WORST SINGULARITIES OF PLANE CURVES OF GIVEN DEGREE

IVAN CHELTSOV

Abstract

I prove that $\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}$ and $\frac{2 d-3}{d(d-2)}$ are the smallest \log canonical thresholds of reduced plane curves of degree $d \geqslant 3$. I describe reduced plane curves of degree d whose \log canonical thresholds are these numbers. I prove that every reduced plane curve of degree $d \geqslant 4$ whose \log canonical threshold is smaller than $\frac{5}{2 d}$ is GIT-unstable for the action of the group $\mathrm{PGL}_{3}(\mathbb{C})$, and I describe GIT-semistable reduced plane curves with log canonical thresholds $\frac{5}{2 d}$. I prove that $\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}$ and $\frac{2 d-3}{d(d-2)}$ are the smallest values of the α-invariant of Tian of smooth surfaces in \mathbb{P}^{3} of degree $d \geqslant 3$.

All varieties are assumed to be algebraic, projective and defined over \mathbb{C}.

1. Introduction

Let C_{d} be a reduced plane curve in \mathbb{P}^{2} of degree $d \geqslant 3$, and let P be a point in C_{d}. The curve C_{d} can have any given plane curve singularity at P provided that its degree d is sufficiently big. This naturally leads to

Question 1.1. Given a plane curve singularity, what is the minimal d such that there exists C_{d} having this singularity at P ?

The best general answer to this question has been given by Greuel, Lossen and Shustin who proved

Theorem 1.2 ([12, Theorem 2]). For every topological type of plane curve singularity with Milnor number μ, there exists C_{d} of degree $d \leqslant 14 \sqrt{\mu}$ that has this singularity at P.

For special types of singularities this result can be considerably improved (see, for example, [13]). Since C_{d} can have any mild singularity at P, it is natural to ask
Question 1.3. What is the worst singularity that C_{d} can have at P ?
Denote by m_{P} the multiplicity of the curve C_{d} at the point P, and denote by $\mu(P)$ the Milnor number of the point P. If I use m_{P} to measure the singularity of C_{d} at the point P, then a union of d lines passing through P is an answer to Question 1.3, since $m_{P} \leqslant d$, and $m_{P}=d$ if and only if C_{d} is a union of d lines passing through P. If I use the Milnor number $\mu(P)$, then the answer would be the same, since $\mu(P) \leqslant(d-1)^{2}$, and $\mu(P)=(d-1)^{2}$ if and only if C_{d} is a union of d lines passing through P. Alternatively, I can use the number

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the log pair }\left(\mathbb{P}^{2}, \lambda C_{d}\right) \text { is log canonical at } P\right\}
$$

that is known as the \log canonical threshold of the \log pair $\left(\mathbb{P}^{2}, C_{d}\right)$ at the point P or the \log canonical threshold of the curve C_{d} at the point P (see [9, Definition 6.34]). The smallest $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$ when P runs through all points in C_{d} is usually denoted by $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)$. Note that

$$
\frac{1}{m_{P}} \leqslant \operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{2}{m_{P}} .
$$

This is well-known (see, for example, [18, Lemma 8.10] or [9, Exercise 6.18 and Lemma 6.35]). So, the smaller $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$, the worse singularity of the curve C_{d} at the point P is.

[^0]Example 1.4 ([19, Proposition 2.2]). Suppose that C_{d} is given by $x_{1}^{n_{1}} x_{2}^{n_{2}}\left(x_{1}^{k m_{1}}+x_{2}^{k m_{2}}\right)=0$ in an analytic neighborhood of the point P, where k, n_{1}, n_{2}, m_{1} and m_{2} are arbitrary non-negative integers. Then

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\min \left\{\frac{1}{n_{1}}, \frac{1}{n_{2}}, \frac{\frac{1}{m_{1}}+\frac{1}{m_{2}}}{k+\frac{n_{1}}{m_{1}}+\frac{n_{2}}{m_{2}}}\right\} .
$$

Log canonical thresholds of plane curves have been intensively studied (see, for example, [19], [1], 11], [16, [14, [21], [20], [10]). Surprisingly, they give the same answer to Question 1.3 by
Theorem 1.5 ([1, Theorem 4.1], [11, Theorem 0.2]). One has $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{2}{d}$. Moreover, $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{2}{d}$ if and only if C_{d} is a union of d lines that pass through P.

In this paper I want to address
Question 1.6. What is the second worst singularity that C_{d} can have at P ?
To give a reasonable answer to this question, I have to disregard m_{P} by obvious reasons. Thus, I will use the numbers $\mu(P)$ and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, \mathbb{C}_{d}\right)$. For cubic curves, they give the same answer.
Example 1.7. Suppose that $d=3, m_{P}<3$ and P is a singular point of C_{3}. Then P is a singular point of type $\mathbb{A}_{1}, \mathbb{A}_{2}$ or \mathbb{A}_{3}. Moreover, if C_{3} has singularity of type \mathbb{A}_{3} at P, then $C_{3}=L+C_{2}$, where C_{2} is a smooth conic, and L is a line tangent to C_{2} at P. Furthermore, I have

$$
\mu(P)=\left\{\begin{array}{l}
1 \text { if } C_{3} \text { has } \mathbb{A}_{1} \text { singularity at } P, \\
2 \text { if } C_{3} \text { has } \mathbb{A}_{2} \text { singularity at } P, \\
3 \text { if } C_{3} \text { has } \mathbb{A}_{3} \text { singularity at } P .
\end{array}\right.
$$

Similarly, I have

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{3}\right)=\left\{\begin{array}{l}
1 \text { if } C_{3} \text { has } \mathbb{A}_{1} \text { singularity at } P \\
\frac{5}{6} \text { if } C_{3} \text { has } \mathbb{A}_{2} \text { singularity at } P \\
\frac{3}{4} \text { if } C_{3} \text { has } \mathbb{A}_{3} \text { singularity at } P
\end{array}\right.
$$

For quartic curves, the numbers $\mu(P)$ and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, \mathbb{C}_{d}\right)$ give different answers to Question 1.6.
Example 1.8. Suppose that $d=4, m_{P}<4$ and P is a singular point of C_{4}. Going through the list of all possible singularities that C_{P} can have at P (see, for example, [15]), I obtain

$$
\mu(P)=\left\{\begin{array}{l}
6 \text { if } C_{4} \text { has } \mathbb{D}_{6} \text { singularity at } P, \\
6 \text { if } C_{4} \text { has } \mathbb{A}_{6} \text { singularity at } P, \\
6 \text { if } C_{4} \text { has } \mathbb{E}_{6} \text { singularity at } P, \\
7 \text { if } C_{4} \text { has } \mathbb{A}_{7} \text { singularity at } P, \\
7 \text { if } C_{4} \text { has } \mathbb{E}_{7} \text { singularity at } P,
\end{array}\right.
$$

and $\mu(P)<6$ in all remaining cases. Similarly, I get

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{4}\right)=\left\{\begin{array}{l}
\frac{5}{8} \text { if } C_{4} \text { has } \mathbb{A}_{7} \text { singularity at } P \\
\frac{5}{8} \text { if } C_{4} \text { has } \mathbb{D}_{5} \text { singularity at } P \\
\frac{3}{5} \text { if } C_{4} \text { has } \mathbb{D}_{6} \text { singularity at } P \\
\frac{7}{12} \text { if } C_{4} \text { has } \mathbb{E}_{6} \text { singularity at } P \\
\frac{5}{9} \text { if } C_{4} \text { has } \mathbb{E}_{7} \text { singularity at } P
\end{array}\right.
$$

and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{4}\right)>\frac{5}{8}$ in all remaining cases.

Recently, Arkadiusz Płoski proved that $\mu(P) \leqslant(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$ provided that $m_{P}<d$. Moreover, he described C_{d} in the case when $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$. To present his description, I need
Definition 1.9. The curve C_{d} is an even Ptoski curve if d is even, the curve C_{d} has $\frac{d}{2} \geqslant 2$ irreducible components that are smooth conics passing through P, and all irreducible components of C_{d} intersect each other pairwise at P with multiplicity 4.

Płoski curve of degree 6 looks like

Definition 1.10. The curve C_{d} is an odd Ptoski curve if d is odd, the curve C_{d} has $\frac{d+1}{2} \geqslant 3$ irreducible components that all pass through $P, \frac{d-1}{2}$ irreducible component of the curve C_{d} are smooth conics that intersect each other pairwise at P with multiplicity 4 , and the remaining irreducible component is a line in \mathbb{P}^{2} that is tangent at P to all other irreducible components.

Płoski curve of degree 7 looks like

Each Płoski curve has unique singular point. If $d=4$, then C_{4} is a Płoski curve if and only if it has a singular point of type \mathbb{A}_{7}. Thus, if $d=4$, then $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor=7$ if and only if either C_{4} is a Płoski curve and P is its singular point or C_{4} has singularity \mathbb{E}_{7} at the point P (see Example 1.8). For $d \geqslant 5$, Płoski proved
Theorem $1.11\left(\left[23\right.\right.$, Theorem 1.4]). If $d \geqslant 5$, then $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$ if and only if C_{d} is a Płoski curve and P is its singular point.

This result gives a very good answer to Question 1.6. Surprisingly, the answer given by log canonical thresholds is very different. To describe it, I need
Definition 1.12. The curve C_{d} has singularity of type $\mathbb{T}_{r}\left(\right.$ resp., $\left.\mathbb{K}_{r}, \widetilde{T}_{r}, \widetilde{\mathbb{K}}_{r}\right)$ at the point P if the curve C_{d} can be given by $x_{1}^{r}=x_{1} x_{2}^{r}$ (resp., $x_{1}^{r}=x_{2}^{r+1}, x_{2} x_{1}^{r-1}=x_{1} x_{2}^{r}, x_{2} x_{1}^{r-1}=x_{2}^{r+1}$) in an analytic neighborhood of P.

The main purpose of this paper is to prove
Theorem 1.13. Suppose that $d \geqslant 4$ and $m_{P}<d$. If P is a singular point of the curve C_{d} of type $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$, then

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\left\{\begin{array}{l}
\frac{2 d-3}{(d-1)^{2}} \text { if } C_{d} \text { has } \mathbb{T}_{d-1} \text { singularity at } P \\
\frac{2 d-1}{d(d-1)} \text { if } C_{d} \text { has } \mathbb{K}_{d-1} \text { singularity at } P \\
\frac{2 d-5}{d^{2}-3 d+1} \text { if } C_{d} \text { has } \widetilde{\mathbb{T}}_{d-1} \text { singularity at } P, \\
\frac{2 d-3}{d(d-2)} \text { if } C_{d} \text { has } \widetilde{\mathbb{K}}_{d-1} \text { singularity at } P .
\end{array}\right.
$$

If P is not a singular point of the curve C_{d} of type $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$, then either $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)>\frac{2 d-3}{d(d-2)}$, or $d=4$ and C_{d} is a Płoski quartic curve (in this case $\left.\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{8}\right)$.

This result fits well Examples 1.7 and 1.8, since $\mathbb{T}_{2}=\mathbb{A}_{3}, \mathbb{K}_{2}=\mathbb{A}_{2}, \widetilde{\mathbb{T}}_{2}=\widetilde{\mathbb{K}}_{2}=\mathbb{A}_{1}, \widetilde{\mathbb{K}}_{3}=\mathbb{D}_{5}$, $\widetilde{T}_{3}=\mathbb{D}_{6}, \mathbb{K}_{3}=\mathbb{E}_{6}$ and $\mathbb{T}_{3}=\mathbb{E}_{7}$. Note that

$$
\frac{2}{d}<\frac{2 d-3}{(d-1)^{2}}<\frac{2 d-1}{d(d-1)}<\frac{2 d-5}{d^{2}-3 d+1}<\frac{2 d-3}{d(d-2)}
$$

provided that $d \geqslant 4$. Thus, Theorem 1.13 describes the five worst singularities that C_{d} can have at the point P. In particular, it answers Question 1.6. Moreover, this answer is very explicit. Indeed, the curve C_{d} has singularity $\mathbb{T}_{r}, \mathbb{K}_{r}, \widetilde{T}_{r}$ or $\widetilde{\mathbb{K}}_{r}$ at the point $[0: 0: 1]$ if and only if it can be given by

$$
\alpha x^{d-1} z+\beta y x^{d-2} z=\gamma x y^{d-1}+\delta y^{d}+\sum_{i=2}^{d} a_{i} x^{i} y^{d-i}
$$

where each a_{i} is a complex number, and

$$
(\alpha, \beta, \gamma, \delta)=\left\{\begin{array}{l}
(1,0,1,0) \text { if } C_{d} \text { has } \mathbb{T}_{d-1} \text { singularity at }[0: 0: 1], \\
(1,0,0,1) \text { if } C_{d} \text { has } \mathbb{K}_{d-1} \text { singularity at }[0: 0: 1], \\
(0,1,1,0) \text { if } C_{d} \text { has } \widetilde{\mathbb{T}}_{d-1} \text { singularity at }[0: 0: 1] \\
(0,1,0,1) \text { if } C \text { has } \widetilde{\mathbb{K}}_{d-1} \text { singularity at }[0: 0: 1]
\end{array}\right.
$$

Remark 1.14. If C_{d} is a Płoski curve and P is its singular point, then it follows from Example 1.4 or from explicit computations that

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}>\frac{2 d-3}{d(d-2)}
$$

provided that $d \geqslant 5$. This shows that Theorems 1.11 and 1.13 gives completely different answers to Question 1.6.

The proof of Theorem 1.13 implies one result that is interesting on its own. To describe it, let me identify the curve C_{d} with a point in the space $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$ that parameterizes all (not necessarily reduced) plane curves of degree d. Since the group $\mathrm{PGL}_{3}(\mathbb{C})$ acts on $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$, it is natural to ask whether C_{d} is GIT-stable (resp., GIT-semistable) for this action or not. This question arises in many different problems (see, for example, [16], [14] and [20]). For small d, its answer is classical and immediately follows from the Hilbert-Mumford criterion (see, for example, [22, Chapter 2.1], [14, Proposition 10.4] or [16, Lemma 2.1]).

Example 1.15 ([22, Chapter 4.2]). If $d=3$, then C_{3} is GIT-stable (resp., GIT-semistable) if and only if C_{3} is smooth (resp., has at most \mathbb{A}_{1} singularities). If $d=4$, then C_{4} is GIT-stable (resp., GIT-semistable) if and only if C_{4} has at most \mathbb{A}_{1} and \mathbb{A}_{2} singularities (resp., it has at most singular double points and C_{4} is not a union of a cubic with an inflectional tangent line).

Paul Hacking, Hosung Kim and Yongnam Lee noticed that the \log canonical threshold $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)$ and GIT-stability of the curve C_{d} are closely related (cf. [10, Theorem 1.1]). In particular, they proved

Theorem 1.16 ([14, Propositions 10.2 and 10.4], [16, Theorem 2.3]). If $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{3}{d}$, then the curve C_{d} is GIT-semistable. If $d \geqslant 4$ and $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)>\frac{3}{d}$, then the curve C_{d} is GIT-stable.

This gives a sufficient condition for the curve C_{d} to be GIT-stable (resp, GIT-semistable). However, this condition is not a necessary condition. Let me give two examples that illustrate this.

Example 1.17 ([31, p. 268], [14, Example 10.5]). Suppose that $d=5$, the quintic curve C_{5} is given by

$$
x^{5}+\left(y^{2}-x z\right)^{2}\left(\frac{x}{4}+y+z\right)=x^{2}\left(y^{2}-x z\right)(x+2 y)
$$

and $P=[0: 0: 1]$. Then C_{5} is irreducible and has singularity \mathbb{A}_{12} at the point P. In particular, it is rational. Furthermore, it is well-known that the curve C_{5} is GIT-stable (see, for example, [22, Chapter 4.2]). On the other hand, it follows from Example 1.4 that

$$
\operatorname{lct}\left(\mathbb{P}^{2}, C_{5}\right)=\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{5}\right)=\frac{1}{2}+\frac{1}{13}=\frac{15}{26}<\frac{3}{5} .
$$

Example 1.18. Suppose that C_{d} is a Płoski curve. Let P be its singular point, and let L be a general line in \mathbb{P}^{2}. Then

$$
\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}+L\right)=\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}<\frac{3}{d}
$$

by Remark 1.14. If d is even, then C_{d} is GIT-semistable, and $C_{d}+L$ is GIT-stable. This follows from the Hilbert-Mumford criterion. Similarly, if d is odd, then C_{d} is GIT-unstable, and $C_{d}+L$ is GIT-semistable.

If $m_{P}>\frac{2 d}{3}$, then C_{d} is GIT-unstable by the Hilbert-Mumford criterion. In particular, if $d \geqslant 4$ and $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{2 d-3}{d(d-2)}$, then C_{d} is GIT-unstable by Theorem 1.13 unless C_{4} is a Płoski quartic curve. Arguing as in the proof of Theorem 1.13, this necessary condition can be considerably improved. In fact, I will give a combined proof of Theorem 1.13 and
Theorem 1.19. If $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)<\frac{5}{2 d}$, then C_{d} is GIT-unstable. Moreover, if $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{5}{2 d}$, then C_{d} is not GIT-stable. Furthermore, if $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}$, then C_{d} is GIT-semistable if and only if C_{d} is an even Płoski curve.

Example 1.18 shows that this result is sharp. Now let me consider one application of Theorem 1.13. To describe it, I need
Definition 1.20 ([30, Appendix A], [5, Definition 1.20]). For a given smooth variety V equipped with an ample \mathbb{Q}-divisor H_{V}, let $\alpha_{V}^{H_{V}}: V \rightarrow \mathbb{R}_{\geqslant 0}$ be a function defined as

$$
\alpha_{V}^{H_{V}}(O)=\sup \left\{\lambda \in \mathbb{Q} \left\lvert\, \begin{array}{l}
\text { the pair }\left(V, \lambda D_{V}\right) \text { is } \log \text { canonical at } O \\
\text { for every effective } \mathbb{Q} \text {-divisor } D_{V} \sim_{\mathbb{Q}} H_{V}
\end{array}\right.\right\} .
$$

Denote its infimum by $\alpha\left(V, H_{V}\right)$.
Let S_{d} be a smooth surface in \mathbb{P}^{3} of degree $d \geqslant 3$, let $H_{S_{d}}$ be its hyperplane section, let O be a point in S_{d}, and let T_{O} be the hyperplane section of S_{d} that is singular at O. Similar to $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$), I can define

$$
\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the log pair }\left(S_{d}, \lambda T_{O}\right) \text { is } \log \text { canonical at } O\right\} .
$$

Then $\alpha_{S_{d}}^{H_{S_{d}}}(O) \leqslant \operatorname{lct}_{O}\left(S_{d}, T_{O}\right)$ and T_{O} is reduced. In this paper I prove
Theorem 1.21. If $\alpha_{S_{d}}^{H_{S_{d}}}(O)<\frac{2 d-3}{d(d-2)}$, then

$$
\alpha_{S_{d}}^{H_{S_{d}}}(O)=\operatorname{lct}_{O}\left(S_{d}, T_{O}\right) \in\left\{\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}\right\} .
$$

Corollary 1.22. If $\alpha\left(S_{d}, H_{S_{d}}\right)<\frac{2 d-3}{d(d-2)}$, then

$$
\alpha\left(S_{d}, H_{S_{d}}\right)=\inf _{O \in S_{d}}\left\{\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)\right\} \in\left\{\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}\right\} .
$$

Corollary 1.23 ([5, Corollary 1.24]). Suppose that $d=3$. Then $\alpha_{S_{3}}^{H_{S_{3}}}(O)=\operatorname{lct} O\left(S_{3}, T_{O}\right)$.

By [28, Theorem 2.1], this corollary implies that every smooth cubic surface in \mathbb{P}^{3} without Eckardt points admits a Kähler-Einstein metric. In [29], Tian proved that all smooth cubic surfaces are Kähler-Einstein (see also [26] and [7). This follows from his
Theorem 1.24 ([29, Main Theorem]). Smooth del Pezzo surface is Kähler-Einstein if and only if its automorphism group is reductive.

It should be pointed out that I cannot drop the condition $\alpha_{S_{d}}^{{ }_{S_{S}}}(O)<\frac{2 d-3}{d(d-2)}$ in Theorem 1.21 for $d \geqslant 4$. For $d=4$, this follows from
Example 1.25. Suppose that $d=4$. Let S_{4} be a quartic surface in \mathbb{P}^{3} that is given by

$$
t^{3} x+t^{2} y z+x y z(y+z)=0
$$

and let O be the point $[0: 0: 0: 1]$. Then S_{4} is smooth, and T_{O} has singularity \mathbb{A}_{1} at O, which implies that $\operatorname{lct}_{O}\left(S_{4}, T_{O}\right)=1$. Let L_{y} be the line $x=y=0$, let L_{z} be the line $x=z=0$, and let C_{2} be the conic $y+z=x t+y z=0$. Then L_{y}, L_{z} and C_{2} are contained in S_{4}, and $O=L_{y} \cap L_{z} \cap C_{2}$. Moreover,

$$
L_{y}+L_{z}+\frac{1}{2} C_{2} \sim 2 H_{S_{4}},
$$

because the divisor $2 L_{y}+2 L_{z}+C_{2}$ is cut out on S_{4} by $t x+y z=0$. Furthermore, the log pair $\left(S_{4}, L_{y}+L_{z}+\frac{1}{2} C_{2}\right)$ is not log canonical at O. Thus, $\alpha_{S_{4}}^{H_{S_{4}}}(O)<1$.

For $d \geqslant 5$, this follows from
Example 1.26. Suppose that $d \geqslant 5$ and T_{O} has \mathbb{A}_{1} singularity at O. Then $\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)=1$. Let $f: \tilde{S}_{d} \rightarrow S_{d}$ be a blow up of the point O. Denote by E its exceptional curve. Then

$$
\left(f^{*}\left(H_{S_{d}}\right)-\frac{11}{5} E\right)^{2}=5-\frac{121}{25}>0
$$

Hence, it follows from Riemann-Roch theorem there is an integer $n \geqslant 1$ such that the linear system $\left|f^{*}\left(5 n H_{S_{d}}\right)-11 n E\right|$ is not empty. Pick a divisor \tilde{D} in this linear system, and denote by D its image on S_{d}. Then $\left(S_{d}, \frac{1}{5 n} D\right)$ is not \log canonical at P, since $\operatorname{mult}_{P}(D) \geqslant 11 n$. On the other hand, $\frac{1}{5 n} D \sim_{\mathbb{Q}} H_{S_{d}}$ by construction. Hence, $\alpha_{S_{d}}^{H_{d}}(O)<1$.

Cool and Coppens called the point O a star point in the case when T_{O} is a union of d lines that pass through O (see [8, Definition 2.2]). Theorems 1.13 and 1.21 imply
Corollary 1.27. If O is a star point on S_{d}, then $\alpha_{S_{d}}^{{ }_{S_{d}}}(O)=\frac{2}{d}$. Otherwise $\alpha_{S_{d}}^{{ }_{S_{S}}}(O) \geqslant \frac{2 d-3}{(d-1)^{2}}$.
This work was was carried out during my stay at the Max Planck Institute for Mathematics in Bonn in 2014. I would like to thank the institute for the hospitality and very good working condition. I would like to thank Michael Wemyss for checking the singularities of the curve C_{5} in Example 1.17, I would like to thank Alexandru Dimca, Yongnam Lee, Jihun Park, Hendrick Süß and Mikhail Zaidenberg for very useful comments.

2. Preliminaries

In this section, I consider results that will be used in the proof of Theorems 1.13 and 1.21 . Let S be a smooth surface, let D be an effective non-zero \mathbb{Q}-divisor on the surface S, and let P be a point in the surface S. Put $D=\sum_{i=1}^{r} a_{i} C_{i}$, where each C_{i} is an irreducible curve on S, and each a_{i} is a non-negative rational number. Let me start recall
Definition 2.1 ([18, Definition 3.5], 9, §6]). Let $\pi: \tilde{S} \rightarrow S$ be a birational morphism such that \tilde{S} is smooth. Then π is a composition of blow ups of smooth points. For each C_{i}, denote by \tilde{C}_{i} its proper transform on the surface \tilde{S}. Let F_{1}, \ldots, F_{n} be π-exceptional curves. Then

$$
K_{\tilde{S}}+\sum_{i=1}^{r} a_{i} \tilde{C}_{i}+\sum_{j=1}^{n} b_{j} F_{j} \sim_{\mathbb{Q}} \pi^{*}\left(K_{S}+D\right)
$$

for some rational numbers b_{1}, \ldots, b_{n}. Suppose, in addition, that $\sum_{i=1}^{r} \tilde{C}_{i}+\sum_{j=1}^{n} F_{j}$ is a divisor with simple normal crossing at every point of $\cup_{j=1}^{n} F_{j}$. Then the \log pair (S, D) is said to be \log canonical at P if and only if the following two conditions are satisfied:

- $a_{i} \leqslant 1$ for every C_{i} such that $P \in C_{i}$,
- $b_{j} \leqslant 1$ for every F_{j} such that $\pi\left(F_{j}\right)=P$.

Similarly, the log pair (S, D) is said to be Kawamata \log terminal at P if and only if $a_{i}<1$ for every C_{i} such that $P \in C_{i}$, and $b_{j}<1$ for every F_{j} such that $\pi\left(F_{j}\right)=P$.

Using just this definition, one can easily prove
Lemma 2.2. Suppose that $r=3, P \in C_{1} \cap C_{2} \cap C_{3}$, the curves C_{1}, C_{2} and C_{3} are smooth at P, $a_{1}<1, a_{2}<1$ and $a_{3}<1$. Moreover, suppose that both curves C_{1} and C_{2} intersect the curve C_{3} transversally at P. Furthermore, suppose that (S, D) is not Kawamata log terminal at P. Put $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$. Then $k\left(a_{1}+a_{2}\right)+a_{3} \geqslant k+1$.

Proof. Put $S_{0}=S$ and consider a sequence of blow ups

where each π_{j} is the blow up of the intersection point of the proper transforms of the curves C_{1} and C_{2} on the surface S_{j-1} that dominates P (such point exists, since $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$). For each π_{j}, denote by E_{j}^{k} the proper transform of its exceptional curve on S_{k}. For each C_{i}, denote by C_{i}^{k} its proper transform on the surface S_{k}. Then

$$
K_{S_{k}}+\sum_{i=1}^{n} a_{i} C_{i}^{k}+\sum_{j=1}^{k}\left(j\left(a_{1}+a_{2}\right)+a_{3}-j\right) E_{j}^{k} \sim_{\mathbb{Q}}\left(\pi_{1} \circ \pi_{2} \circ \cdots \circ \pi_{k}\right)^{*}\left(K_{S}+D\right),
$$

and $\sum_{i=1}^{n} C_{i}^{k}+\sum_{j=1}^{k} E_{j}$ is a simple normal crossing divisor in every point of $\sum_{j=1}^{k} E_{j}$. Thus, it follows from Definition [2.1] that there exists $l \in\{1, \ldots, k\}$ such that $l\left(a_{1}+a_{2}\right)+a_{3} \geqslant l+1$, because (S, D) is not Kawamata \log terminal at P. If $l=k$, then I am done. So, I may assume that $l<k$. If $k\left(a_{1}+a_{2}\right)+a_{3}<k+1$, then $a_{1}+a_{2}<1+\frac{1}{k}-a_{3} \frac{1}{k}$, which implies that
$l+1 \leqslant l\left(a_{1}+a_{2}\right)+a_{3}<\left(l+\frac{l}{k}-a_{3} \frac{l}{k}\right)+a_{3}=l+\frac{l}{k}+a_{3}\left(1-\frac{l}{k}\right) \leqslant l+\frac{l}{k}+\left(1-\frac{l}{k}\right)=l+1$,
because $a_{3}<1$. Thus, $k\left(a_{1}+a_{2}\right)+a_{3} \geqslant k+1$.
Corollary 2.3. Suppose that $r=2, P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at P, $a_{1}<1$ and $a_{2}<1$. Put $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$. If (S, D) is not Kawamata \log terminal at P, then $k\left(a_{1}+a_{2}\right) \geqslant k+1$.

The \log pair (S, D) is called \log canonical if it is \log canonical at every point of S. Similarly, the log pair (S, D) is called Kawamata log terminal if it is Kawamata log terminal at every point of S.

Remark 2.4. Let R be any effective \mathbb{Q}-divisor on S such that $R \sim_{\mathbb{Q}} D$ and $R \neq D$. Put $D_{\epsilon}=(1+\epsilon) D-\epsilon R$ for some rational number ϵ. Then $D_{\epsilon} \sim_{\mathbb{Q}} D$. Since $R \neq D$, there exists the greatest rational number ϵ_{0} such that the divisor $D_{\epsilon_{0}}$ is effective. Then $\operatorname{Supp}\left(D_{\epsilon_{0}}\right)$ does not contain at least one irreducible component of $\operatorname{Supp}(R)$. Moreover, if (S, D) is not \log canonical at P, and (S, R) is \log canonical at P, then $\left(S, D_{\epsilon_{0}}\right)$ is not \log canonical at P by Definition 2.1, because

$$
D=\frac{1}{1+\epsilon_{0}} D_{\epsilon_{0}}+\frac{\epsilon_{0}}{1+\epsilon_{0}} R
$$

and $\frac{1}{1+\epsilon_{0}}+\frac{\epsilon_{0}}{1+\epsilon_{0}}=1$. Similarly, if the \log pair (S, D) is not Kawamata \log terminal at P, and (S, R) is Kawamata \log terminal at P, then $\left(S, D_{\epsilon_{0}}\right)$ is not Kawamata log terminal at P.

The following result is well-known and is very easy to prove.

Lemma 2.5 ([9, Exercise 6.18]). If (S, D) is not \log canonical at P, then $\operatorname{mult}_{P}(D)>1$.
Combining with
Lemma 2.6 ([24], 9, Lemma 5.36]). Suppose that S is a smooth surface in \mathbb{P}^{3}, and $D \sim_{\mathbb{Q}} H_{S}$, where H_{S} is a hyperplane section of S. Then each a_{i} does not exceed 1 .

Lemma 2.5 gives
Corollary 2.7. Suppose that S is a smooth surface in \mathbb{P}^{3}, and $D \sim_{\mathbb{Q}} H_{S}$, where H_{S} is a hyperplane section of S. Then (S, D) is \log canonical outside of finitely many points.

The following result is a special case of Shokurov's connectedness principle (see, for example, 9, Theorem 6.3.2]).

Lemma 2.8 ([27, Theorem 6.9]). If $-\left(K_{S}+D\right)$ is big and nef, then the locus where (S, D) is not Kawamata log terminal is connected.
Corollary 2.9. Let C_{d} be a reduced curve in \mathbb{P}^{2} of degree d, let O and Q be two points in C_{d} such that $O \neq Q$. If $\operatorname{lct}_{O}\left(\mathbb{P}^{2}, C_{d}\right)<\frac{3}{d}$, then $\operatorname{lct}_{Q}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{3}{d}$.

Let $\pi_{1}: S_{1} \rightarrow S$ be a blow up of the point P, and let E_{1} be the π_{1}-exceptional curve. Denote by D^{1} the proper transform of the divisor D on the surface S_{1} via π_{1}. Then

$$
K_{S_{1}}+D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1} \sim_{\mathbb{Q}} \pi_{1}^{*}\left(K_{S}+D\right)
$$

Corollary 2.10. If $\operatorname{mult}_{P}(D)>2$, then (S, D) is not \log canonical at P. If mult $P_{P}(D) \geqslant 2$, then (S, D) is not Kawamata log terminal at P.

The log pair $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is called the log pull back of the \log pair (S, D).
Remark 2.11. The \log pair (S, D) is \log canonical at P if and only if $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is \log canonical at every point of the curve E_{1}. Similarly, the \log pair (S, D) is Kawamata \log terminal at P if and only if $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is Kawamata \log terminal at every point of the curve E_{1}.

Let Z be an irreducible curve on S that contains P. Suppose that Z is smooth at P, and Z is not contained in $\operatorname{Supp}(D)$. Let μ be a non-negative rational number. The following result is a very special case of a much more general result known as Inversion of Adjunction (see, for example, [27, § 3.4] or [9, Theorem 6.29]).

Theorem 2.12 ([27, Corollary 3.12], [9, Exercise 6.31], [3, Theorem 7]). Suppose that the log pair $(S, \mu Z+D)$ is not \log canonical at P and $\mu \leqslant 1$. Then $\operatorname{mult}_{P}(D \cdot Z)>1$.

This result implies
Theorem 2.13. Suppose that $(S, \mu Z+D)$ is not Kawamata log terminal at P, and $(S, \mu Z+D)$ is Kawamata \log terminal in a punctured neighborhood of the point P. Then $\operatorname{mult}_{P}(D \cdot Z)>1$.

Proof. Since $(S, \mu Z+D)$ is Kawamata log terminal in a punctured neighborhood of the point P, I have $\mu<1$. Then $(S, Z+D)$ is not \log canonical at P, because $(S, \mu Z+D)$ is not Kawamata \log terminal at P. Then $\operatorname{mult}_{P}(D \cdot Z)>1$ by Theorem 2.12,

Theorems 2.12 and 2.13 imply
Lemma 2.14. If (S, D) is not \log canonical at P and $\operatorname{mult}_{P}(D) \leqslant 2$, then there exists a unique point in E_{1} such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not \log canonical at it. Similarly, if (S, D) is not Kawamata \log terminal at P, $\operatorname{mult}_{P}(D)<2$, and (S, D) is Kawamata \log terminal in a punctured neighborhood of the point P, then there exists a unique point in E_{1} such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not Kawamata \log terminal at it.

Proof. If $\operatorname{mult}_{P}(D) \leqslant 2$ and $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not \log canonical at two distinct points P_{1} and \tilde{P}_{1}, then

$$
2 \geqslant \operatorname{mult}_{P}(D)=D^{1} \cdot E_{1} \geqslant \operatorname{mult}_{P_{1}}\left(D^{1} \cdot E_{1}\right)+\operatorname{mult}_{\tilde{P}_{1}}\left(D^{1} \cdot E_{1}\right)>2
$$

by Theorem [2.12, By Remark [2.11, this proves the first assertion. Similarly, I can prove the second assertion using Theorem 2.13 instead of Theorem 2.12,

The following result can be proved similarly to the proof of Lemma 2.5, Let me show how to prove it using Theorem 2.13,

Lemma 2.15. Suppose that (S, D) is not Kawamata \log terminal at P, and (S, D) is Kawamata \log terminal in a punctured neighborhood of the point P, then $\operatorname{mult}_{P}(D)>1$.
Proof. By Remark 2.11, the \log pair $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not Kawamata log terminal at some point $P_{1} \in E_{1}$. Moreover, if $\operatorname{mult}_{P}(D)<2$, then $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is Kawamata \log terminal at a punctured neighborhood of the point P_{1}. Thus, if mult ${ }_{P}(D) \leqslant 1$, then $\operatorname{mult}_{P}(D)=D^{1} \cdot E_{1}>1$ by Theorem [2.13, which is absurd.

Let Z_{1} and Z_{2} be two irreducible curves on the surface S such that Z_{1} and Z_{2} are not contained in $\operatorname{Supp}(D)$. Suppose that $P \in Z_{1} \cap Z_{2}$, the curves Z_{1} and Z_{2} are smooth at P, the curves Z_{1} and Z_{2} intersect each other transversally at P. Let μ_{1} and μ_{2} be non-negative rational numbers. A crucial role in the proofs of Theorems 1.13 and 1.21 is played by

Theorem 2.16 (3, Theorem 13]). Suppose that the \log pair $\left(S, \mu_{1} Z_{1}+\mu_{2} Z_{2}+D\right)$ is not \log canonical at the point P, and $\operatorname{mult}_{P}(D) \leqslant 1$. Then either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right)>2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right)>2\left(1-\mu_{1}\right)$ (or both).

This result implies
Theorem 2.17. Suppose that $\left(S, \mu_{1} Z_{1}+\mu_{2} Z_{2}+D\right)$ is not Kawamata log terminal at P, and $\operatorname{mult}_{P}(D)<1$. Then either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right) \geqslant 2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right) \geqslant 2\left(1-\mu_{1}\right)$ (or both). Proof. Let λ be a rational number such that $\frac{1}{\text { mult }_{P}(D)} \geqslant \lambda>1$. Then $\left(S, D+\lambda \mu_{1} Z_{1}+\lambda \mu_{2} Z_{2}\right)$ is not \log canonical at P. Now it follows from Theorem[2.16] that either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right)>2\left(1-\lambda \mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right)>2\left(1-\lambda \mu_{1}\right)$ (or both). Since I can choose λ to be as close to 1 as I wish, this implies that either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right) \geqslant 2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right) \geqslant 2\left(1-\mu_{1}\right)$ (or both).

3. Reduced plane curves

The purpose of this section is to prove Theorems 1.13 and 1.19, Let C_{d} be a reduced plane curve in \mathbb{P}^{2} of degree $d \geqslant 4$, and let P be a point in C_{d}. Put $m_{0}=\operatorname{mult}_{P}\left(C_{d}\right)$.

Lemma 3.1. One has

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\left\{\begin{array}{l}
\frac{1}{2 d} \text { if } m_{0}=d, \\
\frac{2 d-3}{(d-1)^{2}} \text { if } C_{d} \text { has } \mathbb{T}_{d-1} \text { singularity at } P, \\
\frac{2 d-1}{d(d-1)} \text { if } C_{d} \text { has } \mathbb{K}_{d-1} \text { singularity at } P, \\
\frac{2 d-5}{d^{2}-3 d+1} \text { if } C_{d} \text { has } \widetilde{\mathbb{T}}_{d-1} \text { singularity at } P, \\
\frac{2 d-3}{d(d-2)} \text { if } C \text { has } \widetilde{\mathbb{K}}_{d-1} \text { singularity at } P .
\end{array}\right.
$$

Proof. The required assertion follows either from [18, Lemma 8.10] or from Example 1.4, Alternatively, one can easily prove it directly using only Definition [2.1. This is a good exercise.

Put $\lambda_{1}=\frac{2 d-3}{d(d-2)}$ and $\lambda_{2}=\frac{5}{2 d}$. By Lemma 3.1, to prove Theorem 1.13, I have to show that if the log pair $\left(\mathbb{P}^{2}, \lambda_{1} C_{d}\right)$ is not Kawamata log terminal, then one of the following assertions hold:

- $m_{0}=d$,
- C_{d} has singularity $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$ at the point P,
- $d=4$ and C_{4} is a Płoski curve (see Definition 1.9).

To prove Theorem 1.19, I have to show that if $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ is not Kawamata log terminal, then either C_{d} is GIT-unstable or C_{d} is an even Płoski curve, which is GIT-semistable (see Example (1.18). In the rest of the section, I will do this simultaneously. Let me start with

Lemma 3.2. The following inequalities hold:
(i) $\lambda_{1}<\frac{2}{d-1}$,
(ii) $\lambda_{1}<\frac{2 k+1}{k d}$ for every positive integer $k \leqslant d-3$,
(iii) if $d \geqslant 5$, then $\lambda_{1}<\frac{2 k+1}{k d+1}$ for every positive integer $k \leqslant d-4$,
(iv) $\lambda_{1}<\frac{3}{d}$,
(v) $\lambda_{1}<\frac{2}{d-2}$,
(vi) $\lambda_{1}<\frac{6}{3 d-4}$,
(vii) if $d \geqslant 5$, then $\lambda_{1}<\lambda_{2}$.

Proof. The equality $\frac{2}{d-1}=\lambda_{1}+\frac{d-3}{d(d-1)(d-2)}$ implies (i). Let k be positive integer. If $k=d-2$, then $\lambda_{1}=\frac{2 k+1}{k d}$. This implies (ii), because $\frac{2 k+1}{k d}=\frac{2}{d}+\frac{1}{k d}$ is a decreasing function on k for $k \geqslant 1$. Similarly, if $k=d-4$ and $d \geqslant 4$, then $\lambda_{1}=\frac{2 k+1}{k d+1}-\frac{3}{d(d-2)\left(d^{2}-4 d+1\right)}<\frac{2 k+1}{k d+1}$. This implies (iii), since $\frac{2 k+1}{k d+1}=\frac{2}{d}+\frac{d-2}{d(k d+1)}$ is a decreasing function on k for $k \geqslant 1$. The equality $\lambda_{1}=\frac{3}{d}-\frac{d-3}{d(d-2)}$ proves (iv). Note that (v) follows from (i). Since $\frac{6}{3 d-4}>\frac{2}{d-1}$, (vi) also follows from (i). Finally, the equality $\lambda_{1}=\lambda_{2}-\frac{d-4}{2 d(d-2)}$ implies (vii).

I may assume that $P=[0: 0: 1]$. Then C_{d} is given by $F_{d}(x, y, z)=0$, where $F_{d}(x, y, z)$ is a homogeneous polynomial of degree d. Put $x_{1}=\frac{x}{z}, x_{2}=\frac{y}{z}$ and $f_{d}\left(x_{1}, x_{2}\right)=F_{d}\left(x_{1}, x_{2}, 1\right)$. Then

$$
f_{d}\left(x_{1}, x_{2}\right)=\sum_{\substack{i \geqslant 0, j \geqslant 0, m_{0} \leqslant i+j \leqslant d}} \epsilon_{i j} x_{1}^{i} x_{2}^{j},
$$

where each $\epsilon_{i j}$ is a complex number. For every positive integers a and b, define the weight of the polynomial $f_{d}\left(x_{1}, x_{2}\right)$ as

$$
\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=\min \left\{a i+b j \mid \epsilon_{i j} \neq 0\right\} .
$$

So, that $\operatorname{wt}_{(1,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=m_{0}$. Then the Hilbert-Mumford criterion implies
Lemma 3.3 ([16, Lemma 2.1]). Let a and b be positive integers. If C_{d} is GIT-stable, then

$$
\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)<\frac{d}{3}(a+b) .
$$

Similarly, if C_{d} is GIT-semistable, then $\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right) \leqslant \frac{d}{3}(a+b)$.
This result can be used to give a sufficient condition for the curve C_{d} to be GIT-stabile (resp., GIT-semistabile) (for details, see [14, Proposition 10.4] and the proof of [16, Theorem 2.3]).
Corollary 3.4. If $m_{0}>\frac{2 d}{3}$, then C_{d} is GIT-unstable.
Hence, to prove Theorem 1.13 and 1.19, I may assume that C_{d} is not a union of d lines passing through the point P. Suppose that
(A) either $\left(\mathbb{P}^{2}, \lambda_{1} C_{d}\right)$ is not Kawamata log terminal,
(B) or $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ is not Kawamata log terminal and C_{d} is GIT-semistable.

I will show that (\mathbf{A}) implies that either C_{d} has singularity $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$ at the point P, or C_{d} is a Płoski quartic curve. I will also show that (\mathbf{B}) implies that C_{d} is an even Płoski curve. If (A) holds, let $\lambda=\lambda_{1}$. If (B) holds, let $\lambda=\lambda_{2}$.

Remark 3.5. If $d=4$, then $\lambda_{1}=\lambda_{2}$. If $d \geqslant 5$, then $\lambda_{1}<\lambda_{2}$ by Lemma 3.2(vii). Since C_{d} is reduced and $\lambda<1$, the \log pair $\left(\mathbb{P}^{2}, \lambda C_{d}\right)$ is Kawamata \log terminal outside of finitely many points. Thus, it is Kawamata log terminal outside of P by Lemma 2.8,

Let $f_{1}: S_{1} \rightarrow \mathbb{P}^{2}$ be a blow up of the point P, and let E_{1} be its exceptional curve. Denote by C_{d}^{1} the proper transform on S_{1} of the curve C_{d}. Put $m_{0}=\operatorname{mult}_{P}\left(C_{d}\right)$. Then

$$
K_{S_{1}}+\lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1} \sim_{\mathbb{Q}} f_{1}^{*}\left(K_{\mathbb{P}^{2}}+\lambda C_{d}\right)
$$

By Remark 2.11, the log pair $\left(S_{1}, \lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is not Kawamata log terminal at some point $P_{1} \in E_{1}$.

Lemma 3.6. One has $\lambda m_{0}<2$.
Proof. Since C_{d} is not a union of d lines passing through P, I have $m_{0} \leqslant d-1$. By Lemma 3.2(i), (A) implies $\lambda m_{0}<2$, because $d \geqslant 4$. Similarly, it follows from (B) that $m_{0} \leqslant \frac{2 d}{3}$ by Lemma 3.4, which implies that $\lambda m_{0} \leqslant \frac{10}{6}<2$.

Thus, the \log pair $\left(S_{1}, \lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is Kawamata \log terminal outside of P_{1} by Lemma 2.14, Put $m_{1}=\operatorname{mult}_{P_{1}}\left(C_{d}^{1}\right)$.

Lemma 3.7. One has $m_{0}+m_{1}>\frac{2}{\lambda}$ and $m_{1} \geqslant 1$.
Proof. The inequality $m_{0}+m_{1}>\frac{2}{\lambda}$ follows from Lemma 2.15. The inequality $m_{1} \geqslant 1$ is obvious. Indeed, if $m_{1}=0$, then $\left(S_{1},\left(\lambda m_{0}-1\right) E_{1}\right)$ is not Kawamata log terminal at P_{1}, which contradicts Lemma 3.6.

Let L be the line in \mathbb{P}^{2} whose proper transform on S_{1} contains the point P_{1}. Such a line exists and it is unique. By a suitable change of coordinates, I may assume that L is given by $x=0$.
Lemma 3.8. Suppose that C_{d} is GIT-semistable. Then $m_{0}+m_{1} \leqslant d$.
Proof. Note that $\operatorname{wt}_{(1,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=m_{0}$. For every $(a, b) \in \mathbb{N}^{2}$ different from $(1,1)$, the number $\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)$ depends on the choice of (global) coordinates (x, y, z). For instance, $\operatorname{wt}_{(1,2)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)$ is a sum of m_{0} and the multiplicity of the curve C_{d}^{1} at the point in E_{1} that is cut out by the proper transform of the line given by $y=0$. Similarly, $\mathrm{wt}_{(2,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)$ is a sum of m_{0} and the multiplicity of the curve C_{d}^{1} at the point in E_{1} that is cut out by the proper transform of the line given by $x=0$. Since I assumed that L is given by $x=0$, I have

$$
\mathrm{wt}_{(2,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=m_{0}+m_{1} .
$$

Thus, $m_{0}+m_{1} \leqslant d$ by Lemma 3.3, because C_{d} is GIT-semistable by assumption.
Denote by L^{1} the proper transform of the line L on the surface S_{1}.
Lemma 3.9. Suppose (A) and $m_{0}=d-1$. Then C_{d} has singularity $\mathbb{K}_{d-1}, \widetilde{\mathbb{K}}_{d-1}, \mathbb{T}_{d-1}$ or $\widetilde{\mathbb{T}}_{d-1}$ at the point P.

Proof. I have $\lambda=\lambda_{1}$. Let me prove that

- if L is not an irreducible component of the curve C_{d}, then either C_{d} has singularity \mathbb{K}_{d-1} at P, or C_{d} has singularity $\widetilde{\mathbb{K}}_{d-1}$ at P,
- if L is an irreducible component of the curve C_{d}, then either C_{d} has singularity \mathbb{T}_{d-1} at P, or C_{d} has singularity \widetilde{T}_{d-1} at P.

Suppose that L is not an irreducible component of the curve C_{d}. Then $m_{0}+m_{1} \leqslant d$, because

$$
d-1-m_{0}=C_{d}^{1} \cdot L^{1} \geqslant m_{1} .
$$

Since $m_{0}=d-1$, this gives $m_{1}=1$, because $m_{1} \neq 0$ by Lemma 3.7. Then $P_{1} \in C_{d-1}^{1}$ and the curve C_{d-1}^{1} is smooth at P_{1}. Put $k=$ mult $_{P_{1}}\left(C_{d}^{1} \cdot E_{1}\right)$. Applying Corollary 2.3 to the \log pair $\left(S_{1}, \lambda_{1} C_{d}^{1}+\left(\lambda_{1} m_{0}-1\right) E_{1}\right)$ at the point P_{1}, I get

$$
k \lambda_{1} m_{0} \geqslant k+1,
$$

which gives $\lambda_{1} \geqslant \frac{2 k+1}{k d}$. Then $k \geqslant d-2$ by Lemma 3.2(ii). Since

$$
k \leqslant C_{d}^{1} \cdot E_{1}=m_{0}=d-1,
$$

either $k=d-1$ or $k=d-2$. If $k=d-1$, then C_{d} has singularity \mathbb{K}_{d-1} at P. If $k=d-2$, then C_{d} has singularity $\widetilde{\mathbb{K}}_{d-1}$ at the point P.

Thus, to complete the proof, I may assume that L is an irreducible component of the curve C_{d}. Then $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right)$ and $n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$. Then $n_{0}=m_{0}-1=d-2$ and $n_{1}=m_{1}-1$. Note that the log pair $\left(S_{1}, \lambda_{1} L^{1}+\left(\lambda_{1} m_{0}-1\right) E_{1}\right)$ is Kawamata \log terminal at P by Lemma 3.6. This implies that $P_{1} \in C_{d-1}^{1}$. Hence, $n_{1} \geqslant 1$. One the other hand, I have

$$
d-1-n_{0}=C_{d-1}^{1} \cdot L^{1} \geqslant n_{1},
$$

which implies that $n_{0}+n_{1} \leqslant d-1$. Then $n_{1}=1$, since $n_{0}=d-2$ and $n_{1} \neq 1$.
I have $P_{1} \in C_{d-1}^{1}$ and C_{d-1}^{1} is smooth at P_{1}. Moreover, since

$$
1=d-1-n_{0}=L^{1} \cdot C_{d-1}^{1} \geqslant n_{1}=1,
$$

the curve C_{d-1}^{1} intersects the curve L^{1} transversally at the point P_{1}. Put $k=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1} \cdot E_{1}\right)$. Then $k \geqslant 1$. Applying Lemma 2.2 to the log pair $\left(S_{1}, \lambda_{1} C_{d-1}^{1}+\lambda_{1} L^{1}+\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}\right)$ at the point P_{1}, I get

$$
k\left(\lambda_{1}\left(n_{0}+2\right)-1\right)+\lambda_{1} \geqslant k+1
$$

Then $\lambda_{1} \geqslant \frac{2 k+1}{k d+1}$. Then $k \geqslant d-3$ by Lemma 3.2(iii). Since

$$
k \leqslant E_{1} \cdot C_{d-1}^{1}=n_{0}=d-2,
$$

either $k=d-2$ or $k=d-3$. In the former case, P must be a singular point of type \mathbb{T}_{d-1}. In the latter case, P must be a singular point of type $\widetilde{\mathbb{T}}_{d-1}$.

By Corollary 3.4 and Lemma 3.9, I may assume that $m_{0} \leqslant d-2$ to complete the proof of Theorems 1.13 and 1.19 Let me show that (\mathbf{A}) implies that C_{d} is a Płoski quartic curve, and (B) implies that C_{d} is an even Płoski curve. In fact, to complete the proof of Theorems 1.13 and 1.19, it is enough to show that C_{d} is a Płoski curve (see Examples 1.18).

Lemma 3.10. Suppose (A). Then the line L is not an irreducible component of the curve C_{d}.
Proof. I have $\lambda=\lambda_{1}$. Suppose that L is an irreducible component of the curve C_{d}. Let me see for a contradiction. Put $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right)$ and $n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$. Then $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}+\lambda_{1} C_{d-1}^{1}\right)$ is not Kawamata \log terminal at P_{1} and is Kawamata \log terminal outside of the point P_{1}. In particular, $n_{1} \neq 0$, because $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}\right)$ is Kawamata log terminal at P_{1}. On the other hand,

$$
d-1-n_{0}=L^{1} \cdot C_{d-1}^{1} \geqslant n_{1},
$$

which implies that $n_{0}+n_{1} \leqslant d-1$. Furthermore, I have $n_{0}=m_{0}-1 \leqslant d-3$.

Since $n_{0}+n_{1} \geqslant 2 n_{1}$, I have $n_{1} \leqslant \frac{d-1}{2}$. Then $\lambda n_{1}<1$ by Lemma 3.2(i). Thus, I can apply Theorem 2.17 to the \log pair $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}+\lambda_{1} C_{d-1}^{1}\right)$ at the point P_{1}. This gives either

$$
\lambda_{1}\left(d-1-n_{0}\right)=\lambda_{1} C_{d-1}^{1} \cdot L^{1} \geqslant 2\left(2-\lambda_{1}\left(n_{0}+1\right)\right)
$$

or

$$
\lambda_{1} n_{0}=\lambda_{1} C_{d-1}^{1} \cdot E_{1} \geqslant 2\left(1-\lambda_{1}\right)
$$

(or both). In the former case, I have $\lambda_{1}\left(d+1+n_{0}\right) \geqslant 4$. In the latter case, I have $\lambda_{1}\left(n_{0}+2\right)>2$. This implies $\lambda_{1}(d-1) \geqslant 2$ in both cases, since $n_{0} \leqslant d-3$. But $\lambda_{1}(d-1)<2$ by Lemma[3.2(i).

Let $f_{2}: S_{2} \rightarrow S_{1}$ be a blow up of the point P_{1}, and let E_{2} be its exceptional curve. Denote by C_{d}^{2} the proper transform on S_{2} of the curve C_{d}, and denote by E_{1}^{2} the proper transform on S_{2} of the curve E_{1}. Then

$$
K_{S_{2}}+\lambda C_{d}^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2} \sim_{\mathbb{Q}} f_{2}^{*}\left(K_{S_{1}}+\lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right) .
$$

By Remark 2.11, the \log pair $\left(S_{2}, \lambda C_{d}^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not Kawamata \log terminal at some point $P_{2} \in E_{2}$. Moreover, it is Kawamata log terminal outside of the point P_{2} by Lemmas 2.14, since $\lambda\left(m_{0}+m_{1}\right)<3$ by

Lemma 3.11. One has $m_{0}+m_{1} \leqslant d$.
Proof. By Lemma 3.8, (B) implies $m_{0}+m_{1} \leqslant d$. If L is not an irreducible component of the curve C_{d}, then

$$
d-m_{0}=C_{d}^{1} \cdot L^{1} \geqslant m_{1} .
$$

Thus, the assertion follows from Lemma 3.10,
Put $m_{2}=\operatorname{mult}_{P_{2}}\left(C_{d}^{2}\right)$.
Lemma 3.12. One has $P_{2} \neq E_{1}^{2} \cap E_{2}$.
Proof. Suppose that $P_{2}=E_{1}^{2} \cap E_{2}$. Then

$$
m_{0}-m_{1}=E_{1}^{2} \cdot C_{d}^{2} \geqslant m_{2},
$$

which implies that $m_{2} \leqslant \frac{m_{0}}{2}$, since $2 m_{2} \leqslant m_{1}+m_{2}$. On the other hand, $m_{0} \leqslant d-2$ by assumption. Thus, I have $m_{2} \leqslant \frac{d-2}{2}$.

Suppose (A). Then $\lambda=\lambda_{1}$ and $\lambda_{1} m_{2}<1$ by Lemma 3.2(v). Thus, I can apply Theorem 2.17 to the log pair $\left(S_{2}, \lambda_{1} C_{d}^{2}+\left(\lambda_{1} m_{0}-1\right) E_{1}^{2}+\left(\lambda_{1}\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$. This gives either

$$
\lambda_{1}\left(m_{0}-m_{1}\right)=\lambda_{1} C_{d}^{2} \cdot E_{1}^{2} \geqslant 2\left(3-\lambda_{1}\left(m_{0}+m_{1}\right)\right)
$$

or

$$
\lambda_{1} m_{1}=\lambda_{1} C_{d}^{2} \cdot E_{2} \geqslant 2\left(2-\lambda_{1} m_{0}\right)
$$

(or both). The former inequality implies $\lambda_{1}\left(3 m_{0}+m_{1}\right) \geqslant 6$. The latter inequality implies $\lambda_{1}\left(2 m_{0}+m_{1}\right) \geqslant 4$. On the other hand, $m_{0}+m_{1} \leqslant d$ by Lemma 3.11, and $m_{0} \leqslant d-2$ by assumption. Thus, $3 m_{0}+m_{1} \leqslant 3 d-4$ and $2 m_{0}+m_{1} \leqslant 2 d-2$. Then $\lambda_{1}\left(3 m_{0}+m_{1}\right)<6$ by Lemma3.2(vi), and $\lambda_{1}\left(2 m_{0}+m_{1}\right)<4$ by Lemma3.2(i). The obtained contradiction shows (A) does not hold.

I see that (B) holds. Then $\lambda=\lambda_{2}$ and C_{d} is GIT-semistable by assumption. Moreover, arguing as in the proof of Lemma 3.8, I see that

$$
\mathrm{wt}_{(3,2)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=2 m_{0}+m_{1}+m_{2} .
$$

Thus, $2 m_{0}+m_{1}+m_{2} \leqslant \frac{5 d}{3}$ by Lemma 3.3, because C_{d} is GIT-semistable by (B).

Let $f_{3}: S_{3} \rightarrow S_{2}$ be a blow up of the point P_{2}, and let E_{3} be its exceptional curve. Denote by C_{d}^{3} the proper transform on S_{3} of the curve C_{d}, denote by E_{1}^{3} the proper transform on S_{3} of the curve E_{1}, and denote by E_{2}^{3} the proper transform on S_{3} of the curve E_{2}. Then

$$
\begin{aligned}
K_{S_{3}}+\lambda_{2} C_{d}^{3}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{3} & +\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3} \sim_{\mathbb{Q}} \\
& \sim_{\mathbb{Q}} f_{3}^{*}\left(K_{S_{2}}+\lambda_{2} C_{d}^{2}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{2}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}\right) .
\end{aligned}
$$

Moreover, $\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4<1$, since $2 m_{0}+m_{1}+m_{2}<\frac{5 d}{3}$. By Remark 2.11, the \log pair $\left(S_{3}, \lambda_{2} C_{d}^{3}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{3}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}\right)$ is not Kawamata \log terminal at some point $P_{3} \in E_{3}$ and is Kawamata \log terminal outside of this point.

If $P_{3}=E_{1}^{3} \cap E_{3}$, then it follows from Theorem 2.13 that

$$
\lambda_{2}\left(m_{0}-m_{1}-m_{2}\right)=\lambda_{2} C_{d}^{3} \cdot E_{1}^{3}>5-\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right),
$$

which implies that $m_{0}>\frac{5}{3 \lambda_{2}}=\frac{2 d}{3}$, which is impossible by Corollary 3.4. If $P_{3}=E_{2}^{3} \cap E_{3}$, then it follows from Theorem 2.13 that

$$
\lambda_{2}\left(m_{1}-m_{2}\right)=\lambda_{2} C_{d}^{3} \cdot E_{2}^{3}>5-\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)
$$

which implies that $m_{0}+m_{1}>\frac{5}{2 \lambda_{2}}=d$, which is impossible by Corollary 3.11. Thus, I see that $P_{3} \notin E_{1}^{3} \cup E_{2}^{3}$. Then the \log pair $\left(S_{3}, \lambda_{2} C_{d}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}\right)$ is not Kawamata \log terminal at P_{3}. Hence, Theorem [2.13 gives

$$
\lambda_{2} m_{2}=\lambda_{2} C_{d}^{3} \cdot E_{3}>1,
$$

which implies that $m_{2}>\frac{1}{\lambda_{2}}=\frac{2 d}{5}$. One the other hand, I proved earlier that $m_{2} \leqslant \frac{m_{0}}{2}$. Thus, $m_{0}>\frac{4 d}{5}$, which is impossible by Corollary 3.4. The obtained contradiction completes the proof of the lemma.

Denote by L^{2} the proper transform of the line L on the surface S_{2}.
Lemma 3.13. One has $P_{2} \neq L^{2} \cap E_{2}$.
Proof. Suppose that $P_{2}=L^{2} \cap E_{2}$. If L is not an irreducible component of the curve C_{d}, then

$$
d-m_{0}-m_{1}=L^{2} \cap E_{2} \geqslant m_{2}
$$

which implies that $m_{0}+m_{1}+m_{2} \leqslant d$. Thus, if (A) holds, then $\lambda=\lambda_{1}$ and L is not an irreducible component of the curve C_{d} by Lemma 3.10, which implies that

$$
\lambda_{1} d \geqslant \lambda_{1}\left(m_{0}+m_{1}+m_{2}\right)>3
$$

by Lemma 2.15. On the other hand, $\lambda_{1} d<3$ by Lemma 3.2(iv). This shows that (B) holds.
Since $\lambda=\lambda_{2}=\frac{5}{2 d}<\frac{3}{d}$ and $\lambda_{2}\left(m_{0}+m_{1}+m_{2}\right)>3$ by Lemma 2.15. I have $m_{0}+m_{1}+m_{2}>d$. In particular, the line L must be an irreducible component of the curve C_{d}.

Put $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}, and denote by C_{d-1}^{2} its proper transform on S_{2}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right), n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$ and $n_{2}=\operatorname{mult}_{P_{2}}\left(C_{d-1}^{2}\right)$. Then $\left(S_{2},\left(\lambda_{2}\left(n_{0}+n_{1}+2\right)-2\right) E_{2}+\lambda_{2} L^{1}+\lambda_{2} C_{d-1}^{1}\right)$ is not Kawamata \log terminal at P_{2} and is Kawamata log terminal outside of the point P_{2}. Then Theorem 2.13 implies

$$
\lambda_{2}\left(d-1-n_{0}-n_{1}\right)=\lambda_{2} C_{d-1}^{2} \cdot L^{2}>1-\left(\lambda_{2}\left(n_{0}+n_{1}+2\right)-2\right)=3-\lambda_{2}\left(n_{0}+n_{1}+2\right),
$$

which implies that $\frac{5(d+1)}{2 d}=\lambda_{2}(d+1)>3$. Hence, $d=4$. Then $\lambda=\lambda_{2}=\frac{5}{8}$.
By Lemma 3.8, $n_{0}+n_{1} \leqslant 2$. Thus, $n_{0}=n_{1}=n_{2}=1$, since

$$
\frac{5}{8}\left(n_{0}+n_{1}+n_{2}+3\right)=\lambda_{2}\left(m_{0}+m_{1}+m_{2}\right)>3
$$

by Lemma 2.15. Then C_{3} is a irreducible cubic curve that is smooth at P, the line L is tangent to the curve C_{3} at the point P, and P is an inflexion point of the cubic curve C_{3}. This implies
that $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{2}{3}$. Since $\frac{2}{3}>\frac{5}{8}=\lambda_{2}$, the log pair $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ must be Kawamata log terminal at the point P, which contradicts (\mathbf{B}).

Let $f_{3}: S_{3} \rightarrow S_{2}$ be a blow up of the point P_{2}, and let E_{3} be its exceptional curve. Denote by C_{d}^{3} the proper transform on S_{3} of the curve C_{d}, and denote by E_{2}^{3} the proper transform on S_{3} of the curve E_{2}. Then

$$
\begin{aligned}
K_{S_{3}}+\lambda C_{d}^{3}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda \left(m_{0}+\right.\right. & \left.\left.m_{1}+m_{2}\right)-3\right) E_{3} \sim_{\mathbb{Q}} \\
& \sim_{\mathbb{Q}} f_{3}^{*}\left(K_{S_{2}}+\lambda C_{d}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right) .
\end{aligned}
$$

By Remark 2.11, the log pair $\left(S_{3}, \lambda C_{d}^{3}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}\right)$ is not Kawamata \log terminal at some point $P_{3} \in E_{3}$.

Lemma 3.14. One has $\lambda\left(m_{0}+m_{1}+m_{2}\right) \leqslant \lambda\left(m_{0}+2 m_{1}\right)<4$.
Proof. By Lemma 3.11, $m_{0}+m_{1} \leqslant d$. Since $2 m_{1} \leqslant m_{0}+m_{1}$, I have $m_{1} \leqslant \frac{d}{2}$. Then

$$
\lambda\left(m_{0}+m_{1}+m_{2}\right) \leqslant \lambda\left(m_{0}+2 m_{1}\right) \leqslant \lambda \frac{3 d}{2} \leqslant \lambda_{2} \frac{3 d}{2}=\frac{15}{4}<4,
$$

because $\lambda \leqslant \lambda_{2}$ and $m_{2} \leqslant m_{1}$.
Thus, the \log pair $\left(S_{3}, \lambda C_{d}^{3}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}\right)$ is Kawamata \log terminal outside of the point P_{3} by Lemma 2.14. Put $m_{3}=\operatorname{mult}_{P_{3}}\left(C_{d}^{3}\right)$.
Lemma 3.15. One has $P_{3} \neq E_{2}^{3} \cap E_{3}$.
Proof. If $P_{3}=E_{2}^{3} \cap E_{3}$, then Theorem 2.13 gives

$$
\lambda\left(m_{1}-m_{2}\right)=\lambda C_{d}^{3} \cdot E_{2}^{3}>1-\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right)=4-\lambda\left(m_{0}+m_{1}+m_{2}\right)
$$

which implies that $\lambda\left(m_{0}+2 m_{1}\right)>4$. But $\lambda\left(m_{0}+2 m_{1}\right)<4$ by Lemma 3.14.
Let $f_{4}: S_{4} \rightarrow S_{3}$ be a blow up of the point P_{3}, and let E_{4} be its exceptional curve. Denote by C_{d}^{4} the proper transform on S_{4} of the curve C_{d}, denote by E_{3}^{4} the proper transform on S_{4} of the curve E_{3}, and denote by L^{4} the proper transform of the line L on the surface S_{4}. Then $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is not Kawamata \log terminal at some point $P_{4} \in E_{4}$ by Remark 2.11, because

$$
\begin{aligned}
K_{S_{4}}+\lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}^{4} & +\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4} \sim_{\mathbb{Q}} \\
& \sim_{\mathbb{Q}} f_{4}^{*}\left(K_{S_{3}}+\lambda C_{d}^{3}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}\right) .
\end{aligned}
$$

Moreover, I have

$$
\begin{aligned}
2 L^{4}+E_{1}+2 E_{2}+E_{3} \sim\left(f_{1} \circ f_{2} \circ f_{3} \circ f_{4}\right)^{*} & \left(\mathcal{O}_{\mathbb{P}^{2}}(2)\right)- \\
& -\left(f_{2} \circ f_{3} \circ f_{4}\right)^{*}\left(E_{1}\right)-\left(f_{3} \circ f_{4}\right)^{*}\left(E_{2}\right)-f_{4}^{*}\left(E_{3}\right)-E_{4} .
\end{aligned}
$$

Lemma 3.16. The linear system $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ is a pencil that does not have base points. Moreover, every divisor in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ that is different from $2 L^{4}+E_{1}+2 E_{2}+E_{3}$ is a smooth curve whose image on \mathbb{P}^{2} is a smooth conic that is tangent to L at the point P.

Proof. All assertions follows from $P_{2} \notin E_{1}^{2} \cup L^{2}$ and $P_{3} \notin E_{2}^{3}$.
Let C_{2}^{4} be a general curve in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$. Denote by C_{2} its image on \mathbb{P}^{2}, and denote by \mathcal{L} the pencil generated by $2 L$ and C_{2}. Then P is the only base point of the pencil \mathcal{L}, and every conic in \mathcal{L} except $2 L$ and C_{2} intersects C_{2} at P with multiplicity 4 (cf. [5, Remark 1.14]).
Lemma 3.17. One has $m_{0}+m_{1}+m_{2}+m_{3} \leqslant m_{0}+m_{1}+2 m_{2} \leqslant \frac{5}{\lambda}$. If $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$, then d is even and C_{d} is a union of $\frac{d}{2} \geqslant 2$ smooth conics in \mathcal{L}, where $d=4$ if (A) holds.

Proof. By Lemma 3.11, I have $m_{2}+m_{3} \leqslant 2 m_{2} \leqslant m_{0}+m_{1} \leqslant d$ by Lemma 3.11. This gives

$$
m_{0}+m_{1}+m_{2}+m_{3} \leqslant m_{0}+m_{1}+2 m_{2} \leqslant 2 d=\frac{5}{\lambda_{2}} \leqslant \frac{5}{\lambda} .
$$

To complete the proof, I may assume that $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$. Then all inequalities above must be equalities. Thus, I have $m_{2}=m_{3}=\frac{d}{2}$ and $\lambda_{1}=\lambda_{2}$. In particular, if (A) holds, then $d=4$, because $\lambda_{1}<\lambda_{2}=\frac{5}{2 d}$ for $d \geqslant 5$ by Lemma 3.2(vii). Moreover, since $m_{0} \geqslant m_{1} \geqslant m_{2}=\frac{d}{2}$ and $m_{0}+m_{1} \leqslant d$, I see that $m_{0}=m_{1}=\frac{d}{2}$. Thus, d is even and

$$
C_{d}^{4} \sim \frac{d}{2}\left(2 L^{4}+E_{1}+2 E_{2}+E_{3}\right)
$$

where $d=4$ if (\mathbf{A}) holds. Since $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ is a free pencil and C_{d}^{4} is reduced, it follows from Lemma 3.16 that C_{d}^{4} is a union of $\frac{d}{2}$ smooth curves in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$. In particular, L^{4} is not an irreducible component of C_{d}^{4}. Thus, the curve C_{d} is a union of $\frac{d}{2}$ smooth conics in \mathcal{L}, where $d=4$ if (A) holds.

Thus, if $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$, then Theorems 1.13 and 1.19 are proved. Let me show that the inequality $m_{0}+m_{1}+m_{2}+m_{3}<\frac{5}{\lambda}$ is impossible. Suppose that it holds. Then the log pair $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is Kawamata log terminal outside of the point P_{4} by Lemma 2.14,

Lemma 3.18. One has $P_{4} \neq E_{3}^{4} \cap E_{4}$.
Proof. By Lemma 3.17, $m_{0}+m_{1}+2 m_{2} \leqslant \frac{5}{\lambda}$. If $P_{4}=E_{3}^{4} \cap E_{4}$, then Theorem 2.13 gives

$$
\lambda\left(m_{2}-m_{3}\right)=\lambda C_{d}^{4} \cdot E_{3}^{4}>5-\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right),
$$

which implies that $m_{0}+m_{1}+2 m_{2}>\frac{5}{\lambda}$. This shows that $P_{4} \neq E_{3}^{4} \cap E_{4}$.
Corollary 3.19. The log pair $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is not Kawamata \log terminal at P_{4} and is Kawamata log terminal outside of the point P_{4}.

Let Z^{4} be the curve in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ that passes through the point P_{4}. Then Z^{4} is a smooth irreducible curve by Lemma 3.13. Denote by Z the proper transform of this curve on \mathbb{P}^{2}. Then Z is a smooth conic in the pencil \mathcal{L} by Lemma 3.16,
Lemma 3.20. The conic Z is not an irreducible component of the curve C_{d}.
Proof. Suppose that Z is an irreducible component of the curve C_{d}. Then $C_{d}=Z+C_{d-2}$, where C_{d-2} is a reduced curve in \mathbb{P}^{2} of degree $d-2$ such that Z is not its irreducible component. Denote by $C_{d-2}^{1}, C_{d-2}^{2}, C_{d-2}^{3}$ and C_{d-2}^{4} its proper transforms on the surfaces S_{1}, S_{2}, S_{3} and S_{4}, respectively. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-2}\right), n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-2}^{1}\right), n_{2}=\operatorname{mult}_{P_{2}}\left(C_{d-2}^{2}\right), n_{3}=\operatorname{mult}_{P_{3}}\left(C_{d-2}^{3}\right)$ and $n_{4}=\operatorname{mult}_{P_{4}}\left(C_{d-2}^{4}\right)$. Then $\left(S_{4}, \lambda C_{d-2}^{4}+\lambda Z^{4}+\left(\lambda\left(n_{0}+n_{1}+n_{2}+n_{3}+4\right)-4\right) E_{4}\right)$ is not Kawamata \log terminal at P_{4} and is Kawamata log terminal outside of the point P_{4} by Corollary 3.19. Thus, applying Theorem [2.13, I get

$$
\lambda\left(2(d-2)-n_{0}-n_{1}-n_{2}-n_{3}\right)=\lambda C_{d-2}^{4} \cdot Z^{4}>5-\lambda\left(n_{0}+n_{1}+n_{2}+n_{3}+4\right)
$$

which implies that $\lambda>\frac{5}{2 d}$. This is impossible, since $\lambda \leqslant \lambda_{2}=\frac{5}{2 d}$.
Put $m_{4}=\operatorname{mult}_{P_{4}}\left(C_{d}^{4}\right)$. Since Z is not an irreducible component of the curve C_{d}, I have

$$
2 d-\sum_{i=0}^{3} m_{i}=Z^{4} \cdot C_{d}^{4} \geqslant m_{4},
$$

which gives $\sum_{i=0}^{4} m_{i} \leqslant 2 d$. On the other hand, $\sum_{i=0}^{4} m_{i}>\frac{5}{\lambda}$ by Lemma 2.15. Thus, I have $\lambda>\frac{5}{2 d}$, which is impossible, since $\lambda \leqslant \lambda_{2}=\frac{5}{2 d}$. The obtained contradiction completes the proof of Theorems 1.13 and 1.19

4. Smooth surfaces in \mathbb{P}^{3}

The purpose of this section is to prove Theorem 1.21. Let S be a smooth surface in \mathbb{P}^{3} of degree $d \geqslant 3$, let H_{S} be its hyperplane section, let P be a point in S, let T_{P} be the hyperplane section of the surface S that is singular at P. Then T_{P} is reduced by Lemma 2.6. Put $\lambda=\frac{2 d-3}{d(d-2)}$.
Proposition 4.1. Let D be any effective \mathbb{Q}-divisor on S such that $D \sim_{\mathbb{Q}} H_{S}$. Suppose that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve T_{P}. Then $(S, \lambda D)$ is \log canonical at P.

If $d=3$, then Proposition 4.1 is [5, Corollary 1.13] that implies two important results. It implies [26, Theorem 1.3], which implies that all smooth cubic surfaces are Kähler-Einstein by [7, Theorem 2]. By [17, Corollary 3.2], [5, Corollary 1.13] also implies that affine cones over smooth cubic surfaces do not admit effective actions of the additive group \mathbb{G}_{a}. On the other hand, Proposition 4.1 and Theorem 1.13 imply Theorem 1.21 ,
Proof of Theorem 1.21. Suppose that $\alpha_{S}^{H_{S}}(P)<\lambda$. Put $\mu=\operatorname{lct}_{P}\left(S, T_{P}\right)$. By Theorem 1.13, it is enough to show that $\alpha_{S}^{H_{S}}(P) \geqslant \mu$ in order to prove Theorem 1.21. Suppose that $\alpha_{S}^{H_{S}}(P)<\mu$. Then there exists an effective \mathbb{Q}-divisor D on the surface S such that $D \sim_{\mathbb{Q}} H_{S}$ and $(S, \lambda D)$ and $(S, \mu D)$ are not \log canonical at the point P, since $\alpha_{S}^{H_{S}}(P)<\lambda$. Put

$$
D_{\epsilon}=(1+\epsilon) D-\epsilon T_{P}
$$

for some rational number ϵ. Since $T_{P} \neq D$, there exists the greatest rational number ϵ_{0} such that the divisor $D_{\epsilon_{0}}$ is effective. Put $D^{\prime}=D_{\epsilon_{0}}$. Then $\operatorname{Supp}\left(D^{\prime}\right)$ does not contain at least one irreducible component of $\operatorname{Supp}\left(T_{P}\right)$. Thus, the \log pair $\left(S, \lambda D^{\prime}\right)$ is \log canonical at P by Proposition 4.1, On the other hand, the \log pair $\left(S, \mu T_{P}\right)$ is \log canonical at P, which implies that $\left(S, \mu D^{\prime}\right)$ is not \log canonical at P by Remark [2.4. Then $\mu>\lambda$. In particular, $\left(S, \lambda T_{P}\right)$ is \log canonical at P. Then $\left(S, \lambda D^{\prime}\right)$ is not \log canonical at P by Remark 2.4. The latter is impossible, since I already proved that $\left(S, \lambda D^{\prime}\right)$ is \log canonical at P.

In the remaining part of the section, I will prove Proposition 4.1. Note that I will do this without using [5, Corollary 1.13]. Let me start with
Lemma 4.2. The following assertions hold:
(i) $\lambda \leqslant \frac{2}{d-1}$,
(ii) if $d \geqslant 5$, then $\lambda \leqslant \frac{3}{d+1}$,
(iii) if $d \geqslant 5$, then $\lambda \leqslant \frac{4}{d+3}$,
(iv) If $d \geqslant 6$, then $\lambda \leqslant \frac{3}{d+2}$,
(v) $\lambda \leqslant \frac{4}{d+1}$,
(vi) $\lambda \leqslant \frac{3}{d}$.

Proof. The equality $\frac{2}{d-1}=\lambda+\frac{d-3}{d(d-1)(d-2)}$ implies (i), $\frac{4}{d+1}=\lambda+\frac{d^{2}-5 d+3}{d(d+1)(d-2)}$ implies (ii), and $\frac{4}{d+3}=\lambda+\frac{2 d^{2}-11 d+9}{d(d+3)(d-2)}$ implies (iii). Similarly, (iv) follows from $\frac{3}{d+2}=\lambda+\frac{d^{2}-7 d+6}{d\left(d^{2}-4\right)}$, (v) follows from $\frac{4}{d+1}=\lambda+\frac{2 d^{2}-7 d+3}{d(d+1)(d-2)}$, and (vi) follows from $\frac{3}{d}=\lambda+\frac{d-3}{d(d-2)}$.

Let n be the number of irreducible components of the curve T_{P}. Put $T_{P}=T_{1}+\cdots+T_{n}$, where each T_{i} is an irreducible curve. For every T_{i}, denote its degree by d_{i}, and put $t_{i}=\operatorname{mult}_{P}\left(T_{i}\right)$.
Lemma 4.3. Suppose that $n \geqslant 2$. Then $T_{i} \cdot T_{i}=-d_{i}\left(d-d_{i}-1\right)$ for every T_{i}, and $T_{i} \cdot T_{j}=d_{i} d_{j}$ for every T_{i} and T_{j} such that $T_{i} \neq T_{j}$.
Proof. The curve T_{P} is cut out on S by a hyperplane $H \subset \mathbb{P}^{2}$. Then $H \cong \mathbb{P}^{2}$. Hence, for every T_{i} and T_{j} such that $T_{i} \neq T_{j}$, I have $\left(T_{i} \cdot T_{j}\right)_{S}=\left(T_{i} \cdot T_{j}\right)_{H}=d_{i} d_{j}$. In particular, I have

$$
d_{1}=T_{P} \cdot T_{1}=T_{1}^{2}+\sum_{i=2}^{n} T_{i} \cdot T_{1}=T_{1}^{2}+\sum_{i=2}^{n} d_{i} d_{1}=T_{1}^{2}+\left(d-d_{1}\right) d_{1},
$$

which gives $T_{1} \cdot T_{1}=-d_{1}\left(d-d_{1}-1\right)$. Similarly, I have $T_{i} \cdot T_{i}=-d_{i}\left(d-d_{i}-1\right)$ for every T_{i}.
Let D be any effective \mathbb{Q}-divisor on S such that $D \sim_{\mathbb{Q}} H_{S}$. Suppose that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve T_{P}. To prove Proposition 4.1. I must show that $(S, \lambda D)$ is \log canonical at P. Suppose that this is not the case. Let me seek for a contradiction. Without loss of generality, I may assume that $\operatorname{Supp}(D)$ does not contain the curve T_{n}.

Lemma 4.4. Suppose that $n \geqslant 2$. Let k be a positive integer such that $k \leqslant n-1$. Write $D=\sum_{i=1}^{k} a_{i} T_{i}+\Delta$, where each a_{i} is a non-negative rational number, and Δ is an effective \mathbb{Q} divisor on S whose support does not contain the curves T_{1}, \ldots, T_{k}. Put $k_{0}=\operatorname{mult}_{P}(\Delta)$. Then

$$
\sum_{i=1}^{k} a_{i} d_{i} d_{n} \leqslant d_{n}-t_{n} k_{0}
$$

In particular, $\sum_{i=1}^{k} a_{i} d_{i} \leqslant 1$ and each a_{i} does not exceed $\frac{1}{d_{i}}$.
Proof. Since T_{n} is not contained in $\operatorname{Supp}(D)$, it is not contained in $\operatorname{Supp}(\Delta)$. Then

$$
d_{n}=T_{n} \cdot D=T_{n} \cdot\left(\sum_{i=1}^{n} a_{i} T_{i}+\Delta\right)=\sum_{i=1}^{n} a_{i} d_{i} d_{n}+T_{n} \cdot \Delta \geqslant \sum_{i=1}^{n} a_{i} d_{i} d_{n}+t_{n} k_{0}
$$

which implies the required inequality.
Put $m_{0}=\operatorname{mult}_{P}(D)$.
Lemma 4.5. Suppose that $P \in T_{n}$. Then $d_{n}>\frac{d-1}{2}$. If $n \geqslant 2$, then T_{n} is smooth at P.
Proof. Since T_{n} is not contained in the support of the divisor D, I have

$$
d \geqslant d_{n}=T_{n} \cdot D \geqslant t_{n} m_{0}
$$

which implies that $m_{0} \leqslant \frac{d_{n}}{t_{n}}$. Since $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5, I have $d_{n}>\frac{d-1}{2}$ by Lemma 4.2(i). Moreover, if $n \geqslant 2$ and $t_{n} \geqslant 2$, then it follows from Lemma 2.5 that

$$
\frac{1}{\lambda}<m_{0} \leqslant \frac{d_{n}}{t_{n}} \leqslant \frac{d-1}{t_{n}} \leqslant \frac{d-1}{2},
$$

which is impossible by Lemma 4.2(i).
Corollary 4.6. The point P is not a star point.
Now I am ready to use Theorem 2.16 to prove
Lemma 4.7. Suppose that $n \geqslant 3$ and P is contained in at least two irreducible components of the curve T_{P} that are different from T_{n} and that are both smooth at P. Then they are tangent to each other at P.

Proof. Without loss of generality, I may assume that $P \in T_{1} \cap T_{2}$ and $t_{1}=t_{2}=1$. I must show that T_{1} and T_{2} are tangent to each other at P. Suppose that this is not the case. Let me seek for a contradiction. Put $D=a T_{1}+b T_{2}+\Delta$, where a and b are non-negative rational numbers, and Δ is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curves T_{1} and T_{2}. Then $a d_{1}+b d_{2} \leqslant 1$ by Lemma 4.4.

Put $k_{0}=\operatorname{mult}(\Delta)$. Then

$$
d_{1}+a d_{1}\left(d-d_{1}-1\right)-b d_{1} d_{2}=\Delta \cdot T_{1} \geqslant k_{0}
$$

by Lemma 4.3. Similarly, I have

$$
d_{2}-a d_{1} d_{2}+b d_{2}\left(d-d_{2}-1\right)=\Delta \cdot T_{2} \geqslant k_{0} .
$$

Adding these two inequalities together and using $a d_{1}+b d_{2} \leqslant 1$, I get

$$
2 k_{0} \leqslant d_{1}+d_{2}+\left(a d_{1}+a d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d_{1}+d_{2}+\left(d-d_{1}-d_{2}-1\right)=d-1
$$

Thus, $k_{0} \leqslant \frac{1}{\lambda}$ by Lemma 4.2(i).
Since $\lambda k_{0} \leqslant 1$, I can apply Theorem 2.16 to the \log pair $\left(S, \lambda a T_{1}+\lambda b T_{2}+\lambda \Delta\right)$ at the point P. This gives either $\lambda \Delta \cdot T_{1}>2(1-\lambda b)$ or $\lambda \Delta \cdot T_{2}>2(1-\lambda a)$. Without loss of generality, I may assume that $\lambda \Delta \cdot T_{2}>2(1-\lambda a)$. Then

$$
\begin{equation*}
d_{2}+b d_{2}\left(d-d_{2}-1\right)-a d_{1} d_{2}=\Delta \cdot T_{2}>\frac{2}{\lambda}-2 a \tag{4.8}
\end{equation*}
$$

Applying Theorem [2.13 to the \log pair $\left(S, \lambda a T_{1}+\lambda b T_{2}+\lambda \Delta\right)$ and the curve T_{1} at the point P, I get

$$
d_{1}+a d_{1}\left(d-d_{1}-1\right)=\left(\lambda b T_{2}+\lambda \Delta\right) \cdot T_{1}>\frac{1}{\lambda}
$$

Adding this inequality to (4.8), I get

$$
d+1 \geqslant d-1+2 a \geqslant d_{1}+d_{2}+\left(a d_{1}+b d_{2}\right)\left(d-d_{1}-d_{2}-1\right)+2 a>\frac{3}{\lambda}
$$

because $a d_{1}+b d_{2} \leqslant 1$. Thus, it follows from Lemma 4.2 (ii) that either $d=3$ or $d=4$.
If $d=3$, then $n=3$ and $d_{1}=d_{2}=d_{3}=\lambda=1$, which implies that $a+b>1$ by (4.8). Since $a d_{1}+b d_{2} \leqslant 1$, I see that $d=4$. Then $\lambda=\frac{5}{8}$ and $d_{1}+d_{2} \leqslant 3$. If $d_{1}=d_{1}=1$, then (4.8) gives $2 b+a>\frac{11}{5}$. If $d_{1}=1$ and $d_{2}=2$, then (4.8) gives $b>\frac{3}{5}$. If $d_{1}=2$ and $d_{2}=1$, then (4.8) gives $b>\frac{11}{5}$. All these three inequalities are inconsistent, because $a d_{1}+b d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.

Note that every line contained in the surfaces S that passes through P must be an irreducible component of the curve T_{P}. Moreover, the curve T_{n} cannot be a line by Lemma 4.5. Therefore, Lemma 4.7 implies
Corollary 4.9. There exists at most one line in S that passes through P.
Corollary 4.10. One has $n<d$.
To apply Lemma 4.7. I need
Lemma 4.11. Suppose that $n \geqslant 3$ and P is contained in at least two irreducible components of the curve T_{P} that are different from T_{n}. Then these curves are both smooth at P.

Proof. Without loss of generality, I may assume that $P \in T_{1} \cap T_{2}$ and $t_{1} \leqslant t_{2}$. I have to show that $t_{1}=t_{2}=1$. By Corollary 4.10, $d \neq 3$. If $d=4$, then $n \leqslant 4$, and the curves T_{1}, T_{2} and T_{4} are either lines or conics. So, I may assume that $d \geqslant 5$. Put $D=a T_{1}+b T_{2}+\Delta$, where a and b are non-negative rational numbers, and Δ is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curves T_{1} and T_{2}. Put $k_{0}=\operatorname{mult}_{P}(\Delta)$. Then $m_{0}=k_{0}+a t_{1}+b t_{2}$. Moreover, $a d_{1}+b d_{2} \leqslant 1$ by Lemma 4.4. On the other hand, it follows from Lemma 4.3 that

$$
d-1 \geqslant d_{1}+d_{2}+\left(a d_{1}+a d_{2}\right)\left(d-d_{1}-d_{2}-1\right)=\Delta \cdot\left(T_{1}+T_{2}\right) \geqslant k_{0}\left(t_{1}+t_{2}\right)
$$

because $a d_{1}+b d_{2} \leqslant 1$. Thus, $k_{0} \leqslant \frac{d-1}{t_{1}+t_{2}}$. Thus, if $t_{1}+t_{2} \geqslant 4$, then

$$
m_{0}=k_{0}+a t_{1}+b t_{2} \leqslant k_{0}+a d_{1}+b d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+a d_{1}+b d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+1 \leqslant \frac{d+3}{4}
$$

because $a d_{1}+b d_{2} \leqslant 1$. Since $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5, the inequality $m_{0} \leqslant \frac{d+3}{4}$ gives $\lambda>\frac{d+3}{4}$, which is impossible by Lemma4.2(iii). Thus, $t_{1}+t_{2} \leqslant 3$. Since $t_{1} \leqslant t_{2}$, I have $t_{1}=1$ and $t_{2} \leqslant 2$.

To complete the proof of the lemma, I have to prove that $t_{2}=1$. Suppose $t_{2} \neq 1$. Then $t_{2}=2$, since $t_{1}+t_{2} \leqslant 3$. Since $k_{0} \leqslant \frac{d-1}{t_{1}+t_{2}}=\frac{d-1}{3}$ and $a d_{1}+b d_{2} \leqslant 1$, I have

$$
m_{0}=k_{0}+a t_{1}+b t_{2} \leqslant k_{0}+a d_{1}+b d_{2} \leqslant \frac{d-1}{32}+a d_{1}+b d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+1=\frac{d+2}{3} .
$$

On the other hand, $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5. So, $\lambda>\frac{3}{d+2}$. Then $d=5$ by Lemma 4.2(iv).

Since $d=5$, I have $n=3, d_{1}=1, d_{2}=3$ and $d_{3}=1$, because $t_{1}=1$ and $t_{2}=2$. Applying Theorem 2.13 to the \log pair $\left(S, \lambda a T_{1}+\lambda b T_{2}+\lambda \Delta\right)$, I get

$$
1+3 a=d_{1}+a d_{1}\left(d-d_{1}-1\right)=\left(\lambda b T_{2}+\lambda \Delta\right) \cdot T_{1}>\frac{1}{\lambda}=\frac{15}{7}
$$

which gives $a>\frac{8}{21}$. On the other hand, $a+3 b \leqslant 1$, because $a d_{1}+b d_{2} \leqslant 1$. Since $m_{0}>\frac{1}{\lambda}=\frac{15}{7}$ by Lemma 2.5. I see that

$$
\begin{aligned}
& \frac{15}{7}-\frac{1}{9}=\frac{128}{63}>\frac{8-5 a}{3}=\frac{3-a+\frac{7(1-a)}{3}}{2}=\frac{3-a+7 b}{2}=\frac{3-3 a+3 b}{2}+a+2 b= \\
& \quad=\frac{\Delta \cdot T_{2}}{2}+a+2 b \geqslant \frac{\operatorname{mult}_{P}\left(\Delta \cdot T_{2}\right)}{2}+a+2 b \geqslant \frac{t_{2} k_{0}}{2}+a+2 b=k_{0}+a+2 b=m_{0}>\frac{15}{7}
\end{aligned}
$$

which is absurd.
Now I am ready to prove
Lemma 4.12. One has $m_{0} \leqslant \frac{d+1}{2}$.
Proof. Suppose that $m_{0}>\frac{d+1}{2}$. Let me seek for a contradiction. If $n=1$, then

$$
d=T_{n} \cdot D \geqslant 2 m_{0}
$$

which implies that $m_{0} \leqslant \frac{d}{2}$. Thus, $n \geqslant 2$. Then either $t_{n}=0$ or $t_{n}=1$ by Lemma 4.5. Hence, there is an irreducible component of T_{P} that passes through P and is different from T_{n}, because T_{P} is singular at P. Without loss of generality, I may assume that $t_{1} \geqslant 1$.

Put $D=a T_{1}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curve T_{1}. Then $a \leqslant \frac{1}{d_{1}}$ by Lemma 4.4. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Then $m_{0}=n_{0}+a t_{1}$.

By Lemma 4.4, $t_{n} n_{0} \leqslant d_{n}-a d_{1} d_{n}$. By Lemma 4.3. I have

$$
\begin{equation*}
d_{1}+a d_{1}\left(d-d_{1}-1\right)=\Omega \cdot T_{1} \geqslant t_{1} n_{0} \tag{4.13}
\end{equation*}
$$

Adding these two inequalities, I get $\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{n}+a d_{1}\left(d-d_{1}-d_{n}-1\right)$. Hence, if $n \geqslant 3$ and $t_{n}=1$, then

$$
2 n_{0} \leqslant\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{n}+a d_{1}\left(d-d_{1}-d_{n}-1\right) \leqslant d-1 \leqslant d-a d_{1}
$$

because $a \leqslant \frac{1}{d_{1}}$. Similarly, if $n=2$ and $t_{n}=1$, then

$$
2 n_{0} \leqslant\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{2}+a d_{1}\left(d-d_{1}-d_{2}-1\right)=d_{1}+d_{2}-a d_{1}=d-a d_{1}
$$

Thus, if $t_{n}=1$, then $n_{0} \leqslant \frac{d-a d_{1}}{2}$. On the other hand, if $n_{0} \leqslant \frac{d-a d_{1}}{2}$, then

$$
\frac{d+1}{2}<m_{0}=n_{0}+a t_{1} \leqslant n_{0}+a d_{1} \leqslant \frac{d-a d_{1}}{2}+a d_{1}=\frac{d+a d_{1}}{2} \leqslant \frac{d+1}{2}
$$

because $a \leqslant \frac{1}{d_{1}}$. This shows that $t_{n}=0$.
If $t_{1} \geqslant 2$, then it follows from (4.13) that
$\frac{d+1}{2}<m_{0}=n_{0}+a t_{1} \leqslant n_{0}+a d_{1} \leqslant \frac{d_{1}+a d_{1}\left(d-d_{1}-1\right)}{2}+a d_{1}=\frac{d_{1}+a d_{1}\left(d-d_{1}+1\right)}{2} \leqslant \frac{d+1}{2}$, because $a \leqslant \frac{1}{d_{1}}$. This shows that $t_{1}=1$.

Since $t_{1}=1$ and $t_{n}=0$, there exists an irreducible component of the curve T_{P} that passes through P and is different from T_{1} and T_{n}. In particular, $n \geqslant 3$. Without loss of generality, I may assume that this irreducible component is T_{2}. Then T_{2} is smooth at P by Lemma 4.11,

Put $D=a T_{1}+b T_{2}+\Delta$, where b is a non-negative rational number, and Δ is an effective \mathbb{Q}-divisor S whose support does not contain the curves T_{1} and T_{2}. Put $k_{0}=\operatorname{mult}_{P}(\Delta)$. Then $a d_{1}+b d_{2} \leqslant 1$ by Lemma 4.4. Thus, it follows from Lemma 4.3 that

$$
2 k_{0} \leqslant \Delta \cdot\left(T_{1}+T_{2}\right)=d_{1}+d_{2}+\left(a d_{1}+a d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d-1
$$

which implies $k_{0} \leqslant \frac{d-1}{2}$. Then

$$
\frac{d+1}{2}<m_{0}=k_{0}+a t_{1}+b t_{2} \leqslant k_{0}+a d_{1}+b d_{2} \leqslant \frac{d-1}{2}+a d_{1}+b d_{2} \leqslant \frac{d-1}{2}+1=\frac{d+1}{2},
$$

because $a d_{1}+b d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.
Let $f_{1}: S_{1} \rightarrow S$ be a blow up of the point P, and let E_{1} be its exceptional curve. Denote by D^{1} the proper transform of the \mathbb{Q}-divisor D on the surface S_{1}. Then

$$
K_{S_{1}}+\lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1} \sim_{\mathbb{Q}} f_{1}^{*}\left(K_{S}+\lambda D\right)
$$

which implies that $\left(S_{1}, \lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is not \log canonical at some point $P_{1} \in E_{1}$.
Lemma 4.14. One has $\lambda m_{0} \leqslant 2$.
Proof. By Lemma4.12, $m_{0} \leqslant \frac{d+1}{2}$. By Lemma 4.2(v), $\lambda \leqslant \frac{4}{d+1}$. This gives $\lambda m_{0} \leqslant 2$.
Thus, the log pair $\left(S_{1}, \lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is \log canonical at every point of the curve E_{1} that is different from P_{1} by Lemma 2.14. Since $(S, \lambda D)$ is log canonical outside of finitely many points by Lemma [2.6, I see that the \log pair $\left(S_{1}, \lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is \log canonical at a punctured neighborhood of the point P_{1}. Put $m_{1}=\operatorname{mult}_{P_{1}}\left(D^{1}\right)$. Then Lemma 2.5 gives
Corollary 4.15. One has $m_{0}+m_{1}>\frac{2}{\lambda}$.
For each curve T_{i}, denote by T_{i}^{1} its proper transform on S_{1}. Put $T_{P}^{1}=\sum_{i=1}^{n} T_{i}^{1}$.
Lemma 4.16. One has $P_{1} \notin T_{P}^{1}$.
Proof. Suppose that $P_{1} \in T_{P}^{1}$. If T_{P} is irreducible, then $d-2 m_{0}=T_{P}^{1} \cdot D^{1} \geqslant m_{1}$. On the other hand, if $m_{1}+2 m_{0} \leqslant d$, then

$$
\frac{3}{\lambda}<m_{1}+2 m_{0} \leqslant d
$$

because $2 m_{0} \geqslant m_{0}+m_{1}>\frac{2}{\lambda}$ by Corollary 4.15. Thus, $n \geqslant 2$, because $\lambda \leqslant \frac{3}{d}$ by Lemma 4.2(vi). Similarly, $P_{1} \notin T_{n}$. Indeed, if $P_{1} \in T_{n}$, then

$$
d-1-m_{0} \geqslant d_{n}-m_{0}=d_{n}-m_{0} t_{n}=T_{n}^{1} \cdot D^{1} \geqslant m_{1},
$$

which is impossible, because $m_{0}+m_{1}>\frac{2}{\lambda}$ by Corollary 4.15, and $\lambda \leqslant \frac{2}{d-1}$ by Lemma 4.2(i).
Without loss of generality, I may assume that $P_{1} \in T_{1}^{1}$. Put $D=a T_{1}+\Omega$, where a is a nonnegative rational number, and Ω is an effective \mathbb{Q}-divisor on S whose support does not contain the curve T_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Then $m_{0}=n_{0}+a t_{1}$.

Denote by Ω^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Put $n_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$ and $t_{1}^{1}=\operatorname{mult}_{P_{1}}\left(T_{1}^{1}\right)$. Then $n_{0} t_{1}+n_{1} t_{1}^{1} \leqslant d_{1}+a d_{1}\left(d-d_{1}-1\right)$, because

$$
d_{1}+a d_{1}\left(d-d_{1}-1\right)-n_{0} t_{1}=T_{1}^{1} \cdot \Omega^{1} \geqslant t_{1}^{1} n_{1} .
$$

Note that $t_{1}^{1} \leqslant t_{1}$. Moreover, $a \leqslant \frac{1}{d_{1}}$ by Lemma 4.4. Thus, if $t_{1}^{1} \geqslant 2$, then

$$
2\left(n_{0}+n_{1}\right) \leqslant t_{1}^{1}\left(n_{0}+n_{1}\right) \leqslant n_{0} t_{1}+n_{1} t_{1}^{1} \leqslant d_{1}+a d_{1}\left(d-d_{1}-1\right) \leqslant d_{1}+\left(d-d_{1}-1\right)=d-1,
$$

which implies that $n_{0}+n_{1} \leqslant \frac{d-1}{2}$. Moreover, if $n_{0}+n_{1} \leqslant \frac{d-1}{2}$, then it follows from Corollary 4.15 that

$$
\frac{d+3}{2}=2+\frac{d-1}{2} \geqslant 2 a d_{1}+\frac{d-1}{2} \geqslant 2 a t_{1}+\frac{d-1}{2} \geqslant a\left(t_{1}+t_{1}^{1}\right)+n_{0}+n_{1}=m_{0}+m_{1}>\frac{2}{\lambda}
$$

which only possible if $d \leqslant 4$ by Lemma 4.2(iii). Thus, if $d \geqslant 5$, then $t_{1}^{1}=1$. Furthermore, if $d \leqslant 4$, then $d_{1} \leqslant 3$, which implies that $t_{1}^{1} \leqslant 1$. This shows that $t_{1}^{1}=1$ in all cases. Thus, the curve T_{1}^{1} is smooth at P_{1}.

Applying Theorem [2.12] to the log pair $\left(S_{1}, \lambda \Omega^{1}+\lambda a T_{1}^{1}+\left(\lambda\left(n_{0}+a t_{1}\right)-1\right) E_{1}\right)$ and the curve T_{1}^{1} at the point P_{1} gives

$$
\lambda\left(d-1-n_{0} t_{1}\right) \geqslant \lambda\left(d_{1}+a d_{1}\left(d-d_{1}-1\right)-n_{0} t_{1}\right)=\lambda \Omega^{1} \cdot T_{1}^{1}>2-\lambda\left(n_{0}+a t_{1}\right)
$$

because $a \leqslant \frac{1}{d_{1}}$. Thus, I have $d-1+a t_{1}-n_{0}\left(t_{1}-1\right)>\frac{2}{\lambda}$. But $m_{0}=a t_{1}+n_{0}>\frac{1}{\lambda}$ by Lemma 2.5, Adding these inequalities, I get

$$
\begin{equation*}
d-1+2 a t_{1}-n_{0}\left(t_{1}-2\right)>\frac{3}{\lambda} \tag{4.17}
\end{equation*}
$$

If $t_{1} \geqslant 2$, this gives

$$
d+1 \geqslant d-1+2 a d_{1} \geqslant d-1+2 a t_{1} \geqslant d-1+2 a t_{1}-n_{0}\left(t_{1}-2\right)>\frac{3}{\lambda} .
$$

because $a \leqslant \frac{1}{d_{1}}$. One the other hand, if $d \geqslant 5$, then $\lambda \leqslant \frac{3}{d+1}$ by Lemma 4.2(ii). Thus, if $d \geqslant 5$, then $t_{1}=1$. Moreover, if $d=3$, then $d_{1} \leqslant 2$, which implies that $t_{1}=1$ as well. Furthermore, if $d=4$ and $t_{1} \neq 1$, then $d_{1}=3, t_{1}=2, \lambda=\frac{5}{8}$, which implies $\frac{1}{3}=\frac{1}{d_{1}} \geqslant a>\frac{9}{20}$ by (4.17). Hence, the curve T_{1} is smooth at P.

Since $a \leqslant \frac{1}{d_{1}}$, I have

$$
d-1-n_{0} \geqslant d_{1}+a d_{1}\left(d-d_{1}-1\right)-n_{0}=\Omega^{1} \cdot T_{1}^{1} \geqslant n_{1},
$$

which implies that $n_{1} \leqslant \frac{n_{0}+n_{1}}{2} \leqslant \frac{d-1}{2}$. Then $\lambda n_{1} \leqslant 1$ by Lemma $4.2(i)$. Hence, I can apply Theorem 2.16 to the log pair $\left(S_{1}, \lambda \Omega^{1}+\lambda a T_{1}^{1}+\left(\lambda\left(n_{0}+a t_{1}\right)-1\right) E_{1}\right)$ at the point P_{1}. This gives either

$$
\Omega^{1} \cdot T_{1}^{1}>\frac{4}{\lambda}-2\left(n_{0}+a\right)
$$

or

$$
\Omega^{1} \cdot E_{1}>\frac{2}{\lambda}-2 a
$$

(or both). Since $a \leqslant \frac{1}{d_{1}}$, the former inequality gives

$$
d-1-n_{0} \geqslant d_{1}+a d_{1}\left(d-d_{1}-1\right)-n_{0}=\Omega^{1} \cdot T_{1}^{1}>\frac{4}{\lambda}-2\left(n_{0}+a\right) .
$$

The latter inequality gives

$$
n_{0}=\lambda \Omega^{1} \cdot E_{1}>\frac{2}{\lambda}-2 a .
$$

Thus, either $d-1+2 a+n_{0}>\frac{4}{\lambda}$ or $2 a+n_{0}>\frac{2}{\lambda}$ (or both).
If $t_{n} \geqslant 1$, then $d_{n} \neq 1$ by Lemma 4.5. Thus, if $t_{n} \geqslant 1$, then

$$
d-1 \geqslant d_{n} \geqslant a d_{1} d_{n}+n_{0} \geqslant 2 a+n_{0}
$$

by Lemma4.4. Therefore, if $t_{n} \geqslant 1$, then $2(d-1) \geqslant d-1+2 a+n_{0}>\frac{4}{\lambda}$ or $d-1 \geqslant 2 a+n_{0}>\frac{2}{\lambda}$, because $d-1+2 a+n_{0}>\frac{4}{\lambda}$ or $2 a+n_{0}>\frac{2}{\lambda}$. In both cases, I get $\lambda>\frac{d-1}{2}$, which is impossible by Lemma4.2(i). Thus, $t_{n}=0$, so that $P \notin T_{n}$.

Since T_{1} is smooth at P and $P \notin T_{n}$, there must be another irreducible component of T_{P} passing through P that is different from T_{1} and T_{n}. In particular, $n \geqslant 3$. Then $d \geqslant 4$ by Corollary 4.10. Without loss of generality, I may assume that $P \in T_{2}$. Then T_{2} is smooth at P by Lemma 4.11. Moreover, T_{1} and T_{2} must be tangent at P. This shows that $P_{1} \in T_{2}^{1}$ as well.

Put $D=a T_{1}+b T_{2}+\Delta$, where b is a non-negative rational number, and Δ is an effective \mathbb{Q}-divisor on the surface S whose support does not contain T_{1} and T_{2}. Put $k_{0}=\operatorname{mult}_{P}(\Delta)$. Then $m_{0}=k_{0}+a+b t_{2}$, and $a d_{1}+b d_{2} \leqslant 1$ by Lemma 4.4. Denote by Δ^{1} the proper transform of the \mathbb{Q}-divisor Δ on the surface S_{1}. Put $k_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right)$. Then

$$
d-1-2 k_{0} \geqslant d_{1}+d_{2}+\left(a d_{1}+a d_{2}\right)\left(d-d_{1}-d_{2}-1\right)-2 k_{0}=\Delta^{1} \cdot\left(T_{1}^{1}+T_{2}^{1}\right) \geqslant 2 k_{1}
$$

because $a d_{1}+b d_{2} \leqslant 1$ and $d-d_{1}-d_{2}-1 \geqslant 0$, since $n \geqslant 3$. This gives $k_{0}+k_{1} \leqslant \frac{d-1}{2}$. On the other hand, I have $2 a+2 b+k_{0}+k_{1}=m_{0}+m_{1}>\frac{2}{\lambda}$ by Corollary 4.15. Thus,

$$
\frac{d+3}{2}=2+\frac{d-1}{2} \geqslant 2\left(a d_{1}+b d_{2}\right)+\frac{d-1}{2} \geqslant 2 a+2 b+\frac{d-1}{2} \geqslant 2 a+2 b+k_{0}+k_{1}>\frac{2}{\lambda}
$$

because $a d_{1}+b d_{2} \leqslant 1$. By Lemma 4.2 (iii) this gives $d=4$.

Since $d=4$ and $n \geqslant 3$, I have $n=3$ by Corollary 4.10. Without loss of generality, I may assume that $d_{1} \leqslant d_{2}$. By Corollary 4.9, there exists at most one line in S that passes through P. This shows that $d_{1}=1, d_{2}=2$ and $d_{3}=1$. Thus, T_{1} and T_{3} are lines, T_{2} is a conic, T_{1} is tangent to T_{2} at P, and T_{3} does not pass through P. In particular, the curves T_{1}^{1} and T_{1}^{2} intersect each other transversally at P_{1}.

By Lemma 4.3, $T_{1} \cdot T_{1}=T_{2} \cdot T_{2}=-2$ and $T_{1} \cdot T_{2}=2$. On the other hand, the log pair $\left(S_{1}, \lambda a T_{1}^{1}+\lambda b T_{2}^{1}+\lambda \Delta^{1}+\left(\lambda\left(a+b+k_{0}\right)-1\right) E_{1}\right)$ is not log canonical at P_{1}. Thus, applying Theorem 2.12 to this \log pair and the curve T_{1}^{1}, I get

$$
\lambda\left(1+2 a-2 b-k_{0}\right)=\lambda \Delta^{1} \cdot T_{1}^{1}>2-\lambda\left(a+b+k_{0}\right)-\lambda b,
$$

which implies that $3 a>\frac{2}{\lambda}-1=\frac{11}{5}$, because $\lambda=\frac{5}{8}$. Similarly, applying Theorem 2.12 to this \log pair and the curve T_{2}^{1}, I get

$$
\lambda\left(2-2 a+2 b-k_{0}\right)=\lambda \Delta^{1} \cdot T_{2}^{1}>2-\lambda\left(a+b+k_{0}\right)-\lambda a,
$$

which implies that $3 b>\frac{2}{\lambda}-2=\frac{6}{5}$. Hence, I have $a>\frac{11}{15}$ and $b>\frac{2}{5}$, which is impossible, since $a+2 b=a d_{1}+b d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.

Using Lemma 4.16, I can easily prove
Lemma 4.18. One has mult ${ }_{P}\left(T_{P}\right)=2$. Moreover, if the curve T_{P} is reducible, then $n=2$, $d_{1} \leqslant d_{2}, P \in T_{1} \cap T_{2}$, and both curves T_{1} and T_{2} are smooth at P.

Proof. If T_{P} is irreducible and mult ${ }_{P}\left(T_{P}\right) \geqslant 3$, then

$$
d=T_{P} \cdot D \geqslant 3 m_{0},
$$

which implies that $m_{0} \leqslant \frac{d}{3}$. On the other hand, I have $\frac{1}{\lambda} \geqslant \frac{d}{3}$ by Lemma 4.2 (vi). Thus, if T_{P} is irreducible, then $\operatorname{mult}_{P}\left(T_{P}\right)=2$, because $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5. Hence, I may assume that $n \geqslant 2$. Then $t_{n}=0$ or $t_{n}=1$ by Lemma 4.5. In particular, there exists an irreducible component of the curve T_{P} different from T_{n} that passes through P. Without loss of generality, I may assume that $P \in T_{1}$.

Put $D=a T_{1}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curve T_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Denote by Ω^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Then $\left(S_{1}, \lambda \Omega^{1}+\left(\lambda\left(n_{0}+a t_{1}\right)-1\right) E_{1}\right)$ is not \log canonical at P_{1}, since $P_{1} \notin T_{1}^{1}$ by Lemma4.16. In particular, it follows from Theorem [2.13] that

$$
\lambda n_{0}=\lambda \Omega^{1} \cdot E_{1}>1,
$$

which implies that $n_{0}>\frac{1}{\lambda}$. Thus, if $t_{1} \geqslant 2$, then it follows from Lemma 4.3 that

$$
\frac{1}{\lambda} \geqslant \frac{d-1}{2} \geqslant \frac{d_{1}+a d_{1}\left(d-d_{1}-1\right)}{2}=\frac{\Omega \cdot T_{1}}{2} \geqslant \frac{t_{1} n_{0}}{2} \geqslant n_{0}>\frac{1}{\lambda},
$$

because $a \leqslant \frac{1}{d_{1}}$ by Lemma 4.4, and $\lambda \leqslant \frac{2}{d-1}$ by Lemma 4.2(i). Thus, $t_{1}=1$. Similarly, if $P \in T_{n}$ and $n \geqslant 3$, then

$$
\frac{2}{\lambda} \geqslant d-1 \geqslant d_{1}+d_{n}+a d_{1}\left(d-d_{1}-d_{n}-1\right)=\Omega \cdot\left(T_{1}+T_{n}\right) \geqslant 2 n_{0}>\frac{2}{\lambda} .
$$

Thus, if $P \in T_{n}$, then $n=2$.
If $P \in T_{n}$, then $n=2$, and T_{n} is smooth at P. If $n=2$, then T_{n} must pass through P, because T_{1} is smooth at P. Furthermore, if $n=2$, then $d_{1} \leqslant d_{n}$, because $d_{n}>\frac{d-1}{2}$ by Lemma 4.5, Therefore, the required assertions are proved in the case when $n=2$. Thus, I may assume that $n \geqslant 3$. In particular, $P \notin T_{n}$. Then every irreducible component of the curve T_{P} that contain P is smooth at P by Lemma 4.11. Hence, there should be at least two irreducible components of the curve T_{P} that pass through P. Since $P \notin T_{n}$, the point P is contained in an irreducible component of T_{P} that is different from T_{1} and T_{n}. Without loss of generality, I may assume that $P \in T_{2}$.

Put $D=a T_{1}+b T_{2}+\Delta$, where b is a non-negative rational number, and Δ is an effective \mathbb{Q}-divisor on the surface S whose support does not contain T_{1} and T_{2}. Put $k_{0}=\operatorname{mult}_{P}(\Delta)$. Then $a d_{1}+b d_{2} \leqslant 1$ by Lemma 4.4. Thus, it follows from Lemma 4.3 that
$2 k_{0} \leqslant \Delta \cdot\left(T_{1}+T_{2}\right)=d_{1}+d_{2}+\left(a d_{1}+a d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d_{1}+d_{2}+\left(d-d_{1}-d_{2}-1\right)=d-1$ because $a d_{1}+b d_{2} \leqslant 1$. Hence, I have $k_{0} \leqslant \frac{d-1}{2}$. Denote by Δ^{1} the proper transform of the \mathbb{Q}-divisor Δ on the surface S_{1}. Then the log pair $\left(S_{1}, \lambda \Delta^{1}+\left(\lambda\left(k_{0}+a+b\right)-1\right) E_{1}\right)$ is not \log canonical at P_{1}, since $P_{1} \notin T_{1}^{1}$ and $P_{1} \notin T_{2}^{1}$ by Lemma 4.16. In particular, it follows from Theorem 2.12 that

$$
\lambda k_{0}=\lambda \Delta^{1} \cdot E_{1}>1,
$$

which implies that $k_{0}>\frac{1}{\lambda}$. This contradicts Lemma 4.2(i), because $k_{0} \leqslant \frac{d-1}{2}$. The obtained contradiction completes the proof.

Later, I will need the following marginal
Lemma 4.19. Suppose that $d=4$. Then $m_{0} \leqslant \frac{11}{5}$.
Proof. If $n=1$ or $d_{1}=d_{2}=n=2$, then

$$
2 t_{n} \geqslant d_{n}=T_{n} \cdot D \geqslant t_{n} m_{0},
$$

which implies that $m_{0} \leqslant 2$. Hence, I may assume that neither $n=1$ nor $d_{1}=d_{2}=n=2$. Then it follows from Lemma 4.18 that $n=2, d_{1}=1, d_{2}=3, P \in T_{1} \cap T_{2}$, and both curves T_{1} and T_{2} are smooth at P. Put $D=a T_{1}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the line T_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Then $n_{0}+3 a \leqslant 3$ by Lemma 4.4. Moreover, I have

$$
1+2 a=T_{1} \cdot \Omega \geqslant n_{0} .
$$

The obtained inequalities give $m_{0}=n_{0}+a \leqslant \frac{11}{5}$.
Let $f_{2}: S_{2} \rightarrow S_{1}$ be a blow up of the point P_{1}. Denote by E_{2} the f_{2}-exceptional curve, denote by E_{1}^{2} the proper transform of the curve E_{1} on the surface S_{2}, and denote by D^{2} the proper transform of the \mathbb{Q}-divisor D on the surface S_{2}. Then

$$
K_{S_{2}}+\lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2} \sim_{\mathbb{Q}} f_{2}^{*}\left(K_{S_{1}}+\lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right) .
$$

By Remark [2.11, the \log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not log canonical at some point $P_{2} \in E_{1}$.
Lemma 4.20. One has $m_{0}+m_{1} \leqslant \frac{3}{\lambda}$.
Proof. Suppose that $m_{0}+m_{1}>\frac{3}{\lambda}$. Then $2 m_{0} \geqslant m_{0}+m_{1}>\frac{3}{\lambda}$. But $m_{0} \leqslant \frac{d+1}{2}$ by Lemma 4.12. Then $\lambda>\frac{3}{d+1}$. Thus, $d \leqslant 4$ by Lemma 4.2(ii). If $d=4$, then

$$
\frac{22}{5} \geqslant 2 m_{0} \geqslant m_{0}+m_{1}>\frac{3}{\lambda}=\frac{24}{5}
$$

by Lemma 4.19. Thus, $d=3$. Then $\lambda=1$. By Corollary 4.10, $n \leqslant 2$. If $n=1$, then

$$
3=T_{P} \cdot D \geqslant 2 m_{0} \geqslant m_{1}+m_{0}>\frac{3}{\lambda}=3,
$$

which is absurd. Hence, $n=2$. Then $d_{1}=1$ and $d_{2}=2$ by Lemma 4.5. Hence, $P \in T_{1} \cap T_{2}$.
Put $D=a T_{1}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor on S whose support does not contain the line T_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Then $m_{0}=n_{0}+a$, and $n_{0}+2 a \leqslant 2$ by Lemma 4.4. Moreover, I have

$$
1+a=T_{1} \cdot \Omega \geqslant n_{0}
$$

which implies that $n_{0}-a \leqslant 1$. Adding $n_{0}-a \leqslant 1$ to $n_{0}+2 a \leqslant 2$, I get

$$
3 \geqslant 2 n_{0}+a=n_{0}+m_{0}=m_{1}+m_{0}>\frac{3}{\lambda}=3,
$$

because $P_{1} \notin T_{1}^{1}$ by Lemma 4.16,
Thus, the log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is \log canonical at a punctured neighborhood of the point P. The log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is \log canonical at every point of the curve E_{2} that is different from P_{2} by Lemma 2.14.
Lemma 4.21. One has $P_{2} \neq E_{1}^{2} \cap E_{2}$.
Proof. Suppose that $P_{2}=E_{1}^{2} \cap E_{2}$. Then Theorem 2.12 gives

$$
\lambda\left(m_{0}-m_{1}\right)=\lambda D^{2} \cdot E_{1}^{2}>3-\lambda\left(m_{0}+m_{1}\right)
$$

which implies that $m_{0}>\frac{3}{2 \lambda}$. But $m_{0} \leqslant \frac{d+1}{2}$ by Lemma 4.12. Therefore, $\lambda>\frac{3}{d+1}$, which implies that $d \leqslant 4$ by Lemma 4.2 (ii). If $d=4$, then $\frac{12}{5}=\frac{3}{2 \lambda}<m_{0} \leqslant \frac{11}{5}$ by Lemma 4.19, Thus, $d=3$. Then $\lambda=1$. By Corollary 4.10, $n \leqslant 2$. If $n=1$, then

$$
3=T_{P} \cdot D \geqslant 2 m_{0}>\frac{3}{\lambda}=3
$$

which is absurd. Hence, $n=2$. Then $d_{1}=1$ and $d_{2}=2$ by Lemma 4.5, I have $P \in T_{1} \cap T_{2}$.
Put $D=a T_{1}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor on S whose support does not contain the line T_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Omega)$. Then $m_{0}=n_{0}+a$, and $n_{0}+2 a \leqslant 2$ by Lemma 4.4, Then $2 n_{0}+a \leqslant 3$, because

$$
1+a=D \cdot \Omega \geqslant n_{0}
$$

Denote by Ω^{1} the proper transform of the divisor Ω on S_{1}. Put $n_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$. Then $n_{1}=m_{1}$, since $P_{1} \notin T_{1}^{1}$ by Lemma4.16. Thus, the log pair $\left(S_{2},\left(n_{0}+a-1\right) E_{1}^{2}+\left(n_{0}+n_{1}-a-2\right) E_{2}\right)$ is not \log canonical at P_{2}. Applying Theorem 2.12 to this pair and the curve E_{1}^{2}, I get

$$
n_{0}-n_{1}=\Omega^{2} \cdot E_{1}^{2}>3-n_{0}-n_{1}+a
$$

which implies that $2 n_{0}+a>3$. But I already proved that $2 n_{0}+a \leqslant 3$.
Thus, the log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}. Then Lemma 2.5 gives
Corollary 4.22. One has $m_{0}+m_{1}+m_{2}>\frac{3}{\lambda}$.
Denote by T_{P}^{2} the proper transform of the curve T_{P} on the surface S^{2}. Then

$$
T_{P}^{2}+E_{1}^{2} \sim\left(f_{1} \circ f_{2}\right)^{*}\left(\mathcal{O}_{S}(1)\right)-f_{2}^{*}\left(E_{1}\right)-E_{2}
$$

because $T_{P}^{1} \sim f_{1}^{*}\left(\mathcal{O}_{S}(1)\right)-2 E_{1}$ by Lemma 4.18, and $P_{1} \notin T_{P}^{1}$ by Lemma 4.16.
Lemma 4.23. The linear system $\left|T_{P}^{2}+E_{1}^{2}\right|$ is a pencil that does not have base points in E_{2}.
Proof. Since $\left|T_{P}^{1}+E_{1}\right|$ is a two-dimensional linear system that does not have base points, $\left|T_{P}^{2}+E_{1}^{2}\right|$ is a pencil. Let C be a curve in $\left|T_{P}^{1}+E_{1}\right|$ that passes through P_{1} and is different from $T_{P}^{1}+E_{1}$. Then C is smooth at P, since $P \in f_{1}(C)$ and $f_{1}(C)$ is a hyperplane section of the surface S that is different from T_{P}. Since $C \cdot E_{1}=1$, I see that $T_{P}^{1}+E_{1}$ and C intersect transversally at P_{1}. Thus, the proper transform of the curve C on the surface S_{2} is contained in $\left|T_{P}^{1}+E_{1}\right|$ and have no common points with $T_{P}^{2}+E_{1}^{2}$ in E_{2}. This shows that the pencil $\left|T_{P}^{1}+E_{1}\right|$ does not have base points in E_{2}.

Since $\left|T_{P}^{1}+E_{1}\right|$ does not have base points in E_{2}, no curves in $\left|T_{P}^{1}+E_{1}\right|$ has E_{2} as an irreducible component, because $\left(T_{P}^{1}+E_{1}\right) \cdot E_{2}=1$. Moreover, the only divisor in $\left|T_{P}^{1}+E_{1}\right|$ that contains E_{1}^{2} as an irreducible component is $T_{P}^{2}+E_{1}^{2}$.
Remark 4.24. Let C be a curve in $\left|T_{P}^{1}+E_{1}\right|$. Then $P_{1} \in f_{2}(C)$, and $f_{1} \circ f_{2}(C)$ is a hyperplane section of the surface S that passes through P. In particular, the curve C is reduced by Lemma 2.6. Furthermore, if $C \neq T_{P}^{2}+E_{1}^{2}$, then C is smooth at $C \cap E$, the curve $f_{2}(C)$ is smooth at P_{1}, and the curve $f_{1} \circ f_{2}(C)$ is smooth at the point P.

Let Z^{2} be the curve in $\left|T_{P}^{1}+E_{1}\right|$ that passes through the point P_{2}. Then $Z^{2} \neq T_{P}^{2}+E_{1}^{2}$, because $P_{2} \neq E_{1}^{2} \cap E_{2}$ by Lemma 4.21. Then Z_{2} is smooth at P_{2}. Put $Z=f_{1} \circ f_{2}\left(Z^{2}\right)$ and $Z^{1}=f_{2}\left(Z^{2}\right)$. Then $P \in Z$ and $P_{1} \in Z^{1}$. Moreover, the curve Z is smooth at P, and the curve Z_{1} is smooth at P_{1}. Furthermore, the curve Z is reduced by Lemma 2.6.
Lemma 4.25. The curve Z is reducible.
Proof. Suppose that Z is irreducible. Let me seek for a contradiction. Since Z is smooth at P, the \log pair $(S, \lambda Z)$ is \log canonical at P. Moreover, $Z \sim_{\mathbb{Q}} D$. Thus, it follows from Remark 2.4 that I may assume that $\operatorname{Supp}(D)$ does not contain the curve Z. Then

$$
d-m_{0}-m_{1}=Z^{2} \cdot D^{2} \geqslant m_{2}
$$

which implies that $m_{0}+m_{1}+m_{2} \leqslant d$. One the other hand, $m_{0}+m_{1}+m_{2}>\frac{3}{\lambda}$ by Corollary 4.22, This gives $\lambda>\frac{3}{d}$, which is impossible by Lemma 4.2 (vi).

The \log pair $(S, \lambda Z)$ is \log canonical at P, because Z is smooth at P. Since $Z \sim_{\mathbb{Q}} D$, it follows from Remark 2.4 that I may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z. Denote this irreducible component by \bar{Z}, and denote its degree in \mathbb{P}^{3} by \bar{d}. Then $\bar{d}<d$.
Lemma 4.26. One has $P \notin \bar{Z}$.
Proof. Suppose that $P \in \bar{Z}$. Let me seek for a contradiction. Denote by \bar{Z}^{2} the proper transform of the curve \bar{Z} on the surface S_{2}. Then

$$
d-m_{0}-m_{1}>\bar{d}-m_{0}-m_{1}=\bar{Z}^{2} \cdot D^{2} \geqslant m_{2}
$$

which implies that $m_{0}+m_{1}+m_{2}<d$. One the other hand, $m_{0}+m_{1}+m_{2}>\frac{3}{\lambda}$ by Corollary 4.22, This gives $\lambda>\frac{3}{d}$, which is impossible by Lemma 4.2 (vi).

Denote by \hat{Z} the irreducible component of the curve Z that passes through P, denote its proper transform on the surface S_{1} by \hat{Z}^{1}, and denote its proper transform on the surface S_{2} by \hat{Z}^{2}. Then $\bar{Z} \neq \hat{Z}, P_{1} \in \hat{Z}^{1}$ and $P_{2} \in \hat{Z}^{2}$. Denote by \hat{d} the degree of the curve \hat{Z} in \mathbb{P}^{3}. Then $\hat{d}+\bar{d} \leqslant d$. Moreover, the intersection form of the curves \hat{Z} and \bar{Z} on the surface S is given by
Lemma 4.27. One has $\bar{Z} \cdot \bar{Z}=-\bar{d}(d-\bar{d}-1), \hat{Z} \cdot \hat{Z}=-\hat{d}(d-\hat{d}-1)$ and $\bar{Z} \cdot \hat{Z}=\bar{d} \hat{d}$.
Proof. See the proof of Lemma 4.3 .
Put $D=a \hat{Z}+\Omega$, where a is a positive rational number, and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curve \hat{Z}. Denote by Ω^{1} the proper transform of the divisor Ω on the surface S_{1}, and denote by Ω^{2} the proper transform of the divisor Ω on the surface S_{2}. Put $n_{0}=\operatorname{mult}_{P}(\Omega), n_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$ and $n_{2}=\operatorname{mult}_{P_{2}}\left(\Omega^{2}\right)$. Then $m_{0}=n_{0}+a$, $m_{1}=n_{1}+a$ and $m_{2}=n_{2}+a$. Then the log pair $\left(S_{2}, \lambda a \hat{Z}^{2}+\lambda \Omega^{2}+\left(\lambda\left(n_{0}+n_{1}+2 a\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}, because $\left(S_{2}, \lambda D^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}. Thus, applying Theorem 2.12, I see that

$$
\lambda\left(\Omega \cdot \hat{Z}-n_{0}-n_{1}\right)=\lambda \Omega^{2} \cdot Z^{2}>1-\left(\lambda\left(n_{0}+n_{1}+2 a\right)-2\right)=3-\lambda\left(n_{0}+n_{1}+2 a\right)
$$

which implies that

$$
\begin{equation*}
\Omega \cdot \hat{Z}>\frac{3}{\lambda}-2 a \tag{4.28}
\end{equation*}
$$

On the other hand, I have

$$
\bar{d}=D \cdot \bar{Z}=(a \hat{Z}+\Omega) \cdot \bar{Z} \geqslant a \hat{Z} \cdot \bar{Z}=a \hat{d} \bar{d}
$$

by Lemma 4.27. This gives

$$
\begin{equation*}
a \leqslant \frac{1}{\hat{d}} \tag{4.29}
\end{equation*}
$$

Thus, it follows from (4.28), (4.29) and Lemma 4.27 that

$$
\frac{3}{\lambda}-2 \leqslant \frac{3}{\lambda}-2 a<\Omega \cdot \hat{Z}=\hat{d}+a \hat{d}(d-\hat{d}-1) \leqslant d-1,
$$

which implies that $\lambda>\frac{3}{d+1}$. Then $d \leqslant 4$ by Lemma 4.2(ii).
Lemma 4.30. One has $d \neq 4$.
Proof. Suppose that $d=4$. Then $\lambda=\frac{5}{8}$. By Lemma 4.25, $\hat{d} \leqslant 3$. By Lemma 4.16, \hat{Z} is not a line, since every line passing through P must be an irreducible component of the curve T_{P}. Thus, either \hat{Z} is a conic or \hat{Z} is a plane cubic curve. If \hat{Z} is a conic, then $\hat{Z}^{2}=-2$ and $a \leqslant \frac{1}{2}$ by (4.29). Thus, if \hat{Z} is a conic, then

$$
2+2 a=\Omega \cdot \hat{Z}>\frac{3}{\lambda}-2 a=\frac{24}{5}-2 a,
$$

which implies that $\frac{1}{2} \geqslant a>\frac{7}{10}$. This shows that \hat{Z} is a plane cubic curve. Then $\hat{Z}^{2}=0$. Since $a \leqslant \frac{1}{3}$ by (4.29), I have

$$
3=\Omega \cdot \hat{Z}>\frac{3}{\lambda}-2 a=\frac{24}{5}-2 a \geqslant \frac{24}{5}-\frac{2}{3}=\frac{62}{15},
$$

which is absurd.
Thus, I see that $d=3$. Then \hat{Z} us either a line or a conic by Lemma 4.25, But every line passing through P must be an irreducible component of T_{P}. Since \hat{Z} is not an irreducible component of T_{P} by Lemma 4.16, the curve \hat{Z} must be a conic. Then $\hat{Z} \cdot \hat{Z}=0$. Therefore, it follows from (4.28) that

$$
3-2 a=\frac{3}{\lambda}-2 a<\Omega \cdot \hat{Z}=\hat{d}+a \hat{d}(d-\hat{d}-1)=\hat{d}=2,
$$

which implies that $a>\frac{1}{2}$. But $a \leqslant \frac{1}{d}=\frac{1}{2}$ by (4.29). The obtained contradiction completes the proof of Theorem 1.21 ,

Appendix A. Log canonical thresholds of hypersurfaces

In this appendix, I will present some known results about hypersurfaces and pose one conjecture. Let V_{d} be a reduced hypersurface in \mathbb{P}^{n} of degree d such that $d \geqslant n+1 \geqslant 3$, and let P be a point in V_{d}. Put $m_{P}=\operatorname{mult}_{P}\left(V_{d}\right)$. The \log canonical threshold of the \log pair $\left(\mathbb{P}^{n}, V_{d}\right)$ at the point P is the number

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{n}, V_{d}\right)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the } \log \text { pair }\left(\mathbb{P}^{n}, \lambda V_{d}\right) \text { is } \log \text { canonical at } P\right\} .
$$

Then $\frac{1}{m_{P}} \leqslant \operatorname{lct}_{P}\left(\mathbb{P}^{n}, V_{d}\right) \leqslant \frac{n}{m_{P}}$ by [18, Lemma 8.10]. Thus, if V_{d} is a cone with vertex in P, then $\operatorname{lct}_{P}\left(\mathbb{P}^{n}, V_{d}\right) \leqslant \frac{n}{d}$. Moreover, Tommaso de Fernex, Lawrence Ein and Mircea Mustaţă proved
Theorem A. 1 ([11, Theorem 0.2]). Suppose that the \log pair $\left(\mathbb{P}^{n}, \frac{n}{d} V_{d}\right)$ is Kawamata \log terminal outside of the point P. Then $\operatorname{lct}_{P}\left(\mathbb{P}^{n}, V_{d}\right) \geqslant \frac{n}{d}$. If $\operatorname{lct}_{P}\left(\mathbb{P}^{n}, V_{d}\right)=\frac{n}{d}$, then V_{d} is a cone with vertex in P.

Let X_{d} be a smooth hypersurface in \mathbb{P}^{n+1} of degree $d \geqslant n+1 \geqslant 3$, and let T_{O} be the hyperplane section of X_{d} that is singular at O. Then T_{O} has isolated singularities (see, for example, [24]).

Definition A. 2 ([8, Definition 2.2]). The point O is a star point if T_{O} is a cone with vertex in O.
If O is star point, then $\alpha_{X_{d}}^{H_{X_{d}}}(O) \leqslant \frac{n}{d}$ (see Definition 1.20). Moreover, $\alpha_{X_{d}}^{H_{X_{d}}}(O) \geqslant \frac{n}{d}$ by
Theorem A.3. Let D_{X} be an effective \mathbb{Q}-divisor on X_{d} such that $D_{X} \sim_{\mathbb{Q}} H_{X_{d}}$. Then $\left(X, \frac{n}{d} D_{X}\right)$ is not Kawamata \log terminal at O if and only if $D_{X}=T_{O}$ and O is a star point.

Proof. Suppose that $\left(X, \frac{n}{d} D_{X}\right)$ is not Kawamata \log terminal at the point O. By Theorems 1.13 and 1.21. I may assume that $n \geqslant 3$. Then $\operatorname{Pic}(X)=\mathbb{Z}\left[H_{X}\right]$. Hence, I may assume that $D_{X}=$ $\frac{1}{m} D_{m}$ for a prime Weil divisor D_{m} on X such that $D \sim m H_{X}$, where $m \in \mathbb{N}$. Then $O \in D_{m}$, and it follows from [24] that mult $\left(D_{m}\right) \leqslant m$ for every irreducible curve $C \subset X$. In particular, the \log pair $\left(X, \frac{n-1}{d m} D_{m}\right)$ is Kawamata log terminal outside of finitely many points in X. On the other hand, there exists a sufficiently general linear projection $\gamma: X \rightarrow \mathbb{P}^{n-1}$ such that γ is etale in a neighborhood of the point O, the induced morphism $\left.\gamma\right|_{D_{m}}: D_{m} \rightarrow \gamma\left(D_{m}\right)$ is birational and is an isomorphism in a neighborhood of the point O. Then $\left(\mathbb{P}^{n-1}, \frac{n-1}{d m} \gamma\left(D_{m}\right)\right.$) is not Kawamata log terminal at $\gamma(O)$ and is Kawamata log terminal in a punctured neighborhood of the point $\gamma(O)$. Since $\gamma\left(D_{m}\right)$ is a hypersurface of degree $d m$, the divisor $-\left(K_{\mathbb{P}^{n-1}}-\frac{n-1}{d m} \gamma\left(D_{m}\right)\right)$ is ample. Then the locus where $\left(\mathbb{P}^{n-1}, \frac{n-1}{d m} \gamma\left(D_{m}\right)\right)$ is not Kawamata \log terminal must be connected by the connectedness principle of Kollár-Shokurov (see, for example, [9, Theorem 6.3.2]). Hence, the \log pair $\left(\mathbb{P}^{n-1}, \frac{n-1}{d m} \gamma\left(D_{m}\right)\right)$ is Kawamata \log terminal outside of $\gamma(O)$. By Theorem A. 1 , $\gamma\left(D_{m}\right)$ is a cone with vertex in $\gamma(O)$. This implies that D_{m} is a cone with vertex O. Then $D_{m}=T_{O}$, which implies that O is a star point.

Thus, $\alpha\left(X_{d}, H_{X_{d}}\right) \geqslant \frac{n}{d}$. Moreover, if X_{d} contains a star point, then $\alpha\left(X_{d}, H_{X_{d}}\right)=\frac{n}{d}$. If $n=2$, then Corollary 1.27 implies that $\alpha\left(X_{d}, H_{X_{d}}\right)>\frac{n}{d}$ if and only if X_{d} does not have star points. So, it is natural to expect

Conjecture A.4. If X_{d} does not contain star points, then $\alpha\left(X_{d}, H_{X_{d}}\right)>\frac{n}{d}$.
By [8, Theorem 2.10], X_{d} contains at most finitely many star points. If X_{d} is general, it does not contain star points at all. In particular, if Conjecture A. 4 is true, then $\alpha\left(X_{d}, H_{X_{d}}\right)>\frac{n}{d}$ provided that X_{d} is general enough. If $d=n+1$, the latter is indeed true by

Theorem A. 5 ([2, Theorem 1.7], [25, Theorem 2], 4, Theorem 1.1.5]). Suppose that X_{d} is a general hypersurface in \mathbb{P}^{n+1} of degree $d=n+1 \geqslant 3$. If $n=2$, then $\alpha\left(X_{d}, H_{X_{d}}\right)=\frac{3}{4}$. If $n=3$, then $\alpha\left(X_{d}, H_{X_{d}}\right) \geqslant \frac{7}{9}$. If $n=4$, then $\alpha\left(X_{d}, H_{X_{d}}\right) \geqslant \frac{5}{6}$. If $n \geqslant 5$, then $\alpha\left(X_{d}, H_{X_{d}}\right)=1$.

By [28, Theorem 2.1] and [6, Theorem A.3], this result implies that every general hypersurface in \mathbb{P}^{n+1} of degree $n+1 \geqslant 3$ admits a Kähler-Einstein metric. Similarly, Conjecture A.4 implies that every smooth hypersurface in \mathbb{P}^{n+1} of degree $n+1 \geqslant 3$ without star points admits a KählerEinstein metric. Note that Conjecture A.4 follows Theorem A. 3 and 30, Conjecture 5.3].

References

[1] I. Cheltsov, Log canonical thresholds on hypersurfaces, Sb. Math. 192 (2001), 1241-1257.
[2] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), 1118-1144.
[3] I. Cheltsov, Del Pezzo surfaces and local inequalities, Proceedings of the Trento conference "Groups of Automorphisms in Birational and Affine Geometry", October 2012, Springer (2014), 83-101.
[4] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, Math. Z. 276 (2014), 51-79.
[5] I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, to appear in J. of EMS.
[6] I. Cheltsov, K. Shramov, Log-canonical thresholds for nonsingular Fano threefolds (with an appendix by J.-P. Demailly), Russian Math. Surveys 63 (2008), 859-958.
[7] X. Chen, B. Wang, The Kähler Ricci flow on Fano manifolds (I). J. Eur. Math. Soc. 14 (2012), 2001-2038.
[8] F. Cools, M. Coppens, Star points on smooth hypersurfaces, J. Algebra 323 (2010), no. 1, 261-286.
[9] A. Corti, J. Kollár, K. Smith, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics 92 (2004), Cambridge University Press.
[10] A. Dimca, E. Sernesi, Syzygies and logarithmic vector fields along plane curves, Journal de l'Ecole polytechnique Mathematiques 1 (2014), 247-267.
[11] T. de Fernex, L. Ein, M. Mustata, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. 10 (2003), 219-236.
[12] G.-M. Greuel, Ch. Lossen, E. Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), 539-580.
[13] S. Gusein-Zade, N. Nekhoroshev, On singularities of type \mathbb{A}_{k} on simple curves of fixed degree, Funct. Anal. Appl. 34 (2000), 214-215.
[14] P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), 213-257.
[15] C.-M. Hui, Plane quartic curves, Ph.D. Thesis, University of Liverpool, 1979.
[16] H. Kim, Y. Lee, Log canonical thresholds of semistable plane curves, Math. Proc. Cambridge Philos. Soc. 137 (2004), 273-280.
[17] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, \mathbb{G}_{a}-actions on affine cones, Transform. Groups 18 (2013), 1137-1153.
[18] J. Kollár, Singularities of pairs, Proc. of Symp. in Pure Math. 62 (1997), 221-287.
[19] T. Kuwata, On log canonical thresholds of reducible plane curves, American J. of Math., 121 (1999), 701-721.
[20] R. Laza, Deformations of singularities and variation of GIT quotients, Trans. Amer. Math. Soc. 361 (2009), 2109-2161.
[21] K. Lee, The degrees of plane curves with prescribed log canonical threshold, J. of Algebra 322 (2009), 42054218.
[22] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. 34, Springer, Berlin, 1994.
[23] A. Płoski, A bound for the Milnor number of plane curve singularities, Cent. Eur. J. Math. 12 (2014), 688-693.
[24] A. Pukhlikov, Notes on theorem of V. A. Iskovskikh and Yu. I. Manin about 3-fold quartic, Proceedings of Steklov Institute 208 (1995), 278-289.
[25] A. Pukhlikov, Birational geometry of Fano direct products, Izv. Math. 69 (2005), 1225-1255.
[26] Y. Shi, On the α-invariants of cubic surfaces with Eckardt points, Adv. Math. 225 (2010), 1285-1307.
[27] V. Shokurov, Three-dimensional log perestroikas, Russian Acad. Sci. Izv. Math. 40 (1993), 95-202.
[28] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987), 225-246.
[29] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101-172.
[30] G. Tian, Kähler-Einstein metrics on algebraic manifolds, Metric and Differential Geometry Progress in Mathematics 297 (2012), 119-159.
[31] C. Wall, Highly singular quintic curves, Math. Proc. Cambridge Philos. Soc. 119 (1996), 257-277.

28 Impasse des Murenes
Bormes les Mimosas 83230, France
I. Cheltsov@ed.ac.uk

[^0]: 2010 Mathematics Subject Classification. 14H20, 14H50, 14J70 (primary), and 14E05, 14L24, 32Q20 (secondary).
 Key words and phrases. Log canonical threshold, plane curve, GIT-stability, α-invariant of Tian, smooth surface.

