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BURKHARDT QUARTIC, BARTH SEXTIC, AND THE ICOSAHEDRON

IVAN CHELTSOV, VICTOR PRZYJALKOWSKI, AND CONSTANTIN SHRAMOV

Abstract. We study two rational Fano threefolds with an action of the icosahedral group A5.
The first one is the famous Burkhardt quartic threefold, and the second one is the double cover
of the projective space branched in the Barth sextic surface. We prove that both of them are
A5-Fano varieties that are A5-birationally superrigid. This gives two new embeddings of the
group A5 into the space Cremona group.

1. Introduction

One of the interesting subjects in three-dimensional birational geometry is studying G-Fano
threefolds (see [18]), where G is a finite group. These are Fano threefolds with terminal sin-
gularities such that the rank of their G-invariant class group equals 1. Finding enough details
about their G-equivariant (biregular) geometry often leads to conclusions about the absence of
G-equivariant birational maps between them, see e.g. [5] and [6]. It is a usual case that on
this way one encounters really beautiful geometric constructions arising from large groups of
symmetries of the corresponding varieties.

The icosahedral group A5 appears as a group of symmetries for a remarkably large class of
Fano threefolds, and many of them are A5-Fano threefolds, see e.g. [6] and [4]. In this paper
we study two rational Fano threefolds with an action of the group A5. Both of these threefolds
are singular and have only nodes as singularities; moreover, they are “extremal” in some sense,
which makes their geometry more interesting. We prove that the ranks of their A5-invariant
class groups equal 1, so that both of them are A5-Fano threefolds. We use this to prove that
they are A5-birationally superrigid, see [6, §3.1] for a definition.

Consider the projective space P5 with homogeneous coordinates x0, . . . , x5. Denote
by σk(x0, . . . , x5) the k-th elementary symmetric polynomial in x0, . . . , x5. The Burkhardt quar-
tic is defined in P5 by equations

σ1(x0, . . . , x5) = σ4(x0, . . . , x5) = 0.

This quartic threefold was first described by Burkhardt in [2]. It has 45 nodes, which is actually
the largest possible number of isolated singularities for quartic threefolds (see [15]).

The Burkhardt quartic is known to be rational (see [19]), and its automorphism group is
isomorphic to PSp4(F3), see [7, §6] and [15]. Let the group S6 act on P5 by permutations of
homogeneous coordinates x0, . . . , x5. Then S6 preserves the Burkhardt quartic.

Let us refer to a subgroup A5 in S6 that fixes one of the homogeneous coordinates x0, . . . , x5
as a standard subgroup A5, and to a subgroup A5 of S6 that does not fix any of these coordinates
as a non-standard subgroup A5. Our first result is

Theorem 1.1. Let G be a standard subgroup A5 in S6. The Burkhardt quartic is a rational

G-Fano threefold that is G-birationally superrigid.

It should be pointed out that if G′ is a non-standard subgroup A5 in S6, then the Burkhardt
quartic is not a G′-Fano threefold (see Remark 2.12 below).
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Now consider the projective space P3 that is a projectivization of a non-trivial reducible four-
dimensional representation of the group A5. There exists a unique A5-invariant sextic surface B
with 65 nodes in P3, which is actually the largest possible number of nodes for a sextic surface,
see [14]. This surface was discovered by Barth in [1] and is usually called the Barth sextic. Our
second result is

Theorem 1.2. The double cover of P3 branched over the surface B is a rational A5-Fano three-

fold that is A5-birationally superrigid.

Theorems 1.1 and 1.2 give two embeddings of the group A5 into the space Cremona group

that are not conjugate to each other. Moreover, these embeddings are also not conjugate to any
of the four embeddings described in [6, Remark 1.2.1], [6, Example 1.3.9], [6, Theorem 1.4.1],
and [4, Theorem 4.2].

Notation and conventions. All varieties are defined over the field C of complex numbers.
By Cl(X) we denote the group of linear equivalence classes of Weil divisors on a variety X. If a
variety V is acted on by a finite group G, and Z is a subvariety of V , we will sometimes abuse
terminology and refer to the union of the images g(Z), g ∈ G, as the G-orbit of Z. By a node
we always mean an isolated singularity that is locally isomorphic to the singularity of a cone
over a smooth quadric of the appropriate dimension.

Acknowledgements. We are grateful to A.Kuznetsov, D. Pasechnik, V. Popov,
Yu. Prokhorov, and L.Rybnikov for useful discussions. The study has been funded by the Rus-
sian Academic Excellence Project “5-100”. V.Przyjalkowski was also supported by the grants
RFFI 15-01-02158, RFFI 15-01-02164, RFFI 14-01-00160, RFFI 15-51-50045, MK-6019.2016.1.
C. Shramov was also supported by the grants RFFI 15-01-02158, RFFI 15-01-02164, RFFI 14-
01-00160, and by Dynasty foundation.

2. Burkhardt quartic

In this section we prove Theorem 1.1. Recall that the Burkhardt quartic X is given in the
projective space P5 with homogeneous coordinates x0, . . . , x5 by equations

σ1(x0, . . . , x5) = σ4(x0, . . . , x5) = 0,

where σk(x0, . . . , x5) is the k-th elementary symmetric polynomial in x0, . . . , x5. The quartic X
is rational, and its automorphism group is isomorphic to PSp4(F3). A subgroup S6 ⊂ PSp4(F3)
that acts by permutations of the homogeneous coordinates x0, . . . , x5 preserves X. The
Burkhardt quartic has 45 singularities that form two S6-orbits: one is the S6-orbit of length 30
of the point

[1 : 1 : ω : ω : ω2 : ω2],

and the other is the S6-orbit of length 15 of the point

[1 : −1 : 0 : 0 : 0 : 0].

Remark 2.1 (cf. [9, p. 26]). Up to conjugation, the group PSp4(F3) contains a unique subgroup
isomorphic to S6, and two subgroups isomorphic to A5. The latter agree with two non-conjugate
embeddings of A5 to S6 ⊂ PSp4(F3).

Lemma 2.2. One has rkCl(X)S6 = 1.

Proof. It is well-known that the quotient P5/S6 is isomorphic to the weighted projective
space P(1, 2, 3, 4, 5, 6), so that

P4/S6
∼= P(2, 3, 4, 5, 6)

and X/S6
∼= P(2, 3, 5, 6). In particular, one has rkCl(X)S6 = rkCl(X/S6) = 1. �
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Corollary 2.3. One has rkCl(X)PSp4(F3) = 1.

If one ignores the action of the automorphism group of X, the following result is known.

Lemma 2.4 ([16, Theorem 1.1(iii)]). One has rkCl(X) = 16.

We are going to find the ranks of the invariant parts of Cl(X) with respect to various groups.
Consider the vector space

Cl(X)C = Cl(X)⊗ C

as a representation of the group PSp4(F3). Then Cl(X)C contains a trivial subrepresentation K

corresponding to the canonical class, and one has Cl(X)C ∼= K⊕W. We know from Lemma 2.4
that W is a 15-dimensional representation of PSp4(F3). Obviously, W is defined over the field Q.

Lemma 2.5. The complex PSp4(F3)-representation W is irreducible.

Proof. Recall that all non-trivial irreducible representations of PSp4(F3) of dimension less
than 15 are two 5-dimensional representations χ2 and χ3 that are not defined over Q, one
6-dimensional representation χ4, and two 10-dimensional representations χ5 and χ6 that are not
defined over Q (see [9, p. 27]).

Suppose that W is reducible. Note that W does not have trivial subrepresentations by Corol-
lary 2.3. Therefore, W splits as a sum of representations of PSp4(F3) isomorphic to χ2, χ3, χ4,
χ5, or χ6. However, keeping in mind that dim(W) = 15 we see that there are no summands
isomorphic to χ4. Moreover, since χ5 and χ6 are not defined over Q, they either appear as
summands in W simultaneously, or do not appear at all. The same holds for χ2 and χ3. An
obtained contradiction completes the proof of the lemma. �

By Lemma 2.5, the PSp4(F3)-representation W is isomorphic to one of the two 15-dimensional
irreducible representations of PSp4(F3) (see [9, p. 27]). In the notation of [9, p. 27] these are χ7

and χ8. In fact, we have W ∼= χ7. This follows from Lemma 2.2 and (the first part of) the
following result.

Lemma 2.6. The following assertions hold:

(i) the S6-representation χ7|S6
does not contain trivial subrepresentations, while the S6-

representation χ8|S6
does;

(ii) for one of the two non-conjugate embeddings of A5 to PSp4(F3), the A5-represen-

tation χ7|A5
does not contain trivial subrepresentations, while for the other embedding it

contains a unique trivial subrepresentation.

Proof. Both assertions are obtained by direct computations. We used the GAP software [11] to
perform them. �

Note that Lemma 2.6(ii) implies that the invariant part of Cl(X) with respect to one of the
two non-conjugate actions of A5 on X has rank 1.

Later we will need the following elementary result.

Lemma 2.7. Let Y be a normal variety acted on by a finite group G. Suppose that there exist

Weil divisors Π1, . . . ,Πr on Y such that they generate the Q-vector space

Cl(Y )Q = Cl(Y )⊗Q,

and Π1, . . . ,Πr form one G-orbit. Then the Q-vector space

Cl(Y )GQ = Cl(Y )G ⊗Q

is one-dimensional.
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Proof. Let D be a G-invariant Weil divisor on Y . By assumption, we have

D ∼Q

r∑

i=1

aiΠi

for some rational numbers a1, . . . , ar. Put P = Π1 + . . . +Πr. Then

|G|D ∼
∑

g∈G
g(D) ∼Q

r∑

i=1

ai
∑

g∈G
g(Πi) =

r∑

i=1

ai
|G|
r

P =
|G|
r

( r∑

i=1

ai

)
P.

In particular, we see that the Q-vector space Cl(Y )GQ is generated by P. �

Corollary 2.8. Let Y be a nodal Fano threefold acted on by a finite group G, and let iY be

the largest positive integer such that −KY ∼ iYH, where H is an ample Cartier divisor on Y .

Suppose that there exist Weil divisors Π1, . . . ,Πr on Y such that they generate the Q-vector

space

Cl(Y )Q = Cl(Y )⊗Q,

and Π1, . . . ,Πr form one G-orbit. Then Cl(Y )G = Z ·H.

Proof. By Lemma 2.7, the Q-vector space Cl(Y )GQ is one-dimensional. Since any singular point O
of Y is a node, we know that any Weil divisor that is Q-Cartier in a neighborhood of O is actually
Cartier in a neighborhood of O. In particular, every G-invariant Weil divisor on Y is a Cartier
divisor. Since the Picard group of Y has no torsion (this holds even for Fano varieties with log
terminal singularities, see e.g. [13, Proposition 2.1.2]), this implies that rkCl(Y )G = 1, and the
assertion follows. �

Now we are ready to start proving Theorem 1.1. Recall that a subgroup A5 in S6 that
fixes one of the homogeneous coordinates x0, . . . , x5 is called a standard subgroup A5, and a
subgroup A5 of S6 that does not fix any of these homogeneous coordinates is called a non-

standard subgroup A5. By Remark 2.1 subgroups of these two kinds represent two conjugacy
classes of subgroups isomorphic to A5 in PSp4(F3).

Let G be a standard subgroup A5 in S6 that fixes the homogeneous coordinate x5. We are
going to prove the following result.

Proposition 2.9. The group Cl(X)G is generated by −KX .

As a consequence of Proposition 2.9 we can find the rank of the Weil divisor class group
invariant under any given group that contains a standard subgroup A5. In particular, for a
subgroup A6 ⊂ S6 we get

Corollary 2.10. One has rkCl(X)A6 = 1.

Remark 2.11. The assertion of Corollary 2.10 was used in the proof of [5, Theorem 1.20]. More-
over, the authors of [5] gave a brief sketch of a proof of this assertion, but this proof was actually
incorrect. Indeed, contrary to what was claimed in the proof of [5, Theorem 1.20], the quotient
of X by a subgroup S4 ⊂ A5 is not isomorphic to the weighted projective space P(1, 2, 2, 3).
Our proof of Corollary 2.10 fixes this gap and thus recovers the proof of [5, Theorem 1.20].

Remark 2.12. Let G′ be a non-standard subgroup A5 ⊂ S6. Then Proposition 2.9 and
Lemma 2.6(ii) imply that rkCl(X)G

′

= 2.

Now we derive Theorem 1.1 from Proposition 2.9.
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Proof of Theorem 1.1. The proof is standard, see [5, Theorem 1.20] and [17], but we include it
for the reader’s convenience.

Suppose that X is not G-birationally superrigid. Since the divisor −KX generates the
group Cl(X)G by Proposition 2.9, it follows from [6, Corollary 3.3.3] that there exist a pos-
itive integer n and a G-invariant linear subsystem M of the linear system |−nKX | such that M
does not have fixed components, and the log pair (X, 1

n
M) is not canonical. Choose two general

surfaces M1 and M2 in the linear system M, and denote by H a general hyperplane section
of X. Then H ∼ −KX .

Suppose that there is an irreducible curve C ⊂ X such that the log pair (X, 1
n
M)

is not canonical along C. Denote by Z the G-orbit of the curve C. Put d = H · Z
and m = multC(M1) = multC(M2). Then m > n, so that

4n2 =M1 ·M2 ·H > dm2 > dn2,

which gives d 6 3. In particular, one has Z = C. Since P4 does not contain G-invariant lines
and planes, we see that Z is a twisted cubic. Moreover, the curve Z is contained in the smooth
locus of X, because the possible lengths of G-orbits in Z are 12, 20, 30, 60, and there are no
G-orbits of such lengths consisting of singular points of X.

Let f : W → X be the blow up along the curve Z. Denote by F the f -exceptional divisor.

Denote by M̃1 and M̃2 the proper transforms of the surfaces M1 and M2 on the threefold W ,
respectively. We then get

M̃1 ∼ M̃2 ∼ f∗(nH)−mF.

Moreover, the divisor f∗(2H)−F is nef, because Z is a scheme-theoretic intersection of quadrics.
Keeping in mind that F 3 = −KX · Z − 2 = 1 and H · Z = 3, we obtain

0 6

(
f∗(2H)− F

)
· M̃1 · M̃2 =

(
f∗(2H)− F

)(
f∗(nH)−mF

)2
= 8n2 − 6nm− 5m2 < 0

because m > n. This is a contradiction.
Thus, the log pair (X,λM) is canonical outside of finitely many points of X. Take any

point P ∈ X such that the singularities of the log pair (X,λM) are not canonical at the point P .
Suppose that P is a smooth point of X, and let HP be a general hyperplane section of X passing
through P . Then

4m =M1 ·M2 ·HP > multP

(
M1 ·M2

)
> 4n2

by [8, Corollary 3.4]. The obtained contradiction shows that X is singular at P .
Let Σ be the G-orbit of the point P . Then there is a subset Γ ⊂ Σ such that |Γ| = 4, and

the set Γ is not contained in any plane in P4. Let g : U → X be a blow up of Γ, and let E1, E2,
E3, and E4 be exceptional divisors of g. Denote by M1 and M2 the proper transforms of the
surfaces M1 and M2 on the threefold U , respectively. We then get

M 1 ∼M2 ∼ g∗(nH)− δ

4∑

i=1

Ei.

for some positive integer δ. Moreover, it follows from [8, Theorem 3.10] that δ > n. On the
other hand, the divisor g∗(2H) − E1 − E2 − E3 − E4 is nef, because the points of Γ are not
coplanar. In particular, we have

0 6

(
g∗(2H)−

4∑

i=1

Ei

)
·M 1 ·M2 =

(
f∗(2H) −

4∑

i=1

Ei

)(
f∗(nH)− δ

4∑

i=1

Ei

)2
= 8n2 − 8δ2.

This is impossible, since δ > n. �
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In the rest of this section we give a proof of Proposition 2.9. Recall from [12, §5.2.1] that
the Burkhardt quartic X contains forty j-planes, that are planes passing through nine singular
points of X. Let us describe them. For any triple of indices 0 6 i1 < i2 < i3 6 5, we denote
by Π+

i1i2i3
the plane given in P5 by equations

xi2 = ωxi1 , xi3 = ω2xi1 , σ1(x0, . . . , x5) = 0,

where ω is a primitive cubic root of 1, and we denote by Π−
i1i2i3

the plane given in P5 by equations

xi3 = ωxi1 , xi2 = ω2xi1 , σ1(x0, . . . , x5) = 0.

The 40 planes Π±
i1i2i3

form one S6-orbit. On the other hand, these 40 planes split into two

G-orbits of length 20, one containing the planes Π±
i1i2i3

for 0 6 i1 < i2 < i3 6 4, and the other

containing Π±
i1i25

for 0 6 i1 < i2 6 4.
Consider the following intersection form on the lattice Cl(X). Choose a general hyperplane

section H of X; in particular, we assume that H does not pass through the singular points
of X. Given two Weil divisors D1 and D2 on X, we restrict them to H (which makes sense
since in appropriately chosen neighborhoods of the intersection of their supports with H they
are actually Cartier divisors), and define D1•D2 as the intersection of the resulting curves on H.

Lemma 2.13. Choose two triples of indices

0 6 i1 < i2 < i3 6 5, 0 6 j1 < j2 < j3 6 5.

Let c be the cardinality of the set {i1, i2, i3} ∩ {j1, j2, j3}. If c = 2, put δ = 1 provided that one

can choose indices 1 6 a < b 6 3 and 1 6 c < d 6 3 such that ia = jc, ib = jd, and b− a = d− c;
otherwise put δ = 0. The following assertions hold:

(o) if c = 0, then Π+
i1i2i3

• Π+
j1j2j3

= Π+
i1i2i3

• Π−
j1j2j3

= Π−
i1i2i3

• Π−
j1j2j3

= 1;

(i) if c = 1, then Π+
i1i2i3

• Π+
j1j2j3

= Π+
i1i2i3

• Π−
j1j2j3

= Π−
i1i2i3

• Π−
j1j2j3

= 0;

(ii) if c = 2, then Π+
i1i2i3

• Π+
j1j2j3

= Π−
i1i2i3

• Π−
j1j2j3

= δ, and Π+
i1i2i3

• Π−
j1j2j3

= 1− δ;

(iii) one has Π+
i1i2i3

• Π+
i1i2i3

= Π−
i1i2i3

• Π−
i1i2i3

= −2, and Π+
i1i2i3

• Π−
i1i2i3

= 1.

Proof. The self-intersection number −2 corresponds to the self-intersection of a smooth rational
curve on a K3 surface. The cases with intersection number 1 correspond to pairs of planes that
meet along a line, and the cases with intersection number 0 correspond to pairs of planes that
meet at a point. �

Corollary 2.14. The 20 × 20 matrix of intersection numbers of the planes Π±
i1i2i3

,

where 0 6 i1 < i2 < i3 6 4, has rank 16. Similarly, the 20 × 20 matrix of intersection num-

bers of the planes Π±
i1i25

, where 0 6 i1 < i2 6 4, also has rank 16.

Proof. Straightforward computation. �

Lemma 2.4 and Corollary 2.14 imply the following result.

Corollary 2.15. The classes of the 20 planes Π±
i1i2i3

, where 0 6 i1 < i2 < i3 6 4, generate the

Q-vector space

Cl(X)Q = Cl(X)⊗Q.

Similarly, the classes of the 20 planes Π±
i1i25

, where 0 6 i1 < i2 6 4, also generate the Q-vector

space Cl(X)Q.

By Corollary 2.8, the assertion of Proposition 2.9 follows from Corollary 2.15. This completes
the proof of Theorem 1.1.



BURKHARDT QUARTIC, BARTH SEXTIC, AND THE ICOSAHEDRON 7

3. Barth sextic double solid

Let I be the trivial representation of the group A5, and let V be one of its two three-dimensional
irreducible representations (see e.g. [9, p. 2]). Put P3 = P(I⊕ V). By [1], there exists a unique
A5-invariant sextic surface B in P3 with 65 isolated singular points. Moreover, the surface B is
given in appropriate homogeneous coordinates x0, x1, x2, x3 by equation

(3.1) 4(τ2x20 − x21)(τ
2x21 − x22)(τ

2x22 − x20)− (1 + 2τ)x23(x
2
0 + x21 + x22 − x23)

2 = 0,

where τ = 1+
√
5

2 , and it has only nodes as singularities.

Recall from [1, §1] that the group A5 acting on P3 so that the sextic B is A5-invariant can be
thought of as the group of rotations of an icosahedron with 12 vertices

[±τ : ±1 : 0 : 1], [0 : ±τ : ±1 : 1], [±1 : 0 : ±τ : 1].

In particular, the group A5 contains the transformation

(3.2) x0 7→ −x0, x0 7→ −x1, x2 7→ x2, x3 7→ x3

of order 2, the transformation

(3.3) x0 7→ x1 7→ x2 7→ x0, x3 7→ x3

of order 3, and the transformation

(3.4) (x0, x1, x2) 7→ (x0, x1, x2)M
T , x3 7→ x3,

where M is the matrix




τ√
τ+2

− 1√
τ+2

0
1√
τ+2

τ√
τ+2

0

0 0 1







1 0 0
0 cos

(
2π
5

)
− sin

(
2π
5

)

0 sin
(
2π
5

)
cos

(
2π
5

)







τ√
τ+2

− 1√
τ+2

0
1√
τ+2

τ√
τ+2

0

0 0 1




−1

=

=




√
5(3+

√
5)

2(5+
√
5)

√
5

5+
√
5

1
2√

5
5+

√
5

1
2

−
√
5−1
4

−1
2

√
5+1
4

√
5−1
4


 =

1

2




τ τ − 1 1
τ − 1 1 −τ
−1 τ τ − 1


 .

The latter is a transformation of order 5 which corresponds to a rotation around the axis through
the vertices [τ : 1 : 0 : 1] and [−τ : −1 : 0 : 1] of the icosahedron by the angle 2π/5.

Let Σ15 be the A5-orbit of the point [1 : 0 : 0 : 0], let Σ30 be the A5-orbit of the
point [1 : 0 : 0 : 1], and let Σ20 be the A5-orbit of the point [1 : 1 : 1 : 1]. Then one has |Σk| = k,
and one can check that the sextic surface B is singular at the points of these three A5-orbits.
Moreover, one has Sing(B) = Σ15 ∪Σ20 ∪ Σ30, see [1, §1].

Remark 3.1. Restricting the left hand side of (3.1) to the plane x3 = x0 + x1 + x2 we get an
equation

−4(5τ + 3)
(
(τ − 2)(x0x

2
1 + x1x

2
2 + x2x

2
0) + (τ − 3)x0x1x2 − (x20x1 + x21x2 + x22x0)

)2
= 0.

Similarly, restricting the left hand side of (3.1) to the plane x3 = x0−x1−x2 we get an equation

−4(5τ + 3)
(
(2 − τ)(x0x

2
1 − x1x

2
2 − x2x

2
0) + (3− τ)x0x1x2 − (x20x1 + x21x2 − x22x0)

)2
= 0.
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Define the plane Ξv0,v1,v2 in P3 by equation x3 = v0x0 + v1x1 + v2x2, where (v0, v1, v2) is one
of the following collections of coefficients:

(3.5)

(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1),

(1,−1,−1), (−1, 1,−1), (−1,−1, 1), (−1,−1,−1),

(τ − 1, τ, 0), (1− τ, τ, 0), (1− τ,−τ, 0), (τ − 1,−τ, 0), (τ, 0, 1 − τ), (τ, 0, τ − 1),

(−τ, 0, τ − 1), (−τ, 0, 1 − τ), (0, τ − 1, τ), (0, τ − 1,−τ), (0, 1 − τ,−τ), (0, 1 − τ, τ).

There are 20 planes like this, and they form a single A5-orbit. Similarly, define the plane Θu0,u1,u2

in P3 by equation u0x0 + u1x1 + u2x2 = 0, where (u0, u1, u2) is one of the following collections
of coefficients:

(τ, 1, 0), (τ,−1, 0), (0, τ, 1), (0, τ,−1), (1, 0, τ), (−1, 0, τ).

There are 6 planes like this, and they form a single A5-orbit.

Lemma 3.2. A restriction of the sextic B to each of the planes Ξv is a smooth cubic curve

taken with multiplicity 2. A restriction of the sextic B to each of the planes Θu is a union of a

line taken with multiplicity 2 and an irreducible conic taken with multiplicity 2.

Proof. It is enough to check the assertion for one of the planes Ξv and one of the planes Θu.
The restriction of B to the plane Ξ1,1,1 is given by equation

(
(τ − 2)(x0x

2
1 + x1x

2
2 + x2x

2
0) + (τ − 3)x0x1x2 − (x20x1 + x21x2 + x22x0)

)2
= 0,

see Remark 3.1. Similarly, the restriction of B to the plane Θ−1,0,τ is given by equation

x23
(
x21 + (1 + τ2)x22 − x23

)2
= 0.

�

Denote by Υ the plane in P3 that is given by x3 = 0, so that Υ ∼= P(V). Recall that for
every k ∈ {6, 10, 15} there is a unique A5-orbit Ωk of length k in Υ, and there is a unique
A5-invariant curve Lk in Υ that is a union of k lines, see e.g. [6, Lemma 5.3.1(i),(ii)].

Lemma 3.3. Let ℓ be a line in Υ that is not an irreducible component of L6. Suppose

that (ℓ · L6)P > 2 for every point P ∈ ℓ ∩ L6. Then ℓ is an irreducible component of L10.

Proof. By [6, Theorem 6.1.2(i)] the singular points of the curve L6 are the points of Ω15; the
multiplicity of L6 at each of these points equals 2. Therefore, the line ℓ must contain three
points of Ω15. On the other hand, all lines passing through pairs of points of Ω15 are irreducible
components of the curves L6, or L10, or L15; this follows from polarity (see [6, Remark 5.3.2])
and the fact that the points of pairwise intersections of the irreducible components of L15 are
the points of the A5-orbits Ω6, Ω10, and Ω15, see [6, Theorem 6.1.2(xvi)]. This implies that ℓ is
an irreducible component of either L6, or L10, or L15. However, the first of these cases does not
occur by assumption, and the third is excluded by [6, Theorem 6.1.2(xiv)]. �

Note that the intersection Ξv ∩ Υ is an irreducible component of L10, while the intersec-
tion Θu ∩Υ is an irreducible component of L6.

Proposition 3.4. Suppose that Π is a plane in P3 such that the restriction B|Π is a cubic curve

taken with multiplicity 2. Then Π is one of the planes Ξv or Θu.
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Proof. Observe that Π 6= Υ, because B|Υ = L6 is a reduced curve. So we put ℓ = Π ∩ Υ.
By Lemma 3.3, the line ℓ is an irreducible component of either L6 or L10. Since A5 permutes
transitively the irreducible components of each of the curves L6 and L10, we may assume that ℓ
is given either by τx0 + x1 = x3 = 0, or by x0 + x1 + x2 = x3 = 0.

Suppose that ℓ is given by τx0+x1 = x3 = 0. Then Π is given by the equation τx0 + x1 = λx3
for some λ ∈ C. If λ = 0, then Π = Θτ,1,0. If λ 6= 0, then the restriction B|Π is given by

0 = 4(τ2x20 − x21)(τ
2x21 − x22)(τ

2x22 − x20)−

− 1 + 2τ

λ2
(τx0 + x1)

2

(
x20 + x21 + x22 −

1

λ2
(τx0 + x1)

2

)2

.

This (possibly non-reduced) sextic curve contains the line τx0 + x1 = 0 with multiplicity 1, so
that it cannot be a double cubic.

Now we suppose that ℓ is given by x0 + x1 + x2 = x3 = 0. Then the plane Π is given by
the equation x0 + x1 + x2 = λx3 for some λ ∈ C. If λ = 1, then Π = Ξ1,1,1. If λ = −1,
then Π = Ξ−1,−1,−1.

Suppose that λ 6= 0. Put µ = 1
λ
. Then µ 6= 0, and the restriction B|Π is given by the

equation f(x0, x1, x2) = 0, where

f(x0, x1, x2) = 4(τ2x20 − x21)(τ
2x21 − x22)(τ

2x22 − x20)−
− (1 + 2τ)µ2(x0 + x1 + x2)

2
(
x20 + x21 + x22 − µ2(x0 + x1 + x2)

2
)2
.

We have to show that the polynomial f(x0, x1, x2) is not a square of a cubic polynomial un-
less µ = ±1. To show this it is enough to prove the same assertion for the polynomial

f(1, x1,−x1) = −(8τ + 4)x61 − (4 + 8τ)(µ2 − 3)x41+

+ (4 + 8τ)(µ2 − τ)(µ2 + τ − 1)x21 − (1 + 2τ)µ2(µ + 1)2(µ− 1)2.

This follows from the fact that if µ 6= ±1, then both the constant term and the leading coefficient
of f(1, x1,−x1) are not zero, while the coefficients at x1 and x31 are both zero.

Thus, we see that λ = 0, so that Π is given by x0 + x1 + x2 = 0. Expressing x0 = −x1 − x2,
we see that the restriction B|Π is given by the equation g(x1, x2, x3) = 0, where

g(x1, x2, x4) = 4(τ2(x1 + x2)
2 − x21)(τ

2x21 − x22)
(
τ2x22 − (x1 + x2)

2
)
−

− (1 + 2τ)x23
(
(x1 + x2)

2 + x21 + x22 − x23
)2
.

We have to show that the polynomial g(x1, x2, x3) is not a square of a cubic polynomial. To
show this it is enough to prove the same assertion for the polynomial

g(x1,−x1, 1) = −(1 + 2τ)
(
4x61 + 4x41 − 4x21 + 1

)
.

This polynomial is not a square of a cubic polynomial, because both its constant term and the
leading coefficient are not zero, while the coefficients at x1 and x31 are both zero. �

Let π : X → P3 be a double cover branched over the sextic B. The equation of X can
be written in the weighted projective space P(1, 1, 1, 1, 2) with weighted homogeneous coordi-
nates x0, . . . , x3, and w as

(3.6) w2 + 4l1l2l3l4l5l6 − q23 = 0,

where l1 = τx0 − x1, l2 = τx1 − x2, l3 = τx2 − x0, l4 = τx0 + x1, l5 = τx1 + x2, l6 = τx2 + x0,
and

q3 =
√
1 + 2τx3(x

2
0 + x21 + x22 − x23).



10 CHELTSOV, PRZYJALKOWSKI, SHRAMOV

The class group of the threefold X was described by Endrass.

Lemma 3.5 ([10, Example 3.7]). One has rkCl(X) = 14.

Proposition 3.6. The threefold X is rational.

Proof. Making a change of coordinates w = 2yl1l2 + q3 we see that there is a birational
map ϕ : X 99K Y to a quartic threefold Y given in the projective space P4 with homogeneous
coordinates x0, . . . , x3, y by equation

y2l1l2 + yq3 + l3l4l5l6 = 0.

The map ϕ is given by the formula

[x0 : x1 : x2 : x3 : w] 7→ [2l1l2x0 : 2l1l2x1 : 2l1l2x2 : 2l1l2x3 : w − q3].

The inverse birational map ψ : Y 99K X is given by the Stein factorization of the linear projection
from the point [0 : 0 : 0 : 0 : 1] in P4, so that ψ is defined by the formula

[x0 : x1 : x2 : x3 : y] 7→ [x0 : x1 : x2 : x3 : 2l1l2y + q3].

The quartic Y contains a plane Π given by equations y = l4 = 0. The projection σ : Y 99K P1

from Π is given by [λ : µ] = [y : l4], where λ and µ are homogeneous coordinates on P1.

Y �

�

//

ψ

��

✬
✩

✤

✚
✗

σ

��⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

P4

��✤
✤
✤
✤
✤
✤

P1 X

ϕ

KK

✬
✩

✤
✚
✗

π // P3

Putting λ = y
l4

and µ = 1, we see that the general fiber of σ (in a scheme sence) is a cubic

surface in the projective space P3
F over the field F = C(λ), that is given by equation

(3.7) λ2l1l2l4 + λq3 + l3l5l6 = 0.

Here we use x0, . . . , x3 also as a homogeneous coordinates on P3
F.

Restricting the left hand side of equation (3.7) to the plane Π′ given by x3 = x0 + x1 + x2
and using Remark 3.1, we see that the corresponding curve is given by equation

(3.8)
(
λl4 +

√
2τ + 1(2τ − 3)l3

) (
λl1l2 +

√
2τ + 1l5l6

)
= 0.

Restricting the left hand side of equation (3.7) to the plane Π′′ given by x3 = x0 − x1 − x2 and
using Remark 3.1, we see that the corresponding curve is given by equation

(3.9)
(
λl1 +

√
2τ + 1(2τ − 3)l6

) (
λl2l4 +

√
2τ + 1l3l5

)
= 0.

One can check that the lines in P3
F given by equations

x3 − x0 − x1 − x2 = λl4 +
√
2τ + 1(2τ − 3)l3 = 0

and

x3 − x0 + x1 + x2 = λl1 +
√
2τ + 1(2τ − 3)l6 = 0

are disjoint. Since they are contained in the cubic surface (3.7), we see that the cubic surface (3.7)
is rational over the field F, so that both Y and X are rational (over the field C). �
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Now we are going to describe the generators of the group Cl(X).
The intersection of X with the hypersurface x3 = x0 + x1 + x2 splits as a union of two

surfaces Ξ+
1,1,1 and Ξ−

1,1,1 that are given by

{
x3 = x0 + x1 + x2,

w = C± ·
(
(τ − 2)(x0x

2
1 + x1x

2
2 + x2x

2
0) + (τ − 3)x0x1x2 − (x20x1 + x21x2 + x22x0)

)
,

respectively, where C± = ±2
√
5τ + 3. The image π(Ξ+

1,1,1) = π(Ξ−
1,1,1) is the plane in P3

that is given by equation x3 = x0 + x1 + x2, cf. Lemma 3.2. Since the A5-orbit of the
plane x3 = x0 + x1 + x2 consists of 20 planes, the A5-orbit of the surface Ξ+

1,1,1 consists of 20

surfaces. Similarly, the A5-orbit of the surface Ξ−
1,1,1 also consists of 20 surfaces. Denote by Ξ+

v

the surface in the the A5-orbit of Ξ+
1,1,1 such that π(Ξ+

v ) = Ξv, where v = (v0, v1, v2) is one of

the collections of coefficients listed in (3.5).

Remark 3.7. The anticanonical degree of the surfaces Ξ±
v equals 1, i.e. one has Ξ±

v · K2
X = 1.

By Lemma 3.2, the preimage on X of a plane Θu also splits as a union of two surfaces Θ+
u

and Θ−
u of anticanonical degree 1. It follows from Proposition 3.4 that there are no surfaces of

anticanonical degree 1 on X except Ξ±
v and Θ±

u .

Fix a sufficiently general (smooth) K3 surface S in the linear system | −KX |. For every two
surfaces Ξ+

v and Ξ+
v′ , put

Ξ+
v • Ξ+

v′ = Ξ+
v |S · Ξ+

v′ |S .
Then Ξ+

v • Ξ+
v = −2 by the adjunction formula. Moreover, if v 6= v′, then either Ξ+

v • Ξ+
v′ = 1

or Ξ+
v • Ξ+

v′ = 0 by construction. Furthermore, if v 6= v′, then Ξ+
v • Ξ+

v′ = 0 if and only if the

intersection Ξ+
v ∩ Ξ+

v′ consists of finitely many points.
Denote by N , R, and M the transformations (3.2), (3.3), and (3.4), respectively.

Example 3.8. By Remark 3.1, the surface Ξ+
(1,1,1) is defined in P(1, 1, 1, 1, 2) by equations

{
x3 = x0 + x1 + x2,
w = (τ − 2)(x0x

2
1 + x1x

2
2 + x2x

2
0) + (τ − 3)x0x1x2 − (x20x1 + x21x2 + x22x0),

The transformation M3 is given by the matrix

M3 =
1

2




1 τ 1− τ
τ 1− τ 1

τ − 1 −1 −τ


 .

Thus the surface Ξ+
(1,1,−1) is defined by equations

{
x3 = x0 + x1 − x2,
w = (τ − 2)(x0x

2
1 + x1x

2
2 − x2x

2
0)− (τ − 3)x0x1x2 − (x20x1 − x21x2 + x22x0).

Therefore, the intersection Ξ+
(1,1,1) ∩ Ξ+

(1,−1,−1) is the line in Ξ+
(1,1,1) that is cut out by an equa-

tion x2 = 0, so that Ξ+
(1,1,1)

• Ξ+
(1,−1,−1)

= 1.

Example 3.9. The transformation RN is given by the matrix

RN =




0 0 1
−1 0 0
0 −1 0


 .
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Thus the surface Ξ+
(1,−1,−1) is defined in P(1, 1, 1, 1, 2) by equations

{
x3 = x0 − x1 − x2,
w = (τ − 2)(x0x

2
1 − x1x

2
2 − x2x

2
0) + (τ − 3)x0x1x2 + (x20x1 + x21x2 − x22x0).

Therefore, the intersection Ξ+
(1,1,1) ∩ Ξ+

(1,−1,−1) is defined by equations

{
x1 + x2 = 0,
(τ − 2)(x1x

2
2 + x2x

2
0) = x20x1 + x21x2.

This system of equations defines a set consisting of three points, so that Ξ+
(1,1,1) • Ξ

+
(1,−1,−1) = 0.

In the similar way one gets Ξ+
v = Tv(Ξ

+
1,1,1), where Tv is an element in A5 given by Table 1.

Table 1. The surfaces Ξ+
v

v (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) (1,−1,−1)

Tv Id M3 R2M3 RM3 RN

v (−1, 1,−1) (−1,−1, 1) (−1,−1,−1) (τ − 1, τ, 0) (1− τ, τ, 0)

Tv R2N N M2N M4 RM2

v (1− τ,−τ, 0) (τ − 1,−τ, 0) (τ, 0, 1 − τ) (τ, 0, τ − 1) (−τ, 0, τ − 1)

Tv MN RM4N M2 M M4N

v (−τ, 0, 1 − τ) (0, τ − 1, τ) (0, τ − 1,−τ) (0, 1− τ,−τ) (0, 1 − τ, τ)

Tv M3N RM4 R2M4N RMN R2M2

This leads to the following result.

Lemma 3.10. One has

Ξ+
1,1,1 • Ξ+

v =





0 if v = (1,−1,−1), (−1, 1,−1), (−1,−1, 1), (−1,−1,−1),

(τ − 1,−τ, 0), (−τ, 0, τ − 1), (0, τ − 1,−τ),
1 if v = (1, 1,−1), (1,−1, 1), (−1, 1, 1), (τ − 1, τ, 0), (1 − τ, τ, 0),

(1− τ,−τ, 0), (τ, 0, 1 − τ), (τ, 0, τ − 1), (−τ, 0, 1 − τ),

(0, τ − 1, τ), (0, 1 − τ,−τ), (0, 1 − τ, τ),

− 2 if v = (1, 1, 1).

Similarly, we can compute all possible values of Ξ+
v • Ξ+

v′ . They are given in Table 2 below.
The intersection matrix for the surfaces Ξ−

v is the same as one given by Table 2.

Corollary 3.11. The 20 × 20 matrix of intersection numbers of the surfaces Ξ+
v , where the

index v is taken from the list (3.5), has rank 14. Similarly, the 20 × 20 matrix of intersection

numbers of the surfaces Ξ−
v has rank 14.

Proof. Straightforward computation. �

Lemma 3.5 and Corollary 3.11 imply the following result.

Corollary 3.12. The classes of the 20 surfaces Ξ+
v , where the index v is taken from the list (3.5),

generate the Q-vector space

Cl(X)Q = Cl(X)⊗Q.

Similarly, the classes of the 20 surfaces Ξ−
v also generate the Q-vector space Cl(X)Q.



Table 2. Intersection matrix for Ξ+
v

(1,1,1) (1,1,−1) (1,−1,1) (−1,1,1) (1,−1,−1) (−1,1,−1) (−1,−1,1) (−1,−1,−1) (τ−1,τ,0) (1−τ,τ,0) (1−τ,−τ,0) (τ−1,−τ,0) (τ,0,1−τ) (τ,0,τ−1) (−τ,0,τ−1) (−τ,0,1−τ) (0,τ−1,τ) (0,τ−1,−τ) (0,1−τ,−τ) (0,1−τ,τ)

(1,1,1) −2 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1

(1,1,−1) 1 −2 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1

(1,−1,1) 1 0 −2 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1

(−11,1) 1 0 0 −2 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1

(1,−1,−1) 0 1 1 0 −2 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0

(−1,1,−1) 0 1 0 1 0 −2 0 1 1 1 0 1 0 1 1 1 0 1 1 1

(−1,−1,1) 0 0 1 1 0 0 −2 1 1 0 1 1 1 0 1 1 1 1 0 1

(−1,−1,−1) 0 0 0 0 1 1 1 −2 1 0 1 1 0 1 1 1 1 1 1 0

(τ−1,τ,0) 1 1 0 1 0 1 1 1 −2 1 0 1 1 1 0 0 1 1 0 0

(1−τ,τ,0) 1 1 1 1 1 1 0 0 1 −2 1 0 0 0 1 1 1 1 0 0

(1−τ,−τ,0) 1 1 1 0 1 0 1 1 0 1 −2 1 0 0 1 1 0 0 1 1

(τ−1,−τ,0) 0 0 1 1 1 1 1 1 1 0 1 −2 1 1 0 0 0 0 1 1

(τ,0,1−τ) 1 1 1 1 1 0 1 0 1 0 0 1 −2 1 0 1 0 1 1 0

(τ,0,τ−1) 1 1 1 0 1 1 0 1 1 0 0 1 1 −2 1 0 1 0 0 1

(−τ,0,τ−1) 0 1 0 1 1 1 1 1 0 1 1 0 0 1 −2 1 1 0 0 1

(−τ,0,1−τ) 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 −2 0 1 1 0

(0,τ−1,τ) 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 −2 1 0 1

(0,τ−1,−τ) 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 −2 1 0

(0,1−τ,−τ) 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 −2 1

(0,1−τ,τ) 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 −2
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Corollaries 2.8 and 3.12 imply

Proposition 3.13. The group Cl(X)G is generated by −KX .

Now we derive Theorem 1.2 from Proposition 3.13.

Proof of Theorem 1.2. Since Cl(X)G is generated by −KX by Proposition 3.13, the required
assertion immediately follows from the proof of [3, Theorem A]. The only difference is
that one should use a G-equivariant version of the standard Noether–Fano inequality, which
is [6, Corollary 3.3.3]. �
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