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KATZARKOV–KONTSEVICH–PANTEV CONJECTURE

FOR FANO THREEFOLDS

IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

Abstract. We verify Katzarkov–Kontsevich–Pantev conjecture for Landau–Ginzburg
models of smooth Fano threefolds.

Introduction

For a smooth Fano variety X , its Landau–Ginzburg model is a smooth quasiprojective
variety Y equipped with a regular function w : Y → C. Homological Mirror Symmetry
Conjecture predicts the equivalences between the derived category of coherent sheaves
on X (the derived category of singularities of (Y,w), respectively) and the Fukaya–Seidel
category of the pair (Y,w) (the Fukaya category of X , respectively).

In [KKP17], Katzarkov, Kontsevich, and Pantev considered tame compactification of
the Landau–Ginzburg model (see [KKP17, Definition 2.4]), that is a commutative diagram

Y � � //

w

��

Z

f
��

C
� � // P1

such that Z is a smooth compact variety that satisfies certain natural geometric conditions,
and f is a morphism such that f−1(∞) = −KZ . If exists, the compactification Z is unique
up to flops in the fibers of the morphism f. The pair (Z, f) is usually called the compactified
Landau–Ginzburg model of the Fano variety X .

Katzarkov, Kontsevich and Pantev also defined the Hodge-type numbers f p,q(Y,w)
of the Landau–Ginzburg model (Y,w) that come from the sheaf cohomology of certain
logarithmic forms. They posed the following conjecture.

Conjecture (Katzarkov–Kontsevich–Pantev). Let (Y,w) be a Landau–Ginzburg model
of the smooth Fano variety X with dim(X) = dim(Y ) = d. Suppose that it admits a
tame compactification. Then

hp,q
(
X
)
= f q,d−p

(
Y,w

)
.

In [LP16], this conjecture was proved for del Pezzo surfaces and their Landau–Ginzburg
models constructed by Auroux, Katzarkov, and Orlov in [AKO06]. In this paper, we
verify Katzarkov–Kontsevich–Pantev Conjecture for smooth Fano threefolds and their
toric Landau–Ginzburg models constructed in [Prz07, Prz13, ACGK12, CCGK16], which
satisfy all hypotheses of Katzarkov–Kontsevich–Pantev Conjecture by [Prz17, Theorem 1].
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2 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

From now on and until the end of this paper, we assume that X is a smooth Fano
threefold. Its compactified Landau–Ginzburg model is given by the following commutative
diagram

(z) (C∗)3 �
� //

p

��

Y

w

��

� � // Z

f
��

C C
� � // P1

where p is a surjective morphism that is given by one of the Laurent polynomials explicitly
described in [ACGK12, Prz17, CCGK16], the variety Y is a smooth threefold withKY ∼ 0,
and Z is a smooth compact threefold such that

−KZ ∼ f−1
(
∞
)
.

Moreover, in every case, one also has h1,2(Z) = 0.
In [Ha17], Harder showed how to compute the numbers f p,q(Y,w) using the global

geometry of the compactification Z. He showed that under some natural conditions one
has f 3,0(Y,w) = f 0,3(Y,w) = 1 and

(♣) f 1,1
(
Y,w

)
= f 2,2

(
Y,w

)
=
∑

P∈C1

(
ρP − 1

)
,

where ρP is the number of irreducible components of the fiber w−1(P ). Moreover, he
proved that

(♠) f 1,2
(
Y,w

)
= f 2,1

(
Y,w

)
= dim

(
coker

(
H2
(
Z,R

)
→ H2

(
F,R

))
)

− 2 + h1,2
(
Z
)
,

where F is a general fiber of the morphism w. Finally, he proved that the remaining f p,q

numbers of the Landau–Ginzburg model (Y,w) vanish.
Thus, to prove the Katzarkov–Kontsevich–Pantev Conjecture for smooth Fano three-

folds, one needs to compute the right-hand sides in (♣) and (♠) and compare them with
the well-known Hodge numbers of smooth Fano threefolds. For smooth Fano threefolds
of Picard rank one, this has been done in [Prz13, ILP13]. The goal of this paper is to do
the same for smooth Fano threefolds whose Picard rank is larger than one.

To be precise, we prove the following result.

Main Theorem. Let X be a smooth Fano threefold, and let f : Z → P1 be its compacti-
fied Landau–Ginzburg model given by (z), where p is a surjective morphism that is given
by one of the Laurent polynomials described in [ACGK12, CCGK16]. Then

(♥) h1,2
(
X
)
=
∑

P∈C1

(
ρP − 1

)
,

where ρP is the number of irreducible components of the fiber w−1(P ). Moreover, one has

(♦) rkPic(X) = dim

(
coker

(
H2
(
Z,R

)
→ H2

(
F,R

))
)

− 2,
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where F is a general fiber of the morphism f.

Using (♣) and (♠), we obtain the following corollary.

Corollary. Let X be a smooth Fano threefold. Then Katzarkov–Kontsevich–Pantev
Conjecture holds for its compactified Landau–Ginzburg model (z), where p a morphism
that is given by one of the Laurent polynomials described in [ACGK12, Prz17, CCGK16].

The proof of Main Theorem gives an explicit description of the fiber f−1(∞) in (z),
which show that the conditions of Harder’s result are satisfied. This has been already
verified in [Prz17, Corollary 35] for smooth Fano threefolds with very ample anticanonical
divisor. The proof of Main Theorem also gives an explicit description of (isolated and non-
isolated) singularities of the fibers of the morphism w in (z) in the case when p is given
by one of the Laurent polynomials from [ACGK12, Prz17, CCGK16]. It seems possible
to use this description to check that the Jacobian rings of these Landau–Ginzburg models
are isomorphic to the quantum cohomology rings of the corresponding smooth Fano three-
folds, which reflects Homological Mirror Symmetry on the Hochschild cohomology level.
Perhaps, one can also use the proof of Main Theorem to compute the derived categories
of singularities of our compactified Landau–Ginzburg models.

This paper is organized as follows. In Section 1 we give a detailed scheme of the proof
of our Main Theorem. We illustrate each step of the scheme by an appropriate example,
see Examples 1.7.1, 1.8.6, 1.10.11, 1.12.3, and 1.13.2. In Sections 2, 3, 4, 5, 6, 7, 8, 9, 10,
we prove Main Theorem for smooth Fano threefolds of Picard rank 2, 3, 4, 5, 6, 7, 8, 9, 10,
respectively. These sections are split by subsections whose numbers matche the numbers
of families of smooth Fano threefolds given in [IP99]. For instance, in Subsection 3.20, we
prove Main Theorem in the case when X is a blow up of a smooth quadric threefold in a
disjoint union of two lines. This is family №3.20. Likewise, in Subsection 2.24, we prove
Main Theorem for family №2.24, which consists of divisors of bidegree (1, 2) in P2 × P2.
Finally, in Appendix A, we review basic intersection theory for smooth curves on surfaces
with du Val singularities, which is probably well known to experts.

Notation and conventions. We assume that all varieties are defined over the field
of complex numbers C unless it is specially mentioned. For a (non necessary reduced)
variety V , we denote the number of its irreducible components by [V ]. To denote Laurent
polynomials from the database [CCG+], we use the notation P.N , where P is the number
of the Newton polytope of the polynomial, and N is the number of polynomial for the
polytope. If the polynomial for given polytope is unique, we just say that it is the
polynomial number P .

Acknowledgements. We would like to thank Andrew Harder for useful comments.
Ivan Cheltsov was supported by Royal Society grant No. IES\R1\180205, and by Russian
Academic Excellence Project 5-100. Victor Przyjalkowski was partially supported by Lab-
oratory of Mirror Symmetry NRU HSE, RF government grant, ag. No. 14.641.31.0001.
He is a Young Russian Mathematics award winner and would like to thank its sponsors
and jury.
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1. The proof

To prove Main Theorem, we fix a smooth Fano threefold X . Then X is contained in one
of 105 deformation families described in Iskovskikh and Prokhorov’s book [IP99]. We add
the variety found in [MM04] to the end of the list of Picard rank 4 threefolds. We always
assume that X is a general threefold in its deformation family.

For each family, we have the commutative diagram (z), where p is given by a Laurent
polynomial, which we identify with p. Then we proceed as follows.

1.1. Mirror partners. The polynomial p is not uniquely determined by X . However,
Akhtar, Coates, Galkin, and Kasprzyk proved in [ACGK12] that all of them are related
by birational transformations, called mutations. Mutations preserve the right hand sides
of (♥) and (♦) in Main Theorem. Thus, to prove Main Theorem, we may choose any
Laurent polynomial p from [CCG+] among mirror partners for X .

1.2. Rank of Picard group. If X is a smooth Fano threefold such that rkPic(X) = 1,
then (♥) in Main Theorem is already established in [Prz13, Prz18], and (♦) in Main
Theorem follows from the proof of [ILP13, Theorem 4.1]. Thus, we will always assume
that rkPic(X) > 2. This leaves us with 88 deformation families described in [IP99].

1.3. Minkowski polynomials. If −KX is very ample, then X admits a Gorenstein toric
degeneration. In this case, the Newton polytope of the Laurent polynomial p is a reflexive
lattice polytope which is a fan polytope of the toric degeneration, and the coefficients of p
correspond to expansions of its facets to Minkowski sums of elementary polygons. Because
of this, the Laurent polynomial p is usually called Minkowski polynomial (see [ACGK12]).

The divisor −KX is very ample except for 5 special families. These are the deformation
families №2.1, 2.2, 2.3, 9.1, 10.1 in [IP99]. To prove Main Theorem, we deal with these
cases separately. Thus, in the remaining part of this section, we assume that −KX is very
ample, and p is one of the corresponding Minkowski polynomials.

1.4. Pencil of quartic surfaces. For every smooth Fano threefold X such that its
anticanonical −KX is very ample, we can always choose the corresponding Minkowski
polynomial p in [ACGK12] such that there is a pencil S of quartic surfaces on P3 given by

(1.4.1) f4(x, y, z, t) = λxyzt

that expands (z) to the following commutative diagram:

(1.4.2) (C∗)3 �
� //

p

��

Y

w

��

� � // Z

f
��

V
χoo❴ ❴ ❴ ❴ ❴ ❴

g

��

π // P3

φ
xxq q

q
q
q
q
q

C C
� � // P1 P1

where φ is a rational map given by the pencil S, the map π is a birational morphism to be
explicitly constructed later in this section, the threefold V is smooth, and χ is a compo-
sition of flops. Here f4(x, y, z, t) is a quartic homogeneous polynomial and λ ∈ C ∪ {∞},
where λ = ∞ corresponds to the fiber f−1(∞).
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1.5. Fibers of the Landau–Ginzburg model. By [Prz17, Corollary 35], we have

[
f−1(∞)

]
=

4−K3
X

2
.

To verify (♥) in Main Theorem, we must find [f−1(λ)] for every λ 6= ∞. This can be done
by checking basic properties of the pencil S. Let us show how to do this in easy cases.

Let Sλ be the quartic surface given by (1.4.1), let S̃λ be its proper transform on the
threefold V , and let E1, . . . , En be the π-exceptional divisors. Then

KV + S̃λ +
n∑

i=1

aλ
i Ei ∼ π∗(KP3 + Sλ

)
∼ 0

for some non-negative integers aλ
1 , . . . , a

λ
n. Hence, since −KV ∼ g−1(∞), we conclude that

(1.5.1) g−1(λ) = S̃λ +

n∑

i=1

aλ
i Ei.

Since χ in (1.4.2) is a composition of flops, it follows from (1.5.1) that

(1.5.2)
[
f−1(λ)

]
=
[
Sλ

]
+ the number of indices i ∈ {1, . . . , n} such that aλ

i > 0 .

The number [Sλ] is easy to compute. How to determine the correction term in (1.5.2)?
One way to do this is to explicitly describe the birational morphism π in (1.4.2) and then
compute the numbers aλ

1 , . . . , a
λ
n. However, this method is usually very time consuming.

Our main goal is to show how to do the same with less efforts. We start with the following.

Lemma 1.5.3. Let P be a point in the base locus of the pencil S. Suppose that the
quartic surface Sλ has at most du Val singularity at P . If P ∈ π(Ei), then aλ

i = 0.

Proof. By [Ko97, Theorem 7.9], the log pair (P3, Sλ) has canonical singularities at P , so
that aλ

i = 0 for every Ei such that P ∈ π(Ei). �

Corollary 1.5.4. Suppose that Sλ has du Val singularities in every point of the base
locus of the pencil S. Then f−1(λ) is irreducible.

Proof. The surface Sλ is irreducible, because Sλ has du Val singularities in every point of
the base locus of the pencil S. This follows from the fact that irreducible components of
the surface Sλ are hypersurfaces in P3. By Lemma 1.5.3, we have

aλ
1 = aλ

2 = · · · = aλ
n = 0,

so that the fiber f−1(λ) is irreducible by (1.5.2). �

Let us show how to apply this result to prove (♥) in Main Theorem in one simple case.
Before doing this, let us fix handy notation that will be used throughout the whole paper.
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1.6. Handy notation. We will use [x : y : z : t] as homogeneous coordinates on P3. For
distinct non-empty subsets I, J , and K in {x, y, z, t}, we will write HI for the plane in P3

that is defined by setting the sum of coordinates in I equal to zero. For instance, we
denote by H{x} the plane in P3 that is given by x = 0. Similarly, we denote by H{y,t} the
plane in P3 that is given by

y + t = 0.

We also write LI,J = HI ∩HJ . Likewise, we write PI,J,K = HI ∩HJ ∩HK . For instance,
the symbol L{x},{y,z,t} denotes the line in P3 that is given by

{
x = 0,

y + z + t = 0.

Similarly, we have P{x},{y},{z} = [0 : 0 : 0 : 1] and P{x},{y},{z,t} = [0 : 0 : 1 : −1].
If the quartic surface Sλ has du Val singularities, we always denote by Hλ its general hy-

perplane section or its class in Pic(Sλ). We will use this often to compute the intersection
form of some curves on Sλ in the proof of (♦) in Main Theorem.

1.7. Apéry–Fermi pencil. Let us use Corollary 1.5.4 in the case when X = P1×P1×P1.
In this case, the pencil S has been studied by Peters and Stienstra in [PS89].

Example 1.7.1. Suppose that X = P1 × P1 × P1. This is family №3.27. One its mirror
partner is given by the Laurent polynomial

x+ y + z +
1

x
+

1

y
+

1

z
.

This is the Minkowski polynomial №30. The corresponding pencil S is given by

x2yz + y2xz + z2xy + t2xy + t2xz + t2yz = λxyzt,

Its base locus consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, and
L{t},{x,y,z}. If λ 6= ∞, then the singular points of the surface Sλ contained in one of these
lines are the points P{y},{z},{t}, P{x},{z},{t}, and P{x},{y},{t}, which are du Val singular points
of type A3, and the points P{x},{y},{z}, P{x},{t},{y,z}, P{y},{t},{x,z}, and P{z},{t},{x,y}, which are
isolated ordinary double points. Then [f−1(λ)] = 1 for every λ 6= ∞ by Corollary 1.5.4.
Since h1,2(X) = 0, this proves (♥) in Main Theorem in this case.

This approach works for 55 deformation families of smooth Fano threefolds.

1.8. Base points and base curves. In many cases, we cannot apply Corollary 1.5.4 to
prove (♥) in Main Theorem, simply because the pencil S contains surfaces that have non-
du Val singularities in its base locus. In fact, quite often, the pencil S contains reducible
surfaces, so that they have non-isolated singularities. To deal with these cases, we have
to refine the formula (1.5.2). Let us do first step in this direction.

Let C1, . . . , Cr be irreducible curves contained in the base locus of the pencil S. With
very few exceptions (see Subsections 3.8, 3.22, 3.24, 3.29, 7.1 and 8.1), these curves are
either lines or conics. For every base curve Cj, we let

(1.8.1) Cλ
j = the number of indices i ∈ {1, . . . , n} such that aλ

i > 0 and π(Ei) = Cj .
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Let Σ be the (finite) subset of the base locus of the pencil S such that for every P ∈ Σ
there is an index i ∈ {1, . . . , n} such that π(Ei) = P . For every P ∈ Σ, we let

(1.8.2) Dλ
P = the number of indices i ∈ {1, . . . , n} such that aλ

i > 0 and π(Ei) = P .

We say that Dλ
P is the defect of the fixed singular point P .

Using (1.5.2), we see that

(1.8.3)
[
f−1(λ)

]
=
[
Sλ

]
+

r∑

i=1

Cλ
j +

∑

P∈Σ
Dλ

P .

If P is a point in Σ such that the quartic surface Sλ has du Val singularity at P , then
its defect vanishes by Lemma 1.5.3. However, the defect may also vanish if Sλ has worse
than du Val singularity at the point P .

Remark 1.8.4. For a general λ ∈ C, the singular points of the surface Sλ are all du Val.
Moreover, they are of two kinds: those whose coordinates depend on λ, and those whose
coordinates do not depend on λ. We call the latter ones fixed singular points, and we call
the former ones floating singular points. The set Σ consists of fixed singular points.

For every point P ∈ Σ, the number Dλ
P can be computed locally near P . We will show

how to do this later, see formula (1.10.9) below. Now let us show how to compute the
number Cλ

i defined in (1.8.1). For every λ ∈ C ∪ {∞} and every i ∈ {1, . . . , r}, we let

Mλ
i = multCi

(
Sλ

)
.

For any two distinct quartic surfaces Sλ1
and Sλ2

in the pencil S, we have

Sλ1
· Sλ2

=
r∑

i=1

miCi

for some positive numbers m1, . . . ,mr. Then mi > Mλ
i for every λ ∈ C ∪ {∞}.

Lemma 1.8.5. Fix λ ∈ C ∪ {∞} and a ∈ {1, . . . , r}. Then

Cλ
a =

{
0 if Mλ

a = 1,

ma − 1 if Mλ
a > 2.

Proof. The required assertion can be checked in a general point of the curve Ca. Because
of this, we may assume that Ca is smooth. To resolve the base locus of the pencil S at
general point of the curve Ca, we observe that general surfaces in this pencil are smooth
at general point of the curve Ca. This implies that there exists a composition of ma > 1
blow ups of smooth curves

Vma

γma // Vma−1

γma−1 // · · · γ2 // V1
γ1 // P3

such that γ1 is the blow up of the curve Ca, for i > 1 the morphism γi is a blow up of a
smooth curve C i−1

a ⊂ Vi−1 such that

γi−1

(
C i−1

a

)
= C i−2

a ⊂ Vi−2
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and the curve C i−1
a is contained in the proper transform of general surface in S on the

threefold Vi−1. Here, we have V0 = P3 and C0
a = Ca.

For every index i ∈ {1, . . . ,ma}, let Fi be the exceptional surface of the morphism γi.
Then C i

a ⊂ Fi, and the curve C i
a is a section of the P1-bundle Gi → C i−1

a induced by γi.
Note that C i

a is not contained in the proper transform of the surface Fi−1.
For every i ∈ {0, 1, . . . ,ma}, denote by Si

λ the proper transform of the surface Sλ on
the threefold Vi. Then

ma−1∑

i=0

multCi
a

(
Si
λ

)
= ma.

Moreover, for every b ∈ {1, . . . , n} such that β(Eb) = Ca there is j ∈ {1, . . . ,ma−1} such
that Eb is the proper transform of the divisor Fj on the threefold V in diagram (1.4.2).
Vice versa, for every j ∈ {1, . . . ,ma − 1}, there is b ∈ {1, . . . , n} such that β(Eb) = Ca,
and Eb is the proper transform of the divisor Fj on the threefold V , which implies that

aλ
b =

j−1∑

i=0

(
multCi

a

(
Si
λ

)
− 1
)
.

On the other hand, we also have

Mλ
a = multCa

(
Sλ

)
> multC1

a

(
S1
λ

)
> multC2

a

(
S2
λ

)
> · · · > mult

C
j−1
a

(
S
j−1
λ

)
> 0.

Using this, we obtain a dichotomy:

• either Mλ
a = 1 and aλ

b = 0 for every b ∈ {1, . . . , n} such that β(Eb) = Ca,
• or Mλ

a > 2 and aλ
b > 0 for every b ∈ {1, . . . , n} such that β(Eb) = Ca with a single

exception: when Eb is a proper transform of the divisor Fma
on the threefold V .

This immediately implies the required assertion. �

Let us show how to apply Lemma 1.8.5 to prove (♥) in Main Theorem in one case.

Example 1.8.6. Suppose that X is a smooth Fano threefold in the family №3.2. Then
one its mirror partner is given by the Laurent polynomial

z2

xy
+ z +

3z

y
+

3z

x
+ x+ y +

z

xy
+

3x

y
+

3y

x
+

1

y
+

1

x
+

x2

yz
+

3x

z
+

3y

z
+

y2

xz
.

This is the Minkowski polynomial №2569. The pencil S is given by

z3t + xyz2 + 3z2xt+ 3z2yt+ x2yz + y2xz + z2t2 + 3x2tz + 3y2tz+

+ t2xz + t2yz + x3t + 3x2yt+ 3y2xt + y3t = λxyzt.

Suppose that λ 6= ∞. Let C1 and C2 be conics that are given by x = y2+2yz+z2+ tz = 0
and y = x2 + 2xz + z2 + tz = 0, respectively. Then

S∞·Sλ = 2L{x},{t}+2L{y},{t}+2L{z},{t}+L{x},{y,z}+L{y},{x,z}+3L{z},{x,z}+L{t},{x,y,z}+C1+C2.
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Thus, we have r = 9, and may assume that C1 = C1, C2 = C2, C3 = L{x},{t}, C4 = L{y},{t},
C5 = 2L{z},{t}, C6 = L{x},{y,z}, C7 = L{y},{x,z}, C8 = L{z},{x,z}, and C9 = L{t},{x,y,z}.
Then m1 = m2 = m6 = m7 = m9 = 1, m3 = m4 = m5 = 2, and m8 = 3. We have

Σ =
{
P{x},{y},{z}, P{x},{t},{y,z}, P{y},{t},{x,z}, P{z},{t},{x,y}

}
.

If λ 6= −6, then Sλ is irreducible and has isolated singularities. In this case, the surface Sλ

has du Val singularities at P{x},{y},{z}, P{x},{t},{y,z}, P{y},{t},{x,z}, P{z},{t},{x,y}, and it does
not have other singular points in the base locus of the pencil S. Then [f−1(λ)] = 1 for
every λ 6= −6 by Corollary 1.5.4. On the other hand, we have

S−6 = H{x,y,z} + S,

where S is a cubic surface that is given by zt2+x2t+xyt+2xzt+y2t+2yzt+z2t+xyz = 0.
We have M−6

1 = M−6
2 = M−6

3 = M−6
4 = M−6

5 = M−6
6 = M−6

7 = M−6
9 = 1 and M−6

8 = 2.
Thus, it follows from Lemma 1.8.5 that C−6

8 = 2 and

C−6
1 = C−6

2 = C−6
3 = C−6

4 = C−6
5 = C−6

6 = C−6
7 = C−6

9 = 0.

Note that S−6 has du Val singularities of type A or non-isolated ordinary double singu-
larities at the points of the set Σ. We will see in Lemma 1.12.1 that this gives D−6

P = 0
for each P ∈ Σ. Then [f−1(−6)] = 4 by (1.8.3), which gives (♥) in Main Theorem.

Unlike what we just saw in Example 1.8.6, the numbers Dλ
P in (1.8.3) do not always

vanish for every P ∈ Σ. Thus, we have to provide an algorithm how to compute them.
To do this, we should choose a suitable birational morphism π in (1.4.2).

1.9. Blowing up fixed singular points. We can (partially) resolve all fixed singular
points of the surfaces in the pencil S by consecutive blow ups of P3 in finitely many points.
This gives a birational map α : U → P3 such that the proper transform of the pencil S
on the threefold U does not have fixed singular points. Let Ŝ be the proper transform of

the pencil S on the threefold U . Then we can (uniquely) choose α such that Ŝ ∼ −KU .

Remark 1.9.1. By construction, for every point P in the base locus of the pencil Ŝ, there
exists a surface in Ŝ that is smooth at P . Note that a general surface in Ŝ is not necessarily
smooth. However in most of the cases it is smooth. In the remaining cases, it has du Val
singular points of type A by [Ko97, Theorem 4.4].

Denote by Ĉ1, . . . , Ĉr proper transforms of the curves C1, . . . , Cr on the threefold U ,

respectively. Then these curves are contained in the base locus of the pencil Ŝ. However,
the pencil Ŝ always has other base curves. Denote them by Ĉr+1, . . . , Ĉs, where s > r.

A posteriori, all base curves of the pencil Ŝ are smooth rational curves.
For any two distinct surfaces Ŝλ1

and Ŝλ2
in the pencil Ŝ, we have

(1.9.2) Ŝλ1
· Ŝλ2

=

s∑

i=1

miĈi
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for some positive numbers m1, . . . ,ms. Since general surfaces in Ŝ are smooth at general

points of the curves Ĉ1, . . . , Ĉs, we can resolve the base locus of the pencil Ŝ by

m1 +m2 +m3 + · · ·+ms

consecutive blow ups of smooth rational curves (cf. Remarks 2.1.5 and 10.1.4). This gives
a birational morphism β : V ′ → U such that there exists a commutative diagram

U

α
��

V ′

g′

��

βoo

P3

φ
//❴❴❴❴❴❴ P1

where g′ is a morphism whose general fibers are smooth K3 surfaces.
By construction, the threefold V ′ is smooth, and the anticanonical divisor −KV ′ is

rationally equivalent to a scheme fiber of the fibration g′. This immediately implies
that there exists a composition of flops η : V 99K V ′ that makes the following diagram
commutative:

V
η //❴❴❴❴❴❴❴❴❴❴❴❴❴❴

g
&&◆◆

◆◆
◆◆

◆◆
◆◆◆

◆◆

π

��

V ′

g′
xx♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣

β

��

P1

P3
φ

88qqq
qq

qq
U

α
oo

Hence, in the following, we will always assume that V = V ′, π = α ◦β, η = Id and g′ = g.
This gives us the commutative diagram

(1.9.3) U

α

��

V
χ //❴❴❴❴❴❴

g

��

βoo

π

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

Z

f

��

P3

φ
//❴❴❴❴❴❴ P1 P1.

Let k = rkPic(U) − 1. For simplicity, we assume that β(E1), . . . , β(Ek) are exceptional
surfaces of the morphism α, while the surfaces Ek+1, . . . , En are contracted by β.

1.10. Counting multiplicities. Let us show how to explicitly compute Dλ
P in (1.8.3)

for every point P ∈ Σ. To do this, we denote by Ê1, . . . , Êk the proper transforms of the
surfaces E1, . . . , Ek on the threefold U , respectively. For every λ ∈ C ∪ {∞}, we let

(1.10.1) D̂λ = Ŝλ +

k∑

i=1

aλ
i Êi.
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Then D̂λ ∼ −KU , and the numbers aλ
1 , . . . , a

λ
k are uniquely determined by this rational

equivalence. Furthermore, we have D̂λ ∈ Ŝ by construction.

Lemma 1.10.2. Let P be a point in the set Σ. If multP (Sλ) = 2, then

aλ
i = 0

for every i ∈ {1, . . . , k} such that α(Êi) = P .

Proof. Straightforward. �

For every fixed singular point P ∈ Σ, we let

(1.10.3) Aλ
P = the number of indices i ∈ {1, . . . , k} such that aλ

i > 0 and α(Êi) = P .

Then the assertion of Lemma 1.10.2 can be restates as follows.

Corollary 1.10.4. If multP (Sλ) = 2 for P ∈ Σ, then Aλ
P = 0.

For every λ ∈ C ∪ {∞} and every a ∈ {r + 1, . . . , s}, we let

(1.10.5) Cλ
a = the number of indices i ∈ {1, . . . , n} such that aλ

i > 0 and β(Ei) = Ĉa .

For every λ and every a ∈ {1, . . . , s}, we let

(1.10.6) Mλ
a = multĈa

(
D̂λ

)
.

Lemma 1.10.7. Fix λ ∈ C ∪ {∞} and a ∈ {1, . . . , s}. Then

Cλ
a =

{
0 if Mλ

a = 1,

ma − 1 if Mλ
a > 2.

Proof. See the proof of Lemma 1.8.5. �

On the other hand, it follows from (1.5.2) that

(1.10.8)
[
f−1(λ)

]
=
[
D̂λ

]
+

s∑

i=1

Cλ
i =

[
Sλ

]
+
∑

P∈Σ
Aλ

P +

s∑

i=1

Cλ
i .

Comparing the formulas (1.8.3) and (1.10.8), we obtain the formula for the defect

(1.10.9) Dλ
P = Aλ

P +
s∑

i=r+1
α(Ĉi)=P

Cλ
i

for every point P ∈ Σ. Similarly, using (1.10.8) and Lemma 1.10.7, we get

Corollary 1.10.10. If Mλ
i = 1 for every i ∈ {1, . . . , s}, then [f−1(λ)] = [D̂λ].

Let us show how to apply this handy result.



12 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

Example 1.10.11. Suppose that X = P1×S3, where S3 is a smooth cubic surface in P3.
This is the family №8.1 in [IP99]. One of its mirror partner is given by the Minkowski
polynomial №768, which is the Laurent polynomial

1

yz
+

3

y
+

3z

y
+ x+

z2

y
+

3

z
+ 3z +

1

x
+

3y

z
+ 3y +

y2

z
.

Then the corresponding quartic pencil S is given by

t3x+ 3t2xz + 3z2xt+ x2zy + z3x+ 3t2xy + 3z2xy + t2zy + 3y2xt+ 3y2xz + y3x = λxyzt,

and it has 6 base curves: C1 = L{x},{y}, C2 = L{x},{z}, C3 = L{x},{t}, C4 = L{y},{t,z},
C5 = L{z},{t,y}, and C6 is the singular cubic curve t = xyz + y3 + 3y2z + 3yz2 + z3 = 0.
Suppose that λ 6= ∞. Then

Sλ · S∞ = 2C1 + 2C2 + 3C3 + 3C4 + 3C5 + C6,

and the surface Sλ is irreducible. Moreover, if λ 6= −4 and λ 6= −8, then the singularities
of the surface Sλ are du Val, so that [f−1(λ)] = 1 by Corollary 1.5.4. However, the singular
locus of the surface S−4 consists of the point P{x},{y},{z} and the line x− t = y+ z+ t = 0.
Similarly, the singular locus of the surface S−8 consists of the point P{x},{y},{z} and the
line x+ t = y+z+ t = 0. Thus, we cannot apply Corollary 1.5.4 when λ = −4 or λ = −8.
Nevertheless, we have [f−1(−4)] = 1 and [f−1(−8)] = 1. To show this, observe that

Σ =
{
P{y},{z},{t}, P{x},{t},{y,z}

}
.

Moreover, if λ 6= −4 and λ 6= −8, then P{y},{z},{t} is a singular point of the surface Sλ

of type A2, and the point P{x},{t},{y,z} is a singular point of the surface Sλ of type A5.
The birational morphism α : U → P3 can be decomposed as follows:

U2

α2

xxqqq
qq
qqq

qqq
qq

U3
α3oo

U1

α1

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚ U.

α

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

α4

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

P3

Here α1 is the blow up of the point P{y},{z},{t}, the morphism α2 is the blow up of the
preimage of the point P{x},{t},{y,z}, the morphism α3 is the blow up of a point in α2-
exceptional surface, and α4 is the blow up of a point in α3-exceptional surface. We may

assume that Ê4 is α4-exceptional surface. Likewise, we may assume that Ê1, Ê2, and Ê3

are proper transforms on U of the exceptional surfaces of the morphisms α1, α2, and α3,
respectively. Then

D̂∞ = Ŝ∞ + Ê1 ∼ Ŝλ ∼ −KU .

One can show that Ê2, Ê3, and Ê4 do not contain base curves of the pencil Ŝ, and the

surface Ê1 contains two base curves of the pencil Ŝ. They are cut out on Ê1 by the
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proper transforms on U of the planes H{y} and H{z}. Let us denote them by Ĉ7 and Ĉ8,

respectively. Then Ŝλ and Ŝ∞ + Ê1 generate the pencil Ŝ and

Ŝλ ·
(
Ŝ∞ + Ê1

)
= 2Ĉ1 + 2Ĉ2 + 3Ĉ3 + 3Ĉ4 + 3Ĉ5 + Ĉ6 + 2Ĉ7 + 2Ĉ8.

Note that Mλ
1 = Mλ

2 = Mλ
3 = Mλ

4 = Mλ
5 = Mλ

6 = Mλ
7 = Mλ

8 = 1 for every λ ∈ C.
Therefore, using Corollary 1.10.10, we conclude that [f−1(λ)] = 1 for every λ ∈ C. Thus,
we see that (♥) in Main Theorem holds in this case, since h1,2(X) = 0.

1.11. Extra notation. In Example 1.10.11, we explicitly decomposed the birational mor-
phism α in (1.9.3) as a composition of blow ups. To verify (♥) in Main Theorem, we have
to do the same many times. To save space, let us introduce common notations that will
be used in all these decompositions.

Recall that α is a composition of k > 1 blow ups of points. Suppose that we have the
following commutative diagram:

U2

α2

��

U3
α3oo · · ·α4oo Ua

αaoo

U1

α1

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚

P3 U
α

oo

γ

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

where a 6 k, each αi is a blow up of a point, and γ is a (possibly biregular) birational
morphism. Then we denote the exceptional divisor of αi by Ei. Moreover, for every j > i,
we denote by E

j
i the proper transform of the divisor Ei on Uj . Furthermore, we will

always assume that the proper transform of the surface Ei on U is the divisor Êi.
For every λ ∈ C∪{∞} and i 6 a, we denote by Si

λ the proper transform of the quartic
surface Sλ on the threefold Ui. Similarly, we denote by Si the proper transform on Ui of
the pencil S, and we denote by Di

λ the divisor in the pencil Si that contains the surface Si
λ.

Then Di
λ is just the image of the divisor D̂λ on the threefold Ui.

We denote by C i
1, . . . , C

i
r the proper transforms on Ui of the curves C1, . . . , Cr, respec-

tively. Similarly, if the surface Ei contains a base curve of the pencil Si, then we denote
this curve by C i

j for an appropriate j > r. We will always assume that its proper transform

on the threefold U is the base curve Ĉj, which we introduced earlier.

1.12. Good double points. As we already saw in Example 1.8.6, in some cases all
defects Dλ

P in (1.8.3) vanish, so that we do not need to blow up P3 to compute [f−1(λ)].
A handy observation is that

Dλ
P = 0

for P ∈ Σ if the rank of the quadratic form of the (local) defining equation of the quartic
surface Sλ at the point P is at least 2. We will call such points good double points. This
unifies du Val singular points of type A and non-isolated ordinary double points.
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Lemma 1.12.1. Let P be a fixed singular point in Σ. Suppose that P is a good double
point of the surface Sλ. Then Dλ

P = 0.

Proof. By Corollary 1.10.4, we have AP = 0. Therefore, it follows from (1.10.9) that we

have to show that Cλ
j = 0 for every j > r such that α(Ĉj) = P . Let Êi be α-exceptional

surface such that α(Êi) = P , and let Ĉj be a base curve of the pencil Ŝ that is contained

in Êi. By Lemma 1.10.7, it is enough to show that

Mλ
j = mult

Ĉj

(
D̂λ

)
= 1.

To do this, we may assume that α : U → P3 is the blow up of the point P , and Êi is the
exceptional divisor of this blow up. Then the restriction D̂λ|Êi

is a union of two distinct

lines in Êi
∼= P2. In particular, the surface D̂λ = Ŝλ is smooth at general points of any of

these lines and the assertion follows. �

Corollary 1.12.2. Suppose that every fixed singular point of the pencil S is a good
double point of the surface Sλ. Then

[
f−1(λ)

]
=
[
Sλ

]
+

r∑

i=1

Cλ
i .

Let us show how to apply this corollary in one simple example.

Example 1.12.3. Suppose that X is contained in the family №3.11 in [IP99]. Then
its mirror partner is given by the Minkowski polynomial №1518, which is the Laurent
polynomial

x+ y + z +
z

x
+

z

y
+

y

x
+

z

xy
+

y

z
+

1

x
+

1

y
+

y

xz
+

1

xy
.

Thus, the pencil S is given by the equation

xyz2 + x2yz + xy2z + xz2t+ yz2t+ y2zt+ z2t2 + xy2t+ xzt2 + yzt2 + y2t2 + zt3 = λxyzt,

and its base locus consists of the lines L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,t},
L{y},{z,t}, L{z},{x,t}, L{t},{x,y,z}, and the conic {x = y2+yz+zt = 0}. If λ 6= −2 and λ 6= ∞,
then the surface Sλ has at most du Val singularities, so that [f−1(λ)] = 1 by Corollary 1.5.4.
On the other hand, we have S−2 = H{x,t}+S, where S is an irreducible cubic surface that
is given by xyz + yz2 + z2t + zt2 + y2z + y2t + yzt = 0. Note also that S−2 is smooth at
general point of every base curve of the pencil S. Thus, it follows from (1.8.3) that

[
f−1(−2)

]
= 2 +

∑

P∈Σ
D−2

P .

Furthermore, the set Σ consists of the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z},
and P{y},{z},{x,t}, and the quadratic terms of the Taylor expansions of the surface S−2 at
these points can be described as follows:

P{y},{z},{t}: quadratic term yz;
P{x},{z},{t}: quadratic term (x+ t)(z + t);
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P{x},{y},{t}: quadratic term (x+ t)(y + t);
P{x},{t},{y,z}: quadratic term z(x+ t);
P{y},{z},{x,t}: quadratic term z(x+ t).

By Corollary 1.12.2, we have D−2
P = 0 for every P ∈ Σ, so that [f−1(−2)] = 2. Thus, we

see that (♥) in Main Theorem holds in this case, since h1,2(X) = 1.

1.13. Curves on singular quartic surfaces. We will prove (♦) in Main Theorem by
computing the intersections form of the curves C1, . . . , Cr on a general surface in the pen-
cil S. To do this, let k = C(λ), let Sk be the quartic surface in P3

k that is given by (1.4.1),

and let ν : S̃k → Sk be the minimal resolution of singularities of the surface Sk.

Lemma 1.13.1. Suppose that λ is a general element of C. Then the surface Sλ is singular,
and it has du Val singularities. Let M be the r× r matrix with entries Mij ∈ Q that are
given by Mij = Ci · Cj, where Ci · Cj is the intersection of the curves Ci and Cj on the
surface Sλ. Then the right hand side of (♦) is equal to

22− rkPic
(
S̃k

)
+ rkPic

(
Sk

)
− rk(M).

Proof. Let F be a general fiber of the morphism f. Then H2(F,R) ∼= Z22, since F is a
smooth K3 surface. This easily implies the required assertion. �

Thus, to verify (♦) in Main Theorem, it is enough to show that

(⋆) rkPic(X) + rk(M) + rkPic
(
S̃k

)
− rkPic

(
Sk

)
= 20,

where M is the intersection matrix defined in Lemma 1.13.1. For basic properties of the
intersection of curves on surfaces with du Val singularities, see Appendix A.

Let us show how to check (⋆) in one case.

Example 1.13.2. Suppose that X = P1 × P2. This is the family №2.34 in [IP99]. One
of its mirror partners is given by the Minkowski polynomial №4, which is the Laurent
polynomial x+ y + z + 1

x
+ 1

yz
. Then the pencil S is given by

x2yz + y2xz + z2xy + t2yz + t3x = λxyzt,

and its base locus consists of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, and
L{t},{x,y,z}. Suppose that λ 6= ∞. Then the singular points of the surface Sλ contained
in one of these lines are P{x},{y},{t} and P{x},{z},{t}, which are singular points of type A4,
the points P{y},{z},{t}, P{y},{t},{x+z}, and P{z},{t},{x+y}, which are singular points of type A2,
and the point P{x},{t},{y+z}, which is an isolated ordinary double point of the surface Sλ.
In particular, we see that (♥) in Main Theorem holds by Corollary 1.5.4. Resolving the
singularities of the quartic surface Sk, we also see that

rkPic
(
S̃k

)
= rkPic

(
Sk

)
+ 15.

Thus, to verify (⋆), we have to compute the rank of the intersection matrix of the lines
L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} on the surface Sλ. This matrix
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has the same rank as the intersection matrix of the curves L{x},{y}, L{x},{z}, and Hλ, since

L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + 3L{y},{t} ∼
∼ L{x},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

These rational equivalences follow from

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + 3L{y},{t},

H{z} · Sλ = L{x},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

On the other hand, using Propositions A.1.2 and A.1.3, we see that the intersection form
of the curves L{x},{y}, L{x},{z} and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} Hλ

L{x},{y} −4
5

1 1

L{x},{z} 1 −4
5

1

Hλ 1 1 4

This matrix has rank 3, so that (⋆) holds in this case.

1.14. Scheme of the proof. In the remaining part of the paper, we prove (♥) and (♦)
in Main Theorem for every deformation family of smooth Fano threefolds similar to what
we did in Examples 1.7.1, 1.8.6, 1.10.11, 1.12.3, and 1.13.2. We will do this case by case
reserving one subsection per deformation family. For convenience, we align the number of
the family in [IP99] with the corresponding subsection’s number, and we group families
with the same Picard rank in one section. For example, Subsection 4.1 contains the proof
of Main Theorem for the family №4.1 in [IP99], which consists of smooth divisors of
multidegree (1, 1, 1, 1) on P1 × P1 × P1 × P1.

In every case when −KX is very ample, we proceed as follows. First, we choose an
appropriate toric Landau–Ginzburg model for the threefold X such that (1.4.2) exists for
some pencil S, which is given by the equation (1.4.1). Second, we describe the base locus
of this pencil. Third, we describe the singularities of every surface Sλ in the pencil S that
are contained in the base locus of this pencil. This also gives us explicit construction of
the birational map α in (1.9.3), which can be used to describe the minimal resolution of

singularities ν : S̃k → Sk. Using it, we compute rkPic(S̃k) − rkPic(Sk), and verify (⋆)
using intersection theory on Sλ for general λ ∈ C. To do this more efficiently, we use basic
results about intersection of curves on singular surfaces, which we present in Appendix A.

If singular points of the surface Sλ contained in the base locus of the pencil S are all
du Val for every λ 6= ∞, then we apply Corollary 1.5.4 to deduce (♥) in Main Theorem.
Similarly, if every fixed singular point is a good double point of every non-du Val surface Sλ

in the pencil S, then we can apply Corollary 1.12.2 together with Lemma 1.8.5 to compute
the right hand side of (♥) in Main Theorem.
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If the pencil S contains a non-du Val quartic surface Sλ that has bad singularity at some
fixed singular point P ∈ Σ, then we can compute the number of irreducible components
of the fiber f−1(λ) using (1.8.3). This gives us

[
f−1(λ)

]
=
[
Sλ

]
+

r∑

i=1

Cλ
j +

∑

P∈Σ
Dλ

P .

Here, the term [Sλ] is easy to compute. Likewise, the second term in this formula can
be computed using Lemma 1.8.5. Therefore, for every fixed singular point P ∈ Σ that is
neither du Val nor a good double point of the surface Sλ, we must compute its defect Dλ

P .
To compute the defect Dλ

P , we describe the birational morphism α : U → P3 in (1.9.3).
This can be done locally in a neighborhood of the point P . Then we describe the divisor

D̂λ = Ŝλ +

k∑

i=1

aλ
i Êi

in (1.10.1). In many cases, we can use Lemma 1.10.2 to show that some (or all) of the
numbers aλ

1 , . . . , a
λ
k vanish. But it is not hard to compute them in general.

Then we describe the base curves of the pencil Ŝ, and compute the intersection mul-
tiplicities m1, . . . ,ms in (1.9.2), and the multiplicities Mλ

1 , . . . ,M
λ
s in (1.10.6). For the

proper transforms of the base curves of the pencil S, these computations should have
been already done at the previous steps. For the remaining base curves of the pencil Ŝ,
we can compute these numbers locally near every point in Σ. For each such point P ∈ Σ,
we can compute its defect Dλ

P arguing as in Subsection 1.10. If the surface Sλ has du Val
singularity or non-isolated ordinary double singularity at P , we can use Lemma 1.12.1 to
deduce that its defect Dλ

P vanishes. This allows us to skip many local computations.
Finally, we use (1.8.3) to compute [f−1(λ)] for every λ 6= ∞. This gives (♥) in Main

Theorem and completes the proof of Main Theorem in the case when −KX is very ample.

Example 1.14.1. Suppose that the threefold X is contained in the family №3.6 in [IP99].
Then X can be obtained by blowing up P3 at a disjoint union of a line and a smooth
elliptic curve of degree 4, so that h1,2(X) = 1. A toric Landau–Ginzburg model of the
threefold X is given by the Minkowski polynomial №1899, which is

x+ z +
x

z
+

1

xy
+

z

x
+

1

y
+

1

z
+

2

y
+

3

x
+

yz

x
+

y

z
+

3y

x
+

y2

x
.

Then the corresponding pencil S is given by

x2yz+xzt2+xyz2+x2yt+zt3+yz2t+xyt2+2xy2z+3yzt2+y2z2+xy2t+3y2zt+y3z = λxyzt.

Suppose that λ 6= ∞. Let C be the conic x = yz + (y + t)2 = 0. Then

H{x} · Sλ = L{x},{z} + L{x},{y,t} + C,
H{y} · Sλ = L{y},{z} + 2L{y},{t} + L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y,t},

H{t} · Sλ = L{y},{t} + L{z},{t} + L{t},{x,y} + L{t},{x,y,z}.

(1.14.2)
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Let S be an irreducible cubic surface that given by zt2+2yzt+xyt+yz2+xyz+y2z = 0.
Then S−3 = H{x+y+t}+S. If λ 6= −3, then Sλ is irreducible, and its singularities contained
in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A2 with quadratic term y(z + t);
P{x},{y},{t}: type A3 with quadratic term y(x+ y + t);

P{x},{z},{y,t}: type A2 with quadratic term x(x+ y + t− 3z − λz);
P{y},{z},{x,t}: type A1 with quadratic term 4zy − (x+ t)(y + z)− y2 + λyz;
P{y},{t},{x,z}: type A1 with quadratic term 2yt− t2 − (x+ z)y − y2 + λty;
P{z},{t},{x,y}: type A2 with quadratic term

t(x+ y + t− 3z − λz)

for λ 6= −4, and type A3 for λ = −4.

These are the fixed singular points of the pencil S. All of them are good double points of
the surface S−3. Now using Corollaries 1.5.4 and 1.12.2, we obtain (♥) in Main Theorem.

To verify (⋆), we observe that rkPic(S̃k) = rkPic(Sk) + 11. Now we must compute the
rank of the intersection matrix M in Lemma 1.13.1. We may assume that λ 6∈ {−4,−3}.
Using (1.14.2), we see that M has the same rank as the intersection matrix of the curves
L{x},{z}, L{x},{y,t}, L{y},{z}, L{y},{x,t}, L{z},{x,y,t}, L{t},{x,y,z} and Hλ, which is given by

• L{x},{z} L{x},{y,t} L{y},{z} L{y},{x,t} L{z},{x,y,t} L{t},{x,y,z} Hλ

L{x},{z} −4
3

2
3

1 0 1
3

0 1

L{x},{y,t}
2
3

− 7
12

0 1
2

1
3

0 1

L{y},{z} 1 0 −5
6

1
2

1
2

0 1

L{y},{x,t} 0 1
2

1
2

−1
2

1
2

0 1

L{z},{x,y,t}
1
3

1
3

1
2

1
2

−1
6

1
3

1

L{t},{x,y,z} 0 0 0 0 1
3

−5
6

1

Hλ 1 1 1 1 1 1 4

It has rank 6, so that (⋆) holds, which gives (♦) in Main Theorem by Lemma 1.13.1.

In the remaining part of this paper, we will always use notations of this section except
for 5 families of smooth Fano threefolds whose anticanonical divisors are not very ample.
These are the families №2.1, 2.2, 2.3, 9.1, and 10.1 in [IP99]. We will deal with them
in Subsections 2.1, 2.2, 2.3, 9.1, and 10.1, respectively. The proof of Main Theorem in
these cases is similar to the case when −KX is very ample. For instance, if X = P1 × S1,
where S1 is a smooth del Pezzo surface of degree 1, the commutative diagram (1.4.1) also
exists. But now by [Prz17, Proposition 29] the pencil S is given by

x3y = (λyz − y2 − z2)(xt− xz − t2),

where λ ∈ C ∪ {∞}. In this case, which is the family №9.1, we still can apply all steps
described above to prove Main Theorem.
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2. Fano threefolds of Picard rank 2

2.1. Family №2.1. In this case, the threefold X can be obtained as a blow up of a smooth
sextic hypersurface in P(1, 1, 1, 2, 3) along a smooth elliptic curve. This implies that
h1,2(X) = 22. Note that −KX is not very ample. Because of this, there exists no Laurent
polynomial with reflexive Newton polytope that gives the toric Landau–Ginzburg model
of this deformation family. However, there are Laurent polynomials with non-reflexive
Newton polytopes that give the commutative diagram (z). One of them is

(r + s + 1)6(t+ 1)6

rs2
+

1

t
,

which we also denote by p.
Let γ : C3 99K C∗ ×C∗ ×C∗ be a birational transformation that is given by the change

of coordinates 



r =
1

b
− 1

b2c
− 1,

s =
1

b2c
,

t = −1

y
− 1.

Arguing as in Subsection 1.9, we can expand (z) to the commutative diagram

(2.1.1) P2 × P1

φ

��✤
✤
✤
✤
✤
✤
✤ C3? _oo

q

��

γ //❴❴❴❴❴❴ C∗ × C∗ × C∗ � � //

p

��

Y

w

��

� � // Z

f

��

V

g
((PP

PPP
PPP

PPP
PPP

PP

π
77♥♥♥♥♥♥♥♥♥♥♥♥♥♥

P1 C1? _oo C1 C1 � � // P1

where q is a surjective morphism, π is a birational morphism, the threefold V is smooth,
the map g is a surjective morphism such that −KV ∼ g−1(∞), and φ is a rational map
that is given by the pencil

(2.1.2) x(x+ y)c3 = y
(
(x+ y)λ+ y

)(
abc− b2c− a3

)
,

where ([x : y], [a : b : c]) is a point in P1 × P2, and λ ∈ C ∪ {∞}.
The commutative diagram (2.1.1) is similar to the commutative diagram (1.4.2) pre-

sented in Subsection 1.4. Like in (1.4.2), there exists a composition of flops χ : V 99K Z

that makes the following diagram commuting:

V

g
��

χ //❴❴❴❴❴❴ Z

f
��

P1 P1
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So, to prove Main Theorem in this case, we will follow the scheme described in Section 1.
Moreover, we will use the same assumptions and notation as in the case when −KX is
very ample. The only difference is that P3 is now replaced by P1 × P2. For instance, we
denote by S the pencil (2.1.2), and we denote by Sλ the surface in S given by (2.1.2),
where λ ∈ C ∪ {∞}. Likewise, we extend handy notation in Subsection 1.6 to bilinear
sections of P1 × P2. Note that the curve Hλ is not defined in this case.

Let S be the surface in P1 × P2 given by abc− b2c− a3 = 0. Then S is irreducible and

S∞ = H{y} +H{x,y} + S.

Let S be the surface in P1×P2 that is given by the equation xc3+yc3−yabc+yb2c+ya3 = 0.
Then S is irreducible and S−1 = H{x} + S. These are all reducible surfaces in S.

To describe the base locus of the pencil S, we observe that

H{x,y} · S−1 = C1,
H{y} · S−1 = 3L{y},{c},

S · S−1 = C1 + C2 + 9L{a},{c},

(2.1.3)

where C1 is the curve in P1 × P2 that is given by x+ y = abc− b2c− a3 = 0, and C2 is the
curve in P1 × P2 that is given by x = abc− b2c− a3 = 0. Thus, we have

S−1 · S∞ = 2C1 + C2 + 3L{y},{c} + 9L{a},{c},

so that the base locus of the pencil S consists of the curves C1, C2, L{y},{c}, and L{a},{c}.
To match the notation used in Subsection 1.8, we let C1 = C1, C2 = C2, C3 = L{y},{c},

and C4 = L{a},{c}. Then m1 = 2, m2 = 2, m3 = 3, and m4 = 9.
Observe that S0 is singular along the curve L{y},{c}. Moreover, if λ 6∈ {0,−1,∞}, then

the surface Sλ has isolated singularities. In this case the singular points of the surface Sλ

contained in the base locus of the pencil S are du Val and can be described as follows:

P{y},{a},{c}: type A8;
[λ + 1 : −λ]× [0 : 1 : 0]: type A8.

Applying Corollary 1.5.4, we obtain the following.

Corollary 2.1.4. The fiber f−1(λ) is irreducible for every λ 6∈ {0,−1,∞}.
Observe that the point P{y},{a},{c} is the only fixed singular point of the pencil S.

Remark 2.1.5. The base curve C1 is singular at the point P{x,y},{a},{b}. Similarly, the base
curve C2 is singular at the point P{x},{a},{b}. Thus, in the notation of Subsection 1.9, both

curves Ĉ1 and Ĉ2 are singular. This implies that the threefold V in (2.1.1) is singular:
it has isolated ordinary double points. But this is not important for the proof of Main
Theorem in this case, because these singular points are contained in the fiber g−1(∞).
Note that we can resolve them by composing the birational morphism π in (2.1.1) with
small resolution of these double points. However, the resulting smooth threefold would
not be projective (cf. the proof of [Prz17, Proposition 29]).

First, let us prove (♦) in Main Theorem. By Lemma 1.13.1, it follows from
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Lemma 2.1.6. The equality (⋆) holds.

Proof. Suppose that λ 6∈ {0,−1,∞}. Let Hλ be the intersection of the surface Sλ with a
general surface in P1 × P2 of bi-degree (0, 1). Then it follows from (2.1.3) that

C1 + C2 + 9C4 ∼ Hλ

and C1 ∼ C2 ∼ 3C3 on the surface Sλ. Thus, the intersection matrix of the curves C1,
C2, C3, C4 on the surface Sλ has the same rank as the intersection matrix

(
C2

1 Hλ · C1

Hλ · C1 H2
λ

)
=

(
0 1
1 2

)
.

One the other hand, we have rkPic(S̃k) = rkPic(Sk)+16. This shows that (⋆) holds. �

In the remaining part of this subsection, we will show that (♥) in Main Theorem also
holds in this case. To do this, we have to compute [f−1(−1)] and [f−1(0)]. We start with

Lemma 2.1.7. One has [f−1(−1)] = 2.

Proof. As we already mentioned, the point P{y},{a},{c} is the only fixed singular point of
the pencil S. The surface S−1 has a du Val singularity of type A8 at it. Since

M−1
1 = M−1

2 = M−1
3 = M−1

4 = 1,

we use Corollary 1.12.2 to deduce that [f−1(−1)] = [S−1] = 2. �

To compute [f−1(0)], observe that M0
1 = 1, M0

2 = 1, M0
3 = 2, and M0

4 = 1. Thus, it
follows from (1.8.3) and Lemma 1.8.5 that

(2.1.8) [f−1(0)] = 3 +D0
P{y},{a},{c}

,

where D0
P{y},{a},{c}

is the defect of the singular point P{y},{a},{c} defined in Subsection 1.8.

The defect D0
P{y},{a},{c}

can be computed locally near the point P{y},{a},{c}. The recipe how

to compute it is given in Subsection 1.10. Let us use it.
Suppose that λ 6= ∞. Consider a local chart x = b = 1. Then the surface Sλ in this

chart is given by

−λyc+ c(c2 + λya− λy2 − y2) + y(c3 − λa3 + λyac+ yac)− (λ+ 1)(y2a3) = 0.

Let α1 : U1 → P1×P2 be the blow up of the point P{y},{a},{c}. A chart of the blow up α1 is
given by the coordinate change a1 = a, y1 =

y

a
, and c1 =

c
a
. In this chart, the surface D1

λ

is given by the equation

−λy1c1 + λy1a1(c1 − a1) + a1c1(c
2
1 − λy21 − y21) + y21a

2
1(λ+ 1)(c1 − a1) + a21c

3
1y1 = 0.

where a1 = 0 defines the exceptional surface E1. Then E1 contains two base curves of the
pencil S1. One of them given by a1 = y1 = 0, and another one is given by a1 = c1 = 0.
Denote the former curve by C1

5 , and denote the latter curve by C1
6 .

If λ 6= 0, then the point (a1, y1, c1) = (0, 0, 0) is the only singular point of the surface D1
λ

that is contained in E1. Let α2 : U2 → U1 be the blow up of this point. A chart of the
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blow up α2 is given by the coordinate change a2 = a1, y2 = y1
a1
, c2 = c1

a1
. Let ŷ2 = y2,

â2 = a2, and ĉ2 = a2 + c2. Then D2
λ is given by

− λŷ2ĉ2 + λŷ2â2
(
ĉ2 − â2

)
+

+ â22

(
ĉ32 − â32 + 3â22ĉ2 − 3ĉ22â2 − λŷ22 ĉ2 − ŷ22 ĉ2

)
+

+ (λ+ 1)ŷ22â
3
2

(
ĉ2 − â2

)
+ â42ŷ2

(
ĉ2 − â2

)3
= 0,

and E2 is given by â2 = 0. Then E2 contains two base curves of the pencil S2. One of
them given by â2 = ŷ2 = 0, and another one is given by â2 = ĉ2 = 0. Denote the former
curve by C2

7 , and denote the latter curve by C2
8 .

If λ 6= 0, then (â2, ŷ2, ĉ2) = (0, 0, 0) is the only singular point of the surface D2
λ that

is contained in E2. Let α3 : U3 → U2 be the blow up of this point. A chart of this blow
up is given by the coordinate change â3 = â2, ŷ3 = ŷ2

â2
, ĉ3 = ĉ2

â2
Let ȳ3 = ŷ3, ā3 = â3,

c̄3 = â3+ ĉ3. Denote by E2 the exceptional surface of the blow up α2. Then D3
λ is given by

− λȳ3c̄3 + λā3ȳ3c̄3 − ā33 − λȳ3ā
2
3 + 3ā33

(
c̄3 − ā3

)
− 3ā33

(
c̄3 − ā3

)2
+

+ ā33

(
c̄33 − ā33 + 3ā23c̄3 − 3ā3c̄

2
3 − λȳ23 c̄3 − ȳ23 c̄3

)
+ ȳ3ā

4
3

(
λȳ3c̄3 + ȳ3c̄3 − ā23 − λȳ3ā3 − ȳ3ā3

)
+

+ 3ȳ3ā
6
3(c̄3 − ā3)− 3ȳ3ā

6
3(c̄3 − ā3)

2 + ȳ3ā
6
3

(
c̄3 − ā3

)3
= 0,

and E3 is given by ā3 = 0. Then E3 contains two base curves of the pencil S3. One of
them given by ā3 = ȳ3 = 0, and another one is given by ā3 = c̄3 = 0. Denote the former
curve by C3

9 , and denote the latter curve by C3
10.

There exists a commutative diagram

U2

α2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

U3
α3oo

U1

α1

((PP
PPP

PPP
PPP

PPP
P U

α
ww♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

α4

__❅❅❅❅❅❅❅❅

P3

where α4 be the blow up of the point (ā3, ȳ3, c̄3) = (0, 0, 0). Note that Ê4 contains two

base curves of the pencil Ŝ. Denote them by Ĉ11 and Ĉ12. Then Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6,

Ĉ7, Ĉ8, Ĉ9, Ĉ10, Ĉ11, and Ĉ12 are all base curves of the pencil Ŝ, because
Ŝλ1

· Ŝλ2
= 2Ĉ1 + Ĉ2 + 3Ĉ3 + 9Ĉ4 + Ĉ5 + 7Ĉ6 + 2Ĉ7 + 5Ĉ8 + 3Ĉ9 + 3Ĉ10 + Ĉ11 + Ĉ12

for two general λ1 and λ2 in C. This also shows that m5 = 1, m6 = 7, m7 = 2, m8 = 5,
m9 = 3, m10 = 3, m11 = 1, and m12 = 1.

Let us compute the termAP{y},{a},{c}
in (1.10.9). We have D̂0 = Ŝ0+Ê1+2Ê2+3Ê3+Ê4.

This gives A0
P{y},{a},{c}

= 4. Note also that M0
5 = 1, M0

6 = 2, M0
7 = 2, M0

8 = 3, M0
9 = 3,
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M0
10 = 3, M0

11 = 1, M0
12 = 1. Thus, it follows from (1.10.9) that

D0
P = 4 +

12∑

i=1

C0
i ,

where C0
i is the number defined in (1.10.5). By Lemma 1.10.7, we have

C0
i =

{
0 if M0

i = 1,

mi − 1 if M0
i > 2.

Therefore, we have D0
P = 19. Now using (2.1.8), we deduce that [f−1(0)] = 22. Keeping

in mind that h1,2(X) = 22 and [f−1(−1)] = 2, we see that (♥) in Main Theorem holds.

2.2. Family №2.2. In this case, the threefold X is a double cover of P1 × P2 ramified
in a surface of bidegree (2, 4). This implies that h1,2(X) = 20. As in the previous case,
the divisor −KX is not very ample, and there are no toric Landau–Ginzburg models with
reflexive Newton polytope in this case. However, we can find a Laurent polynomial p with
non-reflexive Newton polytope that gives the commutative diagram (z). For instance,
we can choose p to be the Laurent polynomial

(a+ b+ c+ 1)2

a
+

(a + b+ c+ 1)4

bc
.

Let γ : C3 99K C∗ ×C∗ ×C∗ be a birational transformation that is given by the change
of coordinates 




a = xy,

b = yz,

c = z − xy − yz − 1.

By [Prz17, Proposition 16], we can expand (z) to the commutative diagram

(2.2.1) P3

φ

��✤
✤
✤
✤
✤
✤
✤ C3? _oo

q

��

γ //❴❴❴❴❴❴ C∗ × C∗ × C∗ � � //

p

��

Y

w

��

� � // Z

f

��

V

g
&&▼▼

▼▼▼
▼▼

▼▼▼
▼▼

▼

π

88qqqqqqqqqqqqq

P1 C1? _oo C1 C1 � � // P1

where q is a surjective morphism, π is a birational morphism, the threefold V is smooth,
the map g is a surjective morphism such that −KV ∼ g−1(∞), and φ is a rational map
that is given by a pencil of quartic surfaces S given by

(2.2.2) xz3 = (zt− xy − yz − t2)(λxy − z2),

where λ ∈ C∪{∞}. Note that a general fiber of the morphism g is a smooth K3 surface.
Thus, a general surface in the pencil (2.1.2) has at most du Val singularities.

The diagram (2.2.1) is very similar to the diagram (1.4.2) presented in Subsection 1.4.
The only difference is that the pencil S is now given by the equation (2.1.2). Because of
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this, we will follow the scheme described in Section 1, and we will use the assumptions
and the notation introduced in this section.

As in Section 1, we denote by Sλ the surface in S given by (2.2.2). Then

S∞ = H{x} +H{y} +Q,

where Q is the quadric in P3 given by zt− xy − yz − t2 = 0. If λ 6= ∞, then

H{x} · Sλ = 2L{x},{z} + C1,
H{y} · Sλ = 2L{y},{z} + C2,

Q · Sλ = C1 + 3C3,
(2.2.3)

where C1, C2, and C3 are conics in P3 that are given by the equations x = zt− yz− t2 = 0,
y = xz − zt + t2 = 0, and z = xy − t2 = 0, respectively. It follows from (2.2.3) that the
base locus of the pencil S consists of the curves L{x},{z}, L{y},{z}, C1, C2, and C3.

We already know that the surface S∞ is reducible. The surface S0 is also reducible. In
fact, it is not reduced. Indeed, we have S0 = 2H{z}+Q, where Q is a quadric surface that
is given by xz − yz + zt− t2 − xy = 0. On the other hand, if λ 6= ∞ and λ 6= 0, then the
surface Sλ has isolated singularities, which implies that it is irreducible.

If λ 6= ∞ and λ 6= 0, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1 with quadratic term λxy − z2;
P{x},{z},{t}: type A9 (see the proof of Lemma 2.2.7);
P{y},{z},{t}: type E6 (see the proof of Lemma 2.2.8).

If λ 6= 0 and λ 6= ∞, then the intersection matrix of the curves L{x},{z}, L{y},{z}, C1,
C2, and C3 on the surface Sλ has the same rank as the intersection matrix of the curves
L{x},{z}, L{y},{z}, and Hλ, because

Hλ ∼ 2L{x},{z} + C1 ∼ 2L{y},{z} + C2 ∼Q

1

2
C1 +

3

2
C3.

on the surface Sλ. This follows from (2.2.3). On the other hand, we have

Lemma 2.2.4. Suppose that λ 6= 0 and λ 6= ∞. Then the intersection matrix of the
curves L{x},{z}, L{y},{z}, and Hλ on the surface Sλ is given by

• L{x},{z} L{y},{z} Hλ

L{x},{z}
1
10

1
2

1

L{y},{z}
1
2

−1
6

1

Hλ 1 1 4

Proof. The equalities H2
λ = 4 and Hλ · L{x},{z} = Hλ · L{y},{z} = 1 are obvious. Note that

H{z} · Sλ = L{x},{z} + L{y},{z} + C3.



KATZARKOV–KONTSEVICH–PANTEV CONJECTURE FOR FANO THREEFOLDS 25

Thus, on the surface Sλ, we have

Hλ ∼ L{x},{z} + L{y},{z} + C3 ∼Q L{x},{z} + L{y},{z} +
1

3

(
2Hλ − C1

)
∼Q

∼Q L{x},{z} + L{y},{z} +
1

3

(
Hλ + 2L{x},{z}

)
∼Q

5

3
L{x},{z} + L{y},{z} +

1

3
Hλ,

so that L{x},{z} ∼Q
2
5
Hλ − 3

5
L{y},{z}. Therefore, to complete the proof of the lemma, it is

enough to compute the numbers L2
{y},{z} and L{y},{z} · L{x},{z}.

Observe that P{y},{z},{t} and P{x},{y},{z} are the only singular points of the surface Sλ con-
tained in the line L{y},{z}. So, using Proposition A.1.3, we get L2

{y},{z} = −2 + 4
3
+ 1

2
= −1

6
.

Since L{y},{z} ∩ L{x},{z} = P{x},{y},{z}, Proposition A.1.2 gives L{y},{z} · L{x},{z} =
1
2
. �

The matrix in Lemma 2.2.4 has rank 2. Moreover, it follows from the proofs of Lem-
mas 2.2.7 and 2.2.8 below that rkPic(S̃k) = rkPic(Sk)+16. Thus, we see that (⋆) holds.
Therefore, by Lemma 1.13.1, we see that (♦) in Main Theorem also holds.

To prove (♥) in Main Theorem, we observe that [f−1(λ)] = 1 for every λ 6∈ {0,∞}.
This follows from Lemma 1.5.4. Therefore, to verify (♥) in Main Theorem, we have to
show that [f−1(0)] = 21. We will do this in the remaining part of this subsection.

To match the notation introduced in Subsection 1.8, we let C1 = C1, C2 = C2, C3 = C3,
C4 = L{x},{z}, and C5 = L{y},{z}. Then (2.2.3) gives

S0 · S∞ = 2C1 + C2 + 3C3 + 2C4 + 2C5,

so that m1 = 2, m2 = 1, m3 = 3, and m4 = m5 = 2. Moreover, one has M0
1 = M0

2 = 1
andM0

3 = M0
4 = M0

5 = 2. Then C0
1 = C0

1 = 0, C0
3 = 2, andC0

4 = C0
5 = 1 by Lemma 1.8.5.

Thus, using [S0] = 2 and (1.8.3), we see that

(2.2.5) [f−1(0)] = 6 +D0
P{x},{y},{z}

+D0
P{x},{z},{t}

+D0
P{y},{z},{t}

,

whereD0
P{x},{y},{z}

,D0
P{x},{z},{t}

, andD0
P{y},{z},{t}

are defects of the singular points P{x},{y},{z},

P{x},{z},{t}, and P{y},{z},{t}, respectively. For precise definition of defects, see (1.8.2).

Lemma 2.2.6. One has D0
P{x},{y},{z}

= 0.

Proof. The required assertion follows from (1.10.9), because P{x},{y},{z} is a double point
of the surface S0, and the quadratic term of the surface Sλ at this point is λxy − z2. �

Lemma 2.2.7. One has D0
P{x},{z},{t}

= 10.

Proof. In the chart y = 1, the surface Sλ is given by the equation

λx(x+ z)−
(
xz2 + z3 + λxzt − λxt2

)
+ z2(xz + zt − t2) = 0,

where P{x},{z},{t} = (0, 0, 0). We can rewrite this equation as

λx̂ẑ +
(
λx̂t̂2 − λx̂ẑt̂+ λx̂2t̂+ 2x̂ẑ2 − x̂2ẑ − ẑ3

)
+
(
x̂− ẑ

)2(
x̂ẑ + ẑt̂− x̂2 − x̂t̂− t̂2

)
= 0,

where x̂ = x, ẑ = x+ z, and t̂ = t.
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Let α1 : U1 → P3 be the blow up of the point P{x},{z},{t}. A chart of the blow up α1 is

given by the coordinate change x̂1 = x̂

t̂
, ẑ1 = ẑ

t̂
, t̂1 = t̂. Let x̄1 = x̂1, z̄1 = ẑ1 + t̂1, and

t̄1 = t̂1. Then S1
λ is given by the equation

λx̄1z̄1+λx̄1t̄1(x̄1−z̄1+ t̄1)−z̄1 t̄1(x̄1−z̄1+ t̄1)
2− t̄21(x̄1−z̄1+ t̄1)

3−x̄1 t̄
2
1(x̄1−z̄1+ t̄1)

3 = 0.

for every λ 6= 0. If λ = 0, this equation defines D1
0 = S1

0 + E1. By (1.10.3) and (1.10.9),
this contributes 1○ to the defect D0

P{x},{z},{t}
. Here and below we circle each contribution

for reader’s convenience.
Note that E1 is given by t̄1 = 0. This shows that E1 contains two base curves of the

pencil S1. One of them is given by x̄1 = t̄1 = 0, and another one is given by z̄1 = t̄1 = 0.
We denote the former curve by C1

6 , and we denote the latter curve by C1
7 . Then S1

0 +E1

is smooth at general point of the curve C6, so that this base curve does not give an extra
addition to the defect by Lemma 1.10.7 and (1.10.9). On the other hand, we have

multC1

7

(
S1
0 + E1

)
= M0

7 = m7 = multC1

7

((
S1
0 + E1

)
· S1

λ

)
= 2,

where λ 6= 0. By Lemma 1.10.7 and (1.10.9), the curve C1
7 contributes 1○ to the defect.

Let α2 : U2 → U1 be the blow up of the point C1
6 ∩ C1

7 . Then D2
0 = S2

0 + E2
1 + 2E2.

By (1.10.3) and (1.10.9), this contributes 1○ to D0
P{x},{z},{t}

.

A chart of the blow up α2 is given by the coordinate change x̄2 =
x̄1

t̄1
, z̄2 =

z̄1
t̄1
, t̄2 = t̄1.

Let x̌2 = x̄2, ž2 = z̄2 + t̄2, and ť2 = t̄2. Then E2 is given by t̄2 = 0, and D2
λ is given by

λx̌2ž2 + ť2(λx̌2ť2 − ž2ť2 + λx̌2
2 − λx̌2ž2)− ť22(ť2 + 2ž2)(x̌2 − ž2 + ť2)−

− ť22(x̌
2
2ž2 − 3ž2ť

2
2 + 2ť32 − 2x̌2ž

2
2 + ž32 − 2x̌2ž2ť2 + 2x̌2

2ť2 + 5x̌2ť
2
2)−

− ť32(x̌2 − ž2 + ť2)(ž
2
2 − 2x̌2ž2 − 2ž2ť2 + ť22 + 5x̌2ť2 + x̌2

2)−
− 3x̌2ť

4
2(x̌2 − ž2 + ť2)

2 − x̌2ť
4
2(x̌2 − ž2 + ť2)

3 = 0.

The pencil S2 has two base curves contained in the surface E2. One of them is given
by the equation x̄2 = t̄2 = 0, and another one is given by the equation t̄2 + z̄2 = t̄2 = 0.
Denote the former curve by C2

8 , and denote the latter curve by C2
9 . Then

multC2

8

(
S2
0 + E2

1 + 2E2

)
= M0

8 = m8 = multC2

8

((
S2
0 + E2

1 + 2E2

)
· S2

λ

)
= 2,

where λ 6= 0. Thus, this curve contributes 1○ to the defect by Lemma 1.10.7 and (1.10.9).
On the other hand, we have M0

9 = 3 and m9 = 4, because S2
0 + E2

1 + 2E2 is given by

ť42x̌2

(
x̌2 + ť2 − ž2 + 1

)3
+ ť22

(
ť22 + ť2x̌2 − ť2ž2 + ž2

)(
x̌2 + ť2 − ž2 + 1

)2
= 0,

and S2
∞ is given by x̌2(ť

2
2 + ť2x̌2 − ť2ž2 + ž2) = 0. Thus, by Lemma 1.10.7 and (1.10.9),

the curve C2
9 contributes 3○ to the defect D0

P{x},{z},{t}
.

Let α3 : U3 → U2 be the blow up of the point C2
8 ∩C2

9 . Then D3
0 = S3

0 +E3
1+2E3

2+E3.
By (1.10.3) and (1.10.9), this contributes 1○ to D0

P{x},{z},{t}
.
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A chart of the blow up α3 is given by the coordinate change x̌3 =
x̌2

ť2
, ž3 =

ž2
t̄2
, ť3 = ť2.

In this chart, the surface E3 is given by ť3 = 0, and the surface S3
λ is given by

(
λx̌3 − ť3

)(
ť3 + ž3

)
+ λť3x̌

2
3 − λť3x̌3ž3 − 2ť33 − ť23x̌3 − ť23ž3 + 3ť33ž3 − ť43 − 5ť33x̌3−

−2ť23x̌3ž3+2ť23ž
2
3+3ť43ž3−6ť43x̌3−2ť33x̌

2
3+2ť33x̌3ž3+9ť43x̌3ž3−3ť53x̌3−6ť43x̌

2
3−3ť43ž

2
3− ť33x̌

2
3ž3+

+2ť33x̌3ž
2
3− ť33ž

3
3+6ť53x̌3ž3− ť63x̌3−6ť53x̌

2
3− ť43x̌

3
3+3ť43x̌

2
3ž3−3ť43x̌3ž

2
3+ ť43ž

3
3+3ť63x̌3ž3−3ť63x̌

2
3−

−3ť53x̌
3
3+6ť53x̌

2
3ž3−3ť53x̌3ž

2
3+6ť63x̌

2
3ž3−3ť63x̌

3
3−3ť63x̌3ž

2
3+3ť63x̌

3
3ž3−ť63x̌

4
3−3ť63x̌

2
3ž

2
3+ť63x̌3ž

3
3 = 0.

for λ 6= 0. If λ = 0, then this equation defines D3
0 = S3

0 + E3
1 + 2E3

2 + E3.
The pencil S3 has two base curves contained in the surface E3. One of them is given by

the equation ť3 = ž3 = 0, and another one is given by the equation ť3 = x̌3 = 0. Denote
the former curve by C3

10, and denote the latter curve by C2
11. Then M0

10 = 2. Similarly, we
have m10 = 3, because (in general point of the curve C3

10) the surface S
3
0 +E3

1+2E3+E3

is given by

x̌3ť
3
3

(
ť3x̌3 − ť3ž3 + ť3 + 1

)
+ ť3

(
ť3x̌3 − ť3ž3 + ť3 + ž3

)
= 0,

and S3
∞ is given by ť3x̌3 − ť3ž3 + ť3 + ž3 = 0. Thus, the curve C3

10 contributes 2○ to the
defect by Lemma 1.10.7 and (1.10.9). On the other hand, we have M0

11 = 1. Thus, by
Lemma 1.10.7 and (1.10.9), the curve C3

11 does not contribute to the defect.
Let α4 : U4 → U3 be the blow up of the intersection point C3

10∩C3
11. Then the birational

map α : U → P3 in (1.9.3) can be decomposed via the following commutative diagram:

U2

α2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

U3
α3oo

U1

α1   ❆
❆❆

❆❆
❆❆

U4

α4

``❆❆❆❆❆❆❆❆

P3 U
α

oo

γ

>>⑥⑥⑥⑥⑥⑥⑥⑥

where γ is a birational morphism that is an isomorphism along the exceptional locus of
the composition α1 ◦ α2 ◦ α3 ◦ α4.

The surface E4 contains one base curve of the pencil S4. Denote this curve by C4
12.

Simple computations imply that neither E4 nor the curve C4
12 contribute to the defect.

Thus, summarizing, we see that D0
P{x},{z},{t}

= 10. �

Lemma 2.2.8. One has D0
P{y},{z},{t}

= 5.

Proof. Let us use the notation of the proof of Lemma 2.2.7. In a neighborhood of the
preimage of the point P{y},{z},{t} on the threefold U4, we can identify the threefold U4 with
the chart of P3 that is given by x = 1. In this chart, the surface S4

λ is given by

λy2 + z3 + z3t− yz2 − λyzt+ λy2z + λyt2 − yz3 − z2t2 = 0,

and (0, 0, 0) is the preimage of the point P{y},{z},{t}.
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Let α5 : U5 → U4 be the blow up of the point (0, 0, 0). Then D5
0 = S5

0 +E5. By (1.10.3)
and (1.10.9), this contributes 1○ to the defect D0

P{y},{z},{t}
.

A chart of the blow up α5 is given by the coordinate change y5 = y

t
, z5 = z

t
, t5 = t.

In this chart, the surface D5
λ is given by the equation

λy5(t5 + y5)− λt5y5z5 +
(
λt5y

2
5z5 − t25z

2
5 − t5y5z

2
5 + t5z

3
5

)
+ t25z

3
5 − t25y5z

3
5 = 0.

We can rewrite this equation as

λŷ5t̂5 +λŷ5ẑ5(ŷ5− t̂5)− ẑ5(ŷ5− t̂5)(λŷ
2
5 + ẑ25 − ẑ5t̂5) + ẑ35(ŷ5− t̂5)

2 − ŷ5ẑ
3
5(ŷ5− t̂5)

2 = 0,

where ŷ5 = y5, ẑ5 = z5, and t̂5 = y5 + t5. Then E5 is given by ŷ5 = t̂5.
The surface E5 contains one base curve of the pencil S5. Denote it by C5

13. Then C5
13

is given by ŷ5 = t̂5 = 0. One has M0
13 = 1. By Lemma 1.10.7 and (1.10.9), the curve C5

13

does not contribute to the defect of the singular point P{y},{z},{t}.

Let α6 : U6 → U5 be the blow up of the point (ŷ5, ẑ5, t̂5) = (0, 0, 0). Then

D6
0 = S6

0 + E6
5 + 2E6.

Thus, by (1.10.3) and (1.10.9), this contributes 1○ to the defect D0
P{y},{z},{t}

.

One (local) chart of the blow up α6 is given by ŷ6 =
ŷ5
ẑ5
, ẑ6 = ẑ5, t̂6 =

t̂5
ẑ5
. Thus, if λ 6= 0,

then S6
λ is given by the equation

λŷ6t̂6+ẑ6(ŷ6−t̂6)(λŷ6−ẑ6)+ẑ26 t̂6(ŷ6−t̂6)−ẑ26(ŷ6−t̂6)(λŷ
2
6−ŷ6ẑ6+ẑ6t̂6)−ŷ6ẑ

4
6(ŷ6−t̂6)

2 = 0.

The surface E6 is given by ẑ6 = 0. It contains two base curves of the pencil S6. One of
them is given by ŷ6 = ẑ6 = 0, and another is given by t̂6 = ẑ6 = 0. Denote the former one
by C6

14, and denote the latter one by C6
15. If λ 6= 0, then

multC6

14

(
S6
0 + E6

5 + 2E6

)
= M0

14 = m14 = multC6

14

((
S6
0 + E6

5 + 2E6

)
· S6

λ

)
= 2.

Thus, the curve C6
14 contributes 1○ to the defect by Lemma 1.10.7 and (1.10.9). Similarly,

we see that the curve C6
15 contributes 1○ to the defect of the singular point P{y},{z},{t}.

Let α7 : U7 → U6 be the blow up of the point C6
14∩C6

15. Then D7
0 = S7

0 +E7
5+2E7

6+E7.
By (1.10.3) and (1.10.9), this contributes 1○ to the defect D0

P{y},{z},{t}
.

One (local) chart of the blow up α7 is given by ŷ7 =
ŷ6
ẑ6
, t̂7 =

t̂6
ẑ6
, ẑ7 = ẑ6 If λ 6= 0, then

the surface S7
λ is given by the equation

ẑ7t̂7 − ŷ7ẑ7 + λŷ7t̂7 + λŷ7ẑ7(ŷ7 − t̂7) + ẑ27 t̂7(ŷ7 − t̂7)+

+ ẑ37(ŷ7 − t̂7)
2 − λŷ27ẑ

3
7(ŷ7 − t̂7)− ŷ7ẑ

5
7(ŷ7 − t̂7)

2 = 0.

The surface E7 is given by ẑ7 = 0. It contains two base curves of the pencil S7. One of
them is given by ŷ7 = ẑ7 = 0, and another is given by t̂7 = ẑ7 = 0. Denote the former one
by C7

16, and denote the latter one by C7
17. Then M0

16 = M0
17 = 1, so that C7

16 and C7
17 do

not contribute anything to D0
P{y},{z},{t}

by Lemma 1.10.7 and (1.10.9).
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Let α8 : U8 → U8 be the blow up of the intersection point C7
16∩C7

17. Then the birational
map α : U → P3 in (1.9.3) can be decomposed via the following commutative diagram:

U3

α3

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

U4
α4oo U5

α5oo U6
α6oo

U2

α2   ❆
❆❆

❆❆
❆❆

❆
U7

α7

``❆❆❆❆❆❆❆❆

U1 α1

// P3 U
α

oo
δ

// U8

α8

>>⑥⑥⑥⑥⑥⑥⑥⑥

where δ is a birational morphism that is an isomorphism along the exceptional locus of
the composition α5 ◦ α6 ◦ α7 ◦ α8.

Arguing as above, we see that E8 does not contribute anything to the computation of
defect. Moreover, the surface E8 does not contain base curves of the pencil S8. Thus,
summarizing, we see that D0

P{x},{z},{t}
= 5. �

Using (2.2.5) and Lemmas 2.2.6, 2.2.7, and 2.2.8, we conclude that [f−1(0)] = 21, so
that (♥) in Main Theorem holds in this case.

2.3. Family №2.3. In this case, the threefold X can be obtained from a smooth quartic
hypersurface in P(1, 1, 1, 1, 2) by blowing up a smooth elliptic curve. In particular, we
have h1,2(X) = 11. Let p be the Laurent polynomial

(a+ b+ 1)4(c+ 1)

abc
+ c+ 1.

Then p gives the commutative diagram (z) by [Prz17, Proposition 16].
Let γ : C3 99K C∗ ×C∗ ×C∗ be a birational transformation that is given by the change

of coordinates 



a = −xz,

b = x+ xz − 1,

c = −y

z
− 1.

Like in Subsection 2.2, we can use γ to expand (z) to the commutative diagram (2.2.1).
The only difference is that now the pencil S is given by the equation

(2.3.1) x3y + (λz + y)(y + z)(xz + xt− t2) = 0,

where λ ∈ C∪{∞}. As in Subsection 2.2, we will follow the scheme described in Section 1,
and we will use assumptions and notation introduced in this section. But now Sλ denotes
the quartic surface in P3 that is given by (2.3.1).

Let Q be the quadric given by xz+xt−t2 = 0. Then S∞ = H{z}+H{y,z}+Q. Similarly,
let S be the cubic surface in P3 that is given by the equation

x3 + xyz + xyt− yt2 + xz2 + xzt − zt2 = 0.
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Then S0 = H{y} + S. Thus, we see that both S∞ and S0 are reducible. In fact, these
are the only reducible surfaces in S. Indeed, if λ 6= ∞, λ 6= 0, and λ 6= 1, then Sλ has
isolated singularities, which implies that it is irreducible. Moreover, the surface S1 is also
irreducible, but it is singular along the line L{x},{y,z}.

If λ 6= ∞, then

H{z} · Sλ = L{y},{z} + C1,
H{y,z} · Sλ = L{y},{z} + 3L{x},{y,z},

Q · Sλ = 6L{x},{t} + C2,
(2.3.2)

where C1 and C2 are the curves in P3 that are given by the equations z = x3+xyt−yt2 = 0
and y = xz + xt− t2 = 0, respectively. Thus, if λ 6= ∞, then

S∞ · Sλ = 6L{x},{t} + 2L{y},{z} + 3L{x},{y,z} + C1 + C2.
Hence, the base curves of the pencil S are L{x},{t}, L{y},{z}, L{x},{y,z}, C1, and C2.

If λ 6= 0 and λ 6= 1, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be described as follows:

P{x},{z},{t}: type A1 with quadratic term xz + xt− t2;
P{x},{y},{z}: type A5 with quadratic term (y + λz)(y + z);
P{x},{t},{y,z}: type A5 with quadratic term (λ− 1)x(y + z);

[0 : λ : −1 : 0]: type A5 with quadratic term (λ− 1)x(y + λz).

If λ 6∈ {∞, 0, 1}, then it follows from (2.3.2) that

Hλ ∼ L{y},{z} + C1 ∼ L{y},{z} + 3L{x},{y,z} ∼Q 3L{x},{t} +
1

2
C2

on the (singular) quartic surface Sλ. Therefore, if λ 6∈ {∞, 0, 1}, then the intersection
matrix of the curves L{x},{t}, L{y},{z}, L{x},{y,z}, C1, and C2 on the surface Sλ has the same
rank as the intersection matrix of the curves L{y},{z}, L{x},{t}, and Hλ. In this case, we
also have

H{y} · Sλ = 2L{y},{z} + C2,
so that 2L{y},{z} + C2 ∼ Hλ, which gives 2L{y},{z} +Hλ ∼ 6L{x},{t}.

If λ 6∈ {∞, 0, 1}, then the intersection matrix of the curves L{y},{z}, L{x},{t}, and Hλ on
the surface Sλ is given by

• L{y},{z} L{x},{t} Hλ

L{y},{z} −1
2

0 1

L{x},{t} 0 1
6

1

Hλ 1 1 4

Its rank is 2. On the other hand, the description of singular points of the surface Sλ easily
implies that rkPic(S̃k) = rkPic(Sk) + 16, so that (⋆) holds. Thus, by Lemma 1.13.1, we
see that (♦) in Main Theorem holds.
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Let us prove (♥) in Main Theorem. Observe that [f−1(λ)] = 1 for every λ 6∈ {∞, 0, 1}.
This follows from Lemma 1.5.4. Thus, to verify (♥) in Main Theorem, we have to show
that [f−1(0)] + [f−1(1)] = 13. We start with

Lemma 2.3.3. One has [f−1(0)] = 2.

Proof. Note that [S0] = 2, and S0 is smooth at general points of the curves L{x},{t}, L{y},{z},
L{x},{y,z}, C1, and C2. Furthermore, the points P{x},{z},{t}, P{x},{y},{z}, and P{x},{t},{y,z} are
good double points of the surface S0. Then [f−1(0)] = 2 by Corollary 1.12.2. �

Let us show that [f−1(1)] = 11. Let C1 = C1, C2 = C2, C3 = L{x},{t}, C4 = L{y},{z},
C5 = L{x},{y,z}. Then m1 = m2 = 1, m3 = 6, m4 = 2, and m5 = 3. Moreover, one has
M1

1 = M1
2 = M1

3 = M1
4 = 1 and M0

5 = 2. Then C1
1 = C1

1 = C1
3 = C1

4 = 0 and C1
5 = 2 by

Lemma 1.8.5. Thus, using (1.8.3), we see that

(2.3.4)
[
f−1(1)

]
= 3 +D1

P{x},{z},{t}
+D1

P{x},{y},{z}
+D1

P{x},{t},{y,z}
.

Lemma 2.3.5. One has D1
P{x},{z},{t}

= 0.

Proof. Observe that P{x},{z},{t} is an isolated ordinary double point of the surface S1.
Thus, we have D1

P{x},{z},{t}
= 0 by Lemma 1.12.1. �

Lemma 2.3.6. One has D1
P{x},{y},{z}

= 1.

Proof. In the chart t = 1, one has P{x},{y},{z} = (0, 0, 0), and the surface Sλ is given by

(y + λz)(y + z)− x(y + λz)(y + z)− x(x2y + λyz2 + λz3 + y2z + yz2) = 0.

Let α1 : U1 → P3 be the blow up of the point P{x},{y},{z}. Then S1
λ ∼ −KU1

for every λ ∈ C.
A chart of the blow up α1 is given by the coordinate change x1 = x, y1 = y

x
, z1 = z

x
.

In this chart, the surface E1 is given by x1 = 0, and the surface S1
λ is given by

(y1 + λz1)(y1 + z1)− x1(x1y1 + (y1 + λz1)(y1 + z1))− x2
1z1(y1 + z1)(y1 + λz1) = 0.

This shows that E1 contains one base curve of the pencil S1. It is given by x1 = y1+z1 = 0.
Denote this curve by C1

6 . Then M1
6 = m6 = 2. But surfaces in the pencil S1 do not have

fixed singular points in E1. Thus, keeping in mind the construction of the birational
morphism α, we see that D1

P{x},{y},{z}
= 1 by (1.10.9), (1.10.3), and Lemma 1.10.7. �

Lemma 2.3.7. One has D1
P{x},{t},{y,z}

= 7.

Proof. Let us use the notation of the proof of Lemma 2.3.6. In a neighborhood of the
preimage of the point P{x},{t},{y,z}, we can identify U1 with the chart of P3 that is given
by z = 1. In this chart, the surface S1

λ is given by the equation

(λ− 1)x̂ŷ +
(
(λ− 1)(x̂ŷt̂− ŷt̂2) + x̂ŷ2 − x̂3

)
+ ŷ(x̂3 + x̂ŷt̂− ŷt̂2) = 0.

where x̂ = x, t̂ = t, ŷ = y + z. In these coordinates, the point (0, 0, 0) is the preimage of
the point P{x},{t},{y,z}.

Let α2 : U2 → U1 be the blow up of the point (0, 0, 0). Then D2
1 = S2

1 + E2. Thus,
by (1.10.3) and (1.10.9), the surface E2 contributes 1○ to D1

P{x},{t},{y,z}
.
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One chart of the blow up α2 is given by the coordinate change x̂2 =
x̂

t̂
, ŷ2 =

ŷ

t̂
, t̂2 = t̂.

In this chart, the surface S2
λ is given by

(λ− 1)ŷ2(x̂2 − t̂2) +
(
λt̂2x̂2ŷ2 − t̂2x̂2ŷ2

)
+
(
t̂2x̂2ŷ

2
2 − t̂22ŷ

2
2 − t̂2x̂

3
2

)
+ t̂22x̂2ŷ

2
2 + t̂22x̂

3
2ŷ2 = 0

for λ 6= 1. Let x̄2 = x̂2 − t̂2, ȳ2 = ẑ2 and t̄2 = t̂2. We can rewrite the latter equation as

(λ−1)
(
x̄2ȳ2+ȳ2t̄2(x̄2+t̄2)

)
= x̄3

2t̄2+3x̄2
2t̄

2
2+3x̄2t̄

3
2+t̄42−x̄2ȳ

2
2 t̄2−ȳ22 t̄

2
2

(
x̄2+t̄2

)
−ȳ2t̄

2
2(x̄2+t̄2)

3.

For λ = 1, this equation defines D2
2 = S2

1 + E2.
The surface E2 is given by t̄2 = 0. It contains two base curves of the pencil S2. One

of them is given by x̄2 = t̄2 = 0, and another one is given by z̄2 = t̄2 = 0. Denote the
former curve by C2

7 , and denote the latter curve by C2
8 . Then M1

7 = 2. Note that m7 = 4,
because S∞ is given by ȳ2(t̄

2
2 + tx̄2 + x̄2) = 0, and S2

1 + E2 is given by
(
t̄42 + 3t̄32x̄2 + 3t̄22x̄

2
2 + t̄2x̄

3
2

)(
t̄2ȳ2 − 1

)
+ ȳ2

(
t̄22 + t̄2x̄2 + x̄2

)(
t̄2ȳ2 − 1

)
= 0.

Thus, the curve C2
7 contributes 3○ to the defect by Lemma 1.10.7 and (1.10.9). On the

other hand, one has M1
8 = 1, so that C2

8 does not contribute to the defect.
Let α3 : U3 → U2 be the blow up of the point C2

7 ∩ C2
8 . Then D3

0 = S3
0 + E3

2 + 2E3.
By (1.10.3) and (1.10.9), the surface E3 contributes 1○ to the defect D1

P{x},{t},{y,z}
.

A chart of the blow up α3 is given by the coordinate change x̄3 =
x̄2

t̄2
, ȳ3 =

ȳ2
t̄2
, t̄3 = t̄2.

In this chart, the surface E3 is given by t̄3. Similarly, if λ 6= 1, then S3
λ is given by

(λ− 1)ȳ3(x̄3 + t̄3)− t22 + x̄3t̄3

(
(λ− 1)ȳ3 − 3t̄3

)
− 3x̄2

3t̄
2
3−

− t̄23

(
x̄3
3 − ȳ3t̄

2
3 − x̄3ȳ

2
3 − ȳ23 t̄3

)
+ x̄3ȳ3t

3
2

(
3t̄3 + ȳ3

)
+ 3x̄2

3ȳ3t̄
4
3 + x̄3

3ȳ3t̄
4
3 = 0.

Then E3 contains two base curves of the pencil S3. One of them is given by t̄3 = x̄3 = 0,
and another one is given by t̄3 = ȳ3 = 0. Denote the former curve by C3

9 , and denote the
latter curve by C2

10. Then M1
9 = M1

10 = 2 and m9 = m10 = 2. Thus, by Lemma 1.10.7
and (1.10.9), the curves C3

9 and C3
10 contribute 2○ to the defect D1

P{x},{t},{y,z}
.

Summarizing, we see that D1
P{x},{t},{y,z}

> 7. Looking at the defining equation of the

surface S3
λ, one can easily see that D1

P{x},{t},{y,z}
= 7. �

Using (2.3.4) and Lemmas 2.3.5, 2.3.6, 2.3.7, we see that (♥) in Main Theorem holds.

2.4. Family №2.4. In this case, the threefold X is a blow up of P3 along the smooth
complete intersection of two cubic surfaces, which implies that h1,2(X) = 10. A mirror
partner of the threefold X is given by Minkowski polynomial №3963.1, which is

z2

x
+

3z

x
+

3

x
+

yz

x
+

z2

y
+

1

xz
+

2y

x
+

2z

y
+

y

xz
+

1

y
+

+ 4z +
3

z
+ 2y + 2

xz

y
+

2y

z
+

2x

y
+ 4x+ 3

x

z
+

xy

z
+

x2

y
+

x2

z
.
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The quartic pencil S is given by

z3y + 3z2ty + 3t2yz + y2z2 + z3x+ t3y + 2y2tz + 2z2xt+

+ y2t2 + t2xz + 4xyz2 + 3t2xy + 2y2xz + 2x2z2 + 2y2xt+

+ 2x2tz + 4x2yz + 3x2ty + x2y2 + x3z + x3y = λxyzt.

This equation is invariant with respect to the swap x ↔ z.
Suppose that λ 6= ∞. Let C be the conic t = xy + xz + yz = 0. Then

• H{x} · S∞ = L{x},{y} + 2L{x},{z,t} + L{x},{y,z,t},
• H{y} · S∞ = L{x},{y} + L{y},{z} + 2L{y},{x,z,t},
• H{z} · S∞ = L{y},{z} + 2L{z},{x,t} + L{z},{x,y,t},
• H{t} · S∞ = L{t},{x,z} + L{t},{x,y,z} + C.

This shows that

S∞ · Sλ = 2L{x},{y} + 2L{y},{z} + 2L{x},{z,t} + 2L{z},{x,t} + L{t},{x,z}+

+ 2L{y},{x,z,t} + L{x},{y,z,t} + L{z},{x,y,t} + L{t},{x,y,z} + C.
Hence, the base locus of the pencil S consists of the curves L{x},{y}, L{y},{z}, L{x},{z,t},
L{z},{x,t}, L{t},{x,z}, L{y},{x,z,t}, L{x},{y,z,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C.

Observe that S−7 = H{x,z,t} +H{x,y,z,t} + Q, where Q is an irreducible quadric surface
that is given by xy + xz + yz + yt = 0. If λ 6= −7 and λ 6= ∞, then the surface Sλ has
isolated singularities, which implies that it is irreducible.

The singular locus of the surface S−7 contained in the base locus of the pencil S consists
of the lines L{x},{z,t}, L{z},{x,t}, and L{y},{x,z,t}.

Lemma 2.4.1. Suppose that λ 6= −7. Then singular points of the surface Sλ contained
in the base locus of the pencil S can be describes as follows:

P{x},{y},{z,t}: type A4 with quadratic term (λ+ 7)xy;
P{x},{z},{t}: type D4 with quadratic term (x+ z + t)2;

P{y},{t},{x,z}: type A1 with quadratic term (λ+6)ty−t2−(x−z)(y+x−z+2t);
P{y},{z},{x,t}: type A4 with quadratic term (λ+ 7)yz.

Proof. First let us describe the singularity of the surface Sλ at the point P{y},{z},{x,t}. In
the chart t = 1, the surface Sλ is given by

(λ+ 7)z̄ȳ − x̄2z̄ − (λ+ 8)x̄ȳz̄ − 2z̄2x̄− z̄2ȳ − z̄3 + x̄3ȳ + x̄3z̄+

+ x̄2ȳ2 + 4x̄2ȳz̄ + 2x̄2z̄2 + 2x̄ȳ2z̄ + 4x̄ȳz̄2 + z̄3x̄+ ȳ2z̄2 + ȳz̄3 = 0,

where x̄ = x + 1, ȳ = y, and z̄ = z. Introducing new coordinates x̄2 = x̄, ȳ2 = ȳ

x̄
, and

z̄2 =
z̄
x̄
, we rewrite this equation (after dividing by x̄2

2) as

z̄2
(
(λ+ 7)ȳ2 − x̄2

)
+ x̄2

2ȳ2 + x̄2
2z̄2 − (λ+ 8)x̄2ȳ2z̄2 − 2z̄22 x̄2 + x̄2

2ȳ
2
2 + 4x̄2

2ȳ2z̄2+

+ 2x̄2
2z̄

2
2 − x̄2ȳ2z̄

2
2 − z̄32 x̄2 + 2x̄2

2ȳ
2
2 z̄2 + 4x̄2

2ȳ2z̄
2
2 + x̄2

2z̄
3
2 + x̄2

2ȳ
2
2z̄

2
2 + x̄2

2ȳ2z̄
3
2 = 0.
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This equation defines (a chart of) the blow up of the surface Sλ at the point P{y},{z},{x,t}.
The two exceptional curves of the blow up are given by the equations x̄2 = z̄2 = 0 and
x̄2 = ȳ2 = 0, respectively. They intersect by the point (0, 0, 0), which is singular point
of the obtained surface. Introducing new coordinates x̂2 = (λ + 7)ȳ2 − x̄2, ŷ2 = ȳ2, and
ẑ2 = z̄2, we can rewrite the latter equations as

x̂2ẑ2 + (λ+ 7)2ŷ32 + higher order terms = 0

with respect to the weights wt(x̂2) = 3, wt(ẑ2) = 2, and wt(ẑ2) = 3. This shows that the
blown up surface has singularity of type A2 at the point (0, 0, 0), so that P{y},{z},{x,t} is a
singular point of the surface Sλ of type A4.

Since the equation of the surface Sλ is invariant with respect to the swap x ↔ z, we see
that P{y},{x},{z,t} is a singular point of the surface Sλ of type A4, and the quadratic term
of its defining equation is (λ+ 7)xy.

To show that P{y},{t},{x,z} is an ordinary double point of the surface Sλ, we simply
observe that the quadratic part of the Taylor expansion of the defining equation of the
surface Sλ at the point P{y},{t},{x,z} in the chart z = 1 is

(λ+ 6)t́ý − t2 − 2t́x́− x́2 − x́ý.

where x́ = x− 1, ý = y, and t́ = t. This quadratic form has rank 3, so that P{y},{t},{x,z} is
an ordinary double point of the surface Sλ.

Finally, let us show that P{x},{z},{t} is a singular point of the surface Sλ of type D4. Let

us consider the chart y = 1 and introduce new coordinates x̃ = x, z̃ = z, and t̃ = t+x+z.
Then Sλ is given by

t̃2 + (λ+ 7)x̃2z̃ + (λ+ 7)z̃2x̃− (λ+ 6)t̃x̃z̃ + t̃3 + t̃2x̃z̃ = 0,

where P{x},{z},{t} = (0, 0, 0). Let us blow up Sλ at this point. Introducing new coordinates

x̃6 = x̃, z̃6 =
z̃
x̃
, t̃6 =

t̃
x̃
, we rewrite this equation (after dividing by x̃2

6) as

t̃26 + (λ+ 7)x̃6z̃6 − (λ+ 6)t̃6x̃6z̃6 + (λ+ 7)z̃26 x̃6 + t̃36x̃6 + t̃26x̃
2
6z̃6 = 0.

This equation defines (a chart of) the blow up of the surface Sλ at the point P{x},{z},{t}. The

exceptional curve of this birational map is given by x̃6 = t̃6 = 0. The obtained surface has
an ordinary double point at (0, 0, 0), since its quadratic form t̃26+(λ+7)x̃6z̃6 is of rank 3.
Note, however, that this surface is also singular at the point (x̃6, z̃6, t̃6) = (0,−1, 0), and
is smooth along the curve x̃6 = t̃6 = 0 away from these two points. Introducing new
coordinates x̌6 = x̃6, ž6 = z̃6 + 1, and ť6 = t̃6, we rewrite the latter equation as

ť26 − (λ+ 7)x̌6ž6 + (λ+ 6)ť6x̌6 − (λ+ 6)ť6x̌6ž6 + ť36x̌6 − ť26x̌
2
6 + (λ+ 7)ž26 x̌6 + ť26x̌

2
6ž6 = 0.

Since λ 6= −7, the quadratic form ť26 − (λ + 7)x̌6ž6 + (λ + 6)ť6x̌6 has rank 3, so that the
second singular point is also an ordinary double point of the obtained surface.

Now let us consider another chart of the blow up of the surface Sλ at the point P{x},{z},{t}.

To do this, we introduce coordinates x̃′
6 =

x̃
z̃
, z̃′6 = z̃ and t̃′6 =

t̃
z̃
. After dividing by (x̃′

6)
2,

we obtain the equation

(t̃′6)
2 + (λ+ 7)x̃′

6z̃
′
6 − (λ+ 6)t̃′6x̃

′
6z̃

′
6 + (λ+ 7)(x̃′

6)
2z̃′6 + (t̃′6)

3z̃′6 + (t̃′6)
2x̃′

6(z̃
′
6)

2 = 0.
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This surface is smooth along the curve x̃′
6 = t̃′6 = 0 except for two points: the point

(x̃′
6, z̃

′
6, t̃

′
6) = (0, 0, 0) and the point (x̃′

6, z̃
′
6, t̃

′
6) = (−1, 0, 0). Both these points are ordinary

double points of the obtained surface. Note also that the point (x̃′
6, z̃

′
6, t̃

′
6) = (−1, 0, 0)

is the point (x̃6, z̃6, t̃6) = (0,−1, 0) in the first chart of the blow up. This shows that
P{x},{z},{t} is a singular point of the surface Sλ of type D4. �

The surface Sk is singular at the points P{x},{y},{z,t}, P{x},{z},{t}, P{y},{t},{x,z}, P{y},{z},{x,t}.
Their minimal resolutions are described in the proof of Lemma 2.4.1. This gives

Corollary 2.4.2. One has rk Pic(S̃k) = rk Pic(Sk) + 13.

The base locus of the pencil S consists of the curves L{x},{y}, L{y},{z}, L{x},{z,t}, L{z},{x,t},
L{t},{x,z}, L{y},{x,z,t}, L{x},{y,z,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C. To describe the rank of their
intersection matrix on the surface Sλ for λ 6= −7 and λ 6= ∞, it is enough to compute
the rank of the intersection matrix of the curves L{x},{y}, L{y},{z}, L{x},{y,z,t}, L{z},{x,y,t},
L{t},{x,y,z} L{t},{x,z}, and Hλ, because

Hλ ∼ L{x},{y} + 2L{x},{z,t} + L{x},{y,z,t} ∼ L{x},{y} + L{y},{z} + 2L{y},{x,z,t} ∼
∼ L{y},{z} + 2L{z},{x,t} + L{z},{x,y,t} ∼ L{t},{x,z} + L{t},{x,y,z} + C.

Moreover, if λ 6= −7, then

H{x,y,z,t} · Sλ = L{y},{x,z,t} + L{x},{y,z,t} + L{z},{x,y,t} + L{t},{x,y,z},

so that Hλ ∼ L{y},{x,z,t} + L{x},{y,z,t} + L{z},{x,y,t} + L{t},{x,y,z}. Thus, if λ 6= −7, then
the rank of the intersection matrix of the curves L{x},{y}, L{y},{z}, L{x},{z,t}, L{z},{x,t},
L{t},{x,z}, L{y},{x,z,t}, L{x},{y,z,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C on the surface Sλ is the same
as the rank of the intersection matrix of the curves L{x},{y}, L{y},{z}, L{x},{y,z,t}, L{z},{x,y,t},
L{t},{x,z}, and Hλ. Moreover, we have the following.

Lemma 2.4.3. Suppose that λ 6= −7. Then the intersection matrix of the curves L{x},{y},
L{y},{z}, L{x},{y,z,t}, L{z},{x,y,t}, L{t},{x,z}, and Hλ on the surface Sλ is given by

• L{x},{y} L{y},{z} L{x},{y,z,t} L{z},{x,y,t} L{t},{x,z} Hλ

L{x},{y} −4
5

1 3
5

0 0 1

L{y},{z} 1 −4
5

0 3
5

0 1

L{x},{y,z,t}
3
5

0 −6
5

1 0 1

L{z},{x,y,t} 0 3
5

1 −6
5

0 1

L{t},{x,z} 0 0 0 0 −1
2

1

Hλ 1 1 1 1 1 4

Proof. By definition, we have H2
λ = 4 and

Hλ · L{x},{y} = Hλ · L{y},{z} = Hλ · L{x},{y,z,t} = Hλ · L{z},{x,y,t} = Hλ · L{t},{x,z} = 1.
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Let us compute L2
{x},{y}. The only singular point of the surface Sλ contained in L{x},{y}

is the point P{x},{y},{z,t}. Moreover, the surface Sλ has du Val singularity of type A4

at this point by Lemma 2.4.1. Let us use the notation of Remark A.2.4 with S = Sλ,
O = P{x},{y},{z,t}, n = 4, and C = L{x},{y}. Then C passes through the point G1 ∩G4, so

that C̃∩G2 6= ∅ or C̃∩G3 6= ∅. In both cases, we get L2
{x},{y} = −4

5
by Proposition A.1.3.

Likewise, using Remark A.2.4 with S = Sλ, O = P{x},{y},{z,t}, n = 4, and C = L{x},{y,z,t},

we see that C does not pass through the point G1 ∩ G4, so that L2
{x},{y,z,t} = −6

5
by

Proposition A.1.3. Keeping in mind the symmetry x ↔ z, we see that L2
{y},{z} = L2

{x},{y} =

−4
5
, and L2

{z},{x,y,t} = L2
{x},{y,z,t} = −6

5
. Using Proposition A.1.3 again, we see that

L2
{t},{x,z} = −1

2
, because P{x},{z},{t} and P{y},{t},{x,z} are the only singular points of the

surface Sλ that are contained in the curve L{t},{x,z}.
Observe that L{x},{y} ∩L{y},{z} = P{x},{y},{z}, which is a smooth point of the surface Sλ.

This gives L{x},{y} · L{y},{z} = 1. We also have

L{x},{y} · L{z},{x,y,t} = L{x},{y} · L{t},{x,z} = 0,

because L{x},{y} ∩ L{z},{x,y,t} = L{x},{y} ∩ L{t},{x,z} = ∅.
To compute L{x},{y} ·L{x},{y,z,t}, recall that L{x},{y}+2L{x},{z,t}+L{x},{y,z,t} ∼ Hλ. Then

L{x},{y} · L{x},{y,z,t} + 2L{x},{z,t} · L{x},{y,z,t} −
6

5
=

= L{x},{y} · L{x},{y,z,t} + 2L{x},{z,t} · L{x},{y,z,t} + L2
{x},{y,z,t} = Hλ · L{x},{y,z,t} = 1.

Using Remark A.2.4 with S = Sλ, O = P{x},{y},{z,t}, n = 4, C = L{x},{z,t}, Z = L{x},{y,z,t},

we see that neither C nor Z contains the point G1∩G4, and either C∩G1 6= ∅ 6= Z∩G1 or
C∩G4 6= ∅ 6= Z∩G4. In both cases, we have L{x},{z,t}·L{x},{y,z,t} =

4
5
by Proposition A.1.3,

which implies that L{x},{y} · L{x},{y,z,t} =
3
5
.

Using the symmetry x ↔ z, we see that L{y},{z} · L{z},{x,y,t} = L{x},{y} · L{x},{y,z,t} =
3
5
.

Since L{y},{z}∩L{x},{y,z,t} = ∅, and L{y},{z}∩L{t},{x,z} = ∅, we have L{y},{z} ·L{x},{y,z,t} = 0
and L{y},{z} · L{t},{x,z} = 0, respectively.

Note that L{x},{y,z,t}∩L{z},{x,y,t} = P{x},{z},{y,t}, and P{x},{z},{y,t} is a smooth point of the
surface Sλ. This shows that L{x},{y,z,t} · L{z},{x,y,t} = 1. Since L{x},{y,z,t} ∩ L{t},{x,z} = ∅,
we have L{x},{y,z,t} · L{t},{x,z} = 0. Likewise, we have L{z},{x,y,t} · L{t},{x,z} = 0. �

The rank of the matrix in Lemma 2.4.3 is 5, so that (⋆) holds by Corollary 2.4.2. Thus,
we see that (♦) in Main Theorem holds in this case.

Using Lemma 2.4.1 and Corollary 1.5.4, we see that [f−1(λ)] = 1 for every λ 6∈ {∞,−7}.
Moreover, we have the following.

Lemma 2.4.4. One has [f−1(−7)] = 11.

Proof. Let C1 = L{x},{y}, C2 = L{y},{z}, C3 = L{x},{z,t}, C4 = L{z},{x,t}, C5 = L{t},{x,z},
C6 = L{y},{x,z,t}, C7 = L{x},{y,z,t}, C8 = L{z},{x,y,t}, C9 = L{t},{x,y,z}, and C10 = C. Then

M−7
1 = M−7

2 = M−7
5 = M−7

7 = M−7
8 = M−7

9 = M−7
10 = 1
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and M−7
3 = M−7

4 = M−7
6 = 2. On the other hand, we have

m−7
1 = m−7

2 = m−7
3 = m−7

4 = m−7
6 = 2,

and m−7
5 = m−7

7 = m−7
8 = m−7

9 = m−7
10 = 1. Using Lemma 1.8.5 and (1.8.3), we see that

[
f−1(−7)

]
= 6 +D−7

P{x},{y},{z,t}
+D−7

P{x},{z},{t}
+D−7

P{y},{t},{x,z}
+D−7

P{y},{z},{x,t}
.

It follows from the proof of Lemma 2.4.1 that the surface S−7 has an isolated ordinary
double singularity at the point P{y},{t},{x,z}. Thus, it follows from Lemma 1.12.1 that its

defect is zero, so that D−7
P{y},{t},{x,z}

= 0. Hence, we conclude that
[
f−1(−7)

]
= 6 +D−7

P{x},{y},{z,t}
+D−7

P{y},{z},{x,t}
+D−7

P{x},{z},{t}
.

The numbers D−7
P{x},{y},{z,t}

, D−7
P{y},{z},{x,t}

, and DP{x},{z},{t}
can be computed using algo-

rithm described in Section 1.10. To use it, we have to know the structure of the birational
morphism α in (1.9.3). Implicitly, it has been described in the proof of Lemma 2.4.1. To
be precise, we proved that there exists a commutative diagram

U3

α3

xxqqq
qq
qqq

qq
qqq

U4
α4oo U5

α5oo

U2

α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ U6

α6

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

U1 α1

// P3 U
α

oo

γ

88qqqqqqqqqqqqqq

Here α1 is the blow up of the point P{y},{t},{x,z}, the morphism α2 is the blow up of the
preimage of the point P{y},{z},{x,t}, the morphism α3 is the blow up of a point in E2, the
morphism α4 is the blow up of the preimage of the point P{x},{y},{z,t}, the morphism α5 is
the blow up of a point in E4, the morphism α6 is the blow up of the preimage of the point
P{x},{z},{t}, and γ is the blow ups of three distinct points in E6, which are described in the
very end of the proof of Lemma 2.4.1. In the notation used in the proof of Lemma 2.4.1,
these are the points (x̃6, z̃6, t̃6) = (0, 0, 0), (x̃6, z̃6, t̃6) = (0,−1, 0) and (x̃′

6, z̃
′
6, t̃

′
6) = (0, 0, 0).

Using Lemma 1.10.7 and (1.10.9), we can findD−7
P{x},{y},{z,t}

,D−7
P{y},{z},{x,t}

, andD−7
P{x},{z},{t}

by analyzing the base curves of the pencil Ŝ. Implicitly, this has been already done in the
proof of Lemma 2.4.1, so that we will use the notation introduced in this proof.

Observe that Ê1 does not contain base curves of the pencil Ŝ. To describe the base
curves in the surface E2, note that S2|E2

consists of two lines in E2
∼= P2. These curves

are given by x̄2 = z̄2 = 0 and x̄2 = ȳ2 = 0. Denote them by C2
11 and C2

12, respectively.
Note that D2

−7 = S2
−7 + E2, the surface S2

−7 contains C2
11, and it does not contain C2

12.
Similarly, the restriction S3|E3

contains one base curve, which is a line in E3
∼= P2.

Denote this curve by C3
13. Then C3

13 is contained in S3
−7, and it is not contained in E3

2.
Moreover, the surface S3

−7 is smooth at general point of the curve C3
13.

The restriction S4|E4
consists of two lines in E4

∼= P2, which we denote by C4
14 and C4

15.
One of them is contained in the surface S4

−7. We may assume that this curve is C4
14.
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Similarly, the restriction S5|E5
contains one base curve, which is a line in E5

∼= P2.
Let us denote this curve by C5

16. It is contained in S5
−7, and it is not contained in E5

4.
By construction, we have D5

−7 = S5
−7 + E5

2 + E5
4.

The restriction S6|E6
consists of a single line in E6

∼= P2 (taken with multiplicity 2).
Denote this line by C6

17. Note that the surface S6
−7 is singular along the curve C6

17.

Finally, we observe that Ê7, Ê8 and Ê9 does not contain base curves of the pencil Ŝ.
Now we are ready to compute D−7

P{x},{y},{z,t}
, D−7

P{y},{z},{x,t}
, D−7

P{x},{z},{t}
. First, we observe

that D̂−7 = Ŝ−7 + Ê2 + Ê4, so that A−7
P{x},{y},{z,t}

= A−7
P{y},{z},{x,t}

= 1 and A−7
P{x},{z},{t}

= 0.

Second, we observe that the curves Ĉ11, Ĉ12, Ĉ13, Ĉ14, Ĉ15, Ĉ16, and Ĉ17 are all base

curves of the pencil Ŝ that are contained in α-exceptional divisors. The curves Ĉ11, Ĉ12,

and Ĉ13 are mapped to the point P{x},{y},{z,t}, the curves Ĉ14, Ĉ15, and Ĉ16 are mapped to

the point P{y},{z},{x,t} and the curve Ĉ17 is mapped to the point P{x},{z},{t}. Thus, to find

D−7
P{x},{y},{z,t}

, D−7
P{y},{z},{x,t}

, and D−7
P{x},{z},{t}

, we have to compute the numbers C−7
11 , C

−7
12 ,

C−7
13 , C

−7
14 , C

−7
15 , C

−7
16 , and C−7

17 defined in (1.10.5). This can be done using Lemma 1.10.7.
Observe that M−7

12 = M−7
13 = M−7

15 = M−7
16 = 1 and M−7

11 = M−7
14 = M−7

17 = 2. Let us
find the numbers m11, m12, m13, m14, m15, m16, and m17.

Among base curves of the pencil S, only C2, C4, C6, C8 contain the point P{y},{z},{x,t}.
This shows that

7 = multP{y},{z},{x,t}

(
2C2 + 2C4 + 2C6 + C8

)
= multP{y},{z},{x,t}

(
Sλ1

· Sλ2

)
=

= multP{y},{z},{x,t}

(
Sλ1

)
multP{y},{z},{x,t}

(
Sλ2

)
+m11 +m12 = 4 +m11 +m12.

Moreover, we have m11 > 2, because D̂−7 is singular along Ĉ11. This shows that m11 = 2
and m12 = 1. Similarly, we see that m13 = 1. Using symmetry x ↔ z, we deduce that
m14 = 2 and m15 = m16 = 1. To find m17, we observe that C3, C4, C5, and C10 are the
only base curves of the pencil S that contain the point P{x},{z},{t}. This shows that

multP{x},{z},{t}

(
Sλ1

· Sλ2

)
= multP{x},{z},{t}

(
2C3 + 2C4 + C5 + C10

)
= 6,

which implies that m17 = 2.
Recall from (1.10.9) that

D−7
P{x},{y},{z,t}

= A−7
P{x},{y},{z,t}

+C−7
11 +C−7

12 +C−7
13 = 1 +C−7

11 +C−7
12 +C−7

13 ,

where each term C−7
i is defined in (1.10.5) and can be found using Lemma 1.10.7. This

gives D−7
P{x},{y},{z,t}

= C−7
11 = 2. Similarly, we see that D−7

P{y},{z},{y,t}
= C−7

14 = 2, Likewise,

we have D−7
P{x},{z},{t}

= C−7
17 = 1. Thus, we see that

[
f−1(−7)

]
= 6 +D−7

P{x},{y},{z,t}
+D−7

P{y},{z},{y,t}
+D−7

P{x},{z},{t}
= 11,

which completes the proof of the lemma. �

Since h1,2(X) = 10, we see that (♥) in Main Theorem also holds in this case.
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2.5. Family №2.5. In this case, the threefold X is a blow up of a smooth cubic threefold
in P4 along a smooth plane cubic curve. Note that h1,2(X) = 6. A toric Landau–Ginzburg
model is given by Minkowski polynomial №3452, which is

x+ y + z + x2y−1z−1 + 3xz−1 + 3yz−1 + x−1y2z−1 + 3xy−1 + 3x−1y + 3y−1z+

+ 3x−1z + x−1y−1z2 + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z.

The corresponding quartic pencil S is given by the equation

x2yz + y2zx+ z2yx+ x3t+ 3x2ty + 3y2tx+ y3t+ 3x2tz + 3y2tz + 3z2tx+

+ 3z2ty + z3t + x2t2 + 2t2yx+ t2y2 + 2t2zx + 2t2yz + t2z2 = λxyzt.

Observe that this equation is invariant with respect to any permutations of the coordinates
x, y, and z. To describe the base locus of the pencil S, we observe that

H{x} · S0 = L{x},{t} + 2L{x},{y,z} + L{x},{y,z,t},

H{y} · S0 = L{y},{t} + 2L{y},{x,z} + L{y},{x,z,t},

H{z} · S0 = L{z},{t} + 2L{z},{x,y} + L{z},{x,y,t},

H{t} · S0 = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

For every λ 6∈ {−6,−7,∞}, the surface Sλ has isolated singularities, so that it is
irreducible. On the other hand, we have S−6 = H{x,y,z} + S, where S is a cubic surface
that is given by t2x+t2y+t2z+tx2+2txy+2txz+ty2+2tyz+tz2+xyz = 0. Likewise, we
have S−7 = H{x,y,z,t}+S, where S is a cubic surface that is given by t(x+y+z)2+xyz = 0.

One can show that S is smooth. On the other hand, the surface S has a unique singular
point P{x},{y},{z}. The surface S has du Val singularity of type D4 at this point. Observe
also that H{x,y,z} · S = L{x},{y,z} + L{y},{x,z} + L{z},{x,y}, so that S−6 is singular along the
lines L{x},{y,z}, L{y},{x,z}, L{z},{x,y}. Note also that the intersection H{x,y,z,t}∩S is a smooth
cubic curve, which is not contained in the base locus of the pencil S.
Lemma 2.5.1. Suppose that λ 6∈ {−6,−7,∞}. Then singular points of the surface Sλ

contained in the base locus of the pencil S can be describes as follows:

P{x},{y},{z}: type D4 with quadratic term (x+ z + t)2;
P{x},{t},{y,z}: type A3 with quadratic term x(x+ z + y − (λ+ 6)t);
P{y},{t},{x,z}: type A3 with quadratic term y(x+ z + y − (λ+ 6)t);
P{z},{t},{x,y}: type A3 with quadratic term z(x + z + y − (λ+ 6)t).

Proof. First let us describe the singularity of the surface Sλ at the point P{x},{y},{z}. In
the chart t = 1, the surface Sλ is given by

ẑ2 +
(
(λ+ 6)x̂2ŷ + (λ+ 6)x̂ŷ2 − (λ+ 6)x̂ŷẑ + ẑ3

)
+
(
ẑ2ŷx̂− x̂2ŷẑ − ŷ2ẑx̂

)
= 0,

where x̂ = x, ŷ = y, ẑ = x + y + z. Introducing coordinates x̂4 = x̂, ŷ4 = ŷ

x̂
, ẑ4 = ẑ

x̂
, we

can rewrite this equation (after dividing by x̂2
4) as

(λ+6)x̂4ŷ4+ ẑ24+
(
(λ+6)x̂4ŷ

2
4−(6+λ)x̂4ŷ4ẑ4

)
+
(
ẑ34 x̂4− x̂2

4ŷ4ẑ4

)
+
(
x̂2
4ŷ4ẑ

2
4− x̂2

4ŷ
2
4ẑ4

)
= 0.
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This equation defines (a chart of) the blow up of the surface Sλ at the point P{x},{y},{z}.
The exceptional curve of the blow up is given by the equations x̂4 = ẑ4 = 0. Observe
that the point (x̂4, ŷ4, ẑ4) = (0, 0, 0) is an ordinary double point of the obtained surface,
because λ 6= −6. The obtained surface is also singular at the point (x̂4, ŷ4, ẑ4) = (0,−1, 0).
This point is also an ordinary double point of this surface. These are all singular points of
the obtained surface at this chart of the blow up. Keeping in mind the symmetry x ↔ y,
we see that the exceptional curve of the blow up of the surface Sλ at the point P{x},{y},{z}
contains three ordinary double points of this surface. This shows that P{x},{y},{z} is a
singular point of type D4 of the surface Sλ.

To complete the proof, it is enough to show that P{y},{t},{x,z} is a singular point of the
surface Sλ of type A3, because Sλ is invariant with respect to the permutations of the
coordinates x, y, and z. In the chart z = 1, the surface Sλ is given by

ȳ(x̄+ ȳ−(6+λ)t̄) = x̄2ȳ+ x̄ȳ2−(6+λ)t̄x̄ȳ+ t̄2x̄2+2t̄2x̄ȳ+ t̄2ȳ2+ t̄x̄3+3t̄x̄2ȳ+3t̄x̄ȳ2+ t̄ȳ3,

where x̄ = x + 1, ȳ = y, and t̄ = t. Introducing new coordinates x̌ = x̄ + ȳ − (6 − λ)t̄,
y̌ = ȳ, and ť = t̄, we can rewrite this equation as

(λ+ 7)(λ+ 6)2ť4 = x̌y̌ − (λ+ 6)
(
ťx̌y̌ + (3λ+ 20)ť3x̌

)
− x̌2y̌ + x̌y̌2 − (3λ+ 19)ť2x̌2 − ťx̌3,

where we grouped together monomials of the same quasihomogeneous degree with respect
to the weights wt(x̌) = 2, wt(y̌) = 2, and wt(ť) = 1. This shows that the surface Sλ has
singularity of type A3 at the point P{y},{t},{x,z}. This complete the proof of the lemma. �

The proof of Lemma 2.5.1 implies that rkPic(S̃k) = rkPic(Sk) + 13.

Lemma 2.5.2. Suppose that λ 6∈ {−6,−7,∞}. Then the intersection matrix of the lines
L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,z,t}, L{y},{x,z,t}, L{z},{x,y,t}, and L{t},{x,y,z} on the surface Sλ

is given by

• L{x},{t} L{y},{t} L{z},{t} L{x},{y,z,t} L{y},{x,z,t} L{z},{x,y,t} L{t},{x,y,z}

L{x},{t} −5
4

1 1 3
4

0 0 1
4

L{y},{t} 1 −5
4

1 0 3
4

0 1
4

L{z},{t} 1 1 −5
4

0 0 3
4

1
4

L{x},{y,z,t}
3
4

0 0 −5
4

1 1 1
4

L{y},{x,z,t} 0 3
4

0 1 −5
4

1 1
4

L{z},{x,y,t} 0 0 3
4

1 1 −5
4

1
4

L{t},{x,y,z}
1
4

1
4

1
4

1
4

1
4

1
4

1
4

Proof. Keeping in mind that the equation of surface Sλ is invariant with respect to the
permutations of the coordinates x, y, and z, it is enough to compute L2

{x},{t}, L
2
{x},{y,z,t},

L2
{t},{x,y,z}, L{x},{t} ·L{y},{t}, L{x},{t} ·L{x},{y,z,t}, L{x},{t} ·L{y},{x,z,t}, L{x},{t} ·L{t},{x,y,z}, and

L{x},{y,z,t} · L{t},{x,y,z}.
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Using Lemma 2.5.1, Proposition A.1.3 and Remark A.2.4, we see that L2
{x},{t} = −5

4
,

because P{x},{t},{y,z} is the only singular point of the surface Sλ that is contained in the
line L{x},{t}. Likewise, we see that L2

{x},{y,z,t} = −5
4
. Similarly, we get L2

{t},{x,y,z} = 1
4
,

because the line L{t},{x,y,z} contains the points P{x},{t},{y,z}, P{y},{t},{x,z}, and P{z},{t},{x,y}.
We have L{x},{t} · L{y},{t} = 1, because L{x},{t} ∩ L{y},{t} = P{x},{y},{t}, which is a smooth
point of the surface Sλ by Lemma 2.5.1.

Now applying Remark A.2.4 with S = Sλ, O = P{x},{t},{y,z}, n = 3, C = L{x},{t} and
Z = L{x},{y,z,t}, we see that L{x},{t} ·L{x},{y,z,t} =

3
4
by Proposition A.1.2. Likewise, we have

L{x},{y,z,t} ·L{t},{x,y,z} = L{x},{y,z,t} ·L{t},{x,y,z} =
1
4
. Finally, we have L{x},{t} ·L{y},{x,z,t} = 0,

because L{x},{t} ∩ L{y},{x,z,t} = ∅. �

If λ 6∈ {−6,−7,∞}, then the intersection matrix of the lines L{x},{t}, L{y},{t}, L{z},{t},
L{x},{y,z}, L{y},{x,z}, L{z},{x,y}, L{x},{y,z,t}, L{y},{x,z,t}, L{z},{x,y,t}, and L{t},{x,y,z} on the sur-
face Sλ has the same rank as the intersection matrix of the curves L{x},{t}, L{y},{t}, L{z},{t},
L{x},{y,z,t}, L{y},{x,z,t}, L{z},{x,y,t}, and L{t},{x,y,z}. This follows from

Hλ ∼ L{x},{t} + 2L{x},{y,z} + L{x},{y,z,t} ∼ L{y},{t} + 2L{y},{x,z} + L{y},{x,z,t} ∼
∼ L{z},{t} + 2L{z},{x,y} + L{z},{x,y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

The rank of the intersection matrix in Lemma 2.5.2 is 5. Thus, we see that (⋆) holds.
This proves (♦) in Main Theorem holds in this case.

To verify (♥) in Main Theorem, observe that [f−1(λ)] = 1 for every λ 6∈ {−6,−7,∞}.
This follows from Lemma 2.5.1 and Corollary 1.5.4. Moreover, we have

Lemma 2.5.3. One has [f−1(−7)] = 2 and [f−1(−6)] = 6.

Proof. Let C1 = L{x},{t}, C2 = L{y},{t}, C3 = L{z},{t}, C4 = L{x},{y,z}, C5 = L{y},{x,z},
C6 = L{z},{x,y}, C7 = L{x},{y,z,t}, C8 = L{y},{x,z,t}, C9 = L{z},{x,y,t}, and C10 = L{t},{x,y,z}.
Then m1 = m2 = m3 = m4 = m5 = m6 = 2 and m7 = m8 = m9 = m10 = 1.

Recall that S∞ is singular along the curves C1, C2, and C3, and the surface S−6 is
singular along the curves C4, C5, and C6. Thus, we have M−6

4 = M−6
5 = M−6

6 = 2,

M−6
1 = M−6

2 = M−6
3 = M−6

7 = M−6
8 = M−6

9 = M−6
10 = 1,

and M−7
1 = M−7

2 = M−7
3 = M−7

4 = M−7
5 = M−7

6 = M−7
7 = M−7

8 = M−7
9 = M−7

10 = 1.
The birational morphism α in (1.9.3) is described in the proof of Lemma 2.5.1. Namely,

it is given by the commutative diagram

U2

α2

��

U3
α3oo U4

α4oo

U1 α1

// P3 U
α

oo

γ

OO

Here α1 is the blow up of the point P{x},{t},{y,z}, the morphism α2 is the blow up of the
preimage of the point P{y},{t},{x,z}, the morphism α3 is the blow up of the preimage of the
point P{z},{t},{x,y}, the morphism α4 is the blow up of the preimage of the point P{x},{y},{z},
and γ is the blow ups of three distinct points in E4.
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If λ 6= ∞, then D̂λ = Ŝλ. This follows from the proof of Lemma 2.5.1. It should be

pointed out that the surface Ŝλ is singular for every λ ∈ C.

The curves Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7, Ĉ8, Ĉ9, and Ĉ10 are base curves of the pencil Ŝ.
Let us describe the remaining base curves of the pencil Ŝ using the data collected in the
proof of Lemma 2.5.1.

For every λ 6= ∞, the restriction S2
λ|E2

is given by

ȳ(x̄+ ȳ − (6 + λ)t̄) = 0

in the appropriate homogeneous coordinates x̄, ȳ, and t̄ on E2
∼= P2. This gives us the

pencil of conics in E2 that has a unique base curve, which is given by ȳ = 0. Thus, the

restriction S2|E2
has one base curve. This gives us the base curve of the pencil Ŝ that is

contained in Ê2. Let us denote it by Ĉ12. Similarly, we see that one base curve of the

pencil Ŝ is contained in the surface Ê1, and one base curve of the pencil Ŝ is contained

in the surface Ê3. Let us denote them by Ĉ11 and Ĉ13, respectively.
The restriction S4|E4

consists of one line (taken with multiplicity two). This gives us
one base curve of the pencil S4 that is contained in the surface E4. Denote it by C4

14.
Observe that the surface S4

−6 is singular at general point of this curve. Moreover, it follows

from the proof of Lemma 2.4.4 that the curves Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7, Ĉ8, Ĉ9, Ĉ10,
Ĉ11, Ĉ12, Ĉ13, and Ĉ14 are all base curves of the pencil Ŝ.

Let us compute m11, m12, m13, and m14. Among base curves of the pencil S, only the
curves C2, C5, C8, C10 contain the point P{y},{t},{x,z}, This gives

6 = multP{y},{t},{x,z}

(
2C2 + 2C5 + C8 + C10

)
= multP{y},{t},{x,z}

(
Sλ1

· Sλ2

)
=

= multP{y},{t},{x,z}

(
Sλ1

)
multP{y},{t},{x,z}

(
Sλ2

)
+m11 = 4 +m11,

so that m11 = 2. Similarly, we get m12 = m13 = m14 = 2.

Observe that M−7
11 = M−7

12 = M−7
13 = M−7

14 = 1 and D̂−7 = Ŝ−7 in (1.10.1). Thus, it
follows from Corollary 1.10.10 that [f−1(−7)] = 2.

Likewise, we see that M−6
11 = M−6

12 = M−6
13 = 1, M−6

14 = 2, and D̂−6 = Ŝ−6. Therefore,
it follows from (1.10.8) and Lemma 1.10.7 that [f−1(−6)] = 6. �

Since h1,2(X) = 6, we see that (♥) in Main Theorem holds in this case.

2.6. Family №2.6. In this case, the threefold X is a divisor of bidegree (2, 2) in P2×P2,
so that h1,2(X) = 9. A toric Landau–Ginzburg model is given by

x+y+
x

z
+
y

z
+
xz

y
+2z+

yz

x
+
2x

y
+
2y

x
+

x

yz
+
2

z
+

y

xz
+
z2

y
+
z2

x
+
3z

y
+
3z

x
+
3

y
+
3

x
+

1

yz
+

1

xz
,

which is Minkowski polynomial №3873.2. The pencil S is given by

x2zy + y2zx+ x2ty + y2tx+ x2z2 + 2z2yx+ y2z2 + 2x2tz + 2y2tz + x2t2+

+ 2t2yx+ t2y2 + z3x+ z3y + 3z2tx+ 3z2ty + 3t2zx+ 3t2zy + t3x+ t3y = λxyzt.

This equation is invariant with respect to the swaps x ↔ y and z ↔ t.
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To describe the base locus of the pencil S, we observe that

• H{x} · S0 = L{x},{y} + 2L{x},{z,t} + L{x},{y,z,t},
• H{y} · S0 = L{x},{y} + 2L{y},{z,t} + L{y},{x,z,t},
• H{z} · S0 = L{z},{t} + L{z},{x,y} + L{z},{y,t} + L{z},{x,t},
• H{t} · S0 = L{z},{t} ++L{t},{x,y} + L{t},{y,z} + L{t},{x,z}.

We let C1 = L{x},{y}, C2 = L{z},{t}, C3 = L{x},{z,t}, C4 = L{y},{z,t}, C5 = L{x},{y,z,t},
C6 = L{y},{x,z,t}, C7 = L{z},{x,y}, C8 = L{z},{y,t}, C9 = L{z},{x,t}, C10 = L{t},{x,y}, C11 = L{t},{y,z},
and C12 = L{t},{x,z}. Then m5 = m6 = m7 = m8 = m9 = m10 = m11 = m12 = 1 and
m1 = m2 = m3 = m4 = 2. Likewise, we have

M−4
1 = M−4

2 = M−4
5 = M−4

6 = M−4
7 = M−4

8 = M−4
9 = M−4

10 = M−4
11 = M−4

12 = 1

and M−4
3 = M−4

4 = 2, so that S−4 is singular along the lines L{x},{z,t} and L{y},{z,t}.
For every λ 6∈ {−4,∞}, the surface Sλ has isolated singularities, which implies, in

particular, that Sλ is irreducible. One the other hand, the surface S−4 is reducible:

S−4 = H{x,y} +H{z,t} +H{y,z,t} +H{x,z,t},

If λ 6∈ {−4,∞}, then the singular points of the surface Sλ contained in the base locus
of the pencil S are the points P{x},{z},{t}, P{y},{z},{t}, P{x},{y},{z,t}, and P{z},{t},{x,y}. These
are the fixed singular points of the surfaces in S. Lets us describe their singularity types
and explicitly construct the birational morphism α in (1.9.3). We start with P{x},{z},{t}.

In the chart y = 1, the surface Sλ is given by

(z + t)(x+ z + t) +
(
t3 + 2t2x+ 3t2z + x2t + 3z2t+ x2z + 2xz2 + z3 − λtxz

)
+

+
(
xt3 + x2t2 + 3t2xz + 2tx2z + 3txz2 + x2z2 + z3x

)
= 0.

For convenience, we rewrite the defining equation of the surface Sλ as

x̂t̂+
(
4t̂2ẑ + t̂x̂2 − 4t̂x̂ẑ − 4t̂ẑ2 + 4x̂ẑ2 + λt̂2ẑ − λt̂x̂ẑ − λt̂ẑ2 + λx̂ẑ2

)
+
(
t̂2x̂2 − t̂3x̂

)
= 0,

where x̂ = x+ z + t, ẑ = z, and t̂ = z + t.
Let α1 : U1 → P3 be the blow up of the point P{x},{z},{t}. A chart of this blow up is given

by the coordinate change x̂1 =
x̂
ẑ
, ẑ1 = ẑ, t̂1 =

t̂
ẑ
. In this chart, the surface D1

λ is given by

t̂1x̂1− (λ+4)t̂1ẑ1+ (λ+4)ẑ1x̂1+ (λ+4)
(
t̂21ẑ1− t̂1x̂1ẑ1

)
+ t̂1x̂

2
1ẑ1+

(
t̂21x̂

2
1ẑ

2
1 − t̂31x̂1ẑ

2
1

)
= 0,

where ẑ1 = 0 defines the surface E1. Then (x̂1, ẑ1, t̂1) = (0, 0, 0) is the only singular point
of the surface S1

λ that is contained in E1. If λ 6∈ {−4,∞}, then this point is an ordinary
double point of the surface Sλ. Hence, if λ 6∈ {−4,∞}, then P{x},{z},{t} is a du Val singular
point of the surface Sλ of type A3.

Notice also that the pencil S1 has exactly two base curves contained in the surface E1.
Indeed, the restriction S1|E1

consists of the curves {ẑ1 = x̂1 = 0} and {ẑ1 = t̂1 = 0}.
Let us denote these curves by C1

13 and C1
14, respectively.
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Let α2 : U2 → U1 be the blow up of the point (x̂1, ẑ1, t̂1) = (0, 0, 0). Then D2
λ = S2

λ for
every λ ∈ C. Moreover, the restriction S2|E2

is a pencil of conics in E2
∼= P2 that is given

by the equation

t̂1x̂1 − (λ+ 4)t̂1ẑ1 + (λ+ 4)ẑ1x̂1 = 0,

where we consider x̂1, ẑ1, t̂1 as projective coordinates on E2. This pencil does not have
base curves, which implies that S2 does not have base curves in E2 either.

Since the defining equation of the surface Sλ is invariant with respect to the swap
x ↔ y, the point P{y},{z},{t} is also a du Val singular point of the surface Sλ of type A3

provided that λ 6∈ {−4,∞}. Let α3 : U3 → U2 be the blow up of the preimage of this
point. Then E3 contains two base curves of the pencil S3. Denote them by C3

15 and C3
16.

Let α4 : U4 → U3 be the blow up of the point C3
15 ∩ C3

16. Then D4
λ = S4

λ for every λ ∈ C.
Moreover, the surface E4 does not contain base curves of the pencil S4.

Now let us describe the singularity of the surface Sλ at the point P{x},{y},{z,t}. In the
chart t = 1, the surface Sλ is given by

(λ+ 4)x̄ȳ − (λ+ 4)x̄ȳz̄ +
(
x̄2z̄ȳ + x̄2z̄2 + ȳ2z̄x̄+ 2z̄2ȳx̄+ z̄3x̄+ ȳ2z̄2 + ȳz̄3

)
= 0,

where x̄ = x, ȳ = y, and z̄ = z + 1. Let α5 : U5 → U4 be the blow up of the preimage of
the point P{x},{y},{z,t}. In a neighborhood of the point P{x},{y},{z,t}, one chart of this blow
up is given by the coordinate change x̄5 =

x̄
z̄
, ȳ5 =

ȳ

z̄
, and z̄5 = z̄. Then D5

λ is given by

(λ+4)x̄5ȳ5+
(
x̄5z̄

2
5+z̄25 ȳ5−(λ+4)x̄5ȳ5z̄5

)
+
(
x̄2
5z̄

2
5+2z̄25 ȳ5x̄5+ȳ25z̄

2
5

)
+
(
x̄2
5ȳ5z̄

2
5+x̄5ȳ

2
5 z̄

2
5

)
= 0,

and E5 is given by z̄5 = 0. Note that E5 contains one singular point of this surface: the
point (x̄5, ȳ5, z̄5) = (0, 0, 0). Note also that D5

−4 = S5
−4 + 2E5, and S5|E5

is a union of the
curves {z̄5 = x̄5 = 0} and {z̄5 = ȳ5 = 0}. Denote them by C5

17 and C5
18, respectively.

Let α6 : U6 → U5 be the blow up of the point C5
17 ∩C5

18. Locally, one chart of this blow
up is given by the coordinate change x̄6 =

x̄5

z̄5
, ȳ6 =

ȳ5
z̄5
, and z̄6 = z̄5. Moreover, if λ 6= −4,

then S6
λ in this chart is given by

(λ+4)ȳ6x̄6+ z̄6x̄6+ z̄6ȳ6−(λ+4)x̄6ȳ6z̄6+
(
x̄2
6z̄

2
6+2z̄26 ȳ6x̄6+ ȳ26z̄

2
6

)
+
(
x̄2
6ȳ6z̄

3
6+ x̄6ȳ

2
6 z̄

3
6

)
= 0.

Here, the surface E6 is given by z̄6 = 0. If λ 6= −4, then S6
λ has ordinary double singularity

at the point (x̄6, ȳ6, z̄6) = (0, 0, 0). Therefore, if λ 6= −4, then P{x},{y},{z,t} is a du Val
singular point of the surface Sλ of type A5.

By construction, we have D6
λ = S6

λ ∼ −KU6 for every λ such that λ 6= −4 and λ 6= ∞.
One the other hand, we have D6

−4 = S6
−4 + 2E6

5. This follows from the fact that S5
−4

contains the point C5
17 ∩ C5

18 and is smooth at it.

Remark 2.6.1. Our computations implies that the proper transform of the line L{x},{y} on
the threefold U6 passes through the point (x̄6, ȳ6, z̄6) = (0, 0, 0).

The restriction S6|E6
consists of the curves {z̄6 = x̄6 = 0} and {z̄6 = ȳ6 = 0}. Let us

denote these curves by C6
19 and C6

20, respectively. Let α7 : U7 → U6 be the blow up of the
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point (x̄6, ȳ6, z̄6) = (0, 0, 0). Then D7
−4 = S7

−4 +2E7
5+E7

6. Moreover, the restriction S7|E7

is a pencil of conics in E7
∼= P2 that is given by

(λ+ 4)ȳ6x̄6 + z̄6x̄6 + z̄6ȳ6 = 0,

where we consider x̄6, ȳ6, z̄6 as projective coordinates on E7. This pencil does not have
base curves, so that S7 also does not have base curves contained in the surface E7.

If λ 6= −4, then P{z},{t},{x,y} is an ordinary double point of the surface Sλ. Indeed, in
the chart y = 1, the surface Sλ is given by

x̃(z̃+ t̃)−(λ+4)z̃t̃ = x̃2t̃−(λ+4)t̃x̃z̃+ x̃2z̃+ t̃3x̃+ x̃2t̃2+3t̃2x̃z̃+2t̃x̃2z̃+3t̃x̃z̃2+ x̃2z̃2+ z̃3x̃,

where x̃ = x− 1, z̃ = z, t̃ = t. The quadratic form x̃(z̃ + t̃)− (λ+ 4)z̃t̃ is not degenerate
for λ 6= −4, so that P{z},{t},{x,y} is an ordinary double point of the surface Sλ.

Corollary 2.6.2. Suppose that λ 6∈ {−4,∞}. Then singular points of the surface Sλ

contained in the base locus of the pencil S can be describes as follows:

P{x},{z},{t}: type A3 with quadratic term (z + t)(x+ z + t);
P{y},{z},{t}: type A3 with quadratic term (z + t)(y + z + t);

P{x},{y},{z,t}: type A5 with quadratic term (λ+ 4)xy;
P{z},{t},{x,y}: type A1 with quadratic term (λ+ 4)zt− (x+ y)(z + t).

Let us finish the description of the birational morphism α. It is given by the following
commutative diagram

U3

α3

xxqqq
qq
qqq

qq
qqq

U4
α4oo U5

α5oo U6
α6oo

U2

α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ U7

α7

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

U1 α1

// P3 U
α

oo

α8

88qqqqqqqqqqqqqq

Here α8 is the blow up of the preimage of the point P{z},{t},{x,y}.

If λ 6= −4, then D̂λ = Ŝλ ∼ −KU . On the other hand, we have D̂−4 = Ŝ−4 + 2Ê5 + Ê6.

Moreover, the curves Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7, Ĉ8, Ĉ9, Ĉ10, Ĉ11, Ĉ12, Ĉ13, Ĉ14, Ĉ15, Ĉ16,

Ĉ17, Ĉ18, Ĉ19, and Ĉ20 are all base curves of the pencil Ŝ.

Lemma 2.6.3. One hasm13 = m14 = m15 = m16 = m19 = m20 = 1 andm17 = m18 = 2.

Proof. To find m13 and m14, we use

6 = multP{x},{z},{t}

(
2C2 + 2C3 + C9 + C12

)
= multP{x},{z},{t}

(
S0 · S1

)
=

= multP{x},{z},{t}

(
S0

)
multP{x},{z},{t}

(
S1

)
+m13 +m14 = 4 +m13 +m14,

so that m13 = m14 = 1. Similarly, we see that m15 = m16 = 1.
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Recall that D̂−4 = Ŝ−4 + 2Ê5 + Ê6, so that m17 > 2 and m18 > 2. But

8 = multP{x},{y},{z,t}

(
2C1 + 2C3 + 2C4 + C5 + C6

)
= multP{x},{z},{t}

(
S0 · S1

)
=

= multP{x},{y},{z,t}

(
S0

)
multP{x},{y},{z,t}

(
S1

)
+m17 +m18 = 4 +m17 +m18,

which implies that m17 = 2 and m18 = 2.
To find m19 and m20, recall that α6 : U6 → U5 is the blow up of the point C5

17 ∩ C5
18.

Let P = C5
17 ∩ C5

18. Then

6 = multP

(
2C5

17 + 2C5
18 + 2C5

1

)
= multP

(
S5
0 · S5

1

)
= 4 +m19 +m20,

which gives us m19 = 1 and m20 = 1. �

For every λ 6∈ {−4,∞}, we have [f−1(λ)] = 1 by Corollaries 1.5.4 and 2.6.2.

Lemma 2.6.4. One has [f−1(−4)] = 10.

Proof. Recall that [S−4] = 4 and [D̂−4] = 6. Thus, it follows from (1.10.8) that

[
f−1(−4)

]
= 6 +

18∑

i=1

C−4
i .

On the other hand, we have M−4
3 = M−4

4 = M−4
17 = M−4

18 = 2 and

M−4
1 = M−4

2 = M−4
5 = M−4

6 = M−4
7 = M−4

8 = M−4
9 =

= M−4
10 = M−4

11 = M−4
12 = M−4

13 = M−4
14 = M−4

15 = M−4
16 = 1.

But m3 = m4 = 2, and m17 = m18 = 2 by Lemma 2.6.3. This shows that

[
f−1(λ)

]
= 6 +

18∑

i=1

C−4
i = 6 +C−4

3 +C−4
4 +C−4

17 +C−4
18 = 10,

since C−4
3 = C−4

4 = C−4
17 = C−4

18 = 1 by Lemma 1.10.7. �

Thus, we see that (♥) in Main Theorem holds in this case.
To prove (♦) in Main Theorem, we have to check (⋆). To do this, note that

rkPic
(
S̃kv) = rkPic

(
Sk

)
+ 12.

This follows from the proof of Corollary 2.6.2 Moreover, if λ 6∈ {−4,∞}, then the intersec-
tion matrix of the base curves of the pencil S on the surface Sλ has the same rank as the
intersection matrix of the curves L{x},{y}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{y,t}, L{z},{x,t},
L{t},{y,z}, L{t},{x,z}, and Hλ, because

Hλ ∼ L{x},{y} + 2L{x},{z,t} + L{x},{y,z,t} ∼ H{y} · S0 = L{x},{y} + 2L{y},{z,t} + L{y},{x,z,t} ∼
∼ L{z},{t} + L{z},{x,y} + L{z},{y,t} + L{z},{x,t} ∼ L{z},{t} + L{t},{x,y} + L{t},{y,z} + L{t},{x,z}.

This implies (⋆), because the rank of the intersection matrix in the following lemma is 6.
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Lemma 2.6.5. Suppose that λ 6∈ {−4,∞}. Then the intersection form of the curves
L{x},{y}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{y,t}, L{z},{x,t}, L{t},{y,z}, L{t},{x,z}, and Hλ on the
surface Sλ is given by

• L{x},{y} L{z},{t} L{x},{z,t} L{y},{z,t} L{z},{y,t} L{z},{x,t} L{t},{y,z} L{t},{x,z} Hλ

L{x},{y} −1
2

0 1
2

1
2

0 0 0 0 1

L{z},{t} 0 0 1
2

1
2

1
4

1
4

1
4

1
4

1

L{x},{z,t}
1
2

1
2

−1
6

1
6

0 1
2

0 1
2

1

L{y},{z,t}
1
2

1
2

1
6

−1
6

1
2

0 1
2

0 1

L{z},{y,t} 0 1
4

0 1
2

−5
4

1 3
4

0 1

L{z},{x,t} 0 1
4

1
2

0 1 −5
4

0 3
4

1

L{t},{y,z} 0 1
4

0 1
2

3
4

0 −5
4

1 1

L{t},{x,z} 0 1
4

1
2

0 0 3
4

1 −5
4

1

Hλ 1 1 1 1 1 1 1 1 4

Proof. The entries in last raw of the intersection matrix are obvious. Let us compute its
diagonal. Using Proposition A.1.3 and Remark 2.6.1, we obtain L2

{x},{y} = −1
2
, because

P{x},{y},{z,t} is the only singular point of the surface Sλ that is contained in L{x},{y}.
Likewise, it follows from Proposition A.1.3 and Remark A.2.4 that

L2
{z},{t} = −2 +

3

4
+

3

4
+

1

2
= 0

because the line L{z},{t} contains the points P{x},{z},{t}, P{y},{z},{t}, and P{z},{t},{x,y}.
To compute L2

{x},{z,t}, observe that the line L{x},{z,t} contains the points P{x},{z},{t}
and P{x},{y},{z,t}. Applying Remark A.2.4 with S = Sλ, O = P{x},{z},{t}, n = 3, and

C = L{x},{z,t}, we see that C contains the point G1∩G2. Similarly, applying Remark A.2.4

with S = Sλ, O = P{x},{y},{z,t}, n = 5, and C = L{x},{z,t}, we see that C does not contain

the point G1∩G5. Thus, applying Proposition A.1.3, we get L2
{x},{z,t} = −2+1+ 5

6
= −1

6
.

To compute L2
{z},{y,t}, notice that P{y},{z},{t} is the only singular point of the surface Sλ

that is contained in L{z},{y,t}. Applying Proposition A.1.3, we see that L2
{z},{y,t} = −5

4
.

Using the symmetry x ↔ y, we get L2
{x},{z,t} = −1

6
and L2

{z},{x,t} = −5
4
. Similarly, using

the symmetry z ↔ t, we see that L2
{t},{y,z} = L{t},{x,z} = −5

4
.

Now let us fill in the remaining entries in the first raw of the table. Clearly, we have
L{x},{y} · L{z},{t} = 0, L{x},{y} · L{z},{y,t} = 0, L{x},{y} · L{z},{x,t} = 0, L{x},{y} · L{t},{y,z} = 0,
and L{x},{y} · L{t},{x,z} = 0, because L{x},{y} does not intersect the lines L{z},{t}, L{z},{y,t},
L{z},{x,t}, L{t},{y,z}, and L{t},{x,z}. Using symmetry x ↔ y, we see that

L{x},{y} · L{x},{z,t} = L{x},{y} · L{y},{z,t}.
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To find L{x},{y} · L{x},{z,t}, we observe that L{x},{y} ∩ L{x},{z,t} = P{x},{y},{z,t}. Applying
Proposition A.1.2 and Remark 2.6.1, we see that L{x},{y} · L{x},{z,t} =

1
2
.

Let us compute the remaining entries in the second raw of the intersection matrix.
Since L{z},{t} ∩L{x},{z,t} = P{x},{z},{t}, we have L{z},{t} ·L{x},{z,t} =

1
2
by Proposition A.1.2

and Remark A.2.4. Using symmetry x ↔ y, we get L{z},{t} · L{y},{z,t} =
1
2
.

Observe that L{z},{t} ∩ L{z},{x,t} = P{x},{z},{t}. Applying Remark A.2.4 with S = Sλ,

O = P{x},{z},{t}, n = 3, C = L{z},{t} and Z = L{z},{x,t}, we see that C and Z intersect

different curves among G1 andG3. This implies L{z},{t}·L{z},{x,t} =
1
4
by Proposition A.1.2.

Using symmetry x ↔ y, we get L{z},{t} · L{z},{y,t} =
1
4
. Using symmetry z ↔ t, we get

L{z},{t} · L{t},{y,z} = L{z},{t} · L{t},{x,z} =
1

4
.

This gives us all entries in the second raw of the intersection matrix.
Let us compute the third raw. Observe that L{x},{z,t}∩L{y},{z,t} = P{x},{y},{z,t}. Applying

Remark A.2.4 with S = Sλ, O = P{x},{y},{z,t}, n = 5, C = L{x},{z,t} and Z = L{y},{z,t}, we

see that C and Z intersect different curves among G1 and G5. Then L{x},{z,t} ·L{y},{z,t} =
1
6

by Proposition A.1.2.
Since L{x},{z,t} ∩L{z},{y,t} = ∅, we have L{x},{z,t} ·L{z},{y,t} = 0. Using symmetry z ↔ t,

we get L{x},{z,t} ∩ L{t},{y,z} = 0. Since L{x},{z,t} ∩ L{z},{x,t} = P{x},{z},{t}, we get

L{x},{z,t} · L{z},{x,t} =
1

2

by Proposition A.1.2. Using symmetry z ↔ t, we get L{x},{z,t} · L{t},{x,z} =
1
2
.

Let us compute the remaining four entries in the fourth raw of the intersection matrix.
Using symmetries x ↔ y and z ↔ t, we get

L{y},{z,t} · L{z},{y,t} = L{x},{z,t} · L{z},{x,t} = L{y},{z,t} · L{t},{y,z} = L{y},{z,t} · L{z},{y,t} =
1

2
,

and L{y},{z,t} ·L{z},{x,t} = L{x},{z,t} ·L{z},{y,t} = L{y},{z,t} ·L{t},{x,z} = L{y},{z,t} ·L{z},{x,t} = 0.
Let us compute the remaining three entries in the fifth raw of the intersection matrix.

First, we have L{z},{y,t} · L{t},{x,z} = 0, because L{z},{y,t} ∩ L{t},{x,z} = ∅. Second, we have
L{z},{y,t} · L{z},{x,t} = 1, because L{z},{y,t} ∩ L{z},{x,t} is a smooth point of the surface Sλ.
Third, we compute L{z},{y,t} ·L{t},{y,z}. Observe that L{z},{y,t}∩L{t},{y,z} = P{y},{z},{t}. Ap-
plying Remark A.2.4 with S = Sλ, O = P{y},{z},{t}, n = 3, C = L{z},{y,t} and Z = L{t},{y,z},

we see that C and Z intersect the same curve among G1 andG3, and none of them contains
the point G1 ∩G3. Thus, we have L{z},{y,t} · L{t},{y,z} =

3
4
by Proposition A.1.2.

Let us compute the remaining three entries of the matrix. Using symmetry x ↔ y, we
get L{z},{x,t} · L{t},{y,z} = L{z},{y,t} · L{t},{x,z} = 0. Likewise, we have

L{z},{x,t} · L{t},{x,z} = L{z},{y,t} · L{t},{y,z} =
3

4
.

Finally, using symmetry z ↔ t, we get L{t},{y,z} · L{t},{x,z} = L{z},{y,t} · L{z},{x,t} = 1. �
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2.7. Family №2.7. In this case, the threefold X can be obtained by blowing up a smooth
quadric threefold Q in P4 along a smooth curve of genus 5. This implies that h1,2(X) = 5.
A toric Landau–Ginzburg model of this family is given by Minkowski polynomial №3238.
It is

x+
x

y
+ z +

z

y
+

xy

z
+

2x

z
+

x

yz
+ 2y +

2

y
+

yz

x
+

2z

x
+

z

xy
+

2y

z
+

2

z
+

2y

x
+

2

x
+

y

xz
.

The corresponding pencil of quartic surfaces S is given by

x2yz + x2tz + z2yx+ z2tx+ y2x2 + 2x2ty + x2t2 + 2y2zx+ 2t2zx+ y2z2+

+ 2z2ty + t2z2 + 2y2tx+ 2t2yx+ 2y2tz + 2t2yz + y2t2 = λxyzt.

This equation is invariant with respect to the permutations x ↔ z and y ↔ t.
Since the goal is to prove (♥) and (♦) in Main Theorem, we may assume that λ 6= ∞.

Let C1 be the conic {x = yz + ty + tz = 0}, let C2 be the conic {y = xz + tx + tz = 0},
let C3 be the conic {z = xy+ tx+ ty = 0}, and let C4 be the conic {t = xy+xz+yz = 0}.
Then

H{x} · Sλ = 2C1,
H{y} · Sλ = L{y},{t} + L{y},{x,z} + C2,
H{z} · Sλ = 2C3,
H{t} · Sλ = L{y},{t} + L{t},{x,z} + C4,

(2.7.1)

Thus, the base locus of the pencil S consists of 7 smooth rational curves. We let C1 = C1,
C2 = C2, C3 = C3, C4 = C4, C5 = L{y},{t}, C6 = L{y},{x,z}, C7 = L{t},{x,z}.

If λ 6= −5, then Sλ has isolated singularities, so that it is irreducible. On the other
hand, one has S−5 = Q+Q, where Q is a quadric surface given by tx+ty+tz+xy+yz = 0,
and Q is a quadric surface given by tx+ ty + tz + xy + xz + yz = 0. Both these quadric
surfaces are irreducible. The surface Q is singular at P{y},{t},{x,z}, and the surface Q is
smooth. One has Q ∩Q = C1 ∪ C3, so that S−5 is singular along the conics C1 and C3.

If λ 6= −5, then the singular points of the surface Sλ contained in the base locus of
the pencil S are the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{y},{z}, and P{y},{t},{x,z}.
They are all fixed singular points of the surfaces in S.

Lemma 2.7.2. Suppose that λ 6= −5. Then the singular points of the surface Sλ con-
tained in the base locus of the pencil S can be describes as follows:

P{y},{z},{t}: type A3 with quadratic term (y + t)(y + z + t);
P{x},{z},{t}: type D4 with quadratic term (x+ t+ z)2;
P{x},{y},{t}: type A3 with quadratic term (y + t)(x+ y + t);
P{x},{y},{z}: type D4 with quadratic term (x+ y + z)2;
P{y},{t},{x,z}: type A1 with quadratic term

(x+ z)(y + x)− (λ+ 4)ty

for λ 6= −4, type A3 if λ = −4.
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Let us prove this lemma and explicitly construct the birational morphism α in (1.9.3).
To start with, let us resolve the singularity of the surface Sλ at the point P{y},{z},{t}.
In the chart x = 1, the surface Sλ is given by

ŷẑ +
(
(λ+ 4)t̂2ẑ + (λ+ 6)t̂ŷ2 − (λ+ 4)t̂ŷẑ − (λ+ 6)t̂2ŷ − ŷ3 + ŷẑ2

)
+

+
(
t̂4 − 2t̂3ŷ + 3ŷ2t̂2 − 2t̂2ŷẑ + ŷ4 + 2t̂ŷ2ẑ − 2t̂ŷ3 − 2ŷ3ẑ + ŷ2ẑ2

)
= 0

where ŷ = y+t, ẑ = t+z+y, t̂ = t. Let α1 : U1 → P3 be the blow up of the point P{y},{z},{t}.

A chart of the blow up α1 is given by the coordinate change ŷ1 = ŷ

t̂
, ẑ1 = ẑ

t̂
, and t̂1 = t̂.

In this chart, the surface S1
λ is given by the equation

(
t̂21 − (λ+ 6)t̂1ŷ1 + (λ+ 4)t̂1ẑ1 + ŷ1ẑ1

)
−
(
2t̂21ŷ1 − (λ+ 6)t̂1ŷ

2
1 + (λ+ 4)t̂1ŷ1ẑ1

)
+

+
(
3ŷ21 t̂

2
1− 2t̂21ŷ1ẑ1− t̂1ŷ

3
1 + t̂1ŷ1ẑ

2
1

)
+
(
2t̂21ŷ

2
1 ẑ1− 2t̂21ŷ

3
1

)
+
(
t̂21ŷ

4
1 − 2t̂21ŷ

3
1ẑ1+ t̂21ŷ

2
1 ẑ

2
1

)
= 0.

where t̂1 = 0 defines the surface E1. The only singular point of the surface S1
λ in E1 is

the point (ŷ1, ẑ1, t̂1) = (0, 0, 0). If λ 6= −5, then this point is an ordinary double point of
the surface S1

λ, so that P{x},{z},{t} is a singular point of the surface Sλ of type A3.

The surface E1 contains two base curves of the pencil S1. One of them is t̂1 = ŷ1 = 0,
and another one is t̂1 = ẑ1 = 0. Let us denote these curves by C1

8 and C1
9 , respectively.

Then the proper transform of the line L{y},{t} on the threefold U1 does not pass through
the point C1

8 ∩ C1
9 .

Let α2 : U2 → U1 be the blow up of the point (x̂1, ẑ1, t̂1) = (0, 0, 0). Then D2
λ ∼ S2

λ for
every λ ∈ C. Moreover, the restriction S2|E2

is a pencil of conics in E2
∼= P2 that does

not have base curves. This shows that E2 contains no base curves of the pencil S2.
Recall that the defining equation of the surface Sλ is invariant with respect to the

permutation x ↔ z. Thus, if λ 6= −5, then P{x},{y},{t} is a du Val singular point of the
surface Sλ of type A3. Moreover, the surface S−5 has non-isolated ordinary double point
at the point P{x},{y},{t}, so that P{x},{y},{t} is a good double point of the surface S−5.

Let α3 : U3 → U2 be the blow up of the preimage of the point P{x},{y},{t}. Then the
pencil S3 has exactly two base curves contained in the surface E3. Let us denote these
curves by C3

10 and C3
11. Let α4 : U4 → U3 be the blow up of the point C3

10 ∩C3
11. Then E4

does not contain base curves of the pencil S4, and the proper transform of the line L{y},{t}
on the threefold U3 does not pass through the point C3

10 ∩ C3
11.

Now let us describe the singularity of the surface Sλ at the point P{y},{t},{x,z}. In the
chart z = 1, the surface Sλ is given by

x̄(t̄+ȳ)+(λ+4)t̄ȳ−
(
t̄x̄2−(λ+4)t̄x̄ȳ+x̄2ȳ

)
−
(
x̄2t̄2+2t̄2x̄ȳ+ȳ2t̄2+2t̄x̄2ȳ+2t̄x̄ȳ2+x̄2ȳ2

)
= 0,

where x̄ = x + 1, ȳ = y, and t̄ = t. Thus, if λ 6= −4, then P{y},{t},{x,z} is an isolated
ordinary double point of the surface Sλ. If λ = −4, then the latter equation can be
rewritten as

x̌ť− y̌4 + 2ťy̌3 − y̌2ť2 + 2ťx̌y̌2 − ťx̌2 − 2ť2x̌y̌v7 − x̌2ť2 = 0,
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where x̌ = x̄, y̌ = ȳ, and ť = t̄ + ȳ. Here, the term x̌ť − y̌4 has the smallest degree with
respect to the weights wt(x̌) = 2, wt(y̌) = 1, and wt(ť) = 2. This shows that P{y},{t},{x,z}
is a singular point of type A3 of the surface S−4.

Let α5 : U5 → U4 be the blow up of the preimage of the point P{y},{t},{x,z}. Then the
restriction S5|E5

is a pencil of conics that is given by

x̄(t̄+ ȳ) + (λ+ 4)t̄ȳ = 0,

where we consider x̄, ȳ, and t̄ as homogeneous coordinates on E5
∼= P2. This pencil does

not have base curves, so that E5 does not contain base curves of the pencil S5 either.
Let us show that P{x},{z},{t} is a du Val singular point of the surface Sλ of type D4.

In the chart y = 1, the surface Sλ is given by

t̃2 +
(
2t̃2x̃+ 2t̃2z̃ − 2t̃x̃2 − (λ+ 8)t̃x̃z̃ − 2t̃z̃2 + (λ+ 5)x̃2z̃ + (λ+ 5)x̃z̃2

)
+

+
(
x̃2t̃2+2t̃2x̃z̃+ t̃2z̃2−2x̃3t̃−5t̃x̃2z̃−5t̃x̃z̃2−2t̃z̃3+ x̃4+3z̃x̃3+4z̃2x̃2+3z̃3x̃+ z̃4

)
= 0,

where x̃ = x, z̃ = z, and t̃ = x+ t+ z. Let α6 : U6 → U5 be the blow up of the preimage
of the point P{x},{z},{t}. A chart of this blow up is given by the coordinate change x̃6 =

x̃
z̃
,

z̃6 = z̃, and t̃6 =
t̃
z̃
. Then z̃6 = t̃6 = 0 define the exceptional curve of the induced birational

morphism S6
λ → S5

λ. Moreover, if λ 6= −5, then the quadratic term of the surface S6
λ at

the point (x̃6, z̃6, z̃) = (0, 0, 0) is

t̃26 − 2t̃6z̃6 + (λ+ 5)x̃6z̃6 + z̃26 .

It is not degenerate. Thus, this point is an isolated ordinary double point of the surface S6
λ.

In this case, the chart of the surface S6
λ also has an isolated ordinary double singularity

at the point (x̃6, z̃6, t̃6) = (−1, 0, 0), and S6
λ is smooth along the curve z̃6 = t̃6 = 0 away

from these two points.
Now let us consider another chart of the blow up α6. To do this, we introduce coordi-

nates x̃′
6 = x̃, z̃′6 =

z̃
x̃
, and t̃′6 =

t̃
x̃
. In this chart, the surface S6

λ is given by

(t̃′6)
2 − 2x̃′

6t̃
′
6 + (x̃′

6)
2 + (λ+ 5)x̃′

6z̃
′
6 + higher order terms = 0,

so that S6
λ has an isolated ordinary double singularity at the point (x̃′

6, z̃
′
6, t̃

′
6) = (0, 0, 0)

provided that λ 6= −5. Therefore, we proved that if λ 6= −5, then P{x},{z},{t} is a singular
point of the surface Sλ of type D4.

The surface E6 contains one base curve of the pencil S6. This is the curve {z̃6 = t̃6 = 0}
in the first chart of our blow up. Denote it by C6

12. Then M−5
12 = 2, and C6

12 contains
three base points of the pencil S6, which are fixed singular points of this pencil. They are
isolated ordinary double points of the surface S6

λ for λ 6= −5.
Recall that the defining equation of the surface Sλ is invariant with respect to the

permutation y ↔ t. Thus, if λ 6= −5, then P{x},{y},{z} is a singular point of the surface Sλ

of type D4. Using symmetry, we see that (x+ y + z)2 is the quadratic form of the Taylor
expansion of the defining equation of the surface Sλ at the point P{x},{y},{z}.
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Let α7 : U7 → U6 be the blow up of the preimage of the point P{x},{y},{z}. Then E7

contains one base curve of the pencil S7. Denote it by C7
13. This curve is the exceptional

curve of the induced birational morphism S7
λ → S6

λ. If λ 6= −5, then S7
λ has three isolated

ordinary double points at C7
13. But S

7
−5 is singular along the curve C7

13.
For a general choice of λ ∈ C, the surface S7

λ has six singular points. All of them are
fixed singular points of the pencil S7. They are isolated ordinary double points on every
surface S7

λ provided that λ 6= −5. This proves the assertion of Lemma 2.7.2 and shows
the existence of the following commutative diagram:

U3

α3

xxqqq
qqq

qqq
qq
qq

U4
α4oo U5

α5oo U6
α6oo

U2

α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ U7

α7

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

U1 α1

// P3 U
α

oo

γ

88qqqqqqqqqqqqqq

where γ is the blow up of the six fixed singular points of surfaces in the pencil S7.
Using Lemma 2.7.2 and Corollary 1.5.4, we see that [f−1(λ)] = 1 for every λ 6= −5. To

compute [f−1(−5)], observe that D̂−5 = Ŝ−5, so that [D̂−5] = [Ŝ−5] = 2. Observe also that

the base locus of the pencil Ŝ consists of the curves Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7, Ĉ8, Ĉ9,
Ĉ10, Ĉ11, Ĉ12, and Ĉ13. Moreover, we have M−5

1 = M−5
2 = M−5

12 = M−5
13 = 2 and

M−5
3 = M−5

4 = M−5
5 = M−5

6 = M−5
7 = M−5

8 = M−5
9 = M−5

10 = M−5
11 = 1.

Arguing as in the proof of Lemma 2.6.3, we see that m8 = m9 = m10 = m11 = 1 and
m12 = m13 = 2. Now, using (1.10.8) and Lemma 1.10.7, we conclude that [f−1(−5)] = 6.
Thus, we see that (♥) in Main Theorem holds in this case, because h1,2(X) = 5.

To prove (♦) in Main Theorem, we have to check (⋆). To do this, recall that the base
locus of the pencil S consists of the curves C1, C2, C3, C4, L{y},{t}, L{y},{x,z}, and L{t},{x,z}.
If λ 6= −5, then it follows from (2.7.1) that the intersection matrix of these curves on the
surface Sλ has the same rank as the intersection matrix of the curves L{y},{t}, L{y},{x,z},
L{t},{x,z}, and Hλ, which is given by

• L{y},{t} L{y},{x,z} L{t},{x,z} Hλ

L{y},{t} 0 1
2

1
2

1

L{y},{x,z}
1
2

−1
2

1
2

1

L{t},{x,z}
1
2

1
2

−1
2

1

Hλ 1 1 1 4

The rank of this intersection matrix is 3. Moreover, we have rkPic(S̃k) = rkPic(Sk)+ 15.
Thus, we see that (⋆) holds, so that (♦) in Main Theorem holds in this case.
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2.8. Family №2.8. One has h1,2(X) = 9. In this case, the threefold X is a double cover
of the toric Fano threefold obtained by blowing up P3 at one point. The ramification
surface of this double cover is contained in the anticanonical linear system of this toric
Fano threefold. A toric Landau–Ginzburg model of the threefold X is given by Minkowski
polynomial №1968. It is

xy

z
+ 2x+

xz

y
+

2x

z
+

2x

y
+

x

yz
+ 2y + 2z +

2

z
+

2

y
+

yz

x
+

2

yz
+

2

x
+

1

xyz
.

The pencil of quartic surfaces S is given by

x2y2 + 2x2zy + x2z2 + 2x2ty + 2x2tz + x2t2 + 2y2zx+ 2z2yx+

+ 2t2yx+ 2t2zx + y2z2 + 2t3x+ 2t2zy + t4 = λxyzt.

This equation is invariant with respect to the permutation y ↔ z.
We may assume that λ 6= ∞. Then

H{x} · Sλ = 2C1,
H{y} · Sλ = 2C2,
H{z} · Sλ = 2C3,
H{t} · Sλ = 2C4,

(2.8.1)

where C1 is a smooth conic given by x = yz+ t2 = 0, the curve C2 is a smooth conic given
by y = xz + tx + t2 = 0, the curve C3 is a smooth conic given by z = xy + tx + t2 = 0,
and the curve C4 is a smooth conic given by t = xy + xz + yz = 0. Thus, we see that

Sλ · S∞ = 2C1 + 2C2 + 2C3 + 2C4,
so that the base locus of the pencil S consists of 4 smooth rational curves. To match the
notation introduced in Section 1, we let C1 = C1, C2 = C2, C3 = C3, C4 = C4.

If λ 6= −2, then Sλ has isolated singularities, so that it is irreducible. On the other
hand, the surface S−2 is not reduced. Indeed, one has S−2 = 2Q, where Q is an irreducible
quadric surface in P3 given by t2+ tx+xy+xz+yz = 0. One can check that Q is smooth.

If λ 6= −2, then the singular points of the surface Sλ contained in the base locus of the
pencil S are the points P{x},{y},{t}, P{x},{z},{t}, P{y},{z},{t}, and P{y},{z},{x,t}. In this case,
the surface Sλ has du Val singularities at these points. In fact, we can say more.

Lemma 2.8.2. If λ 6= −2, then the singular points of the surface Sλ contained in the
base locus of the pencil S can be describes as follows:

P{x},{y},{t}: type D6 with quadratic term (x+ y)2;
P{x},{z},{t}: type D6 with quadratic term (x+ z)2;
P{y},{z},{t}: type D4 with quadratic term (y + z + t)2;

P{y},{z},{x,t}: type A1 with quadratic term (x+ t− y − z)2 + (λ+ 2)yz.

Proof. We skip the computations of the quadratic terms, because they are straightforward.
If λ 6= −2, then P{y},{z},{x,t} is an isolated ordinary double point of the surface Sλ. Note
that the expressions for quadratic terms are also valid for λ = −2.
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Let us describe the singularity type of the point P{y},{z},{t}. In the chart x = 1, the
surface Sλ is given by

t̂2 + 2t̂3 − 4t̂2ŷ − 4t̂2ẑ + 2ŷ2t̂ + (4− λ)t̂ŷẑ + 2ẑ2t̂ + (2 + λ)ŷ2ẑ+

+ (2 + λ)ẑ2ŷ + t̂4 − 4ŷt̂3 − 4ẑt̂3 + 6t̂2ŷ2 + 14t̂2ŷẑ + 6t̂2ẑ2 − 4t̂ŷ3−
− 16t̂ŷ2ẑ − 16t̂ŷẑ2 − 4t̂ẑ3 + ŷ4 + 6ŷ3ẑ + 11ŷ2ẑ2 + 6ŷẑ3 + ẑ4 = 0

for ŷ = y, ẑ = z, and t̂ = y+z+t. Let α1 : U1 → P3 be the blow up of the point P{y},{z},{t}.

One chart of the blow up α1 is given by the coordinate change ŷ1 = ŷ, ẑ1 =
ẑ
ŷ
, and t̂1 =

t̂
ŷ
.

In this chart, the surface S1
λ is given by

t̂21 + 2t̂1ŷ1 + ŷ21 + (2 + λ)ŷ1ẑ1 +
(
6ŷ21 ẑ1 − 4t̂21ŷ1 − 4ŷ21 t̂1 + (4− λ)t̂1ŷ1ẑ1 + (2 + λ)ẑ21 ŷ1

)
+

+
(
2ŷ1t̂

3
1 + 6t̂21ŷ

2
1 − 4t̂21ŷ1ẑ1 − 16t̂1ŷ

2
1ẑ1 + 2t̂1ŷ1ẑ

2
1 + 11ŷ21ẑ

2
1

)
+

+(14t̂21ŷ
2
1 ẑ1−4t̂31ŷ

2
1−16t̂1ŷ

2
1ẑ

2
1+6ŷ21ẑ

3
1

)
+
(
t̂41ŷ

2
1−4t̂31ŷ

2
1ẑ1+6t̂21ŷ

2
1 ẑ

2
1−4t̂1ŷ

2
1 ẑ

3
1+ ŷ21ẑ

4
1

)
= 0,

and E1 is given by ŷ1 = 0. Let C1
5 = S1

λ ∩ E1. Then C1
5 is the line in E1

∼= P2 that is
given by ŷ1 = t̂1 = 0. Note that M−2

5 = 2. If λ 6= −2, then the only singular points of the
surface S1

λ contained in C1
5 are the points (ŷ1, ẑ1, t̂1) = (0, 0, 0) and (ŷ1, ẑ1, t̂1) = (0, 0,−1).

Both of them are isolated ordinary double points of the surface Sλ in this case.
If λ 6= −2, then S1

λ has three isolated ordinary double points in C1
5 . Two of them we

have already described. The third one can be seen in another chart of the blow up α1.
Thus, if λ 6= −2, then P{y},{z},{t} is a singular point of type D4 of the surface Sλ.

Now let us describe the singularity of the surface Sλ at the point P{x},{z},{t}. In the
chart y = 1, the surface Sλ is given by

z̄2 +
(
2t̄2z̄ + (2 + λ)x̄2t̄− λt̄x̄z̄ − 2x̄2z̄ + 2x̄z̄2

)
+

+
(
t̄4 + 2t̄3x̄− t̄2x̄2 + 2t̄2x̄z̄ − 2x̄3t̄+ 2t̄x̄2z̄ + x̄4 − 2x̄3z̄ + x̄2z̄2

)
= 0,

where x̄ = x, z̄ = x + z, and t̄ = t. Let α2 : U2 → U1 be the blow up of the preimage of
the point P{x},{z},{t}. A chart of this blow up is given by the coordinate change x̄2 = x̄

t̄
,

z̄2 =
z̄
t̄
, and t̄2 = t̄. In this chart, the surface S2

λ is given by

(
t̄2 + z̄2

)2
+
(
2t̄22x̄2 + (2 + λ)x̄2

2t̄2 − λt̄2x̄2z̄2

)
+ (2t̄22x̄2z̄2 − t̄22x̄

2
2 − 2t̄2x̄

2
2z̄2 + 2t̄2x̄2z̄

2
2

)
+

+
(
2t̄22x̄

2
2z̄2 − 2t̄22x̄

3
2

)
+
(
t̄22x̄

4
2 − 2t̄22x̄

3
2z̄2 + t̄22x̄

2
2z̄

2
2

)
= 0

and the surface E2 is given by t̄2 = 0. Let C2
6 = S2

λ ∩ E2. Then C2
6 is the line in E2

∼= P2

that is given by t̄2 = z̄2 = 0. Observe that M−2
6 = 2. On the other hand, if λ 6= −2,

then the point (x̄2, z̄2, t̄2) = (0, 0, 0) is the only singular point of the surface S2
λ that is

contained in the curve C2
6 in this chart. Note that C2

6 contains another singular point
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of the surface S2
λ that can be seen in another chart of the blow up α2. This point is an

isolated ordinary double singularity of the surface S2
λ.

To determine the type of the singular point (x̄2, z̄2, t̄2) = (0, 0, 0) on the surface S2
λ for

every λ 6= −2, we let x̃2 = x̄2, z̃2 = z̄2, and t̃2 = t̄2 + z̄2. Then we can rewrite the defining
equation of the surface Sλ as

t̃22 +
(
2t̃22x̃2 − (2 + λ)x̃2

2z̃2 + (2 + λ)x̃2
2t̃2 + (2 + λ)x̃2z̃

2
2 − (λ+ 4)t̃2x̃2z̃2

)
+

+
(
2t̃22x̃2z̃2− t̃22x̃

2
2−2t̃2x̃2z̃

2
2+x̃2

2z̃
2
2

)
+
(
2t̃22x̃

2
2z̃2−2t̃22x̃

3
2+4t̃2x̃

3
2z̃2−4t̃2x̃

2
2z̃

2
2−2x̃3

2z̃
2
2+2x̃2

2z̃
3
2

)
+

+
(
t̃22x̃

4
2 − 2t̃22x̃

3
2z̃2 + t̃22x̃

2
2z̃

2
2 − 2t̃2x̃

4
2z̃2 + 4t̃2x̃

3
2z̃

2
2 − 2t̃2x̃

2
2z̃

3
2 + x̃4

2z̃
2
2 − 2x̃3

2z̃
3
2 + x̃2

2z̃
4
2

)
= 0.

Let α3 : U3 → U2 be the blow up of the point (x̃2, z̃2, t̃2) = (0, 0, 0). A chart of this blow

up is given by the coordinate change x̃3 = x̃2, z̃3 = z̃2
t̃2
, and t̃3 = t̃2

x̃2
. In this chart, the

surface S3
λ is given by

(2 + λ)z̃3x̃3 − (2 + λ)t̃3x̃3 − t̃23 = 2t̃23x̃3 + (2 + λ)x̃3z̃
2
3 − (λ+ 4)t̃3x̃3z̃3 + x̃2

3z̃
2
3 − t̃23x̃

2
3+

+ 2t̃23x̃
2
3z̃3 − 2t̃23x̃

3
3 + 4t̃3x̃

3
3z̃3 − 2t̃3x̃

2
3z̃

2
3 − 2x̃3

3z̃
2
3 + t̃23x̃

4
3 + 2t̃23x̃

3
3z̃3 − 2t̃3x̃

4
3z̃3−

− 4t̃3x̃
3
3z̃

2
3 + x̃4

3z̃
2
3 + 2x̃3

3z̃
3
3 + 4t̃3x̃

4
3z̃

2
3 − 2t̃23x̃

4
3z̃3 − 2x̃4

3z̃
3
3 + t̃23x̃

4
3z̃

2
3 − 2t̃3x̃

4
3z̃

3
3 + x̃4

3z̃
4
3 ,

and the surface E3 is given by x̃3 = 0. Let C3
7 = S3

λ ∩E3. Then C3
7 is the line in E3

∼= P2

that is given by x̃3 = t̃3 = 0 in our chart of the blow up α3. Observe that M−2
7 = 2.

If λ 6= −2, then the point (x̃3, z̃3, t̃3) = (0, 0, 0) is an isolated ordinary double point of
the surface S2

λ. This point is contained in the curve C3
7 . Moreover, this curve contains two

more singular points of the surface S2
λ. One of them is the point (x̃3, z̃3, t̃3) = (0,−1, 0),

and the other one lies in another chart of the blow up α3. If λ 6= −2, both these points
are isolated ordinary double points of the surface S3

λ. This means that the surface S2
λ has

du Val singularity of type D4 at the point (x̄2, z̄2, t̄2) = (0, 0, 0), so that Sλ has du Val
singularity of type D6 at the point P{x},{z},{t} for every λ 6= −2.

Keeping in mind that the defining equation of the surface Sλ is symmetric with respect
to permutation y ↔ z, we see that the surface Sλ has du Val singularity of type D6 at the
point P{x},{y},{t} for every λ 6= −2. This complete the proof of the lemma. �

The proof of this lemma also gives rkPic(S̃k) = rkPic(Sk) + 17, which implies (⋆).
Indeed, if λ 6= −2, then 2C1 ∼ 2C2 ∼ 2C3 ∼ 2C4 ∼ Hλ on the surface Sλ by (2.8.1), so
that the intersection matrix of the conics C1, C2, C3, and C4 on the surface Sλ has rank 1.
Thus, we see that (⋆) holds, so that (♦) in Main Theorem holds in this case.

Lemma 2.8.3. If λ 6= −2, then [f−1(λ)] = 1. One also has [f−1(−2)] = 10.

Proof. Using Lemma 2.8.2 and Corollary 1.5.4, we see that [f−1(λ)] = 1 for λ 6= −2.
To show that [f−1(−2)] = 10, let us describe the birational morphism α in (1.9.3). Im-
plicitly, this was already done in the proof of Lemma 2.8.2. Because of this, we will use
the notations introduced in that proof.
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Let α4 : U4 → U3 be the blow up of the preimage of the point P{x},{y},{t}. If λ 6= −2,
then the surface S4

λ has a unique singular point (of type D4) that is contained in E4.
Let α5 : U5 → U4 be the blow up of this singular point. Then S5

λ has 12 singular points for
general λ ∈ C. One of them is P{y},{z},{x,t}, another three are contained in the surface E5,
another one is contained in the surface E5

4, and the remaining seven were explicitly de-
scribed in the proof of Lemma 2.8.2. All these 12 points are isolated ordinary double
points of the surface S5

λ provided that λ 6= −2. Thus, there exists a commutative diagram

U3

α3

xxqqq
qqq

qq
qqq

qq
U4

α4oo U5
α5oo

U2

α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ U

α
xxqqq

qq
qq
qq
qq
qq

γ

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

U1 α1

// P3

where γ : U → U5 is the blow up of these 12 points. This gives D̂λ = Ŝλ for every λ ∈ C.

Let us describe the base curves of the pencil Ŝ. Four of them are Ĉ1, Ĉ2, Ĉ3, and Ĉ4.

The next three are the curves Ĉ5, Ĉ6, Ĉ7, which are described in the proof of Lemma 2.8.2.
The pencil Ŝ contains two more base curves, whose construction is similar to the construc-

tion of the curves Ĉ6 and Ĉ7. One of them is contained in the surface Ê4, and another

one is contained in the surface Ê5. Denote the former curve by Ĉ8, and denote the latter

curve by Ĉ9. Then Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7, Ĉ8, Ĉ9 are all base curves of the pencil Ŝ.
Note that m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = m9 = 2 and

M−2
1 = M−2

2 = M−2
3 = M−2

4 = M−2
5 = M−2

6 = M−2
7 = M−2

8 = M−2
9 = 2.

Thus, using (1.10.8) and Lemma 1.10.7, we conclude that [f−1(−2)] = 10. �

Using Lemma 2.8.3, we see that (♥) in Main Theorem holds in this case.

2.9. Family №2.9. In this case, the threefold X is a blow up of P3 at a smooth curve of
degree 7 and genus 5. Thus, we have h1,2(X) = 5. A toric Landau–Ginzburg model of
the threefold X is given by Minkowski polynomial №3013, which is

x+ y + z +
x

z
+

y

z
+

x

y
+

y

x
+ 2

z

y
+ 2

z

x
+

z2

xy
+

x

yz
+

2

z
+

y

xz
+

2

y
+

2

x
+

z

xy
.

The corresponding pencil S is given by

t2x2 + 2t2xy + 2t2xz + t2y2 + 2t2yz + t2z2 + tx2y + tx2z + txy2+

+ 2txz2 + ty2z + 2tyz2 + tz3 + x2yz + xy2z + xyz2 = λxyzt.

Observe that this equation is invariant with respect to the permutation x ↔ y.
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We may assume that λ 6= ∞. To describe the base curves of the pencil S, let C be a
smooth conic that is given by z = xy + tx+ ty = 0. Then

H{x} · Sλ = L{x},{t} + 2L{x},{y,z} + L{x},{z,t},

H{y} · Sλ = L{y},{t} + 2L{y},{x,z} + L{y},{z,t},

H{z} · Sλ = L{z},{t} + L{z},{x,y} + C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.9.1)

Thus, we let C1 = L{x},{t}, C2 = L{y},{t}, C3 = L{z},{t}, C4 = L{x},{y,z}, C5 = L{y},{x,z},
C6 = L{x},{z,t}, C7 = L{y},{z,t}, C8 = L{z},{x,y}, C9 = L{t},{x,y,z}, and C10 = C. These are
all base curves of the pencil S.

If λ 6= −3, then Sλ has isolated singularities, so that it is irreducible. On the other
hand, we have S−3 = H{z,t} +H{x,y,z} +Q, where Q is a smooth quadric surface that is
given by xy + t(x + y + z) = 0. Note that S−3 is singular along L{x},{y,z} and L{y},{x,z},
and it is smooth at general points of the remaining base curves of the pencil S.

If λ 6= −3, then the singular points of the surface Sλ contained in the base locus of the
pencil S are P{x},{y},{z}, P{x},{z},{t}, P{y},{z},{t}, P{x},{t},{y,z}, P{y},{t},{x,z}, and P{z},{t},{x,y}.
In this case, all of them are du Val singular points of the surface Sλ by the following.

Lemma 2.9.2. If λ 6= −3, then the singular points of the surface Sλ contained in the
base locus of the pencil S can be describes as follows:

P{x},{y},{z}: type D4 with quadratic term (x+ y + z)2;
P{x},{z},{t}: type A2 with quadratic term (x+ t)(z + t);
P{y},{z},{t}: type A2 with quadratic term (y + t)(z + t);

P{x},{t},{y,z}: type A2 with quadratic term x(x+ y + z − (λ+ 3)t);
P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z − (λ+ 3)t);
P{z},{t},{x,y}: type A1 with quadratic term (x+ y)(t+ z) + z2 + (λ+ 2)tz.

Proof. The proof is similar to the proof of Lemma 2.8.2. Because of this, we will only
prove that Sλ has du Val singularity of type D4 at the point P{x},{y},{z} for every λ 6= −3.
To do this, we rewrite the defining equation of the surface Sλ in the chart t = 1 as

z̄2 + (3 + λ)x̄2ȳ + (3 + λ)x̄ȳ2 − (λ+ 2)x̄ȳz̄ − x̄z̄2 − ȳz̄2 + z̄3 − ȳx̄2z̄ − ȳ2x̄z̄ + ȳx̄z̄2 = 0,

where x̄ = x, ȳ = y, and z̄ = x+ y + z.
Let α1 : U1 → P3 be the blow up of the point P{x},{y},{z}. A chart of this is given by the

coordinate change x̄1 = x̄, ȳ1 =
ȳ

x̄
, z̄1 =

z̄
z̄
. In this chart, the surface S1

λ is given by

(3+λ)x̄1ȳ1+z̄21 = x̄1z̄
2
1+(3+λ)x̄1ȳ

2
1+(λ+2)x̄1ȳ1z̄1−x̄1z̄

3
1+ȳ1x̄

2
1z̄1+ȳ1x̄1z̄

2
1−ȳ1x̄

2
1z̄

2
1+x̄2

1ȳ
2
1 z̄1,

and the surface E1 is given by x̄1 = 0.
Let C1

11 be the line in E1
∼= P2 given by x̄1 = z̄1 = 0. Then S1

λ ·E1 = 2C1
11 and M−3

11 = 2.
If λ 6= −3, then the curve C1

11 contains three singular points of the surface S1
λ. One of

them is the point (x̄1, ȳ1, z̄1) = (0, 0, 0). Another one is the point (x̄1, ȳ1, z̄1) = (0,−1, 0).
The third singular point can be described in another chart of the blow up α1. All these
points are isolated ordinary double points of the surface S1

λ in the case when λ 6= −3.
Thus, if λ 6= −3, then P{x},{y},{z} is a singular point of type D4 of the surface Sλ. �
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The proof of Lemma 2.9.2 implies that rkPic(S̃k) = rkPic(Sk) + 13.
If λ 6= −3, then the intersection form of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{x},{z,t},

and L{y},{z,t} on the surface Sλ is given by

• L{x},{t} L{y},{t} L{z},{t} L{x},{z,t} L{y},{z,t}

L{x},{t} −2
3

1 1
3

1
3

0

L{y},{t} 1 −2
3

1
3

0 1
3

L{z},{t}
1
3

1
3

−1
6

2
3

2
3

L{x},{z,t}
1
3

0 2
3

−4
3

1

L{y},{z,t} 0 1
3

2
3

1 −4
3

The determinant of this matrix is 34
81
. This easily gives (⋆). Indeed, the base locus of

the pencil S consists of the lines L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{y},{x,z}, L{x},{z,t},
L{y},{z,t}, L{z},{x,y}, L{t},{x,y,z}, and the conic C. On the other hand, it follows from (2.9.1)
that

Hλ ∼ L{x},{t} + 2L{x},{y,z} + L{x},{z,t} ∼ L{y},{t} + 2L{y},{x,z} + L{y},{z,t} ∼
∼ L{z},{t} + L{z},{x,y} + C ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ provided that λ 6= −3. In this case, we also have

Hλ ∼ L{x},{y,z} + L{y},{x,z} + L{z},{x,y} + L{y},{x,y,z},

because H{x,y,z} · Sλ = L{x},{y,z} + L{y},{x,z} + L{z},{x,y} + L{y},{x,y,z}. Likewise, we have

Hλ ∼ L{x},{t,z} + L{y},{t,z} + 2L{z},{t},

because H{z,t} · Sλ = L{x},{t,z} + L{y},{t,z} + 2L{z},{t}. Thus, one can express the classes
of the curves L{x},{z,t}, L{y},{z,t}, L{z},{x,y}, L{t},{x,y,z}, and C in Pic(Sλ) ⊗ Q as linear
combinations of the classes of the lines L{x},{t}, L{y},{t}, L{z},{t}, L{x},{z,t}, and L{y},{z,t}.
For instance, we have

L{t},{x,y,z} ∼ L{x},{z,t} + L{y},{z,t} + L{z},{t} − L{x},{t} − L{y},{t}

and L{z},{x,y} ∼ L{z},{t} + L{x},{t} + L{y},{t} − L{x},{z,t} − L{y},{z,t}. This shows that the
intersection matrix M in Lemma 1.13.1 has rank 5, so that (⋆) holds in this case. Thus,
we see that (♦) in Main Theorem holds in this case.

Therefore, to complete the proof of Main Theorem in this case, we have to prove (♥).
Since h1,2(X) = 5, the proof is given by the following.

Lemma 2.9.3. One has [f−1(λ)] = 1 for every λ 6= −3. One also has [f−1(−3)] = 6.

Proof. If λ 6= −3, then we have [f−1(λ)] = 1 by Lemma 2.9.2 and Corollary 1.5.4. To
show that [f−1(−3)] = 6, observe that M−3

4 = M−3
5 = 2 and

M−3
1 = M−3

2 = M−3
3 = M−3

6 = M−3
7 = M−3

8 = M−3
9 = 1.

We also have m1 = m2 = m3 = m4 = m5 = 2 and m6 = m7 = m8 = m9 = 1.
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Observe that [S−3] = 3, and the set Σ consists of the points P{x},{y},{z}, P{x},{z},{t},
P{y},{z},{t}, P{x},{t},{y,z}, P{y},{t},{x,z}, and P{z},{t},{x,y}. Thus, it follows from (1.8.3) and
Lemma 1.8.5 that [

f−1(−3)
]
= 5 +

∑

P∈Σ
D−3

P .

Moreover, it follows from the proof of Lemma 2.9.2 that P{x},{z},{t}, P{y},{z},{t}, P{x},{t},{y,z},
P{y},{t},{x,z}, and P{z},{t},{x,y} are good double points of the surface S−3. Thus, their defects
vanish by Lemma 1.12.1. Therefore, we conclude that

[
f−1(−3)

]
= 5 +D−3

P{x},{y},{z}
.

Let us show that D−3
P{x},{y},{z}

= 1. To do this, we use the notation introduced in the

proof of Lemma 2.9.2. Then there exists a commutative diagram

U
α

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼
γ

xxqqq
qq
qq
qq
qq
qq

U1 α1

// P3

for some birational morphism γ. On the other hand, the curve Ĉ11 is the only base of the

pencil Ŝ that is mapped to P{x},{y},{z} by the birational morphism α. This follows from the
proof of Lemma 2.9.2. Using Corollary 1.10.4 and (1.10.9), we see that D−3

P{x},{y},{z}
= C−3

11 .

By Lemma 1.10.7, we have C−3
11 = 1, so that D−3

P{x},{y},{z}
= 1 and [f−1(−3)] = 6. �

2.10. Family №2.10. In this case, the threefold X is a blow up of a complete intersection
of two quadrics in P3 at a smooth elliptic curve of degree 4. This implies that h1,2(X) = 3.
A toric Landau–Ginzburg model of the threefold X is given by Minkowski polynomial
№3018, which is

x+ y +
x

z
+ 2z +

yz

x
+

x

y
+

y

x
+

x

yz
+

2

z
+

z2

x
+

z

y
+

3z

x
+

2

y
+

3

x
+

1

yz
+

1

xz
.

The quartic pencil S is given by

x2zy + y2zx+ x2ty + 2z2xy + y2z2 + x2tz + y2tz + x2t2 + 2t2xy+

+ z3y + z2tx+ 3z2ty + 2t2zx+ 3t2zy + t3x+ t3y = λxyzt.

Wemay assume that λ 6= ∞. Let C1 be a smooth conic given by x = yz+z2+2zt+t2 = 0,
and let C2 be a smooth conic given by z = xy + xt + yt = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{z,t} + C1,
H{y} · Sλ = L{x},{y} + L{y},{t} + L{y},{z,t} + L{y},{x,z,t},

H{z} · Sλ = L{z},{t} + L{z},{x,t} + C2,
H{t} · Sλ = L{y},{t} + L{z},{t} + L{t},{x,z} + L{t},{x,y,z}.

(2.10.1)
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We let C1 = C1, C2 = C2, C3 = L{x},{y}, C4 = L{y},{t}, C5 = L{z},{t}, C6 = L{x},{z,t},
C7 = L{y},{z,t}, C8 = L{z},{x,t}, C9 = L{t},{x,z}, C10 = L{y},{x,z,t}, and C11 = L{t},{x,y,z}.
These are all base curves of the pencil S.

If λ 6= −4 and λ 6= −5, then Sλ has isolated singularities, so that it is irreducible. On the
other hand, both surfaces S−4 and S−5 are reducible. Indeed, one has S−4 = H{x,z,t} + S,
where S is a cubic surface that is given by t2x+t2y+txy+txz+2tyz+xyz+y2z+yz2 = 0.
Likewise, we have S−5 = Q + Q where Q and Q are quadric surfaces that are given by
the equations t2 + tx+ 2tz + xz + yz + z2 = 0 and tx+ ty + xy + yz = 0, respectively.

Both quadric surfaces Q and Q are smooth. On the other hand, the surface S has
two singular points: the points P{x},{y},{z,t} and P{y},{z},{t}. One can show that S has an
ordinary double singularity at P{x},{y},{z,t}, and it has a singularity of type A2 at P{y},{z},{t}.

If λ 6= −4 and λ 6= −5, then the singular points of the surface Sλ contained in the base
locus of the pencil S are the points P{x},{z},{t}, P{y},{z},{t}, P{x},{y},{z,t} and P{y},{t},{x,z}.
In this case, all of them are du Val singular points of the surface Sλ by

Lemma 2.10.2. If λ 6= −4 and λ 6= −5, then the singular points of the surface Sλ

contained in the base locus of the pencil S can be describes as follows:

P{x},{z},{t}: type A4 with quadratic term z(x + z + t);
P{y},{z},{t}: type A2 with quadratic term (y + t)(z + t);

P{x},{y},{z,t}: type A4 with quadratic term (s+ 4)xy;
P{y},{t},{x,z}: type A2 with quadratic term t(x+ z + t− (λ+ 4)t).

Proof. We will only describe the singularity of the surface Sλ at the point P{x},{y},{z,t}. To
do this, we rewrite the defining equation of the surface Sλ in the chart t = 1 as

(λ+4)x̄ȳ+
(
x̄2z̄− x̄ȳ2−(λ+4)x̄ȳz̄+ z̄2x̄− ȳ2z̄

)
+
(
x̄2z̄ȳ+ ȳ2z̄x̄+2z̄2x̄ȳ+ ȳ2z̄2+ z̄3ȳ

)
= 0,

where x̄ = x, ȳ = y, and z̄ = z + t.
Let α1 : U1 → P3 be the blow up of the point P{x},{y},{z,t}. One chart of this blow up is

given by the coordinate change x̄1 =
x̄
z̄
, ȳ1 =

ȳ

z̄
, and z̄1 = z̄. In this chart, the surface E1

is given by z̄1 = 0. If λ 6= −4, then the surface S1
λ is given by

x̄1

(
z̄1+(λ+4)ȳ1

)
= (λ+4)x̄1ȳ1z̄1−x̄2

1z̄1+ȳ21z̄1−z̄21 ȳ1−2x̄1ȳ1z̄
2
1−ȳ21 z̄

2
1+x̄1ȳ

2
1 z̄1−x̄2

1ȳ1z̄
2
1−x̄1ȳ

2
1 z̄

2
1 .

If λ = −4, then this equation defines D1
−4 = S1

−4 + E1.
Let C1

12 and C1
13 be the lines in E1

∼= P2 that are is given by z̄1 = x̄1 = 0 and z̄1 = ȳ1 = 0,
respectively. Then S1

−4 does not contain them.
Let α2 : U2 → U1 be the blow up of the point C1

12 ∩ C1
13. If λ 6= −4 and λ 6= −5, then

the surface S2
λ is smooth along E2. Hence, in this case, the surface Sλ has a singular point

of type A4 at P{x},{y},{z,t}. �

The base locus of the pencil S consists of the curves L{x},{y}, L{y},{t}, L{z},{t}, L{x},{z,t},
L{y},{z,t}, L{z},{x,t}, L{t},{x,z}, L{y},{x,z,t}, L{t},{x,y,z}, C1, and C2. If λ ∈ {−4,−5}, then

Hλ ∼ L{x},{y} + L{x},{z,t} + C1 ∼ L{x},{y} + L{y},{t} + L{y},{z,t} + L{y},{x,z,t} ∼
∼ L{z},{t} + L{z},{x,t} + C2 ∼ L{y},{t} + L{z},{t} + L{t},{x,z} + L{t},{x,y,z}
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on the surface Sλ. This follows from (2.10.1). Moreover, in this case, we also have

Hλ ∼ L{x},{z,t} + L{z},{x,t} + L{t},{x,z} + Ly},{x,z,t},

because H{x,z,t} · Sλ = L{x},{z,t} + L{z},{x,t} + L{t},{x,z} + Ly},{x,z,t}. This shows that the
intersection matrix M in Lemma 1.13.1 has the same rank as the intersection matrix
of the curves L{x},{y}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,t}, and L{t},{x,z} on the
surface Sλ. If λ 6= −4 and λ 6= −5, then the latter matrix is given by

• L{x},{y} L{y},{t} L{z},{t} L{x},{z,t} L{y},{z,t} L{z},{x,t} L{t},{x,z}

L{x},{y} −4
5

1 0 3
5

2
5

0 0

L{y},{t} 1 −2
3

1
3

0 1
3

0 2
3

L{z},{t} 0 1
3

−8
5

1
5

2
3

3
5

1
5

L{x},{z,t}
3
5

0 1
5

−2
5

1
5

2
5

4
5

L{y},{z,t}
2
5

1
3

2
3

1
5

−8
5

0 0

L{z},{x,t} 0 0 3
5

2
5

0 −4
5

2
5

L{t},{x,z} 0 2
3

1
5

4
5

0 2
5

−8
5

The rank of this matrix is 6. We see that (⋆) holds, because rkPic(S̃k) = rkPic(Sk)+12.
Thus, we conclude that (♦) in Main Theorem also holds in this case.

Lemma 2.10.3. One has [f−1(λ)] = 1 for λ 6∈ {−4,−5}, [f−1(−4)] = 3, and [f−1(−5)] = 2.

Proof. If λ 6∈ −4 and λ 6∈ −5, then [f−1(λ)] = 1 by Lemma 2.10.2 and Corollary 1.5.4.
Moreover, it follows from Corollary 1.12.2 that [f−1(−5)] = 2, because P{x},{z},{t},
P{y},{z},{t}, P{x},{y},{z,t}, and P{y},{t},{x,z} are good double points of the surface S−5.

To complete the proof, we have to show that [f−1(−4)] = 3. Using (1.8.3), we see that

[
f−1(−4)

]
= 2 +D−4

P{x},{y},{z,t}
.

Here, we also used Lemmas 1.8.5 and 1.12.1.
To compute the defect D−4

P{x},{y},{z,t}
, let us use the proof of Lemma 2.10.2 and the

notation used in this proof. First, we have D2
−4 = S2

−4 + E2
1, so that A−4

P{x},{y},{z,t}
= 1,

where A−4
P{x},{y},{z,t}

is the number defined in (1.10.3).

The curves C2
12 and C2

13 are the base curves of the pencil S2. Aside of these curves,
this pencil has one more base curve contained in E2 ∪ E2

1. However, the divisor D2
−4 is

smooth at general points of these three curves. Now using Lemma 1.10.7 and (1.10.9), we
conclude that D−4

P{x},{y},{z,t}
= A−4

P{x},{y},{z,t}
= 1, so that [f−1(−4)] = 3. �

Note that Lemma 2.10.3 implies (♥) in Main Theorem, because h1,2(X) = 3.



62 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

2.11. Family №2.11. In this case, the threefoldX is a blow up of a smooth cubic threefold
at a line, so that h1,2(X) = 5. A toric Landau–Ginzburg model of the threefold X is given
by Minkowski polynomial №1700, which is

y +
x

z
+

y

z
+ z +

yz

x
+

2y

x
+

2z2

x
+

x

yz
+

2

z
+

y

xz
+

2z

y
+

2z

x
+

z3

xy
.

The pencil of quartic surfaces S is given by the equation

y2zx+x2ty+y2tx+z2xy+y2z2+2y2tz+2z3y+x2t2+2t2xy+t2y2+2z2tx+2z2ty+z4 = λxyzt.

In the remaining part of this subsection, we will assume that λ 6= ∞.
Let C1 be the smooth conic given by x = ty+ yz+ z2 = 0, let C2 be the a smooth conic

given by y = tx + z2 = 0, let C3 be the smooth conic given by z = tx+ ty + xy = 0, and
let C4 be the smooth conic given by t = tx+ ty + xy = 0. Then

H{x} · Sλ = 2C1,
H{y} · Sλ = 2C2,
H{z} · Sλ = L{z},{t} + L{z},{x,y} + C3,
H{t} · Sλ = L{z},{t} + L{t},{y,z} + C4,

(2.11.1)

so that L{z},{t}, L{z},{x,y}, L{t},{y,z}, C1, C2, C3, and C4 are all base curves of the pencil S.
To match the notation used in Subsection 1.8, we let C1 = C1, C2 = C2, C3 = C3, C4 = C4,
C5 = L{z},{t}, C6 = L{z},{x,y}, C7 = L{t},{y,z}.

If λ 6= −2, then the surface Sλ has isolated singularities, so that Sλ is irreducible. On
the other hand, we have S−2 = Q + Q, where Q and Q are irreducible quadric surfaces
that are given by the equations xy + yz + z2 + xt + yt = 0 and xt + ty + yz + z2 = 0,
respectively. Both these quadric surfaces are smooth. Note that Q ∩ Q = C1 ∪ C2.

If λ 6= −2, then the singular points of the surface Sλ contained in the base locus of the
pencil S are the points P{x},{z},{t}, P{x},{y},{z}, P{y},{z},{t}, and P{x},{t},{y,z}, which are du
Val singular points of the surface Sλ. In fact, we can say more:

Lemma 2.11.2. If λ 6= −2, then the singular points of the surface Sλ contained in the
base locus of the pencil S can be describes as follows:

P{x},{y},{z}: type D6 with quadratic term (x+ y)2;
P{x},{z},{t}: type A3 with quadratic term (z + t)(x+ z + t);
P{y},{z},{t}: type A5 with quadratic term t(y + t);

P{x},{t},{y,z}: type A1 with quadratic term (λ+2)xt+(y+ z− t)(y+ z−x− t).

Proof. We will only describe the singularity of the surface Sλ at the point P{x},{y},{z}. To
do this, we rewrite the defining equation of the surface Sλ in the chart t = 1 as

x̄2 +
(
x̄2ȳ − λx̄ȳz̄ + (λ+ 2)ȳ2z̄ − x̄ȳ2 + 2x̄z̄2

)
+
(
ȳ2z̄x̄+ z̄2x̄ȳ − ȳ3z̄ + 2z̄3ȳ + z̄4

)
= 0,

where x̄ = x + y, ȳ = y, and z̄ = z. Let α1 : U1 → P3 be the blow up of the point
P{x},{y},{z,t}. One chart of this blow up is given by the coordinate change x̄1 =

x̄
z̄
, ȳ1 =

ȳ

z̄
,
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and z̄1 = z̄. In this chart, the surface E1 is given by z̄1 = 0. Then S1
λ is given by

(
x̄1 + z̄1

)2
+
(
2ȳ1z̄

2
1 − λx̄1ȳ1z̄1 + (λ+ 2)ȳ21z̄1

)
+

+
(
x̄2
1ȳ1z̄1 − ȳ21 z̄1x̄1 + z̄21 x̄1ȳ1

)
+
(
x̄1ȳ

2
1z̄

2
1 − ȳ31 z̄

2
1

)
= 0.

Denote by C1
8 the line in E1

∼= P2 that is given by z̄1 = x̄1 = 0. Then S1
−2 is singular

along this line. If λ 6= −2, then S1
λ has two singular points in E1. One of them is the

point (x̄1, ȳ1, z̄1) = (0, 0, 0). The second singular point lies in another chart of the blow
up α1. If λ 6= −2, then this point is an isolated ordinary double point of the surface S1

λ.
Let x̂1 = x̄1 + z̄1, ŷ1 = ȳ1, and ẑ1 = z̄1. Then we can rewrite the (local) defining

equation of the surface S1
λ as

x̂2
1 +

(
(λ+ 2)ŷ1ẑ

2
1 − λx̂1ŷ1ẑ1 + (λ+ 2)ŷ21ẑ1

)
+

+
(
x̂2
1ŷ1ẑ1 − ŷ21 ẑ1x̂1 − ẑ21 x̂1ŷ1 + ŷ21 ẑ

2
1

)
+
(
x̂1ŷ

2
1 ẑ

2
1 − ŷ31ẑ

2
1 − ŷ21 ẑ

3
1

)
= 0.

Let α2 : U2 → U1 be the blow up of the point (x̂1, ŷ1, ẑ1) = (0, 0, 0). One chart of this
blow up is given by the coordinate change x̂2 = x̂1

ẑ1
, ŷ2 = ŷ1

ẑ1
, and ẑ2 = ẑ1. In this chart,

the surface S2
λ is given by

x̂2
2 + (λ+ 2)ŷ2ẑ2 +

(
(λ+ 2)ŷ22 ẑ2 − λx̂2ŷ2ẑ2

)
+
(
ŷ22ẑ

2
2 − ẑ22 x̂2ŷ2

)
+

+
(
x̂2
2ŷ2ẑ

2
2 − x̂2ŷ

2
2 ẑ

2
2 − ŷ22 ẑ

3
2

)
+
(
x̂2ŷ

2
2ẑ

3
2 − ŷ32 ẑ

3
2

)
= 0,

and the surface E2 is given by ẑ2 = 0. Thus, if λ 6= −2, then S2
λ has isolated ordinary

double singularity at the point (x̂2, ŷ2, ẑ2) = (0, 0, 0).
Denote by C2

9 the line in E2
∼= P2 that is given by ẑ2 = x̂2 = 0. Then S2

−2 is singular
along this line. If λ 6= −2, then E2 contains three singular points of the surface S2

λ. One
of them is the point (x̂2, ŷ2, ẑ2) = (0, 0, 0). The second one is (x̂2, ŷ2, ẑ2) = (0,−1, 0).
The third point is contained in another chart of the blow up α2. All of them are isolated
ordinary double singularities of the surface S2

λ. Hence, if λ 6= −2, then Sλ has a singular
point of type D6 at the point P{x},{y},{z}. �

The proof of Lemma 2.11.2 implies

(2.11.3) rkPic(S̃k) = rkPic(Sk) + 15.

By Lemma 1.13.1, to verify (♦) in Main Theorem, we have to compute the rank of the
intersection matrix of the curves C1, C2, C3, C4, L{z},{t}, L{z},{t}, and L{t},{y,z} on a general
surface in the pencil S. On the other hand, if λ 6= −2, then it follows from (2.11.1) that

Hλ ∼ 2C1 ∼ 2C2 ∼ L{z},{t} + L{z},{x,y} + C3 ∼ L{z},{t} + L{t},{y,z} + C4.
on the surface Sλ. We have C1 + C2 + C3 + C4 ∼ 2Hλ, because Q · Sλ = C1 + C2 + C3 + C4.
Likewise, we also have Q · Sλ = 2L{z},{t} + L{z},{x,y} + L{t},{y,z} + C1 + C2, so that

2L{z},{t} + L{z},{x,y} + L{t},{y,z} + C1 + C2 ∼ 2Hλ,
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which implies that 2L{z},{t} +L{z},{x,y}+L{t},{y,z} ∼Q Hλ. Thus, if λ 6= −2, then the rank
of the intersection matrix of the curves C1, C2, C3, C4, L{z},{t}, L{z},{t}, and L{t},{y,z} on
the surface Sλ is the same as the rank of the intersection matrix of the curves L{z},{t},
L{z},{x,y} and Hλ, which is very easy to compute.

Lemma 2.11.4. Suppose that λ 6= −2. Then the intersection form of the curves L{z},{t},
L{z},{x,y} and Hλ on the surface Sλ is given by

• L{z},{t} L{z},{x,y} Hλ

L{z},{t} − 5
12

1 1

L{z},{x,y} 1 −1 1

Hλ 1 1 4

Proof. Since L{z},{t}∩L{z},{x,y} = P{z},{t},{x,y} and Sλ is smooth at this point, we conclude
that L{z},{t} ·L{z},{x,y} = 1. So, to complete the proof, we have to find L2

{z},{t} and L2
{z},{x,y}.

Observe that P{x},{z},{t} and P{y},{z},{t} are the only singular points of the surface Sλ that
are contained in the line L{z},{t}. Applying Remark A.2.4 with S = Sλ, O = P{x},{z},{t},

n = 3, and C = L{z},{t}, we see that C does not contain the point G1 ∩ G3. Similarly,
applying Remark A.2.4 with S = Sλ, O = P{y},{z},{t}, n = 5, and C = L{z},{t}, we see that

C does not contain the point G1 ∩G5. Thus, it follows from Proposition A.1.3 that

L2
{z},{t} = −2 +

3

4
+

5

6
= − 5

12
.

Note that P{x},{y},{z} is the only singular point of the surface Sλ that is contained in the
line L2

{z},{x,y}. To find L2
{z},{x,y}, let us use the notations of Lemma A.3.2 with S = Sλ,

O = P{x},{y},{z}, n = 6, and C = L{z},{x,y}. Let us also use the notation of the proof of
Lemma 2.11.2. It follows from this proof that the proper transform of the line L{z},{x,y} on
the surface S1

λ does not contain the point (x̄1, ȳ1, z̄1) = (0, 0, 0). Thus, in the notation of

Lemma A.3.2, we have C̃ ·G6 = 1, which implies that L2
{z},{x,y} = −1 by Lemma A.3.2. �

The determinant of the intersection matrix in Lemma 2.11.4 is 13
12
. Using (2.11.3), we

get (⋆), so that (♦) in Main Theorem holds in this case. Moreover, since h1,2(X) = 5,
the assertion (♥) in Main Theorem is given by

Lemma 2.11.5. If λ 6= −2, then [f−1(λ)] = 1. One also has [f−1(−2)] = 6.

Proof. If λ 6∈ −2, then [f−1(λ)] = 1 by Lemma 2.11.2 and Corollary 1.5.4. Hence, to com-
plete the proof, we must show that [f−1(−2)] = 6. Observe thatm3 = m4 = m6 = m7 = 1
and m1 = m2 = m5 = 2. Note that M−2

3 = M−2
4 = M−2

5 = M−2
6 = M−2

7 = 1 and
M−2

1 = M−2
2 = 2. Thus, applying Lemmas 1.8.5 and 1.12.1, and using (1.8.3), we see that

[
f−1(−2)

]
= 4 +D−2

P{x},{y},{z}
,

where D−2
P{x},{y},{z}

is the defect of the singular point P{x},{y},{z}.
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To compute D−2
P{x},{y},{z}

, we will use local computations done in the proof of

Lemma 2.11.2. They give M−2
8 = M−2

9 = 2 and D2
−2 = S2

−2. Now using Lemma 1.10.7
and (1.10.9), we conclude that D−2

P{x},{y},{z}
> 2. In fact, the proof of Lemma 2.11.2 implies

that D−2
P{x},{y},{z}

= 2, so that [f−1(−2)] = 6. �

2.12. Family №2.12. In this case, the threefoldX is a blow up of P3 along a smooth curve
of genus 3 and degree 6, so that h1,2(X) = 3. Here, we chose its toric Landau–Ginzburg
model to be given by Minkowski polynomial №1193, which is

x+
xy

z
+ z + y +

2x

z
+

2y

z
+

x

yz
+

2

y
+

2

z
+

z

xy
+

2

x
+

y

xz
.

The quartic pencil S is given by

x2zy + x2y2 + z2xy + y2zx + 2x2ty + 2y2tx+ x2t2+

+ 2t2zx+ 2t2xy + t2z2 + 2t2zy + t2y2 = λxyzt.

This equation is symmetric with respect to the swapping x ↔ y.
Let C be a conic that is given by z = xy + xt + yt = 0. If λ 6= ∞, then

H{x} · Sλ = 2L{x},{t} + 2L{x},{y,z},

H{y} · Sλ = 2L{y},{t} + 2L{y},{x,z},

H{z} · Sλ = 2C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z}.

(2.12.1)

Thus, we may assume that C1 = L{x},{t}, C2 = L{y},{t}, C3 = L{x},{y,z}, C4 = L{y},{x,z},
C5 = L{t},{x,z}, C6 = L{t},{y,z}, and C7 = C. These are all base curves of the pencil S.

If λ 6= ∞ and λ 6= −2, then the surface Sλ has isolated singularities, so that Sλ is
irreducible. On the other hand, the surface S−2 is singular along L{x},{y,z} and L{y},{x,z}.

Lemma 2.12.2. The surface S−2 is irreducible.

Proof. Let Π be a plane in P3 that is given by z = t. Then the intersection S−2 ∩ Π is a
plane quartic curve that is singular at the points Π∩L{x},{y,z} and Π∩L{y},{x,z}. Moreover,
this curve is smooth away from these points. Furthermore, both of these points are isolated
ordinary double points of the curve S−2 ∩ Π. This implies that this curve is irreducible,
so that the surface S−2 is also irreducible. �

The fixed singular points of the surfaces in the pencil S are P{x},{y},{z}, P{x},{y},{t},
P{x},{z},{t}, P{y},{z},{t}, P{x},{t},{y,z}, and P{y},{t},{x,z}. If λ 6= ∞ and λ 6= −2, then the
singularities of the surface Sλ at these points can be describes as follows:

P{x},{y},{z}: type D4 with quadratic term (x+ y + z)2;
P{x},{y},{t}: type A1 with quadratic term xy + t2;
P{x},{z},{t}: type A1 with quadratic term x2 + xz + 2xt+ t2;
P{y},{z},{t}: type A1 with quadratic term y2 + yz + 2yt+ t2;

P{x},{t},{y,z}: type A3 with quadratic term x(y + z − (λ+ 2)t);
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P{y},{t},{x,z}: type A3 with quadratic term y(x+ z − (λ+ 2)t).

The surfaces in S also have floating singular points. They are contained in the conic C.
To describe them nicely, we introduce a new parameter µ ∈ C ∪ {∞} such that

λ =
2µ2 − 2µ− 1

µ(1− µ)
.

Then Sλ is singular at the points [1 − µ : µ : 0 : µ(µ − 1)] and [µ : 1 − µ : 0 : µ(µ − 1)].
Denote these two points by Pµ and P1−µ, respectively. Then Pµ 6= P1−µ ⇐⇒ µ 6∈ {∞, 1

2
}.

If µ = 1
2
, then Pµ = P1−µ = [−2 : −2 : 0 : 1]. If µ = ∞, then Pµ = P1−µ = P{x},{y},{z}.

Lemma 2.12.3. Suppose that λ 6= ∞ and λ 6= −2. If µ 6= 1
2
, then Sλ has isolated

ordinary double singularities at the points Pµ and P1−µ. If µ = 1
2
, then λ = −6, and S−6

has a du Val singularity of type A3 at the point P 1

2

.

Proof. Due to symmetry x ↔ y, it is enough to describe the singularity of the surface Sλ

at the point Pµ. Moreover, we may assume that µ 6= 0 and µ 6= 1, since P0 = P{y},{z},{t}
and P1 = P{x},{z},{t}. Then Pµ = [ 1

µ
: 1

µ−1
: 0 : 1]. In the chart t = 1, the surface Sλ is

given by

(µ− 1)4ȳ2 + µ(µ− 1)(µ2 − µ− 1)z̄2 + µ(µ− 1)(2µ2 − 1)z̄x̄+ 2µ2(µ− 1)2x̄ȳ+

+ µ(µ− 1)(2µ2 − 4µ+ 1)ȳz̄ + µ4x̄2 + higher order terms = 0.

where x̄ = x− 1
µ
, ȳ = y− 1

µ−1
, and z̄ = z. If µ 6= 1

2
, this quadratic form is non-degenerate,

so that Sλ has an isolated ordinary double singularity at Pµ.
To complete the proof, we may assume that µ = 1

2
. Then P 1

2

= [−2 : −2 : 0 : 1]. Note

that λ = −6 in this case. In the chart t = 1, the surface S−6 is given by

x̂2 + 2ẑx̂+ 5ẑ2 +
(
2x̂ŷ2 − 2x̂2ŷ − 2x̂2ẑ + 2x̂ŷẑ − 2x̂ẑ2 − 2ŷ2ẑ

)
+

(
x̂2ŷ2 + ẑŷx̂2 − 2ŷ3x̂− ẑŷ2x̂+ ẑ2ŷx̂+ ŷ4 − ŷ2ẑ2

)
= 0,

where x̂ = x+ y + 4, ŷ = y + 2, and ẑ = z. Introducing new coordinates x̂1 =
x̂
ŷ
, ŷ1 = ŷ,

and ẑ1 =
ẑ
ŷ
, we can rewrite this equation (after dividing by ŷ21) as

x̂2
1 + 2x̂1ŷ1 + 2ẑ1x̂1 + ŷ21 − 2ŷ1ẑ1 + 5ẑ21 +

(
2x̂1ŷ1ẑ1 − 2x̂2

1ŷ1 − 2x̂1ŷ
2
1

)
+

+
(
x̂2
1ŷ

2
1 − 2ẑ1ŷ1x̂

2
1 − ẑ1ŷ

2
1x̂1 − 2ẑ21 ŷ1x̂1 − ŷ21 ẑ

2
1

)
+ ẑ1ŷ

2
1x̂

2
1 + x̂1ŷ

2
1ẑ

2
1 .

This equation defines a chart of a blow up of the surface S−6 at the point P 1

2

. Its quadratic

part is not degenerate, which shows that P 1

2

is a du Val singular point of type A3 of the

surface S−6. This completes the proof of the lemma. �

If λ 6= ∞ and λ 6= −2, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be describes as follows:

• P{x},{y},{z}, P{x},{y},{t}, P{x},{z},{t}, P{y},{z},{t}, P{x},{t},{y,z}, and P{y},{t},{x,z};
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• Pµ and P1−µ, where µ ∈ C ∪ {∞} such that λ = 2µ2−2µ−1
µ(1−µ)

;

• P{t},{x,z},{y,z}, which is an isolated ordinary double point of the surface S−4.

If λ 6= −4, then Sλ is smooth at the point P{t},{x,z},{y,z}.
Note that fixed singular points of the quartic surfaces in the pencil S can be considered

as singular points of the surface Sk. In our case, all exceptional curves of the minimal
resolution of the surface Sk at these singular points are geometrically irreducible. Likewise,
we can consider the union Pµ ∪ P1−µ as a (geometrically reducible) singular point of the

surface Sk. This gives rkPic(S̃k) = rkPic(Sk) + 14. Thus, to prove (⋆), we have to show
that the intersection matrix of the curves L{x},{t}, L{y},{t}, L{x},{y,z}, L{y},{x,z}, L{t},{x,z},
L{t},{y,z}, and C on a general surface in S is of rank 4. If λ 6= ∞ and λ 6= −2, then it
follows from (2.12.1) that

Hλ ∼ 2L{x},{t} + 2L{x},{y,z} ∼ 2L{y},{t} + 2L{y},{x,z} ∼
∼ 2C ∼ L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z}

on the surface Sλ. Therefore, in this case, the intersection matrix of the curves L{x},{t},
L{y},{t}, L{x},{y,z}, L{y},{x,z}, L{t},{x,z}, L{t},{y,z}, and C on the surface Sλ has the same
rank as the intersection matrix of the four lines L{x},{t}, L{y},{t}, L{t},{x,z}, and L{t},{y,z}.
If λ 6∈ {∞,−2,−4,−6}, then the latter matrix is given by

• L{x},{t} L{y},{t} L{t},{x,z} L{t},{y,z}

L{x},{t} −1
4

1
2

1
2

1
4

L{y},{t}
1
2

−1
4

1
4

1
2

L{t},{x,z}
1
2

1
4

−3
4

1

L{t},{y,z}
1
4

1
2

1 −3
4

Its determinant is −5
8
, so that (♦) in Main Theorem holds by Lemma 1.13.1.

Lemma 2.12.4. If λ 6= −2, then [f−1(λ)] = 1. One also has [f−1(−2)] = 4.

Proof. If λ 6= −2, then Sλ has du Val singularities at the base locus of the pencil S, so
that [f−1(λ)] = 1 by Corollary 1.5.4. Hence, to complete the proof, we have to show
that [f−1(−2)] = 4. To do this, we observe that m1 = m2 = m3 = m4 = m7 = 2
and m5 = m6 = 1. Similarly, we have M−2

1 = M−2
2 = M−2

5 = M−2
6 = M−2

7 = 1 and
M−2

3 = M−2
4 = 2. Thus, using (1.8.3) and Lemma 1.8.5, we see that

[
f−1(−2)

]
= 3 +

∑

P∈Σ
D−2

P ,

where Σ is the set consisting of the points P{x},{y},{z}, P{x},{y},{t}, P{x},{z},{t}, P{y},{z},{t},
P{x},{t},{y,z}, and P{y},{t},{x,z}. Using Lemma 1.12.1, we see that

D−2
P{x},{y},{t}

= D−2
P{x},{z},{t}

= D−2
P{y},{z},{t}

= D−2
P{x},{t},{y,z}

= D−2
P{y},{t},{x,z}

= 0.

Thus, we conclude that [f−1(−2)] = 3 +D−2
P{x},{y},{z}

. Let us show that D−2
P{x},{y},{z}

= 1.
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Let α1 : U1 → P3 be a blow up of the point P{x},{y},{z}, Then D1
λ = S1

λ for every λ 6= ∞.
Moreover, the surface E1 contains a unique base curve of the pencil S1. Denote it by C1

8 .
Then m8 = 2 and M−2

8 = 2. Thus, using (1.10.9), we see that D−2
P{x},{y},{z}

> 1.

To show that D−2
P{x},{y},{z}

= 1, observe that there exists a commutative diagram

U
α

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼
γ

xxqqq
qq
qq
qq
qq
qq

U1 α1

// P3

for some birational morphism γ. Then Ĉ8 is the unique base curve of the pencil Ŝ that
is mapped to P{x},{y},{z} by the morphism α. Thus, using Lemma 1.10.7 and (1.10.9), we

conclude that D−2
P{x},{y},{z}

= 1. �

Recall that h1,2(X) = 3. Then (♥) in Main Theorem follows from Lemma 2.12.4.

2.13. Family №2.13. In this case, the threefold X is a blow up of a smooth quadric
threefold in P4 along a smooth curve of genus 2 and degree 6, which gives h1,2(X) = 2.
Its toric Landau–Ginzburg model is given by Minkowski polynomial №1392. Replacing x

by x
y
, we rewrite it as

x+ y +
xz

y
+

x

yz
+

z

y
+

yz

x
+

2

z
+

2

y
+

2y

x
+

1

yz
+

y

xz
.

The quartic pencil S is given by

xt3 + x2t2 + 2xyt2 + 2xzt2 + y2t2 + x2tz + xz2t+ 2y2tz+

+ x2yz + xy2z + xyz2 + y2z2 = λxyzt.

To prove Main Theorem in this case, we may assume that λ 6= ∞. Let C be a smooth
conic that is given by z = x2 + 2xy + y2 + xt = 0. Then

H{x} · Sλ = 2L{x},{y} + 2L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{t} + L{y},{z,t} + L{y},{x,z,t},

H{z} · Sλ = 2L{z},{t} + C,
H{t} · Sλ = L{y},{t} + L{z},{t} + L{t},{x,z} + L{t},{x,y}.

(2.13.1)

Thus, we may assume that C1 = L{x},{y}, C2 = L{y},{t}, C3 = L{z},{t}, C4 = L{x},{z,t},
C5 = L{y},{z,t}, C6 = L{t},{x,y}, C7 = L{t},{x,z}, C8 = L{y},{x,z,t}, and C9 = C. These are all
base curves of the pencil S.

For every λ ∈ C, the surface Sλ has isolated singularities, so that Sλ is irreducible.
If λ 6= −3, then the singularities of the surface Sλ that are contained in the base locus

of the pencil S are all du Val and can be described as follows:

P{x},{y},{t}: type A1 with quadratic term xy + y2 + xt;
P{x},{z},{t}: type A1 with quadratic term xz + z2 + 2tz + t2;
P{y},{z},{t}: type A1 with quadratic term yz + zt + t2;
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P{x},{y},{z,t}: type A5 with quadratic term (λ+ 3)xy;
P{y},{t},{x,z}: type A1 with quadratic term

(x+ z + t)(y + t)− (λ+ 1)yt

for λ 6= −1, type A2 for λ = −1;
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + (λ+ 3)t);

[0 : λ+ 3 : −1 : 1]: type A1;
P{t},{x,y},{x,z}: smooth for λ 6= −2, type A2 for λ = −2.

Therefore, the points P{x},{z},{t}, P{x},{y},{t}, P{y},{z},{t}, P{x},{y},{z,t}, P{y},{t},{x,z}, and
P{z},{t},{x,y} are the fixed singular points of the surfaces in the pencil S.
Lemma 2.13.2. If λ 6= −3, then [f−1(λ)] = 1. One also has [f−1(−3)] = 3.

Proof. If λ 6= −3, then Sλ has du Val singularities at the base locus of the pencil S, so
that [f−1(λ)] = 1 by Corollary 1.5.4. Hence, we must show that [f−1(−3)] = 3.

Recall that S−3 has isolated singularities. Moreover, the points P{x},{z},{t}, P{x},{y},{t},
P{y},{z},{t}, P{y},{t},{x,z}, and P{z},{t},{x,y} are good double points of this surface (see Sec-
tion 1.12). Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

[f−1(−3)] = 1 +D−3
P{x},{y},{z,t}

,

where D−3
DP{x},{y},{z,t}

is the defect of the singular point P{x},{y},{z,t}.

Let α1 : U1 → P3 be a blow up of the point P{x},{y},{z,t}. Then D1
−3 = S1

−3 + E1. In the
chart t = 1, the surface Sλ is given by

(λ+ 3)x̄ȳ +
(
x̄2z̄ − x̄2ȳ − x̄ȳ2 − (λ+ 2)x̄ȳz̄ + x̄z̄2

)
+
(
x̄2ȳz̄ + x̄ȳ2z̄ + x̄ȳz̄2 + ȳ2z̄2

)
= 0,

where x̄ = x, ȳ = y, and z̄ = z + 1. Then a chart of the blow up α1 is given by the
coordinate change x̄1 =

x̄
z̄
, ȳ1 =

ȳ

z̄
, and z̄1 = x̄. Then D1

λ is given by

x̄1

(
z̄1 + (λ+ 3)ȳ1

)
+
(
x̄2
1z̄1 − (λ+ 2)x̄1ȳ1z̄1

)
+

+
(
x̄1ȳ1z̄

2
1 − x̄2

1ȳ1z̄1 − x̄1ȳ
2
1 z̄1 + ȳ21 z̄

2
1

)
+
(
x̄2
1ȳ1z̄

2
1 + x̄1ȳ

2
1 z̄

2
1

)
= 0

and the surface E1 is given by z̄1 = 0.
The surface E1 contains two base curves of the pencil S1. They are given by z̄1 = x̄1 = 0

and z̄1 = ȳ1 = 0. Denote them by C1
9 and C1

10, respectively. Then M−3
9 = 2, M−3

10 = 1,
and m9 = 2. Thus, using (1.10.9) and Lemma 1.10.7, we see that DP{x},{y},{z,t}

> 2.

To show thatDP{x},{y},{z,t}
= 2, we have to blow up U2 at the point (x̄1, x̄2, z̄1) = (0, 0, 0).

Namely, let α2 : U2 → U1 be this blow up. Then D2
−3 = S2

−3 + E2
1, and E2 contains a

unique base curve of the pencil S2. Denote it by C2
11. Then M−3

11 = 1. Now, using (1.10.9)
and Lemma 1.10.7 again, we obtain DP{x},{y},{z,t}

= 2. This gives [f−1(−3)] = 3. �

Note that Lemma 2.13.2 implies (♥) in Main Theorem, since h1,2(X) = 2.
To verify (♥) in Main Theorem, recall that the base curves of the pencil S are L{x},{y},

L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, L{y},{x,z,t}, and C. On a general
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quartic surface in this pencil, the intersection matrix of these curves has the same rank as
the intersection matrix of the curves L{x},{y}, L{y},{t}, L{z},{t}, L{y},{z,t}, L{t},{x,y}, and Hλ.
This follows from (2.13.1). On the other hand, if λ 6∈ {−1,−2,−3}, then the intersection
form of the curves L{x},{y}, L{y},{t}, L{z},{t}, L{y},{z,t}, L{t},{x,y}, and Hλ on the surface Sλ

is given by

• L{x},{y} L{y},{t} L{z},{t} L{y},{z,t} L{t},{x,y} Hλ

L{x},{y} −1
6

1
2

0 1
3

1
2

1

L{y},{t}
1
2

−1 1
2

1
2

1
2

1

L{z},{t} 0 1
2

−1
3

1
2

1
3

1

L{y},{z,t}
1
3

1
2

1
2

−2
3

0 1

L{t},{x,y}
1
2

1
2

1
3

0 −5
6

1

Hλ 1 1 1 1 1 4

Since the determinant of this matrix is − 5
12
, we see that its rank is 6. On the other hand,

we have rkPic(S̃k) = rkPic(Sk) + 12. Hence, we see that (⋆) holds, so that (♦) in Main
Theorem also holds by Lemma 1.13.1.

2.14. Family №2.14. Let V5 be a smooth threefold such that −KV5
∼ 2H and H3 = 5,

where H is an ample Cartier divisor. Then V5 is determined by these properties uniquely
up to isomorphism. A general surface in |H| is a smooth del Pezzo surface of degree 5.
This linear system is base point free and gives an embedding V5 →֒ P6.

In our case, the threefold X is the blow up of the threefold V5 along an elliptic curve
that is a complete intersection of two general surfaces in the linear system |H|. Its toric
Landau–Ginzburg model is given by Minkowski polynomial №1658, which is

x+
xy

z
+ z +

2y

z
+

z2

xy
+

z

x
+

2

z
+

3z

xy
+

3

x
+

y

xz
+

3

xy
+

2

xz
+

1

xyz
.

The quartic pencil S is given by

x2zy + y2x2 + z2yx+ 2y2tx+ z3t+ z2ty + 2t2yx+ 3t2z2+

+ 3t2zy + t2y2 + 3t3z + 2t3y + t4 = λxyzt.

Suppose that λ 6= ∞. Let C1 be a conic that is given by x = t2 + ty + 2tz + z2 = 0,
let C2 be a conic that is given by z = xy + ty + t2 = 0, and let C3 be a conic that is given
by t = xy + xz + z2 = 0. Then

H{x} · Sλ = L{x},{t} + L{x},{y,z,t} + C1,
H{y} · Sλ = L{y},{t} + 3L{y},{z,t},

H{z} · Sλ = 2C2,
H{t} · Sλ = L{x},{t} + L{y},{t} + C3.

(2.14.1)
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We let C1 = C1, C2 = C2, C3 = C3, C4 = L{x},{t}, C5 = L{y},{t}, C6 = L{x},{y,z,t}, and
C7 = L{y},{z,t}. These are all base curves of the pencil S.

For every λ ∈ C, the surface Sλ has isolated singularities, so that Sλ is irreducible.
If λ 6= −4, then the singularities of the surface Sλ that are contained in the base locus

of the pencil S are all du Val and can be described as follows:

P{y},{z},{t}: type A3 with quadratic term y(z + y);
P{x},{z},{t}: type D5 with quadratic term (x+ t)2;

P{x},{z},{y,t}: type A1 with quadratic term

(3 + λ)xz + (x− y − 2z)(x− y − z)

for λ 6= −3, type A3 for λ = −3;
P{x},{y},{z,t}: type A3 with quadratic term

y((λ+ 3)x+ y + z + t)

for λ 6= −3, type A5 for λ = −3;
[λ+ 3 : 0 : −1 : 1]: type A2 for λ 6= −3;

[(λ+ 4)(λ+ 3) : −1 : 0 : λ+ 4]: type A1 for λ 6= −3.

Therefore, if λ 6= −4, then Sλ has du Val singularities at the base locus of the pencil S,
so that the fiber f−1(λ) is irreducible by Corollary 1.5.4. On the other hand, we have

Lemma 2.14.2. One has [f−1(−4)] = 2.

Proof. The points P{y},{z},{t}, P{x},{z},{y,t}, and P{x},{y},{z,t} are good double points of the
surface S−4. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

[
f−1(−4)

]
= 1 +D−4

P{x},{z},{t}
.

Here, the number D−4
P{x},{z},{t}

is the defect of the point P{x},{z},{t}. To compute it, we have

to (partially) resolve the singularity of the surface S−4 at the point P{x},{z},{t}.
Let α1 : U1 → P3 be a blow up of the point P{x},{z},{t}. In the chart y = 1, the surface Sλ

is given by

x̄2 +
(
2t̄2x̄+ (λ+ 4)t̄2z̄ − (λ+ 2)t̄x̄z̄ + x̄2z̄ + x̄z̄2

)
+
(
t̄4 + 3z̄t̄3 + 3t̄2z̄2 + t̄z̄3

)
= 0,

where x̄ = x + t, z̄ = z, and t̄ = t. Then a chart of the blow up α1 is given by the
coordinate change x̄1 =

x̄
z̄
, z̄1 = x̄, and t̄1 =

t̄
z̄
. Let x̂1 = x̄1, ẑ1 = x̄1 + z̄1 and t̂1 = t̄1. In

these coordinates, the surface S1
λ is given by

x̂1ẑ1 +
(
t̂1ẑ

2
1 − x̂3

1 + x̂2
1ẑ1 − (λ+ 4)t̂21x̂1 + (λ+ 4)t̂21ẑ1 + (3 + λ)x̂2

1t̂1 − (λ+ 4)t̂1x̂1ẑ1

)
+

+ t̂21x̂
2
1 − 4t̂21x̂1ẑ1 + 3t̂21ẑ

2
1 + 3x̂2

1t̂
3
1 − 6x̂1ẑ1t̂

3
1 + 3t̂31ẑ

2
1 + t̂41x̂

2
1 − 2t̂41x̂1ẑ1 + t̂41ẑ

2
1 = 0.

If λ 6= −4, the surface S1
λ has isolated singularity at (x̂1, ẑ1, t̂1) = (0, 0, 0). In this case,

the surface E1 contains another singular point of the surface S1
λ, which lies in another

chart of the blow up α1. If λ 6= −4, then this point is an isolated ordinary double point of
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the surface S1
λ. On the other hand, the surface S1

−4 is singular along the curve z̄1 = x̄1 = 0.
This explains why the singularity of the surface S−4 at the point P{x},{z},{t} is not du Val.

Let α2 : U2 → U1 be a blow up of the point (x̂1, ẑ1, t̂1) = (0, 0, 0). A chart of this blow
up is given by the coordinate change x̂2 =

x̂1

t̂1
, ŷ2 =

ŷ1
t̂1
, and t̂2 = t̂1. In these coordinates,

the surface S2
λ is given by

x̂2ẑ2 − (λ+ 4)x̂2t̂2 + (λ+ 4)ẑ2t̂2 +
(
t̂2ẑ

2
2 + (3 + λ)x̂2

2t̂2 − (λ+ 4)t̂2x̂2ẑ2

)
+

+ t̂22x̂
2
2−4t̂22x̂2ẑ2+3t̂22ẑ

2
2− t̂2x̂

3
2+ t̂2x̂

2
2ẑ2+3x̂2

2t̂
3
2−6x̂2ẑ2t̂

3
2+3t̂32ẑ

2
2+ t̂42x̂

2
2−2t̂42x̂2ẑ2+ t̂42ẑ

2
2 = 0,

and the surface E2 is given by t̂2 = 0. Note that D2
λ = S2

λ ∼ −KU2
for every λ ∈ C.

If λ 6= −4, then the quadric form x̂2ẑ2 − (λ+ 4)x̂2t̂2 + (λ+ 4)ẑ2t̂2 is not degenerate, so
that S2

λ has an isolated ordinary double singularity at (x̂2, ẑ2, t̂2) = (0, 0, 0). Thus, in this
case, the surface S1

λ has a du Val singularity of type A3 at the point (x̂1, ẑ1, t̂1) = (0, 0, 0).
Therefore, if λ 6= −4, then Sλ has a du Val singularity of type D5 at the point P{x},{z},{t}.

Now we are ready to compute DP{x},{z},{t}
using the algorithm described in Section 1.10.

Observe that E1 contains one base curve of the pencil S1. It is given by z̄1 = x̄1 = 0.
Denote this curve by C1

8 . Then m8 = 2 and M−4
8 = 2. Similarly, the surface E2 contains

two base curves of the pencil S2. They are given by t̂2 = x̂2 = 0 and t̂2 = ẑ2 = 0. Denote
them by C2

9 and C2
10, respectively. Then M−4

9 = M−4
10 = 1. Now, using (1.10.9) and

Lemma 1.10.7, we deduce that DP{x},{z},{t}
= 1, so that [f−1(−4)] = 2. �

Note that Lemma 2.14.2 implies (♥) in Main Theorem, since h1,2(X) = 2.

Lemma 2.14.3. Suppose that λ 6= −4 and λ 6= −3. Then the intersection form of the
curves L{x},{t}, L{y},{t}, L{x},{y,z,t}, and Hλ on the surface Sλ is given by

• L{x},{t} L{y},{t} L{x},{y,z,t} Hλ

L{x},{t} −3
4

1 1 1

L{y},{t} 1 5
4

0 1

L{x},{y,z,t} 1 0 −5
6

1

Hλ 1 1 1 4

Proof. To compute L2
{x},{t}, let us use the notation of Lemma A.3.2 with S = Sλ, n = 5,

O = P{x},{z},{t}, and C = L{x},{t}. Then C contains the point α(G1) = α(G2) = α(G3),

and either C̃ ·G2 = 1 or C̃ ·G3 = 1. This follows from the proof of Lemma 2.14.2. Thus,
we have L2

{x},{t} = −3
4
by Lemma A.3.2.

To find L2
{y},{t}, we observe that P{y},{z},{t} is the only singular point of the surface Sλ

that is contained in L{y},{t}. Thus, it follows from Proposition A.1.2 that L2
{y},{t} = −5

4
.

To find L2
{x},{y,z,t}, we observe that P{x},{z},{y,t} and P{x},{y},{z,t} are the only singular

points of the surface Sλ that are contained in the line L{x},{y,z,t}. Thus, it follows from
Proposition A.1.2 that L2

{y},{t} = −5
6
.
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Since L{x},{t} ∩ L{y},{t} = P{x},{y},{t} and L{x},{t} ∩ L{x},{y,z,t} = P{x},{t},{y,z}, we obtain

L{x},{t} · L{y},{t} = L{x},{t} · L{x},{y,z,t} = 1,

because Sλ is smooth at the points P{x},{y},{t} and P{x},{t},{y,z}.
Finally, we have L{y},{t} · L{x},{y,z,t} = 0, since L{y},{t} ∩ L{x},{y,z,t} = ∅. �

Recall that the base curves of the pencil S are the curves L{x},{t}, L{y},{t}, L{x},{y,z,t},
L{y},{z,t}, C1, C2, and C3. If follows from (2.14.1) that the intersection matrix of these
curves on Sλ has the same rank as the intersection matrix of the curves L{x},{t}, L{y},{t},
L{x},{y,z,t}, and Hλ. On the other hand, the determinant of the intersection matrix in
Lemma 2.14.3 is 25

16
. Thus, if λ 6= −4 and λ 6= −3, then the intersection matrix of the

curves L{x},{t}, L{y},{t}, L{x},{y,z,t}, L{y},{z,t}, C1, C2, and C3 on the surface Sλ has rank 4.

On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 14. Hence, we see that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.15. Family №2.15. In this case, the Fano threefold X is a blow up of P3 at a smooth
curve of degree 6 and genus 4. Thus, we have h1,2(X) = 4. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №910, which is

x+ y + z +
x

z
+

y

z
+

x

yz
+

2

z
+

y

xz
+

2

y
+

2

x
+

z

xy
.

The pencil S is given by

x2zy + y2zx+ z2yx+ x2ty + y2tx+ x2t2 + 2t2yx+ t2y2 + 2t2zx + 2t2zy + t2z2 = λxyzt.

Observe that this equation is symmetric with respect to the permutation x ↔ y.
We may assume that λ 6= ∞. Let C be the conic {z = xy + xt + yt = 0}. Then

H{x} · Sλ = 2L{x},{t} + 2L{x},{y,z},

H{y} · Sλ = 2L{y},{t} + 2L{y},{x,z},

H{z} · Sλ = L{z},{t} + L{z},{x,y} + C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.15.1)

Thus, we may assume that C1 = L{x},{t}, C2 = L{y},{t}, C3 = L{z},{t}, C4 = L{x},{y,z},
C5 = L{y},{x,z}, C6 = L{z},{x,y}, C7 = L{t},{x,y,z}, and C8 = C. These are all base curves of
the pencil S.

If λ 6= −1, then the surface Sλ has isolated singularities, so that Sλ is irreducible. One
the other hand, we have S−1 = H{x,y,z}+S, where S is an irreducible cubic surface that is
given by xyz+xyt+xt2+yt2+zt2 = 0. The surface S is singular at P{y},{z},{t}, P{x},{z},{t},
and P{x},{y},{t}. These are isolated ordinary double points of this surface. Note also that

H{x,y,z} ∩ S = L{x},{y,z} + L{y},{x,z} + ℓ,

where ℓ is the line {y + x− t = z + t = 0}.
If λ 6= −1, then the singularities of the surface Sλ that are contained in the base locus

of the pencil S are all du Val and can be described as follows:

P{x},{y},{z}: type D4 with quadratic term (x+ y + z)2;
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P{x},{y},{t}: type A1 with quadratic term xy + t2;
P{x},{z},{t}: type A1 with quadratic term xz + xt+ t2;
P{y},{z},{t}: type A1 with quadratic term yz + yt+ t2;

P{x},{t},{y,z}: type A3 with quadratic term x(x+ y + z + (λ+ 1)t);
P{y},{t},{x,z}: type A3 with quadratic term y(x+ y + z + (λ+ 1)t);
P{z},{t},{x,y}: type A1 with quadratic term (x+ y)(z + t) + z2 − λzt.

If λ 6= −1, then [f−1(λ)] = 1 by Corollary 1.5.4, so that (♥) in Main Theorem follows from

Lemma 2.15.2. One has [f−1(−1)] = 5.

Proof. It follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that
[
f−1(−1)

]
= 4 +D−1

P{x},{y},{z}
.

Observe that S is smooth at P{x},{y},{z}, and H{x,y,z} is tangent to S at this point. Thus,
the proper transforms of these surfaces on the blow up of P3 at the point P{x},{y},{z} both
pass through the base curve of the proper transform of the pencil S that is contained in
the exceptional divisor. Using (1.10.9), we conclude that D−1

P{x},{y},{z}
> 1. Arguing as in

the proof of Lemma 2.5.3, we see that D−1
P{x},{y},{z}

= 1, so that [f−1(−1)] = 5. �

If λ 6= −1, then the intersection form of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{z},{x,y},
and Hλ on the surface Sλ is given by

• L{x},{t} L{y},{t} L{z},{t} L{z},{x,y} Hλ

L{x},{t} −1
4

1
2

1
2

0 1

L{y},{t}
1
2

−1
4

1
2

0 1

L{z},{t}
1
2

1
2

−1
2

1
2

1

L{z},{x,y} 0 0 1
2

−1
2

1

Hλ 1 1 1 1 4

The rank of this matrix is 4. Thus, if λ 6= −1, then it follows from (2.15.1) that the
intersection matrix of the base curves of the pencil S on the surface Sλ also has rank 4.
On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 14. Hence, we see that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.16. Family №2.16. In this case, the Fano threefoldX is a blow up of a smooth complete
intersection of two quadrics in a conic. We have h1,2(X) = 2. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №1939, which is

x+ z +
y

z
+

y

x
+

x

z
+

z

x
+

x

y
+

1

z
+

z

y
+

1

x
+

x

yz
+

2

y
+

z

xy
.

The quartic pencil S is given by

x2yz+xy2t+xyz2+y2zt+x2yt+yz2t+x2zt+xyt2+xz2t+yzt2+x2t2+2xzt2+z2t2 = λxyzt.
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As usual, we suppose that λ 6= ∞. If λ 6= −2, then the surface Sλ has isolated
singularities, so that it is irreducible. One also has S−2 = H{x,z} +H{y,t} +Q, where Q is
an irreducible quadric surface given by xz + xt + yt+ zt = 0.

Let C be the conic in P3 that is given by y = xz + xt + zt = 0. Then

• H{x} · Sλ = L{x},{z} + L{x},{t} + L{x},{y,z} + L{x},{y,t};
• H{y} · Sλ = L{y},{t} + L{y},{x,z} + C;
• H{z} · Sλ = L{x},{z} + L{z},{t} + L{z},{x,y} + L{z},{y,t};
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,z},

so that the base locus of the pencil S consists of the curves L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,z}, L{x},{y,t}, L{y},{x,z}, L{z},{x,y}, L{z},{y,t}, L{t},{x,z}, and C.

If λ 6= −2, then singular points of the surface Sλ contained in the base locus of the
pencil S are all du Val and can be described as follows:

P{x},{y},{z}: type A3 with quadratic term

(x+ z)(x+ y + z)

for λ 6= −3, type A5 for λ = −3;
P{x},{y},{t}: type A2 with quadratic term (x+ t)(y + t);
P{x},{z},{t}: type A3 with quadratic term t(x+ z);
P{y},{z},{t}: type A2 with quadratic term (y + t)(z + t);

P{x},{z},{y,t}: type A1 with quadratic term xy + yz + zt− (λ+ 2)xz;
P{y},{t},{x,z}: type A1 with quadratic term xy + xt + yz − (λ+ 2)yt.

Moreover, the singularities of the surface S−2 at these points are non-isolated ordinary
double points. Thus, if λ 6= −2, then the fiber f−1(λ) is irreducible by Corollary 1.5.4.
Similarly, it follows from (1.8.3) and Lemma 1.12.1 that [f−1(−2)] = 3. This confirms (♥)
in Main Theorem, since h1,2(X) = 2.

If λ 6= −2 and λ 6= −3, then the intersection matrix of the curves L{y},{x,t}, L{t},{x,z},
L{x},{y,t}, L{z},{y,t}, L{x},{y,t}, and Hλ on the surface Sλ is given by

• L{y},{x,t} L{t},{x,z} L{x},{y,t} L{z},{y,t} L{x},{y,t} Hλ

L{y},{x,t} −4
3

0 1
3

0 0 1

L{t},{x,z} 0 −1
2

0 0 0 1

L{x},{y,t}
1
3

0 −5
6

1
2

1 1

L{z},{y,t} 0 0 1
2

−5
6

0 1

L{x},{y,t} 0 0 1 0 −5
4

1

Hλ 1 1 1 1 1 4

This matrix has rank 6. One the other hand, if λ 6= −2, then

Hλ ∼ 2L{x},{z} + L{y},{x,z} + L{t},{x,z} ∼ L{x},{y,t} + 2L{y},{t} + L{z},{y,t}



76 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

on the surface Sλ, because H{x,z} · Sλ = 2L{x},{z} + L{y},{x,z} + L{t},{x,z} and

H{y,t} · Sλ = L{x},{y,t} + 2L{y},{t} + L{z},{y,t}.

Thus, if λ 6= −2 and λ 6= −2, then the intersection matrix of the curves L{x},{z}, L{x},{t},
L{y},{t}, L{z},{t}, L{x},{y,z}, L{x},{y,t}, L{y},{x,z}, L{z},{x,y}, L{z},{y,t}, L{t},{x,z}, and C also has

rank 6. Hence, we see that (⋆) holds, because rkPic(S̃k) = rkPic(Sk) + 12. Then (♦) in
Main Theorem holds by Lemma 1.13.1.

2.17. Family №2.17. The threefold X is a blow up of a smooth quadric threefold along
a smooth elliptic curve of degree 5, so that h1,2(X) = 1. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №1926, which is

x+ y + z +
x

y
+

y

x
+

z

y
+

z

x
+

1

z
+

2

y
+

1

x
+

z

xy
+

1

xz
+

1

xy
.

The quartic pencil S is given by

x2yz+xy2z+xyz2+x2zt+y2zt+xz2t+yz2t+xyt2+2xzt2+yzt2+z2t2+yt3+zt3 = λxyzt.

As usual, we suppose that λ 6= ∞. Let C be the conic {x = yz + tz + t2 = 0}. Then
H{x} · Sλ = L{x},{t} + L{x},{y,z} + C,
H{y} · Sλ = L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{x,z,t},

H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.17.1)

Thus, we may assume that C1 = L{x},{t}, C2 = L{y},{z}, C3 = L{y},{t}, C4 = L{z},{t},
C5 = L{x},{y,z}, C6 = L{y},{x,t}, C7 = L{z},{x,t}, C8 = L{y},{x,z,t}, C9 = L{t},{x,y,z}, C10 = C.
These are all base curves of the pencil S. Note that m1 = 2, m2 = 2, m3 = 2, m3 = 2,
m4 = 3, m5 = 1, m6 = 1, m7 = 1, m8 = 1, m9 = 1, and m10 = 1.

If λ 6= −2, then the surface Sλ ∈ S has isolated singularities, so that it is irreducible.
On the other hand, one also has S−2 = H{x,t} +S, where S is an irreducible cubic surface
that is given by the equation xyz + xzt + y2z + yz2 + yzt+ yt2 + z2t+ zt2 = 0.

If λ 6= −2, then the singular points of the surface Sλ contained in the base locus of the
pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term (x+ t)(y + t);
P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{y},{z},{t}: type A2 with quadratic term z(y + t);

P{x},{t},{y,z}: type A1 with quadratic term (x+ y + z)(x+ t)− (λ+ 2)xt;
P{y},{t},{x,z}: type A1 with quadratic term

(y + t)(x+ y + z + t)− (λ+ 3)yt

for λ 6= −3, type A2 for λ = −3;
P{y},{z},{x,t}: type A2 with quadratic term y(x+ t+ (λ+ 2)z);
P{z},{t},{x,y}: type A1 with quadratic term xz + yz − z2 − (λ+ 2)zt + t2;

[0 : −2, 2 : −1±
√
5]: smooth point for λ 6= −1∓

√
5

2
, type A1 for λ = −1∓

√
5

2
.
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Thus, if λ 6= −2, then [f−1(λ)] = 1 by Corollary 1.5.4. To find [f−1(−2)], observe that
the set Σ consists of the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z}, P{y},{z},{x,t},
P{y},{t},{x,z}, and P{z},{t},{x,y}. Thus, it follows from (1.8.3) and Lemma 1.8.5 that

[
f−1(−2)

]
= 2 +

∑

P∈Σ
D−2

P .

Moreover, the quadratic terms of the surface Sλ at the singular points P{y},{z},{t},
P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z}, P{y},{z},{x,t}, P{y},{t},{x,z}, and P{z},{t},{x,y} given above
are also valid for λ = −2. This shows that all these points are good double points of the
surface S−2, so that their defects vanish by Lemma 1.12.1. Hence, we have [f−1(−2)] = 2.
This confirms (♥) in Main Theorem, since h1,2(X) = 1.

If λ 6= −2, then the intersection matrix of base curves of the pencil S on the surface Sλ

has the same rank as the intersection matrix of the curves L{x},{y,z}, L{y},{x,t}, L{z},{x,t},
L{y},{x,z,t}, L{y},{z}, and Hλ, because

L{x},{t} + L{x},{y,z} + C ∼ L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{x,z,t} ∼
∼ L{y},{z} + 2L{z},{t} + L{z},{x,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

on the surface Sλ by (2.17.1), and

2L{x},{t} + L{y},{x,t} + L{z},{x,t} ∼ Hλ,

since H{x,t} ·Sλ = 2L{x},{t} +L{y},{x,t} +L{z},{x,t}. Moreover, if λ 6∈ {−2,−3, −1±
√
5

2
}, then

the intersection matrix of the curves L{x},{y,z}, L{y},{x,t}, L{z},{x,t}, L{y},{x,z,t}, L{y},{z}, and
Hλ on the surface Sλ is given by

• L{x},{y,z} L{y},{x,t} L{z},{x,t} L{y},{x,z,t} L{y},{z} Hλ

L{x},{y,z} −4
3

0 0 0 1 1

L{y},{x,t} 0 −2
3

1
3

2
3

2
3

1

L{z},{x,t} 0 1
3

−1
3

1
3

1
3

1

L{y},{x,z,t} 0 2
3

1
3

−5
6

2
3

1

L{y},{z} 1 2
3

1
3

2
3

−2
3

1

Hλ 1 1 1 1 1 4

The determinant of this matrix is − 7
18
. But rkPic(S̃k) = rkPic(Sk) + 12. Thus, we see

that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.18. Family №2.18. In this case, the threefold X is a double cover of P1×P2 ramified in
a divisor of bidegree (2, 2). In this case, we have h1,2(X) = 2. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №1922, which is

x+ y + z +
y

x
+

z

x
+

x

yz
+

1

z
+

1

y
+

1

x
+

2

yz
+

1

xz
+

1

xy
+

1

xyz
.
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The quartic pencil S is given by

x2yz+xy2z+xyz2+y2zt+yz2t+x2t2+xyt2+xzt2+yzt2+2xt3+yt3+zt3+ t4 = λxyzt.

Suppose that λ 6= ∞. Let C be the conic which is given by x = yz + t2 = 0. Then

H{x} · Sλ = L{x},{t} + L{x},{y,z,t} + C,
H{y} · Sλ = 2L{y},{t} + L{y},{x,t} + L{y},{x,z,t},

H{z} · Sλ = 2L{z},{t} + L{z},{x,t} + L{z},{x,y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.18.1)

Thus, we may assume that C1 = L{x},{t}, C2 = L{y},{t}, C3 = L{z},{t}, C4 = L{y},{x,t},
C5 = L{z},{x,t}, C6 = L{x},{y,z,t}, C7 = L{y},{x,z,t}, C8 = L{z},{x,y,t}, C9 = L{t},{x,y,z}, and
C10 = C. These are all base curves of the pencil S.

Note that S−2 = H{x,t}+H{x,y,z,t}+Q, where Q is an irreducible quadric cone in P3 that
is given by yz + t2 = 0. On the other hand, if λ 6= −2, then Sλ has isolated singularities.
Furthermore, if λ 6= −2, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be described as follows:

P{y},{z},{t}: type A1 with quadratic term yz + t2;
P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{x},{y},{t}: type A3 with quadratic term y(x+ t);

P{x},{t},{y,z}: type A1 with quadratic term (x+ t)(x+ y + z + t)− (λ+ 2)xt;
P{y},{z},{x,t}: type A1 with quadratic term x(x+ y + z + t)− (λ+ 2)yz;
P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z − t− λt);
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + z − t− λt).

Thus, the set Σ consists of the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z},
P{y},{z},{x,t}, P{y},{t},{x,z}, and P{z},{t},{x,y}.

If λ 6= −2, then the fiber f−1(λ) is irreducible by Corollary 1.5.4. Similarly, it follows
from (1.8.3), Lemma 1.8.5 and Lemma 1.12.1 that [f−1(−2)] = [S−2] = 3, because

M−2
1 = M−2

2 = M−2
3 = M−2

4 = M−2
5 = M−2

6 = M−2
7 = M−26

8 = M−2
9 = M−26

10 = 1,

and every point of the set Σ is a good double point of the surface S−2. This confirms (♥)
in Main Theorem, since h1,2(X) = 2.

To verify (♦) in Main Theorem, observe that

H{x,t} · Sλ = 2L{x},{t} + L{y},{x,t} + L{z},{x,t}

for λ 6= −2. Thus, if λ 6= −2, then 2L{x},{t}+L{y},{x,t}+L{z},{x,t} ∼ Hλ on the surface Sλ.
Likewise, if λ 6= −2, then

2L{x},{y,z,t} + L{y},{x,z,t} + L{z},{x,y,t} + L{t},{x,y,z} ∼ Hλ,

since H{x,y,z,t} · Sλ = 2L{x},{y,z,t} + L{y},{x,z,t} + L{z},{x,y,t} + L{t},{x,y,z}. If λ 6= −2, then

Hλ ∼ L{x},{t} + L{x},{y,z,t} + C ∼ 2L{y},{t} + L{y},{x,t} + L{y},{x,z,t} ∼
∼ 2L{z},{t} + L{z},{x,t} + L{z},{x,y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}
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on the surface Sλ. This follows from (2.18.1). So, if λ 6= −2, then the rank of the
intersection matrix of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{y},{x,t}, L{z},{x,t}, L{x},{y,z,t},
L{y},{x,z,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C on the surface Sλ is 5, since the intersection matrix
of the curves L{x},{t}, L{x},{y,z,t}, L{y},{x,z,t}, L{y},{x,t}, and Hλ on the surface Sλ is given by

• L{x},{t} L{x},{y,z,t} L{y},{x,z,t} L{y},{x,t} Hλ

L{x},{t} 0 1
2

0 3
4

1

L{x},{y,z,t}
1
2

−3
2

1 0 1

L{y},{x,z,t} 0 1 −5
6

1
2

1

L{y},{x,t}
3
4

0 1
2

−1
2

1

Hλ 1 1 1 1 4

One the other hand, we have rkPic(S̃k) = rkPic(Sk) + 13, so that (⋆) holds in this case.
Then (♦) in Main Theorem holds by Lemma 1.13.1.

2.19. Family №2.19. In this case, the threefold X can be obtained by blowing up a
smooth complete intersection of two quadrics in P5 along a line, so that h1,2(X) = 2.
A toric Landau–Ginzburg model of this family is given by

x+ y + z +
x

y
+

z

y
+

yz

x
+

x

z
+

x

yz
+

y

z
+

1

y
+

y

x
,

which is Minkowski polynomial №1108. Then the pencil S is given by

x2yz + xyz2 + x2zt + xy2z + xz2t+ y2z2 + x2yt+ x2t2 + xy2t + xzt2 + y2zt = λxyzt.

For simplicity, we assume that λ 6= ∞. If λ 6= −1, then the surface Sλ has isolated
singularities, so that it is irreducible. On the other hand, we have S−1 = H{x,z}+H{x,t}+Q,
where Q is a smooth quadric in P3 that is given by xy + xt + y2 = 0.

Let C be the conic in P3 that is given by z = xy + xt + y2 = 0. Then

• H{x} · Sλ = 2L{x},{y} + L{x},{z} + L{x},{z,t},
• H{y} · Sλ = L{x},{y} + L{y},{t} + L{y},{x,z} + L{y},{z,t},
• H{z} · Sλ = L{x},{z} + L{z},{t} + C,
• H{t} · Sλ = L{y},{t} + L{z},{t} + L{t},{x,y} + L{t},{x,z}.

This shows that the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z},
L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,z}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, and C. This also gives

2L{x},{y} + L{x},{z} + L{x},{z,t} ∼ L{x},{y} + L{y},{t} + L{y},{x,z} + L{y},{z,t} ∼
∼ L{x},{z} + L{z},{t} + C ∼ L{y},{t} + L{z},{t} + L{t},{x,y} + L{t},{x,z} ∼ Hλ

on the surface Sλ with λ 6= −1.
If λ 6= −1, then the singularities of the surface Sλ contained in the base locus of the

pencil S can be described as follows:

P{y},{z},{t}: type A2 with quadratic term (y + t)(z + t);
P{x},{z},{t}: type A2 with quadratic term (x+ z)(z + t);
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P{x},{y},{t}: type A1 with quadratic term xy + xt + y2;
P{x},{y},{z}: type A4 with quadratic term x(x+ z);
P{x},{y},{z,t}: type A2 with quadratic term x(y + λy − z − t);
P{y},{t},{x,z}: type A1 with quadratic term (x+ z)(y + t)− (λ+ 1)yt;
P{z},{t},{x,y}: type A1 with quadratic term (z + t)(x+ y − t)− (λ+ 1)zt.

These quadratic terms remain valid also for λ = −1. Thus, using (1.8.3) and applying
Lemmas 1.8.5 and 1.12.1, we see that [f−1(−1)] = [S−1] = 3, because S−1 is smooth at
general points of the curves L{x},{y}, L{x},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,z}, L{y},{z,t},
L{t},{x,y}, L{t},{x,z}, and C. This confirms (♥) in Main Theorem, since h1,2(X) = 2.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 13. Moreover,
if λ 6= −1, then the rank of the intersection matrix of the curves L{x},{y}, L{x},{z}, L{y},{t},
L{z},{t}, L{x},{z,t}, L{y},{x,z}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, and C on the surface Sλ is the
same as the rank of the intersection matrix of the curves L{x},{z,t}, L{y},{t}, L{y},{x,z},
L{y},{z,t}, L{z},{t}, L{t},{x,y}, and Hλ. Thus, using Lemma 1.13.1, we see that (♦) in Main
Theorem holds in this case, because the matrix in the following lemma has rank 5.

Lemma 2.19.1. Suppose that λ 6= −1. Then the intersection matrix of the curves
L{x},{z,t}, L{y},{t}, L{y},{x,z}, L{y},{z,t}, L{z},{t}, L{t},{x,y}, and Hλ on the surface Sλ is
given by

• L{x},{z,t} L{y},{t} L{y},{x,z} L{y},{z,t} L{z},{t} L{t},{x,y} Hλ

L{x},{z,t} −2
3

0 0 1
3

2
3

0 1

L{y},{t} 0 −1
3

1
2

1
3

1
3

1
2

1

L{y},{x,z} 0 1
2

− 7
10

1 0 0 1

L{y},{z,t}
1
3

1
3

1 −2
3

2
3

0 1

L{z},{t}
2
3

1
3

0 2
3

−1
6

1
2

1

L{t},{x,y}
1
2

0 0 0 0 −1
2

1

Hλ 1 1 1 1 1 1 4

Proof. The last column and the last raw in this matrix are obvious. To find its diagonal
entries, we use Proposition A.1.3. For instance, the line L{x},{z,t} contains two singular
points of the surface Sλ. These are the points P{x},{z},{t} and P{x},{y},{z,t}. Both of them
are singular points of type A2. Thus, by Proposition A.1.3, we have

L2
{x},{z} = −2 +

2

3
+

2

3
= −2

3
.

Likewise, we obtain the remaining diagonal entries.
To find the remaining entries of the intersection matrix, observe that the line L{x},{z,t}

does not intersect the lines L{y},{t}, L{y},{x,z}, and L{t},{x,y}, so that

L{x},{z,t} · L{y},{t} = L{x},{z,t} · L{y},{x,z} = L{x},{z,t} · L{t},{x,y} = 0.
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Now observe that L{x},{z,t} ∩ L{y},{z,t} = P{x},{y},{z,t}, which is a singular point of the
surface Sλ of type A2. Moreover, the strict transforms of the lines L{x},{z,t} and L{y},{z,t} on
the minimal resolution of singularities of the surface Sλ at the point P{x},{y},{z,t} intersect
different exceptional curves. This implies that L{x},{z,t}·L{y},{z,t} =

1
3
by Proposition A.1.3.

Similarly, we see that L{x},{z,t} ·L{z},{t} =
2
3
, L{y},{t} ·L{y},{x,z} =

1
2
, L{y},{t} ·L{y},{z,t} =

1
3
,

L{y},{t} · L{z},{t} =
1
3
, L{y},{t} · L{t},{x,y} =

1
2
and L{y},{z,t} · L{z},{t} =

2
3
.

Observe that the line L{y},{x,z} does not intersect the lines L{z},{t} and L{t},{x,y}, and
the line L{y},{z,t} does not intersect the line L{t},{x,y}, so that

L{y},{x,z} · L{z},{t} = L{y},{x,z} · L{t},{x,y} = L{y},{z,t} · L{t},{x,y} = 0.

Moreover, the intersection L{y},{x,z}∩L{y},{z,t} consists of a smooth point of the surface Sλ.
Thus, we have L{y},{x,z} · L{y},{z,t} = 1.

Finally, observe that L{z},{t} ∩ L{t},{x,y} = P{z,t},{x,y}, which is a singular point of the
surface Sλ of type A1. Thus, we have L{z},{t} · L{t},{x,y} =

1
2
by Proposition A.1.3. �

2.20. Family №2.20. In this case, the threefold X is a blow up of the threefold V5 along a
twisted cubic (see Subsection 2.14). Thus, we have h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №1109, which is

y

z
+ x+ y +

1

z
+

y

xz
+

y

x
+

1

xz
+

xz

y
+ z +

1

y
+

1

x
.

The pencil S is given by the equation

y2tx+ x2zy + y2zx+ t2xy + t2y2 + y2zt + t3y + x2z2 + z2xy + t2zx + t2zy = λxyzt.

Suppose that λ 6= ∞. Then the surface Sλ has isolated singularities. In particular, we see
that Sλ is irreducible.

Let C be a conic in P3 that is given by y = xz + t2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{t} + L{x},{y,t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + C,
H{z} · Sλ = L{y},{z} + L{z},{t} + L{z},{x,t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{z},{t} + L{t},{x,y} + L{t},{y,z}.

(2.20.1)

This shows that L{x},{y}, L{x},{t}, L{y},{z}, L{z},{t}, L{x},{y,t}, L{x},{z,t} L{z},{x,t}, L{z},{y,t},
L{t},{x,y}, L{t},{y,z}, and C are all base curves of the pencil S.

If λ 6= −2 and λ 6= −3, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be described as follows:

P{y},{z},{t}: type A4 with quadratic term z(y + z);
P{x},{z},{t}: type A2 with quadratic term (x+ t)(z + t);
P{x},{y},{t}: type A4 with quadratic term x(x+ y).

The surface S−3 has the same singularities at P{y},{z},{t}, P{x},{z},{t}, and P{x},{y},{t}. In ad-
dition to them, it is also singular at the points [0 : 1 : 1 : −1] and [1 : 1 : 0 : −1], which are
isolated ordinary double points of the surface S−3. Similarly, the singular points of the
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surface S−2 are P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, and [1 : −1 : 1 : 0]. They are singular
points of the surface S−2 of types A6, A2, A6, and A1, respectively.

We see that every surface Sλ has du Val singularities in every base point of the pencil S.
Thus, by Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main
Theorem, since h1,2(X) = 0. To verify (♦) in Main Theorem, we need

Lemma 2.20.2. Suppose that λ 6= −2 and λ 6= −3. Then the intersection matrix of the
curves L{x},{y}, L{x},{y,t}, L{x},{z,t}, L{y},{z}, L{z},{x,t}, L{z},{y,t}, L{t},{y,z}, and Hλ on the
surface Sλ is given by

• L{x},{y} L{x},{y,t} L{x},{z,t} L{y},{z} L{z},{x,t} L{z},{y,t} L{t},{y,z} Hλ

L{x},{y} −4
5

2
5

0 1 0 0 0 1

L{x},{y,t}
2
5

−6
5

1 0 0 1 0 1

L{x},{z,t} 0 1 −4
3

0 1
3

0 0 1

L{y},{z} 1 0 0 −4
5

1 2
5

3
5

1

L{z},{x,t} 0 0 1
3

1 −4
3

1 0 1

L{z},{y,t} 0 1 0 2
5

1 −6
5

1
5

1

L{t},{y,z} 0 0 0 3
5

0 1
5

−6
5

1

Hλ 1 1 1 1 1 1 1 4

Proof. All diagonal entries here can be found using Proposition A.1.3. For instance, the
only singular point of the surface Sλ that is contained in L{x},{y} is the point P{x},{y},{t},
which is a singular point of type A4 of the surface Sλ. Applying Remark A.2.4 with
S = Sλ, n = 4, O = P{x},{y},{t}, and C = L{x},{y}, we see that C contains the point

G1 ∩G4, because the quadratic term of the surface Sλ at the point P{x},{y},{t} is x(x+ y).

This shows that C̃ intersects either G2 or G3. Then L2
{x},{y} = −4

5
by Proposition A.1.3.

Applying Proposition A.1.2, we can find the remaining entries of the intersection matrix.
For instance, observe that

L{x},{y} ∩ L{x},{t} = L{x},{y} ∩ L{x},{y,t} = P{x},{y},{t}.

Thus, it follows from Proposition A.1.2 that L{x},{y} · L{x},{t} and L{x},{y} · L{x},{y,t} are
among 2

5
and 3

5
. But L{x},{y} + L{x},{t} + L{x},{y,t} + L{x},{z,t} ∼ Hλ by (2.20.1), so that

1 =
(
L{x},{y} + L{x},{t} + L{x},{y,t} + L{x},{z,t}

)
· L{x},{y} =

= L{x},{y} · L{x},{t} + L{x},{y} · L{x},{y,t} −
1

5
.

Hence, we deduce that L{x},{y} ·L{x},{t} =
2
5
and L{x},{y} ·L{x},{y,t} =

2
5
. Similarly, we can

find all remaining entries of the intersection matrix. �

The matrix in Lemma 2.20.2 has rank 8. But rkPic(S̃k) = rkPic(Sk)+ 10, so that (⋆)
holds. By Lemma 1.13.1, this shows that (♦) in Main Theorem also holds.
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2.21. Family №2.21. In this case, the threefoldX can be obtained from a smooth quadric
threefold in P4 by blowing up a smooth rational curve of degree 4. Then h1,2(X) = 0.
A toric Landau–Ginzburg model of this family is given by

x

z
+ x+

y

z
+

x

y
+

1

z
+ y + z +

y

x
+

z

y
+

1

x
,

which is Minkowski polynomial №730. Then the pencil S is given by

x2ty + x2zy + y2tx+ x2zt + t2yx+ y2zx+ z2yx+ y2zt + z2tx+ t2zy = λxyzt.

As usual, we assume that λ 6= ∞. Then

• H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},
• H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,z},
• H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y,t},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

This shows that L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,z},
L{z},{x,y,t}, and L{t},{x,y,z} are all base curves of the pencil S.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A3 with quadratic term y(x+ z);
P{x},{y},{t}: type A3 with quadratic term x(y + t) for λ 6= −1, type A5 for λ = −1;
P{x},{z},{t}: type A1;
P{y},{z},{t}: type A1;

P{x},{z},{y,t}: type A1 for λ 6= −2, type A2 for λ = −2;
P{y},{t},{x,z}: type A1 for λ 6= −2, type A2 for λ = −2;
P{z},{t},{x,y}: type A1 for λ 6= −4, type A2 for λ = −4.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
The rank of the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},

L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,z}, L{z},{x,y,t}, and L{t},{x,y,z} on the surface Sλ is the
same as the rank of the intersection matrix of the curves L{x},{y}, L{x},{t}, L{y},{z}, L{z},{t},
L{z},{x,y,t}, L{t},{x,y,z}, and Hλ. If λ 6∈ {−1,−2,−4}, then the latter matrix is given by

• L{x},{y} L{x},{t} L{y},{z} L{z},{t} L{z},{x,y,t} L{t},{x,y,z} Hλ

L{x},{y} −1
2

3
4

3
4

0 0 0 1

L{x},{t}
3
4

−3
4

0 1
2

0 1 1

L{y},{z}
3
4

0 −3
4

1
2

0 1 1

L{z},{t} 0 1
2

1
2

−1 1 1 1

L{z},{x,y,t} 0 0 1 1 −3
2

1 1

L{t},{x,y,z} 0 1 0 1 1 −1 1

Hλ 1 1 1 1 1 1 4
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Thus, its determinant is −45
16

6= 0. Moreover, we have rkPic(S̃k) = rkPic(Sk)+11. Hence,
we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.22. Family №2.22. The threefold X is a blow up of the threefold V5 along a conic (see
Subsection 2.14), so that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is
given by Minkowski polynomial №413, which is

y

x
+

1

x
+ y + z +

1

xz
+

1

z
+

1

y
+ x+

xz

y
.

The quartic pencil S is given by

y2zt + t2zy + y2zx + z2yx+ t3y + t2yx+ t2zx+ x2zy + x2z2 = λxyzt.

Suppose that λ 6= ∞. Let C1 be the conic in P3 that is given by x = yz + zt + t2 = 0,
and let C2 be the conic in P3 that is given by y = xz + t2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{t} + C1,
H{y} · Sλ = L{x},{y} + L{y},{z} + C2,
H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{z},{t} + L{t},{x,y} + L{t},{y,z}.

(2.22.1)

Thus, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{t}, L{y},{z}, L{z},{t},
L{z},{x,t}, L{t},{x,y}, L{t},{y,z}, C1, and C2.

For every λ ∈ C, the surface Sλ is irreducible and has isolated singularities. Moreover,
the singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{t}: type A4 with quadratic term x(x+ y) for λ 6= −2, type A5 for λ = −2;
P{x},{z},{t}: type A3 with quadratic term z(x+ t) for λ 6= −2, type A5 for λ = −2;
P{y},{z},{t}: type A4 with quadratic term z(y + z) for λ 6= −1, type A5 for λ = −1;

P{z},{t},{x,y}: type A1;
[1 : −1 : 1 : 0]: smooth for λ 6= −1, type A1 for λ = −1.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
If λ 6= −1 and λ 6= −2, then the intersection matrix of the curves L{x},{y}, L{z},{t},

L{z},{x,t}, L{t},{x,y}, L{t},{y,z}, and Hλ on the surface Sλ is given by

• L{x},{y} L{z},{t} L{z},{x,t} L{t},{x,y} L{t},{y,z} Hλ

L{x},{y} −4
5

0 0 1
5

0 1

L{z},{t} 0 1
20

1
2

1
2

1
5

1

L{z},{x,t} 0 1
2

−1 0 0 1

L{t},{x,y}
1
5

1
2

0 − 7
10

1 1

L{t},{y,z} 0 1
5

0 1 −6
5

1

Hλ 1 1 1 1 1 4
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This matrix has rank 6. Hence, using (2.22.1), we see that the rank of the intersection
matrix of the curves L{x},{y}, L{x},{t}, L{y},{z}, L{z},{t}, L{z},{x,t}, L{t},{x,y}, L{t},{y,z}, C1,
and C2 is also 5. But rkPic(S̃k) = rkPic(Sk) + 12, so that we conclude that (⋆) holds.
Then (♦) in Main Theorem holds by Lemma 1.13.1.

2.23. Family №2.23. The threefold X is a blow up of a smooth quadric threefold in P4

along a smooth elliptic curve of degree 4. Then h1,2(X) = 1. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №410, which is

x+ y + z +
z

x
+

z

y
+

x

z
+

y

z
+

1

x
+

1

y
.

In this case, the pencil S is given by the equation

xyz2 + x2yz + xy2z + xz2t+ yz2t+ x2yt+ xy2t + xzt2 + yzt2 = λxyzt.

As usual, we assume that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.23.1)

This shows that the base locus of the pencil S is a union of the curves L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,y}, and L{t},{x,y,z}.

Observe that S−1 = H{z,t} + S, where S is an irreducible cubic surface in P3 that is
given by xzt + yzt + x2y + xy2 + xyz = 0. On the other hand, if λ 6= −1, then Sλ has
isolated singularities, so that it is irreducible. Moreover, in this case, the singular points
of the surface Sλ contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A3 with quadratic term y(z + t);
P{x},{z},{t}: type A3 with quadratic term x(z + t);
P{x},{y},{t}: type A1 with quadratic term xy + xt + yt;
P{x},{y},{z}: type A3 with quadratic term z(x+ y) for λ 6= 0, type A5 for λ = 0;
P{z},{t},{x,y}: type A1 with quadratic term (x+ y + z)(z + t)− (λ+ 1)zt;
P{x},{y},{z,t}: type A1 with quadratic term (x+ y)(z + t)− (λ+ 1)xy.

Thus, it follows from Lemma 1.5.4 that the fiber f−1(λ) is irreducible for every λ 6= −1.
Moreover, the surface S−1 has good double points at P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t},
P{x},{y},{z}, P{z},{t},{x,y}, and P{x},{y},{z,t}. Furthermore, it is smooth at general points of
the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,y},
and L{t},{x,y,z}. This gives [f

−1(−1)] = [S−1] = 2 by (1.8.3) and Lemmas 1.8.5 and 1.12.1
and confirms (♥) in Main Theorem, since h1,2(X) = 1.

To verify (♦) in Main Theorem, we may assume that λ 6= 0 and λ 6= −1. Then the
intersection matrix of the curves L{x},{z}, L{x},{t}, L{x},{z,t}, L{y},{t}, L{y},{z,t}, L{z},{x,y},
and Hλ on the surface Sλ is given by
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• L{x},{z} L{x},{t} L{x},{z,t} L{y},{t} L{y},{z,t} L{z},{x,y} Hλ

L{x},{z} −1
2

3
4

1
2

0 0 1
2

1

L{x},{t}
3
4

−3
4

1
2

1
2

0 0 1

L{x},{z,t}
1
2

1
2

−1
2

0 1
2

0 1

L{y},{t} 0 1
2

0 −3
4

1
2

0 1

L{y},{z,t} 0 0 1
2

1
2

−1
2

0 1

L{z},{x,y}
1
2

0 0 0 0 −1
2

1

Hλ 1 1 1 1 1 1 4

The rank of this matrix is 6. Thus, using (2.23.1), we see that the intersection matrix of
the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,y},

and L{t},{x,y,z} is also 6. But rkPic(S̃k) = rkPic(Sk) + 12. This shows that (⋆) holds, so
that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.24. Family №2.24. The threefold X is a smooth divisor in P2 × P2 of bidegree (1, 2),
which implies that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given
by Minkowski polynomial №411, which is

xy

z
+ x+ y + z +

x

z
+

y

x
+

z

y
+

1

y
+

1

x
.

Then the pencil S is given by the equation

x2y2 + x2yz + y2xz + z2xy + x2yt+ y2tz + z2xt + t2xz + t2yz = λxyzt.

Moreover, the base locus of this pencil consists of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{x},{y,t}, L{y},{z,t}, L{z},{y,t}, L{t},{y,z}, and L{t},{x,z}, because

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{t},{y,z} + L{t},{x,z}.

(2.24.1)

Here, as usual, we assume that λ 6= ∞.
For every λ ∈ C, the surface Sλ has isolated singularities, so that Sλ is irreducible.

Its singular points contained in the base locus of the pencil S can be described as follows:

P{x},{z},{t}: type A1;
P{x},{y},{t}: type A3 with quadratic term x(y + t) for λ 6= −2, type A4 for λ = −2;
P{x},{y},{z}: type A3 with quadratic term z(x+ y) for λ 6= −3

2
, type A4 for λ = −3

2
;

P{y},{z},{t}: type A3 with quadratic term y(y+ z+ t) for λ 6= −2, type A4 for λ = −2;
P{x},{z},{y,t}: type A1 for λ 6= −3

2
, type A2 for λ = −3

2
;

[1 : 1 : −1 : 0]: smooth for λ 6= −1, type A1 for λ = −1.
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Then [f−1(λ)] = 1 for every λ ∈ C by Corollary 1.5.4. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, we may assume that λ 6∈ {−1,−3

2
,−2}. Then the

intersection matrix of the curves L{x},{z}, L{x},{t}, L{x},{y,t}, L{y},{t}, L{y},{z,t}, L{t},{x,z},
and Hλ on the surface Sλ is given by

• L{x},{z} L{x},{t} L{x},{y,t} L{y},{t} L{y},{z,t} L{t},{x,z} Hλ

L{x},{z} −1
4

1
2

1
2

0 0 1
2

1

L{x},{t}
1
2

−3
4

1
2

1
4

0 1
2

1

L{x},{y,t}
1
2

1
2

−1
2

1
2

0 0 1

L{y},{t} 0 1
4

1
2

−1
2

1
2

1
2

1

L{y},{z,t} 0 0 0 1
2

−1 0 1

L{t},{x,z}
1
2

1
2

0 1
2

0 −3
2

1

Hλ 1 1 1 1 1 1 4

The rank of this intersection matrix is 7. Thus, using (2.24.1), we see that the rank of
the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{x},{y,t},
L{y},{z,t}, L{z},{y,t}, L{t},{y,z}, and L{t},{x,z} on the surface Sλ is also 7. On the other hand,

we have rkPic(S̃k) = rkPic(Sk) + 11. Hence, we see that (⋆) holds. By Lemma 1.13.1,
we see that (♦) in Main Theorem also holds.

2.25. Family №2.25. In this case, the threefold X is a blow up of P3 along a smooth
elliptic curve, which is an intersection of two quadrics. This shows that h1,2(X) = 1.
A toric Landau–Ginzburg model of this family is given by Minkowski polynomial №198,
which is

x+ y + z +
yz

x
+

x

z
+

1

y
+

1

x
+

1

yz
.

Thus, the pencil of quartic surfaces S is given by the equation

x2yz + y2xz + xyz2 + y2z2 + x2yt+ zxt2 + yzt2 + xt3 = λxyzt.

As usual, we assume that λ 6= ∞.
Let C1 be the conic in P3 that is given by x = yz+ t2 = 0, and let C2 be the conic in P3

that is given by z = xy + t2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + C1,
H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{z},{t} + C2,
H{t} · Sλ = L{y},{t} + L{z},{t} + L{t},{x,y} + L{t},{x,z}.

(2.25.1)

This shows that the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z},
L{y},{t}, L{z},{t}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, C1, and C2.

To describe the singularities of the surfaces in the pencil S, observe that

S−1 = Q+Q
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where Q is an irreducible quadric surface that is given by yz + xt + xz = 0, and Q is
an irreducible quadric surface given by yz + xy + t2 = 0. Thus, the singularities of the
surface S−1 are not isolated. On the other hand, if λ 6= −1, then the surface Sλ has
isolated singularities, so that it is irreducible. Moreover, in this case, the singular points
of the surface Sλ contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A3 with quadratic term y(z + t);
P{x},{z},{t}: type A5 with quadratic term z(x + z);
P{x},{y},{t}: type A4 with quadratic term y(x+ y);

P{y},{t},{x,z}: type A1 with quadratic term xy + yz − (λ+ 1)yt+ t2.

By Lemma 1.5.4, we have [f−1(λ)] = 1 for every λ 6= −1. Moreover, the points
P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, and P{y},{t},{x,z} are good double points of the sur-
face S−1. Furthermore, the surface S−1 is smooth at general points of the curves L{x},{y},
L{x},{z}, L{y},{t}, L{z},{t}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, C1, and C2. Thus, it follows from
(1.8.3), Lemma 1.8.5 and Lemma 1.12.1 that [f−1(−1)] = [S−1] = 2. This confirms (♥) in
Main Theorem, since h1,2(X) = 1.

To verify (♦) in Main Theorem, we may assume that λ 6= −1. Then, using (2.25.1), we
see that the intersection matrix of the curves L{x},{y}, L{x},{z}, L{y},{t}, L{z},{t}, L{y},{z,t},
L{t},{x,y}, L{t},{x,z}, C1, C2 on the surface Sλ has the same rank as the intersection matrix
of the curves L{x},{y}, L{x},{z}, L{y},{z,t}, L{t},{x,y}, L{t},{x,z}, Hλ, which is given by

• L{x},{y} L{x},{z} L{y},{z,t} L{t},{x,y} L{t},{x,z} Hλ

L{x},{y} −4
5

1 1 3
5

0 1

L{x},{z} 1 −2
3

0 0 1
3

1

L{y},{z,t} 1 0 −1 0 0 1

L{t},{x,y}
3
5

0 0 −6
5

1 1

L{t},{x,z} 0 1
3

0 1 −2
3

1

Hλ 1 1 1 1 1 4

The rank of this matrix is 5. On the other hand, using the description of the singular

points of the surface Sλ, we conclude that rkPic(S̃k) = rkPic(Sk) + 13. Hence, we see
that (⋆) holds. By Lemma 1.13.1, we see that (♦) in Main Theorem also holds.

2.26. Family №2.26. In this case, the threefold X is a blow up of the threefold V5 along
a line (see Subsection 2.14). Then h1,2(X) = 0. A toric Landau–Ginzburg model of this
family is given by

y

x
+

1

x
+ y + z +

1

z
+

1

y
+ x+

x

yz
,

which is Minkowski polynomial №201. The quartic pencil S is given by

y2zt + t2yz + y2xz + z2xy + t2xy + t2xz + x2yz + x2t2 = λxyzt.
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Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{x,z},

H{z} · Sλ = L{x},{z} + 2L{z},{t} + L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.26.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{x},{y,t},
L{y},{t}, L{y},{x,z}, L{z},{t}, L{z},{x,y}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A2 with quadratic term (x+y)(x+z) for λ 6= −1, type A3 for λ = −1;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A2 with quadratic term z(x+ t);
P{y},{z},{t}: type A1;

P{y},{t},{x,z}: type A2 with quadratic term y(x+y+ z−λt) for λ 6= 0, type A3 for λ = 0;
P{z},{t},{x,y}: type A2 with quadratic term z(x+ y + z − t− λt).

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
By Lemma 1.13.1, to verify (♦) in Main Theorem, we have to prove (⋆). Observe that

the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{x},{y,t}, L{y},{t}, L{y},{x,z},
L{z},{t}, L{z},{x,y}, L{t},{x,y,z} on the surface Sλ has the same rank as the intersection matrix
of the curves L{x},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,z}, L{z},{x,y}, L{t},{x,y,z}, Hλ, since

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t} ∼ L{x},{y} + 2L{y},{t} + L{y},{x,z} ∼
∼ L{x},{z} + 2L{z},{t} + L{z},{x,y} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ,

which follow from (2.26.1). On the other hand, if λ 6= 0 and λ 6= −1, then the intersection
matrix of the curves L{x},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,z}, L{z},{x,y}, L{t},{x,y,z}, and Hλ on
the surface Sλ is given by the following table:

• L{x},{t} L{z},{t} L{x},{y,t} L{y},{x,z} L{z},{x,y} L{t},{x,y,z} Hλ

L{x},{t} − 7
12

1
3

3
4

0 0 1 1

L{z},{t}
1
3

−1
6

0 0 2
3

1
3

1

L{x},{y,t}
3
4

0 −5
4

0 0 0 1

L{y},{x,z} 0 0 0 −2
3

1
3

1
3

1

L{z},{x,y} 0 2
3

0 1
3

−2
3

1
3

1

L{t},{x,y,z} 1 1
3

0 1
3

1
3

−2
3

1

Hλ 1 1 1 1 1 1 4

The rank of this matrix is 6. But rkPic(S̃k) = rkPic(Sk) + 12. We conclude that (⋆)
holds, so that (♦) in Main Theorem holds by Lemma 1.13.1.
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2.27. Family №2.27. In this case, the threefold X is a blow up of P3 in a twisted cubic,
so that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №70, which is

x+ y + z +
x

z
+

1

x
+

1

yz
+

1

xy
.

The quartic pencil S is given by the equation:

x2zy + y2zx + z2xy + x2ty + t2zy + t3x+ t3z = λxyzt.

Suppose that λ 6= ∞. Let C be the conic in P3 that is given by z = xy + t2 = 0. Then

H{x} · Sλ = L{x},{z} + 2L{x},{t} + L{x},{y,t},

H{y} · Sλ = 3L{y},{t} + L{y},{x,z},

H{z} · Sλ = L{x},{z} + L{z},{t} + C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.27.1)

Thus, the base locus of the pencil S consists of the curves L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t},
L{x},{y,t}, L{y},{x,z}, L{t},{x,y,z}, and C.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term xy;
P{x},{z},{t}: type A5 with quadratic term xz for λ 6= −1, type A6 for λ = −1;
P{y},{z},{t}: type A2 with quadratic term y(z + t);

P{x},{z},{y,t}: type A1;
P{y},{t},{x,z}: type A3 with quadratic term

y(x+ y + z − t− λt)

for λ 6= −1, type A4 for λ = −1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

Lemma 2.27.2. Suppose that λ 6= −1. Then the intersection matrix of the curves
L{x},{t}, L{x},{y,t}, L{y},{x,z}, L{z},{t}, and Hλ on the surface Sλ is given by

• L{x},{t} L{x},{y,t} L{y},{x,z} L{z},{t} Hλ

L{x},{t} −1
2

2
3

0 1
6

1

L{x},{y,t}
2
3

−3
2

0 0 1

L{y},{x,z} 0 0 −5
4

0 1

L{z},{t}
1
6

0 0 −1
2

1

Hλ 1 1 1 1 4

Proof. The entries of the last raw and the last column in the intersection matrix are
obvious. To find its diagonal entries, we use Proposition A.1.3. For instance, to compute
L2
{x},{t}, observe that the only singular points of the surface Sλ contained in the line
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L{x},{t} are the points P{x},{z},{t} and P{x},{y},{t}. Using Remark A.2.4 with S = Sλ, n = 5,

O = P{x},{z},{t}, and C = L{x},{t}, we see that C does not contain the point G1∩G5. Thus,
it follows from Proposition A.1.3 that L2

{x},{y} = −1
2
. Similarly, we see that L2

{x},{y,t} = −3
2
,

L2
{y},{x,z} = −5

4
, and L2

{z},{t} = −1
2
.

Note that L{x},{y,t} ∩ L{y},{x,z} = L{x},{y,t} ∩ L{z},{t} = L{y},{x,z} ∩ L{z},{t} = ∅, so that

L{x},{y,t} · L{y},{x,z} = L{x},{y,t} · L{z},{t} = L{y},{x,z} · L{z},{t} = 0.

Similarly, we see that L{x},{t} · L{y},{x,z} = 0.
To find the remaining entries of the intersection matrix, we use Proposition A.1.2. To

start with, let us compute L{x},{t} · L{z},{t}. Observe that L{x},{t} ∩ L{z},{t} = P{x},{z},{t}.
Using Remark A.2.4 with S = Sλ, n = 5, O = P{x},{z},{t}, C = L{x},{t}, and Z = L{z},{t},

we see that both curves C and Z do not contain the point G1 ∩G5. Moreover, since the
quadratic term of the surface Sλ at the singular point P{x},{z},{t} is xz, we see that either

C ·G1 = Z · G5 = 1 or C ·G5 = Z ·G1 = 1. Thus, using Proposition A.1.2, we conclude
that L{x},{t} · L{z},{t} =

1
6
.

Finally, let us compute L{x},{t} ·L{x},{y,t}. Observe that L{x},{t}∩L{x},{y,t} = P{x},{y,},{t},
and P{x},{y,},{t} is a singular point of the surface Sλ of type A2. Let us use the notation
of Appendix A.2 with S = Sλ, n = 2, O = P{x},{y},{t}, C = L{x},{t}, and Z = L{x},{y,t}.

Then π is the blow up of the point O, and either both curves C̃ and Z̃ intersect G1, or
they intersect the curve G2. Thus, we have L{x},{t} · L{x},{y,t} =

2
3
Proposition A.1.2. �

Using (2.27.1), we see that the intersection matrix of the curves L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,t}, L{y},{x,z}, L{t},{x,y,z}, and C on the surface Sλ has the same rank as the
intersection matrix of the curves L{x},{t}, L{x},{y,t}, L{y},{x,z}, L{z},{t}, and Hλ. But the

matrix in Lemma 2.27.2 has rank 5. Thus, since rkPic(S̃k) = rkPic(Sk)+12, we conclude
that (⋆) holds. Hence, it follows from Lemma 1.13.1 that (♦) in Main Theorem holds.

2.28. Family №2.28. In this case, the threefold X is a blow up of P3 in a smooth plane
cubic curve, which implies that h1,2(X) = 1. A toric Landau–Ginzburg model of this
family is given by Minkowski polynomial №68, which is

x+
x

z
+

x

yz
+

y

z
+ z +

1

y
+

y

x
.

The quartic pencil S is given by

x2yz + x2yt+ x2t2 + xy2t+ xyz2 + xzt2 + y2zt = λxyzt.

Suppose that λ 6= ∞. Let C be the conic that is given by z = xy + xt + y2 = 0. Then

H{x} · Sλ = 2L{x},{y} + L{x},{z} + L{x},{t},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{x,z},

H{z} · Sλ = L{x},{z} + L{z},{t} + C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,z}.

(2.28.1)
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Thus, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z}, L{x},{t},
L{y},{t}, L{z},{t}, L{y},{x,z}, L{t},{x,z}, and C.

If λ 6= −1, then Sλ is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A4 with quadratic term x(x+ z);
P{x},{y},{t}: type A4 with quadratic term xy;
P{x},{z},{t}: type A3 with quadratic term t(x+ z);
P{y},{z},{t}: type A1 with quadratic term yz + yt+ t2;

P{y},{t},{x,z}: type A2 with quadratic term y(x+ z − t− λt).

Thus, if λ 6= −1, then the fiber f−1(λ) is irreducible by Lemma 1.5.4. On the other hand,
we have S−1 = H{x,z} + S, where S is an irreducible cubic surface in P3 that is given
by xyz + xyt + xt2 + y2t = 0. Nevertheless, the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t},
P{x},{y},{z}, and P{y},{t},{x,z} are good double points of the surface S−1. Moreover, the
surface S−1 is smooth at general points of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{y},{x,z}, L{t},{x,z}, and C. Thus, using (1.8.3) and Lemmas 1.8.5 and 1.12.1, we
conclude that [f−1(−1)] = [S−1] = 2. This confirms (♥) in Main Theorem.

Now let us verify (♦) in Main Theorem. By Lemma 1.13.1, it is enough to show that
the equality (⋆) holds. If λ 6= −1, then it follows from (2.28.1) that the intersection
matrix of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{y},{x,z}, L{t},{x,z}, and
C on the surface Sλ has the same rank as the intersection matrix of the curves L{x},{y},
L{x},{t}, L{y},{t}, L{z},{t}, and Hλ. If λ 6= −1, the latter matrix is given by

• L{x},{y} L{x},{t} L{y},{t} L{z},{t} Hλ

L{x},{y} 0 3
5

2
5

0 1

L{x},{t}
3
5

− 9
20

1
5

3
4

1

L{y},{t}
2
5

1
5

− 1
30

1
2

1

L{z},{t} 0 3
4

1
2

−3
4

1

Hλ 1 1 1 1 4

Its rank is 4. On the other hand, it follows from the description of the singular points of

the surface Sλ that rkPic(S̃k) = rkPic(Sk) + 14. Thus, we can conclude that (⋆) holds,
so that (♦) in Main Theorem also holds.

2.29. Family №2.29. In this case, the threefold X is a blow up of a smooth quadric
threefold in P4 along a conic. This implies that h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №71, which is

x+ y + z +
x

z
+

y

z
+

1

y
+

1

x
.

The quartic pencil S is given by

x2zy + y2zx+ z2yx+ x2ty + y2tx+ t2zx+ t2zy = λxyzt.
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Its base locus consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t},
L{z},{x,y}, and L{t},{x,y,z}, because

• H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},
• H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},
• H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Here, as usual, we assume that λ 6= ∞.
For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible. Its

singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A3 with quadratic term z(x+ y) for λ 6= 0, type A5 for λ = 0;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A2 with quadratic term x(z + t);
P{y},{z},{t}: type A2 with quadratic term y(z + t);

P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1 for λ 6= −1, type A3 for λ = −1.

By Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.
If λ 6= 0 and λ 6= −1, then the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t},

L{y},{z}, L{y},{t}, L{z},{t}, L{z},{x,y}, and L{t},{x,y,z} on the surface Sλ has the same rank as
the following intersection matrix:

• L{x},{y} L{x},{z} L{y},{z} L{z},{t} Hλ

L{x},{y} −1
4

1
4

1
4

0 1

L{x},{z}
1
4

− 7
12

3
4

1
3

1

L{y},{z}
1
4

3
4

− 7
12

1
3

1

L{z},{t} 0 1
3

1
3

−1
6

1

Hλ 1 1 1 1 4

This matrix has rank 5. On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 13. Thus,
we conclude that (⋆) holds, so that (♦) in Main Theorem also holds.

2.30. Family №2.30. In this case, the threefold X is a blow up of P3 along a conic, so
that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №22, which is

x

yz
+ x+

1

y
+

1

z
+

z

x
+

y

x
.

The pencil S is given by the equation

x2t2 + x2yz + t2zx+ t2yx+ z2yt+ y2zt = λxyzt.
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Suppose, for simplicity, that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{x,z},

H{z} · Sλ = L{x},{z} + 2L{z},{t} + L{z},{x,y},

H{t} · Sλ = 2L{x},{t} + L{y},{t} + L{z},{t}.

(2.30.1)

Thus, the base locus of the pencil S is a union of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{t}, L{z},{t}, L{x},{y,z}, L{y},{x,z}, and L{z},{x,y},

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible. Its
singular points contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A1;
P{x},{z},{t}: type A4 with quadratic term zt;
P{x},{y},{t}: type A4 with quadratic term yt;
P{x},{y},{z}: type A3 with quadratic term x(x+y+z) for λ 6= −1, type A5 for λ = −1;
P{x},{t},{y,z}: type A1.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
Let us verify (♦) in Main Theorem. If λ 6= −1, then the intersection matrix of the

curves L{x},{y}, L{x},{z}, L{y},{x,z}, L{z},{x,y}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} L{y},{x,z} L{z},{x,y} Hλ

L{x},{y} − 9
20

3
4

1
4

1
4

1

L{x},{z}
3
4

− 9
20

1
4

1
4

1

L{y},{x,z}
1
4

1
4

−2 1
4

1

L{z},{x,y}
1
4

1
4

1
4

−2 1

Hλ 1 1 1 1 4

Observe that this matrix has rank 5. Thus, if λ 6= 1, then the intersection matrix of the
lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{y},{x,z}, and L{z},{x,y} on the
surface Sλ also has rank 5, because

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z} ∼ L{x},{y} + 2L{y},{t} + L{y},{x,z} ∼
∼ L{x},{z} + 2L{z},{t} + L{z},{x,y} ∼ 2L{x},{t} + L{y},{t} + L{z},{t} ∼ Hλ

on the surface Sλ by (2.30.1). On the other hand, we have rkPic(S̃k) = rk Pic(Sk) + 13.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.31. Family №2.31. In this case, the threefold X is a blow up of the smooth quadric
threefold in P4 along a line. This shows that h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №20, which is

x+ y + z +
x

y
+

1

x
+

1

yz
.
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The pencil S is given by the equation

x2yz + y2xz + z2yx+ x2tz + t2yz + t3x = λxyzt.

We suppose that λ 6= ∞. Let C be the conic {y = xz + t2 = 0}. Then
H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + L{y},{t} + C,
H{z} · Sλ = L{x},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.31.1)

Therefore, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{t} L{z},{t}, L{t},{x,y,z}, and the conic C.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
Moreover, the singular points of the surface Sλ contained in the base locus of the pencil S
can be described as follows:

P{x},{y},{t}: type A5 with quadratic term xy for λ 6= 0, type A6 for λ = 0;
P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A2 with quadratic term z(y + t);

P{z},{t},{x,y}: type A2 with quadratic term z(x+ y + z − t− λt);
P{x},{t},{y,z}: type A1.

In particular, every fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

Now let us verify (♦) in Main Theorem. If λ 6= 0, then the intersection matrix of the
curves L{x},{y}, L{y},{t}, L{z},{t}, and Hλ on the surface Sλ is given by

• L{x},{y} L{y},{t} L{z},{t} Hλ

L{x},{y} −2
3

3
5

0 1

L{y},{t}
3
5

−4
3

1
3

1

L{z},{t} 0 1
3

− 8
15

1

Hλ 1 1 1 4

This matrix has rank 4. On the other hand, if λ 6= 0, then the intersection matrix of the
curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t} L{z},{t}, L{t},{x,y,z}, and C on the surface Sλ has
the same rank as the intersection matrix of the curves L{x},{y}, L{y},{t}, L{z},{t}, and Hλ,
because

L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + L{y},{t} + C ∼
∼ L{x},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

on the surface Sλ by (2.31.1). Moreover, it follows from the description of singularities of

the surface Sλ that rkPic(S̃k) = rkPic(Sk) + 14. Therefore, we conclude that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.
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2.32. Family №2.32. In this case, the threefoldX is a divisor of bidegree (1, 1) on P2×P2,
so that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №21, which is

x+ y + z +
1

y
+

1

x
+

1

xyz
.

The quartic pencil S is given by the equation

x2yz + y2xz + z2yx+ t2xz + t2yz + t4 = λxyzt.

As usual, we suppose that λ 6= ∞.
Let C1 be the conic in P3 that is given by x = yz+ t2 = 0, and let C2 be the conic in P3

that is given by y = xz + t2 = 0. Then

H{x} · Sλ = 2L{x},{t} + C1,
H{y} · Sλ = 2L{y},{t} + C2,
H{z} · Sλ = 4L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.32.1)

This shows that the base locus of the pencil S consists of the curves L{x},{t}, L{y},{t},
L{z},{t}, L{t},{x,y,z}, C1, and C2.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
Its singularities contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A4 with quadratic term xy, for λ 6= 0, type A5 for λ = 0;
P{x},{z},{t}: type A3 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A3 with quadratic term z(x+ y + z − λt).

In particular, every fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main
Theorem, since h1,2(X) = 0. To verify (♦) in Main Theorem, we need the following result:

Lemma 2.32.2. Suppose that λ 6= 0. Then the intersection matrix of the curves L{x},{t},
L{y},{t}, and Hλ on the surface Sλ is given by

• L{x},{t} L{y},{t} Hλ

L{x},{t}
1
20

1
5

1

L{y},{t}
1
5

1
20

1

Hλ 1 1 4

Proof. To find L2
{x},{t}, observe that the singular points of the surface Sλ contained in

the line L{x},{t} are the points P{x},{z},{t}, P{x},{y},{t}, and P{x},{t},{y,z}. These points are
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singular points of the surface Sλ of types A3, A4, and A1, respectively. Applying Propo-
sition A.1.3, we see that

L2
{x},{t} = −2 +

3

4
+

4

5
+

1

2
=

1

20
.

Similarly, we find L2
{y},{t} =

1
20
. Finally, observe that

L{x},{t} ∩ L{y},{t} = P{x},{y},{t}.

Using Remark A.2.4 with S = Sλ, n = 4, O = P{x},{y},{t}, C = L{x},{t}, and Z = L{y},{t},

we see that both curves C and Z do not contain the point G1 ∩G4. Moreover, since the
quadratic term of the surface Sλ at the singular point P{x},{y},{t} is xy, we see that either

C ·G1 = Z ·G4 = 1, or C ·G4 = Z ·G1 = 1. Thus, using Proposition A.1.2, we conclude
that L{x},{t} · L{y},{t} =

1
5
. �

If λ 6= 0, then the intersection matrix of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{t},{x,y,z},
C1, and C2 on the surface Sλ has the same rank as the intersection matrix of the curves
L{x},{t}, L{y},{t}, and Hλ, because

2L{x},{t} + C1 ∼ 2L{y},{t} + C2 ∼ 4L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

on the surface Sλ by (2.32.1). On the other hand, the matrix in Lemma 2.32.2 has rank 3.

Moreover, we have rkPic(S̃k) = rkPic(Sk) + 15. Hence, we see that (⋆) holds, so that
(♦) in Main Theorem also holds by Lemma 1.13.1.

2.33. Family №2.33. The threefold X is a blow up of P3 in a line, so that h1,2(X) = 0.
A toric Landau–Ginzburg model of this family is given by Minkowski polynomial №6,
which is

x+ y + z +
x

z
+

1

xy
.

The quartic pencil S is given by the equation

x2yz + y2xz + z2yx+ x2ty + t3z = λxyzt.

Suppose that λ 6= ∞. Then

• H{x} · Sλ = L{x},{z} + 3L{x},{t},
• H{y} · Sλ = L{y},{z} + 3L{y},{t},
• H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{t},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the base locus of the pencil S consists of the lines L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, and L{t},{x,y,z}.

Observe that the surface Sλ has isolated singularities for every λ ∈ C, so that it is
irreducible. Moreover, the singular points of the surface Sλ contained in the base locus of
the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term xy;
P{x},{z},{t}: type A6 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term y(z + t);
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P{x},{t},{y,z}: type A2 with quadratic term x(x+ y + z + λt);
P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z − t− λt).

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.

Lemma 2.33.1. The intersection matrix of the curves L{x},{z}, L{y},{z}, and Hλ on the
surface Sλ is given by

• L{x},{z} L{y},{z} Hλ

L{x},{z} −2
7

1 1

L{y},{z} 1 −5
4

1

Hλ 1 1 4

Proof. The only singular point of the surface Sλ contained in L{x},{z} is the point
P{x},{z},{t}. Let us use the notation of Appendix A.2 with S = Sλ, n = 6, O = P{x},{z},{t},

and C = L{x},{z}. Then it follows from explicit computations that C̃ intersects one of the
curves G3 or G4. Then L2

{x},{z} = −2
7
by Proposition A.1.3.

The only singular point of the surface Sλ contained in L{y},{z} is the point P{y},{z},{t}.
Using Remark A.2.4 with S = Sλ, n = 3, O = P{y},{z},{t}, and C = L{y},{z}, we see that

the curve C does not contain the point G1∩G3. Then L2
{y},{z} = −5

4
by Proposition A.1.3.

Finally, observe that L{x},{z} ∩ L{y},{z} = P{x},{y},{z} and Sλ is smooth at P{x},{y},{z}.
Thus, we conclude that L{x},{z} · L{y},{z} = 1. �

The intersection matrix of the lines L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, and
L{t},{x,y,z} on the surface Sλ has the same rank as the intersection matrix in Lemma 2.32.2,
because

Hλ ∼ L{x},{z} + 3L{x},{t} ∼ L{y},{z} + 3L{y},{t} ∼
∼ 2L{x},{z} + L{y},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

On the other hand, the matrix in Lemma 2.33.1 has rank 3. Moreover, it follows from the

description of singularities of the surface Sλ that rkPic(S̃k) = rkPic(Sk) + 15. Hence, we
see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.34. Family №2.34. One has X ∼= P1 × P2. We discussed this case in Example 1.13.2,
where we described the pencil S and its base locus. In this example, we also verified (♦)
in Main Theorem, so that now we will only check (♥) in Main Theorem.

If λ 6= ∞, then Sλ is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A4 with quadratic term xy;
P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A2 with quadratic term yz;

P{y},{t},{x+z}: type A2 with quadratic term y(x+ y + z − λt);
P{z},{t},{x+y}: type A2 with quadratic term z(x + y + z − λt);
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P{x},{t},{y+z}: type A1.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.

2.35. Family №2.35. We have X ∼= P(OP2 ⊕ OP2(1)). A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №5, which is

x+ y + z +
x

yz
+

1

x
.

The quartic pencil S is given by

x2yz + y2zx+ z2yx+ x2t2 + t2yz = λxyzt.

Suppose that λ 6= ∞. Then

• H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},
• H{y} · Sλ = 2L{x},{y} + 2L{y},{t},
• H{z} · Sλ = 2L{x},{z} + 2L{z},{t},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ ∈ S has isolated singularities. In particular, it is
irreducible. Moreover, its singular points contained in the base locus of the pencil S can
be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A5 with quadratic term xy;
P{x},{z},{t}: type A5 with quadratic term xz;
P{y},{z},{t}: type A1;

P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1.

In particular, every fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

To verify (♦) in Main Theorem, observe that the intersection matrix of the curves
L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} L{x},{t} L{y},{t} L{z},{t} Hλ

L{x},{y} −1
6

1
2

1
3

2
3

0 1

L{x},{z}
1
2

−1
6

1
3

0 2
3

1

L{x},{t}
1
3

1
3

1
6

1
6

1
6

1

L{y},{t}
2
3

0 1
6

−1
6

1
2

1

L{z},{t} 0 2
3

1
6

1
2

−1
6

1

Hλ 1 1 1 1 1 4
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This matrix has rank 3. On the other hand, the intersection matrix of the lines L{x},{y},
L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} on the surface Sλ has the same rank as
the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, and Hλ,
because

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ 2L{x},{y} + 2L{y},{t} ∼
∼ 2L{x},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Moreover, we have rkPic(S̃k) = rkPic(Sk) + 15. Therefore, we conclude that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

2.36. Family №2.36. In this case, we have X ∼= P(OP2 ⊕ OP2(2)), so that h1,2(X) = 0.
A toric Landau–Ginzburg model of this family is given by Minkowski polynomial №7,
which is

x+ y + z +
x2

yz
+

1

x
.

The pencil S is given by the equation

x2yz + y2zx + z2yx+ x3t + t2yz = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = 3L{x},{y} + L{y},{t},

H{z} · Sλ = 3L{x},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(2.36.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
Moreover, its singular points contained in the base locus of the pencil S can be described
as follows:

P{x},{y},{t}: type A6 with quadratic term xy;
P{x},{z},{t}: type A6 with quadratic term xz;

P{x},{t},{y,z}: type A1;
P{x},{y},{z}: type A2 with quadratic term yz.

In particular, every fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

On the surface Sλ, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, and L{t},{x,y,z} has the same rank as the intersection matrix of the curves L{x},{y},
L{x},{z}, and Hλ, because

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ 3L{x},{y} + L{y},{t} ∼
∼ 3L{x},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

These rational equivalences follows from (2.36.1).
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Lemma 2.36.2. The intersection matrix of the curves L{x},{y}, L{x},{z}, and Hλ on the
surface Sλ is given by

• L{x},{y} L{x},{z} Hλ

L{x},{y}
2
21

1
3

1

L{x},{z}
1
3

2
21

1

Hλ 1 1 4

Proof. By definition, we have H2
λ = 4 and Hλ · L{x},{y} = Hλ · L{x},{z} = 1. Note that

L{x},{y} ∩ L{x},{z} = P{x},{y},{z}.

Recall that P{x},{y},{z} is a singular point of the surface Sλ of type A2. Then one gets
L{x},{y} · L{x},{z} =

1
3
by Proposition A.1.2.

We claim that L2
{y},{t} = −8

7
. Indeed, the point P{x},{y},{t} is the only singular point

of the surface Sλ that is contained in L{y},{t}. Using Remark A.2.4 with S = Sλ, n = 6,

O = P{x},{y},{t}, and C = L{y},{t}, we see that C does not contain the point G1 ∩ G6,
because the quadratic term of the surface Sλ at the point P{x},{y},{t} is xy. Thus, we have
L2
{y},{t} = −8

7
by Proposition A.1.3.

Since L2
{y},{t} = −8

7
, we get L{x},{y} · L{y},{t} =

5
7
, because

1 = Hλ · L{y},{t} =
(
3L{x},{y} + L{y},{t}

)
· L{y},{t} = 3L{x},{y} · L{y},{t} −

8

7
.

Since L{x},{y} · L{y},{t} =
5
7
, we get L2

{x},{y} =
2
21
, because

1 = Hλ · L{y},{t} =
(
3L{x},{y} + L{y},{t}

)
· L{x},{y} = 3L2

{x},{y} +
5

7
.

Similarly, we see that L2
{z},{t} =

2
21
. �

The matrix in Lemma 2.36.2 has rank 3. Moreover, we have rkPic(S̃k) = rkPic(Sk)+15.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3. Fano threefolds of Picard rank 3

3.1. Family №3.1. In this case, the threefold X is a double cover of P1×P1×P1 branched
over a smooth divisor of tridegree (2, 2, 2), which implies that h1,2(X) = 8. The toric
Landau–Ginzburg model is given by Minkowski polynomial №3873.4, which is the Laurent
polynomial

x+y+
x

z
+
y

z
+
xz

y
+3z+

yz

x
+
2x

y
+
2y

x
+

x

yz
+
3

z
+

y

xz
+
z2

y
+
z2

x
+
3z

y
+
3z

x
+
3

y
+
3

x
+

1

yz
+

1

xz
.

The quartic pencil S is given by

x2yz + y2zx+ x2ty + y2tx+ x2z2 + 3z2yx+ y2z2 + 2x2tz + 2y2tz + x2t2 + 3t2yx+

+ t2y2 + z3x+ z3y + 3z2tx+ 3z2ty + 3t2zx+ 3t2yz + t3x+ t3y = λxyzt.
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This equation is symmetric with respect to permutations of variables x ↔ y and z ↔ t.
To prove Main Theorem in this case, we may assume that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + 2L{x},{z,t} + L{x},{y,z,t},

H{y} · Sλ = L{x},{y} + 2L{y},{z,t} + L{y},{x,z,t},

H{z} · Sλ = L{z},{t} + L{z},{x,y,t} + C1,
H{t} · Sλ = L{z},{t} + L{t},{x,y,z} + C2,

(3.1.1)

where C1 is a smooth conic that is given by z = xy + xt + yt = 0, and C2 is a smooth
conic that is given by t = xy + xz + yz = 0. Hence, since λ 6= ∞, we have

Sλ · S∞ = 2L{x},{y} + 2L{z},{t} + 2L{x},{z,t} + 2L{y},{z,t}+

+ L{x},{y,z,t} + L{y},{x,z,t} + L{z},{x,y,t} + L{t},{x,y,z} + C1 + C2.
We let C1 = C1, C2 = C2, C3 = L{x},{y}, C4 = L{z},{t}, C5 = L{x},{z,t}, C6 = L{y},{z,t},
C7 = L{x},{y,z,t}, C8 = L{y},{x,z,t}, C9 = L{z},{x,y,t}, and C10 = L{t},{x,y,z}. These are all
base curves of the pencil S.

For every λ 6= −6, the surface Sλ has isolated singularities, so that Sλ is irreducible. On
the other hand, we have S−6 = H{z,t} +H{x,y,z,t} +Q, where Q is an irreducible quadric
given by xy+ xz + yz+ xt+ yt = 0. This quadric is singular at the point P{y},{z,t}, which
is also contained in the planes H{z,t} and H{x,y,z,t}.

If λ 6= −6, then the singularities of the surface Sλ that are contained in the base locus
of the pencil S are all du Val and can be described as follows:

P{y},{z},{t}: type A3 with quadratic term (z + t)(y + z + t);
P{x},{z},{t}: type A3 with quadratic term (z + t)(x+ z + t);

P{x},{y},{z,t}: type A5 with quadratic term (λ+ 6)xy;
P{z},{t},{x,y}: type A1 with quadratic term (λ+ 6)zt− (z + t)(x+ y + z + t).

In the notation of Subsection 1.8, the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{z,t}, and
P{z},{t},{x,y} are the fixed singular points of the quartic surfaces in the pencil S.

By Corollary 1.5.4, the fiber f−1(λ) is irreducible for every λ 6= −6. Therefore, the
assertion (♥) in Main Theorem follows from

Lemma 3.1.2. One has [f−1(−6)] = 9.

Proof. Recall that [S−6] = 3. Moreover, we have M−6
5 = M−6

6 = 2 and

M−6
1 = M−6

2 = M−6
3 = M−6

4 = M−6
7 = M−6

8 = M−6
9 = M−6

10 = 1.

But m1 = m2 = m7 = m8 = m9 = m10 = 1, m3 = m4 = m5 = m4 = 6, and the
points P{y},{z},{t}, P{x},{z},{t}, and P{z},{t},{x,y} are non-isolated ordinary double points of
the surface S−6. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

[
f−1(−6)

]
= 5 +D−6

P{x},{y},{z,t}
.

Let α1 : U1 → P3 be a blow up of the point P{x},{y},{z,t}. Then D1
−6 = S1

−6 + 2E1.
The surface E1 contains two base curves of the pencil S1. Denote them by C1

11 and C1
12,

respectively. Then m11 = m12 = 2 and M−6
11 = M−6

12 = 2.
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Let α2 : U2 → U1 be the blow up of the point C1
11 ∩ C1

12. Then D2
−6 = S2

−6 + 2E2
1 + E2.

The surface E2 contains two base curves of the pencil S2. Denote them by C2
13 and C2

14,
respectively. Then M−6

13 = M−6
14 = 2.

Note that there exists a commutative diagram

U2

α2

xxqqq
qq
qqq

qqq
qq

U1

α1

&&◆◆
◆◆

◆◆◆
◆◆◆

◆◆
◆ U

α
xxqqq

qq
qq
qq
qq
qq

γ

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

P3

for some birational morphism γ. Moreover, the only base curves of the pencil Ŝ that

are mapped to the singular point P{x},{y},{z,t} are the curves Ĉ11, Ĉ12, Ĉ13, and Ĉ14.
Furthermore, our computations also give AP{x},{y},{z,t}

= 2. Thus, it follows from (1.10.9)

and Lemma 1.10.7 that DP{x},{y},{z,t}
= 4, so that [f−1(−6)] = 5. �

If λ 6= −6, then the intersection matrix of the curves L{x},{y}, L{z},{t}, L{x},{z,t}, L{y},{z,t},
L{x},{y,z,t}, L{y},{x,z,t}, L{z},{x,y,t}, L{t},{x,y,z}, C1, and C2 on the surface Sλ has the same rank
as the intersection matrix of the curves L{x},{y}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,y,t},
L{t},{x,y,z}, and Hλ. This follows from (3.1.1). On the other hand, if λ 6= −6, then

L{x},{z,t} + L{y},{z,t} + 2L{z},{t} ∼ Hλ

on the surface Sλ, because H{z,t} ·Sλ = L{x},{z,t}+L{y},{z,t}+2L{z},{t}. Similarly, if λ 6= −6,
then

L{x},{y,z,t} + L{y},{x,z,t} + L{z},{x,y,t} + L{t},{x,y,z} ∼ Hλ.

Using this, we can easily compute the intersection form of the curves L{x},{y}, L{z},{t},
L{x},{z,t}, L{y},{z,t}, L{z},{x,y,t}, L{t},{x,y,z}, and Hλ on the surface Sλ. If λ 6= −6, it is given
by the following matrix:

• L{x},{y} L{z},{t} L{x},{z,t} L{y},{z,t} L{z},{x,y,t} L{t},{x,y,z} Hλ

L{x},{y} −1
2

0 1
2

1
2

0 0 1

L{z},{t} 0 0 1
2

1
2

1
2

1
2

1

L{x},{z,t}
1
2

1
2

−1
6

1
6

0 0 1

L{y},{z,t}
1
2

1
2

1
6

−1
6

0 0 1

L{z},{x,y,t} 0 1
2

0 0 −3
2

1
2

1

L{t},{x,y,z} 0 1
2

0 0 1
2

−3
2

1

Hλ 1 1 1 1 1 1 4

The rank of this intersection matrix is 5. Moreover, we have rkPic(S̃k) = rkPic(Sk)+ 12.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.
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3.2. Family №3.2. We already discussed this case in Example 1.8.6. Because of this, let
us use the notation of this example. Note that h1,2(X) = 3, and the defining equation of
the surface Sλ is symmetric with respect to the swaps x ↔ y and z ↔ t.

To prove Main Theorem in this case, we may assume that λ 6= ∞. Then

H{x} · Sλ = L{x},{t} + L{x},{y,z} + C1,
H{y} · Sλ = L{y},{t} + L{y},{x,z} + C2,
H{z} · Sλ = L{z},{t} + 3L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z},

(3.2.1)

For every λ 6= −6, the surface Sλ is irreducible, it has isolated singularities, and its
singularities contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A5 with quadratic term z(x + y + z);
P{x},{t},{y,z}: type A2 with quadratic term x(x+ y + z + (λ+ 6)t);
P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z + (λ+ 6)t);
P{z},{t},{x,y}: type A3 with quadratic term z(x + y + z + (λ+ 6)t).

By Corollary 1.5.4, one has [f−1(λ)] = 1 for every λ 6= −6.
Recall that S−6 = H{x,y,z}+ S, where S is a cubic surface whose singular locus consists

of the points P{z},{x,y},{x,t} and P{z},{x,y},{y,t}. Observe also that H{x,y,z}∩S consists of the
line L{z},{x,y} and an irreducible conic x + y + z = xy + t2. Then S−6 has good double
points at P{x},{y},{z}, P{x},{t},{y,z}, P{y},{t},{x,z}, and P{z},{t},{x,y}. Hence, using (1.8.3) and
Lemmas 1.8.5 and 1.12.1, we get [f−1(−6)] = 4. This confirms (♥) in Main Theorem.

Let us verify (♦) in Main Theorem. We may assume that λ 6= −6. Then

L{x},{y,z} + L{y},{x,z} + L{z},{x,y} ∼ L{x},{t} + L{y},{t} + L{z},{t}

on the surface Sλ. This follows from (3.2.1) and the fact that

H{x,y,z} · Sλ = L{x},{y,z} + L{y},{x,z} + L{z},{x,y} + L{t},{x,y,z}.

Using this, we can compute the intersection form of the curves L{x},{t}, L{x},{y,z}, L{y},{t},
L{y},{x,z}, L{z},{t}, and Hλ on the surface Sλ. Namely, it is given by the following matrix:

• L{x},{t} L{x},{y,z} L{y},{t} L{y},{x,z} L{z},{t} Hλ

L{x},{t} −4
3

2
3

1 0 1 1

L{x},{y,z}
2
3

−1
2

0 5
6

0 1

L{y},{t} 1 0 −4
3

2
3

1 1

L{y},{x,z} 0 5
6

2
3

−1
2

0 1

L{z},{t} 1 0 1 0 −5
4

1

Hλ 1 1 1 1 1 4

The rank of this matrix is 5. Thus, if λ 6= −6, then it follows from (3.2.1) that the
intersection matrix of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{y},{x,z}, L{z},{x,y},
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L{t},{x,y,z}, C1, and C2 on the surface Sλ also has rank 5. But rkPic(S̃k) = rkPic(Sk)+ 12.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.3. Family №3.3. The threefold X is a divisor of tridegree (1, 1, 2) on P1 × P1 × P1,
which implies that h1,2(X) = 3. Its toric Landau–Ginzburg model is given by Minkowski
polynomial 1804. Using the coordinate change x 7→ y

x
and z 7→ z

x
, we can rewrite it as

yz

x
+

y

x
+ y +

z

x
+ z +

2

x
+ 2x+

1

z
+

2x

z
+

x2

z
+

1

xy
+

2

y
+

x

y
.

The quartic pencil S is given by the equation

t3z + t2xy + 2t2xz + 2t2yz + 2tx2y + tx2z + ty2z + tyz2+

+ x3y + 2x2yz + xy2z + xyz2 + y2z2 = λxyzt.

This equation is symmetric with respect to the involution [x : y : z : t] ↔ [t : z : y : x].
Suppose that λ 6= ∞. Let C1 be a smooth conic that is given by x = yz + yt+ t2 = 0,

and let C2 is a smooth conic that is given by t = x2 + xz + yz = 0. Then

H{x} · Sλ = L{x},{z} + L{x},{y,t} + C1,
H{y} · Sλ = L{y},{t} + L{y},{z} + 2L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{x,t},

H{t} · Sλ = L{y},{t} + L{t},{x,z} + C2.

(3.3.1)

Hence, we conclude that L{x},{z}, L{y},{z}, L{y},{t}, L{x},{y,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,z},
C1, and C2 are all base curves of the pencil S.

The surface S−4 is irreducible. However, its singularities are not isolated: it is singular
along the lines L{z},{x,t} and L{t},{x,z}, and smooth away from them.

If λ 6= −4, then Sλ has isolated singularities, so that Sλ is irreducible. In this case, the
singularities of the surface Sλ that are contained in the base locus of the pencil S are all
du Val and can be described as follows:

P{x},{y},{t}: type A4 with quadratic term y(y + z + t);
P{x},{z},{t}: type A4 with quadratic term z(x + z + t);

P{y},{z},{x,t}: type A3 with quadratic term (λ+ 4)yz.

Thus, it follows from Corollary 1.5.4 that [f−1(λ)] = 1 for every λ 6= −4.

Lemma 3.3.2. One has [f−1(−4)] = 4.

Proof. Let C1 = C1, C2 = C2, C3 = L{x},{z}, C4 = L{y},{z}, C5 = L{y},{t}, C6 = L{x},{y,t},
C7 = L{y},{x,t}, C8 = L{z},{x,t}, and C9 = L{t},{x,z}. Then m1 = m2 = m6 = m9 = 1 and
m3 = m4 = m5 = m7 = m8 = 2. Likewise, we have M−4

7 = M−4
8 = 2 and

M−4
1 = M−4

2 = M−4
3 = M−4

4 = M−4
5 = M−4

4 = M−4
9 = 1

Thus, it follows from (1.8.3) and Lemma 1.8.5 that
[
f−1(−4)

]
= 3 +D−4

P{x},{z},{t}
+D−4

P{x},{y},{t}
+D−4

P{y},{z},{x,t}
.
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The surface S−4 has (non-isolated) ordinary double singularities at the points P{x},{z},{t}
and P{x},{y},{t}. Thus, it follows from Lemma 1.12.1 that D−4

P{x},{z},{t}
= D−4

P{x},{y},{t}
= 0.

Let α1 : U1 → P3 be a blow up of the point P{y},{z},{x,t}. Then D1
−4 = S1

−4 + E1.
The surface E1 contains two base curves of the pencil S1. Denote them by C1

10 and C1
11.

Then M−4
10 = M−4

11 = 1, AP{y},{z},{x,t}
= 1, and the only base curves of the pencil Ŝ that

are mapped to the singular point P{y},{z},{x,t} are the curves Ĉ10 and Ĉ11. Then

DP{y},{z},{x,t}
= 1

by (1.10.9) and Lemma 1.10.7. We conclude that [f−1(−4)] = 4. �

Recall that h1,2(X) = 3. Since the fiber f−1(λ) is irreducible for every λ 6= −4, we see
that (♥) in Main Theorem follows from Lemma 3.3.2.

Now let us prove (♦) in Main Theorem. We may assume that λ 6= −4. Then the
intersection form of the curves L{x},{z}, L{y},{z}, L{y},{t}, L{x},{t,z}, L{t},{x,z}, and Hλ on
the surface Sλ is given by

• L{x},{z} L{y},{z} L{y},{t} L{x},{t,z} L{t},{x,z} Hλ

L{x},{z} −6
5

1 0 1 1
5

1

L{y},{z} 1 −1 1 0 0 1

L{y},{t} 0 1 −6
5

1
5

1 1

L{x},{t,z} 1 0 1
5

−6
5

0 1

L{t},{x,z}
1
5

0 1 0 −6
5

1

Hλ 1 1 1 1 1 4

The determinant of this matrix is −112
25
. Thus, it follows from (3.3.1) that the intersection

matrix of the curves L{x},{z}, L{y},{z}, L{y},{t}, L{x},{y,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,z}, C1,
and C2 on the surface Sλ also has rank 6. But rkPic(S̃k) = rkPic(Sk)+11. Summarizing,
we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.4. Family №3.4. The threefold X is a blow up of a double cover of P1×P2 in a divisor
of bidegree (2, 2) along a smooth fiber of the projection to P2. One has h1,2(X) = 2. The
toric Landau–Ginzburg model is given by the Minkowski polynomial №1724, which is

y +
yz

x
+

2y

x
+ x+

y

xz
+ 2z +

z

x
+

2

z
+

xz

y
+

2

x
+

2x

y
+

1

xz
+

x

yz
.

The pencil S is given by

y2xz + y2z2 + 2y2tz + x2yz + t2y2 + 2xyz2 + z2yt+ 2t2xy+

+ x2z2 + 2t2yz + 2x2tz + t3y + x2t2 = λxyzt.

As usual, we will assume that λ 6= ∞.
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Let C1 be a conic that is given by z = x2+2xy+ y2+ yt = 0, and let C2 be a conic that
is given by t = xy + xz + yz = 0. Then

H{x} · Sλ = L{x},{y} + 2L{x},{z,t} + L{x},{y,t},

H{y} · Sλ = 2L{x},{y} + 2L{y},{z,t},

H{z} · Sλ = 2L{z},{t} + C1,
H{t} · Sλ = L{z},{t} + L{t},{x,y} + C2.

(3.4.1)

This shows that L{x},{y}, L{z},{t}, L{x},{y,t}, L{x},{z,t}, L{y},{z,t}, L{t},{x,y}, C1, and C2 are all
base curves of the pencil S.

For every λ ∈ C, the surface Sλ has isolated singularities, so that Sλ is irreducible.
Moreover, if λ 6= −4, then the singularities of the surface Sλ that are contained in the
base locus of the pencil S are all du Val and can be described as follows:

P{x},{y},{t}: type A1 with quadratic term x2 + 2xy + y2 + yt;
P{x},{z},{t}: type A1 with quadratic term xz + z2 + 2zt + t2;
P{y},{z},{t}: type A1 with quadratic term z2 + yz + 2zt + t2;

P{x},{y},{z,t}: type A5 with quadratic term (λ+ 4)xy;
P{z},{t},{x,y}: type A2 with quadratic term z(x + y − (λ+ 4)t);

[λ+ 4 : 0 : −1 : 1]: type A1;
[0 : λ+ 4 : −1 : 1]: type A1 for λ 6= −5, type A3 for λ = −5.

Therefore, it follows from Corollary 1.5.4 that [f−1(λ)] = 1 for every λ 6= −4. Thus, the
assertion (♥) in Main Theorem follows from

Lemma 3.4.2. One has [f−1(−4)] = 3.

Proof. The surface S−4 has isolated ordinary double singularities at the points P{x},{y},{t},
P{x},{z},{t}, and P{y},{z},{t}, and it has du Val singularity of type A2 at the point P{z},{t},{x,y}.
Thus, using (1.8.3), we see that

[
f−1(−4)

]
= 1 +D−4

P{x},{y},{z,t}

by Lemmas 1.8.5 and 1.12.1. To compute D−4
P{x},{y},{z,t}

, we have to (partially) describe

the birational morphism α in (1.9.3).
In the chart t = 1, the surface S−4 is given by

ȳz̄2 − x̄2ȳ − x̄ȳ2 +
(
x̄2ȳz̄ + x̄2z̄2 + x̄ȳ2z̄ + 2x̄ȳz̄2 + ȳ2z̄2

)
= 0,

where x̄ = x, ȳ = y, and z̄ = z+1. In particular, the singularity of the surface S−4 at the
point P{x},{y},{z,t} is not du Val. Since P{x},{y},{z,t} is a singular point of the surface S−4

of multiplicity 3, we can use (1.8.3) to conclude that D−4
P{x},{y},{z,t}

> 0.

Let α1 : U1 → P3 be the blow up of the point P{x},{y},{z,t}. A local chart of this blow
up is given by the coordinate change x̄1 = x̄

z̄
, ȳ1 = ȳ

z̄
, and z̄1 = z̄. In this chart, the
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surface E1 is given by z̄1 = 0, and D1
λ is given by

(λ+ 4)x̄1ȳ1 + ȳ1z̄1 − (λ+ 4)x̄1ȳ1z̄1v+

+
(
− x̄2

1ȳ1z̄1 + x̄2
1z̄

2
1 − x̄1ȳ

2
1z̄1 + 2x̄1ȳ1z̄

2
1 + ȳ21 z̄

2
1

)
+
(
x̄2
1ȳ1z̄

2
1 + ȳ21x̄1z̄

2
1

)
= 0.

Thus, we see that D1
−4 = S1

−4 + E1.
The surface E1 contains two base curves of the pencil S1. One of them is given by

z̄1 = x̄1 = 0, and another one is given by z̄1 = ȳ1 = 0. Denote the former curve by C1
9 ,

and denote the latter curve by C1
10. Then M−4

9 = 1 and M−4
10 = 2. Hence, using (1.10.9)

and Lemma 1.10.7, we conclude that D−4
P{x},{y},{z,t}

> 2.

Let α2 : U2 → U1 be the blow up of the point C1
9∩C1

10. Then D2
−4 = S2

−4+E2
1. Moreover,

the surface E2 contains two base curves of the pencil S2. Denote them by C2
11 and C2

12,
respectively. Then M−4

11 = M−4
12 = 1. Moreover, one can show that the only base curves of

the pencil Ŝ that are mapped to P{x},{y},{z,t} are the curves Ĉ9, Ĉ10, Ĉ11, and Ĉ12. Finally,

local computations imply that A−4
P{x},{y},{z,t}

= 1. Thus, using (1.10.9) and Lemma 1.10.7

we get D−4
P{x},{y},{z,t}

= 2, so that [f−1(−4)] = 3. �

To prove (♦) in Main Theorem, we need the following result.

Lemma 3.4.3. Suppose that λ 6= −4 and λ 6= −5. Then the intersection form of the
curves L{x},{y}, L{x},{y,t}, L{z},{t}, L{t},{x,y}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{y,t} L{z},{t} L{t},{x,y} Hλ

L{x},{y} −1
6

1
2

0 1
2

1

L{x},{y,t}
1
2

−3
2

0 1
2

1

L{z},{t} 0 0 −5
6

1
3

1

L{t},{x,y}
1
2

1
2

1
3

−5
6

1

Hλ 1 1 1 1 4

Proof. First, let us compute non-diagonal entries. Since L{x},{y} ∩ L{x},{y,t} = P{x},{y},{t}
and P{x},{y},{t} is an ordinary double point of the surface Sλ, we get L{x},{y} ·L{x},{y,t} =

1
2

by Proposition A.1.2. Likewise, we have L{x},{y} · L{t},{x,y} = L{x},{y,t} · L{t},{x,y} =
1
2
.

Since L{x},{y} ∩ L{z},{t} = L{x},{y,t} ∩ L{z},{t} = ∅, we have

L{x},{y} · L{z},{t} = L{x},{y,t} · L{z},{t} = 0.

To compute L{z},{t} ·L{t},{x,y}, observe that L{z},{t}∩L{t},{x,y} = P{z},{t},{x,y}. Moreover,
the surface Sλ has du Val singularity of type A2 at the point P{z},{t},{x,y}. Furthermore,
the quadratic term of its defining equation at this point is z(x+y− (λ+4)t). Thus, using
Remark A.2.4 with S = Sλ, O = P{z},{t},{x,y}, n = 3, C = L{z},{t}, and Z = L{t},{x,y}, we

see that C̃ and Z̃ intersect different curves among G1 and G2. Then L{z},{t} ·L{t},{x,y} =
1
3

by Proposition A.1.2.
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Now let us compute the diagonal entries. Since P{x},{y},{t} and P{z},{t},{x,y} are the only
singular points of the surface Sλ that are contained in the line L{t},{x,y}, we see that

L2
{z},{t} = −2 +

1

2
+

2

3
= −5

6

by Proposition A.1.3. Likewise, we have L2
{t},{x,y} = −5

6
. We also have L2

{x},{y,t} = −3
2
,

because P{x},{y},{t} is the only singular point of the surface Sλ that is contained in L{x},{y,t}.
To compute L2

{x},{y}, let us use the notation of the proof of Lemma 3.4.2. Note that the

proper transform of the line L{x},{y} on the surface S1
λ passes through the point C1

9 ∩C1
10.

On the other hand, its proper transform on the surface S2
λ does not pass through the

intersection C2
11 and C2

12. Applying Remark A.2.4 with S = Sλ, O = P{x},{y},{z,t}, n = 5,

and C = L{x},{y}, we see that C̃ intersects either the curve G2 or the curve G4. Thus, it
follows from Proposition A.1.3 that L2

{x},{y} = −1
6
, because P{x},{y},{z,t} and P{x},{y},{t} are

the only singular points of the surface Sλ contained in the line L{x},{y}. �

The determinant of the matrix in Lemma 3.4.3 is −16
9
. Thus, if λ 6= −4 and λ 6= −5,

then it follows from (3.4.1) that the intersection matrix of the curves L{x},{y}, L{z},{t},
L{x},{y,t}, L{x},{z,t}, L{y},{z,t}, L{t},{x,y}, C1, and C2 also has rank 5. On the other hand, one

can easily see that rkPic(S̃k) = rkPic(Sk) + 12. Hence, we conclude that (⋆) holds, so
that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.5. Family №3.5. The threefold X can be obtained by blowing up P1 × P2 along a
smooth rational curve of bidegree (5, 2). Then h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by the Minkowski polynomial №1819, which is

1

x
+

1

y
+

1

z
+

2y

x
+

2x

y
+

y

z
+

x

z
+

yz

x
+ z +

y2

x
+ 3y + 3x+

x2

y
.

The quartic pencil S is given by

t2xy + t2xz + t2yz + tx2y + 2tx2z + txy2 + 2ty2z + x3z+

+ 3x2yz + 3xy2z + xyz2 + y3z + y2z2 = λxyzt.

Suppose that λ 6= ∞. Then Sλ has isolated singularities, so that it is irreducible.
Let C1 be the conic in P3 that is given by x = (y+ t)2 + yz = 0, and let C2 be the conic

that is given by t = (x+ y)2 + yz = 0. Then

• H{x} · Sλ = L{x},{y} + L{x},{z} + C1;
• H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{x,t};
• H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y,t};
• H{t} · Sλ = L{z},{t} + L{t},{x,y} + C2.

Therefore, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z}, L{y},{z},
L{z},{t}, L{y},{x,t}, L{t},{x,y}, L{z},{x,y,t}, C1, and C2.

For every λ ∈ C, the singular points of the surface Sλ contained in the base locus of
the pencil S can be described as follows:

P{x},{y},{z}: type A1;
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P{x},{y},{t}: type A4 for λ 6= −4, A5 for λ = −4;
P{x},{z},{y,t}: type A1;
P{y},{z},{x,t}: type A2 for λ 6= −4, A4 for λ = −4;
P{z},{t},{x,y}: type A2 for λ 6= −4, A3 for λ = −4;

[1 : 0 : λ+ 4 : −1]: type A1 for λ 6= −4.

In particular, it follows from Corollary 1.5.4 that f−1(λ) is irreducible for every λ 6= ∞.
Thus, since h1,2(X) = 0, we see that (♥) in Main Theorem holds in this case.

Lemma 3.5.1. Suppose that λ 6= −4. Then the intersection matrix of the curves L{x},{y},
L{x},{z}, L{y},{z}, L{z},{t}, L{y},{x,t}, L{t},{x,y}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} L{y},{z} L{z},{t} L{y},{x,t} L{t},{x,y} Hλ

L{x},{y} − 3
10

1
2

1
2

0 2
5

3
5

1

L{x},{z}
1
2

−1 1
2

1 0 0 1

L{y},{z}
1
2

1
2

−5
6

1 2
3

0 1

L{z},{t} 0 1 1 −4
3

0 2
3

1

L{y},{x,t}
2
5

0 2
3

0 − 1
30

1
5

1

L{t},{x,y}
3
5

0 0 2
3

1
5

− 8
15

1

Hλ 1 1 1 1 1 1 4

Proof. Observe that L{x},{y} ∩ L{z},{t} = ∅, so that L{x},{y} · L{z},{t} = 0. Similarly, we
see that L{x},{z} · L{z},{x,y,t} = 0, L{x},{z} · L{t},{x,y} = 0, and L{y},{z} · L{t},{x,y} = 0. Since
L{x},{z}∩L{z},{t} = P{x},{z},{t} and Sλ is smooth at P{x},{z},{t}, we have L{x},{z} ·L{z},{t} = 1.
Likewise, we have L{y},{z} · L{z},{t} = 1.

The points P{x},{y},{z} and P{x},{z},{y,t} are the only singular points of the surface Sλ that
are contained in L{x},{z}. Thus, we have L2

{x},{z} = −1 by Proposition A.1.3. Similarly,

we see that L2
{y},{z} = −5

6
, because P{x},{y},{z} and P{y},{z},{x,t} are the only singular points

of the surface Sλ that are contained in L{y},{z}. Likewise, we have L2
{z},{t} = −4

3
, because

P{z},{t},{x,y} is the only singular point of the surface Sλ contained in L{z},{t}.
Since L{x},{y}∩L{x},{z} = P{x},{y},{z}, we have L{x},{y} ·L{x},{z} =

1
2
by Proposition A.1.2.

Similarly, we have L{x},{y} · L{y},{z} =
1
2
.

Let us show that L{y},{z}·L{y},{x,t} =
2
3
. To do this, let us use the notation of Appendix A

with S = Sλ, O = P{y},{z},{x,t}, n = 2, C = L{y},{x,t}, and Z = L{y},{z}. We may assume

that C̃ ∩ E1 6= ∅. If Z̃ ∩ E1 6= ∅, then L{y},{z} · L{y},{x,t} = 2
3
by Proposition A.1.2.

Otherwise, we have L{y},{z} · L{y},{x,t} =
1
3
. In the chart t = 1, the surface Sλ is given by

ȳ
(
x̄+ ȳ − (λ+ 4)z̄

)
+ higher order terms = 0,

where x̄ = x + 1, ȳ = y, and z̄ = z. Here O = (0, 0, 0). In these coordinates, the line
L{y},{x,t} is given by ȳ = x̄ = 0, and the line L{y},{z} is given by ȳ = z̄ = 0. This shows

that Z̃ ∩ E1 6= ∅, so that L{y},{z} · L{y},{x,t} =
2
3
.
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Let us compute L2
{y},{x,t}, L

2
{x},{y}, and L{x},{y} · L{y},{x,t}. Using Remark A.2.4 with

S = Sλ, O = P{x},{y},{t}, n = 4, C = L{y},{x,t}, and Z = L{x},{y}, we see that C does not

pass through the point G1 ∩ G4, and Z passes through the point G1 ∩ G4. Now, using
Proposition A.1.3, we obtain

L2
{y},{x,t} = −2 +

1

2
+

2

3
+

4

5
= − 1

30

because P{x},{y},{t}, P{y},{z},{x,t}, and [1 : 0 : λ+4 : −1] are the only singular points of the
surface Sλ that are contained in the line L{y},{x,t}. Similarly, we get

L2
{x},{y} = −2 +

1

2
+

6

5
= − 3

10
.

because P{x},{y},{z} and P{x},{y},{t} are the only singular points of the surface Sλ that
are contained in the line L{x},{y}. Moreover, using Proposition A.1.2, we see that either
L{x},{y} · L{y},{x,t} = 2

5
or L{x},{y} · L{y},{x,t} = 3

5
. In fact, we have L{x},{y} · L{y},{x,t} = 2

5
,

because

1 = Hλ · L{y},{x,t} =
(
L{x},{y} + L{y},{z} + 2L{y},{x,t}

)
· L{y},{x,t} =

= L{x},{y} · L{y},{x,t} + L{y},{z} · L{y},{x,t} + 2L2
{y},{x,t} = L{x},{y} · L{y},{x,t} +

3

5
,

since Hλ ∼ L{x},{y} + L{y},{z} + 2L{y},{x,t} on the surface Sλ.
To complete the proof of the lemma, we must find L{t},{x,y} ·L{x},{y}, L{t},{x,y} ·L{z},{t},

L{t},{x,y} · L{y},{x,t}, and L2
{t},{x,y}. Observe that P{x},{y},{t} and P{z},{t},{x,y} are the only

singular points of the surface Sλ that are contained in the line L{t},{x,y}. Thus, since
L{t},{x,y} ∩ L{z},{t} = P{z},{t},{x,y}, we get L{t},{x,y} · L{z},{t} =

2
3
by Proposition A.1.2.

To find the remaining entries of the intersection matrix, let us use Remark A.2.4 with
S = Sλ, O = P{x},{y},{t}, n = 4, C = L{y},{x,t}, and Z = L{t},{x,y}. As we already checked

above, the curve C does not pass through the point G1 ∩G4. Likewise, the curve Z does

not pass through this point, so that we may assume that C̃ ∩ G1 6= ∅ and Z̃ ∩ G4 6= ∅.
Hence, we have L{t},{x,y} · L{y},{x,t} = 1

5
by Proposition A.1.2. Likewise, it follows from

Proposition A.1.3 that L2
{t},{x,y} = − 8

15
. This gives L{x},{y} · L{t},{x,y} =

3
5
, because

1 = Hλ · L{t},{x,y} =
(
L{x},{y} + L{y},{z} + 2L{y},{x,t}

)
· L{t},{x,y} =

= L{x},{y} · L{t},{x,y} + L{y},{z} · L{t},{x,y} + 2L2
{t},{x,y} = L{x},{y} · L{t},{x,y} +

2

5
,

since L{x},{y} + L{y},{z} + 2L{y},{x,t} ∼ Hλ. �

The matrix in Lemma 3.5.1 has rank 6. Moreover, we have rkPic(S̃k) = rkPic(Sk)+11.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.6. Family №3.6. In this case, Main Theorem is proved in Example 1.14.1.
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3.7. Family №3.7. In this case, the threefold X can be obtained by blowing up a hyper-
surface of bidegree (1, 1) in P2 × P2 along a smooth elliptic curve, so that h1,2(X) = 1.
The toric Landau–Ginzburg model of the threefold X is given by

x + y + z +
y

z
+

y

x
+

z

y
+

z

x
+

1

z
+

y

xz
+

1

y
+

2

x
+

z

xy
+

1

xz
+

1

xy
,

which is the Minkowski polynomial №2354.2. The pencil S is given by

x2yz + xy2z + xyz2 + xy2t+ y2zt + xz2t+ yz2t + xyt2 + y2t2+

+ xt2z + 2yzt2 + z2t2 + yt3 + zt3 = λxyzt.

As usual, we suppose that λ 6= ∞.
For every λ 6= −3, the surface Sλ has isolated singularities, so that Sλ is irreducible.

On the other hand, one has S−3 = H{x,t} + S, where S is an irreducible cubic surface that
is given by xyz + yt2 + zt2 + y2t+ z2t+ 2yzt+ y2z + yz2 = 0.

To describe the base locus of the pencil S, we observe that

H{x} · Sλ = L{x},{t} + L{x},{y,z} + L{x},{y,t} + L{x},{z,t},

H{y} · Sλ = L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{z,t},

H{z} · Sλ = L{y},{z} + L{z},{t} + L{z},{x,t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.7.1)

Thus, the lines L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{x},{y,t}, L{x},{z,t}, L{y},{x,t},
L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, and L{t},{x,y,z} are all base curves of the pencil S.

If λ 6= −2 and λ 6= −3, then the singular points of the surface Sλ contained in the base
locus of the pencil S are all du Val and can be described as follows:

P{y},{z},{t}: type A3 with quadratic term yz;
P{x},{z},{t}: type A2 with quadratic term (x+ t)(z + t);
P{x},{y},{t}: type A2 with quadratic term (x+ t)(y + t);

P{x},{t},{y,z}: type A1 with quadratic term (x+ y + z)(x+ t)− (λ+ 3)xt;
P{y},{z},{x,t}: type A1 with quadratic term (x+ t)(y + z) + (λ+ 3)yz.

Thus, it follows from Corollary 1.5.4 that [f−1(λ)] = 1 for every λ 6= −3 and λ 6= −2.
The surface S−2 has the same singularities at the points P{y},{z},{t}, P{x},{z},{t},

P{x},{y},{t}, P{x},{t},{y,z}, and P{y},{z},{x,t}. In addition to them, it also has isolated or-
dinary double singularities at the points [0 : −1 : 1 : 1], [0 : 1 : −1 : 1], and [0 : 1 : 1 : −1].
Thus, using Corollary 1.5.4, we conclude that [f−1(−2)] = 1.

The surface S−3 has good double points at P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z},
P{y},{z},{x,t}, and it is smooth at general points of the lines L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t},
L{x},{y,z}, L{x},{y,t}, L{x},{z,t}, L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, L{t},{x,y,z}. Thus, it
follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that [f−1(−3)] = [S−3] = 2. Hence, we
see that (♥) in Main Theorem holds in this case, because h1,2(X) = 1.

To prove (♦) in Main Theorem, we may assume that λ 6= −2 and λ 6= −3. Then

H{x,t} · Sλ = 2L{x},{t} + L{y},{x,t} + L{z},{x,t},
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so that 2L{x},{t}+L{y},{x,t}+L{z},{x,t} ∼ Hλ on the surface Sλ. It follows from (3.7.1) that
the intersection matrix of the lines L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{x},{y,t},
L{x},{z,t}, L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, and L{t},{x,y,z} on the surface Sλ has the
same rank as the intersection matrix of the curves L{x},{y,z}, L{x},{y,t}, L{x},{z,t}, L{y},{x,t},
L{y},{z,t}, L{z},{y,t}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y,z} L{x},{y,t} L{x},{z,t} L{y},{x,t} L{y},{z,t} L{z},{y,t} L{t},{x,y,z} Hλ

L{x},{y,z} −3
2

1 1 0 0 0 1
2

1

L{x},{y,t} 1 −4
3

1 1
3

10 1 0 1

L{x},{z,t} 1 1 −4
3

0 1 0 0 1

L{y},{x,t} 0 1
3

0 −5
6

1 0 0 1

L{y},{z,t} 0 0 1 1 −5
4

1
4

0 1

L{z},{y,t} 0 1 0 0 1
4

−5
4

0 1

L{t},{x,y,z}
1
2

0 0 0 0 0 −3
2

1

Hλ 1 1 1 1 1 1 1 4

This matrix has rank 8, and rkPic(S̃k) = rkPic(Sk) + 9. Hence, we see that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.8. Family №3.8. In this case, we have h1,2(X) = 0, and a toric Landau–Ginzburg
model of the threefold X is given by

x+ y + z +
xz

y
+

x

y
+

y

x
+

z

y
+

1

z
+

2

y
+

2

x
+

1

xz
+

1

xt
,

which is the Minkowski polynomials №1504. The pencil S is given by

x2yz+xy2z+x2z2+xyz2+x2zt+ y2zt+xz2t+xyt2+2xzt2+2yzt2+ yt3+ zt3 = λxyzt.

Suppose that λ 6= ∞. Then Sλ has isolated singularities, so that it is irreducible.
Let C1 be a plane cubic curve that is given by x = y2z + 2yzt+ yt2 + zt2 = 0. Then C1

is singular at P{x},{y},{t}. Let C2 be a conic that is given by y = xz + xt + t2 = 0. Then

H{x} · Sλ = L{x},{t} + C1,
H{y} · Sλ = L{y},{z} + L{y},{x,t} + C2,
H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{z},{t} + L{t},{x,y} + L{t},{y,z}.

(3.8.1)

Thus, the base locus of the pencil S consists of the curves L{x},{t}, L{y},{z}, L{z},{t},
L{y},{x,t}, L{z},{x,t}, L{t},{x,y}, L{t},{y,z}, C1, and C2.

For every λ ∈ C, the singular points of the surface Sλ contained in the base locus of
the pencil S are du Val and can be described as follows:

P{x},{y},{t}: type A3 with quadratic term x(x+ y + t);
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P{x},{z},{t}: type A3 with quadratic term z(x+ t), for λ 6= −3, type A4 for λ = −3;
P{y},{z},{t}: type A2 with quadratic term z(y + z + t);

P{y},{z},{x,t}: type A2 with quadratic term

y(x+ 3z + λz + t)

for λ 6= −3 and λ 6= −4, type A3 for λ = −3 or λ = −4;
P{z},{t},{x,y}: type A1;

P{t},{x,y},{y,z}: smooth if λ 6= −3, type A1 if λ = 3.

Thus, it follows from Corollary 1.5.4 that the fiber f−1(λ) is irreducible for every λ 6= ∞.
Hence, we see that (♥) in Main Theorem holds in this case.

To prove (♦) in Main Theorem, we may assume that λ 6= −3 and λ 6= −4. Then it
follows from (3.8.1) that the intersection matrix of the curves L{x},{t}, L{y},{z}, L{y},{x,t},
L{y},{z}, L{z},{t}, L{z},{x,t}, L{x},{t} L{z},{t}, L{t},{x,y}, L{t},{y,z} C1, and C2 on the surface Sλ

has the same rank as the intersection matrix of the curves L{x},{t}, L{y},{z}, L{y},{x,t},
L{t},{x,y}, L{t},{y,z}, and Hλ. The latter matrix is given by

• L{x},{t} L{y},{z} L{y},{x,t} L{t},{x,y} L{t},{y,z} Hλ

L{x},{t} −1
2

0 1
4

1
4

0 1

L{y},{z} 0 −2
3

2
3

0 1
3

1

L{y},{x,t}
1
4

2
3

− 7
12

3
4

0 1

L{t},{x,y}
1
4

0 3
4

−3
4

1 1

L{t},{y,z} 0 1
3

0 1 −4
3

1

Hλ 1 1 1 1 1 4

This matrix has rank 6, and rk Pic(S̃k) = rkPic(Sk) + 11. Hence, we see that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.9. Family №3.9. In this case, the threefold X is a blow up of a cone over a Veronese
surface in P5 in a disjoint union of the vertex and a smooth curve of genus 3. Thus, we
have h1,2(X) = 3. A toric Landau–Ginzburg model of this family is given by

x+ y + z +
x2

yz
+

y

x
+

z

x

2x

yz
+

1

x
+

1

yz
,

which is the polynomial №373. The pencil S is given by

x2yz + xy2z + xyz2 + x3t + y2zt + yz2t+ 2x2t2 + yzt2 + xt3 = λxyzt.

As usual, we assume that λ 6= ∞.
If λ 6= −2, then the surface Sλ has isolated singularities, so that it is irreducible. But

S−2 = H{x,t} + S,

where S is an irreducible cubic surface that is given by xt2+x2t+yzt+y2z+yz2+xyz = 0.
The surface has S isolated singularities, and H{x,t} · S = L{y},{x,t} +L{z},{x,t} + L{x,t},{y,z}.
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To describe the base locus of the pencil S, we observe that

• H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z,t},
• H{y} · Sλ = L{x},{y} + L{y},{t} + 2L{y},{x,t},
• H{z} · Sλ = L{x},{z} + L{z},{t} + 2L{z},{x,t},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Therefore, the lines L{x},{z}, L{x},{y}, L{y},{t}, L{z},{t}, L{z},{x,t}, L{y},{x,t},, L{x},{t}, L{y},{t},
L{t},{x,y,z} are all base curves of the pencil S.

If λ 6= −2, then the singular points of the surface Sλ contained in the base locus of the
pencil S can be described as follows:

P{x},{z},{t}: type A5 with quadratic term z(x + t);
P{x},{y},{t}: type A5 with quadratic term z(y + t);

P{x},{t},{y,z}: type A1 with quadratic term x2 + xy + xz + yt+ zt + t2 + λxt;
P{y},{z},{x,t}: type A1 with quadratic term (λ+ 2)yz − (x+ t)2.

Thus, it follows from Corollary 1.5.4 that the fiber f−1(λ) is irreducible for every λ 6= −2.
Note that the surface S−2 consists of two irreducible components, and it is singular

along the lines L{y},{x,t} and L{z},{x,t}. Thus, it follows from (1.8.3) and Lemma 1.8.5 that
[
f−1(−2)

]
= 4 +D−2

P{x},{z},{t}
+D−2

P{x},{y},{t}
+D−2

P{x},{t},{y,z}
+D−2

P{y},{z},{x,t}
.

Moreover, the surface S−2 has good double points at P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z},
and P{y},{z},{x,t}. By Lemma 1.12.1, this implies

D−2
P{x},{z},{t}

= D−2
P{x},{y},{t}

= D−2
P{x},{t},{y,z}

= D−2
P{y},{z},{x,t}

= 0,

so that [f−1(−2)] = 4. Hence, we see that (♥) in Main Theorem holds in this case.
If λ 6= −2, then the intersection matrix of the lines L{x},{z}, L{x},{y}, L{y},{t}, L{z},{t},

L{z},{x,t}, L{y},{x,t}, L{x},{t}, L{y},{t}, and L{t},{x,y,z} on the surface Sλ has the same rank
as the intersection matrix of the curves L{x},{z}, L{x},{y,z,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z},
and Hλ. The latter matrix is given by

• L{x},{z} L{x},{y,z,t} L{y},{x,t} L{z},{x,t} L{t},{x,y,z} Hλ

L{x},{z} −7
6

1 0 2
3

0 1

L{x},{y,z,t} 1 −3
2

0 0 1
2

1

L{y},{x,t} 0 0 −1
6

1
2

0 1

L{z},{x,t}
2
3

0 1
2

−1
6

0 1

L{t},{x,y,z} 0 1
2

0 0 −3
2

1

Hλ 1 1 1 1 1 4

Its determinant vanishes. The geometric reason for this is the following: if λ 6= −2, then

H{x,t} · Sλ = 2L{x},{t} + L{y},{x,t} + L{y},{x,t}.
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which implies that 2L{x},{t}+L{y},{x,t}+L{y},{x,t} ∼ Hλ on the surface Sλ. In fact, one can

check that the rank of this matrix is 5. Moreover, we have rkPic(S̃k) = rkPic(Sk) + 12.
Hence, we see that (⋆) holds, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.10. Family №3.10. In this case, the threefoldX is a blow up of a smooth quadric hyper-
surface in P4 along a disjoint union of two irreducible conics. Thus, we have h1,2(X) = 0.
A toric Landau–Ginzburg model i given by the Laurent polynomial

z

y
+ x+

1

y
+ z +

z

xy
+

x

z
+

z

x
+

xy

z
+

1

z
+ y +

1

x
.

which is the Minkowski polynomial №1112. The pencil S is given by

z2tx+ x2yz + t2zx + z2yx+ t2z2 + x2yt+ z2yt+ x2y2 + t2yx+ y2zx + t2yz = λxyzt.

If λ 6= ∞, then Sλ has isolated singularities, so that, in particular, it is irreducible.
To describe the base locus of the pencil S, we observe that

H{x} · Sλ = L{x},{z} + L{x},{t} + C1,
H{y} · Sλ = L{y},{z} + L{y},{t} + C2,
H{z} · Sλ = L{x},{z} + L{y},{z} + C3,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z},

(3.10.1)

where C1 is the conic {x = ty+tz+yz = 0}, the curve C2 is the conic {y = tx+tz+xz = 0},
and C3 is the conic {z = t2 + tx + xy = 0}. Thus, the curves L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{t},{x,z}, L{t},{y,z}, C1, C2, and C3 are all base curves of the pencil S.

Lemma 3.10.2. Suppose that λ 6= ∞. Then the singular points of the surface Sλ

contained in the base locus can be described as follows:

P{y},{z},{t}: type A3 for λ 6= −4, type A4 for λ = −4;
P{x},{z},{t}: type A4 for λ 6= −2, type A6 for λ = −2;
P{x},{y},{t}: type A2 for λ 6= −4, type A3 for λ = −4;
P{x},{y},{z}: type A2 for λ 6= −3, type A4 for λ = −3;

P{t},{x,z},{y,z}: smooth for λ 6= −3, type A2 for λ = −3.

Proof. Taking partial derivatives, we see that P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, and
P{x},{y},{z} are the singular points of the surface Sλ. Moreover, if λ 6= −3, then these
points are the only singular points of the surface Sλ that are contained in the base locus
of the pencil S. If λ = −3, then P{t},{x,z},{y,z} is also a singular point of the surface Sλ. In
this case, the surface Sλ does not have other singular points which are contained in the
base locus of the pencil S.

In the chart x = 1, the surface Sλ is given by the equation

y(y + z + t) + y2z + yz2 − λtyz + t2y + t2z + tz2 + t2yz + t2z2 + tyz2 = 0.
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Introducing coordinates ȳ = y, z̄ = z, and t̄ = t + y + z, we can rewrite this equation as

t̄ȳ + t̄2ȳ + t̄2z̄ − 2t̄ȳ2 − (λ+ 4)z̄t̄ȳ − z̄2t̄+ ȳ3 + (λ+ 4)z̄ȳ2 + (λ+ 3)z̄2ȳ+

+ t̄2ȳz̄ + t̄2z̄2 − 2t̄ȳ2z̄ − 3t̄ȳz̄2 − 2t̄z̄3 + ȳ3z̄ + 2ȳ2z̄2 + 2ȳz̄3 + z̄4 = 0.

Here, we have P{y},{z},{t} = (0, 0, 0). Let us blow up this point.

Let ẑ = z, ŷ = y

z
, t̂ = t

z
. We can rewrite the latter equation (after dividing by ẑ2) as

t̂ŷ − t̂ẑ + (λ+ 3)ŷẑ + ẑ2 +
(
t̂2ẑ − (λ+ 4)ẑt̂ŷ − 2ẑ2t̂+ (λ+ 4)ẑŷ2 + 2ẑ2ŷ

)
+

+
(
t̂2ŷẑ + t̂2ẑ2 − 2t̂ŷ2ẑ − 3t̂ŷẑ2 + ŷ3ẑ + 2ŷ2ẑ2

)
+
(
t̂2ŷẑ2 − 2t̂ŷ2ẑ2 + ŷ3ẑ2

)
= 0.

This equation defines (a chart of) the blow up of the surface Sλ at P{y},{z},{t}. The two

exceptional curves of the blow up are given by the equations ẑ = t̂ = 0 and ẑ = ŷ = 0.
They intersect at the point (0, 0, 0), which is singular point of the obtained surface.

If λ 6= 4, then t̂ŷ− t̂ẑ+(λ+3)ŷẑ+ ẑ2 is non-degenerate, so that P{y},{z},{t} is a singular

point of the surface Sλ of type A3. If λ = 4, then this form splits as (ŷ− ẑ)(t̂− ẑ). In this
case, introducing new coordinates ỹ = t̂ − ẑ, z̃ = ŷ − ẑ, and t̃ = t̂, we rewrite the latter
equation (with λ = −4) as

ỹz̃ + t̃3 + higher order terms = 0,

where we order monomials with respect to weights wt(ỹ) = 3, wt(z̃) = 3, and wt(t̃) = 2.
We see that this point is a singular point of type A2. Therefore, if λ = −4, then P{y},{z},{t}
is a singular point of the surface Sλ of type A4.

We leave the proofs of the remaining assertions of the lemma to the reader. �

Thus, it follows from Corollary 1.5.4 that the fiber f−1(λ) is irreducible for every λ 6= ∞.
This implies (♥) in Main Theorem. To prove (♦) in Main Theorem, we need the following.

Lemma 3.10.3. Suppose that λ 6∈ {−2,−3,−4,∞}. Then the intersection matrix of the
curves L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{t},{x,z}, and Hλ on the surface Sλ is given by

• L{x},{z} L{x},{t} L{y},{z} L{y},{t} L{t},{x,z} Hλ

L{x},{z} − 2
15

2
5

1
3

0 3
5

1

L{x},{t}
2
5

−8
5

0 1
3

1
5

1

L{y},{z}
1
3

0 −7
2

3
4

0 1

L{y},{t} 0 1
3

3
4

− 7
12

1 1

L{t},{x,z}
3
5

1
5

0 1 −6
5

1

Hλ 1 1 1 1 1 4

Proof. Lets us show how to compute the diagonal entries of the intersection table. To start
with, let us compute L2

{x},{z}. Observe that P{x},{z},{t} and P{x},{y},{z} are the only singular
points of the surface Sλ that are contained in L{x},{z}. Thus, by Proposition A.1.3, one
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has L2
{x},{z} = −2 + 2

3
+ k

5
, where either k = 4 or k = 6. In fact, we have k = 6 here.

Indeed, let us use the notation of Remark A.2.4 with S = Sλ, O = P{x},{z},{t}, n = 4,
C = L{x},{z}. In the chart y = 1, the surface Sλ is given by

x(x+ z) + higher order terms = 0,

and L{x},{z} is given by x = z = 0. This shows that C contains the point G1 ∩G4. Thus,

either C̃ ∩ G2 6= ∅ or C̃ ∩ G3 6= ∅. In both cases, we have k = 6 by Proposition A.1.3.
Thus, we have L2

{x},{z} = − 2
15
.

Similarly, it follows from Proposition A.1.3 that L2
{x},{t} = − 8

15
, because P{x},{z},{t} and

P{x},{y},{t} are the only singular points of the surface Sλ contained in L{x},{t}. Likewise, we
see that L2

{t},{x,z} = −6
5
, because P{x},{z},{t} is the only singular point of the surface Sλ that

is contained in L{t},{x,z}. Using Proposition A.1.3 again, we get L2
{y},{t} = L2

{y},{z} = − 7
12
.

Now let us compute the remaining entries of the first raw in the intersection table.
Since L{x},{z} ∩ L{y},{t} = ∅, we have L{x},{z} · L{y},{t} = 0. To compute L{x},{z} · L{y},{z},
observe that L{x},{z} ∩L{y},{z} = P{x},{y},{t}. In the chart t = 1, the surface Sλ is given by

(x+ z)(z + y) + higher order terms = 0.

Thus, using Proposition A.1.2 and Remark A.2.4 with S = Sλ, O = P{y},{z},{t}, n = 2,
C = L{x},{z}, and Z = L{y},{z}, we see that L{x},{z} · L{y},{z} =

1
3
.

To find L{x},{z} · L{x},{t} and L{x},{z} · L{t},{y,z}, we notice that

L{x},{z} ∩ L{x},{t} = L{x},{z} ∩ L{t},{y,z} = P{x},{z},{t}.

Let us use the notation of Remark A.2.4 with O = P{x},{z},{t}, n = 4, C = L{x},{t}, and
Z = L{t},{y,z}. Keeping in mind the equation of the surface Sλ in the chart y = 1, we see

that neither C nor Z contains the point G1 ∩ G4. By Proposition A.1.2, this implies, in
particular, that L{x},{t} ·L{t},{y,z} =

1
5
. On the other hand, we already checked above that

the proper transform of the line L{x},{z} on the surface S does contain the point G1 ∩G4.
This implies that L{x},{z} · L{x},{t} and L{x},{z} · L{t},{y,z} are among 2

5
and 3

5
. Moreover,

one has

1 = H{t} · L{x},{z} =
(
L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z}

)
· L{x},{z} =

= L{x},{t} · L{x},{z} + L{y},{t} · L{x},{z} + L{t},{x,z} · L{x},{z} + L{t},{y,z} · L{x},{z} =

= L{x},{t} · L{x},{z} + L{t},{y,z} · L{x},{z},

because L{y},{t} · L{x},{z} = 0 and L{t},{x,z} · L{x},{z} = 0. Similarly, we have

H{x} · L{x},{t} =
(
L{x},{z} + L{x},{t} + C1

)
· L{x},{t} =

= L{x},{z} · L{x},{t} + L2
{x},{t} + C1 · L{x},{t} = L{x},{z} · L{x},{t} −

8

5
+ C1 · L{x},{t}.

Moreover, we have C1∩L{x},{t} = P{x},{z},{t}∪P{x},{y},{t}. Thus, applying Proposition A.1.2
and Remark A.2.4, we see that C1 · L{x},{t} = 1

3
+ 4

5
= 17

15
, so that L{x},{z} · L{x},{t} = 2

5
.

Thus, we have L{x},{z} · L{t},{y,z} =
3
5
.
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To compute the remaining entries of the second raw in the intersection table, we have
to find L{x},{t} · L{y},{z} and L{x},{t} · L{y},{t}. But L{x},{t} ∩ L{y},{z} = ∅, so that L{x},{t} ·
L{y},{z} = 0. Moreover, we have L{x},{t}∩L{y},{t} = P{x},{y},{t}, so that L{x},{t} ·L{y},{t} =

1
3

by Proposition A.1.2.
To complete the proof of the lemma, we have to find L{y},{z} ·L{y},{t}, L{y},{z} ·L{t},{x,z},

and L{y},{t} · L{t},{x,z}. Since L{y},{z} ∩ L{t},{x,z} = ∅, we have L{y},{z} · L{t},{x,z} = 0.
Similarly, we have L{y},{t} · L{t},{x,z} = 1, since L{y},{t} ∩ L{t},{x,z} = P{y},{z},{x,t} and the
surface Sλ is smooth at the point [1 : 0 : −1 : 0]. Finally, observe that L{y},{z} ·L{y},{t} =

3
4

by Proposition A.1.2, since L{y},{z} ∩ L{y},{t} = P{y},{z},{t}. �

If λ 6∈ {−2,−3,−4,∞}, then it follows from (3.10.1) that the intersection matrix of
the curves L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{t},{x,z}, L{t},{y,z}, C1, C2, and C3 on the
surface Sλ has the same rank as the intersection matrix of the curves L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{t},{x,z}, and Hλ. On the other hand, the determinant of the matrix in

Lemma 3.10.3 is −2
9
, and rkPic(S̃k) = rkPic(Sk) + 11. Hence, we see that (⋆) holds, so

that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.11. Family №3.11. The threefold X can be obtained from P3 by blowing up a disjoint
union of a point and a smooth elliptic curve. We discussed this case in Example 1.12.3,
where we described the pencil S and its base locus. Let us use the notation introduced
in this example. As usual, we assume that λ 6= ∞. Observe that

H{x} · Sλ = L{x},{t} + L{x},{z,t} + C,
H{y} · Sλ = L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{z,t},

H{z} · Sλ = 2L{y},{z} + L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.11.1)

If λ 6= −2, then Sλ is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A4 with quadratic term yz;
P{x},{z},{t}: type A2 with quadratic term (x+ t)(z + t);
P{x},{y},{t}: type A2 with quadratic term (x+ t)(y + t);

P{x},{t},{y,z}: type A1 with quadratic term (x+ t)(x+ y+ z− t)− (λ+2)xt;
P{y},{z},{x,t}: type A2 with quadratic term z(x + t+ (λ+ 2)y);

[0 : 1∓
√
5 : −2 : +2]: smooth if λ 6= −1±

√
5

2
, type A1 if λ = −1±

√
5

2
.

Then [f−1(λ)] = 1 for every λ 6= −2 by Corollary 1.5.4.
Recall that S−2 = H{x,t}+S, where S is an irreducible cubic surface that has good double

points at P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{t},{y,z}, and P{y},{z},{x,t}. Moreover, the
surface S−2 is smooth at general points of the base curves L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t},
L{x},{z,t}, L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{t},{x,y,z}, and C. Thus, it follows from (1.8.3) and
Lemmas 1.8.5 and 1.12.1 that [f−1(−2)] = [S−3] = 2. Therefore, we conclude that (♥) in
Main Theorem holds in this case.
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To verify (♦) in Main Theorem, we may assume that λ 6= −2 and λ 6= −1±
√
5

2
. Then,

using (3.11.1), we see that the intersection matrix of the curves L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{z,t}, L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{t},{x,y,z}, and C on the surface Sλ has the
same rank as the intersection matrix of the curves L{x},{t}, L{x},{z,t}, L{y},{x,t}, L{y},{z,t},
L{z},{x,t}, L{t},{x,y,z}, and Hλ. On the other hand, the latter matrix is given by

• L{x},{t} L{x},{z,t} L{y},{x,t} L{y},{z,t} L{z},{x,t} L{t},{x,y,z} Hλ

L{x},{t} −1
6

1
3

2
3

0 2
3

1
2

1

L{x},{z,t}
1
3

−4
3

0 1 1
3

0 1

L{y},{x,t}
2
3

0 −2
3

1 1
3

0 1

L{y},{z,t} 0 1 1 −6
5

0 0 1

L{z},{x,t}
2
3

1
3

1
3

0 −2
3

0 1

L{t},{x,y,z}
1
2

0 0 0 0 −3
2

1

Hλ 1 1 1 1 1 1 4

Its rank is 6. Note also that rkPic(S̃k) = rkPic(Sk) + 11. Hence, we see that (⋆) holds,
so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.12. Family №3.12. In this case, the threefold X can be obtained from P3 by blowing
up a disjoint union of a line and a twisted cubic curve. Its toric Landau–Ginzburg model
is given by

z

x
+

1

x
+ y + z +

y

z
+

z

y
+

1

z
+

xy

z
+

1

y
+ x,

which is the Minkowski polynomials №737. The pencil S is given by

z2yt+ t2yz + y2zx+ z2yx+ y2tx+ z2tx+ t2yx+ x2y2 + t2zx+ x2yz = λxyzt.

As usual, we suppose that λ 6= ∞.
Let C be the conic z = xy + yt+ t2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + C,
H{t} · Sλ = L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z}.

(3.12.1)

Thus, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{x},{z,t}, L{y},{z,t}, L{t},{x,z}, L{t},{y,z}, and C.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
Moreover, the singular points of the surface Sλ contained in the base locus of the pencil S
are du Val and can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A1;
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P{x},{z},{t}: type A3 with quadratic term x(x+ z + t) for λ 6= −3, type A4 for λ = −3;
P{y},{z},{t}: type A4 with quadratic term y(y + z) for λ 6= −2, type A5 for λ = −2;

P{x},{y},{z,t}: type A1 for λ 6= −2, type A2 for λ = −2;
P{t},{x,z},{y,z}: smooth if λ 6= −3, type A1 if λ = −3.

Thus, it follows from Corollary 1.5.4 that the fiber f−1(λ) is irreducible for every λ ∈ C.
Since h1,2(X) = 0, we see that (♥) in Main Theorem holds in this case.

Now let us verify (♦) in Main Theorem. We may assume that λ 6= −2 and λ 6= −3.
Then the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{y},{z,t},
L{t},{x,z}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} L{x},{t} L{y},{t} L{y},{z,t} L{t},{x,z} Hλ

L{x},{y} −1
2

1
2

1
2

1
2

1
2

0 1

L{x},{z}
1
2

−3
4

3
4

0 0 1
4

1

L{x},{t}
1
2

3
4

−3
4

1
2

0 1
4

1

L{y},{t}
1
2

0 1
2

− 7
10

3
5

1 1

L{y},{z,t}
1
2

0 0 3
5

− 7
10

0 1

L{t},{x,z} 0 1
4

1
4

1 0 −5
4

1

Hλ 1 1 1 1 1 1 4

The rank of this matrix is 7. On the other hand, it follows from (3.12.1) that

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t} ∼ L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t} ∼
∼ L{x},{z} + L{y},{z} + C ∼ L{x},{t} + L{y},{t} + L{t},{x,z} + L{t},{y,z} ∼ Hλ.

This implies that the rank of the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{x},{z,t}, L{y},{z,t}, L{t},{x,z}, L{t},{y,z}, and C is also 7. As we have seen

above, rkPic(S̃k) = rkPic(Sk) + 10. Hence, we see that (⋆) holds, so that (♦) in Main
Theorem holds by Lemma 1.13.1.

3.13. Family №3.13. The threefold X is a blow up of a smooth hypersurface in P2 × P2

of bidegree (1, 1) in a smooth rational curve of bidegree (2, 2). Thus, we have h1,2(X) = 0.
A toric Landau–Ginzburg model of this family is given by Minkowski polynomial №420,
which is

x

y
+ x+

1

y
+ z +

z

x
+

1

z
+ y +

1

x
+

y

z
.

The quartic pencil S is given by

x2zt + x2yz + t2zx + z2yx+ z2yt+ t2yx+ y2zx+ t2yz + y2tx = λxyzt.

As usual, we assume that λ 6= ∞. Then

• H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t},
• H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t},
• H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{y,t},
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• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,t},
L{z},{y,t}, and L{t},{x,y,z} are all base curves of the pencil S.

Each surface Sλ is irreducible, it has isolated singularities, and its singular points con-
tained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term y(x+ t) for λ 6= −2, type A4 for λ = −2;
P{x},{z},{t}: type A3 with quadratic term x(z + t) for λ 6= −2, type A4 for λ = −2;
P{y},{z},{t}: type A3 with quadratic term z(y + t) for λ 6= −2, type A4 for λ = −2.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
Now we suppose that λ 6= −2. Then the rank of the intersection matrix of the

lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,t}, L{z},{y,t}, and
L{t},{x,y,z} on the surface Sλ has the same as the rank of the following matrix:

• L{x},{z} L{x},{t} L{x},{z,t} L{y},{x,t} L{z},{y,t} L{t},{x,y,z} Hλ

L{x},{z} −3
4

3
4

1 0 1 0 1

L{x},{t}
3
4

−1
2

1 1 0 1 1

L{x},{z,t} 1 1 −1 0 0 0 1

L{y},{x,t} 0 1 0 −1 0 0 1

L{z},{y,t} 1 0 0 0 −1 0 1

L{t},{x,y,z} 0 1 0 0 0 −2 1

Hλ 1 1 1 1 1 1 4

Its rank is 7. On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 10. Hence, we see
that (⋆) holds. By Lemma 1.13.1, we see that (♦) in Main Theorem also holds.

3.14. Family №3.14. The threefold X is P3 blown up in a union of a smooth plane cubic
and a point that does not lie on the plane containing the cubic, so that h1,2(X) = 1.
A toric Landau–Ginzburg model of this family is given by

x+ y + z +
x2

yz
+

y

x
+

z

x
+

x

yz
+

1

x
,

which is Minkowski polynomial №202. The quartic pencil S is given by

x2yz + xy2z + xyz2 + x3t+ y2zt + yz2t + x2t2 + yzt2 = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z,t},

H{y} · Sλ = 2L{x},{y} + L{y},{t} + L{y},{x,t},

H{z} · Sλ = 2L{x},{z} + L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.14.1)
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Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,z,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z}.

Let S be the cubic surface in P3 that is given by

xyz + x2t+ y2z + yz2 + yzt = 0.

Then S is irreducible and S−2 = H{x,t} + S. On the other hand, if λ 6= −2, then the
surface Sλ has isolated singularities, so that it is irreducible. In this case, its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1 with quadratic term x2 + yz;
P{x},{y},{t}: type A4 with quadratic term y(x+ t);
P{x},{z},{t}: type A4 with quadratic term z(x + t);

P{x},{y},{z,t}: type A1 with quadratic term x2 − y2 − yz − yt+ (λ+ 1)xy;
P{x},{z},{y,t}: type A1 with quadratic term x2 − z2 − yz − zt + (λ+ 1)xz;
P{x},{t},{y,z}: type A1 with quadratic term (x+ t)(x+ y + z + t)− (λ+ 2)xt.

By Lemma 1.5.4, we have [f−1(λ)] = 1 for every λ 6= −2. Moreover, the points
P{x},{z},{t}, P{x},{y},{t}, P{x},{y},{z}, P{x},{y},{z,t}, P{x},{z},{y,t}, and P{x},{t},{y,z} are good dou-
ble points of the surface S−2. Furthermore, one can check that the surface S−2 is smooth at
general points of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,z,t}, L{y},{x,t},
L{z},{x,t}, and L{t},{x,y,z}. Therefore, using (1.8.3) and applying Lemmas 1.8.5 and 1.12.1,
we conclude that [f−1(−2)] = [S−2] = 2. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, we suppose that λ 6= −2. Then (3.14.1) gives

Hλ ∼ L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z,t} ∼ 2L{x},{y} + L{y},{t} + L{y},{x,t} ∼
∼ 2L{x},{z} + L{z},{t} + L{z},{x,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Therefore, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t},
L{x},{y,z,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z} on the surface Sλ has the same rank as the in-
tersection matrix of the curves L{y},{x,t}, L{x},{y,z,t}, L{z},{x,t}, L{t},{x,y,z}, L{x},{y}, and Hλ.
The latter matrix is given by

• L{y},{x,t} L{x},{y,z,t} L{z},{x,t} L{t},{x,y,z} L{x},{y} Hλ

L{y},{x,t} −4
5

0 1 0 3
5

1

L{x},{y,z,t} 0 −1
2

0 1
2

1
2

1

L{z},{x,t} 1 0 −4
5

0 0 1

L{t},{x,y,z} 0 1
2

0 −3
2

0 1

L{x},{y}
3
5

1
2

0 0 −1
5

1

Hλ 1 1 1 1 1 4

The rank of this matrix is 5. We can see that the determinant of this matrix is 0 without
computing it. Indeed, we have Hλ ∼ 2L{x},{t} + L{y},{x,t} + L{z},{x,t} on the surface Sλ,
because H{x,t} · Sλ = 2L{x},{t} + L{y},{x,t} + L{z},{x,t}.
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Observe that rkPic(S̃k) = rk Pic(Sk) + 12. Therefore, we conclude that (⋆) holds.
Using Lemma 1.13.1, we see that (♦) in Main Theorem also holds.

3.15. Family №3.15. In this case, the threefold X is a blow up of a quadric in a disjoint
union of a line and a conic, so that h1,2(X) = 0. A toric Landau–Ginzburg model of this
family is given by Minkowski polynomial №419 is

x+ y + z +
x

z
+

z

y
+

1

z
+

1

y
+

1

x
+

z

xy
.

The quartic pencil S is given by

x2zy + y2zx+ z2yx+ x2ty + z2tx+ t2yx+ t2zx+ t2zy + t2z2 = λxyzt.

Suppose that λ 6= ∞. Let C be a conic that is given by y = xz + xt + zt = 0. Then

H{x} · Sλ = L{x},{z} + 2L{x},{t} + L{x},{y,z},

H{y} · Sλ = L{y},{z} + L{y},{t} + C,
H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.15.1)

Thus, the base locus of the pencil S consists of the curves L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t},
L{x},{y,z}, L{z},{t}, L{z},{x,t}, L{t},{x,y,z}, and C.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A2 with quadratic term (x+z)(y+z) for λ 6= −2, type A3 for λ = −2;
P{x},{y},{t}: type A1;
P{x},{z},{t}: type A3 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term y(z + t) for λ 6= −3, type A4 for λ = −3;

P{x},{t},{y,z}: type A2 with quadratic term x(x+ y + z − t− λt).

So, by Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.
If λ 6= −2 and λ 6= −3, then the intersection matrix of the curves L{x},{z}, L{x},{y,z},

L{y},{z}, L{z},{x,t}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by the following table:

• L{x},{z} L{x},{y,z} L{y},{z} L{z},{x,t} L{t},{x,y,z} Hλ

L{x},{z} −1
3

1
3

1
3

1
2

0 1

L{x},{y,z}
1
3

−2
3

2
3

0 1
3

1

L{y},{z}
1
3

2
3

− 7
12

0 0 1

L{z},{x,t}
1
2

0 0 −5
4

0 1

L{t},{x,y,z} 0 1
3

0 0 −4
3

1

Hλ 1 1 1 1 1 4
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This matrix has rank 6. On the other hand, using (3.15.1), we see that

Hλ ∼ L{x},{z} + 2L{x},{t} + L{x},{y,z} ∼ L{y},{z} + L{y},{t} + C ∼
∼ L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the rank of the intersection matrix of the curves L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{x},{y,z}, L{z},{t}, L{z},{x,t}, L{t},{x,y,z}, and C is also 6. One the other

hand, we have rkPic(S̃k) = rkPic(Sk) + 11. Thus, we see that (⋆) holds, so that (♦) in
Main Theorem holds by Lemma 1.13.1.

3.16. Family №3.16. In this case, the threefold X is can be obtained from P3 blown up
in a point by blowing up a proper transform of a twisted cubic curve passing through the
point. Thus, we see that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is
given by Minkowski polynomial №212, which is

x+ y + z +
y

z
+

x

y
+

y

xz
+

1

y
+

1

x
.

The pencil S is given by the equation

x2zy + y2zx+ z2yx+ y2tx+ x2tz + t2y2 + t2zx+ t2zy = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + 2L{x},{t} + L{x},{y,z},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t},

H{z} · Sλ = 2L{y},{z} + L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.16.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{y,z}, L{y},{x,t}, L{z},{x,t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ ∈ S has isolated singularities, so that it is irreducible.
The singular points of the surface Sλ contained in the base locus of the pencil S can

be described as follows:

P{x},{y},{z}: type A1;
P{x},{z},{t}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;

P{x},{t},{y,z}: type A2 with quadratic term

x(x+ y + z − t− λt)

for λ 6= −1, type A3 for λ = −1;
P{y},{z},{t}: type A2 with quadratic term z(y + t);

P{y},{z},{x,t}: type A2 with quadratic term

z(x+ t− 2y − λy)

for λ 6= −2, type A3 for λ = −2.
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Therefore, every fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main
Theorem, because h1,2(X) = 0.

Now let us verify (♦) in Main Theorem. We may assume that λ 6= −1 and λ 6= −2.
Using (3.16.1), we see that the intersection matrix of the lines L{x},{y}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{y,z}, L{y},{x,t}, L{z},{x,t}, and L{t},{x,y,z} on the surface Sλ has the
same rank as the intersection matrix of the curves L{x},{t}, L{x},{y,z}, L{y},{z}, L{z},{t},
L{t},{x,y,z}, and Hλ. But the latter matrix is given by

• L{x},{t} L{x},{y,z} L{y},{z} L{z},{t} L{t},{x,y,z} Hλ

L{x},{t} − 1
12

2
3

0 1
2

1
3

1

L{x},{y,z}
2
3

−5
6

1
2

0 1
3

1

L{y},{z} 0 1
2

−1
6

2
3

0 1

L{z},{t}
1
2

0 2
3

−5
6

1 1

L{t},{x,y,z}
1
3

1
3

0 1 −4
3

1

Hλ 1 1 1 1 1 4

Its rank is 6. On the other hand, the description of the singular points of the surface Sλ

easily gives rkPic(S̃k) = rkPic(Sk) + 11. Thus, we can conclude that (⋆) holds in this
case, so that (♦) in Main Theorem also holds by Lemma 1.13.1.

3.17. Family №3.17. The threefold X is a divisor of tridegree (1, 1, 1) in P1×P1×P2, so
that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №208, which is

z

y
+ x+

1

y
+ z + y +

1

x
+

1

xz
+

y

xz
.

The pencil of quartic surfaces S is given by the equation

z2tx+ x2zy + t2zx+ z2yx+ y2zx+ t2zy + t3y + t2y2 = λxyzt.

To describe the base locus of the pencil S, we observe that

• H{x} · Sλ = L{x},{y} + 2L{x},{t} + L{x},{y,z,t},
• H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},
• H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{y,t},
• H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{y,z,t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z}.

If λ 6= ∞, then Sλ has isolated singularities, so that it is irreducible. In this case,
the singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{t}: type A2 with quadratic term x(y + t);
P{x},{z},{t}: type A1;
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P{y},{z},{t}: type A4 with quadratic term yz;
P{x},{y},{z,t}: type A1 for λ 6= −2, type A2 for λ = −2;
P{x},{t},{y,z}: type A2 with quadratic term x(x+ y + z − t− λt);
P{z},{t},{x,y}: type A1.

Thus, by Lemma 1.5.4, the fiber f−1(λ) is irreducible for every λ 6= ∞. This confirms (♥)
in Main Theorem, since h1,2(X) = 0.

Let us check (♦) in Main Theorem. To do this, we may assume that λ 6= ∞ and λ 6= −2.
Then the intersection matrix of the curves L{x},{y}, L{x},{t}, L{y},{t}, L{y},{z,t}, L{t},{x,y,z},
and Hλ on the surface Sλ is given by the following table:

• L{x},{y} L{x},{t} L{y},{t} L{y},{z,t} L{t},{x,y,z} Hλ

L{x},{y} −5
6

2
3

1
3

1
2

0 1

L{x},{t}
2
3

−1
6

1
3

0 1
3

1

L{y},{t}
1
3

1
3

− 8
15

4
5

1 1

L{y},{z,t}
1
2

0 4
5

− 7
10

0 1

L{t},{x,y,z} 0 1
3

1 0 −5
6

1

Hλ 1 1 1 1 1 4

This matrix has rank 6. Thus, the intersection matrix of the lines L{x},{y}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{y,z,t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z} on the surface Sλ also has
rank 6, because

Hλ ∼ L{x},{y} + 2L{x},{t} + L{x},{y,z,t} ∼ L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t} ∼
∼ L{y},{z} + 2L{z},{t} + L{z},{y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

On the other hand, one has rkPic(S̃k) = rk Pic(Sk) + 11. We conclude that (⋆) holds.
By Lemma 1.13.1, this implies that (♦) in Main Theorem also holds.

3.18. Family №3.18. The threefold X can be obtained by blowing up P3 in disjoint union
of a line and a conic. This shows that h1,2(X) = 0. A toric Landau–Ginzburg model of
this family is given by Minkowski polynomial №211, which is

x

y
+ x+

1

y
+ z +

x

z
+ y +

1

x
+

y

z
.

Thus, the pencil S is given by the equation

x2tz + x2zy + t2zx+ z2yx+ x2ty + y2zx + t2zy + y2tx = λxyzt.

As usual, we suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.18.1)
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Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{y},{x,t}, L{z},{x,y}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A1;
P{x},{z},{t}: type A2 with quadratic term x(z + t);
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{y},{z}: type A3 with quadratic term x(x+ y) for λ 6= −1, type A5 for λ = −1;
P{x},{t},{y,z}: type A1;
P{z},{t},{x,y}: type A1 for λ 6= −2, type A2 for λ = −2.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, we may assume that λ 6= −1 and λ 6= −2. In this

case, the intersection matrix of the curves L{y},{t}, L{y},{x,t}, L{z},{t}, L{z},{x,y}, L{t},{x,y,z},
and Hλ on the surface Sλ is given by the following table:

• L{y},{t} L{y},{x,t} L{z},{t} L{z},{x,y} L{t},{x,y,z} Hλ

L{y},{t} −3
4

3
4

1
2

0 1 1

L{y},{x,t}
3
4

−5
4

0 0 0 1

L{z},{t}
1
2

0 −1
3

1
2

1
2

1

L{z},{x,y} 0 0 1
2

−3
4

1
2

1

L{t},{x,y,z} 1 0 1
2

1
2

−1 1

Hλ 1 1 1 1 1 4

This matrix has rank 6. On the other hand, it follows from (3.18.1) that

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t} ∼
∼ L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{y},{x,t}, L{z},{x,y}, and L{t},{x,y,z} on the surface Sλ has the same rank as the
intersection matrix of the curves L{y},{t}, L{y},{x,t}, L{z},{t}, L{z},{x,y}, L{t},{x,y,z}, and Hλ.

Moreover, we have rkPic(S̃k) = rkPic(Sk)+11. Thus, we see that (⋆) holds, so that (♦)
in Main Theorem holds by Lemma 1.13.1.

3.19. Family №3.19. The threefold X can be obtained by blowing up a smooth quadric
hypersurface in P3 in two points, so that h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №74, which is

z

x
+

1

x
+ y + z + x+

1

yz
+

x

yz
.

The quartic pencil S is given by the following equations:

z2ty + t2yz + y2xz + z2xy + x2yz + t3x+ x2t2 = λxyzt.



KATZARKOV–KONTSEVICH–PANTEV CONJECTURE FOR FANO THREEFOLDS 129

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{x,t},

H{z} · Sλ = L{x},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.19.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{z,t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z}.

For every λ ∈ C, the quartic surface Sλ has isolated singularities, so that it is irreducible.
Moreover, the singular points of the surface Sλ contained in the base locus of the pencil S
can be described as follows:

P{x},{y},{t}: type A4 with quadratic term y(x+ t);
P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A1;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1.

Then each fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main Theorem.
Let us verify (♦) in Main Theorem. It follows from (3.19.1) that the intersection

matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{x,t}, L{z},{x,t},
L{t},{x,y,z} on the surface Sλ has the same rank as the intersection matrix of the curves
L{x},{y}, L{x},{z,t}, L{y},{t}, L{z},{t}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y} L{x},{z,t} L{y},{t} L{z},{t} L{t},{x,y,z} Hλ

L{x},{y} −6
5

1 4
5

0 0 1

L{x},{z,t} 1 −6
5

0 1
5

0 1

L{y},{t}
4
5

0 −1
5

1
2

1
2

1

L{z},{t} 0 1
5

1
2

−1
5

1
2

1

L{t},{x,y,z} 0 1 1
2

1
2

−1 1

Hλ 1 1 1 1 1 4

The rank of this matrix is 6. Moreover, we have rkPic(S̃k) = rkPic(Sk) + 11. Thus, we
conclude that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

3.20. Family №3.20. In this case, the threefold X is a blow up of the smooth quadric
threefold along a disjoint union of two lines, so that h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №79, which is

y

x
+

1

x
+ y + z +

1

y
+ x+

x

yz
.

The quartic pencil S is given by the following equation:

y2tz + t2yz + y2xz + z2xy + t2xz + x2yz + x2t2 = λxyzt.
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As usual, we suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + L{y},{x,z},

H{z} · Sλ = 2L{x},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.20.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,t}, L{y},{x,z}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
The singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{y},{z},{t}: type A1;

P{x},{y},{z,t}: type A1 for λ 6= −1, type A2 for λ = −1;
P{y},{t},{x,z}: type A2 with quadratic term

y(x+ y + z − λt)

for λ 6= 0, type A3 for λ = 0;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.
If λ 6= 0 and λ 6= −1, then the intersection matrix of the curves L{x},{y}, L{x},{y,t},

L{y},{x,z}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by the following table:

• L{x},{y} L{x},{y,t} L{y},{x,z} L{t},{x,y,z} Hλ

L{x},{y} 0 1
2

1
2

0 1

L{x},{y,t}
1
2

−5
4

0 0 1

L{y},{x,z}
1
2

0 −5
6

1
3

1

L{t},{x,y,z} 0 0 1
3

−5
6

1

Hλ 1 1 1 1 4

The rank of this matrix is 5. On the other hand, it follows from (3.20.1) that

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t} ∼ L{x},{y} + 2L{y},{t} + L{y},{x,z} ∼
∼ 2L{x},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

on the surface Sλ. Thus, if λ 6= 0 and λ 6= −1, then the rank of the intersection matrix
of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,z}, and L{t},{x,y,z}
on the surface Sλ is also 5. Moreover, we have rkPic(S̃k) = rkPic(Sk) + 12. Thus, we see
that (⋆) holds, so that (♦) in Main Theorem holds by Lemma 1.13.1.
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3.21. Family №3.21. In this case, the threefold X is a blow up of P1 × P2 in a curve
of bidegree (2, 1), so that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is
given by Minkowski polynomial №213, which is

z

y
+ x+

1

y
+ z +

z

xy
+

1

z
+ y +

1

x
.

The quartic pencil S is given by the equation

z2xt + x2yz + t2xz + z2xy + t2z2 + t2xy + y2xz + t2yz = λxyzt.

Suppose that λ 6= ∞. Let C be the conic in P3 that is given by y = xz + xt + zt = 0.
Then

H{x} · Sλ = L{x},{z} + 2L{x},{t} + L{x},{y,z},

H{y} · Sλ = L{y},{z} + L{y},{t} + C,
H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.21.1)

Thus, the base locus of the pencil S consists of the curves L{x},{z} L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{y,z}, L{t},{x,y,z}, and C.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
Moreover, the singular points of the surface Sλ contained in the base locus of the pencil S
can be described as follows:

P{x},{y},{t}: type A1;
P{x},{y},{z}: type A2 with quadratic term (x+z)(y+z) for λ 6= −1, type A3 for λ = −1;
P{x},{z},{t}: type A3 with quadratic term xz;

P{x},{t},{y,z}: type A2 with quadratic term

x(x+ y + z − t− λt)

for λ 6= −1, type A3 for λ = −1;
P{y},{z},{t}: type A3 with quadratic term yz;

P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.
Now let us show that (♦) in Main Theorem also holds in this case. To do this, we

may assume that λ 6= −1. Then the intersection matrix of the curves L{x},{z}, L{x},{y,z},
L{y},{t}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by

• L{x},{z} L{x},{y,z} L{y},{t} L{t},{x,y,z} Hλ

L{x},{z} −1
3

1
3

0 0 1

L{x},{y,z}
1
3

−2
3

0 1
3

1

L{y},{t} 0 0 −3
4

1 1

L{t},{x,y,z} 0 1
3

1 −5
6

1

Hλ 1 1 1 1 4
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The rank of this intersection matrix is 5. On the other hand, it follows from (3.21.1) that

Hλ ∼ L{x},{z} + 2L{x},{t} + L{x},{y,z} ∼ L{y},{z} + L{y},{t} + C ∼
∼ L{x},{z} + L{y},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the rank of the intersection matrix of the curves L{x},{z} L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,z}, L{t},{x,y,z}, and C on the surface Sλ is also 5. Moreover,

we have rkPic(S̃k) = rkPic(Sk) + 12. Thus, we see that (⋆) holds, so that (♦) in Main
Theorem holds by Lemma 1.13.1.

3.22. Family №3.22. In this case, the threefold X is a blow up of P1 × P2 in a conic
contained in a fiber of the projection P1 × P2 → P1. Thus, we have h1,2(X) = 0. A toric
Landau–Ginzburg model of this family is given by Minkowski polynomial №75, which is

z

x
+

1

x
+ y + z +

1

xyz
+ x+

1

yz
.

The quartic pencil S is given by

z2ty + t2yz + y2xz + z2xy + t4 + x2yz + t3x = λxyzt.

Let C be a cubic curve in P3 that is given by x = yz2+ yzt+ t3 = 0. Then C is singular
at the point P{x},{z},{t}. Moreover, if λ 6= ∞, then

H{x} · Sλ = L{x},{t} + C,
H{y} · Sλ = 3L{y},{t} + L{y},{x,t},

H{z} · Sλ = 3L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.22.1)

Therefore, the base locus of the pencil S consists of the curves L{x},{t}, L{y},{t}, L{z},{t},
L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z}, and C.

For every λ 6= ∞, the surface Sλ has isolated singularities, which implies that Sλ is
irreducible. In this case, the singular points of the surface Sλ contained in the base locus
of the pencil S can be described as follows:

P{x},{y},{t}: type A4 with quadratic term y(x+ t) for λ 6= −2, type A6 for λ = −2;
P{x},{z},{t}: type A3 with quadratic term xz;
P{y},{z},{t}: type A2 with quadratic term yz;

P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z − t− λt);
P{z},{t},{x,y}: type A2 with quadratic term z(x+ y + z − λt).

Thus, it follows from Lemma 1.5.4 that [f−1(λ)] = 1 for every λ ∈ C. This confirms (♥)
in Main Theorem, since h1,2(X) = 0.

Let us verify (♦) in Main Theorem. If λ 6= ∞, then

Hλ ∼ L{x},{t} + C ∼ 3L{y},{t} + L{y},{x,t} ∼
∼ 3L{z},{t} + L{z},{x,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}
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on the surface Sλ. This follows from (3.22.1). Thus, if λ 6= ∞, then the intersection
matrix of L{x},{t}, L{y},{t}, L{z},{t}, L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z}, and C on the surface Sλ

has the same rank as the intersection matrix of the curves L{y},{x,t}, L{z},{x,t}, L{t},{x,y,z},
and Hλ. If λ 6= ∞ and λ 6= −2, then the latter matrix is given by the following table:

• L{y},{x,t} L{z},{x,t} L{t},{x,y,z} Hλ

L{y},{x,t} −4
5

1 0 1

L{z},{x,t} 1 −5
4

0 1

L{t},{x,y,z} 0 0 −2
3

1

Hλ 1 1 1 4

The rank of this matrix is 4. On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 13.
Thus, we see that (⋆) holds, so that (♦) in Main Theorem holds by Lemma 1.13.1.

3.23. Family №3.23. In this case, the threefold X is a blow up of P3 blown up at a point
at the proper transform of a conic passing through this point. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №76, which is

z

x
+

1

x
+ y + z +

1

xy
+ x+

1

yz
.

The pencil S is given by the following equation:

z2ty + t2yz + y2xz + z2xy + t3z + x2yz + t3x = λxyzt.

Suppose that λ 6= ∞. Let C be the conic in P3 that is given by x = yz + yt + t2 = 0.
Then

H{x} · Sλ = L{x},{z} + L{x},{t} + C,
H{y} · Sλ = 3L{y},{t} + L{y},{x,z},

H{z} · Sλ = L{x},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.23.1)

Thus, the base locus of the pencil S consists of the curves L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t},
L{y},{x,z}, L{t},{x,y,z}, and C.

Observe that Sλ has isolated singularities. In particular, it is irreducible. Moreover, its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term y(x+ t);
P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A2 with quadratic term yz;

P{y},{t},{x,z}: type A3 with quadratic term

y(x+ y + z − t− λt)

for λ 6= −1, type A4 for λ = −1;
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + z − λt).
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Thus, by Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

To check (♦) in Main Theorem, we may assume that λ 6= −1. Then the intersection
matrix of the curves L{x},{t}, L{y},{x,z}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by

• L{x},{t} L{y},{x,z} L{t},{x,y,z} Hλ

L{x},{t} − 8
15

0 1 1

L{y},{x,z} 0 −5
4

1
4

1

L{t},{x,y,z} 1 1
4

−1
2

1

Hλ 1 1 1 4

This matrix has rank 4. On the other hand, it follows from (3.23.1) that

Hλ ∼ L{x},{z} + L{x},{t} + C ∼ 3L{y},{t} + L{y},{x,z} ∼
∼ L{x},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Hence, the rank of the intersection matrix of the curves L{x},{z},
L{x},{t}, L{y},{t}, L{z},{t}, L{y},{x,z}, L{t},{x,y,z}, and C on the surface Sλ is also 4. Using the

description of the singular points of the surface Sλ, we see that rkPic(S̃k) = rkPic(Sk)+13.
Thus, we see that (⋆) holds, so that (♦) in Main Theorem holds by Lemma 1.13.1.

3.24. Family №3.24. In this case, a toric Landau–Ginzburg model is given by Minkowski
polynomial №77, which is

x+ y + z +
y

x
+

1

y
+

1

x
+

1

xyz
.

Thus, the quartic pencil S is given by

x2yz + y2xz + z2xy + y2tz + t2xz + t2yz + t4 = λxyzt.

Let C1 be the cubic curve in P3 that is given by x = y2z + yzt + t3 = 0. Then C1 is
singular at the point P{x},{y},{t}, but its proper transform on U is a smooth rational curve.
Let C2 be the conic in P3 that is given by y = xz + t2 = 0. If λ 6= ∞, then

H{x} · Sλ = L{x},{t} + C1,
H{y} · Sλ = 2L{y},{t} + C2,
H{z} · Sλ = 4L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.24.1)

Thus, the base locus of the pencil S is a union of the curves L{x},{t}, L{y},{t}, L{z},{t},
L{t},{x,y,z}, C1, and C2,

If λ 6= ∞, then the quartic surface Sλ has isolated singularities, so that it is irreducible.
In this case, its singular points contained in the base locus of the pencil S can be described
as follows:

P{x},{y},{t}: type A3 with quadratic term xy;
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P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1 for λ 6= −5
2
, type A2 for λ = −5

2
;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A3 with quadratic term z(x + y + z − t− λt).

Thus, by Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main
Theorem, since h1,2(X) = 0 in this case.

If λ 6= ∞, then it follows from (3.24.1) that

L{x},{t}+C1 ∼ 2L{y},{t}+C2 ∼ 4L{z},{t} ∼ L{x},{t}+L{y},{t}+L{z},{t}+L{t},{x,y,z} ∼ Hλ.

In this case, the intersection matrix of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{t},{x,y,z},
C1, and C2 on the surface Sλ has the same rank as the intersection matrix of the curves
L{x},{t}, L{t},{x,y,z}, and Hλ. On the other hand, if λ 6= ∞ and λ 6= −5

2
, then the latter

matrix is given by

• L{x},{t} L{t},{x,y,z} Hλ

L{x},{t} 0 1
2

1

L{t},{x,y,z}
1
2

−1
4

1

Hλ 1 1 4

The rank of this matrix is 3. Thus, if λ 6= ∞ and λ 6= −5
2
, then the rank of the intersection

matrix of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{t},{x,y,z}, C1, and C2 on the surface Sλ is

also 3. This implies (⋆), because rkPic(S̃k) = rkPic(Sk)+14. Then (♦) in Main Theorem
holds by Lemma 1.13.1.

3.25. Family №3.25. In this case, the threefold X is a blow up of P3 in a disjoint union
of two lines. Thus, we have h1,2(X) = 0. A toric Landau–Ginzburg model of this family
is given by Minkowski polynomial №24, which is

x+ y + z +
x

z
+

1

x
+

1

xy
.

Hence, the quartic pencil S is given by the following equation:

x2yz + y2xz + z2xy + x2ty + t2yz + t3z = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{z} + 2L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{y},{z} + 3L{y},{t},

H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.25.1)

Thus, the base locus of the pencil S consists of the lines L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{y,t}, L{t},{x,y,z}.



136 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

Observe that Sλ has isolated singularities, so that it is irreducible. Moreover, its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term xy;
P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term y(z + t);

P{x},{z},{y,t}: type A1;
P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A2 with quadratic term y(x+ y + z + (λ+ 1)t).

Therefore, by Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

Let us verify (♦) in Main Theorem. It follows from (3.25.1) that

Hλ ∼ L{x},{z} + 2L{x},{t} + L{x},{y,t} ∼ L{y},{z} + 3L{y},{t} ∼
∼ 2L{x},{z} + L{y},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the intersection matrix of the lines L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{y,t}, L{t},{x,y,z} has the same rank as the intersection matrix of the
curves L{x},{y,t}, L{y},{z}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y,t} L{z},{t} L{t},{x,y,z} Hλ

L{x},{y,t} −5
6

0 0 1

L{y},{t} 0 −4
3

1
2

1

L{t},{x,y,z} 0 1
2

−1
2

1

Hλ 1 1 1 4

This matrix has rank 4. This gives (⋆), since rkPic(S̃k) = rkPic(Sk) + 13. Thus, we see
that (♦) in Main Theorem holds by Lemma 1.13.1.

3.26. Family №3.26. The threefold can be obtained from P3 by blowing up disjoint union
of a point and a line, so that h1,2(X) = 0. A toric Landau–Ginzburg model of this family
is given by Minkowski polynomial №25, which is

y

x
+

1

x
+ y + z + x+

1

yz
.

Then the pencil S is given by the following equation:

y2tz + t2yz + y2xz + z2xy + x2yz + t3x = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + 3L{y},{t},

H{z} · Sλ = L{x},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.26.1)
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Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,t}, and L{t},{x,y,z}.

The surface Sλ has isolated singularities, so that it is irreducible. Its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A4 with quadratic term xy;
P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{y},{z},{t}: type A2 with quadratic term yz;

P{y},{t},{x,z}: type A2 with quadratic term y(x+ y − λt);
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + z − t− λt).

By Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, observe that the intersection matrix of the curves

L{x},{y,t}, L{z},{t}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by the following matrix:

• L{x},{y,t} L{z},{t} L{t},{x,y,z} Hλ

L{x},{y,t} −5
4

0 0 1

L{z},{t} 0 1
12

1
3

1

L{t},{x,y,z} 0 1
3

−2
3

1

Hλ 1 1 1 4

The rank of this matrix is 4. On the other hand, it follows from (3.26.1) that

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t} ∼ L{x},{y} + 3L{y},{t} ∼
∼ L{x},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ.

Thus, the rank of the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,t}, and L{t},{x,y,z} is also 4. Moreover, the description of the singular points

of the surface Sλ easily gives rkPic(S̃k) = rkPic(Sk) + 13. Thus, we see that (⋆) holds,
so that (♦) in Main Theorem holds by Lemma 1.13.1.

3.27. Family №3.27. We already discussed this case in Example 1.7.1, where we also
described the pencil S. Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.27.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, and L{t},{x,y,z}.

The surface Sλ has isolated singularities, so that it is irreducible. Moreover, its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;
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P{x},{z},{t}: type A3 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, we have [f−1(λ)] = 1. This confirms (♥) in Main Theorem.
To prove (♦) in Main Theorem, observe that the intersection matrix of the curves

L{x},{y}, L{x},{z}, L{y},{z}, and Hλ on the surface Sλ is given by the following table:

• L{x},{y} L{x},{z} L{y},{z} Hλ

L{x},{y} 1 1
2

1
2

1

L{x},{z}
1
2

1 1
2

1

L{y},{z}
1
2

1
2

1 1

Hλ 1 1 1 4

The determinant of this matrix is 5
4
. On the other hand, it follows from (3.27.1) that

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + L{y},{z} + 2L{y},{t} ∼
∼ L{x},{z} + L{y},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Thus, the rank of the intersection matrix of the lines the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} is 4. As we have seen above, the description of

the singular points of the surface Sλ gives rkPic(S̃k) = rkPic(Sk)+13, so that (⋆) holds.
This gives (♦) in Main Theorem by Lemma 1.13.1.

3.28. Family №3.28. The threefold X is P1×F1, where F1 is a blow up of P2 in a point.
Thus, we have h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by
Minkowski polynomial №29, which is

x+ y + z +
x

z
+

1

x
+

1

y
.

Then the pencil S is given by

x2yz + y2xz + z2xy + x2ty + t2xz + t2yz = λxyzt.

As usual, we suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},

H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.28.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, and L{t},{x,y,z}.
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Each surface Sλ has isolated singularities. In particular, it is irreducible. Its singular
points contained in the base locus of the pencil S can be described as follows:

P{y},{z},{t}: type A2 with quadratic term y(z + t);
P{x},{z},{t}: type A4 with quadratic term xz;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{y},{z}: type A2 with quadratic term x(x+ y);
P{x},{t},{y,z}: type A1;
P{y},{t},{x,z}: type A1.

Thus, each fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, observe that the intersection matrix of the curves

L{y},{z}, L{y},{t}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by the following table:

• L{y},{z} L{y},{t} L{t},{x,y,z} Hλ

L{y},{z} −2
3

2
3

0 1

L{y},{t}
2
3

− 1
12

1
2

1

L{t},{x,y,z} 0 1
2

−1 1

Hλ 1 1 1 4

This matrix has rank 4. Using (3.28.1), we see that

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + L{y},{z} + 2L{y},{t} ∼
2L{x},{z} + L{y},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the rank of the intersection matrix of the lines L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} on the surface Sλ is also 4. On the other

hand, we have rkPic(S̃k) = rkPic(Sk) + 13. Thus, we see that (⋆) holds, so that (♦) in
Main Theorem holds by Lemma 1.13.1.

3.29. Family №3.29. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №26, which is

y

x
+

1

x
+ y + z +

1

xyz
+ x.

Hence, the pencil S is given by the equation

y2tz + t2yz + y2xz + z2xy + t4 + x2yz = λxyzt.

Let C be the cubic curve in P3 that is given by x = y2z + yzt + t3 = 0. Then C is
singular at the point P{x},{y},{t}. If λ 6= ∞, then

H{x} · Sλ = L{x},{t} + C,
H{y} · Sλ = 4L{y},{t},

H{z} · Sλ = 4L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.29.1)
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Thus, the base locus of the pencil S consists of the curves L{x},{t}, L{y},{t}, L{z},{t},
L{t},{x,y,z}, and C.

If λ 6= ∞, then Sλ has isolated singularities, so that it is irreducible. In this case,
the singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{t}: type A3 with quadratic term xy,
P{x},{z},{t}: type A3 with quadratic term z(x + t),
P{y},{z},{t}: type A3 with quadratic term yz,

P{y},{t},{x,z}: type A3 with quadratic term y(x+ y + z − λt),
P{z},{t},{x,y}: type A3 with quadratic term z(x + y + z − t− λt).

By Lemma 1.5.4, we have [f−1(λ)] for every λ ∈ C. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, observe that

L{x},{t} + C ∼ 4L{y},{t} ∼ 4L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

on the surface Sλ with λ 6= ∞. This follows from (3.29.1). Thus, the intersection matrix
of the curves L{x},{t}, L{y},{t}, L{z},{t}, L{t},{x,y,z}, and C on the surface Sλ has the same
rank as the intersection matrix of the lines L{x},{t} and L{y},{t}. On the other hand, the
rank of the latter matrix is 2, because have L2

{x},{t} = L{x},{t} ·L{y},{t} =
1
4
and L2

{x},{t} =
1
2
.

Moreover, we have rkPic(S̃k) = rkPic(Sk) + 15. This shows that (⋆) holds. Then (♦) in
Main Theorem also holds by Lemma 1.13.1.

3.30. Family №3.30. The threefold X can be obtained from P3 blown up at a point
by blowing up the proper transform of a line passing through this point. This shows
that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №28, which is

x+ y + z +
y

z
+

x

y
+

1

x
.

In this case, the quartic pencil S is given by the equation

x2yz + y2xz + z2xy + y2xt+ x2tz + t2yz = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = 2L{x},{y} + L{y},{z} + L{y},{t},

H{z} · Sλ = L{x},{z} + 2L{y},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.30.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, and L{t},{x,y,z}.

Each surface Sλ is irreducible and has isolated singularities. Moreover, its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A4 with quadratic term yz;
P{x},{y},{t}: type A4 with quadratic term xy;
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P{x},{z},{t}: type A2 with quadratic term x(z + t);
P{y},{z},{t}: type A2 with quadratic term z(y + t);

P{x},{t},{y,z}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 13. On the
other hand, it follows from (3.30.1) that

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ 2L{x},{y} + L{y},{z} + L{y},{t} ∼
∼ L{x},{z} + 2L{y},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} has the same rank as the intersection matrix of
the curves L{x},{y}, L{x},{z}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y} L{x},{z} L{t},{x,y,z} Hλ

L{x},{y} 0 1
4

0 1

L{x},{z}
1
4

− 7
12

0 1

L{t},{x,y,z} 0 0 −3
2

1

Hλ 1 1 1 4

Its rank is 4, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

3.31. Family №3.31. The threefold X can be obtained by blowing up irreducible quadric
cone in P4 in its vertex. This implies that h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №27, which is

x+ y + z +
x

z
+

x

y
+

1

x
.

Then the pencil S is given by the following equation:

t2yz + tx2y + tx2z + x2yz + xy2z + xyz2 = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = 2L{x},{y} + L{y},{z} + L{y},{t},

H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(3.31.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, and L{t},{x,y,z}.

Each surface Sλ is irreducible, it has isolated singularities, and its singular points con-
tained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A3 with quadratic term yz;
P{x},{y},{t}: type A4 with quadratic term xy;
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P{x},{z},{t}: type A4 with quadratic term xz;
P{y},{z},{t}: type A1;

P{x},{t},{y,z}: type A1.

Thus, by Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 13. Moreover,
it follows from (3.31.1) that

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ 2L{x},{y} + L{y},{z} + L{y},{t} ∼
∼ 2L{x},{z} + L{y},{z} + L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, and L{t},{x,y,z} has the same rank as the intersection matrix of
the curves L{x},{y}, L{x},{z}, L{y},{z}, and Hλ. The latter matrix can be computed as

• L{x},{y} L{x},{z} L{y},{z} Hλ

L{x},{y} − 1
20

1
4

1
2

1

L{x},{z}
1
4

− 1
20

1
2

1

L{y},{z}
1
2

1
2

−1
2

1

Hλ 1 1 1 4

The determinant of this matrix is − 3
25
. Thus, we see that (⋆) holds. Then (♦) in Main

Theorem holds by Lemma 1.13.1.

4. Fano threefolds of Picard rank 4

4.1. Family №4.1. The threefold X is a divisor of degree (1, 1, 1, 1) on P1×P1×P1×P1.
In this case, we have h1,2(X) = 1. A toric Landau–Ginzburg model of this family is given
by Minkowski polynomial №2354.1, which is

x+ y + z +
y

z
+

y

x
+

z

y
+

z

x
+

1

z
+

y

xz
+

1

y
+

3

x
+

z

xy
+

1

xz
+

1

xy
.

The quartic pencil S is given by the following equation:

x2yz + xy2z + xyz2 + xy2t+ y2zt + xz2t+ yz2t + xyt2 + y2t2 + xt2z+

+ 3yzt2 + z2t2 + yt3 + zt3 = λxyzt.

As usual, we assume that λ 6= ∞ (just for simplicity).
Let C be the conic in P3 given by x = yz + yt+ zt = 0. Then

H{x} · Sλ = L{x},{t} + L{x},{y,z,t} + C,
H{y} · Sλ = L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{z,t},

H{z} · Sλ = L{y},{z} + L{z},{t} + L{z},{x,t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.1.1)
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Thus, the base locus of the pencil S consists of the curves L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t},
L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, L{x},{y,z,t}, L{t},{x,y,z}, and C.

Observe that S−4 = H{x,t} + S, where S is a cubic surface in P3 that is given by

yt2 + zt2 + z2t + y2t + 3yzt+ y2z + yz2 + xyz = 0.

On the other hand, if λ 6= −4, then Sλ is irreducible and has isolated singularities.
Moreover, if λ 6= −3 and λ 6= −4, then singular points of the surface Sλ contained in the
base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term (x+ t)(y + t);
P{x},{z},{t}: type A2 with quadratic term (x+ t)(z + t);
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1 with quadratic term (x+ t)(x+ y + z + t)− (λ+ 4)xt;
P{y},{z},{x,t}: type A1 with quadratic term (x+ t)(y + z) + (λ+ 4)yz.

Furthermore, the surface S−3 has the same type singularities at the points P{x},{z},{t},
P{x},{y},{t}, P{y},{z},{t}, P{x},{t},{y,z}, and P{y},{z},{x,t}. In addition to this, the surface S−3

is also singular at the points [0 : ξ3 : 1 : ξ23 ] and [0 : ξ23 : 1 : ξ3], where ξ3 is a primitive
cube root of unity. Both these points are singular points of the surface S−3 of type A1.

For λ 6= −4, the surface Sλ has du Val singularities at the base points of the pencil S.
Therefore, by Lemma 1.5.4, the fiber f−1(λ) is irreducible for every λ 6= −4. Moreover,
the points P{x},{z},{t}, P{x},{y},{t}, P{y},{z},{t}, P{x},{t},{y,z}, and P{y},{z},{x,t} are good double
points of the surface S−4. Furthermore, the surface S−4 is smooth at general points of the
curves L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{y},{x,t}, L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, L{x},{y,z,t},
L{t},{x,y,z}, and C. Thus, we see that

[
f−1(−4)

]
=
[
S−4

]
= 2

by (1.8.3) and Lemmas 1.8.5 and 1.12.1. This confirms (♥) in Main Theorem.
To verify (♦) in Main Theorem, we may assume that λ 6= −4. Then the intersection

matrix of the curves L{x},{t}, L{x},{y,z,t}, L{y},{x,t}, L{y},{z,t}, L{z},{y,t}, L{t},{x,y,z}, and Hλ

on the surface Sλ is given by

• L{x},{t} L{x},{y,z,t} L{y},{x,t} L{y},{z,t} L{z},{y,t} L{t},{x,y,z} Hλ

L{x},{t} −1
6

1
2

2
3

0 0 1
2

1

L{x},{y,z,t}
1
2

−3
2

0 1 1 1
2

1

L{y},{x,t}
2
3

0 −5
6

1 0 0 1

L{y},{z,t} 0 1 1 −5
4

1
4

0 1

L{z},{y,t} 1 1 0 1
4

−5
4

0 1

L{t},{x,y,z}
1
2

1
2

0 0 0 −3
2

1

Hλ 1 1 1 1 1 1 4
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This matrix has rank 7. On the other hand, it follows from (4.1.1) that

Hλ ∼ L{x},{t} + L{x},{y,z,t} + C ∼ L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{z,t} ∼
∼ L{y},{z} + L{z},{t} + L{z},{x,t} + L{z},{y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

Moreover, we also have 2L{x},{t} + L{y},{x,t} + L{z},{x,t} ∼ Hλ, because

H{x,t} · S∞ = 2L{x},{t} + L{y},{x,t} + L{z},{x,t}.

Therefore, the intersection matrix of the curves L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{y},{x,t},
L{y},{z,t}, L{z},{x,t}, L{z},{y,t}, L{x},{y,z,t}, L{t},{x,y,z}, and C on the surface Sλ has the
same rank as the intersection matrix of the curves L{x},{t}, L{x},{y,z,t}, L{y},{x,t}, L{y},{z,t},

L{z},{y,t}, L{t},{x,y,z}, and Hλ. But rk Pic(S̃k) = rkPic(Sk) + 9. Therefore, we conclude
that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.2. Family №4.2. In this case, the threefold X is a blow up of the irreducible quadric
cone in P4 in its vertex and a smooth elliptic curve that does not pass through the vertex.
This shows that h1,2(X) = 1. A toric Landau–Ginzburg model of this family is given by
Minkowski polynomial №663, which is

x+ y +
z

y
+

z

x
+

x

y
+

y

x
+

2

x
+

2

y
+

1

yz
+

1

xz
.

The quartic pencil S is given by the equation

x2yz + xy2z + xz2t+ yz2t + x2zt + y2zt + 2xzt2 + 2yzt2 + xt3 + yt3 = λxyzt.

For simplicity, we assume that λ 6= ∞.
If λ 6= −2, then Sλ is irreducible and has isolated singularities. On the other hand,

we have S−2 = H{x,y} + S, where S is an irreducible cubic surface that is given by the
equation xyz + xzt + t3 + z2t+ 2zt2 + yzt = 0.

Let C1 be the conic in P3 that is given by x = yz+ (z+ t)2 = 0, and let C2 be the conic
in P3 that is given by y = xz + (z + t)2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{t} + C1,
H{y} · Sλ = L{x},{y} + L{y},{t} + C2,
H{z} · Sλ = 3L{z},{t} + L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y}.

(4.2.1)

Thus, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{t}, L{y},{t}, L{z},{t},
L{z},{x,y}, L{t},{x,y}, C1, and C2.

If λ 6= −2, then singular points of the surface Sλ contained in the base locus of the
pencil S can be described as follows:

P{x},{y},{t}: type A3 with quadratic term t(x+ y);
P{x},{z},{t}: type A2 with quadratic term z(x + t);
P{y},{z},{t}: type A2 with quadratic term z(y + t);

P{x},{y},{z,t}: type A3 with quadratic term x2 + y2 + λxy;
P{z},{t},{x,y}: type A3 with quadratic term z(x + y − 2t− λt).
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Therefore, by Lemma 1.5.4, the fiber f−1(λ) is irreducible for every λ 6= −2. Moreover,
the points P{y},{z},{t}, P{x},{z},{t}, P{x},{y},{t}, P{x},{y},{z,t}, and P{z},{t},{x,y} are good double
points of the surface S−2. Furthermore, the surface S−2 is smooth at general points of
the curves L{x},{y}, L{x},{t}, L{y},{t}, L{z},{t}, L{z},{x,y}, L{t},{x,y}, C1, and C2. Thus, we see
that [f−1(−2)] = [S−2] = 2 by (1.8.3) and Lemmas 1.8.5 and 1.12.1. This confirms (♥) in
Main Theorem.

To verify (♦) in Main Theorem, we may assyme that λ 6= −2. By (4.2.1), we have

Hλ ∼ L{x},{y} + L{x},{t} + C1 ∼ L{x},{y} + L{y},{t} + C2 ∼
∼ 3L{z},{t} + L{z},{x,y} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y}

on the surface Sλ. Since H{x,y} · Sλ = 2L{x},{y} + L{z},{x,y} + L{t},{x,y}, we also have

2L{x},{y} + L{z},{x,y} + L{t},{x,y} ∼ Hλ.

Thus, the intersection matrix of the curves L{x},{y}, L{x},{t}, L{y},{t}, L{z},{t}, L{z},{x,y},
L{t},{x,y}, C1, and C2 on the surface Sλ has the same rank as the intersection matrix

• L{z},{x,y} L{z},{x,t} L{t},{x,y} Hλ

L{z},{x,y} −5
4

1 1
4

1

L{z},{x,t} 1 − 7
12

1
2

1

L{t},{x,y}
1
4

1
2

−1 1

Hλ 1 1 1 4

Its rank is 4. On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 12, because the
quadratic term of the defining equation of the surface Sλ at P{x},{y},{z,t} is x2 + y2 + λxy,
which is irreducible over k. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.3. Family №4.3. In this case, the threefold X is a blow up of P1×P1×P1 at a smooth
rational curve of tridegree (1, 1, 2). Thus, we have h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №740, which is

x+ y + z +
y

z
+

y

x
+

z

y
+

z

x
+

1

z
+

1

y
+

1

x
.

The quartic pencil S is given by the following equation:

x2yz + y2zx + z2yx+ y2tx+ y2tz + z2tx+ z2ty + t2yx+ t2zx + t2yz = λxyzt.

As usual, we suppose that λ 6= ∞.
The base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},

L{y},{t}, L{z},{t}, L{x},{y,z,t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z}, because

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.3.1)
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For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A1;
P{x},{z},{t}: type A1;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{y},{z,t}: type A1 for λ 6= −3, type A2 for λ = −3;
P{x},{z},{y,t}: type A1 for λ 6= −3, type A2 for λ = −3;
P{x},{t},{y,z}: type A1 for λ 6= −3, type A2 for λ = −3.

Then [f−1(λ)] = 1 for every λ ∈ C by Lemma 1.5.4. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk)+9. On the other
hand, it follows from (4.3.1) that the intersection matrix of the lines L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,z,t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z} on the
surface Sλ has the same rank as the intersection matrix of the curves L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{t},{x,y,z}, and Hλ. If λ 6= −3, the latter matrix is given by

• L{x},{y} L{x},{z} L{x},{t} L{y},{z} L{y},{t} L{t},{x,y,z} Hλ

L{x},{y} −1
2

1
2

1
2

1
2

1
2

0 1

L{x},{z}
1
2

−1
2

1
2

1
2

0 0 1

L{x},{t}
1
2

1
2

−1
2

0 1
2

1
2

1

L{y},{z}
1
2

1
2

0 −1 1
2

0 1

L{y},{t}
1
2

0 1
2

1
2

−1
4

1 1

L{t},{x,y,z} 0 0 1
2

0 1 −3
2

1

Hλ 1 1 1 1 1 1 4

Its rank is 7, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.4. Family №4.4. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №426, which is

x+ y + z +
x

z
+

y

z
+

x

y
+

y

x
+

1

y
+

1

x
.

The quartic pencil S is given by

x2yz + y2zx+ z2yx+ x2ty + y2tx+ x2tz + y2tz + t2zx+ t2yz = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{x,y},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.4.1)
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Each surface Sλ is irreducible, it has isolated singularities, and its singular points con-
tained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A1;
P{y},{z},{t}: type A1;
P{x},{y},{z}: type A3 with quadratic term yz for λ 6= −2, type A5 for λ = −2;
P{z},{t},{x,y}: type A1 for λ 6= −3, type A3 for λ = −3.

Then each fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main Theorem.
Let us prove (♦) in Main Theorem. We may assume that λ 6= −2 and λ = −3. Then the

intersection matrix of the curves L{x},{y,t}, L{y},{x,t}, L{y},{z}, L{z},{t}, L{z},{x,y}, L{t},{x,y,z},
and Hλ on the surface Sλ is given by

• L{x},{y,t} L{y},{x,t} L{y},{z} L{z},{t} L{z},{x,y} L{t},{x,y,z} Hλ

L{x},{y,t} −5
4

1
4

0 0 0 0 1

L{y},{x,t}
1
4

−5
4

1 0 0 0 1

L{y},{z} 0 1 −1
2

1
2

1
2

0 1

L{z},{t} 0 0 1
2

−1
2

1
2

1
2

1

L{z},{x,y} 0 0 1
2

1
2

−3
4

1
2

1

L{t},{x,y,z} 0 0 0 1
2

1
2

−3
2

1

Hλ 1 1 1 1 1 1 4

This matrix has rank 7. Thus, it follows from (4.4.1) that the rank of the intersection
matrix of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z}, L{z},{t}, L{y},{t}, L{x},{y,t}, L{y},{x,t},

L{z},{x,y}, and L{t},{x,y,z} is also 7. But rkPic(S̃k) = rkPic(Sk) + 9, so that (⋆) holds.
Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.5. Family №4.5. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №425, is

x+ y + z +
y

z
+

y

x
+

z

y
+

1

z
+

1

y
+

1

x
.

Then the pencil S is given by the equation

x2yz + y2zx+ z2yx+ y2tx+ y2tz + z2tx+ t2yx+ t2zx+ t2yz = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.5.1)
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Observe that Sλ is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term x(y + t) for λ 6= −2, type A4 for λ = −2;
P{x},{z},{t}: type A1;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{z},{y,t}: type A1 for λ 6= −2, type A2 for λ = −2.

Then each fiber f−1(λ) is irreducible by Lemma 1.5.4. This confirms (♥) in Main Theorem.
It follows from (4.5.1) that the intersection matrix of the base curves of the pencil S on

the surface Sλ has the same rank as the intersection matrix of the curves L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{z,t}, L{t},{x,y,z}, and Hλ. If λ 6= −2, the latter matrix is given by

• L{x},{y} L{x},{z} L{x},{t} L{y},{z} L{y},{z,t} L{t},{x,y,z} Hλ

L{x},{y} −3
4

1
2

3
4

1
2

1 0 1

L{x},{z}
1
2

−1
2

1
2

1
2

0 0 1

L{x},{t}
3
4

1
2

−3
4

0 0 1 1

L{y},{z}
1
2

1
2

0 −1
2

1
2

0 1

L{y},{z,t} 1 0 0 1
2

−5
4

0 1

L{t},{x,y,z} 0 0 1 0 0 −2 1

Hλ 1 1 1 1 1 1 4

The determinant of this matrix is 39
128

. However, we also have rkPic(S̃k) = rkPic(Sk) + 9.
Therefore, we see that (♦) in Main Theorem holds by Lemma 1.13.1.

4.6. Family №4.6. In this case, the threefold X is a blow up of P3 in a disjoint union of
three lines. Thus, we have h1,2(X) = 0. A toric Landau–Ginzburg model of this family is
given by Minkowski polynomial №423, which is

x+ y + z +
z

y
+

1

z
+

1

y
+

1

x
+

1

xz
+

1

xy
.

The quartic pencil S is given by the following equation:

x2yz + y2zx + z2yx+ z2tx+ t2yx+ t2zx+ t2yz + t3y + t3z = λxyzt.

As usual, we assume that λ 6= ∞.
Let C1 be the conic in P3 that is given by x = yz + yt+ zt = 0, and let C2 be the conic

in P3 that is given by y = xz + xt + t2 = 0. Then

H{x} · Sλ = 2L{x},{t} + C1,
H{y} · Sλ = L{y},{z} + L{y},{t} + C2,
H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.6.1)
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For every λ, the surface Sλ is irreducible, it has isolated singularities, and its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A3 with quadratic term x(y + t) for λ 6= −3, type A5 for λ = −3;
P{x},{z},{t}: type A2 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1;
P{y},{z},{x,t}: type A1 for λ 6= −3, type A3 for λ = −3;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk)+11. On the other
hand, it follows from (4.6.1) that the intersection matrix of the curves 2L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{z},{x,t}, L{t},{x,y,z}, C1, and C2 has the same rank as the intersection
matrix of the curves L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, and Hλ. If λ 6= −3, then the latter
matrix is given by

• L{x},{t} L{y},{z} L{y},{t} L{z},{t} Hλ

L{x},{t} − 1
12

0 1
4

1
3

1

L{y},{z} 0 −1
2

1
2

1
2

1

L{y},{t}
1
4

1
2

−1
2

1
4

1

L{z},{t}
1
3

1
2

1
4

− 1
12

1

Hλ 1 1 1 1 4

Its rank is 5, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.7. Family №4.7. In this case, the threefold X can be obtained by blowing up a smooth
hypersurface in P2×P2 of bidegree (1, 1) in a disjoint union of two smooth rational curves.
This shows that h1,2(X) = 0. A toric Landau–Ginzburg model of this family is given by
Minkowski polynomial №215, which is

x+ y + z +
z

y
+

1

z
+

1

y
+

1

x
+

1

xz
.

The quartic pencil S is given by

x2yz + y2zx+ z2yx+ z2tx+ t2yx+ t2zx+ t2yz + t3y = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + 2L{x},{t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{y},{z} + 2L{z},{t} + L{z},{x,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.7.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,t}, and L{t},{x,y,z}.
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For every λ ∈ C, the surface Sλ has isolated singularities. Thus, we conclude that every
surface Sλ is irreducible. Moreover, the singular points of the surface Sλ contained in the
base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term x(y + t);
P{x},{z},{t}: type A2 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{y},{z,t}: type A1 for λ 6= −2, type A2 for λ = −2;
P{x},{t},{y,z}: type A1;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe first that rkPic(S̃k) = rkPic(Sk)+ 10. On the
other hand, it follows from (4.7.1) that the intersection matrix of the lines L{x},{y}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,t}, and L{t},{x,y,z} on the surface Sλ has
the same rank as the intersection matrix of the curves L{x},{t}, L{x},{z,t}, L{y},{z,t}, L{z},{x,t},
L{t},{x,y,z}, and Hλ. If λ 6= −2, then the latter matrix is given by

• L{x},{t} L{x},{z,t} L{y},{z,t} L{z},{x,t} L{t},{x,y,z} Hλ

L{x},{t} −1
6

2
3

0 1
3

1
2

1

L{x},{z,t}
2
3

−5
6

1
2

1
3

1
2

1

L{y},{z,t} 0 1
2

−5
4

0 0 1

L{z},{x,t}
1
3

1
3

0 −4
3

0 1

L{t},{x,y,z}
1
2

1
2

0 0 −1 1

Hλ 1 1 1 1 1 4

Its rank is 6, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.8. Family №4.8. The threefold X can be obtained by blowing up P1×P1×P1 along a
smooth rational curve of tridegree (1, 1, 0). Then h1,2(X) = 0. A toric Landau–Ginzburg
model of this family is given by Minkowski polynomial №216, which is

x+ y + z +
z

y
+

z

x
+

1

z
+

1

y
+

1

x
.

The quartic pencil S is given by

x2yz + y2zx+ z2yx+ z2tx+ z2ty + t2yx+ t2zx+ t2yz = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{z,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.8.1)
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Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A1;
P{x},{z},{t}: type A3 with quadratic term xz;
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{y},{z,t}: type A1 for λ 6= −2, type A5 for λ = −2;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, each fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk)+10. On the other
hand, it follows from (4.8.1) that the intersection matrix of the lines L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{x},{z,t}, L{y},{z,t}, and L{t},{x,y,z} on the surface Sλ has
the same rank as the intersection matrix of the curves L{x},{y}, L{x},{z}, L{x},{z,t}, L{y},{z,t},
L{y},{t}, and Hλ. If λ 6= −2, then the latter matrix is given by

• L{x},{y} L{x},{z} L{x},{z,t} L{y},{z,t} L{y},{t} Hλ

L{x},{y} −1
2

1
2

1
2

1
2

1
2

1

L{x},{z}
1
2

−1
2

1
2

0 0 1

L{x},{z,t}
1
2

1
2

−3
4

1
2

0 1

L{y},{z,t}
1
2

0 1
2

−3
4

3
4

1

L{y},{t}
1
2

0 0 3
4

−3
4

1

Hλ 1 1 1 1 1 4

Its rank is 6, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.

4.9. Family №4.9. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №81, which is

y

x
+

1

x
+ y + z +

1

y
+ x+

1

yz
.

The quartic pencil S is given by

y2tz + t2yz + y2zx+ z2yx+ t2zx+ x2yz + t3x = λxyzt.

As usual, we suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + 2L{y},{t} + 2L{y},{z,t},

H{z} · Sλ = L{x},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.9.1)
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Thus, we see that the base locus of the pencil S consists of the eight lines L{x},{y}, L{x},{z},
L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{z,t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ is irreducible and has isolated singularities. Moreover,
the singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A3 with quadratic term z(x + t);
P{y},{z},{t}: type A2 with quadratic term yz;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + z − t− λt).

Therefore, it follows from Lemma 1.5.4 that the fiber f−1(λ) is irreducible for every λ ∈ C.
This confirms (♥) in Main Theorem in this case, since h1,2(X) = 0.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 11. This imme-
diately follows from the description of singular points of the surface Sλ given above. Note
also that

L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t} ∼ L{x},{y} + 2L{y},{t} + 2L{y},{z,t} ∼
∼ L{x},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z} ∼ Hλ

on the surface Sλ. This follows from (4.9.1). Using this, we see that the intersection matrix
of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{z,t}, and L{t},{x,y,z}
on the surface Sλ has the same rank as the intersection matrix of the curves L{x},{y,t},
L{y},{t}, L{y},{z,t}, L{t},{x,y,z}, and Hλ. The later matrix is not hard to compute:

• L{x},{y,t} L{y},{t} L{y},{z,t} L{t},{x,y,z} Hλ

L{x},{y,t} −5
4

1
3

0 0 1

L{y},{t}
1
3

− 1
12

2
3

1
2

1

L{y},{z,t} 0 2
3

−4
3

0 1

L{t},{x,y,z} 0 1
2

0 −5
6

1

Hλ 1 1 1 1 4

The rank of this matrix is 5. Thus, we conclude that (⋆) holds in this case, so that (♦)
in Main Theorem also holds by Lemma 1.13.1.

4.10. Family №4.10. In this case, we have X ∼= P1×S7, where S7 is a smooth del Pezzo
surface of degree 7. This shows that h1,2(X) = 0. A toric Landau–Ginzburg model of this
family is given by Minkowski polynomial №84, which is

y

x
+

1

x
+ y + z +

1

z
+

1

y
+ x.

Thus, the quartic pencil S is given by the following equation:

y2tz + t2zy + y2xz + z2xy + t2xy + t2xz + x2zy = λxyzt.
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Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.10.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{y,t}, and L{t},{x,y,z}.

For every λ ∈ C, the surface Sλ is irreducible and has isolated singularities. Moreover,
the singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A2 with quadratic term z(x + t);
P{y},{z},{t}: type A3 with quadratic term yz;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1.

Therefore, using Lemma 1.5.4, we see that the fiber f−1(λ) is irreducible for every λ ∈ C.
This confirms (♥) in Main Theorem in this case, because h1,2(X) = 0.

Let us prove (♦) in Main Theorem. Observe that the intersection matrix of the curves
L{x},{y}, L{x},{z}, L{x},{y,t}, L{t},{x,y,z}, and Hλ on the surface Sλ is given by

• L{x},{y} L{x},{z} L{x},{y,t} L{t},{x,y,z} Hλ

L{x},{y} −1
2

1
2

1
2

0 1

L{x},{z}
1
2

−5
6

1 0 1

L{x},{y,t}
1
2

1 −5
4

0 1

L{t},{x,y,z} 0 0 0 −1 1

Hλ 1 1 1 1 4

The rank of this matrix is 5. On the other hand, it follows from (3.30.1) that

Hλ ∼ L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t} ∼ L{x},{y} + L{y},{z} + 2L{y},{t} ∼
∼ L{x},{z} + L{y},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Therefore, the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,t}, and L{t},{x,y,z} has the same rank as the intersection
matrix of the curves L{x},{y}, L{x},{z}, L{x},{y,t}, L{t},{x,y,z}, and Hλ. On the other hand,

we also have rkPic(S̃k) = rkPic(Sk) + 11. Thus, we see that (⋆) holds. Then we use
Lemma 1.13.1 to conclude that (♦) in Main Theorem also holds in this case.
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4.11. Family №4.11. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №82, which is

y

x
+

1

x
+ y + z +

1

xz
+

1

y
+ x.

Then the quartic pencil S is given by the following equation:

y2tz + t2zy + y2xz + z2xy + t3y + t2xz + x2zy = λxyzt.

As usual, we assume that λ 6= ∞.
Let C be the conic in P3 that is given by x = yz + zt + t2 = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{t} + C,
H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},

H{z} · Sλ = L{y},{z} + 3L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.11.1)

For each λ, the surface Sλ is irreducible, it has isolated singularities, and its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A2 with quadratic term z(x + t);
P{y},{z},{t}: type A4 with quadratic term yz;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A2 with quadratic term z(x + y + z − t− λt).

By Lemma 1.5.4, the fiber f−1(λ) is irreducible for every λ ∈ C. This confirms (♥) in
Main Theorem, since h1,2(X) = 0.

The description of the singular points of the surface Sλ gives rkPic(S̃k) = rkPic(Sk)+12.
On the other hand, it follows from (4.11.1) that

Hλ ∼ L{x},{y} + L{x},{t} + C ∼ L{x},{y} + L{y},{z} + 2L{y},{t} ∼
∼ L{y},{z} + 3L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Therefore, the intersection matrix of the lines L{x},{y}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{t},{x,y,z}, and C has the same rank as the intersection matrix of the
curves L{x},{y}, L{x},{t}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y} L{x},{t} L{t},{x,y,z} Hλ

L{x},{y} −1 1
2

0 1

L{x},{t}
1
2

− 7
12

1 1

L{t},{x,y,z} 0 1 −5
6

1

Hλ 1 1 1 4

The rank of this matrix is 4. Thus, we see that (⋆) holds in this case. Then (♦) in Main
Theorem also holds by Lemma 1.13.1.
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4.12. Family №4.12. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
is given by Minkowski polynomial №83, which is

y

x
+

y

xz
+

1

x
+ y + z +

1

y
+ x.

Then the quartic pencil S is given by the following equation:

y2tz + t2y2 + t2zy + y2xz + z2xy + t2xz + x2zy = λxyzt.

Here, for simplicity, we suppose that λ 6= ∞.
Let C be the conic in P3 that is given by x = yz + yt+ zt = 0. Then

H{x} · Sλ = L{x},{y} + L{x},{t} + C,
H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{t},

H{z} · Sλ = 2L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.12.1)

This shows that the base locus of the pencil S consists of the curves L{x},{y}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, L{t},{x,y,z}, and C.

Every surface Sλ is irreducible, it has isolated singularities, and its singular points
contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;
P{x},{z},{t}: type A1;
P{y},{z},{t}: type A5 with quadratic term yz;

P{y},{t},{x,z}: type A1;
P{z},{t},{x,y}: type A1.

By Lemma 1.5.4, every fiber f−1(λ) is irreducible. This confirms (♥) in Main Theorem.

One has rkPic(S̃k) = rkPic(Sk) + 12. On the other hand, it follows from (4.12.1) that

Hλ ∼ L{x},{y} + L{x},{t} + C ∼ L{x},{y} + L{y},{z} + 2L{y},{t} ∼
∼ 2L{y},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Thus, the intersection matrix of the lines L{x},{y}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{t},{x,y,z}, and C on the surface Sλ has the same rank as the intersection
matrix of the curves L{x},{y}, L{x},{t}, L{t},{x,y,z}, and Hλ. The latter matrix is given by

• L{x},{y} L{x},{t} L{t},{x,y,z} Hλ

L{x},{y} −1
2

1
2

0 1

L{x},{t}
1
2

−3
4

1 1

L{t},{x,y,z} 0 1 −1 1

Hλ 1 1 1 4

Its rank is 4, so that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.
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4.13. Family №4.13. In this case, the threefold X is a blow up of P1 × P1 × P1 along
a smooth rational curve of tridegree (1, 1, 3). Thus, we have h1,2(X) = 0. This family is
missed in [IP99]. A toric Landau–Ginzburg model of this family is given by Minkowski
polynomial №1080, which is

x+ y + z +
x

y
+

y

x
+

x

yz
+

1

z
+

2

y
+

2

x
+

1

xy
+

1

yz
.

The quartic pencil S is given by

x2yz + xy2z + xyz2 + x2zt + y2zt + x2t2 + xyt2 + 2xzt2 + 2yzt2 + xt3 + zt3 = λxyzt.

As usual, we suppose that λ 6= ∞.
Let C be the conic in P3 that is given by y = xz + xt + tz = 0. Then

H{x} · Sλ = L{x},{z} + L{x},{t} + 2L{x},{y,t},

H{y} · Sλ = L{y},{t} + L{y},{x,t} + C,
H{z} · Sλ = L{x},{z} + 2L{z},{t} + L{z},{x,y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(4.13.1)

Therefore, we conclude that the base locus of the pencil S consists of the curves L{x},{z},
L{x},{t}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C.

For every λ ∈ C, the surface Sλ is irreducible, it has isolated singularities, and its
singular points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term xy;
P{x},{z},{t}: type A2 with quadratic term z(x + t);
P{y},{z},{t}: type A1;

P{x},{z},{y,t}: type A2 with quadratic term

x(x+ y + t+ 3z + λz)

for λ 6= −3, type A4 for λ = −3;
P{z},{t},{x,y}: type A2 with quadratic term

z(x+ y + z − 2t− λt)

for λ 6= −3, type A3 for λ = −3;
[0 : 1 : −3− λ : −1]: type A1 for λ 6= −3, type A4 for λ = −3.

Thus, using Lemma 1.5.4, we conclude that the fiber f−1(λ) is irreducible for every λ ∈ C.
This confirms (♥) in Main Theorem, since h1,2(X) = 0.

Using the description of the singular points of the surface Sλ we gave above, we see

that rkPic(S̃k) = rkPic(Sk) + 10. On the other hand, it follows from (4.13.1) that

Hλ ∼ L{x},{z} + L{x},{t} + 2L{x},{y,t} ∼ L{y},{t} + L{y},{x,t} + C ∼
∼ L{x},{z} + 2L{z},{t} + L{z},{x,y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}

on the surface Sλ. Hence, the intersection matrix of the curves L{x},{z}, L{x},{t}, L{y},{t},
L{z},{t}, L{x},{y,t}, L{y},{x,t}, L{z},{x,y,t}, L{t},{x,y,z}, and C on the surface Sλ has the same
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rank as the intersection matrix of the curves L{x},{y,t}, L{y},{x,t}, L{z},{t}, L{z},{x,y,t},
L{t},{x,y,z}, and Hλ. Using Propositions A.1.2 and A.1.3, we see that the latter matrix is

• L{x},{y,t} L{y},{x,t} L{z},{t} L{z},{x,y,t} L{t},{x,y,z} Hλ

L{x},{y,t} −5
6

1
3

1 1
3

0 1

L{y},{x,t}
1
3

−4
3

0 1 0 1

L{z},{t} 1 0 −1
6

1
3

1
3

1

L{z},{x,y,t}
1
3

1 1
3

−2
3

1
3

1

L{t},{x,y,z} 0 0 1
3

1
3

−4
3

1

Hλ 1 1 1 1 1 4

Observe that the rank of this matrix is 6. Thus, we see that (⋆) holds. Thus, it follows
from Lemma 1.13.1 that (♦) in Main Theorem also holds in this case.

5. Fano threefolds of Picard rank 5

5.1. Family №5.1. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №1082, which is

x+ y +
1

z
+

x

y
+

y

x
+

2

y
+

2

x
+

z

y
+

z

x
+

1

xy
+

z

xy
.

The quartic pencil S is given by

x2zy + y2xz + xyt2 + x2zt + y2zt + 2zxt2 + 2zyt2 + z2xt + z2yt+ zt3 + z2t2 = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{z} + L{x},{t} + L{x},{y,t} + L{x},{y,z,t},

H{y} · Sλ = L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{x,z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y}.

(5.1.1)

Thus, the base locus of the pencil S consists of the lines L{x},{z}, L{x},{t}, L{y},{z}, L{y},{t},
L{z},{t}, L{x},{y,t}, L{y},{x,t}, L{x},{y,z,t}, L{y},{x,z,t}, and L{t},{x,y}.

For every λ ∈ C, the surface Sλ has isolated singularities, so that it is irreducible.
The singular points of the surface Sλ contained in the base locus of the pencil S can be
described as follows:

P{y},{z},{t}: type A2 with quadratic term z(y + t);
P{x},{z},{t}: type A2 with quadratic term z(x+ t);
P{x},{y},{t}: type A3 with quadratic term t(x+ y+ t) for λ 6= −3, type A5 for λ = −3;

P{z},{t},{x,y}: type A1.

Thus, it follows from Lemma 1.5.4 that the fiber f−1(λ) is irreducible for every λ ∈ C.
This confirms (♥) in Main Theorem, because h1,2(X) = 0.
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To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 8. This follows
from the description of the singular points of the surface Sλ for λ 6= −3. On the other
hand, it follows from (5.1.1) that

L{x},{z} + L{x},{t} + L{x},{y,t} + L{x},{y,z,t} ∼ L{y},{z} + L{y},{t} + L{y},{x,t} + L{y},{x,z,t} ∼
∼ L{x},{z} + L{y},{z} + 2L{z},{t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y} ∼ Hλ

on the surface Sλ. Thus, the intersection matrix of the lines L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,t}, L{x},{y,z,t}, L{y},{x,z,t}, and L{t},{x,y} on the surface Sλ

has the same rank as the intersection matrix of the curves L{x},{y,t}, L{x},{y,z,t}, L{y},{x,t},
L{y},{x,z,t}, L{z},{t}, L{y},{t}, and Hλ. If λ 6= −3, then the latter matrix is given by

• L{x},{y,t} L{x},{y,z,t} L{y},{x,t} L{y},{x,z,t} L{z},{t} L{y},{t} Hλ

L{x},{y,t} −5
4

1 3
4

0 0 1
4

1

L{x},{y,z,t} 1 −2 0 1 0 0 1

L{y},{x,t}
3
4

0 −5
4

1 0 1
4

1

L{y},{x,z,t} 0 1 1 −2 0 1 1

L{z},{t} 0 0 0 0 −1
6

1
3

1

L{y},{t}
1
4

0 1
4

1 1
3

− 7
12

1

Hλ 1 1 1 1 1 1 4

Its determinant is 7
9
. This shows that (⋆) holds. Thus, we can use Lemma 1.13.1 to

conclude that (♦) in Main Theorem also holds in this case.

5.2. Family №5.2. In this case, we have h1,2(X) = 0. A toric Landau–Ginzburg model
of this family is given by Minkowski polynomial №219, which is

x+ y + z +
x

z
+

x

y
+

y

x
+

1

y
+

1

x
.

Thus, the quartic pencil S is given by the equation

x2zy + y2xz + z2xy + x2ty + x2tz + y2tz + t2xz + t2zy = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + L{x},{t} + L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{x,t},

H{z} · Sλ = 2L{x},{z} + L{y},{z} + L{z},{t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(5.2.1)

For every λ, the surface Sλ is irreducible, it has isolated singularities, and its singular
points contained in the base locus of the pencil S can be described as follows:

P{x},{y},{z}: type A2 with quadratic term z(x + y);
P{x},{y},{t}: type A3 with quadratic term xy;
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P{x},{z},{t}: type A2 with quadratic term z(x + t);
P{y},{z},{t}: type A1;

P{x},{t},{y,z}: type A1.

Therefore, using Lemma 1.5.4, we see that the fiber f−1(λ) is irreducible for every λ ∈ C.
This confirms (♥) in Main Theorem, since h1,2(X) = 0.

Using (5.2.1), we see that the intersection matrix of the lines L{x},{y}, L{x},{z}, L{x},{t},
L{y},{z}, L{y},{t}, L{z},{t}, L{x},{y,t}, L{y},{x,t}, and L{t},{x,y,z} on the surface Sλ has the same
rank as the intersection matrix of the curves L{x},{y}, L{x},{z}, L{y},{z}, L{y},{t}, L{x},{t},
and Hλ. The latter matrix is given by

• L{x},{y} L{x},{z} L{y},{z} L{y},{t} L{x},{t} Hλ

L{x},{y} −1
3

2
3

2
3

1
2

1
2

1

L{x},{z}
2
3

−1
6

2
3

0 2
3

1

L{y},{z}
2
3

2
3

−3
2

1
2

0 1

L{y},{t}
1
2

0 1
2

−3
4

1
4

1

L{x},{t}
1
2

2
3

0 1
4

− 1
12

1

Hλ 1 1 1 1 1 4

Note that this matrix has rank 6. Moreover, using the description of the singular points

of the surface Sλ, we see that rkPic(S̃k) = rkPic(Sk) + 9. This shows that (⋆) holds in
this case. Then (♦) in Main Theorem holds by Lemma 1.13.1.

5.3. Family №5.3. In this case, we have X ∼= P1 × S6, where S6 is a smooth del Pezzo
surface of degree 6. This implies that h1,2(X) = 0. A toric Landau–Ginzburg model of
this family is given by Minkowski polynomial №218, which is

x+ y + z +
y

z
+

z

y
+

1

z
+

1

y
+

1

x
.

Therefore, the corresponding pencil S is given by the following equation:

x2zy + y2xz + z2xy + y2xt + z2xt + t2xy + t2xz + t2zy = λxyzt.

Suppose that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + L{z},{t} + L{z},{y,t},

H{t} · Sλ = L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

(5.3.1)

Thus, the base locus of the pencil S consists of the lines L{x},{y}, L{x},{z}, L{x},{t}, L{y},{z},
L{y},{t}, L{z},{t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z}.

For every λ, the surface Sλ is irreducible, it has isolated singularities, and its singular
points contained in the base locus of the pencil S can be described as follows:
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P{x},{y},{z}: type A1;
P{x},{z},{t}: type A2 with quadratic term x(z + t);
P{x},{y},{t}: type A2 with quadratic term x(y + t);
P{y},{z},{t}: type A3 with quadratic term yz;

P{x},{t},{y,z}: type A1.

Thus, by Lemma 1.5.4, the fiber f−1(λ) is irreducible for every λ ∈ C. This confirms (♥)
in Main Theorem, since h1,2(X) = 0.

Now let us verify (♦) in Main Theorem. On the surface Sλ, we have

Hλ ∼ L{x},{y} + L{x},{z} + 2L{x},{t} ∼ L{x},{y} + L{y},{z} + L{y},{t} + L{y},{z,t} ∼
L{x},{z} + L{y},{z} + L{z},{t} + L{z},{y,t} ∼ L{x},{t} + L{y},{t} + L{z},{t} + L{t},{x,y,z}.

This follows from (5.3.1). Thus, the intersection matrix of the lines L{x},{y}, L{x},{z},
L{x},{t}, L{y},{z}, L{y},{t}, L{z},{t}, L{y},{z,t}, L{z},{y,t}, and L{t},{x,y,z} has the same rank as
the intersection matrix of the curves L{x},{y}, L{x},{z}, L{y},{z}, L{y},{t}, L{z},{t}, and Hλ.
The latter matrix is given by

• L{x},{y} L{x},{z} L{y},{z} L{y},{t} L{z},{t} Hλ

L{x},{y} −2
3

1
2

1
2

1
3

0 1

L{x},{z}
1
2

−2
3

1
2

0 1
3

1

L{y},{z}
1
2

1
2

1
2

1
2

1
2

1

L{y},{t}
1
3

0 1
2

− 7
12

1
4

1

L{z},{t} 0 1
3

1
2

1
4

− 7
12

1

Hλ 1 1 1 1 1 4

Its rank is 6. On the other hand, it follows from the description of the singular points of
the surface Sλ that

rkPic(S̃k) = rkPic(Sk) + 9,

so that (⋆) holds in this case. Thus, by Lemma 1.13.1, we see that (♦) in Main Theorem
also holds in this case.

6. Fano threefolds of Picard rank 6

6.1. Family №6.1. We have X ∼= P1 × S5, where S5 is the smooth del Pezzo surface of
degree 5. In particular, we have h1,2(X) = 0. A toric Landau–Ginzburg model of this
family is given by Minkowski polynomial №283, which is

x+
1

y
+ z +

1

xy
+

1

z
+ 2y +

3

x
+

3y

x
+

y2

x
.

Thus, the corresponding pencil S is given by the equation

x2yz + xzt2 + xyz2 + zt3 + xyt2 + 2xy2z + 3yzt2 + 3y2zt + y3z = λxyzt.

For simplicity, we suppose that λ 6= ∞.
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Let C be the conic in P3 that is given by t = (x+ y)2 + xz = 0. Then

H{x} · Sλ = L{x},{z} + 3L{x},{y,t},

H{y} · Sλ = L{y},{z} + 2L{y},{t} + L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{y},{t} + L{z},{t} + C.

(6.1.1)

Thus, the base locus of the pencil S consists of the curves L{x},{z}, L{x},{y,t}, L{y},{z},
L{y},{t}, L{y},{x,t}, L{z},{t}, and C.

For every λ ∈ C, the surface Sλ is irreducible and has isolated singularities. Moreover,
if λ 6= −1 and λ 6= −5, then the singular points of the surface Sλ contained in the base
locus of the pencil S can be described as follows:

P{x},{y},{t}: type A2 with quadratic term xy;
P{y},{z},{t}: type A3 with quadratic term yz;

P{y},{z},{x,t}: type A1;
P{z},{t},{x,y}: type A3 with quadratic term z2 + t2 + (λ+ 3)tz;

[0 : −2 : λ+ 3±
√
λ2 + 6λ+ 5 : 2]: type A2.

Thus, in the notation of Subsection 1.8, the set Σ consists of the points P{y},{z},{t},
P{x},{y},{t}, P{y},{z},{x,t}, and P{z},{t},{x,y}.

The description of the singular points of the surface Sλ also gives

(6.1.2) rkPic(S̃k) = rkPic(Sk) + 10.

Observe that the singular point P{z},{t},{x,y} contributes 2○ to this formula. Similarly, the

singular points [0 : −2 : λ+ 3±
√
λ2 + 6λ+ 5 : 2] also contribute 2○ to (6.1.2).

To verify (♥) in Main Theorem, observe that the surface Sλ has du Val singularities in
base points of the pencil S provided that λ 6= −1 and λ 6= −5. Thus, by Lemma 1.5.4,
the fiber f−1(λ) is irreducible for every λ ∈ C such that λ 6= −1 and λ 6= −5. Moreover
we have

Lemma 6.1.3. One has [f−1(−1)] = [f−1(−5)] = 1.

Proof. It is enough to prove that [f−1(−1)] = 1, since the proof is identical in the remaining
case. Observe that the points P{y},{z},{t}, P{x},{y},{t}, P{y},{z},{x,t}. are good double points
of the surface S−1. Thus, it follows from (1.8.3) and Lemmas 1.8.5 and 1.12.1 that

[
f−1(−1)

]
=
[
S−1

]
+D−1

P{z},{t},{x,y}
= 1 +D−1

P{z},{t},{x,y}
.

In the neighborhood of the point P{z},{t},{x,y} the morphism α in (1.9.3) is just a blow
up of this point. Moreover, its exceptional surface that is mapped to P{z},{t},{x,y} does not

contain base curves of the pencil Ŝ, because the quadratic term of the surface Sλ at this
point is z2 + t2 + (λ + 3)tz. Furthermore, the point P{z},{t},{x,y} is a double point of the
surface S−1. In fact, the surface S−1 has singularity of type D4 at P{z},{t},{x,y}. We see
that A−1

P{z},{t},{x,y}
= 0. Then D−1

P{z},{t},{x,y}
= 0 by (1.10.9), so that [f−1(−1)] = 1. �
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Thus, we conclude that f−1(λ) is irreducible for every λ ∈ C. This confirms (♥) in
Main Theorem, since h1,2(X) = 0. To verify (♦) in Main Theorem, observe that

Hλ ∼ L{x},{z} + 3L{x},{y,t} ∼ L{y},{z} + 2L{y},{t} + L{y},{x,t} ∼
∼ L{x},{z} + L{y},{z} + 2L{z},{t} ∼ L{y},{t} + L{z},{t} + C

on the surface Sλ. This follows from (6.1.1). Thus, the intersection matrix of the curves
L{x},{z}, L{x},{y,t}, L{y},{z}, L{y},{t}, L{y},{x,t}, L{z},{t}, and C on the surface Sλ has the same
rank as the intersection matrix of the curves L{x},{z}, L{y},{z}, L{y},{t}, and Hλ. If λ 6= −1
and λ 6= −5, then the latter matrix is given by

• L{x},{z} L{y},{z} L{y},{t} Hλ

L{x},{z} −2 1 0 1

L{y},{z} 1 −1
2

1
2

1

L{y},{t} 0 1
2

− 7
12

1

Hλ 1 1 1 4

The rank of this matrix is 4. Thus, using (6.1.2), we see that (⋆) holds. Then (♦) in
Main Theorem holds by Lemma 1.13.1.

7. Fano threefolds of Picard rank 7

7.1. Family №7.1. In this case, we have X ∼= P1 × S4, where S4 is a smooth del Pezzo
surface of degree 4. This implies that h1,2(X) = 0. A toric Landau–Ginzburg model of
this family is given by Minkowski polynomial №505, which is

1

x
+

1

y
+ z +

2y

x
+

2x

y
+

1

z
+

y2

x
+ 3y + 3x+

x2

y
.

Hence, the corresponding pencil S is given by the following equation:

t2zy + t2xz + z2xy + 2y2tz + 2x2tz + t2xy + y3z + 3y2xz + 3x2zy + x3z = λxyzt.

For simplicity, we suppose that λ 6= ∞.
Let C be the cubic curve in P3 that is given by t = xyz + (x + y)3 = 0. This curve is

singular at the point P{x},{y},{t}. Moreover, we have

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{y,t},

H{y} · Sλ = L{x},{y} + L{y},{z} + 2L{y},{x,t},

H{z} · Sλ = L{x},{z} + L{y},{z} + 2L{z},{t},

H{t} · Sλ = L{z},{t} + C.

(7.1.1)

Thus, the base locus of the pencil S consists of the curves L{x},{y}, L{x},{z}, L{y},{z},
L{z},{t}, L{x},{y,t}, L{y},{x,t}, and C.

If λ 6= −2 and λ 6= −6, then Sλ is irreducible and has isolated singularities. In this
case, the singular points of the surface Sλ contained in the base locus of the pencil S can
be described as follows:
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P{x},{y},{z}: type A1;
P{x},{y},{t}: type A3 with quadratic term xy;

P{z},{t},{x,y}: type A5 with quadratic term z2 + t2 − (λ+ 4)zt;

[0 : −2 : λ+ 4±
√
λ2 + 8λ+ 12 : 2]: type A1;

[−2 : 0 : λ+ 4±
√
λ2 + 8λ+ 12 : 2]: type A1.

Thus, the set Σ consists of the points P{y},{z},{t}, P{x},{y},{t}, P{y},{z},{x,t}, and P{z},{t},{x,y}.
The description of the singular points of the surface Sλ also gives

(7.1.2) rkPic(S̃k) = rkPic(Sk) + 9.

Note that the singular point P{z},{t},{x,y} contributes 3○ to this formula. Similarly, the

singular points [0 : −2 : λ+4±
√
λ2 + 8λ+ 12 : 2] contribute 1○ to this formula. Likewise,

the singular points [−2 : 0 : λ+ 4±
√
λ2 + 8λ+ 12 : 2] also contribute 1○ to (7.1.2).

To verify (♥) in Main Theorem, observe that the surface Sλ has du Val singularities at
base points of the pencil S provided that λ 6= −2 and λ 6= −6. Thus, by Lemma 1.5.4,
the fiber f−1(λ) is irreducible for every λ ∈ C such that λ 6= −2 and λ 6= −6. On the
other hand, we have

Lemma 7.1.3. One has [f−1(−2)] = [f−1(−6)] = 1.

Proof. Observe that both surfaces S−2 and S−6 have non-isolated singularities. Namely,
the surface S−2 is singular along the line x + y + z = x + y + t = 0, and S−6 is singular
along the line x + y − z = x + y + t = 0. However, both these surfaces are irreducible.
This can be checked by analyzing their hyperplane sections.

It is enough to prove that [f−1(−2)] = 1, since the proof is identical in the remaining
case. Observe that the points P{y},{z},{t}, P{x},{y},{t}, and P{y},{z},{x,t} are good double
points of the surface S−2. Thus, it follows from (1.8.3), Lemma 1.8.5 and Lemma 1.12.1
that [

f−1(−2)
]
= 1 +D−2

P{z},{t},{x,y}
.

Arguing as in the proof of Lemma 6.1.3, we getD−2
P{z},{t},{x,y}

= 0, so that [f−1(−2)] = 1. �

We see that f−1(λ) is irreducible for every λ ∈ C. This confirms (♥) in Main Theorem.
Let us verify (♦) in Main Theorem. It follows from (7.1.1) that the intersection matrix

of the curves L{x},{y}, L{x},{z}, L{y},{z}, L{z},{t}, L{x},{y,t}, L{y},{x,t}, C on the surface Sλ

has the same rank as the intersection matrix of the curves L{x},{z}, L{y},{z}, L{y},{x,t}, Hλ.
If λ 6= −2 and λ 6= −6, then the latter matrix is given by

• L{x},{z} L{y},{z} L{y},{x,t} Hλ

L{x},{z} −3
2

1
2

0 1

L{y},{z}
1
2

−2 1 1

L{y},{x,t} 0 1 −5
4

1

Hλ 1 1 1 4

Its rank is 4, so that (♦) in Main Theorem holds by (7.1.2) and Lemma 1.13.1.
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8. Fano threefolds of Picard rank 8

8.1. Family №8.1. We discussed this case in Example 1.10.11, where we also described
the pencil S. Let us use the notation of this example and we assume that λ 6= ∞. Then

H{x} · Sλ = L{x},{y} + L{x},{z} + 2L{x},{t},

H{y} · Sλ = L{x},{y} + 3L{y},{t,z},

H{z} · Sλ = L{x},{z} + 3L{z},{t,y},

H{t} · Sλ = L{x},{t} + C.

(8.1.1)

If λ 6= −4 and λ 6= −8, then the surface Sλ is irreducible and has isolated singularities.
In fact, in this case, we can say more:

Lemma 8.1.2. Suppose that λ 6= −4 and λ 6= −8. Then the singular points of the
surface Sλ contained in the base locus can be described as follows:

P{y},{z},{t}: type A2;
P{x},{t},{y,z}: type A5;

[λ+ 3±
√
λ2 + 12λ+ 32 : 0 : −2 : 2]: type A2;

[λ+ 3±
√
λ2 + 12λ+ 32 : −2 : 0 : 2]: type A2.

Proof. Taking partial derivatives, we see that the singular points of the surface Sλ con-
tained in the base locus of the pencil S are those described in the assertion of the lemma.
To describe their types, we start with P{y},{z},{t}. In the chart x = 1, the surface Sλ is
given by

yz + t3 + higher order terms = 0,

where we order monomials with respect to the weights wt(y) = 3, wt(z) = 3, wt(t) = 2.
This implies that P{y},{z},{t} is a singular point of type A2.

To describe the type of the singular point P{x},{t},{y,z}, we consider the chart y = 1 and
change coordinates as follows: x̄ = x, z̄ = z + 1, and t̄ = t. Then Sλ is given by

−x̄2 + (λ+ 6)x̄t̄− t̄2 + higher order terms = 0.

Now that

−x̄2+(λ+6)x̄t̄− t̄2 = −
(
x̄−
(
λ+3+

√
λ2 + 12λ+ 32

)
t̄
)(

x̄−
(
λ+3−

√
λ2 + 12λ+ 32

)
t̄
)
,

and this quadratic form has rank 2, because λ 6= −4 and λ 6= −8. Introducing new
coordinates ẑ = z̄, ŷ = ȳ

z̄
, t̂ = t̄

z̄
, we obtain the equation of the blow up of the surface Sλ

at P{x},{t},{y,z}. It is

x̂2 − (λ+ 6)t̂x̂+ t̂2 = x̂2ẑ − (λ+ 6)t̂x̂ẑ + ẑ2x̂+ t̂2ẑ + 3t̂x̂ẑ2 + t̂3x̂ẑ2 + 3t̂2x̂ẑ2.

The two exceptional curves of the blow up are given by ẑ = t̂ = 0 and ẑ = ŷ = 0. They
intersect at the point (0, 0, 0), which is singular point of the obtained surface. To blow up

the latter point, we introduce new coordinates z̃ = ẑ, ỹ = ŷ

ẑ
, t̃ = t̂

ẑ
. After dividing by ẑ2,

we rewrite the latter equation as

x̃2 − z̃x̃− (λ+ 6)t̃x̃ = x̃2z̃ − t̃2 + t̃2z̃ − (λ+ 6)t̃x̃z̃ + 3t̃x̃z̃2 + 3t̃2x̃z̃3 + t̃3x̃z̃4.
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The quadratic form of this equation has rank 3, so that this surface as an ordinary double
point at (0, 0, 0). This implies that P{x},{t},{y,z} is a singular point of type A5.

Now we describe the type of the floating singular points. We will only consider the
singular point [λ+3+

√
λ2 + 12λ+ 32 : 0 : −2 : 2], because computations in the remaining

cases are similar. Let us introduce an auxiliary parameter µ ∈ C such that λ = −4µ2−4µ−1
µ(µ−1)

.

We assume that µ 6= 0 and µ 6= 1. Then

[λ+ 3 +
√
λ2 + 12λ+ 32 : 0 : −2 : 2] = [µ− 1 : 0 : −µ : µ].

Taking the chart t = 1 and introducing new coordinates x̄ = x+ µ−1
µ
, ȳ = y, and z̄ = z−1,

we see that Sλ is given by

(2µ− 1)x̄ȳ + (µ− 1)2z̄3 + higher order terms = 0.

Here, as above, we order monomials with respect to the weights wt(x̄) = 3, wt(ȳ) = 3,
and wt(z̄) = 2. This implies that [µ− 1 : 0 : −µ : µ] is a singular point of type A2. �

Note that the singular locus of the surface S−4 consists of the point P{x},{y},{z} and the
line {x − t = y + z + t = 0}. Similarly, the singular locus of the surface S−8 consists of
the point P{x},{y},{z} and the line {x+ t = y + z + t = 0}. Moreover, we have

Lemma 8.1.3. Both surfaces S−8 and S−4 are irreducible.

Proof. It is enough to prove S−4 is irreducible, because the remaining case can be handled
in a similar way. Let Π be the plane {t = z}. Denote by C4 the intersection S−4 ∩ Π.
Then C4 is the quartic curve in Π ∼= P2 that it is given by

x2yz + xy3 + 6xy2z + 10xyz2 + 8xz3 + yz3 = 0.

This curve has exactly two singular points: [1 : 0 : 0 : 0] and [1 : −2 : 1 : 1]. Moreover, the
point [1 : 0 : 0 : 0] is an ordinary double point of the curve C4, and the point [1 : −2 : 1 : 1]
is an ordinary cusp of the curve C4. This implies that the curve C4 is irreducible, so that
the surface S−4 is also irreducible. �

In Example 1.10.11, we proved that [f−1(λ)] = 1 for every λ ∈ C. Thus, we conclude
that (♥) in Main Theorem holds in this case.

Let us verify (♦) in Main Theorem. It follows from (8.1.1) that the intersection matrix
of the curves L{x},{y}, L{x},{z}, L{x},{t}, L{y},{t,z}, L{z},{t,y}, and C on the surface Sλ has the
same rank as the intersection matrix of the curves L{x},{y}, L{x},{z}, and Hλ. If λ 6= −4
and λ 6= −8, then the latter matrix is given by

• L{x},{y} L{x},{z} Hλ

L{x},{y} −2 1 1

L{x},{z} 1 −2 1

Hλ 1 1 4

Its determinant is 18 6= 0. On the other hand, we have rkPic(S̃k) = rkPic(Sk) + 9. Thus,
we see that (⋆) holds. Then (♦) in Main Theorem holds by Lemma 1.13.1.
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9. Fano threefolds of Picard rank 9

9.1. Family №9.1. In this case, we have X ∼= P1 × S2, where S2 is a smooth del Pezzo
surface of degree 2. In particular, we have h1,2(X) = 0. This case is somehow similar to
the cases we treated in Subsections 2.2 and 2.3. As in these two cases, this family does
not have toric Landau–Ginzburg models with reflexive Newton polytope. Let p be the
Laurent polynomial

(a + b+ 1)4

ab
+ c+

1

c
.

Then p gives the commutative diagram (z) by [Prz17, Proposition 16].
Let γ : C3 99K C∗ ×C∗ ×C∗ be a birational transformation that is given by the change

of coordinates 



a = xz,

b = x− xz − 1,

c =
z

y
.

Like in Subsection 2.2, we can use γ to expand (z) to the commutative diagram (2.2.1).
The only difference is that now the pencil S is given by the equation

(9.1.1) x3y = (λyz − y2 − z2)(xt− xz − t2)

where λ ∈ C∪{∞}. As in Subsection 2.2, we will follow the scheme described in Section 1.
The only difference is that now Sλ is the quartic surface given by the equation (9.1.1).

Let Q be the quadric in P3 given by xt− xz − t2 = 0. Then

S∞ = H{y} +H{z} +Q.

One the other hand, if λ 6= ∞, then Sλ is irreducible and has isolated singularities.
Let C1 be the conic in P3 that is given by y = xt− xz − t2 = 0, and let C2 be the cubic

curve in P3 that is given by z = x3 + yt(x+ t) = 0. If λ 6= ∞, then

H{y} · Sλ = 2L{y},{z} + C1,
H{z} · Sλ = L{y},{z} + C2,

Q · Sλ = 6L{x},{t} + C1.
(9.1.2)

Thus, the base locus of the pencil S consists of the curves L{x},{t}, L{y},{z}, C1, and C2.
If λ 6= ∞, then the singular points of the surface Sλ contained in the base locus of the

pencil S can be described as follows:

P{x},{z},{t}: type A1;
P{x},{y},{z}: type A5 for λ 6= ±2, non-du Val for λ = ±2;

[0 : λ±
√
λ2 − 4 : 2 : 0]: type A5 for λ 6= ±2, non-du Val for λ = ±2.

Thus, it follows from (1.10.8) and Lemma 1.12.1 that the fiber f−1(λ) is irreducible for
every λ ∈ C. This confirms (♥) in Main Theorem.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 9. Indeed, the

minimal resolutions S̃k → Sk of the point P{x},{y},{z} is given by three consecutive blow
ups that has three irreducible (over k) exceptional curves. Two of them are geometrically
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reducible, and one is geometrically irreducible. Similarly, the minimal resolution S̃k → Sk

of the point [0 : λ±
√
λ2 − 4 : 2 : 0] has 5 exceptional curves, and the minimal resolution

of the point P{x},{z},{t} has 1 exceptional curve.
If λ 6= ∞, then it follows from (9.1.2) that

Hλ ∼ 2L{y},{z} + C1 ∼ L{y},{z} + C2 ∼Q 3L{x},{t} +
1

2
C1

on the surface Sλ. Thus, if λ 6= ∞, then the intersection matrix of the curves L{x},{t} and
Hλ on the surface Sλ has the same rank as the intersection matrix of the curves L{x},{t},
L{y},{z}, C1, C2, and Hλ. On the other hand, if λ 6= ∞ and λ 6= ±2, the latter matrix is
given by

• L{x},{t} Hλ

L{x},{t} −3
2

1

Hλ 1 4

The rank of this matrix is 2. Thus, we see that (⋆) holds in this case. By Lemma 1.13.1,
this confirms (♦) in Main Theorem.

10. Fano threefolds of Picard rank 10

10.1. Family №10.1. In this case, we have X ∼= P1×S1, where S1 is a smooth del Pezzo
surface of degree 1. In particular, we have h1,2(X) = 0. This case is very similar to
the case we discussed in Subsection 2.1. As in that case, this family does not have toric
Landau–Ginzburg models with reflexive Newton polytope. However, there are Laurent
polynomials with non-reflexive Newton polytopes that give the commutative diagram (z).
One of them is the Laurent polynomial

(x+ y + 1)6

xy2
+ z +

1

z
,

which we also denote by p.
Let γ : C3 99K C∗ ×C∗ ×C∗ be a birational transformation that is given by the change

of coordinates 



x =
1

b
− 1

b2c
− 1,

y =
1

b2c
,

z = y.

Arguing as in Subsection 1.9, we can expand (z) to the commutative diagram (2.1.1).
The only difference is that now the pencil S is given by the equation

(10.1.1) xyc3 = (λxy − x2 − y2)(abc− b2c− a3),

where λ ∈ C ∪ {∞}. Here ([x : y], [a : b : c]) is a point in P1 × P2.
As in Subsection 2.1, we will follow the scheme described in Section 1, and we will use

assumptions and the notation introduced in that section. The only difference is that P3



168 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

is now replaced by P1×P2, and Sλ now is the surface in P1×P2 that is given by (10.1.1).
As in Subsection 2.1, we will extend our handy notation in Subsection 1.6 to bilinear
sections of P1 × P2.

Let S be the surface in P1 × P2 given by abc − b2c − a3 = 0. Then S is irreducible.
Moreover, we have

S∞ = H{x} +H{y} + S.

On the other hand, if λ 6= ∞, then Sλ is irreducible and has isolated singularities.
Let C1 be the curve in P1 × P2 that is given by x = abc − b2c − a3 = 0, and let C2 be

the curve in P1 × P2 that is given by y = abc− b2c− a3 = 0. Then

H{x} · Sλ = C1,
H{y} · Sλ = C2,

S · Sλ = C1 + C2 + 9L{a},{c}.

(10.1.2)

Thus, the base locus of the pencil S consists of the curves C1, C2, and L{a},{c}.
If λ 6= ∞, then the only singular points of the surface Sλ contained in the base locus

of the pencil S are the points

(10.1.3)
([

λ±
√
λ2 − 4 : 2

]
,
[
0 : 1 : 0

])
.

If λ 6= ±2, then the surface Sλ has singularity of type A9 at each of the points (10.1.3).
If λ = ±2, then (10.1.3) gives the points ([±1 : 1], [0 : 1 : 0]). One can check that the
surface S±2 has triple singularity at these points.

Remark 10.1.4. There exists a commutative diagram

V2

β2

{{✈✈
✈✈
✈✈
✈✈
✈✈

V3
β3oo V4

β4oo

V1

β1

��

V

g

��

γ
``❅❅❅❅❅❅❅❅

π

rr❞❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞

P1 × P2 φ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ P1

where φ is a rational map that is given by the pencil S, the morphism β1 is the blow up
of the curve C1, the morphism β2 is the blow up of the proper transform of the curve C2,
the morphism β3 is the blow up of a curve that dominates the curve C1, the morphism β4

is the blow up of a curve that dominates the curve C2, and γ is a birational morphism
that is a composition of 9 blow up of smooth curves that dominate the curve L{a},{c}.
Note that the curve C1 has a node at the point P{x},{a},{b}. Similarly, the curve C1 has a
node at the point P{y},{a},{b}. Thus, both threefolds V1 and V2 are singular. Moreover,
the morphism β3 blows up a nodal curve that is contained in the smooth locus of the
threefold V2. Likewise, the morphism β4 blows up a nodal curve that is contained in the
smooth locus of the threefold V3. Thus, the threefold V has four isolated ordinary double
points. However, they all are contained in the fiber g−1(∞), which consists of the proper
transforms on V of the following surfaces: H{x}, H{y}, S, the exceptional surface of the
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morphism β1, and the exceptional surface of the morphism β2. Thus, the singularities of
the threefold V are not important for the proof of Main Theorem in this case. Note that

−KV ∼ g−1
(
∞
)
.

If we want to keep this condition and make V smooth, we must compose π with small
resolution of singular points of the threefold V . However, the resulting smooth threefold
would not be projective (cf. the proof of [Prz17, Proposition 29]). Indeed, by construction,
the threefold V is Q-factorial, so that it does not admit projective small resolutions.

Note that surfaces in the pencil S do not have fixed singular points, so that Σ = ∅.
Thus, using (1.8.3), we get [f−1(λ)] = 1 for every λ ∈ C. This confirms (♥) in Main
Theorem, since h1,2(X) = 0.

To verify (♦) in Main Theorem, observe that rkPic(S̃k) = rkPic(Sk) + 9. One the
other hand, if λ 6= ∞ and λ 6= ±2, the rank of the intersection matrix of the curves C1,
C2, and L{a},{c} on the surface Sλ is 1. This follows from (10.1.2). Thus, we see that (⋆)
holds in this case. By Lemma 1.13.1, this confirms (♦) in Main Theorem.

Appendix A. Curves on singular surfaces

Let S be a normal surface, let C and Z be distinct irreducible curves in S. For every
point P ∈ S, one can define the intersection multiplicity (C · Z)P ∈ Q>0 as in [Sa84]. As
in the case when S is smooth, one has

C · Z =
∑

P∈C∩Z

(
C · Z

)
P
.

In this appendix, we present two (probably well-known to many experts) simple results
that can be used to compute the (local) intersection multiplicity (C ·Z)P and the (global)
self-intersection C2 in simple cases. These results are Propositions A.1.2 and A.1.3 below.

A.1. Intersection multiplicity. Fix a point O ∈ C ∩Z. Let π : S̃ → S be the minimal
resolution of singularity of the point O, and let G1, . . . , Gn be the exceptional curves of

the birational morphism π. Denote by C̃ and Z̃ the proper transforms of the curves C

and Z on the surface S̃, respectively. Following [Sa84], one can define π∗(C) as

π∗(C) = C̃ +

n∑

i=1

aiGi

for some positive rational numbers a1, . . . , an such that

(
C̃ +

n∑

i=1

aiGi

)
·Gi = 0.

Similarly, we have

π∗(Z) = Z̃ +

n∑

i=1

biGi



170 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

for some positive rational numbers b1, . . . ,bn. We define

C · Z =
(
C̃ +

n∑

i=1

aiGi

)
·
(
Z̃ +

n∑

i=1

biGi

)
= π∗(C) · π∗(Z) = π∗(C) · Z̃ = C̃ · π∗(Z).

Let G = G1 ∪ · · · ∪Gn. Then one can define (C · Z)O as

(A.1.1)
(
C · Z

)
O
= C · Z − C̃ · Z̃ +

∑

P∈C̃∩Z̃∩G

(
C̃ · Z̃

)
P
.

The main goal of this appendix is to prove the following two simple results.

Proposition A.1.2. Suppose that O is a du Val singular point of the surface S, both
curves C and Z are smooth at O, and C intersects Z transversally at the point O. Then
the following assertions hold.

(i) The point O is a singular point of S of type An or Dn.
(ii) If O is a singular point of type An and proper transforms of the curves C and Z on

the surface S̃ intersect k-th and r-th exceptional curves in the chain of exceptional
curves of the minimal resolution of O, then

(
C · Z

)
O
=





r(n+ 1− k)

n + 1
for r 6 k,

k(n+ 1− r)

n + 1
for r > k.

(i) If O is of type Dn, then
(
C · Z

)
O
= 1

2
.

Proposition A.1.3. Suppose that O is a du Val singular point of the surface S, and the
curve C is smooth at the point O. Then the following holds.

(i) The point O is a singular point of the surface S of type An, Dn, E6 or E7.

(ii) If O is a singular point of type An, and C̃ intersects k-th exceptional curve in the
chain of exceptional curves of the minimal resolution of O, then

C2 = C̃2 +
k(n+ 1− k)

n+ 1
.

(iii) If O is a singular point of type Dn, then C2 = C̃2 + 1 or C2 = C̃2 + n
4
.

(iv) If O is a singular point of type E6, then C2 = C̃2 + 4
3
.

(iv) If O is a singular point of type E7, then C2 = C̃2 + 3
2
.

The assertion of Propositions A.1.2 and A.1.3 follows from Corollaries A.2.2 and A.2.3
and Lemmas A.3.1, A.3.2, A.4.1, A.4.2, and A.4.3, which we will prove below.
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A.2. Singular points of type A. In this subsection, we suppose that the surface S has
du Val singularity of type An at the point O, where n > 1. Then we may assume that

Gi ·Gj =





− 2 if i = j,

0 if |i− j| > 1,

1 if |i− j| = 1.

If the curve C is smooth at O, then C̃ is smooth along G, it intersects exactly one curve
among G1, . . . , Gn, this intersection is transversal and consists of one point. The same

holds for Z̃ in the case when Z is smooth at O. This is well-known (see [Ar66]).

Lemma A.2.1. Suppose that C is smooth at O, and C̃ ∩Gk 6= ∅. Then

ai =





i(n + 1− k)

n + 1
for i 6 k,

k(n+ 1− i)

n + 1
for i > k.

In particular, one has ak = k(n+1−k)
n+1

.

Proof. We may assume that n > 2, since the assertion is obvious for n = 1. Replacing k

by n+ 1− l, we may assume that k 6 n+1
2
. Then

0 = C̃ ·Gn = −2an + an−1.

If k = 1, then 1 = C̃ ·G1 = −2a1 + a2 and

0 = C̃ ·Gi = −2ai + ai−1 + ai+1

in the case when n > i > 1. This gives ai =
n+1−i
n+1

in this case.

Thus we may assume that k > 2, so that n > 3. Then 0 = C̃ ·G1 = −2a1 + a2 and

1 = C̃ ·Gk = −2ak + ak−1 + ak+1.

For every i 6= k such that i 6= 1 and i 6= n− 1, we also have

0 = C̃ ·Gi = −2ai + ai−1 + ai+1.

Solving this system of equations, we obtain the required assertion. �

Corollary A.2.2. Suppose that both C and Z are smooth at O. Suppose that C inter-

sects the curve Z transversally at O. Suppose also that C̃ ∩ Gk 6= ∅ and Z̃ ∩ Gr 6= ∅.
Then

(
C · Z

)
O
=





r(n+ 1− k)

n + 1
for r 6 k,

k(n+ 1− r)

n + 1
for r > k.



172 IVAN CHELTSOV AND VICTOR PRZYJALKOWSKI

Proof. Since C intersects Z transversally at O, we have C̃ ∩ Z̃ ∩G = ∅. But

C̃ · Z̃ =
(
π∗(C)−

n∑

i=1

aiGi

)
· Z̃ = C · Z − ak.

Thus, the required assertion follows from (A.1.1) and Lemma A.2.1. �

Corollary A.2.3. Suppose that C is smooth at O, and C̃ ∩Gk 6= ∅. Then

C2 = C̃2 +
k(n+ 1− k)

n+ 1
.

Proof. One has

C̃2 =
(
π∗(C)−

n∑

i=1

aiGi

)2
= C2 − a1 = C2 − n

n + 1

by Lemma A.2.1. �

Remark A.2.4. Suppose that n > 3. Then there exists a commutative diagram

S
β

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

S̃

α

99rrrrrrrrrrrrr
π

// S

such that β is the blow up of the point O, and α is a birational morphism that contracts
the curves G2, . . . , Gn−1 to the singular point of type An−2. Denote by G1, Gn, C, and

Z the proper transforms of the curves G1, Gn, C̃, and Z̃ on the surface S, respectively.
If C and Z are smooth at O, and the curve C intersects Z transversally at O, then the
curves C and Z are smooth, and at most one curve among C and Z passes through the
intersection point G1 ∩Gn.

A.3. Singular points of type D. Now we suppose that the surface S has du Val singu-
larity of type Dn at the point O, where n > 4. We start with the following.

Lemma A.3.1. Suppose that n = 4, both C and Z are smooth at O, and C intersects

the curve Z transversally at O. Then (C · Z)O = 1
2
and C2 = C̃2 + 1.

Proof. We may assume that the intersection form of the curves G1, G2, G3, G4 is given by

• G1 G2 G3 G4

G1 −2 1 1 1

G2 1 −2 0 0

G3 1 0 −2 0

G4 1 0 0 −2
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Then 2G1 + G2 + G3 + G4 is the fundamental cycle of the singular point O, see [Ar66].
This implies that

C̃ ·
(
2G1 +G2 +G3 +G4

)
= multO

(
C
)
= 1.

Thus, we see that C̃ ∩ G1 = ∅. Hence, we may assume that C̃ · G2 = 1, which implies

that C̃ ·G1 = C̃ ·G3 = C̃ ·G4 = 0, which gives




1 + a1 − 2a2 = 0,

a2 + a3 + a4 − 2a1 = 0,

a1 − 2a3 = 0,

a1 − 2a4 = 0.

Solving this system of equations, we see that a1 = 1, a2 = 1, a3 =
1
2
, a4 =

1
2
. This implies

that C2 = C̃2 + 1. Note also that there exists a commutative diagram

S
β

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

S̃

α

99rrrrrrrrrrrrr
π

// S

such that β is the blow up of the point O, and α is a birational morphism that contracts
the curves G2, G3, and G4 to three ordinary double points of the surface S. Denote by C

and Z the proper transforms of the curves C̃ and Z̃ on the surface S, respectively. If C
and Z are smooth at O, and the curve C intersects Z transversally at O, then (C ·Z)O = 1

2
,

because C ∩ Z ∩ α(G1) = ∅, the curves C and Z are smooth along α(G1), and each of
them contains a singular point of the surface S contained in α(G1). �

Now we suppose that n > 5. In this case, we may assume that the intersection form of
the exceptional curves G1, . . . , Gn is given by the following table:

• G1 G2 G3 G4 G5 . . . Gn−1 Gn

G1 −2 1 1 1 0 . . . 0 0

G2 1 −2 0 0 0 . . . 0 0

G3 1 0 −2 0 0 . . . 0 0

G4 1 0 0 −2 1 . . . 0 0

G5 0 0 0 1 −2 . . . 0 0

. . . . . . . . . . . . . . . . . .
. . . . . . . . .

Gn−1 0 0 0 0 0 . . . −2 1

Gn 0 0 0 0 0 . . . 1 −2
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Lemma A.3.2. Suppose that C and Z are smooth at O, and C intersects Z transversally
at the point O. Then (

C · Z
)
O
=

1

2
.

If C ∩Gn 6= ∅, then C2 = C̃2 + 1. Otherwise, one has C2 = C̃2 + n
4
.

Proof. Recall from [Ar66] that 2G1+G2+G3+2G4+ . . .+2Gn−1+Gn is the fundamental
cycle of the singular point O. Then

C̃ ·
(
2G1 +G2 +G3 + 2G4 + . . .+ 2Gn−1 +Gn

)
= multO

(
C
)
= 1.

This shows that C̃ ·G1 = C̃ ·G4 = . . . = C̃ ·Gn−1 = 0 and C̃ ·G2 + C̃ ·G3 + C̃ ·Gn = 1.

Hence, the curve C̃ intersects exactly one of curves G2, G3 or Gn, and it intersects this
curve transversally at a single point. Similarly, the same holds for the curve Z.

Let β : S → S be the blow up the point O. Then there exists the following commutative
diagram:

S
β

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

S̃

α

99rrrrrrrrrrrrr
π

// S

where α is a birational morphism that contracts the curves G1, G2, G3, . . . , Gn−2, and Gn.
Thus, we see that α(Gn−1) is the exceptional curve of the blow up β. Note that α(Gn) is
an isolated ordinary double point of the surface S. Similarly, we see that the surface S

has a du Val singular point of type Dn−2 at the point α(G1) = . . . = α(Gn−2). Here, we
assume that D3 = A3.

Denote by C and Z the proper transforms on S of the curves C̃ and Z̃, respectively.

Since C̃ and Z̃ do not intersect the curve Gn−1, each of the curves C and Z must pass
through some singular point of the surface S contained in β(Gn−1). Furthermore, we have
C ∩ Z = ∅, since the curve C intersects the curve Z transversally at O. Thus, without

loss of generality, one can assume C̃ ·Gn = 1 and Z̃ ·G2 = 1. This gives us the following
system of equations: 




2a1 − a2 − a3 − a4 = C̃ ·G1 = 0,

2a2 − a1 = C̃ ·G2 = 0,

2a3 − a1 = C̃ ·G3 = 0,

2a4 − a1 − a5 = C̃ ·G4 = 0,

2a5 − a4 − a6 = C̃ ·G5 = 0,

. . .

2an−1 − an−2 − an = C̃ ·Gn−1 = 0,

2an − an−1 = C̃ ·Gn = 1.
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Solving it, we obtain a1 = 1, a2 = a3 =
1
2
, a4 = . . . = an = 1. In particular, we have

C̃ · Z̃ =
(
π∗(C)−

n∑

i=1

aiGi

)
· Z̃ = C · Z − a2 = C · Z − 1

2
.

Hence, we see that (C · Z)O = 1
2
. Likewise, we get C2 = C̃2 + 1.

Similarly, we have the following system of equations:



2b1 − b2 − b3 − b4 = Z̃ ·G1 = 0,

2b2 − b1 = Z̃ ·G2 = 1,

2b3 − b1 = Z̃ ·G3 = 0,

2b4 − b1 − b5 = Z̃ ·G4 = 0,

2b5 − b4 − b6 = Z̃ ·G5 = 0,

. . .

2bn−1 − bn−2 − bn = Z̃ ·Gn−1 = 0,

2bn − bn−1 = Z̃ ·Gn = 0.

Solving it, we see that

b1 =
n− 2

4
, b2 =

n

4
, b3 =

n− 2

4
, b4 =

n− 3

2
, b5 =

n− 4

2
, . . . , bn =

1

2
.

As above, this gives Z2 = Z̃2 + n
4
. This completes the proof of the lemma. �

A.4. Singular points of type E. Now we consider the case when S has du Val singu-
larity of type E6, E7 or E8 at the point O. We start with the following fact.

Lemma A.4.1. Suppose that S has du Val singularity of type E6 at the point O, and
both curves C and Z are smooth at O. Then C is tangent to Z at the point O, and

C2 = C̃2 +
4

3
.

Proof. We have n = 6. We may assume that the intersection form of the curves G1, G2,
G3, G4, G5, and G6 is given by the following table:

• G1 G2 G3 G4 G5 G6

G1 −2 1 1 1 0 0

G2 1 −2 0 0 0 0

G3 1 0 −2 0 1 0

G4 1 0 0 −2 0 1

G5 0 0 1 0 −2 0

G6 0 0 0 1 0 −2
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Thus, the curve G1 is the fork curve.
Let β : S → S be the blow up of the point O. Then there exists a commutative diagram:

S
β

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

S̃

α

99sssssssssssss
π

// S,

where α is a contraction of the curves G1, G3, G4, G5, and G6 We see that α(G2) is the
exceptional curve of the blow up β. This curve contains one singular point of the surface
S. Denote it by P . Then P is the image of the curves G1, G3, G4, G5, and G6. Note that
S has a du Val singular point of type A5 at the point P .

Let C and Z be the proper transforms on S of the curves C and Z, respectively.
Then both C and Z are smooth along α(G2). We claim that C ∩ Z = P . Indeed, the
fundamental cycle of the singular point O is G5+G6+2G2+2G3+2G4+3G1. Thus, the

curve C̃ does not intersect the curves G1, G2, G3, and G4. Similarly, we see that the curve

Z̃ does not intersect the curves G1, G2, G3, and G4. Hence, without loss of generality, we

may assume that C̃ ∩G5 6= ∅. Then C̃ ∩G6 = ∅ and C̃ ·G5 = 1. Similarly, we see that

either Z̃ ∩G5 6= ∅ or Z̃ ∩G6 6= ∅. In both cases, we have C ∩ Z = P , so that the curve
C is tangent to Z at the point O.

Since C̃ ·G5 = 1 and C̃ ·G1 = C̃ ·G2 = C̃ ·G3 = C̃ ·G4 = C̃ ·G6, we get the following
system of equations: 




2a1 − a2 − a3 − a4 = C̃ ·G1 = 0,

a2 − a1 = C̃ ·G2 = 0,

2a3 − a1 − a5 = C̃ ·G3 = 0,

2a4 − a1 − a6 = C̃ ·G4 = 0,

2a5 − a3 = C̃ ·G5 = 1,

2a6 − a4 = C̃ ·G6 = 0.

Solving it, we see that a1 = 2, a2 = 1, a3 =
5
3
, a4 =

4
3
, a5 =

4
3
, and a6 =

2
3
. Thus

C̃2 =
(
π∗(C)− 2G1 −G2 −

5

3
G3 −

4

3
G4 −

4

3
G5 −

2

3
G6

)
· C̃ = C2 − 4

3
,

which gives C2 = C̃2 + 4
3
. �

Lemma A.4.2. Suppose that S has du Val singularity of type E7 at the point O, and
both curves C and Z are smooth at O. Then C is tangent to Z at the point O, and

C2 = C̃2 +
3

2
.

Proof. We may assume that the intersection form of the curves G1, G2, G3, G4, G5, G6,
and G7 is given by the following table:
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• G1 G2 G3 G4 G5 G6 G7

G1 −2 1 1 1 0 0 0

G2 1 −2 0 0 0 0 0

G3 1 0 −2 0 1 0 0

G4 1 0 0 −2 0 1 0

G5 0 0 1 0 −2 0 0

G6 0 0 0 1 0 −2 1

G7 0 0 0 0 0 1 −2

Thus, the curve G1 is the fork curve.
The fundamental cycle of the singular point O is 2G5+2G6+2G2+3G3+3G4+4G1+G7.

This shows that C̃ ·G7 = 1 and C̃ ·G1 = C̃ ·G2 = C̃ ·G3 = C̃ ·G4 = C̃ ·G5 = C̃ ·G6 = 0.
This gives us the following system of equations:





2a1 − a2 − a3 − a4 = C̃ ·G1 = 0,

a2 − a1 = C̃ ·G2 = 0,

2a3 − a1 − a5 = C̃ ·G3 = 0,

2a4 − a1 − a6 = C̃ ·G4 = 0,

2a5 − a3 = C̃ ·G5 = 0,

2a6 − a4 − a7 = C̃ ·G6 = 0,

2a7 − a6 = C̃ ·G7 = 1.

Then a1 = 3, a2 =
3
2
, a3 = 2, a4 =

5
2
, a5 = 1, a6 = 2 and a7 =

3
2
. This gives C2 = C̃2 + 3

2
.

Arguing as in the proof of Lemma A.4.1, we see that C tangents Z at the point O. �

Finally, we conclude this appendix by proving the following.

Lemma A.4.3. If S has du Val singularity of type E8 at O, then C is singular at O.

Proof. This follows from the fact that coefficients at all exceptional curves of the minimal
resolution of O in the fundamental cycle are greater than 1. �
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