Stability conditions

Z-critical metrics

Complexes 00000000

A differential equation corresponding to Bridgeland stability

John Benjamin McCarthy Imperial College London

Including joint work with Ruadhai Dervan and Lars Sektnan

Edge Days 2021, Explicit K-stability and Moduli Problems, 29 Nov - 3 Dec

2nd of December, 2021

Stability conditions

Z-critical metrics

Complexes 00000000

Introduction

Z-critical metrics

Complexes 00000000

Mirror symmetry

Mirror symmetry predicts that to each Calabi–Yau threefold X there should exist a mirror threefold X^{\vee} . This operation should exchange the symplectic and holomorphic structures of X and X^{\vee} .

- The symplectic data is encoded in the category of Lagrangian submanifolds, the Fukaya category Fuk(X).
- The holomorphic data is encoded in the derived category of coherent sheaves, $\mathcal{D}^b \operatorname{Coh}(X)$.

The (homological) mirror symmetry conjecture asserts

$$\operatorname{Fuk}(X) \cong \mathcal{D}^b \operatorname{Coh}(X^{\vee}), \qquad \mathcal{D}^b \operatorname{Coh}(X) \cong \operatorname{Fuk}(X^{\vee}).$$

or maybe $\mathcal{D}^b \operatorname{Fuk}(X)$.

Z-critical metrics

Complexes 00000000

Stable objects

For physical reasons, the category of coherent sheaves Coh(X) is too small, but the full derived category of coherent sheaves $\mathcal{D}^b Coh(X)$ is too large! One should restrict to a certain class of "stable" objects.

This requires a notion of stability for complexes of sheaves which makes sense on the derived category.

Such a notion was invented by Douglas (2000) and Bridgeland (2002), now known as Bridgeland stability.

Stability conditions

Z-critical metrics

Complexes 00000000

Stability conditions

Complexes 00000000

Complexes of coherent sheaves

Let X be a smooth projective variety $/\mathbb{C}$. A bounded complex of coherent sheaves is given by

$$\mathcal{E}: \cdots \to \mathcal{E}_{i-1} \xrightarrow{\phi_{i-1}} \mathcal{E}_i \xrightarrow{\phi_i} \mathcal{E}_{i+1} \to \cdots$$

of coherent sheaves with morphisms satisfying $\phi_i \circ \phi_{i-1} = 0$, such that $E_i = 0$ for $i \ll 0$ and $i \gg 0$.

The *i*th cohomology sheaf of \mathcal{E} is given by

$$H^i(\mathcal{E}) = rac{\ker \phi_i : E_i o E_{i+1}}{\operatorname{im} \phi_{i-1} : E_{i-1} o E_i}$$

and the cohomology complex $H^{\bullet}(\mathcal{E})$ is

$$H^{ullet}(\mathcal{E}):\cdots
ightarrow H^{i-1}(\mathcal{E}) \xrightarrow{0} H^{i}(\mathcal{E}) \xrightarrow{0} H^{i+1}(\mathcal{E})
ightarrow \cdots$$

A morphism $f : \mathcal{E} \to \mathcal{E}'$ of complexes is called a *quasi-isomorphism* if the induced morphism $H(f) : H^{\bullet}(\mathcal{E}) \to H^{\bullet}(\mathcal{E}')$ is an isomorphism.

Stability conditions

Z-critical metrics

Complexes 00000000

The derived category

Call two complexes $\mathcal{E}, \mathcal{E}'$ quasi-isomorphic if there exists a quasi-isomorphism from \mathcal{E} to \mathcal{E}' . The bounded derived category $\mathcal{D}^b \operatorname{Coh}(X)$ has objects given by bounded complexes of coherent sheaves.

For every quasi-isomorphism $f : \mathcal{E} \to \mathcal{E}'$ one can formally add an inverse f^{-1} , making quasi-isomorphic complexes isomorphic in the derived category.

The derived category $\mathcal{D}^b \operatorname{Coh}(X)$ is the category generated by this formal inversion of quasi-isomorphisms.

Z-critical metrics

Complexes 00000000

Stability conditions

To define stability on the derived category, one chooses a central charge

 $Z: K(X) \rightarrow \mathbb{H} \subset \mathbb{C},$

an additive group homomorphism.Defining

$$Z(\mathcal{E}) = \sum_{i} (-1)^{i} Z(E_{i})$$

one obtains a group homomorphism

 $Z: K(\mathcal{D}^b\operatorname{Coh}(X)) \to \mathbb{C}$

and if $\mathcal{E}, \mathcal{E}'$ are quasi-isomorphic then $Z(\mathcal{E}) = Z(\mathcal{E}')$.

The Z-slope μ_Z and Z-phase φ_Z of \mathcal{E} are

$$\mu_{Z}(\mathcal{E}) := \frac{\operatorname{Im} Z(\mathcal{E})}{\operatorname{Re} Z(\mathcal{E})}, \quad \varphi_{Z}(E) := \operatorname{arg} Z(\mathcal{E}).$$

Z-critical metrics

Complexes 00000000

Stable objects

To define stable objects, one must pick a *heart* A of $\mathcal{D}^b \operatorname{Coh}(X)$, a full Abelian subcategory satisfying various assumptions. For example the most obvious choice is $A = \operatorname{Coh}(X)$.

An object $\mathcal{E} \in \mathcal{A}$ is called (Z, \mathcal{A}) -(semi)stable if

 $\mu_{Z}(\mathcal{F}) \leq \mu_{Z}(\mathcal{E})$

for every subobject $\mathcal{F} \to \mathcal{E}$ in \mathcal{A} (or equivalently using φ_Z).

A stability condition $\sigma = (Z, A)$ must satisfy various properties which make Coh(X) a bad choice of heart.

Z-critical metrics

Complexes 00000000

Examples of stability conditions

Examples of central charges can be easily constructed. For example if

$$Z(E) = -\deg E + i \operatorname{rk} E$$

then μ_Z -stability is slope stability.

More generally we can take

$$Z(E) = \int_X \sum_{d=0}^n \rho_d[\omega]^d. \operatorname{Ch}(E).U$$

where $\rho_d \in \mathbb{C}^*$ satisfy $\operatorname{Im}(\rho_{d+1}/\rho_d) > 0$ and U = 1 + N is a cohomology class with $N \in H^{>0}(X, \mathbb{R})$. These are called *polynomial central charges*.

In general finding a heart A compatible with a central charge Z which satisfies the required properties of a stability condition (existence of Harder–Narasimhan filtrations and the support property) is very difficult. The obvious Coh(X) is not a valid heart with respect to either central charge above.

Complexes 00000000

Examples of stability conditions

Two more important examples of stability conditions are:

• The *deformed Hermitian Yang–Mills* (dHYM) stability condition with *B*-field

$$Z_{\mathrm{dHYM}}(E) = -\int_X e^{-i\omega-B} \operatorname{Ch}(E).$$

The dHYM/Todd stability condition

$$Z_{\text{Todd}}(E) = -\int_X e^{-i\omega - B} \operatorname{Ch}(E) \sqrt{\operatorname{Td}(X)}$$

important in string theory.

Stability conditions 0000000 Z-critical metrics

Complexes 00000000

Z-critical metrics

Complexes 00000000

A differential equation?

Recall the famous Donaldson–Uhlenbeck–Yau theorem:

Theorem

A holomorphic vector bundle $E \rightarrow (X, \omega)$ over a compact Kähler n-manifold is slope polystable if and only if it admits a Hermitian metric h solving the Hermite–Einstein equation

$$F(h) \wedge \omega^{n-1} = \lambda(E) \mathbf{1}_E \otimes \omega^n$$

for some constant $\lambda(E) \in \mathbb{C}$.

By direct analogy, one may ask:

Question

Does there exist a differential equation depending on a choice of stability condition (Z, A) such that an object $\mathcal{E} \in A$ is μ_Z -stable if and only if \mathcal{E} admits a solution to the differential equation?

Complexes 00000000

Z-critical metrics

Let us consider the simplified setting $E \to (X, \omega)$ is a single holomorphic vector bundle over a compact Kähler manifold. We will also consider a limiting situation $\omega \mapsto k\omega$ with $k \to \infty$, called the *large volume limit*.

Let Z_k be a polynomial central charge with respect to $k\omega$:

$$Z_k(E) = \int_X \sum_{d=0}^n \rho_d k^d [\omega]^d. \operatorname{Ch}(E). U.$$

Using Chern–Weil theory, if h is a Hermitian metric on E, there is a differential-geometric representative

$$ilde{Z}_k(h) := \left[\sum_{d=0}^n
ho_d k^d \omega^d \wedge \exp\left(rac{i}{2\pi} F(h)
ight) \wedge ilde{U}
ight]^{(n,n)}$$

where F(h) is the Chern curvature of h and \tilde{U} is any form representing U. This satisfies

$$Z_k(E) = \int_X \operatorname{tr} ilde{Z}_k(h)$$

for any h.

Z-critical metrics

Complexes 00000000

Z-critical metrics

Definition

A hermitian metric h on $E \rightarrow (X, \omega)$ is called Z_k -critical if

$$\operatorname{\mathsf{Im}}\left(e^{-i\varphi_k(E)}\widetilde{Z}_k(h)\right) = 0$$

where Im denotes the skew-Hermitian part with respect to h(F(h)) is skew-Hermitian).

- If E is a line bundle, then F(h) is an imaginary two-form and Im takes the imaginary part of the (n, n)-form inside.
- If E is a line bundle, the Z_k-critical equation asks that the phase of the function Z
 _k(h)/ωⁿ ∈ C[∞](X, C) is constant equal to its required topological average φ_k(E).
- If *E* is a line bundle and $Z = Z_{dHYM}$, this equation can be derived using mirror symmetry from the special Lagrangian equation.

Z-critical metrics

Complexes 00000000

Large volume limit

In the limit as $k\to\infty,$ the leading order term of the $Z_k\text{-critical}$ equation is the Hermite–Einstein equation

$$F(h) \wedge \omega^{n-1} = \lambda(E) \mathbf{1}_E \otimes \omega^n.$$

Analogously, for a polynomial central charge Z_k , μ_{Z_k} -stability is given by slope stability to leading order in k as $k \to \infty$.One can attempt to perturb from $k = \infty$ to solve the Z_k -critical equation for $k \gg 0$ by assuming *asymptotic Z-stability*: $E \to (X, \omega)$ is asymptotically Z-stable if for every subsheaf $F \subset E$ we have

$$\mu_{Z_k}(F) < \mu_{Z_k}(E)$$

for all $k \gg 0$.

Z-critical metrics

Complexes 00000000

A correspondence

Theorem (Dervan–M.–Sektnan)

A holomorphic vector bundle $E \to (X, \omega)$ on a compact Kähler manifold admits a Z_k -critical Hermitian metric for all $k \gg 0$ if and only if it is asymptotically Z-stable.

- We make the assumption that E is slope semistable and its polystable degeneration Gr(E) is locally-free.
- In the large volume limit the Z_k-critical equation is elliptic and one can try to apply perturbation theory to obtain a solution.
- Good enough approximate solutions for the inverse function theorem to apply exist precisely when the algebraic stability condition is satisfied.
- The \Leftarrow direction uses the principle that *curvature decreases in subbundles*.

Z-critical metrics 000000●

Complexes 00000000

An example

Let $E \to \mathbb{P}^2$ be a simple rank three bundle on \mathbb{P}^2 appearing as an extension

$$0 o F o E o \mathcal{O}_{\mathbb{P}^2} o 0$$

where *F* is slope stable of rank 2 and $c_1(F) = 0$. Then $c_1(E) = 0$ and $c_2(E) = c_2(F)$. The stability of *F* implies $c_1(E) \ge 0$ by the Bogomolov inequality. Fix a *B*-field $B \in H^2(\mathbb{P}^2, \mathbb{R})$ and consider $B.[\omega] \in \mathbb{R}$.

- If $c_2(E) > 0$ then *E* is asymptotically $Z_{dHYM,B}$ -stable whenever $B.[\omega] < 0$ and admits a dHYM metric in this case. *E* is unstable when $B.[\omega] \ge 0$.
- E* is asymptotically Z-stable when B.[ω] > 0 and admits a dHYM metric in this case.
- If $c_2(E) > 0$ then *E* is asymptotically $Z_{\text{Todd},B}$ -stable whenever $B.[\omega] < \frac{3}{4}$ and admits a *Z*-critical metric.
- For E^* stability holds when $B[\omega] > \frac{3}{4}$.
- When $c_2(E) = 0$ both E and E^* are Z-semistable.

Stability conditions

Z-critical metrics

Complexes •0000000

Complexes

Z-critical metrics

Complexes 00000000

Z-critical metrics on complexes

Can the notion of a Z-critical metric be defined on elements of $\mathcal{D}^b \operatorname{Coh}(X)$? Such an equation should satisfy the following:

- If \mathcal{E} admits a solution to the Z-critical equation and \mathcal{E}' is quasi-isomorphic to \mathcal{E} , then \mathcal{E}' should also admit a solution.
- If \mathcal{E} admits a solution to the Z-critical equation and \mathcal{A} is a heart with $\mathcal{E} \in \mathcal{A}$ and (Z, \mathcal{A}) forms a Bridgeland stability condition, then \mathcal{E} should be μ_Z -stable.

Complexes

Hermitian metric on a complex

Let ${\mathcal E}$ be a complex

$$\mathcal{E}: \cdots \to E_{i-1} \xrightarrow{\phi_{i-1}} E_i \xrightarrow{\phi_i} E_{i+1} \to \cdots$$

Say \mathcal{E} is formally locally free if E_i is locally free for every *i*, and ker ϕ_i , im ϕ_i are locally free for every *i*. Then the cohomology sheaves $H^i(\mathcal{E})$ are also holomorphic vector bundles.

Definition

An *admissible Hermitian metric* h on \mathcal{E} is given by Hermitian metrics h_i on E_i such that

$$h_i\big|_{\ker \phi_i^{\perp(h_i)}} = \phi_i^*\left(\left.h_{i+1}\right|_{\operatorname{im}\phi_i}\right).$$

Denote the space of admissible Hermitian metrics $\mathcal{H} = \mathcal{H}(\mathcal{E})$.

Z-critical metrics

Complexes

Gauge transformations

A gauge transformation g of \mathcal{E} is given by automorphisms $g_i: E_i \to E_i$ such that

$$g_{i+1} \circ \phi_i = \phi_i \circ g_i$$

for every *i*. Denote the space of gauge transformations $\mathcal{G}^{\mathbb{C}}$. If *h* is an admissible metric, let $\mathcal{G}(h)$ denote the gauge transformations in $\mathcal{G}^{\mathbb{C}}$ which are h_i -unitary for each *i*.

Proposition

If $h \in \mathcal{H}$ is an admissible Hermitian metric on \mathcal{E} and $g \in \mathcal{G}^{\mathbb{C}}$ is a gauge transformation, then g^*h is an admissible Hermitian metric. If $h \in \mathcal{H}$ is fixed, then $\mathcal{G}^{\mathbb{C}}$ acts transitively on \mathcal{H} and $\mathcal{H} = \mathcal{G}^{\mathbb{C}}/\mathcal{G}(h)$.

Z-critical metrics

Complexes

An example

Let $X = \Sigma$ be a compact Riemann surface and consider a complex

$$\mathcal{E}: E_0 \xrightarrow{\phi} E_1$$

where ϕ is surjective and ker ϕ is locally free. Then the inclusion ker $\phi \hookrightarrow E_0$ gives a quasi-isomorphism

$$H^{\bullet}(\mathcal{E}) = (\ker \phi \to 0) \xrightarrow{\sim} \mathcal{E}.$$

Notice that $E_0 / \ker \phi \cong \operatorname{im} \phi = E_1$. If *h* is an admissible Hermitian metric on \mathcal{E} , then using the isomorphism $E_0 / \ker \phi \cong \ker \phi^{\perp}$, one may identify $\ker \phi^{\perp}$ with E_1 using ϕ . With respect to the (smooth!) splitting $E_0 \cong \ker \phi \oplus \ker \phi^{\perp} \cong \ker \phi \oplus E_1$ we have

$$h_0 = egin{pmatrix} h_{\mathsf{ker}\,\phi} & 0 \ 0 & h_1 \end{pmatrix}.$$

Complexes 000000000

Hermite–Einstein equation for a complex

Given the holomorphic subbundle ker $\phi \subset E_0$, we obtain a *second* fundamental form β measuring the extent to which the short exact sequence

$$0
ightarrow \ker \phi
ightarrow E_0
ightarrow E_0 / \ker \phi
ightarrow 0$$

splits. One has $\beta \in \Omega^{0,1}(\Sigma, \operatorname{Hom}(E_0/\ker\phi, \ker\phi))$.

Say h is Hermite–Einstein on \mathcal{E} if

$$(F(h_0) - (d\beta - d\beta^* + \beta \wedge \beta^* + \beta^* \wedge \beta) - F(h_1)) = \lambda(\mathcal{E})(\mathbf{1}_{E_0} - \mathbf{1}_{E_1}) \otimes \omega.$$

Here we use the isomorphism ker $\phi^{\perp} \cong E_1$ to make sense of the subtraction $F(h_0) - F(h_1)$ and $\mathbf{1}_{E_0} - \mathbf{1}_{E_1}$.

Proposition

The complex \mathcal{E} admits a Hermite–Einstein metric if and only if the vector bundle ker ϕ admits a Hermite–Einstein metric in the sense of vector bundles.

Stability conditions

Z-critical metrics

Complexes 00000000

Outlook

- Can this definition be extended to more general formally locally free complexes?
- Does this definition make sense for complexes which are not quasi-isomorphic to their cohomology?
- Can one define a Hermitian metric on an arbitrary coherent sheaf?
- What is the Z-critical equation for an arbitrary complex of coherent sheaves?

Stability conditions

Z-critical metrics

Complexes 00000000

Thank you for listening!