Non-solidity of high index Fano 3-folds

Tiago Duarte Guerreiro
Joint work with Livia Campo

Loughborough University
Edge Days 2021
T. Guerreiro@lboro.ac.uk

December 3, 2021

Overview

(1) MMP: What is it all about?
(2) Birational Non-solidity
(3) Conjecture

MMP: The goal

Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.

MMP: The goal

Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.

Adjusted Guiding Problem
Find good representatives in a Birational equivalence class.

MMP: The goal

Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.

Adjusted Guiding Problem
Find good representatives in a Birational equivalence class.

$$
W-----M M P W^{\prime}
$$

MMP: Building Blocks

$$
W-----\quad \mathrm{MMP}----W^{\prime}
$$

Conjecturally, the variety W^{\prime} falls into one of the following types:

- Fano if $-K_{X}$ is ample;
- Calabi-Yau if K_{X} is numerically trivial;
- Canonically polarised if K_{X} is ample.

MMP: Building Blocks

Conjecturally, the variety W^{\prime} falls into one of the following types:

- Fano if $-K_{X}$ is ample;
- Calabi-Yau if K_{X} is numerically trivial;
- Canonically polarised if K_{X} is ample.

However W^{\prime} is not necessarily smooth.

MMP: Singularities

Definition
A prime divisor D on X is \mathbb{Q}-Cartier if there is a non-zero multiple m such that $m D$ is Cartier. A normal variety X is \mathbb{Q}-factorial if every divisor on X is \mathbb{Q}-Cartier.

MMP: Singularities

Definition

A prime divisor D on X is \mathbb{Q}-Cartier if there is a non-zero multiple m such that $m D$ is Cartier. A normal variety X is \mathbb{Q}-factorial if every divisor on X is \mathbb{Q}-Cartier.

Example
The cone $(x y-u v=0) \subset \mathbb{C}^{4}$ is not \mathbb{Q}-factorial. On the other hand, $\left(x y+z w+z^{3}+w^{3}=0\right) \subset \mathbb{C}^{4}$ is \mathbb{Q}-factorial.

MMP: Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ of X we have,

$$
K_{Y}=\varphi^{*} K_{X}+\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution.

MMP: Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ of X we have,

$$
K_{Y}=\varphi^{*} K_{X}+\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution.

Example
Surfaces with terminal singularities are smooth.

MMP: Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ of X we have,

$$
K_{Y}=\varphi^{*} K_{X}+\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution.

Example

Surfaces with terminal singularities are smooth.

Example

Let X be the cone over the Veronese Surface in \mathbb{P}^{6}. Then $X \simeq \mathbb{P}(1,1,1,2)$. The singularity at the vertex is a non-smooth, terminal singularity of the 3 -fold X. It has discrepancy $\frac{1}{2}$.

MMP: Objects

Theorem (BCHM)
If W is a uniruled variety, then W is birational to a Mori fibre space.

MMP: Objects

Theorem (BCHM)
If W is a uniruled variety, then W is birational to a Mori fibre space.

Definition
A Mori Fibre Space is a contraction $f: X \rightarrow S$ of fibre type with connected fibres between normal varieties. That is,
(1) X has at most \mathbb{Q}-factorial and terminal singularities.
(2) $-K_{X}$ is f-ample.
(3) $\rho(X / S)=1$ and $\operatorname{dim} S<\operatorname{dim} X$.

MMP: Objects

Theorem (BCHM)
If W is a uniruled variety, then W is birational to a Mori fibre space.

Definition
A Mori Fibre Space is a contraction $f: X \rightarrow S$ of fibre type with connected fibres between normal varieties. That is,
(1) X has at most \mathbb{Q}-factorial and terminal singularities.
(2) $-K_{X}$ is f-ample.
(3) $\rho(X / S)=1$ and $\operatorname{dim} S<\operatorname{dim} X$.

If $\operatorname{dim} X=3$, there are three cases:
(1) If $\operatorname{dim} S=0, X$ is a \mathbb{Q}-Fano 3-fold.
(2) If $\operatorname{dim} S=1, X$ is a del Pezzo fibration.
(3) If $\operatorname{dim} S=2, X$ is a conic bundle.

MMP: Objects

Suppose X is a \mathbb{Q}-Fano 3 -fold. Since $\rho_{X}=1$, there is $q \in \mathbb{Z}_{+}$such that $-K_{X} \sim q A$, where $A \in C I(X)$. The maximum of such numbers is called the Fano index of X and is denoted by ι_{X}.

MMP: Objects

Suppose X is a \mathbb{Q}-Fano 3 -fold. Since $\rho_{X}=1$, there is $q \in \mathbb{Z}_{+}$such that $-K_{X} \sim q A$, where $A \in C I(X)$. The maximum of such numbers is called the Fano index of X and is denoted by ι_{X}. The Fano X comes with an embedding into a (weighted) projective space given by

$$
R(X, A)=\bigoplus_{n \geq 0} H^{0}\left(X, \mathcal{O}_{X}(n A)\right)
$$

MMP: Objects

Suppose X is a \mathbb{Q}-Fano 3 -fold. Since $\rho_{X}=1$, there is $q \in \mathbb{Z}_{+}$such that $-K_{X} \sim q A$, where $A \in C I(X)$. The maximum of such numbers is called the Fano index of X and is denoted by ι_{X}. The Fano X comes with an embedding into a (weighted) projective space given by

$$
R(X, A)=\bigoplus_{n \geq 0} H^{0}\left(X, \mathcal{O}_{X}(n A)\right)
$$

Example (See grdb.co.uk)

- A smooth cubic or quartic in \mathbb{P}^{4}
- The smooth complete intersection of two quadrics or of a quadric and a cubic in \mathbb{P}^{5}
- A quintic inside $\mathbb{P}(1,1,1,1,2)$ with a $\frac{1}{2}(1,1,1)$ cyclic quotient singularity and smooth otherwise.

Uniqueness of Output

Definition (Corti)
A \mathbb{Q}-Fano variety X is birationally rigid if the existence of a birational map $\sigma: X \rightarrow Y / S$ to a Mori fibre space Y / S implies that $X \simeq Y$ (and S is therefore a point). It is birationally super-rigid if in addition $\operatorname{Aut}(X)=\operatorname{Bir}(X)$.

Uniqueness of Output

Definition (Corti)
A \mathbb{Q}-Fano variety X is birationally rigid if the existence of a birational map $\sigma: X \rightarrow Y / S$ to a Mori fibre space Y / S implies that $X \simeq Y$ (and S is therefore a point). It is birationally super-rigid if in addition $\operatorname{Aut}(X)=\operatorname{Bir}(X)$.

Theorem (Iskovskikh-Manin, '71)
A smooth quartic threefold $Z_{4} \subset \mathbb{P}^{4}$ is birationally superrigid.

Uniqueness of Output

Definition (Corti)
A \mathbb{Q}-Fano variety X is birationally rigid if the existence of a birational map $\sigma: X \rightarrow Y / S$ to a Mori fibre space Y / S implies that $X \simeq Y$ (and S is therefore a point). It is birationally super-rigid if in addition $\operatorname{Aut}(X)=\operatorname{Bir}(X)$.

Theorem (Iskovskikh-Manin, '71)
A smooth quartic threefold $Z_{4} \subset \mathbb{P}^{4}$ is birationally superrigid.

Theorem (Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-de
Fernex-Ein-Mustață-Zhuang)
Let $X_{n+1} \subset \mathbb{P}^{n+1}$ be an n-dimensional smooth hypersurface of degree $n+1$ where $n \geq 3$. Then X_{n+1} is birationally super-rigid.

Uniqueness of Output

Definition (Corti)
A \mathbb{Q}-Fano variety X is birationally rigid if the existence of a birational map $\sigma: X \rightarrow Y / S$ to a Mori fibre space Y / S implies that $X \simeq Y$ (and S is therefore a point). It is birationally super-rigid if in addition $\operatorname{Aut}(X)=\operatorname{Bir}(X)$.

Theorem (Iskovskikh-Manin, '71)
A smooth quartic threefold $Z_{4} \subset \mathbb{P}^{4}$ is birationally superrigid.

Theorem (Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-de
Fernex-Ein-Mustață-Zhuang)
Let $X_{n+1} \subset \mathbb{P}^{n+1}$ be an n-dimensional smooth hypersurface of degree $n+1$ where $n \geq 3$. Then X_{n+1} is birationally super-rigid.

Proof.
See Kollár's beautiful survey article!

Uniqueness of Output

Theorem (Cheltsov-Park, '14)
Let $Z_{5} \subset \mathbb{P}(1,1,1,1,2)$ is birationally rigid but not birationally super-rigid.

Uniqueness of Output

Theorem (Cheltsov-Park, '14)
Let $Z_{5} \subset \mathbb{P}(1,1,1,1,2)$ is birationally rigid but not birationally super-rigid.

Theorem (Corti-Mella, '01)
Let $Z_{4} \subset \mathbb{P}^{4}$ be a quartic threefold with a singularity

$$
0 \in\left(x y+z^{3}+t^{3}=0\right) \subset \mathbb{C}^{4}
$$

and general otherwise. Then Z_{4} has exactly two Mori fibre space structures. These are Z_{4} itself and a complete intersection of a cubic and a quartic in $\mathbb{P}(1,1,1,1,2,2)$.

Uniqueness of Output

Theorem (Cheltsov-Park, '14)
Let $Z_{5} \subset \mathbb{P}(1,1,1,1,2)$ is birationally rigid but not birationally super-rigid.

Theorem (Corti-Mella, '01)
Let $Z_{4} \subset \mathbb{P}^{4}$ be a quartic threefold with a singularity

$$
0 \in\left(x y+z^{3}+t^{3}=0\right) \subset \mathbb{C}^{4}
$$

and general otherwise. Then Z_{4} has exactly two Mori fibre space structures. These are Z_{4} itself and a complete intersection of a cubic and a quartic in $\mathbb{P}(1,1,1,1,2,2)$.

Notice that birational rigidity of the Fano X implies that X is strongly irrational.

Question (Abban, Okada):

Definition (Abban-Okada, 2018)
A \mathbb{Q}-Fano variety X is birationally solid if there is no birational map from X to a strict Mori fibre space, that is, to a Mori fibre space $f: Y \rightarrow S$ where $\operatorname{dim} S>0$.

Question (Abban, Okada):

Definition (Abban-Okada, 2018)
A \mathbb{Q}-Fano variety X is birationally solid if there is no birational map from X to a strict Mori fibre space, that is, to a Mori fibre space $f: Y \rightarrow S$ where $\operatorname{dim} S>0$.

Question: Do birationally solid Fano varieties exist in higher codimensions?

Partial Answer (Campo, DG, 2021):

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $l:=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

Partial Answer (Campo, DG, 2021):

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $l:=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

Proof.
Consider the projection $\mathbb{P}\left(a_{0}, \ldots, a_{N}\right) \rightarrow \mathbb{P}\left(a_{0}, a_{1}\right)$ and call π its restriction to X. The generic fibre is a surface in X of degree $l:=\operatorname{Icm}\left(a_{0}, a_{1}\right)$.

Partial Answer (Campo, DG, 2021):

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $l:=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

Proof.
Consider the projection $\mathbb{P}\left(a_{0}, \ldots, a_{N}\right) \rightarrow \mathbb{P}\left(a_{0}, a_{1}\right)$ and call π its restriction to X. The generic fibre is a surface in X of degree $l:=\operatorname{Icm}\left(a_{0}, a_{1}\right)$. By adjunction,

$$
-K_{S}=\left.\left(-K_{X}-S\right)\right|_{S}+\text { Diff }\left.\sim\left(\iota_{X}-I\right) H\right|_{S}+\text { Diff }
$$

Partial Answer (Campo, DG, 2021):

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $l:=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

Proof.
Consider the projection $\mathbb{P}\left(a_{0}, \ldots, a_{N}\right) \rightarrow \mathbb{P}\left(a_{0}, a_{1}\right)$ and call π its restriction to X. The generic fibre is a surface in X of degree $l:=\operatorname{Icm}\left(a_{0}, a_{1}\right)$. By adjunction,

$$
-K_{S}=\left.\left(-K_{X}-S\right)\right|_{S}+\text { Diff }\left.\sim\left(\iota_{X}-I\right) H\right|_{S}+\text { Diff }
$$

Hence $-K_{S}$ is big.

Partial Answer (Campo, DG, 2021):

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $l:=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

Proof.
Consider the projection $\mathbb{P}\left(a_{0}, \ldots, a_{N}\right) \rightarrow \mathbb{P}\left(a_{0}, a_{1}\right)$ and call π its restriction to X. The generic fibre is a surface in X of degree $l:=\operatorname{Icm}\left(a_{0}, a_{1}\right)$. By adjunction,

$$
-K_{S}=\left.\left(-K_{X}-S\right)\right|_{S}+\text { Diff }\left.\sim\left(\iota_{X}-I\right) H\right|_{S}+\text { Diff }
$$

Hence $-K_{S}$ is big. Take the minimal resolution of $S, \varphi: \tilde{S} \rightarrow S$. Then,

$$
-K_{\tilde{S}}=\varphi^{*}\left(-K_{S}\right)-\sum a_{i} E_{i}, \quad a_{i} \leq 0
$$

Hence $-K_{\tilde{S}}$ is also big and therefore $H^{0}\left(\tilde{S}, m K_{\tilde{S}}\right)=0$, i.e., $\kappa(\tilde{S})=-\infty$ and \tilde{S} is uniruled.

Partial Answer (Campo, DG, 2021) Continuation:

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $I=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

We resolve the indeterminacy of π to get a commutative diagram

Partial Answer (Campo, DG, 2021) Continuation:

Theorem (Campo - DG, 2021)
Let X be a \mathbb{Q}-Fano 3 -fold with Fano index $\iota_{X} \geq 2$ embedded in a weighted projective space $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N}\right)$ such that $a_{i} \leq a_{i+1}$. Suppose that $I=\operatorname{lcm}\left(a_{0}, a_{1}\right)<\iota_{X}$. Then, X is birational to a Mori fibre space $Y \rightarrow S$ where $\operatorname{dim} S>0$.

We resolve the indeterminacy of π to get a commutative diagram

Let S^{\prime} be the proper transform of S in \tilde{X}. Then S^{\prime} is uniruled as well. Apply relative MMP to the fibration $\varphi: \tilde{X} \rightarrow \mathbb{P}\left(a_{0}, a_{1}\right)$. The uniruledness of the fibres is preserved under the MMP.

Explicit examples

Question: Suppose there is a birational map $\sigma: X \rightarrow Y / S$ from a Fano variety to a Mori fibre space. Can we retrieve this map explicitly?

Explicit examples

Question: Suppose there is a birational map $\sigma: X \rightarrow Y / S$ from a Fano variety to a Mori fibre space. Can we retrieve this map explicitly?

Theorem (Sarkisov, Corti-1995, Hacon-McKernan - 2013)
Two Mori fibre spaces are birational if and only if they are related by a finite sequence of elementary operations called Sarkisov links. A birational map from a \mathbb{Q}-Fano threefold always starts with a blowup of a centre.

Explicit examples

Theorem (Okada, 2014; Abban-Cheltsov-Park, 2020; DG, 2021)
Suppose X is a quasismooth \mathbb{Q}-Fano 3-fold weighted complete intersection and $\mathbf{p} \in X$ a singular point. Then either
(1) There is a blowup of \mathbf{p} which initiates a Sarkisov link and a complete breakdown of the steps is written or
(2) There is no blowup of \mathbf{p} which initiates a Sarkisov link.

Explicit examples

Theorem (Okada, 2014; Abban-Cheltsov-Park, 2020; DG, 2021)
Suppose X is a quasismooth \mathbb{Q}-Fano 3-fold weighted complete intersection and $\mathbf{p} \in X$ a singular point. Then either
(1) There is a blowup of \mathbf{p} which initiates a Sarkisov link and a complete breakdown of the steps is written or
(2) There is no blowup of \mathbf{p} which initiates a Sarkisov link.

Example

Let $X_{6,8} \subset \mathbb{P}(1,2,2,3,3,5)$ with homogeneous variables x, y, z, t, v, w be the Fano 3 -fold given by the complete intersection of the hypersurfaces

$$
\begin{array}{r}
w x+v t+f_{6}=0 \\
w(v+t)+v^{2} z+v g_{5}+g_{8}=0 .
\end{array}
$$

Then blowing up the point $\mathbf{p}=(0: 0: 0: 0: 0: 1)$ initiates a Sarkisov link to a singular quartic threefold $Z_{4} \subset \mathbb{P}^{4}$.

Codimension 4

There is no structure theorem! One method to obtain some examples of Fano 3-folds in high codimension is by unprojection.

Codimension 4

There is no structure theorem! One method to obtain some examples of Fano 3-folds in high codimension is by unprojection.

Example

Let $S \subset \operatorname{Proj} \mathbb{C}[x, y, z, w] \simeq \mathbb{P}^{3}$ be a cubic surface containing the line $L:(x=y=0)$. Then, S is defined by $x B-y A=0$, where A, B are general quadratic forms. Define

$$
S^{\prime}:(x s=A, y s=B) \subset \mathbb{P}^{4}=\operatorname{Proj} \mathbb{C}[x, y, z, w, s]
$$

We have a projection $\pi: S^{\prime} \rightarrow S$ from $\mathbf{p}_{\mathbf{s}}:=(0: 0: 0: 0: 1) \in S^{\prime}$ whose inverse is the unprojection

$$
\pi^{-1}: S \leftrightarrow S^{\prime}
$$

This map contracts L to $\mathbf{p}_{\mathbf{s}} \in S^{\prime}$.

Codimension 4

There is no structure theorem! One method to obtain some examples of Fano 3-folds in high codimension is by unprojection.

Example

Let $S \subset \operatorname{Proj} \mathbb{C}[x, y, z, w] \simeq \mathbb{P}^{3}$ be a cubic surface containing the line $L:(x=y=0)$. Then, S is defined by $x B-y A=0$, where A, B are general quadratic forms. Define

$$
S^{\prime}:(x s=A, y s=B) \subset \mathbb{P}^{4}=\operatorname{Proj} \mathbb{C}[x, y, z, w, s] .
$$

We have a projection $\pi: S^{\prime} \rightarrow S$ from $\mathbf{p}_{\mathbf{s}}:=(0: 0: 0: 0: 1) \in S^{\prime}$ whose inverse is the unprojection

$$
\pi^{-1}: S \leftrightarrow S^{\prime}
$$

This map contracts L to $\mathbf{p}_{\mathrm{s}} \in S^{\prime}$.
Any quasismooth Fano 3 -fold $X \subset w \mathbb{P}^{6}$ (except the smooth complete intersection of three quadrics) is given by Pfaffian equations on a 5×5 skew symmetric matrix.

Codimension 4

There is no structure theorem! One method to obtain some examples of Fano 3-folds in high codimension is by unprojection.

Example

Let $S \subset \operatorname{Proj} \mathbb{C}[x, y, z, w] \simeq \mathbb{P}^{3}$ be a cubic surface containing the line $L:(x=y=0)$. Then, S is defined by $x B-y A=0$, where A, B are general quadratic forms. Define

$$
S^{\prime}:(x s=A, y s=B) \subset \mathbb{P}^{4}=\operatorname{Proj} \mathbb{C}[x, y, z, w, s] .
$$

We have a projection $\pi: S^{\prime} \rightarrow S$ from $\mathbf{p}_{\mathbf{s}}:=(0: 0: 0: 0: 1) \in S^{\prime}$ whose inverse is the unprojection

$$
\pi^{-1}: S \leftrightarrow S^{\prime}
$$

This map contracts L to $\mathbf{p}_{\mathrm{s}} \in S^{\prime}$.
Any quasismooth Fano 3 -fold $X \subset w \mathbb{P}^{6}$ (except the smooth complete intersection of three quadrics) is given by Pfaffian equations on a 5×5 skew symmetric matrix. The idea to get families in codimension 4 is to force a divisor $D \subset X$ and unproject:

Codimension 4

Using the graded ring approach of Reid, there are 34 candidates for (deformation families of) Fano 3-folds with $-K_{X}=2 H$ embedded as codimension 4 in weighted projective space. Livia has constructed these families explicitly

Codimension 4

Using the graded ring approach of Reid, there are 34 candidates for (deformation families of) Fano 3-folds with $-K_{X}=2 H$ embedded as codimension 4 in weighted projective space. Livia has constructed these families explicitly

Example

GRDB ID: $\# 39961: ~ X \subset \mathbb{P}^{7}(1,2,2,3,4,5,5,7)$

$$
\left\{\begin{array}{l}
x_{2} \xi y_{1}-y_{1}^{2}-y_{4} x_{1}+x_{2} y_{2}=0 \\
-x_{2}^{7} t^{3}-x_{2}^{3} \xi^{2} t-x_{2} \xi^{3}+x_{2}^{2} \xi y_{1} t+x_{2} \xi x_{1}-x_{2}^{2} y_{2} t-y_{1} x_{1}+y_{4} s=0 \\
\xi^{3} y_{4}-y_{4}^{4} t^{3}+x_{2} \xi y_{2}-y_{1} y_{2}+x_{2} y_{3}=0 \\
x_{2}^{2} \xi^{3} t+x_{2} y_{4}^{2} y_{1} t^{3}+x_{2}^{2} \xi x_{1} t+x_{2}^{2} y_{4} x_{1} t^{2}-x_{1}^{2}-y_{1} s=0 \\
x_{2}^{6} y_{1} t^{3}-x_{2} y_{4}^{4} t^{4}+\xi^{3} y_{1}-y_{4}^{3} y_{1} t^{3}-x_{2} y_{4}^{2} x_{1} t^{2}+x_{2}^{2} y_{3} t+x_{1} y_{2}=0 \\
x_{2}^{5} y_{4} y_{1} t^{3}-y_{4}^{5} t^{4}-y_{4}^{3} x_{1} t^{2}+x_{2} y_{4} y_{3} t+y_{2}^{2}-y_{1} y_{3}=0 \\
x_{2}^{7} y_{1} t^{4}-x_{2}^{6} x_{1} t^{3}+x_{2}^{2} \xi^{4} t-x_{2}^{2} y_{4}^{4} t^{5}-x_{2} y_{4}^{3} y_{1} t^{4}+x_{2}^{2} \xi y_{4} x_{1} t^{2} \\
-x_{2}^{2} y_{4}^{2} x_{1} t^{3}-\xi^{3} x_{1}+y_{4}^{3} x_{1} t^{3}-x_{2} y_{4} y_{1} x_{1} t^{2}-x_{2} y_{4}^{2} y_{2} t^{3}+x_{2}^{3} y_{3} t^{2}+y_{2}=0 \\
x_{2}^{5} y_{4} x_{1} t^{3}-x_{2}^{6} y_{2} t^{3}-x_{2} \xi y_{4}^{4} t^{4}+y_{4}^{4} y_{1} t^{4}-x_{2} \xi y_{4}^{2} x_{1} t^{2} \\
+y_{4}^{2} y_{1} x_{1} t^{2}-\xi^{3} y_{2}+y_{4}^{3} y_{2} t^{3}+x_{2}^{2} \xi y_{3} t-x_{2} y_{1} y_{3} t-x_{1} y_{3}=0 \\
-x_{2}^{6} \xi^{3} t^{3}+x_{2}^{6} y_{4}^{3} t^{6}-x_{2}^{6} \xi x_{1} t^{3}+x_{2}^{2} \xi^{2} y_{4}^{3} t^{4}+x_{2}^{5} y_{1} x_{1} t^{3}-\xi^{6}+\xi^{3} y_{4}^{3} t^{3}-x_{2} \xi y_{4}^{3} y_{1} t^{4} \\
+x_{2}^{2} \xi^{2} y_{4} x_{1} t^{2}-y_{4}^{4} x_{1} t^{4}-x_{2} \xi y_{4} y_{1} x_{1} t^{2}-x_{2} \xi y_{4}^{2} y_{2} t^{3}+x_{2} y_{4}^{3} y_{2} t^{4} \\
-y_{4}^{2} x_{1}^{2} t^{2}+y_{4}^{2} y_{1} y_{2} t^{3}+x_{2} y_{4} x_{1} y_{2} t^{2}+x_{2} x_{1} y_{3} t-y_{3} s=0
\end{array}\right.
$$

Codimension 4

Example (Continuation)

Actually... This is birational to a del Pezzo fibration $Y / \mathbb{P}(1,2)$ of degree 2. The generic fibre is

$$
\left(t \xi^{3}+t^{2} y_{2}+t \xi y_{2}-y_{2}^{2}+t^{2} \xi y_{1}-\xi^{3} y_{1}-t y_{2} y_{1}-\xi y_{1} y_{2}-t^{2} y_{1}^{2}+y_{2} y_{1}^{2}=0\right) \subset \mathbb{P}\left(1_{t}, 1_{\xi}, 1_{y_{1}}, 2_{y_{2}}\right)
$$

Codimension 4

Example

GRDB ID \#40671: $X \subset \mathbb{P}(1,1,1,2,2,2,3,3)$. Consider the two consecutive projections $X \rightarrow X^{\prime} \rightarrow X^{\prime \prime}$ where $X \longrightarrow X^{\prime}$ is the projection away from $\mathbf{p}_{s} \in X$ and $X^{\prime} \rightarrow X^{\prime \prime}$ is the projection away from $\mathbf{p}_{y_{3}} \in X^{\prime}$. The equations of $X^{\prime \prime}$ are given explicitly by

$$
\left(\begin{array}{ccc}
-y_{1} & y_{2} & y_{2}^{2} x_{2}+y_{1} x_{2}^{2}-x_{2} y_{4} \\
y_{4}-y_{1}^{2}-y_{1} y_{2}-y_{1} x_{2}-y_{2} x_{2} & -y_{4} & -y_{1}^{4}+y_{1}^{3} y_{2}+y_{2}^{2} y_{4}+y_{1} x_{2} y_{4}-y_{4}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\xi \\
1
\end{array}\right)=\binom{0}{0} .
$$

Let $\Gamma \subset \mathbb{P}(1,1,1,2)$ be defined by the three 2×2 minors of the matrix above. The curve Γ has two irreducible and reduced components: one is rational, and the other has genus 4. It turns out that X can be constructed from the blowup of $\Gamma \subset \mathbb{P}(1,1,1,2)$.

Codimension 4

Example

GRDB ID \#40671: $X \subset \mathbb{P}(1,1,1,2,2,2,3,3)$. Consider the two consecutive projections $X \rightarrow X^{\prime} \rightarrow X^{\prime \prime}$ where $X \longrightarrow X^{\prime}$ is the projection away from $\mathbf{p}_{s} \in X$ and $X^{\prime} \rightarrow X^{\prime \prime}$ is the projection away from $\mathbf{p}_{y_{3}} \in X^{\prime}$. The equations of $X^{\prime \prime}$ are given explicitly by

$$
\left(\begin{array}{ccc}
-y_{1} & y_{2} & y_{2}^{2} x_{2}+y_{1} x_{2}^{2}-x_{2} y_{4} \\
y_{4}-y_{1}^{2}-y_{1} y_{2}-y_{1} x_{2}-y_{2} x_{2} & -y_{4} & -y_{1}^{4}+y_{1}^{3} y_{2}+y_{2}^{2} y_{4}+y_{1} x_{2} y_{4}-y_{4}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\xi \\
1
\end{array}\right)=\binom{0}{0} .
$$

Let $\Gamma \subset \mathbb{P}(1,1,1,2)$ be defined by the three 2×2 minors of the matrix above. The curve Γ has two irreducible and reduced components: one is rational, and the other has genus 4. It turns out that X can be constructed from the blowup of $\Gamma \subset \mathbb{P}(1,1,1,2)$. Hence, X is rational and $\rho_{X}=2$.

Codimension 4

Example

GRDB ID \#40671: $X \subset \mathbb{P}(1,1,1,2,2,2,3,3)$. Consider the two consecutive projections $X \rightarrow X^{\prime} \rightarrow X^{\prime \prime}$ where $X \rightarrow X^{\prime}$ is the projection away from $\mathbf{p}_{s} \in X$ and $X^{\prime} \rightarrow X^{\prime \prime}$ is the projection away from $\mathbf{p}_{y_{3}} \in X^{\prime}$. The equations of $X^{\prime \prime}$ are given explicitly by

$$
\left(\begin{array}{ccc}
-y_{1} & y_{2} & y_{2}^{2} x_{2}+y_{1} x_{2}^{2}-x_{2} y_{4} \\
y_{4}-y_{1}^{2}-y_{1} y_{2}-y_{1} x_{2}-y_{2} x_{2} & -y_{4} & -y_{1}^{4}+y_{1}^{3} y_{2}+y_{2}^{2} y_{4}+y_{1} x_{2} y_{4}-y_{4}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\xi \\
1
\end{array}\right)=\binom{0}{0} .
$$

Let $\Gamma \subset \mathbb{P}(1,1,1,2)$ be defined by the three 2×2 minors of the matrix above. The curve Γ has two irreducible and reduced components: one is rational, and the other has genus 4. It turns out that X can be constructed from the blowup of $\Gamma \subset \mathbb{P}(1,1,1,2)$. Hence, X is rational and $\rho_{X}=2$.

Theorem (Campo-DG, 2021)

With the possible exception of 3 deformation families, each of the 34 admits a realisation as a deformation family Fano 3-fold which is non-solid.

Sarkisov links via toric varieties

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

Sarkisov links via toric varieties

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

Sarkisov links via toric varieties

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

(-) $\operatorname{Nef}(T)=\mathbb{R}_{+}\left[M_{1}\right]+\mathbb{R}_{+}\left[A_{0}\right]$.

Sarkisov links via toric varieties

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

(1) $\operatorname{Nef}(T)=\mathbb{R}_{+}\left[M_{1}\right]+\mathbb{R}_{+}\left[A_{0}\right]$.
(2) If T_{i} and T_{i+1} are ample models in adjacent chambers, they are related by a small \mathbb{Q}-factorial modification.

Sarkisov links via toric varieties

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

(1) $\operatorname{Nef}(T)=\mathbb{R}_{+}\left[M_{1}\right]+\mathbb{R}_{+}\left[A_{0}\right]$.
(2) If T_{i} and T_{i+1} are ample models in adjacent chambers, they are related by a small \mathbb{Q}-factorial modification.
(3) We have $M_{2} \sim_{\mathbb{Q}} E^{\prime}$.

Sarkisov links via toric varieties: Restriction

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

Sarkisov links via toric varieties: Restriction

By Hu and Keel, birational contractions in a Mori Dream Space arise from toric geometry.

(1) $\operatorname{Nef}(Y)=\mathbb{R}_{+}\left[M_{1}\right]+\mathbb{R}_{+}\left[A_{1}\right]$.
(2) If Y_{i} and Y_{i+1} are ample models in adjacent chambers, they are related by a flip.
(3) $-K_{Y} \in \operatorname{Int} \operatorname{Mov}(Y)$
(9) We have $M_{2} \sim_{\mathbb{Q}} E^{\prime}$.

Conjecture

- Fano if $-K_{X}$ is ample;
- Calabi-Yau if K_{X} is numerically trivial;
- Canonically polarised if K_{X} is ample.

Conjecture

- Fano if $-K_{X}$ is ample;
- Calabi-Yau if K_{X} is numerically trivial;
- Canonically polarised if K_{X} is ample.

Conjecture
Let W be a smooth uniruled variety. Then W is birational to a Mori fibre space whose general fibre is K -stable.

Thanks

Thank you!

