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zero disorder. Thus, for example, e2
2e1

2 = e2(e2e1
2), e3e2e1 — e3(eze1).

The latter example shows all that is left of the " Jacobi identity " in this
special case.
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THE ISOMORPHISM BETWEEN LF(2, 32) AND Ae

W. L. EDGE*.

The isomorphism of the linear fractional group LF(2, 32), of order 360,
and the alternating group AG is on record ([1], 309; and [5], with PSL
for LF, 8 and 9). If one seeks not merely for record but for proof one
might take the conclusion to Chapter XII of [1], in which chapter the
subgroups of LF(2, q) for any Galois field OF(q) are obtained and
catalogued; representations of LF(2, q) as permutation groups have
degrees equal to the indices of these subgroups whenever LF(2, q) is simple,
as it is known to be if q > 3. For q = 32 there are subgroups of index 6.
But while the fact of the isomorphism has been common knowledge for
so long, and while it cannot be gainsaid that a proof has been available,
it may be questioned whether an essential reason for the existence of these
subgroups of index 6 has been perceived. LF(2, q) may be handled as

* Received 29 July, 1954; read 25 November, 1954.
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THE ISOMORPHISM BETWEEN LF(2, 32) AND ji6. 173

a group of projectivities on a line L, being constituted by those pro-
jectivities that can be imposed by matrices of determinant 1; L consists
of g+1 points whose parameters are oo and the marks of the Galois field.
Dickson indeed opens his chapter by representing LF(2, q) as a permutation
group on precisely these " letters " ; he does not call them points, still
less does he speak of projectivities or cross-ratios, and it is submitted that
much can be gained by doing so, perhaps especially when q is a power of 3.

We now give a summary of the contents of the paper. In §1 we note
the line L consisting of ten points, and enumerate the 720 projectivities
thereon. In §2 we introduce cross-ratios and emphasize the peculiar
property possessed by harmonic sets whenever the base field has
characteristic 3: all permutations of their four members can be achieved
by projectivities. §3 is concerned with the sextuples—three pairs every
two of which are harmonic—of points on L, and §4 with the anharmonic
pentads—five points no four of which are harmonic. LF(2, 32), a
subgroup of index 2 of the group of 720 projectivities on L, appears in §5,
and we explain how, in regard to it, the harmonic sets on L fall into two
separate opposed batches. In §6 the automorphism of period 2 of GF{32)
serves to define Hermitian forms which, like the harmonic sets, fall into
two separate opposed batches, and in §7 we prove that every harmonic
set is the set of zeros of a pair of Hermitian forms that are negatives of
each other, and conversely. In §8 we define trisections based on a point
of L and then, in §9, explain how they enable us to distribute the harmonic
sets in quintuples. All the quintuples are displayed in §10 and it is they
which afford the most compelling and illuminating proof, in §11, of the
isomorphism.

d6 is isomorphic not only to LF(2, 32) but also to PO2(4, 3), the second
projective orthogonal group on four variables over OF(Z); thus LF(2, 32)
and PO2(4, 3) are isomorphic to each other. This is the special case,
for pn = 3, of the isomorphism established by Dickson ([1], 194) between
P02(4, #n) and LF{2,p*n), but his proof, as he concedes ([1], 308), does
not apply in this special case and so does not establish the isomorphism
with which we are concerned. There can be little doubt that van der
Waerden's proof ([5], 25-26), had it been concluded accurately, would
have been preferable; his instinct to geometrize was wise and a suggested
completion of his argument is offered in the footnote to p. 277 of [2]. We
give in §§12, 13 below some salient details of the correspondence between
the two figures wherein LF(2, 32) and PO2(4, 3) act as groups of pro-
jectivities : §12 is of course the application in this context of the trans-
formation which van der Waerden ([5], 25) calls Cs. In §13 we compare
the features of the figure on L with those of the figure built up in [2], and the
comparison almost reduces the proof of the isomorphism to a mere glance
at the two figures. The quintuples of harmonic sets< on L are paralleled
by certain pentahedra, but although these latter have already appeared
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174 W. L. EDGE

in [2] their existence was first suggested by the prior knowledge of the
quintuples which were encountered when composing a set of lectures in
the summer of 1952.
F*£. During the revision of these paragraphs (July 1954) there has appeared
Dieudonne's paper, on exceptional isomorphisms among the classical
finite groups: Canadian Journal of Mathematics 6, 305-315; §3 thereof
contains a proof of the isomorphism between LF(2, 32) and A$. He does
not mention cross-ratio, but does refer to pairs of points being harmonic.
His triplets are obviously our sextuples, and his argument rests on the
phenomenon that, in the nomenclature used here, the fifteen sextuples
that are complements of harmonic sets of either batch together account
for every pair of points of L once and once only.

1. The Galois Field QF(3) consists of the marks 1, 0, —1, with the
law of addition 1 + 1 = — 1; the residues of the integers to modulus 3 are
an instance. I t can be extended to the field GF(32), or J as we call it here,
by adjoining a root of any quadratic which is irreducible over OF (3) and
has its coefficients in this latter field. If, as in ([1], 7), j2 =j-\-1 the marks

0, j , j2, f, j 4 , f, f, f, f

are the same as

0, j,j+l, -j+1, - 1 , - j , -j-lj-l, 1;

we shall use the monomial marks

0 -i o2 o3 l i oa i'3 l

The non-zero marks are all powers of the primitive mark j ; the four even
powers are squares of marks of J, but the four odd powers are non-squares.

The marks of J can serve as homogeneous coordinates xx, xz of points
on a line L; xx and x2 oan each be any of the nine marks save that they
are not permitted simultaneously to be 0, and since mx1, mx2 is the same
point as xv x2 for each mark w ^ 0 the number of points on L is
(92—1)/8=10. We label each point by the mark x = x1/x2 whenever
x2 ^ 0; if a;2 = 0 we label the point oo. The situation is a standard one
in projective geometry ([4a], 59) and the projectivities on L form a triply
transitive group of order 10.9.8 = 720. These projectivities can be
imposed by premultiplying the column vector (xx, x2)' by non-singular
two-rowed matrices whose elements all belong to J: either column of the
matrix may be any of the eighty non-zero columns and, this column having
been chosen, the other column can be a coordinate vector of any of those
nine points of L other than that point of which the column first chosen is
a coordinate vector. Hence there are altogether 80 x 72 = 5760 non-
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THE ISOMOEPHISM BETWEEN LF(2, 32) AND J46. 175

singular matrices. But since, if M is any one of these, the 8 matrices mM
all impose the same projectivity, the number of distinct projectivities is
only 720.

2. The group of projectivities is not quadruply transitive; two tetrads
of points on L are projectively equivalent only when they have the same
cross-ratios. And there is an aspect of this topic of cross-ratio peculiar
to fields of characteristic 3. Any cross-ratios calculated with four of the
ten marks of K, the aggregate consisting of J and the mark oo, must
themselves all belong to K, while the six cross-ratios of a tetrad arise from
any one of them, say A, by combinations of the two operations of taking
the reciprocal I/A and the complement 1—A. There are tetrads on L
whose six cross-ratios are

the marks 0, 1, oo can never occur as cross-ratios of four distinct marks
but there are tetrads, harmonic sets or, briefly, h-sets, whose six cross-ratios
are all — 1. This is the feature peculiar to fields of characteristic 3: the
occurrence of sets of four points all of whose six cross-ratios are equal.
In such a field — 1 is not merely its own reciprocal; it is also its own comple-
ment. And whereas, over the real or complex field, as indeed over any
field of characteristic other than 3, an h-set admits a dihedral group of
8 self-projectivitities, any h-set on L admits the whole symmetric group
&t; every permutation of its four points can be achieved by a projectivity.
The standard condition

(a+b)(c+d) = 2(ab+cd) (2.1)

for a, b to be harmonic to c, d becomes, over any field of characteristic 3,

(a+b)(c+d)+(ab+cd) = O (2.2)

and is symmetric in a, b, c, d; the harmonic property is not now dependent
on the anterior separation into complementary pairs. This occurrence
of an ^4 of self-projectivities of four collinear points was all but recorded
by Fano [3] in 1892. His remark, on p. 116, that the hypothesis of ABGD
and ADBG being simultaneously harmonic is not intrinsically absurd,
is made only to be instantly superseded, on p. 117, by the assumption
that it is not satisfied. Where it satisfied the tetrad would admit a self-
projectivity of period 3 in addition to the usual dihedral group, and this
amplifies the dihedral group to the whole ^4.

3. The two pairs of marks given by

axx
2—h1x-\-b1 = 0 and a2x

2—hzx-\-bz = 0 (3.1)
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176 W. L. EDGE

are, by (2.2), harmonic when

The pair harmonic to both these pairs is given by

x2 —x 1

bx hx a}

h2

= 0; (3.3)

it is, of course, understood that all coefficients of powers of the indeterminate
x are in J. Suppose now that both quadratics (3.1) have their roots in J,
and that (3.2) holds; then the quadratic (3.3) also has its roots in J. This
is so because, over «/,

(ax b2—a2 bx)
2+ {hx a2—h2 ax) (hx b2—h2 bx)

x h2+a2 bxf— (hx
2—ax bx)(h2

2—a2 b2),

so that the discriminant of (3.3) is, if (3.2) is satisfied, a square in J
provided that both discriminants of (3.1) are (note that if m is a square,
say of n, then —m is a square too, of nj2). It follows that if A, B, C, D
form an ft-set on L, and they are partitioned into complementary pairs,
say BC, AD, then there are two points E, F on L which form ft-sets both
with B, G and with A, D; and the pair E, F is uniquely determined by the
partitioning. Each two of the three pairs

B, C\ A, D; E, F

form an &-set. We call such a set of three pairs a sextuple.
Let us take now any /&-set A BCD on L. Then

BG, AD have a common harmonic pair E, F;

CA, BD have a common harmonic pair G, H;

AB, CD have a common harmonic pair X, Y.

We show that all these points are distinct, and so account for the whole
line. Suppose that we impose the projectivity IAB, replacing each point
of L by its companion in the involution whose foci are A and B or, as we
may say, operating with the harmonic inversion in A and B. The points
B, G, A, D become, in this order, B,D,A, C and so E, F become, in one
order or other, G, H. But E, being distinct from A and B, is not invariant;
neither can it be changed to F because, since ADEF is an ft-set, ABEF is
not. Thus G, H are distinct from E, F; this establishes the result.

Harmonic inversions, here as in other contexts, commute when their
pairs of fooi are harmonic. The proof is standard; if A, B, C, D are
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THE ISOMORPHISM BETWEEN LF(2, 32) AND «si6. 177

harmonic then

IAB ICD(ABCD) = IAB{BAGD) = BADG,

ICD IAB(ABCD) = ICD(ABDC) = BADC,

so that the product in either order is the projectivity wherein
ABCD7\ BADC, that is IXY. Moreover, since IXT transposes B with A
and G with D it must leave E, F, the common harmonic pair of BC and
AD, invariant and so transpose its members. Hence XYEF is an h-set,
as likewise is the set composed of any two of the pairs EF, OH, XY. The
complement of any h-set on L is a sextuple.

4. We call a set of five points on L an anharmonic pentad when no set
of four points belonging to it is harmonic. The pentad a' complementary
to an anharmonic pentad q is also anharmonic. For were it not so it would
consist of some h-set and one point of the sextuple a residual thereto;
this would imply that a contained the anharmonic pentad q, which no
sextuple can do.

The point which completes an h-set with any three given points of
L is, by (2.2), unique, so that there are £ .1 0O3 = 30 h-sets altogether.
Of these 30 X 4-f-10 = 12 include a given point.

Of the 10C5 = 252 pentads on L there are 6 including any given h-set;
since it is impossible for the same anharmonic pentad to contam two
h-sets, for these would have three points of the pentad in common, the
number of anharmonic pentads is 252—180 = 72, and they consist of
36 complementary pairs.

The points of complementary anharmonic pentads q, q' are in (1, 1)
correspondence. For suppose that <7 = <x/fy8e, q' = a' j3' y S' e''. Those
points that complete h-sets one with each of the six triads of q that include a
all belong to q', so that at least one point of q', which we label a', must occur
twice; it cannot occur three times because some two of any three pairs of
j8, y, S, e must share a member, whereas the &-set which includes this
member and a, a' is unique. For the same reason, that three points of L
belong to only one h-set, those pairs of j8, y, S, e tha t form h-sets with a, a'
are complementary. We may suppose that

ajSeoc' aySa'

are ^,-sets; the other two h-sets tha t include a and a' may then be labelled

a'jSVoc a'y'S'a,

so that of the six triads of q' that include a' two are amplified to &-sets by a.
This defines a (1, 1) correspondence between q and q' provided we

can demonstrate that only a', and no second point of q', occurs in more
than one of the six A-sets which contain a and two of /?, y, S, e. Suppose
that j8' so occurs. Then of the four &-sets which include a and j8' two are

JOT7B 118. N
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178 W. L. EDGE

completed by complementary pairs from j8, y, 8, e and two by comple-
mentary pairs from y', 8', e', a'; that one of these latter two which
includes a' must be a'jSVa, so that the other is jS'y'S'a. This is
incompatible with a' y 8' a being an ^-set, and therefore j8' cannot so occur.

An example of an anharmonic pentad is

0 1 j j 2 oo,

and the complementary pentad, when its members are written each
vertically beneath the one to which it corresponds, is

- 1 j 3 -j -f -f.

5. It has been remarked that the matrices mM impose the same pro-
jectivity whatever non-zero mark of J m may be. It is important to
record that, since \mM\ = m2| M| when M has two rows, the determinants
of these eight matrices are either all squares or all non-squares in J, and
so there are two distinct types of projectivity on L: direct ([4b], 38)
projectivities, of square determinants, and indirect projectivities, of non-
square determinants. Indirect projectivities certainly occur: for instance

thus the direct projectivities form a subgroup of index 2 of the whole
group of order 720. It is this group, of direct projectivities, that is the
linear fractional group LF(2, 32), of order 360. Any projectivity whose
period is odd must belong to LF(2, 32), for were its determinant a non-
square no odd power thereof could be a square. The harmonic inversions
too all belong to LF(2, 32). For that whose foci are 0, oo is imposed by
diag (1, —1) of determinant —1 = j 4 , while that whose foci are A, B is
imposed by S. diag (1, — 1). S~1, where S is a matrix imposing any
projectivity that turns 0, oo into A, B (in either order). This implies
that the ^4 for which any 7&-set is invariant is a subgroup of LF(2, 32)
because it can be generated by the harmonic inversions in the pairs of the
points that constitute it. Now an >S4 has only 15 cosets in a group of order
360; thus each Jk-set is one among only 15 into which it can be transformed
by operations of LF(2, 32). The 30 h-sets fall into two disjoint categories:
7i-sets of opposite categories are certainly projectively equivalent, but
they can only be transformed into one another by projectivities of non-square
determinant.

6. Every mark of J is its own ninth power, and the replacement of each
mark by its cube is an automorphism of J of period 2; that it is an
automorphism follows because (ab)3 = a?b3 over any field and
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THE ISOMORPHISM BETWEEN LF(2, 32) AND &6. 179

over a field of characteristic 3. We therefore speak of the cube of a mark
as its conjugate. The marks 0, 1, —1 of OF(3) are self-conjugate; the
other six marks of J are conjugate to one another in pairs, each pair being
roots of a quadratic whose coefficients all belong to GF(3) and which is
irreducible over that field. The automorphism is extended to cover K
by the stipulation that oo is self-conjugate.

We can now introduce Hermitian forms, H-forms we shall call them,
over J. For take the bilinear form x' Hx where the components of the
column vector x = (xx, x2)' are independent indeterminates over J and
xv x2 are their cubes. This bilinear form is self-con jugate provided that
H' = H, that is

where a, c are both self-conjugate and so belong to GF(3). The discriminant
is

we assume that D is not zero, the #-form non-singular. But then D,
since it is self-conjugate, must be 1 or — 1; it can be either, as

xx xx+x2 x2 and xx xx—x2 x2

exemplify.
Suppose now that we make a linear transformation:

x = Mi;, x = M£.

Then x'Hx= ? M ' H M £ = f Ng, and N'= N if H! = H; an #-form
remains an H-iovm. under linear transformation. The discriminant of
the new form is

Now | If |4 is 1 or — 1 according as M is an even or an odd power of j , so
that no direct projecUvity can ever change the discriminant of an H-form.

7. When an H-iovm is written in extenso it is

o 2

= axx xx+bxx x2 -f bxx x2+cx2 x2

x
3 x2 -\-7>xx

a binary quartic without the term in xx
2x2

2; its four zeros are therefore,
by (2.2), harmonic, and should these zeros belong to K they represent

N2
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180 W. L. EDGE

an h-aet on L. We shall see that the zeros do belong to K, and that the
A-sets are simply the zeros of H-forms, and conversely.

The unit //-form X-LX^X^X^X^+X^ has zeros j , —j, j 3 , — j 3 ; they
form an h-set. This can be transformed by operations of LF(2, 32),
into (including itself) 15 A-sets on L. These are sets of zeros of binary
forms which, as transforms of an H-fovm, are all iZ-forms and which,
since only direct projectivities are being used, all have D = 1. The other
15 h-seta on L arise likewise by direct projectivities from the zeros
1, — I, j 2 , —j2 of x1x1~x2x2 = x^ — x<£. Thus every A-set on L is the set
of zeros of an i/-form, and an 7&-set belongs to one or other of the two
categories according to the value of the discriminant of that //-form of
which it provides the zeros. We may call the &-set positive or negative
according as this discriminant is 1 or —1.

That the A-sets on L account for all non-singular J^-forms over J
follows by an easy enumeration. For how many .ff-forms have
D = ac—66 = 1? The possibilities are

(i) ac= 1, bb%= 0; either a or c is known when the other is given,
and 6 = 0.

(ii) ac = — 1, 6 6 = 1 ; either a or c is known when the other is given,
and 6 is one of 1, — 1, j 2 , —j2.

(iii) ac = 0, 66= — 1 ; there are now five choices (0, 0), (0, 1), (0, —1),
(1, 0), (—1, 0) for (a, c) while 6 can be any of j , —j, j 3 , —j3.

Thus the numbers of //-forms under headings (i), (ii), (iii) are 2, 8, 20;
total 30. Each form x'Hx is accompanied here by its negative x'(— H)x
which has the same zeros and the same discriminant; each of the 15 pairs
±x' Hx of //-forms of positive discriminant provides by its zeros one of
the 15 positive A-sets. And likewise for the negative &-sets, the H-iorms
with D = —1 also consisting of 15 pairs.

Enumeration shows too that, of the 12 &-sets that include any given
point of L, 6 are of one sign and 6 of the other. Suppose the point is
labelled oo: it belongs to those A-sets that are zeros of H-forms wherein
a = 0. If these have D = 1 they all occur under (iii) above; clearly there
are 6 pairs i i ' Hx that fulfil the condition.

8. During this and the next section it is convenient to label the points
of L by the italicised digits 0 to 9 inclusive.

Let 0123 be an h-set and 4 a fifth point of L. Harmonic inversion in
0 and 4 turns 1, 2, 3, into, say, 7, 8, 9; the remaining points 5 and 6 must
be harmonic inverses in 0 and 4. We thus obtain a trisection, as we will
call it,

0\123\456\789 To
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THE ISOMORPHISM BETWEEN, LF(2, 32) AND JH6. 181

separating the nine points other than 0 into three triads each of which
makes an ^-set with 0. The order in which the three points of a triad are
written is immaterial here. Had we selected not 4 but, say, 5 the same
trisection TQ would have arisen; 6 and 4 are harmonic inverses in 0 and 5,
and those of 1, 2, 3 must be 7, 8, 9 in some order because if two of jf, 2, 3
are harmonic inverses in two points one of which is 0 the other must be the
third member of 1, 2, 3 and cannot be 5. The three A-sets of a trisection
have the same sign because any two of them can be transformed into one
another by a harmonic inversion; we therefore call the trisection positive
or negative with the &-sets that compose it. Once the point on which a
trisection is based has been selected the trisection is fixed by the choice
of an ^-set that is to belong to it, so that there are 6-̂ -3 = 2 trisections of
either sign based on each point of L.

By way of example let us display the trisections based, in the original
labelling, on oo. Three points form an h-set with oo when the sum of
their parameters is zero; the trisections are two positive ones

cr> 0 o <i I 1 1*2 o 3 I 1 I*2 <i*3

on I 0 1*8 o'3 I 1 1'2 1* 1 -j*2 i
* r i J i J I L> J > J X5 J > J

and two negative ones

oo 0 , 1 , - 1 \j, j 2 , -j,'2 _ 0 ' 3 I ,J3_ _A2 A

00 | 0, f, -j* | 1, - j , -f | - 1 , j , f.

9. Call those trisections which include the &-set 0123 and are based on
0, 1, 2, 3 respectively To, T1} T2, T3; those which include 0456 and are
based on 0, 4, 5, 6 respectively TQ, T4, T5, T6.

Since the ft-set which includes 4, 5, 6 is completed by 0 the points
4, 5, 6 do not form an h-set with 1; they therefore belong two to one and
one to the other of the two ^-sets which, together with 0123, compose Tv

Select this latter 7&-set, which includes only one of 4, 5, 6; we may label this
one point 4. This /&-set, as containing 1 but neither 2 nor 3, is also the
yk-set of T4 which contains only one of 1, 2, 3. Using the other trisections
similarly we obtain a quintuple of A-sets labelled, as yet incompletely,

0123
0456

25
36

where the blanks, two in each of the last three sets, are occupied only by
7, 8, 9.

 at E
dinburgh U

niversity on N
ovem

ber 15, 2011
http://jlm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://jlms.oxfordjournals.org/


182 Ws L. EDGE

Now there is on L a projeotivity p wherein

0123 7\ 0231

and which, being of period three, belongs to LF(2, 32). Since both the
point 0 and the ft-set 0123, although admitting a permutation of its members,
are invariant for p so is TQ; and since p cannot, in virtue of its odd period,
transpose the other two h-sets of To these, 0456 and 0789, must both be
invariant. Since p is genuinely of period 3 and not identity it must permute
4, 5, 6 cyclically, as also 7, 8, 9. The above quintuple, as its construction
shows, is uniquely determined by 0123 and 0456 and so cannot be altered
by p; the remaining three 7&-sets in it must be permuted cyclically with
1, 2, 3 and so, with the labelling now used, p transforms 4, 5, 6 into 5, 6, 4.
Of the two digits among 7, 8, 9 that complete the third h-set of the
quintuple one, which we now label 7, has to be transformed by p into the
other, which we now label 8. And so the quintuple is

0123
0456
1478
2589
3697

and includes each point of L exactly twice. Indeed the points are deter-
mined as being common one to each of the 5O2 pairs of /i-sets in the
quintuple. Since two ft-sets with a single common point are members of
a trisection based on this point all the h-sets of a quintuple have the same
sign, and we describe a quintuple as positive or negative with the h-sets
that compose it.

10. Two h-sets of a trisection determine the whole quintuple to which
they belong, and this quintuple is equally well determined by any two of
its five members. Now there are twenty positive trisections, two based on
each point of L, each providing three pairs of h-sets; hence the number of
positive quintuples is

C

Every positive h-set, moreover, belongs to two of these six quintuples.
For it belongs to four trisections (one based on each of its four points)
and determines a quintuple when taken with either of the other two h-sets
of any of these four trisections; but, since it determines the same quintuple
when taken with any of the other four members of any quintuple to which
it does belong, it occurs in 4x2-^4 = 2 quintuples. Indeed the 15 positive
A-sets prove to be the " intersections by pairs " of the 6 positive quintuples.

All this is exactly paralleled in the negative quintuples, and it only
remains to exhibit the quintuples in their entirety.
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The twelve quintuples of harmonic sets

NEGATIVE
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00

00

0
1

0
0

p
-3

P

0
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s.

i3

-P
-P

P
-P

00

1
— 1

1

p
~3

P
-3

n
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s.

— 1

00

1

— 1

-p
p

-p
3

P
-P

3
~P
~P

oo
00

0
1

— 1

1
1

~P
P

~P

0

-3
—P

P
P

-P
P
00

— 1

0

1

~P
3

A

~P

P
—3

0
00

— 1

- 1

P
~P

3
P

-P
3
P

V
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-3

oo
00

V
s.

P
~P

- 1
— 1

—P
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3

V
s.

A

0
— 1

— 1

—1* 2
3

P
0

00

1

P
~P

1
1
0

-3
-P

00

1
0

~P
P
P

-P
-i

3
P
P

-P
P

POSITIVE

oo
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0

3

-3

0
0

— 1

-p
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0
p

— 1

-p
-p

— 1

1
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V
s.

-3

3
P

-P
— 1
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J

3
P
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V
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—j
1

p
1

p

p
-p

p
1

-p
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0
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n
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j

j

~P
— 1

1

0
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1
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-3
0

j
~P

P
~P

1

— 1

—P
0

00
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—3
— 1

-P
P

— 1

1

P
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P
~P

00

00
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p
1

n

~P
—P

P

P
—P

0

-3

-P
P
0

00

V
s.

P
A3

V
s.

V
s.

0

-p
1

oo

3
0

1
— 1
— 1

~P
-P

P
— 1

P

i—
i

— 1

11. Any operation of LF(2, 32) has to permute the positive quintuples.
If it imposes the identity permutation on them then every positive h-set,
being common to two quintuples, is also invariant, as is every point of L,
common to six positive ^-sets. The operation is thus identity. Where-
fore the 360 operations of LF(2, 32) impose a group of 360 distinct
permutations on the positive quintuples; this can only be the alternating
group ji6. The same discussion applies to the negative quintuples. This
conclusion establishes the known isomorphism between LF(2, 32) and A6

by reasoning which affords the geometrical explanation of why it has to
occur. And, almost incidentally, the geometry shows at a glance the
subgroups A5 and ^4, there being, because of the fundamental opposition
between oppositely signed constructs, two conjugate sets of each of these
two types of subgroups; there are two conjugate sets each of six A5, each
subgroup consisting of operations for which a quintuple is invariant, and
two conjugate sets each of fifteen ^4, each subgroup consisting of operations
for which an h-set is invariant.
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184 W. L. EDGE

12. The foregoing description of the representation of ji6 as LF{2, 32)
is complete in itself, but it is allied to the representation of AQ as the second
projective orthogonal group P(92(4, 3) in four variables over OF(S) that
was described in [2]; we therefore conclude by giving the direct relation
between the two representations. The essential bridge is the (1, 1) corres-
pondence between the ten points of L and the ten points of the ellipsoid F
used in [2].

When OF(3) is extended to J two complementary reguli, of ten lines
each, appear on what was F. Parameters u, v, one for each regulus, can
be chosen so that the ten points of F occur when v = u. Indeed the quadric

x2+y2+z2 = t2

admits, when marks of J are available, the parametric representation

x = u-\-v, y =—j2(u—v), z = uv—l, t = uv-\-1.

The points

x = u-\-u, y=—j2(u—u), z = uu—l, t = uu-\-l

are as follows:

u

X

y
z
t

0

.
— 1

1

1

— 1

— 1

j

1
- 1

1

•

f

- 1

- 1

f

1
1
1

•

2

1
.

-j

-1
I
1

•

J

1

- 1

_ 2
- 1

1

00
i—

i

1

Since the points arise on assigning the same marks to u that label the points
of L there is a (1, 1) correspondence between the points of L [over J] and
the points of the ellipsoid [over 0F(3)].

13. The points of the three-dimensional space in which F lies all have
coordinates in OF(3), and those points of F that lie in the polar plane of

(I, v> l>r)are g i v e n b y

— 1) = T(UU+ 1),

= 0.

The expression on the left here is, if u is replaced by uju2i an i7-form;
its discriminant is
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so that the 17-form is non-singular provided that (£, rj, £, r) does not lie
on F. Furthermore this discriminant is of one sign or the other according
to which of the two categories ([2], 271) of points not on F includes (£, rj, £, r).
This result shows that the A-sets on L correspond one to each non-singular
plane section of F, and conversely, and that j^-sets are similarly or oppositely
signed according as the poles of the corresponding plane sections of F are
similarly or oppositely signed. This is the cardinal feature of the corres-
pondence; it secures that the projectivities of PO2(4, 3) in the three-
dimensional space answer one to each direct projectivity on L.

We may note a few other features without delaying to substantiate
them in every detail.

That the complement of an A-set on L is a sextuple answers to the fact
that the six points of F not on a given non-singular plane section lie by
pairs on three concurrent chords ([2], 270).

The three ft-sets of a trisection based on 0 answer to sections of F by
the three planes, other than the tangent plane, through one of the four
tangent lines whose contact with F is the point corresponding to 0. There
is a (1, 1) correspondence between trisections on L and tangent lines of F;
when trisections are similarly signed so are the corresponding tangent lines,
and conversely.

Just as the plane of a non-singular section contains four tangent lines
of F, all signed alike, so any h-aet belongs to four trisections, all signed
alike. The five ft-sets of a quintuple are such that every pair belongs to
some trisection; they correspond to the sections of F by the faces of a
pentahedron whose edges are all tangent lines.

An anharmonic pentad on L corresponds to a cycle ([2], 281) on F; just
as there are 36 complementary pairs of anharmonic pentads on L so there
are 36 complementary pairs of cycles on F.

An involution whose foci, like a and a' in §4, correspond in the (1, 1)
correspondence between complementary anharmonic pentads q, q', leaves
both q and q' invariant; the five such involutions that arise from q and q'
belong to a dihedral group of order ten which answers to the Z>10 at the
foot of p. 283 of [2]. Each of the 36 pairs of complementary anharmonic
pentads affords such a group, and the 36 such subgroups of AQ are all thereby
accounted for.
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