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THE smallest of all finite fields, F let us call it, consists of only the two
marks 0 and 1; on I1 we can base, for the different integers n, finite
geometries of 2n+1—1 points in space of n dimensions. Each point has
n-|-1 coordinates which are all either 0 or 1, and every set of n-\-1 marks
save the set of n-\-\ zeros serves as coordinates of a point. We propose
to study the three-dimensional geometry in some detail, and what we say
first about the geometries in one and two dimensions is selected as being
relevant to what we are to say later. The three-dimensional geometry has
a group of 20,160 projectivities which is known (Jordan (9), Moore (12),
Dickson (5) and (6)) to be isomorphic to $I8, the alternating group of
degree 8. It is natural to ask what, if any, are the 8 objects which undergo
permutation. This question was discussed at length by Moore in (12).
But, while there is no thought either of controverting Moore's claim to
have answered it or of disputing his priority, the question is primarily
a geometrical one, arid abstention from geometrical terminology or
reasoning in discussing it imposes a somewhat laboured and periphrastic
style. Moore's paper, notwithstanding his criticizing Jordan, on p. 418,
for lack of clarity, smothers the investigation with an agglomeration of
hieroglyphics whose significance is not easy to grasp however expertly
they may be marshalled. In this paper we obtain various geometrical
constructs first and, in virtue of their interrelations, attach symbols to
them afterwards. We carry our investigation as far as the discovery of
8 sets of 7 mutually non-apolar linear complexes. The set of 7 symbols
in the centre of p. 439 of (12) can be thus interpreted. Indeed it is in
this § 7 of (12) that the essential information is assembled, and all Moore's
symbols answer to geometrical constructs that we shall encounter. Whereas
Moore speaks of triads as associated or separated, we speak of lines as
intersecting or skew, and Moore's 56 systems of 5 mutually separated
triads correspond to the 56 quintuples of skew lines (see § 7 below); and
so on.

The necessary minimum of preliminary exposition occupies §§ 1-5; the
account of the three-dimensional geometry opens in § 6 and linear com-
plexes appear in § 8. §§6-16 give many geometrical facts all of which,
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318 W. L. EDGE

it is submitted, are interesting in themselves; but line geometry and linear
complexes are brought into prominence because they afford the clearest
explanation of the effect of LF(4,2). There is, of course, a Klein represen-
tation of the lines but any account of it is, with other topics, omitted so
as not to lengthen the paper. In § 17 we introduce and explain the
symbolism and in § 18 establish the isomorphism between LF{4,2) and $t8.
Moore claims (12, 419) to give a 'pure group-theoretic' proof of this
isomorphism; our proof is 'pure geometric', and although its appearance
comes more than eighty years after Jordan's original proof it is hoped
that others, as well as geometers, will agree that it is the most natural
and appropriate proof. We also establish the isomorphism between
the symplectic group C(4,2) and S6; this too was originally done by
Jordan.

9l8 has many subgroups and one, of order 1,344, has now a history of
almost a century. Of the many properties of this and other subgroups
some are almost intuitive when viewed in the light of the geometry
expounded here. In §§ 19-23 some of these subgroups are defined as
groups of projectivities that belong to LF(<±, 2) and are represented as
groups of matrices all of whose elements belong to F, that is are all
either 0 or 1.

1. On a line there are 3 points, namely those whose coordinates consti-
tute the column vectors

. 1 1
1 . 1 (1.1)

They undergo all 3! permutations when subjected to projectivities. A pro-
jectivity operates by premultiplying the vectors (1.1) by non-singular
matrices whose elements all.belong to F. The determinant of any matrix
whose elements are all marks of F is itself a mark of F; singular matrices
have determinant 0, non-singular matrices have, all of them, determinant 1.
The first column may be any of (1.1), but when it has been chosen the
stipulation of non-singularity debars the same column being chosen again.
The matrices which impose projectivities are then

[ ' ; ] [; a [ i ' ] [ . ' ] c ; ] l'
the last three all having / as their square, the latent root 1 repeated,
and one latent column vector. The second and third matrices are of
period 3 and inverse to each other; these have no latent root in Fi Note
always, here and hereafter, that the mark 1 satisfies 1 + 1 = 0 and is equal
to its negative —1.
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THE LINEAR FRACTIONAL GROUP LF(4,2) 319

2. In a plane S2 are the 7 points

1 . . . 1 1 1
. 1 . 1 . 1 1 (2.1)
. . 1 1 1 . 1

They lie 3 on each of 7 lines, 3 lines passing through each point. We
represent lines by row vectors, a point x and a line u being incident
whenever ux = 0 but not incident when ux = 1. In building a non.-
singular matrix M we can take the first column to be any of (2.1) and
the second to be any other among (2.1). Both these columns, and also
their sum—the only column, other than themselves, that is linearly
dependent on them—are ineligible for the last column of M, for which
therefore there remain 4 choices. Thus there are 7 .6 .4= 168 non-
singular matrices; they constitute, as was remarked by Weber,f a Klein
group K. K is doubly transitive on the 7 points. In order, for instance,
to transform the first vertex of the triangle of reference into a point P
we take the first column of if to be the column vector of coordinates of P;
thus any point is transformed into any other point of S2, or indeed into
itself, by 6.4 = 24 operations of K.

We suppose, as is customary, that whenever the points of S2 are per-
muted by premultiplying their column vectors by a non-singular matrix M
the lines of S2 are simultaneously permuted by postmultiplying their row
vectors by M~1. Should a point and line be incident so are the point and
line that arise by subjecting them to any projectivity, and non-incidence
is maintained also. A line, like a point, is invariant for 24 operations of K;
if the point (a, 6, c)' is unchanged on premultiplication by M, then the
line (a,b,c) is unchanged on postmultiplication by M'.

3. The 4 points which do not lie on a given line I form a quadrangle L;
no three are collinear since the join of any two has its third point on I.
The number of quadrangles in 82 is 7, the same as the number of lines.
Those 24 projectivities for which I is invariant form an octahedral group Q
and impose all 4! permutations on the vertices of L, so that there is a set
of 7 conjugate octahedral subgroups of K (they are conjugate because K
is transitive on the lines). There are also in S2 7 quadrilaterals p, each
consisting of the 4 lines which do not pass through some point P. The
24 projectivities for which P is invariant form an octahedral group and
subject the sides of p to all 4! permutations, so that there is a second set
of 7 conjugate octahedral subgroups of K. Suppose, for example, that P
is x = y = z\ each row of any matrix which leaves the column vector of

•f- (15), 371. Note the occurrence of the matrices (1.2) on p. 370.
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320 W. L. EDGE

coordinates of P invariant under premultiplication must have its three
elements summing to 1, and conversely. The only such rows are

1 . ., . 1 ., . . 1, 1 1 1 ,
and 4.3.2 = 24 non-singular matrices can be formed from them. Like-
wise those 24 matrices each of whose columns sums to 1 leave invariant
the line x-\-y-\-z = 0, although of course they may permute the 3 points
on it.

4. While a given line I is invariant for the 24 projectivities of Q there
are, as we saw in § 1, only 6 projectivities on l\ each of the 6 permutations
is imposed on the points of I by 4 operations of Q. In particular, the
identity permutation on I is imposed by 4 projectivities that form a self-
conjugate subgroup Qo of Cl, and those 4 projectivities that impose any
one permutation on the points of I belong to the same coset of Qo in Q.
For example: iflisx-\-y+z = 0, Q is the set of matrices each of whose
columns sums to 1, while Qo consists of the matrices

1+a a a
b 1+6 6
c c 1+c

These 4 matrices answer to

with a+6-fc = 0.

(a,6,c) = (0,0,0); (0,1,1); (1,0,1); (1,1,0);
each of the last three has the first, namely /, as its square and they form a
non-cyclic abelian 4-group. The same, or rather the dual, situation occurs
in the octahedral groups of the other conjugate set.

Projectivities which leave invariant a side or a vertex of the triangle of
reference also afford clear, though less symmetrical, representations. Those
for which x = O is invariant are imposed by matrices

1 .
ay

jS 3

wherein \? ' , having to be non-singular, is one of the 6 matrices (1.2)

while both a and jS can be either 0 or 1. The number of such matrices is
thus 6.22 = .24 and they form a group under multiplication. The three
points on x = 0 undergo permutation save for the 4 matrices

" 1 .

these again form a 4-group, self-conjugate in the octahedral group. There
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THE LINEAR FRACTIONAL GROUP LF(4, 2) 321

are analogous results for the other two sides and, involving the transposed
matrices, for the three vertices of the triangle of reference.

5. We add a few words concerning the maximal subgroups of K other
than the 14 octahedral groups; they are of order 21, and we shall refer to
•them again in § 20.

There must be, not only in K but in any subgroup of order 21, operations
of period 7. Any such projectivity permutes the 7 points in a single cycle;
no point can be invariant, so that the corresponding matrix cannot have
a latent root in F. Its characteristic function is a cubic and a factor of

(A7—1)/(A—1) = A6+A5+A4+A3+A2+A+l == (A3+A2+l)(A3+A+i).

If we extend F by adjoining to it any one root of either factor it is thereby
amplified to a field of 8 marks of which the non-zero ones behave, so far
as their multiplicative properties are concerned, exactly as the seventh
roots of 1 in the field of complex numbers; the three roots of either factor
have 1 for their product and are the reciprocals of the roots of the other.
We expect a matrix T of period 7 to have, with T2 and T4, one of these two
factors as its characteristic function while T3, T5, T6 have the other.

Take, with Weber,

whereupon |T—A/| = 1+A2+A3. Then M~XTM = T2 provided that

M =
a b 6+6
6 c a+6+c
-c a+6 a+c .

these 23 = 8 matrices M are all, save the one with a = b = c = 0, non-
singular and of period 3 (note that Weber's x occurs for a = 1, b = c = 0).
These 7 non-zero matrices, together with their inverses and the powers of r,
constitute a group of order 21. There are 8 such subgroups in K; each is
transitive on the 7 points, T permuting them in a single cycle.

6. We consider now a three-dimensional space S wherein the four
coordinates x, y, z, t of any point are marks of F; it consists of 15 points
which lie 7 in each of 15 planes, while through each point pass 7 of the
planes.f We arrange plane coordinates as row vectors, and use column
vectors of point coordinates.

t There is a brief allusion to this geometry in Fano (7), 114.
5388.3.4 Y
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322 W. L. EDGE

Let us take four vertices of a tetrahedron, four points, that is, which are
not coplanar. The freedom of choice is

15 positions for the first vertex,
14 for the second (any point other than the first),
12 for the third (any point not on the join of the first two),
8 for the fourth (any point not in the plane of the first three),

so that there are 15.14.12.8-^4! = 840 tetrahedra in S.
Each projectivity in S is imposed by some non-singular matrix whose

elements all belong to F, and conversely. Since the columns of such a
matrix are linearly independent they represent the vertices of a tetrahedron;
they may, however, the matrix remaining non-singular, undergo any
permutation, so that the number of projectivities is

840x4! = $.8!.

They form the linear fractional group LF(4,2); here we call it F; it is
known to be isomorphic to 2I8, the alternating'group of degree 8, and we
shall establish this isomorphism de novo in § 18. But we must not postpone
the acknowledgement of its first having been established by Camille Jordan
in § 516 of (9). These are significant paragraphs of the Traite, though in
places somewhat cryptic. Jordan does not use geometrical terms, but it
strains one's credulity to suppose that geometry was not ancillary to his
reasoning. His calculation on p. 382 of the order of F is nothing more or
less than our calculation of the number of tetrahedra, having regard to the
ordering of their vertices. Moreover, there are displayed conspicuously on
p. 381 the 15 row vectors of coordinates of planes of S and, in addition to
this, Jordan notices,! also on p. 381, what for us are the 35 lines of S. We
now proceed to discuss the geometry of these lines.

7. Each pair of points of S is joined by a line and on this line is a third
point; hence there are \XbC2 = 35 lines in all. They are self-dual and may
equally well be determined as intersections of planes; each pair of planes
of S has a line of intersection and through it there passes a third plane.
In every plane of S are 7 lines whose geometry is that of §§ 2-5. Through
each point of S pass 7 lines each containing 2 of the other 14 points. Since
any line contains 3 points through each of which pass 6 other lines, the
number of lines skew to it is 35—1 —18 = 1 6 , and so the number of pairs
of skew lines in S is \. 35.16 = 280. Every skew pair has 9 transversals,
and the 9 points not on either line of the pair lie one on each transversal.
There are 6 different ways of choosing from these 9 transversals a set of 3

t There are two misprints. At the foot of p. 380 only seven of eight triplets are
given, 101 having been omitted. And in line 9 of p. 381 abced ought to be abecd.
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THE LINEAR FRACTIONAL GROUP LF(4, 2) 323

all skew to one another; moreover, when a triple of skew lines m, m', m" is
given the transversals from the points on m to m' and m" form another
triple associated with the former. Hence the number of triples in S is
280 x 6-1-3 = 560, and they consist of 280 associated pairs.

That the number of pairs of associated triples is equal to the number of
pairs of skew lines is no accident, and there is a (1,1) correspondence
between them. In the first place there are 6 hues skew to both members
n, n' of a given skew pair; they complete with n and n' the triples associated
with the 6 triples among their transversals, and two of them intersect or
not according as the two triples of transversals share a line or not. Hence
each of the 6 lines skew to n and n' meets 3 and is skew to 2: they form a
pair of associated triples. Conversely: take a pair of associated triples.
We can argue just as one does with Dandelin's skew hexagon in classical
projective geometry}* and thus derive 6 points of concurrence of sets of 3
lines, the 6 points lying 3 on each of two skew lines n, n'. These 6 points
are those other than the 9 intersections of the two triples, and either triple
determines the other and n, n' uniquely. We say that n, n' and either
triple are associated.

A pair of skew lines and either of its associated triples form a quintuple,
or set of 5 mutually skew lines; it accounts, with 3 points on each line, for
every point of S. Each skew pair belongs to 2 quintuples. Since each
quintuple admits 10 different separations into a skew pair and an associated
triple the number of quintuples in S is |

280x24-10= 56.

Each triple belongs to one, and only one, quintuple. The number of
quintuples that include a given line is

56x54-35 = 8.

8. We now introduce the linear complexes, or screivs as we may call them,
in S. They can be obtained from the null polarities: correlations u' = Bx
wherein B is a skew matrix. Since every element of B is to be a mark of F
we can also say that B is symmetric, but has its four diagonal elements all
zero: r . c b a'

c . a b'
b a . c'

la' b' c'

f For DandolLn's figure see, for instance, Baker (2 a), 45. This figure can serve as
a sketch for geometry in S; it portrays all 15 points and 26 of the lines. The other
9 lines do not appear visually rectilinear; they are the transversals ALX', BMX',
CNX', A'LX, B'MX, C'NX?J)LO. EMO, FXO of LMN and OXX'.

% Sec, for an interpret at ion in terms of the elementary abelian group of ordor 16,
(3), 118, Ex. 2.
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324 W. L. EDGE

If in B we transpose a with a', b with b', c with c', and multiply the two
matrices we find that

B{a,b,c;a',b',c')B{a',b',c'\a,b,c) = (aa'+66'+cc')7,

so that whenever aa' -\-bb'+cc' — 1 the inverse of B is got simply by this
transposition. But when aa'-\-bb' -\-cc' = 0 B is singular, and indeed its
rank sinks to 2.

The same screw may also be defined as the aggregate of lines whose
Pliicker coordinates satisfy a linear condition

x'Bi = 2 (apn+a'pu) = 0; (8.1)

the symbol ^ implies the sum of those three terms which arise, from the
one written, by simultaneous cyclic permutations of the letters a,b,c and
of the suffixes 1, 2, 3; it is not necessary for both letters and suffixes to
occur but, whenever suffixes do occur, 4 is never permuted. The three
points of a line have coordinates of the form

{x,y,z,t), (£,T7,£,T), (x+(;,y+ri,z+£,t+T),

and the Pliicker coordinates of this line are

and so on; they always satisfy the identity ]£ p2zPu — 0, and can be
expressed also in terms of the planes which contain the line.

Any six marks pif of F which satisfy ]£ p23 pxi = 0 are coordinates of a
line, and this affords another means of calculating how many lines there
are in S. For either all three terms of the identity are 0 or else one is 0 and
the others both 1. The first alternative can happen in 33—1 = 26 ways,
since we do not allow sill six pi:j to be 0; the second alternative can happen
in 9 ways, since there are 3 choices for the zero term and, once it has been
chosen, either or both of its factors may be 0. The number of lines is thus
26+9 = $5.

Two lines meet when their moment

m{m,n) == J (ra23?iu+ra14w23)

is 0; when m = 1 they are skew.

9. We use the term screw only when B is non-singular and so 2 a a ' = !•
When ^ aa> — 0 we say that (8.1) defines a sheaf; the lines of the sheaf are
those 18 which meet the line

p 2 3 = a', p l A = a, 2hi = &'» #24 = 6> P12 = c ' . ^34 = c>

together with this line itself, the axis of the sheaf. The number of screws
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THE LINEAR FRACTIONAL GROUP LF{4,2) 325

in S is easy to find, for when ^aa' = 1 one of four possibilities must be
r e a l i z e d : (i) aa' = bb' = cc' = 1,

(ii) aa' = 1, bb' = cc' = 0, (iii) bb' = 1, cc' = aa' = 0,

(iv) cc' = 1, aa' = bb' = 0,

and under these respective headings occur 1, 9, 9, 9 screws. Hence there
are 28 screws in aU. They all have similar geometrical properties; that one
of them is apparently singled out in (i) is a consequence of the introduction
of coordinates and choice of tetrahedron of reference. The number of
screws to which a given line belongs is

28x15+35 = 12
(since, as we show immediately, every screw contains 15 lines).

Those lines which belong to a given screw a and pass through a given
point P are the 3 which lie in the null plane of P; a therefore contains
3 lines through every one of the 15 points of S, and as there are 3 points
on every line the number of lines which belong to a is 15. The remaining 20
are paired as polar lines in regard to a, and all 9 transversals of any pair
of polar lines belong to a. Let a be given by (8.1) and let m be any line
not satisfying (8.1). Then, if n both belongs to a and meets ra,

2{(a+™14)w23+(a'-i-ra23)w14} = J (aw23+a'n14)+-nr(m, n) = 0+0 = 0.
But

2 {a+mu)(a'+m2Z)

= 2ao'-+Z(oma8+a'TOu)+2w?23wli4 = 1 + 1+0 = 0.
so that wi23 = tt'+wi23, w*i4= fl+m14, •••
are coordinates of a line ra' which is met by n. Every line of a which meets
m also meets m' and, since m' does not satisfy (84) when m does not, and
m23 == a'+m'za, etc., every line of a which meets m' also meets m. Any pair
of polar lines of a satisfies

W&23+W&23 = a', mu-\-m'u = a, ...

and a is linearly dependent on the two sheaves whose axes are any pair of
polar lines. Every pair of skew lines determines in this way the unique
screw for which they are polars, and the 280 pairs of skew lines are distri-
buted as 28 sets often pairs, the pairs of any set being the pairs of polar lines
for some screw. The 15 lines of the screw consist of the 9 transversals of any
pair in, m' of its polar lines and the two triples associated with m, m'. The
occurrence of ten pairs of associated triples among the 15 lines, and the
passing of these lines 3 by 3 through 15 points, are paralleled by known
phenomena in classical protective geometry (see, e.g. (26), 114-15 and
frontispiece).
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Note that, whereas the third member of the pencil determined by two
sheaves with skew axes is a screw, the third member of the pencil deter-
mined by two sheaves with intersecting axes is a sheaf. The axis of this
sheaf is, of course, the line that is both concurrent and coplanar with the
axes of the other two.

10. Two screws may, or may not, be so related that the corresponding
null polarities commute. Let two non-singular null polarities be

u' = Bxx, u' == B2x,

or, expressing the same equations differently,

x = B^u', x = B2hi'.

The pole y in the second screw of the polar plane of a; in the first is

y = B^BlX,
and

B2
x{a2, b2, c2;a2, b'2, c'^Bx{aXi blt cx\ a'v b'lt c[)

= B2(d2, b'2, c2; a2, b2, ca)B1(a1, bv cx; a1} b'x, ci).

The non-diagonal elements in this product of two matrices are all unaltered
by transposing the suffixes 1 and 2, whereas the four diagonal elements are
all, in general, changed. But these four diagonal elements are seen also to
be unaffected by the transposition, provided only that

•or 12 = 2 (aia2+a2ai) = 0.

Screws which satisfy this relation are said, in classical projective geometry,
to be apolar or in involution; here we shall say that they are syzygetic, while
screws for which TET12 = 1 are azygetic. These are the terms used by Fro-
benius (8, 82) to describe relations between period characteristics of
theta functions.f The presence or absence of syzygy between screws is, of
course, unaffected by projective transformations.

Although -ar12 was obtained as a function of elements of two non-singular
matrices the same function is available, and has its geometrical interpreta-
tion, when either or both matrices are singular. A screw and a sheaf are
syzygetic when the axis of the sheaf is a line of the screw; otherwise they
are azygetic. Two sheaves are syzygetic when their axes intersect, azygetic
when they are skew.

We may denote by a not merely a screw but also the linear expression

•• When there are 3 variables the period characteristic is I , ,, ,\ wherein

all 6 marks are either 0 or 1, and is even or odd with 2 o^'• Thus the even charac-
teristics other than the zero one answer to the lines, and so to the sheaves, in S,
the odd characteristics to the screws in <S.
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THE LINEAR FRACTIONAL GROUP LF(4, 2) 327

in the line coordinates whose vanishing determines the screw. If, then,
ax and a2 are syzygetic a1+a2 is a sheaf; for

2 K+a2)K+<*2) = 5>ifll+wi2+ 2 aa«2 = i+o+i = o.
Moreover the axis of ax-\-a2 belongs both to ax and <r2 since, for instance,

2 W a i + a 2 ) + a i ( « l + a2)} = 2 Kffl2+flla2) = ^12 = 0.
Conversely: let m be any line of a screw a. Then

2{(a+m14)p23+(a'+m23)2>14} = 0

is a screw, because

2 (a+ra14)(a'+m23) = 2 ^ ' + 2 wi4™23 = ! + ° = 1.
and is syzygetic to a because

2 {(a+w14)a'-f(a'+m23)a} = 2 (am23+a'm14) = 0.

Hence 15 screws are syzygetic and 12 azygetic to a. When ax and a2 are
syzygetic any line of either which meets the axis of ax-{-a2 belongs to the
other: any point on this axis has the same null plane in <JX and cr2.

Suppose now that ox and a2 are azygetic. Then o-3, where CT1+a2+o-3 = 0,
is a screw because

2 K + a 2 ) K + a 2 ) = 2 a i a i+ T O ' i2+ 2 a 2 a 2 = ! + ! + ! = x>

and is azygetic both to ax and a2 since, for instance,

2 ( a iK+ a 2)+ a i ( a i+ a 2)} = 2 Ka2+«i«2) = "̂ 12 = 1-

Such a set of three linearly dependent screws every pair of which is azygetic
we call a trio.~\ The 12 screws azygetic to a consist of 6 pairs, each pair
forming a trio with a, and as each screw belongs to 6 trios the number of
t r i o s i s 28X6-f-3 = 56.

11. Although there are 28 screws there are, once a point P is given, only
the 7 planes through P to serve as its null planes; we expect that each plane
through ]? is its null plane in 4 screws, and this is indeed so. For let a be
given by (8.1) and let q, r, s be those lines which pass through P and lie
in the null plane n of P in a. Then v is also the null plane of P in

we saw in § 10 that this is indeed a screw and that it is syzygetic to a. The
statement follows because both r and s belong to this screw as well as to a;
indeed

2 {(a+?i4)r23+(a'+g23)ri4} = 2 (a>rto+a'ru) + m{q,r) = 0

f Jordan (9, 232, 233) usea this term with a much wider connotation.
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because r belongs to a and intersects q; similarly with s. The other two
screws in which v is the null plane of P are

and every two of the 4 screws are syzygetic because, for instance,

I{(a+ru)(a'+s23)+(a'+r23)(a+su)}

= 2 (ar23+a'ru) + I (as23+a'su)+vr(r,s) = 0+0+0 == 0.

Moreover, the 4 screws are linearly dependent, the sum of their left-hand
sides being identically zero. The sheaf linearly dependent on any two
of them is the same as that which is linearly dependent on the other two.

That any two screws in which some point has the same null plane must
be syzygetic also follows because if u' = Bxx — B2x then {B1-\-B2)x = 0
so that Bx-\-B2, having linearly dependent columns, is singular and ax-\-a2

is a sheaf whose axis passes through x. Then, indeed, Bx-\-B2 has rank 2
and there are linearly independent columns x and y making

(Bx+B2)x = (Bx+B2)y = 0;

x, y, x-\-y are the points on the axis of ax-\-a2.
Suppose, on the other hand, that ax, a2, a3 are mutually syzygetic screws;

then a4 = CT1+CT2+
(73 is s^s0 (w e suppress the routine details of the proof)

a screw and every pair of the 4 screws is syzygetic. Suppose that

q is the axis of a2+a3 = ax-{-a^

r is the axis of ag+aj = <x2+°r4>

8 is the axis of ffi+<72 = °r3+<r4«
Then q, r, 8 are linearly dependent. But they intersect because, for instance,

= = < n r23+'n r81+< n : r12 = = 0»

hence q, r, 8 are concurrent at a point P and lie in a plane IT. This plane
is the null plane of P in all 4 screws, and P are TT are uniquely determined
by them. There must then be 15 x 7 = 105 sets of 4 mutually syzygetic
screws, and if we add to any set of 4 the 3 sheaves determined by the pairs
of them we obtain a set of 7 of which every two members are syzygetic.

12. Let us give an example. The point x = y = z = ti8 the pole of
x-\-y-\-z-\-t = 0 in any screw for which

6+c+a' = c+a+6' = a+6+c' = a'+fc'+c' = 1.
Then

1 = oa'+66'+cc' = a(l+6+c)+6(l+c+a)+c(l+o+6) = a+6+c,
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so that a — a',. 6 = 6', c = c',

and the screws answer to the matrices

329

.
1
1
1

1
.

1
1

1
1
.

1

1-

1—
1

1
1

. 1

1
1

1
1

1

The sum of any two of these is singular, and equal to the sum of the other
two, the sum of all four being the zero matrix. Each of the three singular
matrices has for its elements the coordinates of one of the three lines that
pass through x = y = z = t and lie in x-\-y-\-z-\-t = 0. These lines are
common to all four screws and their coordinates are as follows:

# 2 3

.

1

i—
i

# 1 4

1
1

# 3 1

1
.
1

# 2 4

1
.
1

# 1 2

1
1
.

# 3 4

1
1

13. Take now a trio ax, a2, a3; any line common to two members belongs
also to the third. Any plane e has poles, one in each screw; no two of these
three poles can coincide because no two of the trio are syzygetic. Moreover,
the three poles are collinear because Bv B2, B3 are linearly dependent.
The line m on which they lie is the only line in e common to all three screws;
hence each of the 15 planes contains one and only one base line of the trio.
Likewise, by the dual arguments, through each of the 15 points passes one
and only one base line of the trio. Wherefore these base lines constitute a
quintuple. We have already seen that the number of trios is 56, the same
as the number of quintuples. Not only does each trio have a quintuple
for its base but each quintuple is the base of a trio.

The 35 lines of S are separated by a trio into 4 disjoint batches:

(i) the base quintuple Q, (ii) 10 lines of ox,

(iii) 10 lines of CT2, (iv) 10 lines of a3.

Each of these last three batches has two of its lines through any point P
of S, their plane being the null plane of P in the appropriate screw. Let
mx, m2, ms be any three lines of Q. Were two members of their associated
triple to belong to the same screw of the trio so would the third because
the three planes through m1 are null planes, in any screw to which mx

belongs, of the three points on mv The 15 lines of the screw would then
consist of the two associated triples and of one line through each of their
9 intersections, and this cannot occur for any of alt a2, az because the two
other lines of Q have to belong to it. Hence the members of the triple
associated with % , m2, m3 belong one to each of ax, a2> cr3; since reciprocation
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in any of these leaves every line of Q unchanged, the two members of the
associated triple that do not belong to one of the screws are polars in regard
to it. All this holds for each of the ten triples included in Q.

The polars in ax of the lines (iii) are the lines (iv) and so, since at is linearly
dependent both on the sheaves whose axes are any pair of polar lines and
on the other two screws of any trio of which it is a member, the screw
dependent on a2 and a line (iii) is also dependent on a3 and a line (iv). Thus
10 screws are syzygetic both to CT2

 a n d or3. The other 5 screws syzygetic to
CT2 are azygetic to cr3, the other 5 screws syzygetic to cr3 are azygetic to CT2.
Hence there are o c , A _ _ a

Zo—10—5—5 = o
screws azygetic to both o-2 and a3. One of these is av and there are 5 others.

14. Any screw a belongs to 6 trios each of which has a base quintuple in a.
It is not possible for two of these quintuples to have two lines m, n in
common: m and n belong only to two quintuples, namely those that arise
on adding to m and n the two associated triples, and it has just been seen
that m, n and their associated triples cannot belong all to the same screw.
It follows, since there are 15 lines in a and no more, that every pair of the
6 quintuples share one line, and indeed that the lines of a are determined
as common one to each of the 6C2 pairs of these quintuples.

Take, as an example, for a

Since an even number of the pit must be 1 while
ordinates of the 15 lines of this screw are as under:

— 0 c o "

Pi3

,

1

1

i1

I
I

Pi*

#

#

I

I

I
I

I
I

p3i

I
I

I

I

I

i

Pu

1
1

1

1
1

1

Pl2

1

1

iI

l
I

Pa*

1

1

• #

1
1

iI
•

II
i
I I
i
i
i
II
II
rv
i n
IV
i n
V
i n
i

i n
i n
IV

rvV
VI
V
VI
VI
VI
V
V
VI
IV
II

The duads of roman numerals on the right show how these lines are dis-
tributed among 6 quintuples. Since intersecting lines never belong to the
same quintuple those three of the above 15 lines that pass through any
point of S must, through the three pairs of quintuples to which they belong,
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together account for all 6 quintuples; thus each point of S corresponds to
a syntheme of the 6 quintuples, and all 15 synthemes are thus accounted
for. Here one may again refer to (26), 114.

15. Let mv m2, ?n3, m4, ra5

be a quintuple Q of lines of a screw a. The screw that is linearly dependent
on a and the sheaf whose axis is mi is, as explained in § 10, syzygetic to a;
we now show that the 5 screws so determined are all azygetic to each other.
For suppose that a is given by (8.1); the screws syzygetic to a and determined
by mi and m^ are

2{(a+wiS)pa8+(af+mg)2>i4} = 0,
J,{{a+m®)pn+(a'+m®)pu} = 0,

and, since both % and rrij satisfy (8.1),

Further: these 5 mutually azygetic screws are all azygetic to both screws,
other than a, of the trio based on Q. For, if either of these be

2 {Apn+A'pu) = 0,
then

= 2 (fiA'+a'A) + 1 (Am$+A'm<$) = 1 + 0 = 1.
We have thus obtained a heptad § of 7 mutually azygetic screws. Any
2 screws of §, being azygetic, share a quintuple; each screw of ir> shares
with the others 6 quintuples any 2 of which have a common line. Three
screws of § share a single line and no line can belong to more than 3 screws
of £; indeed the 35 lines of S are obtainable one from each of the 7C3 = 35
sets of 3 screws of £. Note that 3 screws of §, although mutually azygetic,
do not constitute a trio because they are not linearly dependent. The 21
screws extraneous to § are those which complete trios with the 21 pairs
of screws that belong to £>. It is not possible for 2 pairs among these 21 to
be enlarged to trios by the same screw; this would imply that 4 screws of §
were linearly dependent, and their being mutually azygetic prevents this.
Whenever or

1+o-2+
<r3+(74 = 0 then xtr11+'O712+TD-134-'nr14 = 0 and, Ttru

being identically zero, this cannot hold if m12 = -nr13 = mu — 1. Similar
reasoning serves to show that no 5 or 6 screws of § can be linearly dependent:
the identity ax-\-a^-\-az-{-a^\-ab = 0 cannot hold because

16. It is clear from the construction of § that there is a heptad con-
taining any given pair of azygetic screws al and a2; their common quintuple
can serve as base for the construction, the part of a being played by o^+<*.,.
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Moreover we saw, at the end of § 13, that there are, apart from the screw
which completes the trio, 5 screws simultaneously azygetic to ax and a2-
These can only be the other members of §, which is thus uniquely deter-
mined by ax and <r2. Now there are 168 pairs of azygetic screws, and 21 of
these pairs occur in §; hence there are 8 heptads. Since two azygetic
screws determine a unique heptad no two heptads can share more than one
screw; they must, however, always share one because there are only 28
screws to furnish the 8 heptads. Indeed the 8 heptads identify the screws,
one screw being common to each of the 8C2 pairs of heptads. The heptads
are cardinal features of the figure and essential to an understanding of its
geometry.

An instance of 7 screws that form a heptad is the following:

= ° •
= 0 1
= ° II
==0 VI
= 0 V

= 0 IV
The first of these screws has been considered in § 14; the roman numerals
which appear here to the right of the equations of the other six signify, with
the same numeration as in § 14, those quintuples of the first screw that
belong respectively to these other six. A second heptad thai includes the
first screw is found at once on replacing each of these other six screws by
the screw which completes a trio with it and the first. The equation of the
new screw is got by adding those of the other two screws in the trio, and
so we find the heptad

= 0 II

= 0 V

= 0 IV

Since each of the 7 screws of a heptad can be used as a pivot in this way
we obtain 7 more heptads from a given one. All heptads are hereby
accounted for.

A heptad corresponds to a set of 7 period characteristics

( a b c\
a' b' c'j
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all of which are odd and every two azygetic, and in this context the 8 heptads
were found long ago; they are displayed on pp. 308-9 of (1), the notation
there serving to identify the appropriate odd period characteristics on
pp. 305-6. The two heptads that we have displayed above are the sixth
and third of the seven that appear on p. 309 of Baker's book.

17. Since each screw is determined by the pair of heptads to which it
belongs we label the screws by binary symbols; (ij) signifies the screw
common to ^ and ^ where i,j are two among the digits 0,1, 2, 3, 4, 5, 6, 7.
Screws whose symbols share a digit are in the same heptad and therefore
azygetic; all 12 screws azygetic to (ij) are accounted for by the 6 others
in fti and the 6 others in £,-. Screws whose symbols do not share a digit
are syzygetic.

Four mutually syzygetic screws must, by their four binary symbols,
account for all 8 digits; an example is (01), (23), (45), (67). There are 105
sets of this type and they answer, in accordance with §11, one to each
pencil of lines.

The only screws azygetic to (ij) and not in §,- are in £>f; hence there is
only one screw, namely (ik)} azygetic to both (ij) and (jk) and yet not in Jr̂ -.
T h U S iij), (jk), (ki)

constitute a trio and we thereby account for all 8C3 = 56 trios, each with
its base quintuple. We therefore label any trio, or its base quintuple, by
a ternary symbol (ijk). Quintuples whose symbols share two digits both
belong to the same screw symbolized by these two digits and so share a
single line. The line shared by (123) and (124) belongs to

(23) (31) (12) (14) (24) (34);

to the first five of these obviously, and to (34) because (34) completes a trio
with (31) and (14), or with (23) and (24), and so includes any line common
to them. The same line belongs also to (134) and (234); it is the only line
common to the six screws because two skew lines belong to only two
quintuples. Each of the six screws is syzygetic to one other, and the axis
of the sheaf determined by such a pair of syzygetic screws is the line
common to all six. Take, for instance, (23) and (14); the resulting axis
belongs to both of them. But since (23) and (14) are both azygetic to (31)
the sheaf is syzygetic to (31) and the axis of the sheaf belongs to (31), and
similarly to the other screws. We have, however, seen in § 11 that this axis
belongs also to ( 5 6 ) ( 6 7 ) ( ? 5 ) (5Q) (6Q) ^Q^

so that the line common to these six screws is the same as that common t<>
the former six. It may be labelled by either of the symbols (1234) = (5('»7< * i.
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each of the 35 = |8(74 lines of S is identified by a separation of the 8 heptads
into complementary sets of 4. The 8 quintuples which include a line m are
got by omitting any one of the digits from either of the two equivalent
quaternary symbols. These 8 quintuples fall into opposite sets of 4; while
two quintuples in the same set share only m two in the opposite sets also
share a line skew to m. The 16 lines skew to m are all accounted for in this
way. The 12 screws which include m are got by omitting any pair of the
four digits from either of the two equivalent quaternary symbols. The 12
screws fall into opposite sets of six, each screw being syzygetic to all six
in the opposite set and to one in its own set.

Intersecting lines m, n cannot both belong to any quintuple; hence the
four digits in either quaternary symbol for m must occur two in each
symbol for n. When n does not belong to (ij) i and j cannot both be present
in either symbol for n and so must occur one in each symbol. The polar
line n' is then got by transposing i and j . Take, to fix ideas, (17) and let n
be (1234); then n' is (2347). For if a line of (17) meets (1234) one of its
symbols is (17 XX ) where one cross is one of 2, 3, 4 and the other cross not,
and this line also meets (2347). A pair of polar lines for (ij) thus answers
to the separation of the six digits other than i and j into complementary
triads, and the ten such separations yield the ten pairs of polar lines.

18. I t is, then, small wonder tha t F, the group of \ . 8 i projectivities in S,
is isomorphic to $t8. Any projectivity turns screws into screws, azygetic
screws into azygetic screws, trios into trios, quintuples into quintuples,
heptads into heptads. F is a permutation group on the heptads. Should
every heptad be invariant for a projectivity so must every screw, as common
to two heptads, be invariant, as must every quintuple and every line of
each screw, and therefore every point and plane of S; the projectivity can
only be the identity operation. Hence F imposes a group of \. 8! distinct
permutations on the 8 heptads and must be isomorphic to 9I8. This geo-
metrical discussion has not only demonstrated the fact of the isomorphism
but has disclosed what is surely its raison d'etre.

If we amplify F by adjoining to it a reciprocation in one of the screws
the resulting group of order 8! is isomorphic to S 8 and imposes all permuta-
tions on the heptads. For let us reciprocate in (ij). Since each pair of polar
lines is transposed so, by § 13, are the members (ik) and (jk) of any one of
the 6 trios to which (ij) belongs. Thus §^ and §;- are transposed while every
other heptad §fc is unaltered. Reciprocations in the 28 screws impose the
28 transpositions on the heptads and generate £8 .

Since F, as the group S2l8, is certainly doubly transitive on the heptads
it is transitive on the screws: hence there are 6! projectivities of F for
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which a given screw a is invariant. This subgroup of Y is a permutation
group on those 6 quintuples in a that are bases of the trios to which a
belongs; whenever all these quintuples are invariant so is every line of a, as
common to two of them, and so therefore is every point of 8. Thus any
projectivity that leaves the 6 quintuples all invariant must be the identity;
the 6! projectivities of V for which a is invariant impose the whole symmetric
group of permutations on the quintuples.

A group of projectivities for which a linear complex is invariant is a
symplectic group, so that this symplectic group (in three dimensions and
over F) is isomorphic to S6. This has been proved by Jordan (9, 237, 240)
and by Dickson (5,99), but the above proof seems simpler and more natural.
The ten pairs of lines that are polars of one another in a afford another
representation of S6 as a permutation group, this time of degree ten.

19. F permutes the planes, as it does the points, of S transitively, and
so possesses two conjugate sets each of 15 subgroups of order

£.81-^-15 = 1344;

a subgroup of one set consists of the projectivities that leave a given plane
invariant, one of the other set consists of projectivities that leave a given
point invariant.

Let us, for example, stipulate that the point x = y = z = t is invariant;
then each row of the matrix imposing a projectivity must have its four
elements summing to 1. Such a row must include either one or three zeros,
and there are eight such rows. Once we have chosen a row there are seven
choices for the second and six for the third; the sum of the first two rows
is a row summing to 0 and so not among those from which the third is chosen.
When the first three rows have been chosen all of them, as well as their sum,
are debarred from the last row by the prescription of non-singularity, so
that only four choices are possible and the total number of matrices is
8 . 7 . 6 . 4 = 1344. This is a subgroup of one conjugate set; one of the other
set is afforded by those projectivities, for which x-\-y-{-z+t = 0 is invariant,
which are imposed by non-singular matrices each of whose columns sums
to 1.

Although a plane n is invariant for a group G of 1,344 projectivities we
saw in § 2 that only 168 different projectivities can be induced in v. Each
of these is induced by 8 different projectivities of G. Those 8 which induce
identity in v form a self-conjugate subgroup A of G, and each of the 168
cosets of A in G consists of 8 operations that induce the same projectivity
in 7T. Suppose, for example, that TT is x-\-y-\-z-\-t = 0: which non-singular
matrices, each of whose columns sums to 1, leave invariant not only the
whole plane but every point in it ? It is enough if some three non-collinear

 at E
dinburgh U

niversity on N
ovem

ber 15, 2011
http://plm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://plms.oxfordjournals.org/


31(a,b,c,d) =

336 W. L. EDGE

points in n are each invariant, and by remarking the effect of premultiplying
such column vectors as (1,1,0,0)', (1,0,1,0)', and so on, we see that the
three non-diagonal elements in any row must be equal to each other but
not to the diagonal element. The matrices therefore are (cf. § 4)

~a-\-l a a a
b 6+1 b b
c c c-f-1 c

L d d d d+

wherein a-{-b-\-c-\-d = 0. Since three of a, b, c, d may be chosen to be either
0 or 1 the number of such matrices is 23 = 8. Direct multiplication shows
at once that

Mia^b^c^dJMia^b^c^dz) = M (a^a^ 61+62, c1+c2,d1+d2);

the matrices form an abelian group and are all, save M(0,0,0,0) = I, of
period 2.

Projectivities which leave the plane t = 0 invariant are imposed by non-
singular matrices which, when they postmultiply (0,0,0,1), leave it un-
changed. Such matrices are of the form

N y

u

(19.1)

where N is one of the 168 matrices of K; since there are 168 choices for N
and two for each of a, jS, y we have the 1,344 projectivities for which t = 0
is invariant. The 1,344 matrices have the group property; those for which
not only the whole plane t = 0 but every point of it is invariant have N = I,
and we have another representation of the self-conjugate abelian subgroup.
There are analogous statements concerning projectivities for which any one
face of the tetrahedron of reference is invariant, as there are, but with the
matrices now transposed, concerning projectivities for which any one
vertex of the tetrahedron of reference is invariant.

20. The group G of order 1,344 was found by Mathieu (11, 290) as a
triply transitive permutation group of degree 8. If we take it to be the
subgroup of operations of F which leave a plane TT invariant we represent
it (not only as a permutation group of the 8 heptads but also) as a permuta-
tion group of the 8 points of S outside n. The first set of 7 functions on p. 291
of (11) then answers to the 7 pairs of planes that pass one pair through each
line of IT, while the second set of 7 functions answers to the 7 sets of 4 con-
current lines, one set concurring at each point of IT. That O is then triply
transitive follows because those of its operations which leave invariant not
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only IT but also one point V outside TT form a Klein group doubly transitive,
by § 2, on the points of TT; any two points other than V outside TT are now
permuted like the intersections with ir of the lines joining them to V. If,
for instance, TT is t = 0, so that 0 consists of the matrices (19.1), the point
x = y = 2 = 0 outside TT is not invariant unless a = /?= y = 0, and we
obtain the matrices N -j-1 of a Klein group. Incidentally, by taking TT as
x-\-y-\-z-\-t = 0 and V to be a vertex of the tetrahedron of reference, we
see that those non-singular matrices all of whose columns sum to 1 constitute
a Klein group whenever one particular column is constrained to have its
three non-diagonal elements all zero.

Mathieu observes (11, 292) that there afe two distinct types of subgroups
of order 168 in G, both of them doubly transitive on those 8 objects on
which G is triply transitive; and describes this circumstance as remarquable.
But in the light of the geometry in 8 it loses some of the surprise it might
otherwise create. One of the two types is the Klein group and Mathieu
gives, at the foot of p. 292, its representation as a congruence group,
modulo 7, of bilinear transformations. The other type is formed by 21
cosets of A in G whenever their operations induce in TT the projectivities of
one of the maximal subgroups, say k, of order 21 in K. The matrices (19.1)
form such a subgroup when N is restricted to the 21 matrices of k, say to
those of the group generated by M and r in § 5. This subgroup is doubly
transitive on the 8 points outside t = 0 because those of its operations
which leave one of these points V invariant are transitive on the 7 points
in t = 0; if, for instance, Visx = y = z = 0 then a = j8 = y = 0 and we
obtain the group of order 21 which was remarked in § 5 to be transitive.

21. The next appearance of G seems to be in (9) and there, on p. 305, its
self-conjugate abelian subgroup A appears too. Jordan's notation is equiva-
lent to using the matrices (19.1), and he gives these 1,344 matrices again
on p. 380. His procedure in deriving A on p. 305 is tantamount to replacing

N by I.
G and A then appear in (13), and Mathieu's two sets of 7 functions occur

with them,f on pp. 93-95. The geometry in S throws some light on this
paper of Noether's. Noether's symbol [01,23,45,67] can be interpreted as
a set of four mutually syzygetic screws (01), (23), (45), (67) wherein a plane TT
has the same pole P. Noether's problem of listing seven symbols which
together account for all 28 pairs ij has thus two salient solutions: we may
take either those seven sets of four syzygetic screws wherein TT has the seven
points in it as poles or, dually, those seven sets of four syzygetic screws
wherein P has the seven planes through it as polars.

t They occur again, 20 years later, in (12), 432, where G and .4 also reappear.
5388.3.4 Z
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Let P be the pole of n in each of

(01), (23), (45), (67). (A)

Any other point P' of TT is its pole in four syzygetic screws none of which
occurs in (A); we may suppose (02) to be one of these. Since (01), (02), (12)
are a trio the pole of TT in (12) is P", the third point on PP'\ then, since
(12), (23), (31) are a trio, P' is the pole of TT in (31). Indeed we may choose
the notation so that P' is the pole of TT in

(02), (31), (64), (57), (B)

whereupon P" is the pole in

(12), (03), (56), (47). (C)

The sets A, B, C together constitute what Noether calls a Tripel; the 7
Tripeln yielded one by each line of TT constitute a TripeUystem. I t is
determined by TT, and Noether's 30 such systems consist of 15 determined
by the planes and 15 determined dually by the points of 8.

22. The isomorphism between F and %8 affords a geometrical representa-
tion of 9l8 that renders many of its properties almost visually obvious.
Take this example, which we now transcribe and solve, from (3, 230).

Ex. 2. Show that the alternating group of degree 8 contains 30 regular Abelian
subgroups of order 8 and type (1,1,1), forming two conjugate sets of 15 subgroups
each.

If Ht, H2 are any two subgroups belonging to the same conjugate set of 15, prove
that {HX,H^ is a subgroup of order 26.32, permuting the symbols in 2 imprimitive
systems of 4 each; and that {JEflf JET2} contains just one other subgroup Hz belonging
to the same set. Hence show that from the 15 conjugate subgroups a complete set
of 35 triplets may be formed, which is invariant when the subgroups are transformed
by any operation of the alternating group. Prove also that when the subgroups of
the second set of 15 are transformed by the operations of H, 7 are transformed into
themselves and the other 8 are permuted regularly.

The abelian subgroups consist either of projectivities for which every
point of some plane in 8 is invariant or else of projectivities for which every
plane through some point of S is invariant, and since F is transitive on
either the points or the planes of 8 the 15 subgroups of either kind are
conjugate. But subgroups of different kinds are not.

Let Hx be the subgroup for which every point of a plane TT1 is invariant,
H2 that for which every point of a plane TT2 is invariant. Then {Hv H2] is
the subgroup for which every point of the line n common to TTX and TT2 is
invariant; since all three points of n are invariant whenever two of them are,
and since F is doubly transitive on the points of S, the order of {Hv H2) is
A.8!-i-(15x 14) = 25.3. Burnside's 26.32seemsto beaslip; agroupof this
larger order occurs when the points of n undergo permutation and its order
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is \. 8!-i- 35 because F is transitive on the lines of S. However, the fact that
the symbols are permuted 'in 2 imprimitive systems of 4 each' is true of
this larger group as well as of its self-conjugate subgroup {Hv / / 2 } ; Burnside's
'symbols' label the 8 objects that are permuted, and we have seen that n
may be denoted, say, by (1234) = (5670). Hz is, of course, the subgroup
of projectivities for which every point of 7r3, the other plane through n, is
invariant, and there are 35 such triplets of subgroups, one for each line of S.

Suppose that rt1 is y = 0 and TT2 Z = 0; then matrices of the forms

lJ

1

impose the projectivities of Hx and H2 respectively. Each set consists of
8 commuting matrices, all 7 other than / having / for their square; in other
words they form an abelian group of order 8 and type (1,1,1). The group
generated by these two groups of matrices consists of matrices

X X

X X

X X

X X U

where each cross denotes either 0 or 1. The choice of these 8 elements, how-
ever, is not completely free because the central block of four has to be non-
singular and so one of the six matrices (1.2); we thus have a group of order
6.24 = 25'.3. This imposes the projectivities for which every point on
y == z = 0 is invariant. If, on the other hand, we allow these three points
to undergo permutations among themselves, then the four corner elements
can form any one of the six non-singular matrices and need not be the unit
matrix: this gives the group of order 26.32 for which y = z = 0 is invariant.
The subgroup H3, for which every point of y-\-z — 0 is invariant, consists
of the projectivities imposed by the eight matrices

1 7) 7)

J

e e I J

where J is either ' or

Let H be the abelian subgroup for which every point of TT is invariant.
The subgroups of the other conjugate set are associated one with each point

 at E
dinburgh U

niversity on N
ovem

ber 15, 2011
http://plm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://plms.oxfordjournals.org/


340 W. L. EDGE

of S; 7 of these points lie in n and are invariant under H and so these 7 sub-
groups are all transformed into themselves by H. The other 8 points are
outside TT, and Burnside's statement is established by remarking that any
operation of H except identity transposes these 8 points in pairs. I t must
do this because its period is 2, and an operation which leaves invariant some
point outside v as well as every point in v leaves every point of S invariant.
If an operation of H transposes P and P' then PP' meets TT in a point 0
and the other 6 points outside TT lie 2 on each of 3 lines through 0 and are.
transposed accordingly.

The geometry also handles expeditiously the properties of %8 on pp. 456-7
of (3), properties which appear also" in Carmichael, (4); see the examples
therein on pp. 320-1. Moreover, Carmichael proceeds, in the chapters
which follow, to discuss finite geometries and their groups of projectivities;
the references relevant to % and T are 336-7 (exx; 4-10), 351 (ex. 1),
353 (ex. 4), 394 (exx. 5-7).

23. We have considered at length an example on p. 230 of (3). In the
next example on this page Burnside gives a group of order 192; this is
indeed a subgroup of G and has been since obtained by Littlewood (10,159)
and Todd (14). We close by showing how this group too is conspicuous in
the geometry, as is also a different type of subgroup of 0 of this order that
was found by Todd, and we give, in addition to geometrical definitions of
these groups, matrix representations for them.

G leaves a plane TT invariant; the group of Burnside's example is the.
subgroup of G consisting of those operations which leave invariant not only
77 but also some point of TT, while the group of the same order found by Todd
consists of those operations of G which leave invariant not only n but also
some line of TT. G contains a conjugate set of 7 subgroups of either type.

The first type of subgroup contains, as Burnside says in his example,
a self-conjugate operation of period 2. Suppose that TT is x-\-y-\-z-\-t = 0;
G, as remarked in § 19, consists of all those non-singular matrices wherein
every column sums to 1. Those of its operations for which x = y = z = t,
a point in n, is invariant are imposed by matrices wherein not only every
column but also every row sums to 1. Every such matrix commutes with

. 1 1 1
1 . 1 1
1 1 . 1

LI 1 1 .

and this is of period 2. If, on the other hand, TT is t = 0 then G consists of
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the matrices (19.1); but the point y = z = t=Oof7ris not invariant except
for matrices of the form

1 8 e a

y
u

(23.1)

wherein /x, being non-singular, is one of the 6 matrices (1.2); the number
of matrices of this kind is 6.25 = 192, and they all commute with

1 . . 1
. 1 . .
. . 1 .

.. . . U

whose period is 2. On the other hand, those matrices (19.1) for which
x = t = 0 is invariant have the form

r l
3

y

u

(23.2)

and so constitute a group T of order 192; it is this type of group that was
found by Todd, and it has no self-conjugate operation save identity. Some
features of T are patent. When given by (23.2) it permutes the points
outside t = 0 in two imprimitive sets of 4, one set lying in x = 0 and the
other in x-\-t = 0. These two sets are transposed if a = 1; the matrices
with a = 0 do not transpose the sets, and constitute a self-con jugate sub-
group of T of order 96. Another self-con jugate subgroup of order 96 arises
on restricting /x, to the first 3 matrices of (1.2), say /A = /u.+, so that the
points on x = t = 0 undergo only even permutations. The intersection of
these two subgroups is self-conjugate and of order 48; for this both /n = /x+

and a = 0. Other self-conjugate subgroups of T are one of order 32,
wherein fi = I, and one of order 16, wherein both p = I and a = 0. The
occurrence of these self-conjugate subgroups accords with the character
table of T (14, 150, Table A; this table is original with Todd). The con-
jugate sets of T which make up these subgroups are those of the columns
wherein the following sets of characters (in Todd's notation) have their
components all equal to their degrees (3, 278, Theorem IV):

00,05. 0Of08; 00,05^8. 00^3^8 .

00, 03, 05, 0', 08, 09.
The still larger set of characters

00, 01, 02, 03, 05, 07} 0 8 j 09f 012f 013

 at E
dinburgh U

niversity on N
ovem

ber 15, 2011
http://plm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://plms.oxfordjournals.org/
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answers to a self-conjugate group of order 4. It consists of matrices
1 . . ."
. 1 . jS
. . 1 y
. . . U

which induce the identity projectivity in t = 0 and do not transpose the
planes x — 0 and x-\-t = 0.

Analogous discussions apply to the matrices (23.1) and the character
table of this group (14, 150, Table B and 10, 277; this table was found by
Littlewood) and serve to underline the contrasts between it and T.
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Note added in Proof
Since this paper was finished I have found one by G. M. Conwell:

Annals of Mathematics (2) 11 (1910), 60-76.
Conwell uses the Klein representation of the lines of S by the 35 points

of a quadric Q in space of 5 dimensions, and shows that the 56 lines in
this space that are (p. 67) skew to Q can be arranged as edges of 8 hep-
tagons (p. 68). The 7 vertices of such a heptagon answer to mutually
azygetic screws in S. Furthermore, Gonwell denotes these 56 lines by
ternary symbols (p. 69) and each line of 8 by & pair of quaternary
symbols (p. 72). This is indeed the ideal apparatus for establishing the
isomorphism between LF(4:, 2) and s/8 and it is a pity that Conwell sud-
denly forsakes the geometry and follows in the wake of E. H. Moore.
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