 6
5 . Then

K
S̃
+ λaC̃x + λ∆̃ + µE ∼Q f∗

(
KS + λD

)
,

where

µ =
15λa

7
+ λm−

1

7
for S15,

µ =
12λa

5
+ λm−

2

5
for S12.

Thus, the log pair

(3.7)
(
S̃, λaC̃x + λ∆̃ + µE

)

is not log canonical at some point Q ∈ E. Note that µ 6 1 because m 6 1−a
7 (or m 6 1−2a

5 )

and a 6 8
21 .

We first apply Lemmas 2.4 or 2.5 to (3.7) and the curve E at the point Q. Indeed,

E · ∆̃ = E · (f∗
(
∆
)
−mE) = −mE2 =





7m

15
6

1− a

15
6

1

6
on S̃15,

5m

12
6

1− 2a

12
6

5

24
on S̃12.

This shows that Q must be the intersection point of E and C̃x.
Applying Lemma 2.4 again, we see that

5

6
=

1

λ
<
(
aC̃x + ∆̃

)
· E = a+ ∆̃ · E =





a+
7m

15
6 a+

1− a

15
on S̃15,

a+
5m

12
6 a+

1− 2a

12
on S̃12.

However, these inequalities contradict our assumption a 6 8
21 . Therefore, the log pair (S, 65D)

is log canonical at Ot. �

Proposition 3.2 is completely verified.

4. Case B

The way to evaluate δ-invariants for Case B is almost same as that of Case A. In spite of this,
we write the proof for the readers’ convenience.

In this section, we consider the following two types of quasismooth hypersurfaces:

• S64 : a quasismooth hypersurface in P(7, 15, 19, 32) of degree 64;
• S82 : a quasismooth hypersurface in P(7, 19, 25, 41) of degree 82.

As in the previous section, we use S for the surfaces S64 and S82 if properties or conditions
are satisfies by both the surfaces.

We may assume that the surface S64 is given by the equation

t2 + y3z + xz3 + x7y = 0

in P(7, 15, 19, 32) and S82 by the equation

t2 + y3z + xz3 + x9y = 0

in P(7, 19, 25, 41). The surface S is singular at the points Ox = [1 : 0 : 0 : 0], Oy = [0 : 1 : 0 : 0]
and Oz = [0 : 0 : 1 : 0], and is smooth away from them. Moreover, the surface S64 (resp. S82)

13



has quotient singularity of types 1
7(5, 4),

1
15 (7, 2),

1
19(2, 3) (resp.

1
7 (2, 3),

1
19 (7, 3),

1
25(2, 3)) at the

points Ox, Oy, Oz , respectively.
Let Cx be the curve in S cut out by x = 0 and Cy by y = 0. Then both the curves Cx and Cy

are irreducible. We have
35

54
= lct

(
S64,

9

7
Cx

)
< lct

(
S64,

9

15
Cy

)
=

25

18
,

7

12
= lct

(
S82,

10

7
Cx

)
< lct

(
S82,

10

19
Cy

)
=

19

12
,

which imply α(S64) 6
35
54 and α(S82) 6

7
12 . In fact, we have α(S64) =

35
54 and α(S82) =

7
12 by

[CPS10, Theorem 1.10].

Proposition 4.1. Let D be an effective Q-divisor on S such that

D ∼Q −KS .

Write D = aCx +∆, where a is a non-negative number, and ∆ is an effective Q-divisor on the
surface S whose support does not contain the curve Cx. Suppose also that a 6 1

2 . Then the log

pair (S, 1918D) is log canonical.

Proof. Suppose also that a 6 1
2 .

We first consider a point P that lies neither on Cx nor on Cy. Observe that P is a smooth
point of the surface S. Since P 6∈ Cx, there are complex numbers c1 and c2 such that P satisfies
the following system of equations:

{
y7 + c1x

15 = 0

y2z + c2x
7 = 0 for S64;

{
y4 + c1x

5t = 0

y3 + c2xz
2 = 0 for S82.

Moreover, since P 6∈ Cy, we have c1 6= 0. Let P be the pencil given by

ν
(
y7 + c1x

15
)
+ µx8

(
y2z + c2x

7
)
= 0 on S64;

ν
(
y4 + c1x

5t
)
+ µy

(
y3 + c2xz

2
)
= 0 on S82

for [ν : µ] ∈ P1. The base locus of the pencil P consists of finitely many points. Furthermore,
by construction, the point P is one of them. Let C be a general curve in P. Then

multP (D) 6 C ·D 6
18

19
.

It immediately follows from Corollary 2.2 that the log pair (S, 1918D) is log canonical outside Cx

and Cy.
We next consider a point P on Cx different from Oz. Since a 6 1

2 , we apply Lemmas 2.4

and 2.5 to the log pair (S, 1819aCx +
18
19∆). Indeed, since

(
Cx ·∆

)
P
6 Cx ·∆ =

18− 14a

285
6

6

95
on S64,

(
Cx ·∆

)
P
6 Cx ·∆ =

20− 14a

475
6

18

19 · 19
on S82,

the log pair (S, 1918D) must be log canonical at P .

We now let P be a point on Cy different from Oz. Suppose that the log pair (S, 1918D) is not

log canonical at the point P . Recall that (S64,
19
18 · 9

15Cy) and (S82,
19
18 · 10

19Cy) are log canonical,
14



and the curve Cy is irreducible. Thus, it follows from [CS08, Remark 2.22] that there exists an
effective Q-divisor D′ on the surface S such that

D′ ∼Q −KS ,

the log pair (S, 1918D
′) is not log canonical at the point P and the support of the divisor D′ does

not contain the curve Cy. Observe

Cy ·D
′ =





18

19 · 7
on S64

4

35
on S82





6
18

19 · 7
.

This implies that the log pair (S, 1918D
′) is log canonical at the point P . This contradicts our

assumption. Thus, we see that (S, 1918D) is log canonical away from Oz. Hence, to complete the

proof of Proposition 4.1, we have to show that (S, 1918D) is log canonical at the point Oz.

Recall that S64 (resp. S82) has singularity of type 1
19 (2, 3) (resp.

1
25 (2, 3)) at the point Oz. In

the chart z = 1, the surface S64 is given by

t2 + y3 + x+ x7y = 0

and S82 by
t2 + y3 + x+ x9y = 0.

In a neighborhoods of the point Oz, we can consider y and t as local weighted coordinates such
that wt(y) = 2 and wt(t) = 3.

Let f : S̃ → S be the weighted blow up at the singular point Oz with weights wt(y) = 2
and wt(t) = 3. Denote by E the exceptional curve of the blow up f . Then

K
S̃64

∼Q f∗
(
KS64

)
−

14

19
E;

K
S̃82

∼Q f∗
(
KS82

)
−

20

25
E.

The surface S has two singular points in E. One is a point of type 1
2(1, 1) and the other is of

type 1
3(1, 1). Denote the former by O2 and the latter by O3. Observe

E2 = −
19

6
on S̃64;

E2 = −
25

6
on S̃82

and E ∼= P1.
Let C̃x be the proper transform of the curve Cx on the surface S̃. Then

C̃x ∼Q f∗
(
Cx

)
− cE,

where c = 6
19 for S64 and c = 6

25 for S82, and the intersection E ∩ C̃x consists of a single point

different from O2 and O3. Note that the curves E and C̃x intersect transversally.

Denote by ∆̃ be the proper transform of the Q-divisor ∆ on the surface S̃. Then

∆̃ ∼Q f∗
(
∆
)
−mE

for some non-negative rational number m. To estimate it, observe

0 6 C̃x · ∆̃ =
(
f∗
(
Cx

)
− cE

)
·
(
f∗
(
∆
)
−mE

)
= Cx ·∆−m = Cx · (D − aCx)−m.

This implies m 6 18−14a
285 for S64 and m 6 20−14a

19·25 for S82.
15



We finally suppose that the log pair (S, 1918D) is not log canonical at Oz. Let λ = 19
18 . Then

K
S̃
+ λaC̃x + λ∆̃ + µE ∼Q f∗

(
KS + λD

)
,

where

µ =
6λa

19
+ λm+

14

19
for S64;

µ =
6λa

25
+ λm+

20

25
for S82.

Thus, the log pair

(4.2)
(
S̃, λaC̃x + λ∆̃ + µE

)

is not log canonical at some point Q ∈ E.
Using m 6 18−14a

15·19 for S64, m 6 20−14a
19·25 for S82 and a 6 1

2 , we get

6λa

19
+ λm+

14

19
6

4λa

15
+

6λ

95
+

14

19
6

56λ

285
+

14

19
=

2422

2565
< 1,

6λa

25
+ λm+

20

25
6

4λa

19
+

4λ

95
+

4

5
6

14λ

95
+

4

5
=

817

855
< 1.

Since

E · ∆̃ = E · (f∗
(
∆
)
−mE) = −mE2 =





19m

6
6

9− 7a

45
6

6

19
on S̃64,

25m

6
6

20− 14a

6 · 19
6

6

19
on S̃82.

Lemmas 2.4 and 2.5 imply that Q must be the intersection point of E and C̃x. It then follows
from Lemma 2.4 that

18

19
=

1

λ
<
(
aC̃x + ∆̃

)
·E = a+ ∆̃ ·E =





a+
19m

6
6 a+

9− 7a

45
on S̃64,

a+
25m

6
6 a+

20− 14a

6 · 19
on S̃82.

This contradicts our assumption a 6 1
2 . The obtained contradiction completes the proof. �

Corollary 4.3. One has δ(S) > 19
18 .

Proof. See the proof of Corollary 3.3. �

5. Case C

In this section, we consider the following three types of quasismooth hypersurfaces:

• S45 : a quasismooth hypersurface in P(7, 10, 15, 19) of degree 45;
• S81 : a quasismooth hypersurface in P(7, 18, 27, 37) of degree 81;
• S117 : a quasismooth hypersurface in P(7, 26, 39, 55) of degree 117.

As in the previous sections, we use S for all the surfaces S45, S81, and S117 if properties or
conditions are satisfies by all the surfaces.

By appropriate coordinate changes, we may assume that the surface S45 is defined by the
equation

z3 − y3z + xt2 + x5y = 0

in P(7, 10, 15, 19), the surface S81 by

z3 − y3z + xt2 + x9y = 0
16



in P(7, 18, 27, 37), and the surface S117 by

z3 − y3z + xt2 + x13y = 0

in P(7, 26, 39, 55).
The surface S is singular at the points

Ox = [1 : 0 : 0 : 0], Oy = [0 : 1 : 0 : 0], Ot = [0 : 0 : 0 : 1], Q = [0 : 1 : 1 : 0],

and is smooth away from them. Moreover, the surface S45 (resp. S81 and S117) has quotient
singularity of types 1

7 (1, 5),
1
10(7, 9),

1
19(2, 3),

1
5 (1, 2) (resp. 1

7 (3, 1),
1
18(7, 1),

1
37(2, 3),

1
9 (7, 1)

and 1
7(2, 3),

1
26(7, 3),

1
55(2, 3),

1
13(7, 3)) at the points Ox, Oy, Ot, Q, respectively.

Let Cx be the curve in S that is cut out by x = 0. Then

Cx = Lxz +Rx,

where Lxz is the curve given by x = z = 0 and Rx by x = z2 − y3 = 0 in the ambient weighted
projective space. These two curves Lxz and Rx meets each other at the point Ot. Also, we have

L2
xz = −

23

10 · 19
, R2

x = −
8

5 · 19
, Lxz · Rx =

3

19
on S45;

L2
xz = −

47

18 · 37
, R2

x = −
20

9 · 37
, Lxz · Rx =

3

37
on S81;

L2
xz = −

71

26 · 55
, R2

x = −
32

13 · 55
, Lxz ·Rx =

3

55
on S117.

(5.1)

Note also that the curve Rx is singular at the point Ot.
Let Cy be the curve in S cut out by y = 0. Then Cy is irreducible and

35

54
= lct

(
S45,

6

7
Cx

)
< lct

(
S45,

6

10
Cy

)
=

25

18
;

35

72
= lct

(
S81,

8

7
Cx

)
< lct

(
S81,

8

18
Cy

)
=

15

8
;

7

18
= lct

(
S117,

10

7
Cx

)
< lct

(
S117,

10

26
Cy

)
=

13

6
.

In fact, in these three cases α(S) is given by the numbers 35
54 ,

35
72 , and

7
18 on the left-hand sides

by [CPS10, Theorem 1.10].
To estimate δ(S), we fix an effective Q-divisor D on the surface S such that

D ∼Q −KS

and write D = aLxz + bRx +∆, where a and b are non-negative numbers, and ∆ is an effective
Q-divisor on the surface S whose support does not contain the curves Lxz and Rx.

Lemma 5.2. If the Q-divisor D is of k-basis type with k ≫ 0, then

a 6





2

5
1

2
11

20





, b 6





1

3
on S45

1

5
on S81

12

25
on S117





.
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Proof. Suppose that D is of k-basis type with k ≫ 0. Theorem 2.9 implies that

a 6
1

(−KS)2

∫
∞

0
vol
(
−KS − λLxz

)
dλ+ ǫk,

where ǫk is a small constant depending on k such that ǫk → 0 as k → ∞. Since

−KS − λLxz ∼Q





(
6

7
− λ

)
Lxz +

6

7
Rx on S45

(
8

7
− λ

)
Lxz +

8

7
Rx on S81

(
10

7
− λ

)
Lxz +

10

7
Rx on S117

and R2
x < 0, we have vol(−KS − λLxz) = 0 for λ > 6

7 on S45, λ > 8
7 on S81 and λ > 10

7 on S117.
Similarly, using (5.1), we see that

(−KS − λLxz) · Rx =





((
6

7
− λ

)
Lxz +

6

7
Rx

)
· Rx =

6− 15λ

19 · 5
on S45

((
8

7
− λ

)
Lxz +

8

7
Rx

)
· Rx =

8− 27λ

37 · 9
on S81

((
10

7
− λ

)
Lxz +

10

7
Rx

)
·Rx =

10− 39λ

13 · 55
on S117.

This shows that the divisor −KS − λLxz is nef for λ 6 2
5 on S45, λ 6 8

27 on S81 and λ 6 10
39

on S117. Thus, we have

vol
(
−KS − λLxz

)
=
(
−KS − λLxz

)2
=





54

665
−

6λ

95
−

23λ2

190
for λ 6

2

5
on S45

32

777
−

8λ

333
−

47λ2

666
for λ 6

8

27
on S81

200

7007
−

12λ

1001
−

36

715
λ2 for λ 6

10

39
on S117.

To compute vol(−KS − λLxz) for 2
5 < λ < 6

7 on S45,
8
27 < λ < 8

7 on S81 and 10
39 < λ < 10

7
on S117, we let

N =





(
6

7
− λ

)
Lxz +

(
6

7
−

15λ− 6

8

)
Rx for S45

(
8

7
− λ

)
Lxz +

(
8

7
−

27λ− 8

20

)
Rx for S81

(
10

7
− λ

)
Lxz +

(
10

7
−

39λ− 10

32

)
Rx for S117.

Then, using (5.1) again, we see that N · Rx = 0 and N · Lxz > 0. Thus, we conclude that the
divisor N is nef on the respective interval for λ. This shows that

−KS − λLxz ∼Q





N +
15λ− 6

8
Rx on S45

N +
27λ− 8

20
Rx on S81

N +
39λ− 10

32
Rx on S117
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is the Zariski decomposition of the divisor −KS − λLxz. Hence, we have

vol
(
−KS − λLxz

)
= N2 =





1

280
(6− 7λ)2 on S45

1

1260
(8− 7λ)2 on S81

369

1121120
(10− 7λ)2 on S117

by (2.8). Thus, integrating, we get

a 6
1

(−KS)2

∫
∞

0
vol
(
−KS − λLxz

)
dλ+ ǫk =





118

315
+ ǫk for S45

760

1701
+ ǫk for S81

8780

17199
+ ǫk for S117.

This gives us the asserted bounds for a.
Meanwhile, we have

vol
(
−KS − λRx

)
=
(
−KS − λRx

)2
=





54

665
−

12λ

95
−

8λ2

95
for 0 6 λ 6

1

5
on S45

32 · 21

9 · 37 · 49
−

16λ

9 · 37
−

20λ2

9 · 37
for 0 6 λ 6

4

27
on S81

30

1001
−

4λ

143
−

32λ2

715
for 0 6 λ 6

5

39
on S117.

since the divisor −KS − λRx is nef for the values λ in the respective interval. The Zariski
decomposition of the divisor −KS − λRx is given by





(6
7
−

30λ − 6

23

)
Lxz +

(6
7
− λ

)
Rx

︸ ︷︷ ︸
nef R-divisor

+
30λ− 6

23
Lxz for

1

5
< λ 6

6

7
on S45

(8
7
−

54λ − 8

47

)
Lxz +

(8
7
− λ

)
Rx

︸ ︷︷ ︸
nef R-divisor

+
54λ− 8

47
Lxz for

4

27
< λ 6

8

7
on S81

(10
7

−
78λ− 10

71

)
Lxz +

(10
7

− λ
)
Rx

︸ ︷︷ ︸
nef R-divisor

+
78λ− 10

71
Lxz for

5

39
< λ 6

10

7
on S117,

so that we could obtain

vol
(
−KS − λRx

)
=





((6
7
−

30λ− 6

23

)
Lxz +

(6
7
− λ

)
Rx

)2

=
2

5 · 7 · 23
(6− 7λ)2

((8
7
−

54λ− 8

47

)
Lxz +

(8
7
− λ

)
Rx

)2

=
2

7 · 9 · 47
(8− 7λ)2

((10
7

−
78λ− 10

71

)
Lxz +

(10
7

− λ
)
Rx

)2

=
2

7 · 13 · 71
(10− 7λ)2.
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Finally, vol(−KS − λRx) = 0 for λ > 6
7 on S45, for λ > 8

7 on S81, and for λ > 10
7 on S117

since −KS − λRx is not pseudoeffective for these values λ. Thus, by Theorem 2.9, we have

b 6
1

(−KS)2

∫
∞

0
vol
(
−KS − λRx

)
dλ+ εk =





97

315
+ εk for S45

10709068

58281363
+ εk for S81

1205

2457
+ εk for S117.

This yields the required bounds for b. �

Now we prove the main assertion in this section.

Proposition 5.3. If a and b satisfies the bounds in Lemma 5.2 then the log pair (S, 6564D) is log
canonical.

Proof. We suppose that a and b satisfies the bounds in Lemma 5.2.
We fist claim that the log pair (S, 6564D) is log canonical outside of Cx and Cy. This immediately

follows from the same argument as in the beginning of the proof of Proposition 4.1 with the
pencil P given by

ν
(
x10 + c1y

7
)
+ µy4

(
z2 + c2y

3
)
= 0 on S45,

ν
(
x18 + c1y

7
)
+ µy4

(
z2 + c2y

3
)
= 0 on S81,

ν
(
x26 + c1y

7
)
+ µy4

(
z2 + c2y

3
)
= 0 on S117,

where c1 and c2 are appropriate constants, for [ν : µ] ∈ P1. For a general member C in P we
obtain

C ·D 6
64

65
,

which verifies the claim. Notice that the surface S is smooth outside Cx and Cy.
We now consider a point P on Cy different from Ot. Suppose that the log pair (S, 6564D) is

not log canonical at the point P . Recall that (S, 65e64 Cy) is log canonical, where e is the positive
rational number such that −KS ∼Q eCy, and that the curve Cy is irreducible. Thus, it follows
from [CS08, Remark 2.22] that there exists an effective Q-divisor D′ on the surface S such that

D′ ∼Q −KS ,

the log pair (S, 6564D
′) is not log canonical at the point P , and the support of the divisor D′ does

not contain the curve Cy. Observe that

Cy ·D
′
6

64

7 · 65
.

This implies that the log pair (S, 6564D
′) is log canonical at the point P . This contradiction shows

that the log pair (S, 6564D) is log canonical outside Cx.
Let P be a point on Cx other than Ot. We have two cases for the location of P , i.e., when P

lies on Lxz and when it lies on Rx. Note that we always have 65a
64 < 1 and 65b

64 < 1.
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We first consider the case where P belongs to Lxz. Then the log pair (S,Lxz +
65b
64 Rx +

65
64∆)

is log canonical at P . Indeed,

(bRx +∆) · Lxz =
(
D − aLxz

)
· Lxz =





6 + 23a

190
6

64

65 · 10
for S45

8 + 47a

37 · 18
6

64

65 · 18
for S81

10 + 71a

55 · 26
6

64

65 · 26
for S117.

Lemmas 2.4 or 2.5 imply that (S, 6564D) is log canonical at the point P . If the point P must lie
on Rx, then we consider

(aLxz +∆) ·Rx =
(
D − bRx

)
·Rx =





3 + 8b

95
6

64

65 · 5
for S45

8 + 20b

9 · 37
6

64

65 · 9
for S81

10 + 32b

13 · 55
6

64

65 · 13
for S117.

Lemmas 2.4 or 2.5 then show that (S, 6564D) is log canonical at the point P .

Now it is enough to show that (S, 6564D) is log canonical at Ot.

Recall that S45 (resp. S81 snd S117) has singularity of type 1
19(2, 3) (resp.

1
37 (2, 3) and

1
55(2, 3))

at the point Ot. In the chart given by t = 1, the surface S45 is given by

z3 − y3z + x+ x5y = 0,

the surface S81 by

z3 − y3z + x+ x9y = 0,

and the surface S117 by

z3 − y3z + x+ x13y = 0.

In a neighborhood of the point Ot, we can consider y and z as local weighted coordinates such
that wt(y) = 2 and wt(z) = 3.

Let f : S̃ → S be the weighted blow up at the singular point Ot such that wt(y) = 2
and wt(z) = 3. Denote by E the exceptional curve of the blow up f . Then

K
S̃45

∼Q f∗
(
KS45

)
−

14

19
E;

K
S̃81

∼Q f∗
(
KS81

)
−

32

37
E;

K
S̃117

∼Q f∗
(
KS117

)
−

10

11
E.

The surface S has two singular points in E. One is of type 1
2(1, 1) and the other is of type 1

3(1, 1).
Denote the former one by O2 and the latter one by O3. Observe

E2 =





−
19

6
on S̃45,

−
37

6
on S̃81,

−
55

6
on S̃117,

and E ∼= P1.
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Let L̃xz and R̃x be the proper transforms of the curve Lxz andRx to the surface S̃, respectively.
Then

L̃xz ∼Q f∗
(
Lxz

)
−

3

c
E, R̃x ∼Q f∗

(
Rx

)
−

6

c
E,

where c is the index of singularity Ot. The intersection E ∩ L̃xz consists of the point O2 and the

intersection E ∩ R̃x consists of a single smooth point. Note that L̃xz · E = 1
2 and the curves E

and R̃x intersect transversally.

Recall that D = aLxz + bRx +∆. Denote by ∆̃ be the proper transform of the Q-divisor ∆

on the surface S̃. Then

∆̃ ∼Q f∗
(
∆
)
−mE

for some non-negative rational number m. To estimate m, consider the intersection

0 6 R̃x · ∆̃ = R̃x ·
(
f∗
(
∆
)
−mE

)
= Rx ·∆−m.

Applying (5.1), we are able to obtain

(5.4) m 6





6

5 · 19
−

3a

19
+

8b

5 · 19
6

6

5 · 19
+

8b

5 · 19
6

26

285
for S45,

8

9 · 37
−

3a

37
+

20b

9 · 37
6

8

9 · 37
+

20b

9 · 37
6

4

111
for S81,

2

11 · 13
−

3a

55
+

32b

13 · 55
6

2

11 · 13
+

32b

13 · 55
6

634

17875
for S117.

We now suppose that the log pair (S, 6564D) is not log canonical at Ot. Put λ = 65
64 . Then

K
S̃
+ λaL̃xz + λbR̃x + λ∆̃ + µE ∼Q f∗

(
KS + λD

)
,

where

µ =





3λa

19
+

6λb

19
+ λm+

14

19
for S45,

3λa

37
+

6λb

37
+ λm+

32

37
for S81,

3λa

55
+

6λb

55
+ λm+

10

11
for S117.

Thus, the log pair

(5.5)
(
S̃, λaL̃xz + λbR̃x + λ∆̃ + µE

)

is not log canonical at some point O ∈ E. Using (5.4) and bounds for b, we can easily check

µ 6





3λa

19
+

6λb

19
+

6λ

95
−

3aλ

19
+

8λb

95
+

14

19
=

2λb

5
+

6λ

95
+

14

19
6 1 for S45,

3λa

37
+

6λb

37
+

8λ

9 · 37
−

3λa

37
+

20λb

9 · 37
+

32

37
=

2 · 29λb

3 · 37
+

8λ

9 · 37
+

32

37
6 1 for S81,

3λa

55
+

6λb

55
+

2λ

11 · 13
−

3λa

55
+

32λb

13 · 55
+

10

11
=

2λb

13
+

2λ

11 · 13
+

10

11
6 1 for S117.

If O = E ∩ R̃x, then we apply Lemma 2.4 to (5.5) and E. This yields

λb+ λ∆̃ ·E =
(
λbR̃x + λ∆̃

)
· E > 1,
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so that we could obtain absurd inequalities

64

65
=

1

λ
< b+ ∆̃ · E = b+

cm

6
6





1

3
+

19

60
=

13

20
for S45,

1

5
+

37

6 · 25
=

67

150
for S81,

12

25
+

1

3
=

61

75
for S117,

where c is the index of the singularity Ot. The inequality

∆̃ ·E =
cm

6
6





13

45
for S45,

2

9
for S81,

317

975
for S117.





6
1

3λ
=

64

3 · 65

implies that O = O2. However, using (5.4) and Lemma 2.5 (applied to (5.5) and E), we conclude
that the log pair (5.5) is log canonical everywhere since

(
aL̃xz + ∆̃

)
·E =

a

2
+ ∆̃ ·E =

a

2
+

cm

6
6





1

5
+

4b

15
6

13

45
for S45,

4

27
+

10b

27
6

2

9
for S81,

5

39
+

16b

39
6

317

975
for S117,





6
1

2λ
=

32

65

This completes the proof. �

Corollary 5.6. The δ-invariant of S is at least 65
64 .

Proof. This immediately follows from Proposition 5.3 and Lemma 5.2. �
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