
From Kähler-Einstein metrics with prescribed singularities to
K-stability

Antonio Trusiani
Institut de Mathématique de Toulouse

EDGE Days 2021

EXPLICIT K-STABILITY AND MODULI PROBLEMS

Edinburgh

02 Dec 2021

Antonio Trusiani From Kähler-Einstein metrics with prescribed singularities to K-stability



Introduction

Definition (KE metric)

A Kähler-Einstein metric (KE metric) on a Fano manifold X is determined by
a positive metric h on −KX such that its curvature Kähler form ω satisfies
Ric(ω) = ω.

{positive metrics on − KX}/R
1:1←→ {Kähler form in c1(X )}

For a fixed h0 positive metric on −KX with curvature form ω, this
correspondence is given by h = h0e−φ → ω + ddcφ (ddc = i

2π∂∂̄).

Definition (KE metric with singularities)

A KE metric with singularities is determined by a positive singular metric
he−u such that its curvature current ω + ddcu satisfies
Ric(ω + ddcu) = ω + ddcu in a weak sense.

The set of positive singular metrics are described by
PSH(X , ω) := {u ∈ L1(X ) : u is ups and ω + ddcu ≥ 0 in a weak sense}.
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Pluripotential Description

Finding a KE metric with singularities is equivalent to solve{
MAω(u) = e−udV
u ∈ E1(X , ω, ψ)

where dV = eρωn is the usual smooth volume form, MAω(u) := (ω + ddcu)n

as non-pluripolar product, ψ ∈ PSH(X , ω) defines the prescribed singularities
and E1(X , ω, ψ) ⊂ PSH(X , ω) is the set of all elements that are slightly more
singular than ψ (in particular it includes all functions u such that u − ψ is
globally bounded).

What types of singularities are admissible?

ψ ∈M+, i.e. ψ is given by an envelope construction and
Vψ :=

∫
X MAω(ψ) > 0. Note that V0 =

∫
X MAω(0) = (−KX )

n;

ψ must be klt, i.e. I(ψ) = OX ;

⇒M+
klt represents the set of all admissible prescribed singularities, and we

are looking for [ψ]−KE metrics.
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Particular prescribed singularities.
0 ∈M+

klt , and the [0]-KE metrics are exactly the genuine KE metrics;

ψ ∈M+
klt with algebraic singularities type encoded in Ic for an integrally

closed coherent ideal sheaf I and c ∈ Q>0 (ψ
loc≃ c log(

∑
j |fj |

2)).

In this
case,

{[ψ]-KE metrics} 1:1←→ {log KE metrics of a weak log Fano pair (Y ,∆)}
Log KE metrics: Ric(η) = η + [∆].
More precisely, considering a log resolution π : Y → X such that
π−1I = OY (−D), ∆ is the Q-divisor given as cD − KY/X .
; K-stability of

(
(X ,∆);π∗(−KX )− cD

)
.

Example: the KE metrics with cone singularities exploited in [CDS15]
correspond to X = Y , D ∈ | − rKX | smooth divisor, i.e. ψ ≃ 1

r log |sD|2hr ;
define the setM+

D,klt ⊊M
+
klt as the closure under decreasing limits of

the set of prescribed singularities with algebraic singularities types.
Any element ψ ∈M+

D,klt is recovered by a decreasing sequence {Ick
k },

or equivalently by a tower of weak log Fano pairs (Y0,∆0) := (X , 0)
p0←−

(Y1,∆1)
p1←− . . .

pk−1←−−− (Yk ,∆k )
pk←− (Yk+1,∆k+1)

pk+1←−−− . . . such that
p∗

k
(
∆k + KYk

)
≤ ∆k+1 + KYk+1 .

M+
D,klt is the biggest "algebraic" set of admissible prescribed singularities.
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the set of prescribed singularities with algebraic singularities types.
Any element ψ ∈M+

D,klt is recovered by a decreasing sequence {Ick
k },

or equivalently by a tower of weak log Fano pairs (Y0,∆0) := (X , 0)
p0←−

(Y1,∆1)
p1←− . . .

pk−1←−−− (Yk ,∆k )
pk←− (Yk+1,∆k+1)

pk+1←−−− . . . such that
p∗

k
(
∆k + KYk

)
≤ ∆k+1 + KYk+1 .

M+
D,klt is the biggest "algebraic" set of admissible prescribed singularities.
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Analytic Picture for a fixed singularity type

It is possible to define ψ−relative Ding and Mabuchi functionals Dψ,Mψ on
E1(X , ω, ψ) for a fixed ψ ∈M+

D,klt .

Theorem ([Tru20b])

Let ψ ∈M+
D,klt . Then the following statements are equivalent:

there exists a [ψ]-KE metric ω + ddcu

(resp. there exists an unique
[ψ]−KE metric);

Dψ(u) = infE1(X ,ω,ψ) Dψ

(resp. Dψ is coercive);

Mψ(u) = infE1(X ,ω,ψ) Mψ

(resp. Mψ is coercive).

Moreover the uniqueness of [ψ]-KE metrics holds modulo
Aut(X , [ψ])◦ := Aut(X )◦ ∩ Aut(X , [ψ]) where
Aut(X , [ψ]) := {F ∈ Aut(X ) : F∗ψ − ψ is globally bounded}

E1(X , ω, ψ) is naturally endowed of a metric strong topology given by a
distance d ([Tru19], [Tru20c]), which generalises to the prescribed singularity
setting the Darvas’ d1-distance ([Dar15]).
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Motivations

For a fixed prescribed singularity type:

These metrics are natural generalisations of KE metrics (produce many
singular special metrics, for instance on a K -unstable Fano manifold);

Study the log and twisted KE metrics on all Y , for Y → X birational
morphism, directly over X ;

Prove that a YTD-conjecture for the prescribed singularities setting
holds, i.e. that the existence of these metrics is related to a K-stability
with prescribed singularities;

Getting information on the existence of KE metrics (hence on K -polystability):

deforming KE metrics with prescribed singularities;

directly from valuative criterions.
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The KE locus & an interesting conjecture

Definition ([Tru20b])

The KE locus is given by

MKE := {ψ ∈M+
klt : there exists a [ψ]-KE metric}.

Example: For X = P2 consider ψ ∈M+
klt with isolated logarithmic

singularities at p (ψ(z)
loc≃ log

(
∥z∥|2

)
locally around p, ψ smooth on X \ {p}).

Then 0 ∈MKE but ψ /∈MKE .

Conjecture

Assume Aut(X )◦ = {Id}. ThenMKE =M+
klt if and only if 0 ∈MKE .

Remark: By [CDS15] if 0 ∈MKE then tψD ∈MKE for any D ∈ | − rKX |
smooth and for any t ∈ [0, 1). Moreover, by [Zho21] (Theorem 3.3),
considering any divisor D ∈ | − rKX | and keeping assuming 0 ∈MKE , the set
of all t ∈ [0, 1) such that tψD ∈MKE is connected.
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Continuity Method with movable singularities
The solution to the Yau-Tian-Donaldson conjecture in [CDS15] can be
thought as a variant of the classical continuity method in which KE
metrics with cone singularities along a suitable smooth divisor are
deformed into a genuine KE metric;

these KE metrics with cone singularities are particular KE metrics with
prescribed singularities;
intuitively it should be easier to deform KE metrics with prescribed
singularities concentrated on low-dimensional loci.

Theorem ([Tru20a], [Tru20b])

Let {ψt}t∈[0,1] ⊂M+
D,klt be an increasing continuous segment such that

ψ0 ∈MKE ;

Aut(X , [ψt ])
◦ = {Id} for any t ∈ [0, 1).

Then S := {t ∈ [0, 1] : ψt ∈MKE} is open, and the associated family of KE
metrics with prescribed singularities is strongly continuous. Moreover, the
closedness of S holds as soon as supX ut ≤ C uniformly in t ∈ S.

New tools: The set
⊔

t∈[0,1] E
1(X , ω, ψ) has a natural metric structure given

by a distance d , and Pt,s :
(
E1(X , ω, ψt), d

)
→

(
E1(X , ω, ψs), d

)
for t ≥ s are

Lipschitz and have other nice properties ([Tru19], [Tru20c]).
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α-invariant function

Let αω :M+
klt → (0,+∞) be the α-invariant function given as

αω(ψ) := sup
{
α > 0 : sup

u∈PSH(X ,ω),u≤ψ,sup u=0

∫
X

e−αuωn < +∞
}
.

Remarks:
If ψ = 0 then αω(0) = infF∼QL,F≥0 lct(X ,F );

Assume ψ ∈M+
klt with algebraic singularities encoded in Ic , then

αω(ψ) ≥ min
{

1, α(Y ,∆)
}

where α(Y ,∆) := infF∼QL,F≥0 lct(Y ,∆,F ). αω(ψ) is a finer invariant
than α(Y ,∆) to seek for log KE metrics.

αω(·) increases when ψ decreases (i.e. when the singularities
increases), and there are less functions/divisors to test.
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If ψ = 0 then αω(0) = infF∼QL,F≥0 lct(X ,F );

Assume ψ ∈M+
klt with algebraic singularities encoded in Ic , then

αω(ψ) ≥ min
{

1, α(Y ,∆)
}

where α(Y ,∆) := infF∼QL,F≥0 lct(Y ,∆,F ). αω(ψ) is a finer invariant
than α(Y ,∆) to seek for log KE metrics.

αω(·) increases when ψ decreases (i.e. when the singularities
increases), and there are less functions/divisors to test.
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Sufficient numerical conditions for K -polystability

Recall thatMKE := {ψ ∈M+
klt : there exists a [ψ]-KE metric}, that

ψ ∈MKE ∩M+
klt,D is equivalent to the log K-stability of a weak Fano pair, and

that 0 ∈MKE is equivalent to K -polystability.

Theorem ([Tru20b]){
αω >

n
n+1

}
⊂MKE .

Moreover (i)⇒ (ii)⇒ (iii) in the following statements:

(i) there exists ψ ∈M+
klt , t ∈ [0, 1] s.t. αω(tψ) > n

(n+1)t ;

(ii) αω(0) > n
n+1 , and in particular X is K -polystable;

(iii) MKE =M+
klt .

Furthermore, setting Vψ :=
∫

X MAω(ψ) and Aψ :=
(
1− Vψ

V0

) 1
2 ∈ (0, 1), if

αω(ψ) > C
(
lct(X , ψ),Aψ, n

)
then 0 ∈MKE .

More precisely,

αω(ψ) > C(ψ) = min

{
max

{
1,

n2Aψ + 1
n + 1

}
,max

{Aψ lct(X , ψ) + 1
lct(X , ψ) + Aψ

,
n
(
nAψ + 1

)
n + 1

}}
.
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About the constant C(lct(X , ψ),Aψ,n)

Assume ψ ∈M+
klt,D with algebraic singularities such that lct(X , ψ)≫ 1 big

enough (i.e. mild singularities). Then

αω(ψ) > C(Aψ, n) =


n

n+1

(
nAψ + 1

)
if 0 ≤ Aψ ≤ 1

n2

1 if 1
n2 ≤ Aψ ≤ 1

n
n2Aψ+1

n+1 if 1
n ≤ Aψ < 1.

Recall that Aψ =
(
1− Vψ

V0

)1/2 for

V0 = VolX (−KX ) = (−KX )
n;

Vψ = VolY
(
π∗(−KX )− cD

)
=

(
π∗(−KX )− cD

)n where
the singularities of ψ are encoded in Ic ;
π : Y → X is a log-resolution of the ideal sheaves I;
π−1I = OY (−D).
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Estimating αω(ψ) for isolated singularities

Consider N different points p1, . . . , pN in X , and let ψN,δ ∈M+
klt,D with

isolated logarithmic singularities at p1, . . . , pN ,

i.e.

ψ ∈ C∞(X \ {p1, . . . , pN}) and ψ(z)
loc≃ δ log∥z∥2 around p1, . . . , pN .

This necessarily requires ϵ(−KX ; p1, . . . , pN) ≥ δ, namely considering
πN : YN → X the blow-up at p1, . . . , pN , the line bundle
LN,δ := π∗

N(−KX )− δ(E1 + · · ·+ EN) is nef.
For L = LN,δ set ϵe(L) := infy∈E1+···+EN ϵ(L; y),
ϵg(L) := infy /∈E1+···+EN ,i=1,...,N ϵ(L; y), and similarly for the
pseudoeffective thresholds σe(L), σg(L).

Then

αω(ψN;δ) ≥
1

max
{
δ + σe(L);σg(L)}

αω(ψN;δ) ≥ min
{ 1
δ + (−KX )n−Nδn

ϵe(L)n−1

,
ϵg(L)n−1

(−KX )n − Nδn

}

In this case AψN;δ
=

(
Nδn

(−KX )n

)1/2
, and conjecturally if the points are sufficiently

general and N ≫ 1 then δn ∈ (0, (−KX )n

N ), and σ(LN,δ; y)→ 0 as δn → (−KX )n

N
for all y /∈ E1 + · · ·+ EN such that p1, . . . , pN , y are still sufficiently general.
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Thanks!

Thank you!
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