Smooth varieties with torus actions

Alvaro Liendo
Instituto de Matemática, Universidad de Talca

Edinburgh, June 27, 2017
k algebraically closed field of characteristic zero
\mathbb{G}_{m} multiplicative group of k
$\mathrm{T}=\mathrm{T}_{n} \quad$ algebraic torus of dimension n over k
M character lattice of T
$M_{\mathbb{Q}} M \otimes_{\mathbb{Z}} \mathbb{Q}$
N 1-parameter subgroup lattice of T
$N_{\mathbb{Q}} \quad N \otimes_{\mathbb{Z}} \mathbb{Q}$
σ Strongly convex polyhedral cone in $N_{\mathbb{Q}}$
σ^{\vee} dual cone of σ in $M_{\mathbb{Q}}$
Σ fan in $N_{\mathbb{Q}}$
$X(\sigma)$ toric variety asociated to σ
$X(\Sigma)$ toric variety asociated to Σ

Normal varieties with torus actions

Definition

A T-variety X is a normal variety with a faithful torus action The complexity of X is the codimension of a generic orbit

The best known examples are toric varieties (complexity 0) They have a quite simple combinatorial description (fans) Many geometrical property can be read from these data

Starting from 2003, Almann, Hausen, Süß, Ilten and many other have developed a similar theory for higher complexity

$$
>
$$

A divisorial fan

A divisorial fan

Represents a T_{2}-variety of complexity 1
It is separated and complete
Corresponds to the the smooth quadric in \mathbb{P}^{4}

p-divisors on the projective line

A p-divisor on the projective line

[0]

[1]

[∞]

$$
Y=\mathbb{P}^{1}
$$

Minkowski sum

Tailed polyhedra

$\Delta \subset N_{\mathbb{Q}}$ polyhedon
The tail cone of Δ is the unique cone σ such that

$$
\Delta=P+\sigma, \quad \text { with } P \text { a polytope }
$$

Tailed polyhedra

$\Delta \subset N_{\mathbb{Q}}$ polyhedon
The tail cone of Δ is the unique cone σ such that

$$
\Delta=P+\sigma, \quad \text { with } P \text { a polytope }
$$

$\operatorname{Pol}\left(\sigma, N_{\mathbb{Q}}\right)$ is the set of all polyhedra with fixed tail cone σ
$\Delta \in \operatorname{Pol}\left(\sigma, N_{\mathbb{Q}}\right)$ is called a σ-polyhedra
$\operatorname{Pol}\left(\sigma, N_{\mathbb{Q}}\right)$ is a semigroup under Minkowski sum
σ is the neutral element in $\operatorname{Pol}\left(\sigma, N_{\mathbb{Q}}\right)$

Support function

Let $\Delta \in \operatorname{Pol}\left(\sigma, N_{\mathbb{Q}}\right)$
The support function of Δ is the map

$$
\sigma^{\vee} \rightarrow \mathbb{Q}, \quad m \mapsto \min _{v \in \Delta}\langle m, v\rangle
$$

Convex polyhedron
Concave piecewise linear function

polyhedral divisors

Let Y be a normal semiprojective variety, i.e.
The morphism $Y \rightarrow \operatorname{Spec} H^{0}\left(Y, \mathcal{O}_{Y}\right)$ is projective
Let σ be a fixed strongly convex tail cone

Definition

A polyhedral divisor on Y is a formal sum

$$
\mathfrak{D}=\sum_{Z \subset Y} \Delta_{Z} \cdot Z
$$

where Δ_{Z} are σ-polyhedra and all but finitely many Δ_{Z} are σ

polyhedral divisors

Let $\mathfrak{D}=\sum_{Z \subset Y} \Delta_{Z} \cdot Z$ be a polyhedral divisor
Let h_{Z} be the support function of Δ_{Z}
We can see \mathfrak{D} as a function to Weil \mathbb{Q}-divisors

$$
\begin{aligned}
\mathfrak{D}: \sigma & \longrightarrow \operatorname{WDiv}_{\mathbb{Q}}(Y) \\
m & \longmapsto \mathfrak{D}(m)=\sum_{Z \subset Y} h_{Z}(m) \cdot Z
\end{aligned}
$$

\mathfrak{D} is piecewise linear and concave.

$$
\mathfrak{D}(m)+\mathfrak{D}(m) \leq \mathfrak{D}\left(m+m^{\prime}\right)
$$

polyhedral divisors

[1]

polyhedral divisors

$$
\begin{aligned}
\text { Let } \mathfrak{D} & =\sum_{Z \subset Y} \Delta_{Z} \cdot Z \text { be a p-divisor. We define } \\
A(\mathfrak{D}) & =\bigoplus_{m \in \sigma^{\vee} \cap M} H^{0}(Y, \mathcal{O}(\mathfrak{D}(m))) \cdot \chi^{m} \quad \text { and } \quad X(\mathfrak{D})=\operatorname{Spec} A(\mathfrak{D})
\end{aligned}
$$

polyhedral divisors

Let $\mathfrak{D}=\sum_{Z \subset Y} \Delta_{Z} \cdot Z$ be a p-divisor. We define
$A(\mathfrak{D})=\bigoplus_{m \in \sigma^{\vee} \cap M} H^{0}(Y, \mathcal{O}(\mathfrak{D}(m))) \cdot \chi^{m} \quad$ and $\quad X(\mathfrak{D})=\operatorname{Spec} A(\mathfrak{D})$
Let $f \in H^{0}(Y, \mathcal{O}(\mathfrak{D}(m)))$ and $g \in H^{0}\left(Y, \mathcal{O}\left(\mathfrak{D}\left(m^{\prime}\right)\right)\right)$
The multiplication map is given by

$$
f \chi^{m} \cdot g \chi^{m^{\prime}}=f g \chi^{m+m^{\prime}}
$$

It is well defined since

$$
\begin{aligned}
\operatorname{div}(f)+\mathfrak{D}(m)+\operatorname{div}(g)+\mathfrak{D}\left(m^{\prime}\right) & \geq 0 \\
\operatorname{div}(f g)+\mathfrak{D}(m)+\mathfrak{D}\left(m^{\prime}\right) & \geq 0 \\
\operatorname{div}(f g)+\mathfrak{D}\left(m+m^{\prime}\right) & \geq 0
\end{aligned}
$$

polyhedral divisors

Definition

A polyhedral divisor \mathfrak{D} is called a p-divisor if

- $\mathfrak{D}(m)$ is \mathbb{Q}-Cartier and semiample, $\forall m \in \sigma^{\vee}$
- $\mathfrak{D}(m)$ is big, $\forall m \in \operatorname{rel} . \operatorname{int}\left(\sigma^{\vee}\right)$

Example of p-divisor

$$
Y=\mathbb{P}^{1}
$$

Example of p-divisor

Example of p-divisor

Theorem (Altmann and Hausen)

Let \mathfrak{D} be a p-divisor on a semiprojective normal variety Y. Then $X(\mathfrak{D})$ is a normal affine T-variety of complexity $\operatorname{dim} Y$

Conversely, every normal affine T-variety is equivariantly isomorphic to $X(\mathfrak{D})$ for some p-divisor \mathfrak{D} on some semiprojective normal variety Y

Theorem (Altmann and Hausen)

Let \mathfrak{D} be a p-divisor on a semiprojective normal variety Y. Then $X(\mathfrak{D})$ is a normal affine T-variety of complexity $\operatorname{dim} Y$

Conversely, every normal affine T-variety is equivariantly isomorphic to $X(\mathfrak{D})$ for some p-divisor \mathfrak{D} on some semiprojective normal variety Y

- $\mathfrak{D}(m)$ is \mathbb{Q}-Cartier and semiample, $\forall m \in \sigma^{\vee}$
- $\mathfrak{D}(m)$ is big, $\forall m \in \operatorname{rel} . \operatorname{int}\left(\sigma^{\vee}\right)$

Example of p-divisor

[0]

[1]

[∞]

$$
Y=\mathbb{P}^{1}
$$

Then $X(\mathfrak{D})$ is isomorphic to \mathbb{A}^{3} with the complexity $1 \mathrm{~T}_{2}$-action

$$
\begin{aligned}
\mathrm{T}_{2} \times \mathbb{A}^{3} & \longrightarrow \mathbb{A}^{3} \\
\left(t_{1}, t_{2}\right) \times\left(x_{1}, x_{2}, x_{3}\right) & \longmapsto\left(t_{1}^{-1} t_{2} \cdot x, t_{1}^{1} t_{2}^{-1} \cdot y, t_{2} \cdot z\right)
\end{aligned}
$$

Gluing of affine pieces

The nice gluing process in these pictures only works in complexity 1

Gluing of affine pieces

The nice gluing process in these pictures only works in complexity 1

Overview of known results

Combinatorial description Altmann, Hausen, Süß

Nice pictures for cp 1 Ilten, Süß
Divisors, $\mathrm{Cl}(X), \operatorname{Pic}(X) \quad$ Petersen, $\mathrm{Süß}$
Cox rings Hausen, Huggenberger, Süß
Altmann, Petersen, Wiśniewski
Singularities L., Süß (Laface, L., Moraga)
Projective T-varieties Ilten, Süß
Deformations Altmann, Ilten, Hochenegger, Vollmert
Generators Ilten, Kastner
\mathbb{G}_{a}-actions Langlois, L.

Overview of known results

$$
\mathrm{SL}_{2} \text {-actions Arzhantsev, L. }
$$

Automorphism groups Arzhantsev, Hausen, Huggenberger, L.

G-varieties Altmann, Kiritchenko, Petersen

Langlois, Terpereau, Perepechko

Vector bundles Ilten, Süß

Kahler-Einstein metrics Ilten, Süß
Frobenius Splitting Achinger, Ilten, Süß
Topology and Chow group Laface, L., Moraga
Uniform rationality Petitjean
Okunkov bodies and Well-poisedness Ilten, Manon, Petersen

Overview of known results

Cox rings on proyectivized TVB Gonzalez, Hering, Payne, Süß
Flexibility Michalek, Perepechko, Süß
Smoothness Liendo, Petitjean

Uniqueness of the combinatorial description

The description $X \simeq X(\mathfrak{D})$ is not unique

- Automorphism of T reflected in a base change in N
- Choice of an equivariant rational map $X \rightarrow T$
- Automorphism of the base

Uniqueness of the combinatorial description

The description $X \simeq X(\mathfrak{D})$ is not unique

- Automorphism of T reflected in a base change in N
- Choice of an equivariant rational map $X \rightarrow T$
- Automorphism of the base

Uniqueness of the combinatorial description

The description $X \simeq X(\mathfrak{D})$ is not unique

- Automorphism of T reflected in a base change in N
- Choice of an equivariant rational map $X \rightarrow T$
- Automorphism of the base
- Birational map of the base
$\varphi: Y \longrightarrow Y^{\prime}$ projective birational, $\quad \mathfrak{D}=\varphi^{*}\left(\mathfrak{D}^{\prime}\right)$
Then

$$
X\left(\mathfrak{D}^{\prime}\right) \simeq X(\mathfrak{D}) \text { equivariantly }
$$

This phenomenon does not arrive in complexity 1

Minimal p-divisors

Definition

Let \mathfrak{D} and be a p-divisor on Y.
Then \mathfrak{D} is minimal if $\mathfrak{D}=\varphi^{*}\left(\mathfrak{D}^{\prime}\right)$ with $\varphi: Y \longrightarrow Y^{\prime}$ projective birational implies φ is an isomorphism

For every T-variety X, there is a canonical way (GIT) to construct a rational quotient Y (called Chow quotient) where there is a minimal p-divisor \mathfrak{D} such that $X \simeq X(\mathfrak{D})$

Smoothness criteria

Report on a joint work with Charlie Petitjean from Dijon
Before, the known results were very special cases

- Y projective (Kambayashi, Russell, 1982)
- X(D) of complexity 1 (Flenner, Zaidenberg, 2002)

Y projective

Let $X=X(\mathfrak{D})$ with \mathfrak{D} minimal p-divisor on Y
$k[X]^{\mathrm{T}}=H^{0}(Y, \mathcal{O}(\mathfrak{D}(0)))$
Y projective \Longleftrightarrow the algebraic quotient $X / / \mathrm{T}$ is a point
Kambayashi and Russell in "On linearizing algebraic torus actions"
X is smooth $\Longleftrightarrow \begin{aligned} & X \text { is equivariantly isomorphic to the } \\ & \text { affine space with a linear torus action }\end{aligned}$

Y projective

Let $X=X(\mathfrak{D})$ with \mathfrak{D} minimal p-divisor on Y
$k[X]^{\mathrm{T}}=H^{0}(Y, \mathcal{O}(\mathfrak{D}(0)))$
Y projective \Longleftrightarrow the algebraic quotient $X / / \mathrm{T}$ is a point
Kambayashi and Russell in "On linearizing algebraic torus actions"
X is smooth $\Longleftrightarrow \begin{aligned} & X \text { is equivariantly isomorphic to the } \\ & \text { affine space with a linear torus action }\end{aligned}$
In p-divisors language

- $Y=X(\Sigma)$ is toric
- \mathfrak{D} is supported in toric divisors and
X is smooth $\Longleftrightarrow \vee$ the cone spanned in $\left(N \oplus N_{Y}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ by $(\sigma, 0)$ and $\left(\Delta_{\rho}, \rho\right)$, for all $\rho \in \Sigma(1)$ is smooth

$X(\mathfrak{D})$ of complexity 1

Let $X=X(\mathfrak{D})$ with \mathfrak{D} minimal p -divisor on Y

- $Y=\mathbb{P}^{1}$
X is smooth
Y projective
- \mathfrak{D} is supported in [0] and $[\infty]$
- the cone spanned in $N_{\mathbb{Q}} \oplus \mathbb{Q}$ by $(\sigma, 0),\left(\Delta_{0}, 1\right)$ and $\left(\Delta_{\infty},-1\right)$ is smooth

$X(\mathfrak{D})$ of complexity 1

Let $X=X(\mathfrak{D})$ with \mathfrak{D} minimal p -divisor on Y

- Y is anything
X is smooth
Y affine
- \mathfrak{D} is supported anywhere
- the cone spanned in $N_{\mathbb{Q}} \oplus \mathbb{Q}$ by $(\sigma, 0)$ and $\left(\Delta_{z}, 1\right)$ is smooth for all $z \in Y$

Example with Y projective

[0]

[1]
 [∞]

$$
Y=\mathbb{P}^{1}
$$

Example with Y projective

Example with Y projective

[0]

Example with Y projective

$$
Y=\mathbb{P}^{1}
$$

The cone generated by $(\sigma, 0),\left(\Delta_{0}, 1\right)$ and $\left(\Delta_{\infty},-1\right)$ is spanned by

$$
\begin{gathered}
v_{1}=(1,1,0) \\
v_{2}=(-1,1,0) \\
v_{3}=(0,0,1) \\
v_{4}=(1,0,1) \\
v_{5}=(-1,1,-2)
\end{gathered}
$$

Example with Y projective

$$
Y=\mathbb{P}^{1}
$$

The cone generated by $(\sigma, 0),\left(\Delta_{0}, 1\right)$ and $\left(\Delta_{\infty},-1\right)$ is spanned by

$$
\begin{aligned}
v_{1} & =(1,1,0) \\
v_{2} & =(-1,1,0) \\
v_{3} & =(0,0,1) \\
v_{4} & =(1,0,1) \\
v_{5} & =(-1,1,-2)
\end{aligned} \quad \operatorname{det}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 1 \\
-1 & 1 & -2
\end{array}\right)=-1
$$

Example with Y affine

Example with Y affine

The cone generated by $(\sigma, 0),\left(\Delta_{0}, 1\right)$ is spanned by

$$
\begin{array}{ll}
v_{1}=(1,1,0) & \begin{array}{l}
\text { it is not even a } \\
v_{2}=(-1,1,0)
\end{array} \\
v_{3}=(0,0,1) & X(\mathfrak{D}) \text { is not smooth } \\
v_{4}=(1,0,1) &
\end{array}
$$

Example with Y affine

The cone generated by $(\sigma, 0),\left(\Delta_{\infty}, 1\right)$ is spanned by

$$
\begin{aligned}
& v_{1}=(1,1,0) \\
& v_{2}=(-1,1,0) \\
& v_{5}=(-1,1,2)
\end{aligned} \quad \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 2
\end{array}\right)=-4
$$

Towards the general case

The main tool to provide a characterization of smooth affine T-varieties in higher complexity is Luna's Slice Theorem

Let $\phi: X \rightarrow X^{\prime}$ be an equivariant morphism of T -varieties

The morphism is called strongly étale if

- ϕ and $\phi_{/ / \mathrm{T}}$ are étale
- $X \simeq X^{\prime} \times_{X^{\prime} / / \mathrm{T}} X / / \mathrm{T}$ equivariantly

Strongly étale morphism play the role of local isomorphisms

Smooth varieties

Theorem
Smooth varieties X are locally isomorphic to the affine space in the étale topology

For every $x \in X$ there exists:

- A Zariski neighborhood $\mathcal{U} \subset X$ of x
- A Zariski open $\mathcal{V} \subset \mathbb{A}^{k}$
- A variety Z and étale morphisms $\phi: Z \rightarrow \mathcal{U}$ and $\psi: Z \rightarrow \mathcal{V}$

$$
\mathcal{U} \stackrel{\phi}{\longleftrightarrow} Z \stackrel{\psi}{\longleftrightarrow} \mathcal{V}
$$

Smooth T-varieties

Theorem (Ad-hoc Luna's Slice Theorem)

Smooth T-varieties X are equivariantly locally isomorphic in the étale topology to the affine space endowed with a linear T-action. Furthermore, the local isomorphism is realized by strongly étale morphisms

Let $\pi: X \rightarrow Y_{0}=X / /$ T be a algebraic quotient
For every $y \in Y_{0}$ there exists:

- A Zariski neighborhood $\mathcal{U}_{0} \subset Y_{0}$ of y_{0}.
- A linear T-action on \mathbb{A}^{k}
- A T-equivariant Zariski open $\mathcal{V} \subset \mathbb{A}^{k}$
- A T-variety Z and strongly étale morphisms $\phi: Z \rightarrow \mathcal{U}$ and $\psi: Z \rightarrow \mathcal{V}$

Main result

Theorem

Let \mathfrak{D} be a minimal p-divisor on Y. Then $X(\mathfrak{D)}$ is smooth if and only if the combinatorial data (Y, \mathfrak{D}) is locally isomorphic in the étale topology to the combinatorial data of the affine space endowed with a linear \mathbb{T}-action.

Let $q: Y \rightarrow Y_{0}$. For every $y \in Y_{0}$ there exists:

- A Zariski neighborhood $\mathcal{U} \subset Y$ of $q^{-1}\left(y_{0}\right)$
- A linear T-action on \mathbb{A}^{k} given by a minimal p-divisor \mathfrak{D}^{\prime} en Y^{\prime}
- A Zariski open $\mathcal{V} \subset Y^{\prime}$
- A variety Z and étale morphisms $\phi: Z \rightarrow \mathcal{U}$ and $\psi: Z \rightarrow \mathcal{V}$ such that $\phi^{*}(\mathfrak{D})=\psi^{*}\left(\mathfrak{D}^{\prime}\right)$

$$
(\mathcal{U}, \mathfrak{D}) \stackrel{\phi}{\longleftarrow}\left(Z, \mathfrak{D}^{\prime \prime}\right) \xrightarrow{\psi}\left(\mathcal{V}, \mathfrak{D}^{\prime}\right)
$$

Example: the affine space

Let $N=\mathbb{Z}$
$Y=\mathrm{Bl}_{0}\left(\mathbb{A}^{2}\right)$
$Y_{0}=\mathbb{A}^{2}$
D_{1}, D_{2} the strict transform of coordinate hyperplanes
E exceptional divisor

$$
\mathcal{D}=\left\{\frac{1}{2}\right\} \cdot D_{1}+\left\{-\frac{1}{3}\right\} \cdot D_{2}+\left[0, \frac{1}{6}\right] \cdot E
$$

$X(\mathfrak{D})=\mathbb{A}^{3}$ with the T_{1}-action

$$
\begin{aligned}
\mathrm{T}_{1} \times \mathbb{A}^{3} & \longrightarrow \mathbb{A}^{3} \\
t \times(x, y, z) & \longmapsto\left(t^{2} \cdot x, t^{3} \cdot y, t^{-6} \cdot z\right)
\end{aligned}
$$

Example: an open set in the affine space

Let $N=\mathbb{Z}$
$Y=\mathbb{A}^{2}$
D_{1}, D_{2} the coordinate hyperplanes

$$
\mathcal{D}=\left\{\frac{1}{2}\right\} \cdot D_{1}+\left\{-\frac{1}{3}\right\} \cdot D_{2}
$$

$X(\mathfrak{D})=\mathbb{A}^{2} \times k^{*}$ with the T_{1}-action

$$
\begin{aligned}
\mathrm{T}_{1} \times X(\mathfrak{D}) & \longrightarrow X(\mathfrak{D}) \\
t \times(x, y, z) & \longmapsto\left(t^{2} \cdot x, t^{3} \cdot y, t^{6} \cdot z\right)
\end{aligned}
$$

Example: non-rational support

Let $N=\mathbb{Z}$
$Y=\mathrm{Bl}_{0}\left(\mathbb{A}^{2}\right)$
$Y_{0}=\mathbb{A}^{2}(u, v)$
D_{1} the strict transform of the affine elliptic curve

$$
\left\{h(u, v)=u^{2}-v(v-\alpha)(v-\beta)\right\}
$$

D_{2} the strict transform of $\{u=0\}$
E exceptional divisor

$$
\mathcal{D}=\left\{\frac{1}{2}\right\} \cdot D_{1}+\left\{-\frac{1}{3}\right\} \cdot D_{2}+\left[0, \frac{1}{6}\right] \cdot E
$$

$$
X(\mathfrak{D})=\left\{\frac{1}{z} h\left(x^{3} z, y z\right)=t^{2}\right\} \subset \mathbb{A}^{4} \quad \text { weight }(2,6,-6,3)
$$

and $X(\mathfrak{D})$ is smooth (jacobian criterion)

Example: bad crossing

Let $N=\mathbb{Z}$
$Y=\mathrm{Bl}_{0}\left(\mathbb{A}^{2}\right)$
$Y_{0}=\mathbb{A}^{2}(u, v)$
D_{1} the strict transform of the affine rational curve

$$
\left\{h(u, v)=u-v(v-1)^{2}\right\} \simeq \mathbb{A}^{1}
$$

D_{2} the strict transform of $\{u=0\}$
E exceptional divisor

$$
\begin{gathered}
\mathcal{D}=\left\{\frac{1}{2}\right\} \cdot D_{1}+\left\{-\frac{1}{3}\right\} \cdot D_{2}+\left[0, \frac{1}{6}\right] \cdot E \\
X(\mathfrak{D})=\left\{x^{3}+y(y z-1)^{2}=t^{2}\right\} \subset \mathbb{A}^{4} \quad(2,6,-6,3)
\end{gathered}
$$

and $X(\mathfrak{D})$ is not smooth. The point $(0,1,1,0)$ is singular

¡Gracias!

