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WORST SINGULARITIES OF PLANE CURVES OF GIVEN DEGREE

IVAN CHELTSOV

Abstract. I prove that 2
d
, 2d−3

(d−1)2
, 2d−1

d(d−1)
, 2d−5

d2−3d+1
and 2d−3

d(d−2)
are the smallest log canonical

thresholds of reduced plane curves of degree d > 3. I describe reduced plane curves of degree
d whose log canonical thresholds are these numbers. I prove that every reduced plane curve of
degree d > 4 whose log canonical threshold is smaller than 5

2d
is GIT-unstable for the action

of the group PGL3(C), and I describe GIT-semistable reduced plane curves with log canonical
thresholds 5

2d
. I prove that 2

d
, 2d−3

(d−1)2
, 2d−1

d(d−1)
, 2d−5

d2−3d+1
and 2d−3

d(d−2)
are the smallest values of the

α-invariant of Tian of smooth surfaces in P3 of degree d > 3.

All varieties are assumed to be algebraic, projective and defined over C.

1. Introduction

Let Cd be a reduced plane curve in P2 of degree d > 3, and let P be a point in Cd. The curve
Cd can have any given plane curve singularity at P provided that its degree d is sufficiently big.
This naturally leads to

Question 1.1. Given a plane curve singularity, what is the minimal d such that there exists Cd

having this singularity at P?

The best general answer to this question has been given by Greuel, Lossen and Shustin who
proved

Theorem 1.2 ([12, Theorem 2]). For every topological type of plane curve singularity with
Milnor number µ, there exists Cd of degree d 6 14

√
µ that has this singularity at P .

For special types of singularities this result can be considerably improved (see, for exam-
ple, [13]). Since Cd can have any mild singularity at P , it is natural to ask

Question 1.3. What is the worst singularity that Cd can have at P?

Denote by mP the multiplicity of the curve Cd at the point P , and denote by µ(P ) the Milnor
number of the point P . If I use mP to measure the singularity of Cd at the point P , then a
union of d lines passing through P is an answer to Question 1.3, since mP 6 d, and mP = d if
and only if Cd is a union of d lines passing through P . If I use the Milnor number µ(P ), then
the answer would be the same, since µ(P ) 6 (d− 1)2, and µ(P ) = (d − 1)2 if and only if Cd is
a union of d lines passing through P . Alternatively, I can use the number

lctP
(
P2, Cd

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
P2, λCd

)
is log canonical at P

}

that is known as the log canonical threshold of the log pair (P2, Cd) at the point P or the log
canonical threshold of the curve Cd at the point P (see [9, Definition 6.34]). The smallest
lctP (P2, Cd) when P runs through all points in Cd is usually denoted by lct(P2, Cd). Note that

1

mP

6 lctP
(
P2, Cd

)
6

2

mP

.

This is well-known (see, for example, [18, Lemma 8.10] or [9, Exercise 6.18 and Lemma 6.35]).
So, the smaller lctP (P2, Cd), the worse singularity of the curve Cd at the point P is.
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Example 1.4 ([19, Proposition 2.2]). Suppose that Cd is given by xn1
1 xn2

2 (xkm1
1 + xkm2

2 ) = 0 in
an analytic neighborhood of the point P , where k, n1, n2, m1 and m2 are arbitrary non-negative
integers. Then

lctP
(
P2, Cd

)
= min

{
1

n1
,

1

n2
,

1
m1

+ 1
m2

k + n1
m1

+ n2
m2

}
.

Log canonical thresholds of plane curves have been intensively studied (see, for example, [19],
[1], [11], [16], [14], [21], [20], [10]). Surprisingly, they give the same answer to Question 1.3 by

Theorem 1.5 ([1, Theorem 4.1], [11, Theorem 0.2]). One has lctP (P2, Cd) > 2
d
. Moreover,

lct(P2, Cd) = 2
d

if and only if Cd is a union of d lines that pass through P .

In this paper I want to address

Question 1.6. What is the second worst singularity that Cd can have at P?

To give a reasonable answer to this question, I have to disregard mP by obvious reasons. Thus,
I will use the numbers µ(P ) and lctP (P2,Cd). For cubic curves, they give the same answer.

Example 1.7. Suppose that d = 3, mP < 3 and P is a singular point of C3. Then P is a
singular point of type A1, A2 or A3. Moreover, if C3 has singularity of type A3 at P , then
C3 = L + C2, where C2 is a smooth conic, and L is a line tangent to C2 at P . Furthermore, I
have

µ(P ) =





1 if C3 has A1 singularity at P ,

2 if C3 has A2 singularity at P ,

3 if C3 has A3 singularity at P .

Similarly, I have

lctP
(
P2, C3

)
=





1 if C3 has A1 singularity at P ,

5

6
if C3 has A2 singularity at P ,

3

4
if C3 has A3 singularity at P .

For quartic curves, the numbers µ(P ) and lctP (P2,Cd) give different answers to Question 1.6.

Example 1.8. Suppose that d = 4, mP < 4 and P is a singular point of C4. Going through
the list of all possible singularities that CP can have at P (see, for example, [15]), I obtain

µ(P ) =





6 if C4 has D6 singularity at P ,

6 if C4 has A6 singularity at P ,

6 if C4 has E6 singularity at P ,

7 if C4 has A7 singularity at P ,

7 if C4 has E7 singularity at P ,

and µ(P ) < 6 in all remaining cases. Similarly, I get

lctP
(
P2, C4

)
=





5

8
if C4 has A7 singularity at P ,

5

8
if C4 has D5 singularity at P ,

3

5
if C4 has D6 singularity at P ,

7

12
if C4 has E6 singularity at P ,

5

9
if C4 has E7 singularity at P ,

and lctP (P2, C4) > 5
8 in all remaining cases.
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Recently, Arkadiusz P loski proved that µ(P ) 6 (d−1)2−⌊d2⌋ provided that mP < d. Moreover,

he described Cd in the case when µ(P ) = (d− 1)2 − ⌊d2⌋. To present his description, I need

Definition 1.9. The curve Cd is an even P loski curve if d is even, the curve Cd has d
2 > 2 irre-

ducible components that are smooth conics passing through P , and all irreducible components
of Cd intersect each other pairwise at P with multiplicity 4.

P loski curve of degree 6 looks like

Definition 1.10. The curve Cd is an odd P loski curve if d is odd, the curve Cd has d+1
2 > 3

irreducible components that all pass through P , d−1
2 irreducible component of the curve Cd are

smooth conics that intersect each other pairwise at P with multiplicity 4, and the remaining
irreducible component is a line in P2 that is tangent at P to all other irreducible components.

P loski curve of degree 7 looks like

Each P loski curve has unique singular point. If d = 4, then C4 is a P loski curve if and only
if it has a singular point of type A7. Thus, if d = 4, then µ(P ) = (d− 1)2 − ⌊d2⌋ = 7 if and only
if either C4 is a P loski curve and P is its singular point or C4 has singularity E7 at the point P

(see Example 1.8). For d > 5, P loski proved

Theorem 1.11 ([23, Theorem 1.4]). If d > 5, then µ(P ) = (d− 1)2 − ⌊d2⌋ if and only if Cd is a
P loski curve and P is its singular point.

This result gives a very good answer to Question 1.6. Surprisingly, the answer given by log
canonical thresholds is very different. To describe it, I need

Definition 1.12. The curve Cd has singularity of type Tr (resp., Kr, T̃r, K̃r) at the point P if
the curve Cd can be given by xr1 = x1x

r
2 (resp., xr1 = xr+1

2 , x2x
r−1
1 = x1x

r
2, x2x

r−1
1 = xr+1

2 ) in
an analytic neighborhood of P .

The main purpose of this paper is to prove

Theorem 1.13. Suppose that d > 4 and mP < d. If P is a singular point of the curve Cd of

type Td−1, Kd−1, T̃d−1 or K̃d−1, then

lctP
(
P2, Cd

)
=





2d− 3

(d− 1)2
if Cd has Td−1 singularity at P ,

2d− 1

d(d− 1)
if Cd has Kd−1 singularity at P ,

2d− 5

d2 − 3d + 1
if Cd has T̃d−1 singularity at P ,

2d− 3

d(d− 2)
if Cd has K̃d−1 singularity at P .
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If P is not a singular point of the curve Cd of type Td−1, Kd−1, T̃d−1 or K̃d−1, then either
lctP (P2, Cd) > 2d−3

d(d−2) , or d = 4 and Cd is a P loski quartic curve (in this case lctP (P2, Cd) = 5
8 ).

This result fits well Examples 1.7 and 1.8, since T2 = A3, K2 = A2, T̃2 = K̃2 = A1, K̃3 = D5,

T̃3 = D6, K3 = E6 and T3 = E7. Note that

2

d
<

2d− 3

(d− 1)2
<

2d− 1

d(d − 1)
<

2d− 5

d2 − 3d + 1
<

2d− 3

d(d− 2)

provided that d > 4. Thus, Theorem 1.13 describes the five worst singularities that Cd can have
at the point P . In particular, it answers Question 1.6. Moreover, this answer is very explicit.

Indeed, the curve Cd has singularity Tr, Kr, T̃r or K̃r at the point [0 : 0 : 1] if and only if it can
be given by

αxd−1z + βyxd−2z = γxyd−1 + δyd +

d∑

i=2

aix
iyd−i,

where each ai is a complex number, and

(α, β, γ, δ) =





(1, 0, 1, 0) if Cd has Td−1 singularity at [0 : 0 : 1],

(1, 0, 0, 1) if Cd has Kd−1 singularity at [0 : 0 : 1],

(0, 1, 1, 0) if Cd has T̃d−1 singularity at [0 : 0 : 1],

(0, 1, 0, 1) if C has K̃d−1 singularity at [0 : 0 : 1].

Remark 1.14. If Cd is a P loski curve and P is its singular point, then it follows from Example 1.4
or from explicit computations that

lctP
(
P2, Cd

)
=

5

2d
>

2d− 3

d(d− 2)

provided that d > 5. This shows that Theorems 1.11 and 1.13 gives completely different answers
to Question 1.6.

The proof of Theorem 1.13 implies one result that is interesting on its own. To describe
it, let me identify the curve Cd with a point in the space |OP2(d)| that parameterizes all (not
necessarily reduced) plane curves of degree d. Since the group PGL3(C) acts on |OP2(d)|, it is
natural to ask whether Cd is GIT-stable (resp., GIT-semistable) for this action or not. This
question arises in many different problems (see, for example, [16], [14] and [20]). For small
d, its answer is classical and immediately follows from the Hilbert–Mumford criterion (see, for
example, [22, Chapter 2.1], [14, Proposition 10.4] or [16, Lemma 2.1]).

Example 1.15 ([22, Chapter 4.2]). If d = 3, then C3 is GIT-stable (resp., GIT-semistable) if
and only if C3 is smooth (resp., has at most A1 singularities). If d = 4, then C4 is GIT-stable
(resp., GIT-semistable) if and only if C4 has at most A1 and A2 singularities (resp., it has at
most singular double points and C4 is not a union of a cubic with an inflectional tangent line).

Paul Hacking, Hosung Kim and Yongnam Lee noticed that the log canonical threshold
lct(P2, Cd) and GIT-stability of the curve Cd are closely related (cf. [10, Theorem 1.1]). In
particular, they proved

Theorem 1.16 ([14, Propositions 10.2 and 10.4], [16, Theorem 2.3]). If lct(P2, Cd) > 3
d
, then

the curve Cd is GIT-semistable. If d > 4 and lct(P2, Cd) > 3
d
, then the curve Cd is GIT-stable.

This gives a sufficient condition for the curve Cd to be GIT-stable (resp, GIT-semistable).
However, this condition is not a necessary condition. Let me give two examples that illustrate
this.
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Example 1.17 ([31, p. 268], [14, Example 10.5]). Suppose that d = 5, the quintic curve C5 is
given by

x5 +
(
y2 − xz

)2(x
4

+ y + z
)

= x2
(
y2 − xz

)(
x + 2y

)
,

and P = [0 : 0 : 1]. Then C5 is irreducible and has singularity A12 at the point P . In particular,
it is rational. Furthermore, it is well-known that the curve C5 is GIT-stable (see, for example,
[22, Chapter 4.2]). On the other hand, it follows from Example 1.4 that

lct
(
P2, C5

)
= lctP

(
P2, C5

)
=

1

2
+

1

13
=

15

26
<

3

5
.

Example 1.18. Suppose that Cd is a P loski curve. Let P be its singular point, and let L be a
general line in P2. Then

lct
(
P2, Cd + L

)
= lct

(
P2, Cd

)
= lctP

(
P2, Cd

)
=

5

2d
<

3

d

by Remark 1.14. If d is even, then Cd is GIT-semistable, and Cd +L is GIT-stable. This follows
from the Hilbert–Mumford criterion. Similarly, if d is odd, then Cd is GIT-unstable, and Cd +L

is GIT-semistable.

If mP > 2d
3 , then Cd is GIT-unstable by the Hilbert–Mumford criterion. In particular, if d > 4

and lct(P2, Cd) 6 2d−3
d(d−2) , then Cd is GIT-unstable by Theorem 1.13 unless C4 is a P loski quartic

curve. Arguing as in the proof of Theorem 1.13, this necessary condition can be considerably
improved. In fact, I will give a combined proof of Theorem 1.13 and

Theorem 1.19. If lct(P2, Cd) < 5
2d , then Cd is GIT-unstable. Moreover, if lct(P2, Cd) 6 5

2d ,

then Cd is not GIT-stable. Furthermore, if lct(P2, Cd) = 5
2d , then Cd is GIT-semistable if and

only if Cd is an even P loski curve.

Example 1.18 shows that this result is sharp. Now let me consider one application of Theo-
rem 1.13. To describe it, I need

Definition 1.20 ([30, Appendix A], [5, Definition 1.20]). For a given smooth variety V equipped

with an ample Q-divisor HV , let α
HV

V : V → R>0 be a function defined as

αHV

V (O) = sup

{
λ ∈ Q

∣∣∣∣
the pair (V, λDV ) is log canonical at O

for every effective Q-divisor DV ∼Q HV

}
.

Denote its infimum by α(V,HV ).

Let Sd be a smooth surface in P3 of degree d > 3, let HSd
be its hyperplane section, let O

be a point in Sd, and let TO be the hyperplane section of Sd that is singular at O. Similar to
lctP (P2, Cd)), I can define

lctO
(
Sd, TO

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
Sd, λTO

)
is log canonical at O

}
.

Then α
HSd

Sd
(O) 6 lctO(Sd, TO) and TO is reduced. In this paper I prove

Theorem 1.21. If α
HSd

Sd
(O) < 2d−3

d(d−2) , then

α
HSd

Sd
(O) = lctO

(
Sd, TO

)
∈
{

2

d
,

2d− 3

(d− 1)2
,

2d− 1

d(d− 1)
,

2d− 5

d2 − 3d + 1

}
.

Corollary 1.22. If α(Sd,HSd
) < 2d−3

d(d−2) , then

α
(
Sd,HSd

)
= inf

O∈Sd

{
lctO

(
Sd, TO

)}
∈
{

2

d
,

2d− 3

(d− 1)2
,

2d− 1

d(d− 1)
,

2d− 5

d2 − 3d + 1

}
.

Corollary 1.23 ([5, Corollary 1.24]). Suppose that d = 3. Then α
HS3
S3

(O) = lctO(S3, TO).
5



By [28, Theorem 2.1], this corollary implies that every smooth cubic surface in P3 without

Eckardt points admits a Kähler–Einstein metric. In [29], Tian proved that all smooth cubic
surfaces are Kähler–Einstein (see also [26] and [7]). This follows from his

Theorem 1.24 ([29, Main Theorem]). Smooth del Pezzo surface is Kähler–Einstein if and only
if its automorphism group is reductive.

It should be pointed out that I cannot drop the condition α
HSd

Sd
(O) < 2d−3

d(d−2) in Theorem 1.21

for d > 4. For d = 4, this follows from

Example 1.25. Suppose that d = 4. Let S4 be a quartic surface in P3 that is given by

t3x + t2yz + xyz(y + z) = 0,

and let O be the point [0 : 0 : 0 : 1]. Then S4 is smooth, and TO has singularity A1 at O, which
implies that lctO(S4, TO) = 1. Let Ly be the line x = y = 0, let Lz be the line x = z = 0,
and let C2 be the conic y + z = xt + yz = 0. Then Ly, Lz and C2 are contained in S4, and
O = Ly ∩ Lz ∩C2. Moreover,

Ly + Lz +
1

2
C2 ∼ 2HS4 ,

because the divisor 2Ly + 2Lz + C2 is cut out on S4 by tx + yz = 0. Furthermore, the log pair

(S4, Ly + Lz + 1
2C2) is not log canonical at O. Thus, α

HS4
S4

(O) < 1.

For d > 5, this follows from

Example 1.26. Suppose that d > 5 and TO has A1 singularity at O. Then lctO(Sd, TO) = 1.

Let f : S̃d → Sd be a blow up of the point O. Denote by E its exceptional curve. Then
(
f∗(HSd

) − 11

5
E
)2

= 5 − 121

25
> 0.

Hence, it follows from Riemann–Roch theorem there is an integer n > 1 such that the linear
system |f∗(5nHSd

)− 11nE| is not empty. Pick a divisor D̃ in this linear system, and denote by
D its image on Sd. Then (Sd,

1
5nD) is not log canonical at P , since multP (D) > 11n. On the

other hand, 1
5nD ∼Q HSd

by construction. Hence, α
H

d

Sd
(O) < 1.

Cool and Coppens called the point O a star point in the case when TO is a union of d lines
that pass through O (see [8, Definition 2.2]). Theorems 1.13 and 1.21 imply

Corollary 1.27. If O is a star point on Sd, then α
HSd

Sd
(O) = 2

d
. Otherwise α

HSd

Sd
(O) > 2d−3

(d−1)2
.

This work was was carried out during my stay at the Max Planck Institute for Mathematics
in Bonn in 2014. I would like to thank the institute for the hospitality and very good working
condition. I would like to thank Michael Wemyss for checking the singularities of the curve C5

in Example 1.17. I would like to thank Alexandru Dimca, Yongnam Lee, Jihun Park, Hendrick
Süß and Mikhail Zaidenberg for very useful comments.

2. Preliminaries

In this section, I consider results that will be used in the proof of Theorems 1.13 and 1.21.
Let S be a smooth surface, let D be an effective non-zero Q-divisor on the surface S, and let P

be a point in the surface S. Put D =
∑r

i=1 aiCi, where each Ci is an irreducible curve on S,
and each ai is a non-negative rational number. Let me start recall

Definition 2.1 ([18, Definition 3.5], [9, § 6]). Let π : S̃ → S be a birational morphism such that

S̃ is smooth. Then π is a composition of blow ups of smooth points. For each Ci, denote by C̃i

its proper transform on the surface S̃. Let F1, . . . , Fn be π-exceptional curves. Then

KS̃ +
r∑

i=1

aiC̃i +
n∑

j=1

bjFj ∼Q π∗
(
KS + D

)

6



for some rational numbers b1, . . . , bn. Suppose, in addition, that
∑r

i=1 C̃i +
∑n

j=1 Fj is a divisor

with simple normal crossing at every point of ∪n
j=1Fj . Then the log pair (S,D) is said to be log

canonical at P if and only if the following two conditions are satisfied:

• ai 6 1 for every Ci such that P ∈ Ci,
• bj 6 1 for every Fj such that π(Fj) = P .

Similarly, the log pair (S,D) is said to be Kawamata log terminal at P if and only if ai < 1 for
every Ci such that P ∈ Ci, and bj < 1 for every Fj such that π(Fj) = P .

Using just this definition, one can easily prove

Lemma 2.2. Suppose that r = 3, P ∈ C1∩C2∩C3, the curves C1, C2 and C3 are smooth at P ,
a1 < 1, a2 < 1 and a3 < 1. Moreover, suppose that both curves C1 and C2 intersect the curve
C3 transversally at P . Furthermore, suppose that (S,D) is not Kawamata log terminal at P .
Put k = multP (C1 · C2). Then k(a1 + a2) + a3 > k + 1.

Proof. Put S0 = S and consider a sequence of blow ups

Sk

πk
// Sk−1

πk−1
// · · · π3

// S2
π2

// S1
π1

// S0,

where each πj is the blow up of the intersection point of the proper transforms of the curves C1

and C2 on the surface Sj−1 that dominates P (such point exists, since k = multP (C1 ·C2)). For

each πj, denote by Ek
j the proper transform of its exceptional curve on Sk. For each Ci, denote

by Ck
i its proper transform on the surface Sk. Then

KSk
+

n∑

i=1

aiC
k
i +

k∑

j=1

(
j
(
a1 + a2

)
+ a3 − j

)
Ek

j ∼Q (π1 ◦ π2 ◦ · · · ◦ πk)∗
(
KS + D

)
,

and
∑n

i=1 C
k
i +

∑k
j=1Ej is a simple normal crossing divisor in every point of

∑k
j=1Ej. Thus,

it follows from Definition 2.1 that there exists l ∈ {1, . . . , k} such that l(a1 + a2) + a3 > l + 1,
because (S,D) is not Kawamata log terminal at P . If l = k, then I am done. So, I may assume
that l < k. If k(a1 + a2) + a3 < k + 1, then a1 + a2 < 1 + 1

k
− a3

1
k
, which implies that

l + 1 6 l
(
a1 + a2

)
+ a3 <

(
l +

l

k
− a3

l

k

)
+ a3 = l +

l

k
+ a3

(
1− l

k

)
6 l +

l

k
+

(
1− l

k

)
= l+ 1,

because a3 < 1. Thus, k(a1 + a2) + a3 > k + 1. �

Corollary 2.3. Suppose that r = 2, P ∈ C1 ∩ C2, the curves C1 and C2 are smooth at P ,
a1 < 1 and a2 < 1. Put k = multP (C1 · C2). If (S,D) is not Kawamata log terminal at P , then
k(a1 + a2) > k + 1.

The log pair (S,D) is called log canonical if it is log canonical at every point of S. Similarly,
the log pair (S,D) is called Kawamata log terminal if it is Kawamata log terminal at every point
of S.

Remark 2.4. Let R be any effective Q-divisor on S such that R ∼Q D and R 6= D. Put
Dǫ = (1 + ǫ)D − ǫR for some rational number ǫ. Then Dǫ ∼Q D. Since R 6= D, there exists
the greatest rational number ǫ0 such that the divisor Dǫ0 is effective. Then Supp(Dǫ0) does not
contain at least one irreducible component of Supp(R). Moreover, if (S,D) is not log canonical
at P , and (S,R) is log canonical at P , then (S,Dǫ0) is not log canonical at P by Definition 2.1,
because

D =
1

1 + ǫ0
Dǫ0 +

ǫ0

1 + ǫ0
R

and 1
1+ǫ0

+ ǫ0
1+ǫ0

= 1. Similarly, if the log pair (S,D) is not Kawamata log terminal at P , and

(S,R) is Kawamata log terminal at P , then (S,Dǫ0) is not Kawamata log terminal at P .

The following result is well-known and is very easy to prove.
7



Lemma 2.5 ([9, Exercise 6.18]). If (S,D) is not log canonical at P , then multP (D) > 1.

Combining with

Lemma 2.6 ([24], [9, Lemma 5.36]). Suppose that S is a smooth surface in P3, and D ∼Q HS ,
where HS is a hyperplane section of S. Then each ai does not exceed 1.

Lemma 2.5 gives

Corollary 2.7. Suppose that S is a smooth surface in P3, and D ∼Q HS, where HS is a
hyperplane section of S. Then (S,D) is log canonical outside of finitely many points.

The following result is a special case of Shokurov’s connectedness principle (see, for example,
[9, Theorem 6.3.2]).

Lemma 2.8 ([27, Theorem 6.9]). If −(KS + D) is big and nef, then the locus where (S,D) is
not Kawamata log terminal is connected.

Corollary 2.9. Let Cd be a reduced curve in P2 of degree d, let O and Q be two points in Cd

such that O 6= Q. If lctO(P2, Cd) < 3
d
, then lctQ(P2, Cd) > 3

d
.

Let π1 : S1 → S be a blow up of the point P , and let E1 be the π1-exceptional curve. Denote
by D1 the proper transform of the divisor D on the surface S1 via π1. Then

KS1 + D1 +
(

multP (D) − 1
)
E1 ∼Q π∗

1

(
KS + D

)
.

Corollary 2.10. If multP (D) > 2, then (S,D) is not log canonical at P . If multP (D) > 2, then
(S,D) is not Kawamata log terminal at P .

The log pair (S1,D
1 + (multP (D) − 1)E1) is called the log pull back of the log pair (S,D).

Remark 2.11. The log pair (S,D) is log canonical at P if and only if (S1,D
1+(multP (D)−1)E1)

is log canonical at every point of the curve E1. Similarly, the log pair (S,D) is Kawamata log
terminal at P if and only if (S1,D

1 + (multP (D) − 1)E1) is Kawamata log terminal at every
point of the curve E1.

Let Z be an irreducible curve on S that contains P . Suppose that Z is smooth at P , and
Z is not contained in Supp(D). Let µ be a non-negative rational number. The following result
is a very special case of a much more general result known as Inversion of Adjunction (see, for
example, [27, § 3.4] or [9, Theorem 6.29]).

Theorem 2.12 ([27, Corollary 3.12], [9, Exercise 6.31], [3, Theorem 7]). Suppose that the log
pair (S, µZ + D) is not log canonical at P and µ 6 1. Then multP (D · Z) > 1.

This result implies

Theorem 2.13. Suppose that (S, µZ +D) is not Kawamata log terminal at P , and (S, µZ +D)
is Kawamata log terminal in a punctured neighborhood of the point P . Then multP (D ·Z) > 1.

Proof. Since (S, µZ+D) is Kawamata log terminal in a punctured neighborhood of the point P ,
I have µ < 1. Then (S,Z +D) is not log canonical at P , because (S, µZ + D) is not Kawamata
log terminal at P . Then multP (D · Z) > 1 by Theorem 2.12. �

Theorems 2.12 and 2.13 imply

Lemma 2.14. If (S,D) is not log canonical at P and multP (D) 6 2, then there exists a unique

point in E1 such that (S1,D
1 + (multP (D)− 1)E1) is not log canonical at it. Similarly, if (S,D)

is not Kawamata log terminal at P , multP (D) < 2, and (S,D) is Kawamata log terminal in
a punctured neighborhood of the point P , then there exists a unique point in E1 such that
(S1,D

1 + (multP (D) − 1)E1) is not Kawamata log terminal at it.
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Proof. If multP (D) 6 2 and (S1,D
1 + (λmultP (D) − 1)E1) is not log canonical at two distinct

points P1 and P̃1, then

2 > multP
(
D
)

= D1 · E1 > multP1

(
D1 · E1

)
+ multP̃1

(
D1 ·E1

)
> 2

by Theorem 2.12. By Remark 2.11, this proves the first assertion. Similarly, I can prove the
second assertion using Theorem 2.13 instead of Theorem 2.12. �

The following result can be proved similarly to the proof of Lemma 2.5. Let me show how to
prove it using Theorem 2.13.

Lemma 2.15. Suppose that (S,D) is not Kawamata log terminal at P , and (S,D) is Kawamata
log terminal in a punctured neighborhood of the point P , then multP (D) > 1.

Proof. By Remark 2.11, the log pair (S1,D
1 + (multP (D)−1)E1) is not Kawamata log terminal

at some point P1 ∈ E1. Moreover, if multP (D) < 2, then (S1,D
1 + (multP (D) − 1)E1) is

Kawamata log terminal at a punctured neighborhood of the point P1. Thus, if multP (D) 6 1,
then multP

(
D
)

= D1 ·E1 > 1 by Theorem 2.13, which is absurd. �

Let Z1 and Z2 be two irreducible curves on the surface S such that Z1 and Z2 are not contained
in Supp(D). Suppose that P ∈ Z1 ∩ Z2, the curves Z1 and Z2 are smooth at P , the curves Z1

and Z2 intersect each other transversally at P . Let µ1 and µ2 be non-negative rational numbers.
A crucial role in the proofs of Theorems 1.13 and 1.21 is played by

Theorem 2.16 ([3, Theorem 13]). Suppose that the log pair (S, µ1Z1 + µ2Z2 + D) is not
log canonical at the point P , and multP (D) 6 1. Then either multP (D · Z1) > 2(1 − µ2) or
multP (D · Z2) > 2(1 − µ1) (or both).

This result implies

Theorem 2.17. Suppose that (S, µ1Z1 + µ2Z2 + D) is not Kawamata log terminal at P , and
multP (D) < 1. Then either multP (D · Z1) > 2(1 − µ2) or multP (D · Z2) > 2(1 − µ1) (or both).

Proof. Let λ be a rational number such that 1
multP (D) > λ > 1. Then (S,D +λµ1Z1 +λµ2Z2) is

not log canonical at P . Now it follows from Theorem 2.16 that either multP (D ·Z1) > 2(1−λµ2)
or multP (D ·Z2) > 2(1− λµ1) (or both). Since I can choose λ to be as close to 1 as I wish, this
implies that either multP (D · Z1) > 2(1 − µ2) or multP (D · Z2) > 2(1 − µ1) (or both). �

3. Reduced plane curves

The purpose of this section is to prove Theorems 1.13 and 1.19. Let Cd be a reduced plane
curve in P2 of degree d > 4, and let P be a point in Cd. Put m0 = multP (Cd).

Lemma 3.1. One has

lctP
(
P2, Cd

)
=





1

2d
if m0 = d,

2d− 3

(d− 1)2
if Cd has Td−1 singularity at P ,

2d− 1

d(d− 1)
if Cd has Kd−1 singularity at P ,

2d− 5

d2 − 3d + 1
if Cd has T̃d−1 singularity at P ,

2d− 3

d(d− 2)
if C has K̃d−1 singularity at P .

Proof. The required assertion follows either from [18, Lemma 8.10] or from Example 1.4. Alter-
natively, one can easily prove it directly using only Definition 2.1. This is a good exercise. �
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Put λ1 = 2d−3
d(d−2) and λ2 = 5

2d . By Lemma 3.1, to prove Theorem 1.13, I have to show that if

the log pair (P2, λ1Cd) is not Kawamata log terminal, then one of the following assertions hold:

• m0 = d,

• Cd has singularity Td−1, Kd−1, T̃d−1 or K̃d−1 at the point P ,
• d = 4 and C4 is a P loski curve (see Definition 1.9).

To prove Theorem 1.19, I have to show that if (P2, λ2Cd) is not Kawamata log terminal, then
either Cd is GIT-unstable or Cd is an even P loski curve, which is GIT-semistable (see Exam-
ple 1.18). In the rest of the section, I will do this simultaneously. Let me start with

Lemma 3.2. The following inequalities hold:

(i) λ1 <
2

d−1 ,

(ii) λ1 <
2k+1
kd

for every positive integer k 6 d− 3,

(iii) if d > 5, then λ1 <
2k+1
kd+1 for every positive integer k 6 d− 4,

(iv) λ1 <
3
d
,

(v) λ1 <
2

d−2 ,

(vi) λ1 <
6

3d−4 ,

(vii) if d > 5, then λ1 < λ2.

Proof. The equality 2
d−1 = λ1 + d−3

d(d−1)(d−2) implies (i). Let k be positive integer. If k = d − 2,

then λ1 = 2k+1
kd

. This implies (ii), because 2k+1
kd

= 2
d

+ 1
kd

is a decreasing function on k for k > 1.

Similarly, if k = d − 4 and d > 4, then λ1 = 2k+1
kd+1 − 3

d(d−2)(d2−4d+1) < 2k+1
kd+1 . This implies (iii),

since 2k+1
kd+1 = 2

d
+ d−2

d(kd+1) is a decreasing function on k for k > 1. The equality λ1 = 3
d
− d−3

d(d−2)

proves (iv). Note that (v) follows from (i). Since 6
3d−4 > 2

d−1 , (vi) also follows from (i). Finally,

the equality λ1 = λ2 − d−4
2d(d−2) implies (vii). �

I may assume that P = [0 : 0 : 1]. Then Cd is given by Fd(x, y, z) = 0, where Fd(x, y, z) is a
homogeneous polynomial of degree d. Put x1 = x

z
, x2 = y

z
and fd(x1, x2) = Fd(x1, x2, 1). Then

fd
(
x1, x2

)
=

∑

i>0,j>0,
m06i+j6d

ǫijx
i
1x

j
2,

where each ǫij is a complex number. For every positive integers a and b, define the weight of
the polynomial fd(x1, x2) as

wt(a,b)
(
fd(x1, x2)

)
= min

{
ai + bj

∣∣∣ ǫij 6= 0
}
.

So, that wt(1,1)
(
fd(x1, x2)

)
= m0. Then the Hilbert–Mumford criterion implies

Lemma 3.3 ([16, Lemma 2.1]). Let a and b be positive integers. If Cd is GIT-stable, then

wt(a,b)

(
fd
(
x1, x2

))
<

d

3

(
a + b

)
.

Similarly, if Cd is GIT-semistable, then wt(a,b)(fd(x1, x2)) 6 d
3(a + b).

This result can be used to give a sufficient condition for the curve Cd to be GIT-stabile (resp.,
GIT-semistabile) (for details, see [14, Proposition 10.4] and the proof of [16, Theorem 2.3]).

Corollary 3.4. If m0 >
2d
3 , then Cd is GIT-unstable.

Hence, to prove Theorem 1.13 and 1.19, I may assume that Cd is not a union of d lines passing
through the point P . Suppose that

(A) either (P2, λ1Cd) is not Kawamata log terminal,
(B) or (P2, λ2Cd) is not Kawamata log terminal and Cd is GIT-semistable.
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I will show that (A) implies that either Cd has singularity Td−1, Kd−1, T̃d−1 or K̃d−1 at the
point P , or Cd is a P loski quartic curve. I will also show that (B) implies that Cd is an even
P loski curve. If (A) holds, let λ = λ1. If (B) holds, let λ = λ2.

Remark 3.5. If d = 4, then λ1 = λ2. If d > 5, then λ1 < λ2 by Lemma 3.2(vii). Since Cd is
reduced and λ < 1, the log pair (P2, λCd) is Kawamata log terminal outside of finitely many
points. Thus, it is Kawamata log terminal outside of P by Lemma 2.8.

Let f1 : S1 → P2 be a blow up of the point P , and let E1 be its exceptional curve. Denote by
C1
d the proper transform on S1 of the curve Cd. Put m0 = multP (Cd). Then

KS1 + λC1
d +

(
λm0 − 1

)
E1 ∼Q f∗

1

(
KP2 + λCd

)
.

By Remark 2.11, the log pair (S1, λC
1
d + (λm0 − 1)E1) is not Kawamata log terminal at some

point P1 ∈ E1.

Lemma 3.6. One has λm0 < 2.

Proof. Since Cd is not a union of d lines passing through P , I have m0 6 d−1. By Lemma 3.2(i),
(A) implies λm0 < 2, because d > 4. Similarly, it follows from (B) that m0 6

2d
3 by Lemma 3.4,

which implies that λm0 6
10
6 < 2. �

Thus, the log pair (S1, λC
1
d + (λm0 − 1)E1) is Kawamata log terminal outside of P1 by

Lemma 2.14. Put m1 = multP1(C1
d ).

Lemma 3.7. One has m0 + m1 >
2
λ

and m1 > 1.

Proof. The inequality m0+m1 >
2
λ

follows from Lemma 2.15. The inequality m1 > 1 is obvious.
Indeed, if m1 = 0, then (S1, (λm0−1)E1) is not Kawamata log terminal at P1, which contradicts
Lemma 3.6. �

Let L be the line in P2 whose proper transform on S1 contains the point P1. Such a line exists
and it is unique. By a suitable change of coordinates, I may assume that L is given by x = 0.

Lemma 3.8. Suppose that Cd is GIT-semistable. Then m0 + m1 6 d.

Proof. Note that wt(1,1)(fd(x1, x2)) = m0. For every (a, b) ∈ N2 different from (1, 1), the
number wt(a,b)(fd(x1, x2)) depends on the choice of (global) coordinates (x, y, z). For instance,

wt(1,2)(fd(x1, x2)) is a sum of m0 and the multiplicity of the curve C1
d at the point in E1 that

is cut out by the proper transform of the line given by y = 0. Similarly, wt(2,1)(fd(x1, x2)) is a

sum of m0 and the multiplicity of the curve C1
d at the point in E1 that is cut out by the proper

transform of the line given by x = 0. Since I assumed that L is given by x = 0, I have

wt(2,1)
(
fd(x1, x2)

)
= m0 + m1.

Thus, m0 + m1 6 d by Lemma 3.3, because Cd is GIT-semistable by assumption. �

Denote by L1 the proper transform of the line L on the surface S1.

Lemma 3.9. Suppose (A) and m0 = d− 1. Then Cd has singularity Kd−1, K̃d−1, Td−1 or T̃d−1

at the point P .

Proof. I have λ = λ1. Let me prove that

• if L is not an irreducible component of the curve Cd, then either Cd has singularity Kd−1

at P , or Cd has singularity K̃d−1 at P ,
• if L is an irreducible component of the curve Cd, then either Cd has singularity Td−1 at

P , or Cd has singularity T̃d−1 at P .
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Suppose that L is not an irreducible component of the curve Cd. Then m0 +m1 6 d, because

d− 1 −m0 = C1
d · L1

> m1.

Since m0 = d− 1, this gives m1 = 1, because m1 6= 0 by Lemma 3.7. Then P1 ∈ C1
d−1 and the

curve C1
d−1 is smooth at P1. Put k = multP1(C1

d · E1). Applying Corollary 2.3 to the log pair

(S1, λ1C
1
d + (λ1m0 − 1)E1) at the point P1, I get

kλ1m0 > k + 1,

which gives λ1 >
2k+1
kd

. Then k > d− 2 by Lemma 3.2(ii). Since

k 6 C1
d ·E1 = m0 = d− 1,

either k = d − 1 or k = d − 2. If k = d − 1, then Cd has singularity Kd−1 at P . If k = d − 2,

then Cd has singularity K̃d−1 at the point P .
Thus, to complete the proof, I may assume that L is an irreducible component of the curve

Cd. Then Cd = L+Cd−1, where Cd−1 is a reduced curve in P2 of degree d−1 such that L is not
its irreducible component. Denote by C1

d−1 its proper transform on S1. Put n0 = multP (Cd−1)

and n1 = multP1(C1
d−1). Then n0 = m0 − 1 = d − 2 and n1 = m1 − 1. Note that the log pair

(S1, λ1L
1 + (λ1m0 − 1)E1) is Kawamata log terminal at P by Lemma 3.6. This implies that

P1 ∈ C1
d−1. Hence, n1 > 1. One the other hand, I have

d− 1 − n0 = C1
d−1 · L1 > n1,

which implies that n0 + n1 6 d− 1. Then n1 = 1, since n0 = d− 2 and n1 6= 1.
I have P1 ∈ C1

d−1 and C1
d−1 is smooth at P1. Moreover, since

1 = d− 1 − n0 = L1 · C1
d−1 > n1 = 1,

the curve C1
d−1 intersects the curve L1 transversally at the point P1. Put k = multP1(C1

d−1 ·E1).

Then k > 1. Applying Lemma 2.2 to the log pair (S1, λ1C
1
d−1 + λ1L

1 + (λ1(n0 + 1) − 1)E1) at
the point P1, I get

k
(
λ1(n0 + 2) − 1

)
+ λ1 > k + 1.

Then λ1 >
2k+1
kd+1 . Then k > d− 3 by Lemma 3.2(iii). Since

k 6 E1 · C1
d−1 = n0 = d− 2,

either k = d− 2 or k = d− 3. In the former case, P must be a singular point of type Td−1. In

the latter case, P must be a singular point of type T̃d−1. �

By Corollary 3.4 and Lemma 3.9, I may assume that m0 6 d − 2 to complete the proof of
Theorems 1.13 and 1.19. Let me show that (A) implies that Cd is a P loski quartic curve, and
(B) implies that Cd is an even P loski curve. In fact, to complete the proof of Theorems 1.13
and 1.19, it is enough to show that Cd is a P loski curve (see Examples 1.18).

Lemma 3.10. Suppose (A). Then the line L is not an irreducible component of the curve Cd.

Proof. I have λ = λ1. Suppose that L is an irreducible component of the curve Cd. Let me see
for a contradiction. Put Cd = L + Cd−1, where Cd−1 is a reduced curve in P2 of degree d − 1
such that L is not its irreducible component. Denote by C1

d−1 its proper transform on S1. Put

n0 = multP (Cd−1) and n1 = multP1(C1
d−1). Then (S1, (λ1(n0 + 1) − 1)E1 + λ1L

1 + λ1C
1
d−1) is

not Kawamata log terminal at P1 and is Kawamata log terminal outside of the point P1. In
particular, n1 6= 0, because (S1, (λ1(n0 + 1)− 1)E1 +λ1L

1) is Kawamata log terminal at P1. On
the other hand,

d− 1 − n0 = L1 · C1
d−1 > n1,

which implies that n0 + n1 6 d− 1. Furthermore, I have n0 = m0 − 1 6 d− 3.
12



Since n0 + n1 > 2n1, I have n1 6 d−1
2 . Then λn1 < 1 by Lemma 3.2(i). Thus, I can apply

Theorem 2.17 to the log pair (S1, (λ1(n0 + 1) − 1)E1 + λ1L
1 + λ1C

1
d−1) at the point P1. This

gives either

λ1

(
d− 1 − n0

)
= λ1C

1
d−1 · L1

> 2
(

2 − λ1

(
n0 + 1

))

or

λ1n0 = λ1C
1
d−1 · E1 > 2

(
1 − λ1

)

(or both). In the former case, I have λ1(d+1+n0) > 4. In the latter case, I have λ1(n0 + 2) > 2.
This implies λ1(d−1) > 2 in both cases, since n0 6 d−3. But λ1(d−1) < 2 by Lemma 3.2(i). �

Let f2 : S2 → S1 be a blow up of the point P1, and let E2 be its exceptional curve. Denote
by C2

d the proper transform on S2 of the curve Cd, and denote by E2
1 the proper transform on

S2 of the curve E1. Then

KS2 + λC2
d +

(
λm0 − 1

)
E2

1 +
(
λ(m0 + m1) − 2

)
E2 ∼Q f∗

2

(
KS1 + λC1

d +
(
λm0 − 1

)
E1

)
.

By Remark 2.11, the log pair (S2, λC
2
d + (λm0 − 1)E2

1 + (λ(m0 +m1) − 2)E2) is not Kawamata
log terminal at some point P2 ∈ E2. Moreover, it is Kawamata log terminal outside of the point
P2 by Lemmas 2.14, since λ(m0 + m1) < 3 by

Lemma 3.11. One has m0 + m1 6 d.

Proof. By Lemma 3.8, (B) implies m0 + m1 6 d. If L is not an irreducible component of the
curve Cd, then

d−m0 = C1
d · L1

> m1.

Thus, the assertion follows from Lemma 3.10. �

Put m2 = multP2(C2
d).

Lemma 3.12. One has P2 6= E2
1 ∩ E2.

Proof. Suppose that P2 = E2
1 ∩E2. Then

m0 −m1 = E2
1 · C2

d > m2,

which implies that m2 6 m0
2 , since 2m2 6 m1 + m2. On the other hand, m0 6 d − 2 by

assumption. Thus, I have m2 6
d−2
2 .

Suppose (A). Then λ = λ1 and λ1m2 < 1 by Lemma 3.2(v). Thus, I can apply Theorem 2.17
to the log pair (S2, λ1C

2
d + (λ1m0 − 1)E2

1 + (λ1(m0 + m1) − 2)E2). This gives either

λ1

(
m0 −m1

)
= λ1C

2
d ·E2

1 > 2
(

3 − λ1

(
m0 + m1

))

or

λ1m1 = λ1C
2
d ·E2 > 2

(
2 − λ1m0

)

(or both). The former inequality implies λ1(3m0 + m1) > 6. The latter inequality implies
λ1(2m0 + m1) > 4. On the other hand, m0 + m1 6 d by Lemma 3.11, and m0 6 d − 2 by
assumption. Thus, 3m0 + m1 6 3d − 4 and 2m0 + m1 6 2d − 2. Then λ1(3m0 + m1) < 6 by
Lemma 3.2(vi), and λ1(2m0 +m1) < 4 by Lemma 3.2(i). The obtained contradiction shows (A)
does not hold.

I see that (B) holds. Then λ = λ2 and Cd is GIT-semistable by assumption. Moreover,
arguing as in the proof of Lemma 3.8, I see that

wt(3,2)

(
fd
(
x1, x2

))
= 2m0 + m1 + m2.

Thus, 2m0 + m1 + m2 6
5d
3 by Lemma 3.3, because Cd is GIT-semistable by (B).
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Let f3 : S3 → S2 be a blow up of the point P2, and let E3 be its exceptional curve. Denote
by C3

d the proper transform on S3 of the curve Cd, denote by E3
1 the proper transform on S3 of

the curve E1, and denote by E3
2 the proper transform on S3 of the curve E2. Then

KS3 + λ2C
3
d +

(
λ2m0 − 1

)
E3

1 +
(
λ2(m0 + m1) − 2

)
E3

2 +
(
λ2(2m0 + m1 + m2) − 4

)
E3 ∼Q

∼Q f∗

3

(
KS2 + λ2C

2
d +

(
λ2m0 − 1

)
E2

1 +
(
λ2(m0 + m1) − 2

)
E2

)
.

Moreover, λ2(2m0 + m1 + m2) − 4 < 1, since 2m0 + m1 + m2 < 5d
3 . By Remark 2.11, the log

pair (S3, λ2C
3
d + (λ2m0 − 1)E3

1 + (λ2(m0 + m1) − 2)E3
2 + (λ2(2m0 + m1 + m2) − 4)E3) is not

Kawamata log terminal at some point P3 ∈ E3 and is Kawamata log terminal outside of this
point.

If P3 = E3
1 ∩ E3, then it follows from Theorem 2.13 that

λ2

(
m0 −m1 −m2

)
= λ2C

3
d ·E3

1 > 5 − λ2

(
2m0 + m1 + m2

)
,

which implies that m0 >
5

3λ2
= 2d

3 , which is impossible by Corollary 3.4. If P3 = E3
2 ∩ E3, then

it follows from Theorem 2.13 that

λ2

(
m1 −m2

)
= λ2C

3
d · E3

2 > 5 − λ2

(
2m0 + m1 + m2

)
,

which implies that m0 + m1 >
5

2λ2
= d, which is impossible by Corollary 3.11. Thus, I see that

P3 6∈ E3
1 ∪E3

2 . Then the log pair (S3, λ2C
3
d + (λ2(2m0 +m1 +m2) − 4)E3) is not Kawamata log

terminal at P3. Hence, Theorem 2.13 gives

λ2m2 = λ2C
3
d · E3 > 1,

which implies that m2 > 1
λ2

= 2d
5 . One the other hand, I proved earlier that m2 6 m0

2 . Thus,

m0 >
4d
5 , which is impossible by Corollary 3.4. The obtained contradiction completes the proof

of the lemma. �

Denote by L2 the proper transform of the line L on the surface S2.

Lemma 3.13. One has P2 6= L2 ∩ E2.

Proof. Suppose that P2 = L2 ∩ E2. If L is not an irreducible component of the curve Cd, then

d−m0 −m1 = L2 ∩ E2 > m2,

which implies that m0+m1+m2 6 d. Thus, if (A) holds, then λ = λ1 and L is not an irreducible
component of the curve Cd by Lemma 3.10, which implies that

λ1d > λ1

(
m0 + m1 + m2

)
> 3

by Lemma 2.15. On the other hand, λ1d < 3 by Lemma 3.2(iv). This shows that (B) holds.
Since λ = λ2 = 5

2d < 3
d

and λ2(m0 +m1 +m2) > 3 by Lemma 2.15, I have m0 +m1 +m2 > d.
In particular, the line L must be an irreducible component of the curve Cd.

Put Cd = L + Cd−1, where Cd−1 is a reduced curve in P2 of degree d− 1 such that L is not
its irreducible component. Denote by C1

d−1 its proper transform on S1, and denote by C2
d−1 its

proper transform on S2. Put n0 = multP (Cd−1), n1 = multP1(C1
d−1) and n2 = multP2(C2

d−1).

Then (S2, (λ2(n0 + n1 + 2) − 2)E2 + λ2L
1 + λ2C

1
d−1) is not Kawamata log terminal at P2 and is

Kawamata log terminal outside of the point P2. Then Theorem 2.13 implies

λ2

(
d− 1 − n0 − n1

)
= λ2C

2
d−1 · L2 > 1 −

(
λ2(n0 + n1 + 2) − 2

)
= 3 − λ2(n0 + n1 + 2),

which implies that 5(d+1)
2d = λ2(d + 1) > 3. Hence, d = 4. Then λ = λ2 = 5

8 .
By Lemma 3.8, n0 + n1 6 2. Thus, n0 = n1 = n2 = 1, since

5

8

(
n0 + n1 + n2 + 3

)
= λ2

(
m0 + m1 + m2

)
> 3

by Lemma 2.15. Then C3 is a irreducible cubic curve that is smooth at P , the line L is tangent
to the curve C3 at the point P , and P is an inflexion point of the cubic curve C3. This implies
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that lctP (P2, Cd) = 2
3 . Since 2

3 > 5
8 = λ2, the log pair (P2, λ2Cd) must be Kawamata log terminal

at the point P , which contradicts (B). �

Let f3 : S3 → S2 be a blow up of the point P2, and let E3 be its exceptional curve. Denote
by C3

d the proper transform on S3 of the curve Cd, and denote by E3
2 the proper transform on

S3 of the curve E2. Then

KS3 + λC3
d +

(
λ(m0 + m1) − 2

)
E3

2 +
(
λ(m0 + m1 + m2) − 3

)
E3 ∼Q

∼Q f∗

3

(
KS2 + λC2

d +
(
λ(m0 + m1) − 2

)
E2

)
.

By Remark 2.11, the log pair (S3, λC
3
d + (λ(m0 + m1) − 2)E3

2 + (λ(m0 + m1 + m2) − 3)E3) is
not Kawamata log terminal at some point P3 ∈ E3.

Lemma 3.14. One has λ(m0 + m1 + m2) 6 λ(m0 + 2m1) < 4.

Proof. By Lemma 3.11, m0 + m1 6 d. Since 2m1 6 m0 + m1, I have m1 6
d
2 . Then

λ
(
m0 + m1 + m2

)
6 λ

(
m0 + 2m1

)
6 λ

3d

2
6 λ2

3d

2
=

15

4
< 4,

because λ 6 λ2 and m2 6 m1. �

Thus, the log pair (S3, λC
3
d + (λ(m0 +m1)− 2)E3

2 + (λ(m0 +m1 +m2) − 3)E3) is Kawamata
log terminal outside of the point P3 by Lemma 2.14. Put m3 = multP3(C3

d).

Lemma 3.15. One has P3 6= E3
2 ∩ E3.

Proof. If P3 = E3
2 ∩ E3, then Theorem 2.13 gives

λ
(
m1 −m2

)
= λC3

d ·E3
2 > 1 −

(
λ
(
m0 + m1 + m2

)
− 3
)

= 4 − λ
(
m0 + m1 + m2

)
,

which implies that λ(m0 + 2m1) > 4. But λ(m0 + 2m1) < 4 by Lemma 3.14. �

Let f4 : S4 → S3 be a blow up of the point P3, and let E4 be its exceptional curve. Denote
by C4

d the proper transform on S4 of the curve Cd, denote by E4
3 the proper transform on S4

of the curve E3, and denote by L4 the proper transform of the line L on the surface S4. Then
(S4, λC

4
d + (λ(m0 + m1 + m2) − 3)E4

3 + (λ(m0 + m1 + m2 + m3) − 4)E4) is not Kawamata log
terminal at some point P4 ∈ E4 by Remark 2.11, because

KS4 + λC4
d +

(
λ(m0 + m1 + m2) − 3

)
E4

3 +
(
λ(m0 + m1 + m2 + m3) − 4

)
E4 ∼Q

∼Q f∗

4

(
KS3 + λC3

d +
(
λ(m0 + m1 + m2) − 3

)
E3

)
.

Moreover, I have

2L4 + E1 + 2E2 + E3 ∼ (f1 ◦ f2 ◦ f3 ◦ f4)∗
(
OP2

(
2
))

−

− (f2 ◦ f3 ◦ f4)∗
(
E1

)
− (f3 ◦ f4)∗

(
E2

)
− f∗

4

(
E3

)
− E4.

Lemma 3.16. The linear system |2L4 + E1 + 2E2 + E3| is a pencil that does not have base
points. Moreover, every divisor in |2L4+E1+2E2+E3| that is different from 2L4+E1+2E2+E3

is a smooth curve whose image on P2 is a smooth conic that is tangent to L at the point P .

Proof. All assertions follows from P2 6∈ E2
1 ∪ L2 and P3 6∈ E3

2 . �

Let C4
2 be a general curve in |2L4 +E1 +2E2 +E3|. Denote by C2 its image on P2, and denote

by L the pencil generated by 2L and C2. Then P is the only base point of the pencil L, and
every conic in L except 2L and C2 intersects C2 at P with multiplicity 4 (cf. [5, Remark 1.14]).

Lemma 3.17. One has m0 +m1 +m2 +m3 6 m0 +m1 + 2m2 6
5
λ

. If m0 +m1 +m2 +m3 = 5
λ

,

then d is even and Cd is a union of d
2 > 2 smooth conics in L, where d = 4 if (A) holds.
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Proof. By Lemma 3.11, I have m2 + m3 6 2m2 6 m0 + m1 6 d by Lemma 3.11. This gives

m0 + m1 + m2 + m3 6 m0 + m1 + 2m2 6 2d =
5

λ2
6

5

λ
.

To complete the proof, I may assume that m0+m1+m2+m3 = 5
λ

. Then all inequalities above

must be equalities. Thus, I have m2 = m3 = d
2 and λ1 = λ2. In particular, if (A) holds, then

d = 4, because λ1 < λ2 = 5
2d for d > 5 by Lemma 3.2(vii). Moreover, since m0 > m1 > m2 = d

2

and m0 + m1 6 d, I see that m0 = m1 = d
2 . Thus, d is even and

C4
d ∼ d

2

(
2L4 + E1 + 2E2 + E3

)
,

where d = 4 if (A) holds. Since |2L4 + E1 + 2E2 + E3| is a free pencil and C4
d is reduced, it

follows from Lemma 3.16 that C4
d is a union of d

2 smooth curves in |2L4 + E1 + 2E2 + E3|. In

particular, L4 is not an irreducible component of C4
d . Thus, the curve Cd is a union of d

2 smooth
conics in L, where d = 4 if (A) holds. �

Thus, if m0 + m1 + m2 + m3 = 5
λ

, then Theorems 1.13 and 1.19 are proved. Let me show

that the inequality m0 + m1 + m2 + m3 <
5
λ

is impossible. Suppose that it holds. Then the log

pair (S4, λC
4
d + (λ(m0 + m1 + m2) − 3)E4

3 + (λ(m0 + m1 + m2 + m3) − 4)E4) is Kawamata log
terminal outside of the point P4 by Lemma 2.14.

Lemma 3.18. One has P4 6= E4
3 ∩E4.

Proof. By Lemma 3.17, m0 + m1 + 2m2 6
5
λ

. If P4 = E4
3 ∩ E4, then Theorem 2.13 gives

λ
(
m2 −m3

)
= λC4

d · E4
3 > 5 − λ

(
m0 + m1 + m2 + m3

)
,

which implies that m0 + m1 + 2m2 >
5
λ

. This shows that P4 6= E4
3 ∩ E4. �

Corollary 3.19. The log pair (S4, λC
4
d + (λ(m0 +m1 +m2 +m3)− 4)E4) is not Kawamata log

terminal at P4 and is Kawamata log terminal outside of the point P4.

Let Z4 be the curve in |2L4 + E1 + 2E2 + E3| that passes through the point P4. Then Z4 is
a smooth irreducible curve by Lemma 3.13. Denote by Z the proper transform of this curve on
P2. Then Z is a smooth conic in the pencil L by Lemma 3.16.

Lemma 3.20. The conic Z is not an irreducible component of the curve Cd.

Proof. Suppose that Z is an irreducible component of the curve Cd. Then Cd = Z+Cd−2, where
Cd−2 is a reduced curve in P2 of degree d−2 such that Z is not its irreducible component. Denote
by C1

d−2, C2
d−2, C3

d−2 and C4
d−2 its proper transforms on the surfaces S1, S2, S3 and S4, respec-

tively. Put n0 = multP (Cd−2), n1 = multP1(C1
d−2), n2 = multP2(C2

d−2), n3 = multP3(C3
d−2) and

n4 = multP4(C4
d−2). Then (S4, λC

4
d−2 +λZ4 +(λ(n0 +n1 +n2 +n3 +4)−4)E4) is not Kawamata

log terminal at P4 and is Kawamata log terminal outside of the point P4 by Corollary 3.19.
Thus, applying Theorem 2.13, I get

λ
(

2
(
d− 2

)
− n0 − n1 − n2 − n3

)
= λC4

d−2 · Z4 > 5 − λ
(
n0 + n1 + n2 + n3 + 4

)
,

which implies that λ > 5
2d . This is impossible, since λ 6 λ2 = 5

2d . �

Put m4 = multP4(C4
d ). Since Z is not an irreducible component of the curve Cd, I have

2d−
3∑

i=0

mi = Z4 · C4
d > m4,

which gives
∑4

i=0 mi 6 2d. On the other hand,
∑4

i=0 mi >
5
λ

by Lemma 2.15. Thus, I have

λ > 5
2d , which is impossible, since λ 6 λ2 = 5

2d . The obtained contradiction completes the proof
of Theorems 1.13 and 1.19.
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4. Smooth surfaces in P3

The purpose of this section is to prove Theorem 1.21. Let S be a smooth surface in P3 of
degree d > 3, let HS be its hyperplane section, let P be a point in S, let TP be the hyperplane
section of the surface S that is singular at P . Then TP is reduced by Lemma 2.6. Put λ = 2d−3

d(d−2) .

Proposition 4.1. Let D be any effective Q-divisor on S such that D ∼Q HS . Suppose that
Supp(D) does not contain at least one irreducible component of the curve TP . Then (S, λD) is
log canonical at P .

If d = 3, then Proposition 4.1 is [5, Corollary 1.13] that implies two important results. It
implies [26, Theorem 1.3], which implies that all smooth cubic surfaces are Kähler–Einstein by
[7, Theorem 2]. By [17, Corollary 3.2], [5, Corollary 1.13] also implies that affine cones over
smooth cubic surfaces do not admit effective actions of the additive group Ga. On the other
hand, Proposition 4.1 and Theorem 1.13 imply Theorem 1.21.

Proof of Theorem 1.21. Suppose that α
HS

S (P ) < λ. Put µ = lctP (S, TP ). By Theorem 1.13, it

is enough to show that αHS

S (P ) > µ in order to prove Theorem 1.21. Suppose that αHS

S (P ) < µ.
Then there exists an effective Q-divisor D on the surface S such that D ∼Q HS and (S, λD)

and (S, µD) are not log canonical at the point P , since αHS

S (P ) < λ. Put

Dǫ = (1 + ǫ)D − ǫTP

for some rational number ǫ. Since TP 6= D, there exists the greatest rational number ǫ0 such
that the divisor Dǫ0 is effective. Put D′ = Dǫ0 . Then Supp(D′) does not contain at least
one irreducible component of Supp(TP ). Thus, the log pair (S, λD′) is log canonical at P by
Proposition 4.1. On the other hand, the log pair (S, µTP ) is log canonical at P , which implies
that (S, µD′) is not log canonical at P by Remark 2.4. Then µ > λ. In particular, (S, λTP )
is log canonical at P . Then (S, λD′) is not log canonical at P by Remark 2.4. The latter is
impossible, since I already proved that (S, λD′) is log canonical at P . �

In the remaining part of the section, I will prove Proposition 4.1. Note that I will do this
without using [5, Corollary 1.13]. Let me start with

Lemma 4.2. The following assertions hold:

(i) λ 6 2
d−1 ,

(ii) if d > 5, then λ 6 3
d+1 ,

(iii) if d > 5, then λ 6 4
d+3 ,

(iv) If d > 6, then λ 6 3
d+2 ,

(v) λ 6 4
d+1 ,

(vi) λ 6 3
d
.

Proof. The equality 2
d−1 = λ + d−3

d(d−1)(d−2) implies (i), 4
d+1 = λ + d2−5d+3

d(d+1)(d−2) implies (ii), and
4

d+3 = λ + 2d2−11d+9
d(d+3)(d−2) implies (iii). Similarly, (iv) follows from 3

d+2 = λ + d2−7d+6
d(d2−4)

, (v) follows

from 4
d+1 = λ + 2d2−7d+3

d(d+1)(d−2) , and (vi) follows from 3
d

= λ + d−3
d(d−2) . �

Let n be the number of irreducible components of the curve TP . Put TP = T1+ · · ·+Tn, where
each Ti is an irreducible curve. For every Ti, denote its degree by di, and put ti = multP (Ti).

Lemma 4.3. Suppose that n > 2. Then Ti ·Ti = −di(d− di − 1) for every Ti, and Ti ·Tj = didj
for every Ti and Tj such that Ti 6= Tj .

Proof. The curve TP is cut out on S by a hyperplane H ⊂ P2. Then H ∼= P2. Hence, for every
Ti and Tj such that Ti 6= Tj , I have (Ti · Tj)S = (Ti · Tj)H = didj . In particular, I have

d1 = TP · T1 = T 2
1 +

n∑

i=2

Ti · T1 = T 2
1 +

n∑

i=2

did1 = T 2
1 + (d− d1)d1,
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which gives T1 ·T1 = −d1(d− d1 − 1). Similarly, I have Ti ·Ti = −di(d− di − 1) for every Ti. �

Let D be any effective Q-divisor on S such that D ∼Q HS . Suppose that Supp(D) does not
contain at least one irreducible component of the curve TP . To prove Proposition 4.1, I must
show that (S, λD) is log canonical at P . Suppose that this is not the case. Let me seek for
a contradiction. Without loss of generality, I may assume that Supp(D) does not contain the
curve Tn.

Lemma 4.4. Suppose that n > 2. Let k be a positive integer such that k 6 n − 1. Write

D =
∑k

i=1 aiTi + ∆, where each ai is a non-negative rational number, and ∆ is an effective Q-
divisor on S whose support does not contain the curves T1, . . . , Tk. Put k0 = multP (∆). Then

k∑

i=1

aididn 6 dn − tnk0.

In particular,
∑k

i=1 aidi 6 1 and each ai does not exceed 1
di

.

Proof. Since Tn is not contained in Supp(D), it is not contained in Supp(∆). Then

dn = Tn ·D = Tn ·
(

n∑

i=1

aiTi + ∆

)
=

n∑

i=1

aididn + Tn · ∆ >

n∑

i=1

aididn + tnk0,

which implies the required inequality. �

Put m0 = multP (D).

Lemma 4.5. Suppose that P ∈ Tn. Then dn > d−1
2 . If n > 2, then Tn is smooth at P .

Proof. Since Tn is not contained in the support of the divisor D, I have

d > dn = Tn ·D > tnm0,

which implies that m0 6 dn
tn

. Since m0 > 1
λ

by Lemma 2.5, I have dn > d−1
2 by Lemma 4.2(i).

Moreover, if n > 2 and tn > 2, then it follows from Lemma 2.5 that

1

λ
< m0 6

dn

tn
6

d− 1

tn
6

d− 1

2
,

which is impossible by Lemma 4.2(i). �

Corollary 4.6. The point P is not a star point.

Now I am ready to use Theorem 2.16 to prove

Lemma 4.7. Suppose that n > 3 and P is contained in at least two irreducible components of
the curve TP that are different from Tn and that are both smooth at P . Then they are tangent
to each other at P .

Proof. Without loss of generality, I may assume that P ∈ T1 ∩ T2 and t1 = t2 = 1. I must show
that T1 and T2 are tangent to each other at P . Suppose that this is not the case. Let me seek
for a contradiction. Put D = aT1 + bT2 + ∆, where a and b are non-negative rational numbers,
and ∆ is an effective Q-divisor on the surface S whose support does not contain the curves T1

and T2. Then ad1 + bd2 6 1 by Lemma 4.4.
Put k0 = mult(∆). Then

d1 + ad1
(
d− d1 − 1

)
− bd1d2 = ∆ · T1 > k0

by Lemma 4.3. Similarly, I have

d2 − ad1d2 + bd2
(
d− d2 − 1

)
= ∆ · T2 > k0.

Adding these two inequalities together and using ad1 + bd2 6 1, I get

2k0 6 d1 + d2 +
(
ad1 + ad2

)(
d− d1 − d2 − 1

)
6 d1 + d2 +

(
d− d1 − d2 − 1

)
= d− 1.
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Thus, k0 6
1
λ

by Lemma 4.2(i).
Since λk0 6 1, I can apply Theorem 2.16 to the log pair (S, λaT1 + λbT2 + λ∆) at the point

P . This gives either λ∆ · T1 > 2(1 − λb) or λ∆ · T2 > 2(1 − λa). Without loss of generality, I
may assume that λ∆ · T2 > 2(1 − λa). Then

(4.8) d2 + bd2
(
d− d2 − 1

)
− ad1d2 = ∆ · T2 >

2

λ
− 2a.

Applying Theorem 2.13 to the log pair (S, λaT1 + λbT2 + λ∆) and the curve T1 at the point P ,
I get

d1 + ad1
(
d− d1 − 1

)
=
(
λbT2 + λ∆

)
· T1 >

1

λ
.

Adding this inequality to (4.8), I get

d + 1 > d− 1 + 2a > d1 + d2 +
(
ad1 + bd2

)(
d− d1 − d2 − 1

)
+ 2a >

3

λ
,

because ad1 + bd2 6 1. Thus, it follows from Lemma 4.2(ii) that either d = 3 or d = 4.
If d = 3, then n = 3 and d1 = d2 = d3 = λ = 1, which implies that a + b > 1 by (4.8). Since

ad1 + bd2 6 1, I see that d = 4. Then λ = 5
8 and d1 + d2 6 3. If d1 = d1 = 1, then (4.8) gives

2b + a > 11
5 . If d1 = 1 and d2 = 2, then (4.8) gives b > 3

5 . If d1 = 2 and d2 = 1, then (4.8)

gives b > 11
5 . All these three inequalities are inconsistent, because ad1 + bd2 6 1. The obtained

contradiction completes the proof of the lemma. �

Note that every line contained in the surfaces S that passes through P must be an irreducible
component of the curve TP . Moreover, the curve Tn cannot be a line by Lemma 4.5. Therefore,
Lemma 4.7 implies

Corollary 4.9. There exists at most one line in S that passes through P .

Corollary 4.10. One has n < d.

To apply Lemma 4.7, I need

Lemma 4.11. Suppose that n > 3 and P is contained in at least two irreducible components
of the curve TP that are different from Tn. Then these curves are both smooth at P .

Proof. Without loss of generality, I may assume that P ∈ T1 ∩ T2 and t1 6 t2. I have to show
that t1 = t2 = 1. By Corollary 4.10, d 6= 3. If d = 4, then n 6 4, and the curves T1, T2 and
T4 are either lines or conics. So, I may assume that d > 5. Put D = aT1 + bT2 + ∆, where a

and b are non-negative rational numbers, and ∆ is an effective Q-divisor on the surface S whose
support does not contain the curves T1 and T2. Put k0 = multP (∆). Then m0 = k0 + at1 + bt2.
Moreover, ad1 + bd2 6 1 by Lemma 4.4. On the other hand, it follows from Lemma 4.3 that

d− 1 > d1 + d2 +
(
ad1 + ad2

)(
d− d1 − d2 − 1

)
= ∆ ·

(
T1 + T2

)
> k0

(
t1 + t2

)
,

because ad1 + bd2 6 1. Thus, k0 6
d−1
t1+t2

. Thus, if t1 + t2 > 4, then

m0 = k0 + at1 + bt2 6 k0 + ad1 + bd2 6
d− 1

t1 + t2
+ ad1 + bd2 6

d− 1

t1 + t2
+ 1 6

d + 3

4

because ad1 + bd2 6 1. Since m0 > 1
λ

by Lemma 2.5, the inequality m0 6 d+3
4 gives λ > d+3

4 ,
which is impossible by Lemma 4.2(iii). Thus, t1 + t2 6 3. Since t1 6 t2, I have t1 = 1 and t2 6 2.

To complete the proof of the lemma, I have to prove that t2 = 1. Suppose t2 6= 1. Then
t2 = 2, since t1 + t2 6 3. Since k0 6

d−1
t1+t2

= d−1
3 and ad1 + bd2 6 1, I have

m0 = k0 + at1 + bt2 6 k0 + ad1 + bd2 6
d− 1

32
+ ad1 + bd2 6

d− 1

t1 + t2
+ 1 =

d + 2

3
.

On the other hand, m0 >
1
λ

by Lemma 2.5. So, λ > 3
d+2 . Then d = 5 by Lemma 4.2(iv).
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Since d = 5, I have n = 3, d1 = 1, d2 = 3 and d3 = 1, because t1 = 1 and t2 = 2. Applying
Theorem 2.13 to the log pair (S, λaT1 + λbT2 + λ∆), I get

1 + 3a = d1 + ad1
(
d− d1 − 1

)
=
(
λbT2 + λ∆

)
· T1 >

1

λ
=

15

7
,

which gives a > 8
21 . On the other hand, a + 3b 6 1, because ad1 + bd2 6 1. Since m0 >

1
λ

= 15
7

by Lemma 2.5, I see that

15

7
− 1

9
=

128

63
>

8 − 5a

3
=

3 − a + 7(1−a)
3

2
=

3 − a + 7b

2
=

3 − 3a + 3b

2
+ a + 2b =

=
∆ · T2

2
+ a + 2b >

multP

(
∆ · T2

)

2
+ a + 2b >

t2k0

2
+ a + 2b = k0 + a + 2b = m0 >

15

7
,

which is absurd. �

Now I am ready to prove

Lemma 4.12. One has m0 6
d+1
2 .

Proof. Suppose that m0 >
d+1
2 . Let me seek for a contradiction. If n = 1, then

d = Tn ·D > 2m0,

which implies that m0 6 d
2 . Thus, n > 2. Then either tn = 0 or tn = 1 by Lemma 4.5. Hence,

there is an irreducible component of TP that passes through P and is different from Tn, because
TP is singular at P . Without loss of generality, I may assume that t1 > 1.

Put D = aT1 + Ω, where a is a non-negative rational number, and Ω is an effective Q-divisor
on the surface S whose support does not contain the curve T1. Then a 6 1

d1
by Lemma 4.4. Put

n0 = multP (Ω). Then m0 = n0 + at1.
By Lemma 4.4, tnn0 6 dn − ad1dn. By Lemma 4.3, I have

(4.13) d1 + ad1(d− d1 − 1) = Ω · T1 > t1n0,

Adding these two inequalities, I get (t1 + tn)n0 6 d1 + dn +ad1(d− d1 − dn− 1). Hence, if n > 3
and tn = 1, then

2n0 6
(
t1 + tn

)
n0 6 d1 + dn + ad1

(
d− d1 − dn − 1

)
6 d− 1 6 d− ad1,

because a 6 1
d1

. Similarly, if n = 2 and tn = 1, then

2n0 6
(
t1 + tn

)
n0 6 d1 + d2 + ad1

(
d− d1 − d2 − 1

)
= d1 + d2 − ad1 = d− ad1.

Thus, if tn = 1, then n0 6
d−ad1

2 . On the other hand, if n0 6
d−ad1

2 , then

d + 1

2
< m0 = n0 + at1 6 n0 + ad1 6

d− ad1

2
+ ad1 =

d + ad1

2
6

d + 1

2
,

because a 6 1
d1

. This shows that tn = 0.

If t1 > 2, then it follows from (4.13) that

d + 1

2
< m0 = n0+at1 6 n0+ad1 6

d1 + ad1(d− d1 − 1)

2
+ad1 =

d1 + ad1(d− d1 + 1)

2
6

d + 1

2
,

because a 6 1
d1

. This shows that t1 = 1.
Since t1 = 1 and tn = 0, there exists an irreducible component of the curve TP that passes

through P and is different from T1 and Tn. In particular, n > 3. Without loss of generality, I
may assume that this irreducible component is T2. Then T2 is smooth at P by Lemma 4.11.

Put D = aT1 + bT2 + ∆, where b is a non-negative rational number, and ∆ is an effective
Q-divisor S whose support does not contain the curves T1 and T2. Put k0 = multP (∆). Then
ad1 + bd2 6 1 by Lemma 4.4. Thus, it follows from Lemma 4.3 that

2k0 6 ∆ ·
(
T1 + T2

)
= d1 + d2 +

(
ad1 + ad2

)(
d− d1 − d2 − 1

)
6 d− 1,
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which implies k0 6
d−1
2 . Then

d + 1

2
< m0 = k0 + at1 + bt2 6 k0 + ad1 + bd2 6

d− 1

2
+ ad1 + bd2 6

d− 1

2
+ 1 =

d + 1

2
,

because ad1 + bd2 6 1. The obtained contradiction completes the proof of the lemma. �

Let f1 : S1 → S be a blow up of the point P , and let E1 be its exceptional curve. Denote by
D1 the proper transform of the Q-divisor D on the surface S1. Then

KS1 + λD1 +
(
λm0 − 1

)
E1 ∼Q f∗

1

(
KS + λD

)
,

which implies that (S1, λD
1 + (λm0 − 1)E1) is not log canonical at some point P1 ∈ E1.

Lemma 4.14. One has λm0 6 2.

Proof. By Lemma 4.12, m0 6
d+1
2 . By Lemma 4.2(v), λ 6 4

d+1 . This gives λm0 6 2. �

Thus, the log pair (S1, λD
1 + (λm0 − 1)E1) is log canonical at every point of the curve E1

that is different from P1 by Lemma 2.14. Since (S, λD) is log canonical outside of finitely many
points by Lemma 2.6, I see that the log pair (S1, λD

1 + (λm0 − 1)E1) is log canonical at a
punctured neighborhood of the point P1. Put m1 = multP1(D1). Then Lemma 2.5 gives

Corollary 4.15. One has m0 + m1 >
2
λ

.

For each curve Ti, denote by T 1
i its proper transform on S1. Put T 1

P =
∑n

i=1 T
1
i .

Lemma 4.16. One has P1 6∈ T 1
P .

Proof. Suppose that P1 ∈ T 1
P . If TP is irreducible, then d− 2m0 = T 1

P ·D1 > m1. On the other
hand, if m1 + 2m0 6 d, then

3

λ
< m1 + 2m0 6 d,

because 2m0 > m0 +m1 >
2
λ

by Corollary 4.15. Thus, n > 2, because λ 6 3
d

by Lemma 4.2(vi).
Similarly, P1 6∈ Tn. Indeed, if P1 ∈ Tn, then

d− 1 −m0 > dn −m0 = dn −m0tn = T 1
n ·D1 > m1,

which is impossible, because m0 + m1 >
2
λ

by Corollary 4.15, and λ 6 2
d−1 by Lemma 4.2(i).

Without loss of generality, I may assume that P1 ∈ T 1
1 . Put D = aT1 + Ω, where a is a non-

negative rational number, and Ω is an effective Q-divisor on S whose support does not contain
the curve T1. Put n0 = multP (Ω). Then m0 = n0 + at1.

Denote by Ω1 the proper transform of the Q-divisor Ω on the surface S1. Put n1 = multP1(Ω1)
and t11 = multP1(T 1

1 ). Then n0t1 + n1t
1
1 6 d1 + ad1(d− d1 − 1), because

d1 + ad1
(
d− d1 − 1

)
− n0t1 = T 1

1 · Ω1
> t11n1.

Note that t11 6 t1. Moreover, a 6 1
d1

by Lemma 4.4. Thus, if t11 > 2, then

2
(
n0 + n1

)
6 t11

(
n0 + n1

)
6 n0t1 + n1t

1
1 6 d1 + ad1

(
d− d1 − 1

)
6 d1 +

(
d− d1 − 1

)
= d− 1,

which implies that n0+n1 6
d−1
2 . Moreover, if n0+n1 6

d−1
2 , then it follows from Corollary 4.15

that
d + 3

2
= 2 +

d− 1

2
> 2ad1 +

d− 1

2
> 2at1 +

d− 1

2
> a

(
t1 + t11

)
+ n0 + n1 = m0 + m1 >

2

λ

which only possible if d 6 4 by Lemma 4.2(iii). Thus, if d > 5, then t11 = 1. Furthermore, if
d 6 4, then d1 6 3, which implies that t11 6 1. This shows that t11 = 1 in all cases. Thus, the
curve T 1

1 is smooth at P1.
Applying Theorem 2.12 to the log pair (S1, λΩ1 + λaT 1

1 + (λ(n0 + at1)− 1)E1) and the curve
T 1
1 at the point P1 gives

λ
(
d− 1 − n0t1

)
> λ

(
d1 + ad1

(
d− d1 − 1

)
− n0t1

)
= λΩ1 · T 1

1 > 2 − λ
(
n0 + at1

)
,
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because a 6 1
d1

. Thus, I have d−1+at1−n0(t1−1) > 2
λ

. But m0 = at1+n0 >
1
λ

by Lemma 2.5.
Adding these inequalities, I get

(4.17) d− 1 + 2at1 − n0(t1 − 2) >
3

λ
.

If t1 > 2, this gives

d + 1 > d− 1 + 2ad1 > d− 1 + 2at1 > d− 1 + 2at1 − n0(t1 − 2) >
3

λ
.

because a 6 1
d1

. One the other hand, if d > 5, then λ 6 3
d+1 by Lemma 4.2(ii). Thus, if d > 5,

then t1 = 1. Moreover, if d = 3, then d1 6 2, which implies that t1 = 1 as well. Furthermore, if
d = 4 and t1 6= 1, then d1 = 3, t1 = 2, λ = 5

8 , which implies 1
3 = 1

d1
> a > 9

20 by (4.17). Hence,
the curve T1 is smooth at P .

Since a 6 1
d1

, I have

d− 1 − n0 > d1 + ad1
(
d− d1 − 1

)
− n0 = Ω1 · T 1

1 > n1,

which implies that n1 6 n0+n1
2 6 d−1

2 . Then λn1 6 1 by Lemma 4.2(i). Hence, I can apply

Theorem 2.16 to the log pair (S1, λΩ1 +λaT 1
1 + (λ(n0 + at1)− 1)E1) at the point P1. This gives

either

Ω1 · T 1
1 >

4

λ
− 2(n0 + a)

or

Ω1 · E1 >
2

λ
− 2a

(or both). Since a 6 1
d1

, the former inequality gives

d− 1 − n0 > d1 + ad1
(
d− d1 − 1

)
− n0 = Ω1 · T 1

1 >
4

λ
− 2(n0 + a).

The latter inequality gives

n0 = λΩ1 ·E1 >
2

λ
− 2a.

Thus, either d− 1 + 2a + n0 >
4
λ

or 2a + n0 >
2
λ

(or both).
If tn > 1, then dn 6= 1 by Lemma 4.5. Thus, if tn > 1, then

d− 1 > dn > ad1dn + n0 > 2a + n0

by Lemma 4.4. Therefore, if tn > 1, then 2(d− 1) > d− 1 + 2a+n0 > 4
λ

or d− 1 > 2a+n0 > 2
λ

,

because d − 1 + 2a + n0 > 4
λ

or 2a + n0 >
2
λ

. In both cases, I get λ > d−1
2 , which is impossible

by Lemma 4.2(i). Thus, tn = 0, so that P 6∈ Tn.
Since T1 is smooth at P and P 6∈ Tn, there must be another irreducible component of TP

passing through P that is different from T1 and Tn. In particular, n > 3. Then d > 4 by
Corollary 4.10. Without loss of generality, I may assume that P ∈ T2. Then T2 is smooth at P

by Lemma 4.11. Moreover, T1 and T2 must be tangent at P . This shows that P1 ∈ T 1
2 as well.

Put D = aT1 + bT2 + ∆, where b is a non-negative rational number, and ∆ is an effective
Q-divisor on the surface S whose support does not contain T1 and T2. Put k0 = multP (∆).
Then m0 = k0 + a + bt2, and ad1 + bd2 6 1 by Lemma 4.4. Denote by ∆1 the proper transform
of the Q-divisor ∆ on the surface S1. Put k1 = multP1(∆1). Then

d− 1 − 2k0 > d1 + d2 +
(
ad1 + ad2

)(
d− d1 − d2 − 1

)
− 2k0 = ∆1 ·

(
T 1
1 + T 1

2

)
> 2k1

because ad1 + bd2 6 1 and d− d1 − d2 − 1 > 0, since n > 3. This gives k0 + k1 6 d−1
2 . On the

other hand, I have 2a + 2b + k0 + k1 = m0 + m1 >
2
λ

by Corollary 4.15. Thus,

d + 3

2
= 2 +

d− 1

2
> 2
(
ad1 + bd2

)
+

d− 1

2
> 2a + 2b +

d− 1

2
> 2a + 2b + k0 + k1 >

2

λ

because ad1 + bd2 6 1. By Lemma 4.2(iii) this gives d = 4.
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Since d = 4 and n > 3, I have n = 3 by Corollary 4.10. Without loss of generality, I may
assume that d1 6 d2. By Corollary 4.9, there exists at most one line in S that passes through
P . This shows that d1 = 1, d2 = 2 and d3 = 1. Thus, T1 and T3 are lines, T2 is a conic, T1

is tangent to T2 at P , and T3 does not pass through P . In particular, the curves T 1
1 and T 2

1

intersect each other transversally at P1.
By Lemma 4.3, T1 · T1 = T2 · T2 = −2 and T1 · T2 = 2. On the other hand, the log pair

(S1, λaT
1
1 + λbT 1

2 + λ∆1 + (λ(a + b + k0) − 1)E1) is not log canonical at P1. Thus, applying
Theorem 2.12 to this log pair and the curve T 1

1 , I get

λ
(
1 + 2a− 2b− k0

)
= λ∆1 · T 1

1 > 2 − λ(a + b + k0) − λb,

which implies that 3a > 2
λ
− 1 = 11

5 , because λ = 5
8 . Similarly, applying Theorem 2.12 to this

log pair and the curve T 1
2 , I get

λ
(
2 − 2a + 2b− k0

)
= λ∆1 · T 1

2 > 2 − λ(a + b + k0) − λa,

which implies that 3b > 2
λ
− 2 = 6

5 . Hence, I have a > 11
15 and b > 2

5 , which is impossible, since
a + 2b = ad1 + bd2 6 1. The obtained contradiction completes the proof of the lemma. �

Using Lemma 4.16, I can easily prove

Lemma 4.18. One has multP (TP ) = 2. Moreover, if the curve TP is reducible, then n = 2,
d1 6 d2, P ∈ T1 ∩ T2, and both curves T1 and T2 are smooth at P .

Proof. If TP is irreducible and multP (TP ) > 3, then

d = TP ·D > 3m0,

which implies that m0 6 d
3 . On the other hand, I have 1

λ
> d

3 by Lemma 4.2(vi). Thus, if

TP is irreducible, then multP (TP ) = 2, because m0 > 1
λ

by Lemma 2.5. Hence, I may assume
that n > 2. Then tn = 0 or tn = 1 by Lemma 4.5. In particular, there exists an irreducible
component of the curve TP different from Tn that passes through P . Without loss of generality,
I may assume that P ∈ T1.

Put D = aT1+Ω, where a is a non-negative rational number, and Ω is an effective Q-divisor on
the surface S whose support does not contain the curve T1. Put n0 = multP (Ω). Denote by Ω1

the proper transform of the Q-divisor Ω on the surface S1. Then (S1, λΩ1+(λ(n0+at1)−1)E1) is
not log canonical at P1, since P1 6∈ T 1

1 by Lemma 4.16. In particular, it follows from Theorem 2.13
that

λn0 = λΩ1 · E1 > 1,

which implies that n0 >
1
λ

. Thus, if t1 > 2, then it follows from Lemma 4.3 that

1

λ
>

d− 1

2
>

d1 + ad1(d− d1 − 1)

2
=

Ω · T1

2
>

t1n0

2
> n0 >

1

λ
,

because a 6 1
d1

by Lemma 4.4, and λ 6 2
d−1 by Lemma 4.2(i). Thus, t1 = 1. Similarly, if P ∈ Tn

and n > 3, then

2

λ
> d− 1 > d1 + dn + ad1(d− d1 − dn − 1) = Ω ·

(
T1 + Tn

)
> 2n0 >

2

λ
.

Thus, if P ∈ Tn, then n = 2.
If P ∈ Tn, then n = 2, and Tn is smooth at P . If n = 2, then Tn must pass through P , because

T1 is smooth at P . Furthermore, if n = 2, then d1 6 dn, because dn > d−1
2 by Lemma 4.5.

Therefore, the required assertions are proved in the case when n = 2. Thus, I may assume that
n > 3. In particular, P 6∈ Tn. Then every irreducible component of the curve TP that contain
P is smooth at P by Lemma 4.11. Hence, there should be at least two irreducible components
of the curve TP that pass through P . Since P 6∈ Tn, the point P is contained in an irreducible
component of TP that is different from T1 and Tn. Without loss of generality, I may assume
that P ∈ T2.
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Put D = aT1 + bT2 + ∆, where b is a non-negative rational number, and ∆ is an effective
Q-divisor on the surface S whose support does not contain T1 and T2. Put k0 = multP (∆).
Then ad1 + bd2 6 1 by Lemma 4.4. Thus, it follows from Lemma 4.3 that

2k0 6 ∆ ·
(
T1 +T2

)
= d1 +d2 +

(
ad1 +ad2

)(
d−d1−d2−1

)
6 d1 +d2 +

(
d−d1−d2−1

)
= d−1

because ad1 + bd2 6 1. Hence, I have k0 6 d−1
2 . Denote by ∆1 the proper transform of the

Q-divisor ∆ on the surface S1. Then the log pair (S1, λ∆1 + (λ(k0 + a + b) − 1)E1) is not log
canonical at P1, since P1 6∈ T 1

1 and P1 6∈ T 1
2 by Lemma 4.16. In particular, it follows from

Theorem 2.12 that
λk0 = λ∆1 ·E1 > 1,

which implies that k0 > 1
λ

. This contradicts Lemma 4.2(i), because k0 6 d−1
2 . The obtained

contradiction completes the proof. �

Later, I will need the following marginal

Lemma 4.19. Suppose that d = 4. Then m0 6
11
5 .

Proof. If n = 1 or d1 = d2 = n = 2, then

2tn > dn = Tn ·D > tnm0,

which implies that m0 6 2. Hence, I may assume that neither n = 1 nor d1 = d2 = n = 2. Then
it follows from Lemma 4.18 that n = 2, d1 = 1, d2 = 3, P ∈ T1 ∩ T2, and both curves T1 and
T2 are smooth at P . Put D = aT1 + Ω, where a is a non-negative rational number, and Ω is
an effective Q-divisor whose support does not contain the line T1. Put n0 = multP (Ω). Then
n0 + 3a 6 3 by Lemma 4.4. Moreover, I have

1 + 2a = T1 · Ω > n0.

The obtained inequalities give m0 = n0 + a 6 11
5 . �

Let f2 : S2 → S1 be a blow up of the point P1. Denote by E2 the f2-exceptional curve, denote
by E2

1 the proper transform of the curve E1 on the surface S2, and denote by D2 the proper
transform of the Q-divisor D on the surface S2. Then

KS2 + λD2 +
(
λm0 − 1

)
E2

1 +
(
λ
(
m0 + m1

)
− 2
)
E2 ∼Q f∗

2

(
KS1 + λD1 +

(
λm0 − 1

)
E1

)
.

By Remark 2.11, the log pair (S2, λD
2 +(λm0−1)E2

1 +(λ(m0 +m1)−2)E2) is not log canonical
at some point P2 ∈ E1.

Lemma 4.20. One has m0 + m1 6
3
λ

.

Proof. Suppose that m0 + m1 >
3
λ

. Then 2m0 > m0 + m1 >
3
λ

. But m0 6
d+1
2 by Lemma 4.12.

Then λ > 3
d+1 . Thus, d 6 4 by Lemma 4.2(ii). If d = 4, then

22

5
> 2m0 > m0 + m1 >

3

λ
=

24

5
by Lemma 4.19. Thus, d = 3. Then λ = 1. By Corollary 4.10, n 6 2. If n = 1, then

3 = TP ·D > 2m0 > m1 + m0 >
3

λ
= 3,

which is absurd. Hence, n = 2. Then d1 = 1 and d2 = 2 by Lemma 4.5. Hence, P ∈ T1 ∩ T2.
Put D = aT1 + Ω, where a is a non-negative rational number, and Ω is an effective Q-divisor

on S whose support does not contain the line T1. Put n0 = multP (Ω). Then m0 = n0 + a, and
n0 + 2a 6 2 by Lemma 4.4. Moreover, I have

1 + a = T1 · Ω > n0,

which implies that n0 − a 6 1. Adding n0 − a 6 1 to n0 + 2a 6 2, I get

3 > 2n0 + a = n0 + m0 = m1 + m0 >
3

λ
= 3,
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because P1 6∈ T 1
1 by Lemma 4.16. �

Thus, the log pair (S2, λD
2+(λm0−1)E2

1 +(λ(m0+m1)−2)E2) is log canonical at a punctured
neighborhood of the point P . The log pair (S2, λD

2 + (λm0 − 1)E2
1 + (λ(m0 + m1) − 2)E2) is

log canonical at every point of the curve E2 that is different from P2 by Lemma 2.14.

Lemma 4.21. One has P2 6= E2
1 ∩ E2.

Proof. Suppose that P2 = E2
1 ∩E2. Then Theorem 2.12 gives

λ
(
m0 −m1

)
= λD2 ·E2

1 > 3 − λ
(
m0 + m1

)
,

which implies that m0 >
3
2λ . But m0 6

d+1
2 by Lemma 4.12. Therefore, λ > 3

d+1 , which implies

that d 6 4 by Lemma 4.2(ii). If d = 4, then 12
5 = 3

2λ < m0 6 11
5 by Lemma 4.19. Thus, d = 3.

Then λ = 1. By Corollary 4.10, n 6 2. If n = 1, then

3 = TP ·D > 2m0 >
3

λ
= 3,

which is absurd. Hence, n = 2. Then d1 = 1 and d2 = 2 by Lemma 4.5. I have P ∈ T1 ∩ T2.
Put D = aT1 + Ω, where a is a non-negative rational number, and Ω is an effective Q-divisor

on S whose support does not contain the line T1. Put n0 = multP (Ω). Then m0 = n0 + a, and
n0 + 2a 6 2 by Lemma 4.4, Then 2n0 + a 6 3, because

1 + a = D · Ω > n0.

Denote by Ω1 the proper transform of the divisor Ω on S1. Put n1 = multP1(Ω1). Then
n1 = m1, since P1 6∈ T 1

1 by Lemma 4.16. Thus, the log pair (S2, (n0+a−1)E2
1+(n0+n1−a−2)E2)

is not log canonical at P2. Applying Theorem 2.12 to this pair and the curve E2
1 , I get

n0 − n1 = Ω2 · E2
1 > 3 − n0 − n1 + a,

which implies that 2n0 + a > 3. But I already proved that 2n0 + a 6 3. �

Thus, the log pair (S2, λD
2+(λ(m0+m1)−2)E2) is not log canonical at P2. Then Lemma 2.5

gives

Corollary 4.22. One has m0 + m1 + m2 >
3
λ

.

Denote by T 2
P the proper transform of the curve TP on the surface S2. Then

T 2
P + E2

1 ∼ (f1 ◦ f2)∗(OS(1)) − f∗

2 (E1) − E2,

because T 1
P ∼ f∗

1 (OS(1)) − 2E1 by Lemma 4.18, and P1 6∈ T 1
P by Lemma 4.16.

Lemma 4.23. The linear system |T 2
P + E2

1 | is a pencil that does not have base points in E2.

Proof. Since |T 1
P +E1| is a two-dimensional linear system that does not have base points, |T 2

P +E2
1 |

is a pencil. Let C be a curve in |T 1
P +E1| that passes through P1 and is different from T 1

P +E1.
Then C is smooth at P , since P ∈ f1(C) and f1(C) is a hyperplane section of the surface S that
is different from TP . Since C · E1 = 1, I see that T 1

P + E1 and C intersect transversally at P1.
Thus, the proper transform of the curve C on the surface S2 is contained in |T 1

P +E1| and have
no common points with T 2

P +E2
1 in E2. This shows that the pencil |T 1

P +E1| does not have base
points in E2. �

Since |T 1
P +E1| does not have base points in E2, no curves in |T 1

P +E1| has E2 as an irreducible
component, because (T 1

P + E1) · E2 = 1. Moreover, the only divisor in |T 1
P + E1| that contains

E2
1 as an irreducible component is T 2

P + E2
1 .

Remark 4.24. Let C be a curve in |T 1
P + E1|. Then P1 ∈ f2(C), and f1 ◦ f2(C) is a hyper-

plane section of the surface S that passes through P . In particular, the curve C is reduced by
Lemma 2.6. Furthermore, if C 6= T 2

P +E2
1 , then C is smooth at C∩E, the curve f2(C) is smooth

at P1, and the curve f1 ◦ f2(C) is smooth at the point P .
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Let Z2 be the curve in |T 1
P + E1| that passes through the point P2. Then Z2 6= T 2

P + E2
1 ,

because P2 6= E2
1 ∩ E2 by Lemma 4.21. Then Z2 is smooth at P2. Put Z = f1 ◦ f2(Z

2) and
Z1 = f2(Z

2). Then P ∈ Z and P1 ∈ Z1. Moreover, the curve Z is smooth at P , and the curve
Z1 is smooth at P1. Furthermore, the curve Z is reduced by Lemma 2.6.

Lemma 4.25. The curve Z is reducible.

Proof. Suppose that Z is irreducible. Let me seek for a contradiction. Since Z is smooth at P ,
the log pair (S, λZ) is log canonical at P . Moreover, Z ∼Q D. Thus, it follows from Remark 2.4
that I may assume that Supp(D) does not contain the curve Z. Then

d−m0 −m1 = Z2 ·D2 > m2,

which implies that m0+m1+m2 6 d. One the other hand, m0+m1+m2 >
3
λ

by Corollary 4.22.

This gives λ > 3
d
, which is impossible by Lemma 4.2(vi). �

The log pair (S, λZ) is log canonical at P , because Z is smooth at P . Since Z ∼Q D,
it follows from Remark 2.4 that I may assume that Supp(D) does not contain at least one
irreducible component of the curve Z. Denote this irreducible component by Z̄, and denote its
degree in P3 by d̄. Then d̄ < d.

Lemma 4.26. One has P 6∈ Z̄.

Proof. Suppose that P ∈ Z̄. Let me seek for a contradiction. Denote by Z̄2 the proper transform
of the curve Z̄ on the surface S2. Then

d−m0 −m1 > d̄−m0 −m1 = Z̄2 ·D2
> m2,

which implies that m0+m1+m2 < d. One the other hand, m0+m1+m2 >
3
λ

by Corollary 4.22.

This gives λ > 3
d
, which is impossible by Lemma 4.2(vi). �

Denote by Ẑ the irreducible component of the curve Z that passes through P , denote its
proper transform on the surface S1 by Ẑ1, and denote its proper transform on the surface S2 by
Ẑ2. Then Z̄ 6= Ẑ, P1 ∈ Ẑ1 and P2 ∈ Ẑ2. Denote by d̂ the degree of the curve Ẑ in P3. Then
d̂ + d̄ 6 d. Moreover, the intersection form of the curves Ẑ and Z̄ on the surface S is given by

Lemma 4.27. One has Z̄ · Z̄ = −d̄(d− d̄− 1), Ẑ · Ẑ = −d̂(d− d̂− 1) and Z̄ · Ẑ = d̄d̂.

Proof. See the proof of Lemma 4.3. �

Put D = aẐ + Ω, where a is a positive rational number, and Ω is an effective Q-divisor on
the surface S whose support does not contain the curve Ẑ. Denote by Ω1 the proper transform
of the divisor Ω on the surface S1, and denote by Ω2 the proper transform of the divisor Ω on
the surface S2. Put n0 = multP (Ω), n1 = multP1(Ω1) and n2 = multP2(Ω2). Then m0 = n0 + a,

m1 = n1 + a and m2 = n2 + a. Then the log pair (S2, λaẐ
2 + λΩ2 + (λ(n0 + n1 + 2a) − 2)E2)

is not log canonical at P2, because (S2, λD
2 + (λ(m0 + m1) − 2)E2) is not log canonical at P2.

Thus, applying Theorem 2.12, I see that

λ
(

Ω · Ẑ − n0 − n1

)
= λΩ2 · Z2 > 1 −

(
λ
(
n0 + n1 + 2a

)
− 2
)

= 3 − λ
(
n0 + n1 + 2a

)
,

which implies that

(4.28) Ω · Ẑ >
3

λ
− 2a.

On the other hand, I have

d̄ = D · Z̄ =
(
aẐ + Ω

)
· Z̄ > aẐ · Z̄ = ad̂d̄

by Lemma 4.27. This gives

(4.29) a 6
1

d̂
.
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Thus, it follows from (4.28), (4.29) and Lemma 4.27 that

3

λ
− 2 6

3

λ
− 2a < Ω · Ẑ = d̂ + ad̂

(
d− d̂− 1

)
6 d− 1,

which implies that λ > 3
d+1 . Then d 6 4 by Lemma 4.2(ii).

Lemma 4.30. One has d 6= 4.

Proof. Suppose that d = 4. Then λ = 5
8 . By Lemma 4.25, d̂ 6 3. By Lemma 4.16, Ẑ is not

a line, since every line passing through P must be an irreducible component of the curve TP .
Thus, either Ẑ is a conic or Ẑ is a plane cubic curve. If Ẑ is a conic, then Ẑ2 = −2 and a 6 1

2

by (4.29). Thus, if Ẑ is a conic, then

2 + 2a = Ω · Ẑ >
3

λ
− 2a =

24

5
− 2a,

which implies that 1
2 > a > 7

10 . This shows that Ẑ is a plane cubic curve. Then Ẑ2 = 0. Since

a 6 1
3 by (4.29), I have

3 = Ω · Ẑ >
3

λ
− 2a =

24

5
− 2a >

24

5
− 2

3
=

62

15
,

which is absurd. �

Thus, I see that d = 3. Then Ẑ us either a line or a conic by Lemma 4.25. But every
line passing through P must be an irreducible component of TP . Since Ẑ is not an irreducible
component of TP by Lemma 4.16, the curve Ẑ must be a conic. Then Ẑ · Ẑ = 0. Therefore, it
follows from (4.28) that

3 − 2a =
3

λ
− 2a < Ω · Ẑ = d̂ + ad̂

(
d− d̂− 1

)
= d̂ = 2,

which implies that a > 1
2 . But a 6 1

d̂
= 1

2 by (4.29). The obtained contradiction completes the

proof of Theorem 1.21.

Appendix A. Log canonical thresholds of hypersurfaces

In this appendix, I will present some known results about hypersurfaces and pose one conjec-
ture. Let Vd be a reduced hypersurface in Pn of degree d such that d > n + 1 > 3, and let P be
a point in Vd. Put mP = multP (Vd). The log canonical threshold of the log pair (Pn, Vd) at the
point P is the number

lctP
(
Pn, Vd

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
Pn, λVd

)
is log canonical at P

}
.

Then 1
mP

6 lctP (Pn, Vd) 6 n
mP

by [18, Lemma 8.10]. Thus, if Vd is a cone with vertex in P , then

lctP (Pn, Vd) 6 n
d
. Moreover, Tommaso de Fernex, Lawrence Ein and Mircea Mustaţă proved

Theorem A.1 ([11, Theorem 0.2]). Suppose that the log pair (Pn, n
d
Vd) is Kawamata log

terminal outside of the point P . Then lctP (Pn, Vd) > n
d
. If lctP (Pn, Vd) = n

d
, then Vd is a cone

with vertex in P .

Let Xd be a smooth hypersurface in Pn+1 of degree d > n+1 > 3, and let TO be the hyperplane
section of Xd that is singular at O. Then TO has isolated singularities (see, for example, [24]).

Definition A.2 ([8, Definition 2.2]). The point O is a star point if TO is a cone with vertex in O.

If O is star point, then α
HXd

Xd
(O) 6 n

d
(see Definition 1.20). Moreover, α

HXd

Xd
(O) > n

d
by

Theorem A.3. Let DX be an effective Q-divisor on Xd such that DX ∼Q HXd
. Then (X, n

d
DX)

is not Kawamata log terminal at O if and only if DX = TO and O is a star point.
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Proof. Suppose that (X, n
d
DX) is not Kawamata log terminal at the point O. By Theorems 1.13

and 1.21, I may assume that n > 3. Then Pic(X) = Z[HX ]. Hence, I may assume that DX =
1
m
Dm for a prime Weil divisor Dm on X such that D ∼ mHX , where m ∈ N. Then O ∈ Dm,

and it follows from [24] that multC(Dm) 6 m for every irreducible curve C ⊂ X. In particular,
the log pair (X, n−1

dm
Dm) is Kawamata log terminal outside of finitely many points in X. On the

other hand, there exists a sufficiently general linear projection γ : X → Pn−1 such that γ is etale
in a neighborhood of the point O, the induced morphism γ|Dm

: Dm → γ(Dm) is birational and
is an isomorphism in a neighborhood of the point O. Then (Pn−1, n−1

dm
γ(Dm)) is not Kawamata

log terminal at γ(O) and is Kawamata log terminal in a punctured neighborhood of the point
γ(O). Since γ(Dm) is a hypersurface of degree dm, the divisor −(KPn−1 − n−1

dm
γ(Dm)) is ample.

Then the locus where (Pn−1, n−1
dm

γ(Dm)) is not Kawamata log terminal must be connected by
the connectedness principle of Kollár–Shokurov (see, for example, [9, Theorem 6.3.2]). Hence,
the log pair (Pn−1, n−1

dm
γ(Dm)) is Kawamata log terminal outside of γ(O). By Theorem A.1,

γ(Dm) is a cone with vertex in γ(O). This implies that Dm is a cone with vertex O. Then
Dm = TO, which implies that O is a star point. �

Thus, α(Xd,HXd
) > n

d
. Moreover, if Xd contains a star point, then α(Xd,HXd

) = n
d
. If

n = 2, then Corollary 1.27 implies that α(Xd,HXd
) > n

d
if and only if Xd does not have star

points. So, it is natural to expect

Conjecture A.4. If Xd does not contain star points, then α(Xd,HXd
) > n

d
.

By [8, Theorem 2.10], Xd contains at most finitely many star points. If Xd is general, it does
not contain star points at all. In particular, if Conjecture A.4 is true, then α(Xd,HXd

) > n
d

provided that Xd is general enough. If d = n + 1, the latter is indeed true by

Theorem A.5 ([2, Theorem 1.7], [25, Theorem 2], [4, Theorem 1.1.5]). Suppose that Xd is a
general hypersurface in Pn+1 of degree d = n + 1 > 3. If n = 2, then α(Xd,HXd

) = 3
4 . If n = 3,

then α(Xd,HXd
) > 7

9 . If n = 4, then α(Xd,HXd
) > 5

6 . If n > 5, then α(Xd,HXd
) = 1.

By [28, Theorem 2.1] and [6, Theorem A.3], this result implies that every general hypersurface
in Pn+1 of degree n+ 1 > 3 admits a Kähler–Einstein metric. Similarly, Conjecture A.4 implies
that every smooth hypersurface in Pn+1 of degree n+1 > 3 without star points admits a Kähler–
Einstein metric. Note that Conjecture A.4 follows Theorem A.3 and [30, Conjecture 5.3].
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