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because r belongs to a and intersects q; similarly with s. The other two
screws in which v is the null plane of P are

and every two of the 4 screws are syzygetic because, for instance,

I{(a+ru)(a'+s23)+(a'+r23)(a+su)}

= 2 (ar23+a'ru) + I (as23+a'su)+vr(r,s) = 0+0+0 == 0.

Moreover, the 4 screws are linearly dependent, the sum of their left-hand
sides being identically zero. The sheaf linearly dependent on any two
of them is the same as that which is linearly dependent on the other two.

That any two screws in which some point has the same null plane must
be syzygetic also follows because if u' = Bxx — B2x then {B1-\-B2)x = 0
so that Bx-\-B2, having linearly dependent columns, is singular and ax-\-a2

is a sheaf whose axis passes through x. Then, indeed, Bx-\-B2 has rank 2
and there are linearly independent columns x and y making

(Bx+B2)x = (Bx+B2)y = 0;

x, y, x-\-y are the points on the axis of ax-\-a2.
Suppose, on the other hand, that ax, a2, a3 are mutually syzygetic screws;

then a4 = CT1+CT2+
(73 is s^s0 (w e suppress the routine details of the proof)

a screw and every pair of the 4 screws is syzygetic. Suppose that

q is the axis of a2+a3 = ax-{-a^

r is the axis of ag+aj = <x2+°r4>

8 is the axis of ffi+<72 = °r3+<r4«
Then q, r, 8 are linearly dependent. But they intersect because, for instance,

= = < n r23+'n r81+< n : r12 = = 0»

hence q, r, 8 are concurrent at a point P and lie in a plane IT. This plane
is the null plane of P in all 4 screws, and P are TT are uniquely determined
by them. There must then be 15 x 7 = 105 sets of 4 mutually syzygetic
screws, and if we add to any set of 4 the 3 sheaves determined by the pairs
of them we obtain a set of 7 of which every two members are syzygetic.

12. Let us give an example. The point x = y = z = ti8 the pole of
x-\-y-\-z-\-t = 0 in any screw for which

6+c+a' = c+a+6' = a+6+c' = a'+fc'+c' = 1.
Then

1 = oa'+66'+cc' = a(l+6+c)+6(l+c+a)+c(l+o+6) = a+6+c,
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so that a — a',. 6 = 6', c = c',

and the screws answer to the matrices
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The sum of any two of these is singular, and equal to the sum of the other
two, the sum of all four being the zero matrix. Each of the three singular
matrices has for its elements the coordinates of one of the three lines that
pass through x = y = z = t and lie in x-\-y-\-z-\-t = 0. These lines are
common to all four screws and their coordinates are as follows:

# 2 3

.

1

i—
i

# 1 4

1
1

# 3 1

1
.
1

# 2 4

1
.
1

# 1 2

1
1
.

# 3 4

1
1

13. Take now a trio ax, a2, a3; any line common to two members belongs
also to the third. Any plane e has poles, one in each screw; no two of these
three poles can coincide because no two of the trio are syzygetic. Moreover,
the three poles are collinear because Bv B2, B3 are linearly dependent.
The line m on which they lie is the only line in e common to all three screws;
hence each of the 15 planes contains one and only one base line of the trio.
Likewise, by the dual arguments, through each of the 15 points passes one
and only one base line of the trio. Wherefore these base lines constitute a
quintuple. We have already seen that the number of trios is 56, the same
as the number of quintuples. Not only does each trio have a quintuple
for its base but each quintuple is the base of a trio.

The 35 lines of S are separated by a trio into 4 disjoint batches:

(i) the base quintuple Q, (ii) 10 lines of ox,

(iii) 10 lines of CT2, (iv) 10 lines of a3.

Each of these last three batches has two of its lines through any point P
of S, their plane being the null plane of P in the appropriate screw. Let
mx, m2, ms be any three lines of Q. Were two members of their associated
triple to belong to the same screw of the trio so would the third because
the three planes through m1 are null planes, in any screw to which mx

belongs, of the three points on mv The 15 lines of the screw would then
consist of the two associated triples and of one line through each of their
9 intersections, and this cannot occur for any of alt a2, az because the two
other lines of Q have to belong to it. Hence the members of the triple
associated with % , m2, m3 belong one to each of ax, a2> cr3; since reciprocation
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in any of these leaves every line of Q unchanged, the two members of the
associated triple that do not belong to one of the screws are polars in regard
to it. All this holds for each of the ten triples included in Q.

The polars in ax of the lines (iii) are the lines (iv) and so, since at is linearly
dependent both on the sheaves whose axes are any pair of polar lines and
on the other two screws of any trio of which it is a member, the screw
dependent on a2 and a line (iii) is also dependent on a3 and a line (iv). Thus
10 screws are syzygetic both to CT2

 a n d or3. The other 5 screws syzygetic to
CT2 are azygetic to cr3, the other 5 screws syzygetic to cr3 are azygetic to CT2.
Hence there are o c , A _ _ a

Zo—10—5—5 = o
screws azygetic to both o-2 and a3. One of these is av and there are 5 others.

14. Any screw a belongs to 6 trios each of which has a base quintuple in a.
It is not possible for two of these quintuples to have two lines m, n in
common: m and n belong only to two quintuples, namely those that arise
on adding to m and n the two associated triples, and it has just been seen
that m, n and their associated triples cannot belong all to the same screw.
It follows, since there are 15 lines in a and no more, that every pair of the
6 quintuples share one line, and indeed that the lines of a are determined
as common one to each of the 6C2 pairs of these quintuples.

Take, as an example, for a

Since an even number of the pit must be 1 while
ordinates of the 15 lines of this screw are as under:

— 0 c o "
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The duads of roman numerals on the right show how these lines are dis-
tributed among 6 quintuples. Since intersecting lines never belong to the
same quintuple those three of the above 15 lines that pass through any
point of S must, through the three pairs of quintuples to which they belong,
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together account for all 6 quintuples; thus each point of S corresponds to
a syntheme of the 6 quintuples, and all 15 synthemes are thus accounted
for. Here one may again refer to (26), 114.

15. Let mv m2, ?n3, m4, ra5

be a quintuple Q of lines of a screw a. The screw that is linearly dependent
on a and the sheaf whose axis is mi is, as explained in § 10, syzygetic to a;
we now show that the 5 screws so determined are all azygetic to each other.
For suppose that a is given by (8.1); the screws syzygetic to a and determined
by mi and m^ are

2{(a+wiS)pa8+(af+mg)2>i4} = 0,
J,{{a+m®)pn+(a'+m®)pu} = 0,

and, since both % and rrij satisfy (8.1),

Further: these 5 mutually azygetic screws are all azygetic to both screws,
other than a, of the trio based on Q. For, if either of these be

2 {Apn+A'pu) = 0,
then

= 2 (fiA'+a'A) + 1 (Am$+A'm<$) = 1 + 0 = 1.
We have thus obtained a heptad § of 7 mutually azygetic screws. Any
2 screws of §, being azygetic, share a quintuple; each screw of ir> shares
with the others 6 quintuples any 2 of which have a common line. Three
screws of § share a single line and no line can belong to more than 3 screws
of £; indeed the 35 lines of S are obtainable one from each of the 7C3 = 35
sets of 3 screws of £. Note that 3 screws of §, although mutually azygetic,
do not constitute a trio because they are not linearly dependent. The 21
screws extraneous to § are those which complete trios with the 21 pairs
of screws that belong to £>. It is not possible for 2 pairs among these 21 to
be enlarged to trios by the same screw; this would imply that 4 screws of §
were linearly dependent, and their being mutually azygetic prevents this.
Whenever or

1+o-2+
<r3+(74 = 0 then xtr11+'O712+TD-134-'nr14 = 0 and, Ttru

being identically zero, this cannot hold if m12 = -nr13 = mu — 1. Similar
reasoning serves to show that no 5 or 6 screws of § can be linearly dependent:
the identity ax-\-a^-\-az-{-a^\-ab = 0 cannot hold because

16. It is clear from the construction of § that there is a heptad con-
taining any given pair of azygetic screws al and a2; their common quintuple
can serve as base for the construction, the part of a being played by o^+<*.,.
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Moreover we saw, at the end of § 13, that there are, apart from the screw
which completes the trio, 5 screws simultaneously azygetic to ax and a2-
These can only be the other members of §, which is thus uniquely deter-
mined by ax and <r2. Now there are 168 pairs of azygetic screws, and 21 of
these pairs occur in §; hence there are 8 heptads. Since two azygetic
screws determine a unique heptad no two heptads can share more than one
screw; they must, however, always share one because there are only 28
screws to furnish the 8 heptads. Indeed the 8 heptads identify the screws,
one screw being common to each of the 8C2 pairs of heptads. The heptads
are cardinal features of the figure and essential to an understanding of its
geometry.

An instance of 7 screws that form a heptad is the following:

= ° •
= 0 1
= ° II
==0 VI
= 0 V

= 0 IV
The first of these screws has been considered in § 14; the roman numerals
which appear here to the right of the equations of the other six signify, with
the same numeration as in § 14, those quintuples of the first screw that
belong respectively to these other six. A second heptad thai includes the
first screw is found at once on replacing each of these other six screws by
the screw which completes a trio with it and the first. The equation of the
new screw is got by adding those of the other two screws in the trio, and
so we find the heptad

= 0 II

= 0 V

= 0 IV

Since each of the 7 screws of a heptad can be used as a pivot in this way
we obtain 7 more heptads from a given one. All heptads are hereby
accounted for.

A heptad corresponds to a set of 7 period characteristics

( a b c\
a' b' c'j
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all of which are odd and every two azygetic, and in this context the 8 heptads
were found long ago; they are displayed on pp. 308-9 of (1), the notation
there serving to identify the appropriate odd period characteristics on
pp. 305-6. The two heptads that we have displayed above are the sixth
and third of the seven that appear on p. 309 of Baker's book.

17. Since each screw is determined by the pair of heptads to which it
belongs we label the screws by binary symbols; (ij) signifies the screw
common to ^ and ^ where i,j are two among the digits 0,1, 2, 3, 4, 5, 6, 7.
Screws whose symbols share a digit are in the same heptad and therefore
azygetic; all 12 screws azygetic to (ij) are accounted for by the 6 others
in fti and the 6 others in £,-. Screws whose symbols do not share a digit
are syzygetic.

Four mutually syzygetic screws must, by their four binary symbols,
account for all 8 digits; an example is (01), (23), (45), (67). There are 105
sets of this type and they answer, in accordance with §11, one to each
pencil of lines.

The only screws azygetic to (ij) and not in §,- are in £>f; hence there is
only one screw, namely (ik)} azygetic to both (ij) and (jk) and yet not in Jr̂ -.
T h U S iij), (jk), (ki)

constitute a trio and we thereby account for all 8C3 = 56 trios, each with
its base quintuple. We therefore label any trio, or its base quintuple, by
a ternary symbol (ijk). Quintuples whose symbols share two digits both
belong to the same screw symbolized by these two digits and so share a
single line. The line shared by (123) and (124) belongs to

(23) (31) (12) (14) (24) (34);

to the first five of these obviously, and to (34) because (34) completes a trio
with (31) and (14), or with (23) and (24), and so includes any line common
to them. The same line belongs also to (134) and (234); it is the only line
common to the six screws because two skew lines belong to only two
quintuples. Each of the six screws is syzygetic to one other, and the axis
of the sheaf determined by such a pair of syzygetic screws is the line
common to all six. Take, for instance, (23) and (14); the resulting axis
belongs to both of them. But since (23) and (14) are both azygetic to (31)
the sheaf is syzygetic to (31) and the axis of the sheaf belongs to (31), and
similarly to the other screws. We have, however, seen in § 11 that this axis
belongs also to ( 5 6 ) ( 6 7 ) ( ? 5 ) (5Q) (6Q) ^Q^

so that the line common to these six screws is the same as that common t<>
the former six. It may be labelled by either of the symbols (1234) = (5('»7< * i.
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each of the 35 = |8(74 lines of S is identified by a separation of the 8 heptads
into complementary sets of 4. The 8 quintuples which include a line m are
got by omitting any one of the digits from either of the two equivalent
quaternary symbols. These 8 quintuples fall into opposite sets of 4; while
two quintuples in the same set share only m two in the opposite sets also
share a line skew to m. The 16 lines skew to m are all accounted for in this
way. The 12 screws which include m are got by omitting any pair of the
four digits from either of the two equivalent quaternary symbols. The 12
screws fall into opposite sets of six, each screw being syzygetic to all six
in the opposite set and to one in its own set.

Intersecting lines m, n cannot both belong to any quintuple; hence the
four digits in either quaternary symbol for m must occur two in each
symbol for n. When n does not belong to (ij) i and j cannot both be present
in either symbol for n and so must occur one in each symbol. The polar
line n' is then got by transposing i and j . Take, to fix ideas, (17) and let n
be (1234); then n' is (2347). For if a line of (17) meets (1234) one of its
symbols is (17 XX ) where one cross is one of 2, 3, 4 and the other cross not,
and this line also meets (2347). A pair of polar lines for (ij) thus answers
to the separation of the six digits other than i and j into complementary
triads, and the ten such separations yield the ten pairs of polar lines.

18. I t is, then, small wonder tha t F, the group of \ . 8 i projectivities in S,
is isomorphic to $t8. Any projectivity turns screws into screws, azygetic
screws into azygetic screws, trios into trios, quintuples into quintuples,
heptads into heptads. F is a permutation group on the heptads. Should
every heptad be invariant for a projectivity so must every screw, as common
to two heptads, be invariant, as must every quintuple and every line of
each screw, and therefore every point and plane of S; the projectivity can
only be the identity operation. Hence F imposes a group of \. 8! distinct
permutations on the 8 heptads and must be isomorphic to 9I8. This geo-
metrical discussion has not only demonstrated the fact of the isomorphism
but has disclosed what is surely its raison d'etre.

If we amplify F by adjoining to it a reciprocation in one of the screws
the resulting group of order 8! is isomorphic to S 8 and imposes all permuta-
tions on the heptads. For let us reciprocate in (ij). Since each pair of polar
lines is transposed so, by § 13, are the members (ik) and (jk) of any one of
the 6 trios to which (ij) belongs. Thus §^ and §;- are transposed while every
other heptad §fc is unaltered. Reciprocations in the 28 screws impose the
28 transpositions on the heptads and generate £8 .

Since F, as the group S2l8, is certainly doubly transitive on the heptads
it is transitive on the screws: hence there are 6! projectivities of F for
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which a given screw a is invariant. This subgroup of Y is a permutation
group on those 6 quintuples in a that are bases of the trios to which a
belongs; whenever all these quintuples are invariant so is every line of a, as
common to two of them, and so therefore is every point of 8. Thus any
projectivity that leaves the 6 quintuples all invariant must be the identity;
the 6! projectivities of V for which a is invariant impose the whole symmetric
group of permutations on the quintuples.

A group of projectivities for which a linear complex is invariant is a
symplectic group, so that this symplectic group (in three dimensions and
over F) is isomorphic to S6. This has been proved by Jordan (9, 237, 240)
and by Dickson (5,99), but the above proof seems simpler and more natural.
The ten pairs of lines that are polars of one another in a afford another
representation of S6 as a permutation group, this time of degree ten.

19. F permutes the planes, as it does the points, of S transitively, and
so possesses two conjugate sets each of 15 subgroups of order

£.81-^-15 = 1344;

a subgroup of one set consists of the projectivities that leave a given plane
invariant, one of the other set consists of projectivities that leave a given
point invariant.

Let us, for example, stipulate that the point x = y = z = t is invariant;
then each row of the matrix imposing a projectivity must have its four
elements summing to 1. Such a row must include either one or three zeros,
and there are eight such rows. Once we have chosen a row there are seven
choices for the second and six for the third; the sum of the first two rows
is a row summing to 0 and so not among those from which the third is chosen.
When the first three rows have been chosen all of them, as well as their sum,
are debarred from the last row by the prescription of non-singularity, so
that only four choices are possible and the total number of matrices is
8 . 7 . 6 . 4 = 1344. This is a subgroup of one conjugate set; one of the other
set is afforded by those projectivities, for which x-\-y-{-z+t = 0 is invariant,
which are imposed by non-singular matrices each of whose columns sums
to 1.

Although a plane n is invariant for a group G of 1,344 projectivities we
saw in § 2 that only 168 different projectivities can be induced in v. Each
of these is induced by 8 different projectivities of G. Those 8 which induce
identity in v form a self-conjugate subgroup A of G, and each of the 168
cosets of A in G consists of 8 operations that induce the same projectivity
in 7T. Suppose, for example, that TT is x-\-y-\-z-\-t = 0: which non-singular
matrices, each of whose columns sums to 1, leave invariant not only the
whole plane but every point in it ? It is enough if some three non-collinear
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points in n are each invariant, and by remarking the effect of premultiplying
such column vectors as (1,1,0,0)', (1,0,1,0)', and so on, we see that the
three non-diagonal elements in any row must be equal to each other but
not to the diagonal element. The matrices therefore are (cf. § 4)

~a-\-l a a a
b 6+1 b b
c c c-f-1 c

L d d d d+

wherein a-{-b-\-c-\-d = 0. Since three of a, b, c, d may be chosen to be either
0 or 1 the number of such matrices is 23 = 8. Direct multiplication shows
at once that

Mia^b^c^dJMia^b^c^dz) = M (a^a^ 61+62, c1+c2,d1+d2);

the matrices form an abelian group and are all, save M(0,0,0,0) = I, of
period 2.

Projectivities which leave the plane t = 0 invariant are imposed by non-
singular matrices which, when they postmultiply (0,0,0,1), leave it un-
changed. Such matrices are of the form

N y

u

(19.1)

where N is one of the 168 matrices of K; since there are 168 choices for N
and two for each of a, jS, y we have the 1,344 projectivities for which t = 0
is invariant. The 1,344 matrices have the group property; those for which
not only the whole plane t = 0 but every point of it is invariant have N = I,
and we have another representation of the self-conjugate abelian subgroup.
There are analogous statements concerning projectivities for which any one
face of the tetrahedron of reference is invariant, as there are, but with the
matrices now transposed, concerning projectivities for which any one
vertex of the tetrahedron of reference is invariant.

20. The group G of order 1,344 was found by Mathieu (11, 290) as a
triply transitive permutation group of degree 8. If we take it to be the
subgroup of operations of F which leave a plane TT invariant we represent
it (not only as a permutation group of the 8 heptads but also) as a permuta-
tion group of the 8 points of S outside n. The first set of 7 functions on p. 291
of (11) then answers to the 7 pairs of planes that pass one pair through each
line of IT, while the second set of 7 functions answers to the 7 sets of 4 con-
current lines, one set concurring at each point of IT. That O is then triply
transitive follows because those of its operations which leave invariant not
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only IT but also one point V outside TT form a Klein group doubly transitive,
by § 2, on the points of TT; any two points other than V outside TT are now
permuted like the intersections with ir of the lines joining them to V. If,
for instance, TT is t = 0, so that 0 consists of the matrices (19.1), the point
x = y = 2 = 0 outside TT is not invariant unless a = /?= y = 0, and we
obtain the matrices N -j-1 of a Klein group. Incidentally, by taking TT as
x-\-y-\-z-\-t = 0 and V to be a vertex of the tetrahedron of reference, we
see that those non-singular matrices all of whose columns sum to 1 constitute
a Klein group whenever one particular column is constrained to have its
three non-diagonal elements all zero.

Mathieu observes (11, 292) that there afe two distinct types of subgroups
of order 168 in G, both of them doubly transitive on those 8 objects on
which G is triply transitive; and describes this circumstance as remarquable.
But in the light of the geometry in 8 it loses some of the surprise it might
otherwise create. One of the two types is the Klein group and Mathieu
gives, at the foot of p. 292, its representation as a congruence group,
modulo 7, of bilinear transformations. The other type is formed by 21
cosets of A in G whenever their operations induce in TT the projectivities of
one of the maximal subgroups, say k, of order 21 in K. The matrices (19.1)
form such a subgroup when N is restricted to the 21 matrices of k, say to
those of the group generated by M and r in § 5. This subgroup is doubly
transitive on the 8 points outside t = 0 because those of its operations
which leave one of these points V invariant are transitive on the 7 points
in t = 0; if, for instance, Visx = y = z = 0 then a = j8 = y = 0 and we
obtain the group of order 21 which was remarked in § 5 to be transitive.

21. The next appearance of G seems to be in (9) and there, on p. 305, its
self-conjugate abelian subgroup A appears too. Jordan's notation is equiva-
lent to using the matrices (19.1), and he gives these 1,344 matrices again
on p. 380. His procedure in deriving A on p. 305 is tantamount to replacing

N by I.
G and A then appear in (13), and Mathieu's two sets of 7 functions occur

with them,f on pp. 93-95. The geometry in S throws some light on this
paper of Noether's. Noether's symbol [01,23,45,67] can be interpreted as
a set of four mutually syzygetic screws (01), (23), (45), (67) wherein a plane TT
has the same pole P. Noether's problem of listing seven symbols which
together account for all 28 pairs ij has thus two salient solutions: we may
take either those seven sets of four syzygetic screws wherein TT has the seven
points in it as poles or, dually, those seven sets of four syzygetic screws
wherein P has the seven planes through it as polars.

t They occur again, 20 years later, in (12), 432, where G and .4 also reappear.
5388.3.4 Z
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Let P be the pole of n in each of

(01), (23), (45), (67). (A)

Any other point P' of TT is its pole in four syzygetic screws none of which
occurs in (A); we may suppose (02) to be one of these. Since (01), (02), (12)
are a trio the pole of TT in (12) is P", the third point on PP'\ then, since
(12), (23), (31) are a trio, P' is the pole of TT in (31). Indeed we may choose
the notation so that P' is the pole of TT in

(02), (31), (64), (57), (B)

whereupon P" is the pole in

(12), (03), (56), (47). (C)

The sets A, B, C together constitute what Noether calls a Tripel; the 7
Tripeln yielded one by each line of TT constitute a TripeUystem. I t is
determined by TT, and Noether's 30 such systems consist of 15 determined
by the planes and 15 determined dually by the points of 8.

22. The isomorphism between F and %8 affords a geometrical representa-
tion of 9l8 that renders many of its properties almost visually obvious.
Take this example, which we now transcribe and solve, from (3, 230).

Ex. 2. Show that the alternating group of degree 8 contains 30 regular Abelian
subgroups of order 8 and type (1,1,1), forming two conjugate sets of 15 subgroups
each.

If Ht, H2 are any two subgroups belonging to the same conjugate set of 15, prove
that {HX,H^ is a subgroup of order 26.32, permuting the symbols in 2 imprimitive
systems of 4 each; and that {JEflf JET2} contains just one other subgroup Hz belonging
to the same set. Hence show that from the 15 conjugate subgroups a complete set
of 35 triplets may be formed, which is invariant when the subgroups are transformed
by any operation of the alternating group. Prove also that when the subgroups of
the second set of 15 are transformed by the operations of H, 7 are transformed into
themselves and the other 8 are permuted regularly.

The abelian subgroups consist either of projectivities for which every
point of some plane in 8 is invariant or else of projectivities for which every
plane through some point of S is invariant, and since F is transitive on
either the points or the planes of 8 the 15 subgroups of either kind are
conjugate. But subgroups of different kinds are not.

Let Hx be the subgroup for which every point of a plane TT1 is invariant,
H2 that for which every point of a plane TT2 is invariant. Then {Hv H2] is
the subgroup for which every point of the line n common to TTX and TT2 is
invariant; since all three points of n are invariant whenever two of them are,
and since F is doubly transitive on the points of S, the order of {Hv H2) is
A.8!-i-(15x 14) = 25.3. Burnside's 26.32seemsto beaslip; agroupof this
larger order occurs when the points of n undergo permutation and its order
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is \. 8!-i- 35 because F is transitive on the lines of S. However, the fact that
the symbols are permuted 'in 2 imprimitive systems of 4 each' is true of
this larger group as well as of its self-conjugate subgroup {Hv / / 2 } ; Burnside's
'symbols' label the 8 objects that are permuted, and we have seen that n
may be denoted, say, by (1234) = (5670). Hz is, of course, the subgroup
of projectivities for which every point of 7r3, the other plane through n, is
invariant, and there are 35 such triplets of subgroups, one for each line of S.

Suppose that rt1 is y = 0 and TT2 Z = 0; then matrices of the forms

lJ

1

impose the projectivities of Hx and H2 respectively. Each set consists of
8 commuting matrices, all 7 other than / having / for their square; in other
words they form an abelian group of order 8 and type (1,1,1). The group
generated by these two groups of matrices consists of matrices

X X

X X

X X

X X U

where each cross denotes either 0 or 1. The choice of these 8 elements, how-
ever, is not completely free because the central block of four has to be non-
singular and so one of the six matrices (1.2); we thus have a group of order
6.24 = 25'.3. This imposes the projectivities for which every point on
y == z = 0 is invariant. If, on the other hand, we allow these three points
to undergo permutations among themselves, then the four corner elements
can form any one of the six non-singular matrices and need not be the unit
matrix: this gives the group of order 26.32 for which y = z = 0 is invariant.
The subgroup H3, for which every point of y-\-z — 0 is invariant, consists
of the projectivities imposed by the eight matrices

1 7) 7)

J

e e I J

where J is either ' or

Let H be the abelian subgroup for which every point of TT is invariant.
The subgroups of the other conjugate set are associated one with each point
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of S; 7 of these points lie in n and are invariant under H and so these 7 sub-
groups are all transformed into themselves by H. The other 8 points are
outside TT, and Burnside's statement is established by remarking that any
operation of H except identity transposes these 8 points in pairs. I t must
do this because its period is 2, and an operation which leaves invariant some
point outside v as well as every point in v leaves every point of S invariant.
If an operation of H transposes P and P' then PP' meets TT in a point 0
and the other 6 points outside TT lie 2 on each of 3 lines through 0 and are.
transposed accordingly.

The geometry also handles expeditiously the properties of %8 on pp. 456-7
of (3), properties which appear also" in Carmichael, (4); see the examples
therein on pp. 320-1. Moreover, Carmichael proceeds, in the chapters
which follow, to discuss finite geometries and their groups of projectivities;
the references relevant to % and T are 336-7 (exx; 4-10), 351 (ex. 1),
353 (ex. 4), 394 (exx. 5-7).

23. We have considered at length an example on p. 230 of (3). In the
next example on this page Burnside gives a group of order 192; this is
indeed a subgroup of G and has been since obtained by Littlewood (10,159)
and Todd (14). We close by showing how this group too is conspicuous in
the geometry, as is also a different type of subgroup of 0 of this order that
was found by Todd, and we give, in addition to geometrical definitions of
these groups, matrix representations for them.

G leaves a plane TT invariant; the group of Burnside's example is the.
subgroup of G consisting of those operations which leave invariant not only
77 but also some point of TT, while the group of the same order found by Todd
consists of those operations of G which leave invariant not only n but also
some line of TT. G contains a conjugate set of 7 subgroups of either type.

The first type of subgroup contains, as Burnside says in his example,
a self-conjugate operation of period 2. Suppose that TT is x-\-y-\-z-\-t = 0;
G, as remarked in § 19, consists of all those non-singular matrices wherein
every column sums to 1. Those of its operations for which x = y = z = t,
a point in n, is invariant are imposed by matrices wherein not only every
column but also every row sums to 1. Every such matrix commutes with

. 1 1 1
1 . 1 1
1 1 . 1

LI 1 1 .

and this is of period 2. If, on the other hand, TT is t = 0 then G consists of
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the matrices (19.1); but the point y = z = t=Oof7ris not invariant except
for matrices of the form

1 8 e a

y
u

(23.1)

wherein /x, being non-singular, is one of the 6 matrices (1.2); the number
of matrices of this kind is 6.25 = 192, and they all commute with

1 . . 1
. 1 . .
. . 1 .

.. . . U

whose period is 2. On the other hand, those matrices (19.1) for which
x = t = 0 is invariant have the form

r l
3

y

u

(23.2)

and so constitute a group T of order 192; it is this type of group that was
found by Todd, and it has no self-conjugate operation save identity. Some
features of T are patent. When given by (23.2) it permutes the points
outside t = 0 in two imprimitive sets of 4, one set lying in x = 0 and the
other in x-\-t = 0. These two sets are transposed if a = 1; the matrices
with a = 0 do not transpose the sets, and constitute a self-con jugate sub-
group of T of order 96. Another self-con jugate subgroup of order 96 arises
on restricting /x, to the first 3 matrices of (1.2), say /A = /u.+, so that the
points on x = t = 0 undergo only even permutations. The intersection of
these two subgroups is self-conjugate and of order 48; for this both /n = /x+

and a = 0. Other self-conjugate subgroups of T are one of order 32,
wherein fi = I, and one of order 16, wherein both p = I and a = 0. The
occurrence of these self-conjugate subgroups accords with the character
table of T (14, 150, Table A; this table is original with Todd). The con-
jugate sets of T which make up these subgroups are those of the columns
wherein the following sets of characters (in Todd's notation) have their
components all equal to their degrees (3, 278, Theorem IV):

00,05. 0Of08; 00,05^8. 00^3^8 .

00, 03, 05, 0', 08, 09.
The still larger set of characters

00, 01, 02, 03, 05, 07} 0 8 j 09f 012f 013
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answers to a self-conjugate group of order 4. It consists of matrices
1 . . ."
. 1 . jS
. . 1 y
. . . U

which induce the identity projectivity in t = 0 and do not transpose the
planes x — 0 and x-\-t = 0.

Analogous discussions apply to the matrices (23.1) and the character
table of this group (14, 150, Table B and 10, 277; this table was found by
Littlewood) and serve to underline the contrasts between it and T.
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Note added in Proof
Since this paper was finished I have found one by G. M. Conwell:

Annals of Mathematics (2) 11 (1910), 60-76.
Conwell uses the Klein representation of the lines of S by the 35 points

of a quadric Q in space of 5 dimensions, and shows that the 56 lines in
this space that are (p. 67) skew to Q can be arranged as edges of 8 hep-
tagons (p. 68). The 7 vertices of such a heptagon answer to mutually
azygetic screws in S. Furthermore, Gonwell denotes these 56 lines by
ternary symbols (p. 69) and each line of 8 by & pair of quaternary
symbols (p. 72). This is indeed the ideal apparatus for establishing the
isomorphism between LF(4:, 2) and s/8 and it is a pity that Conwell sud-
denly forsakes the geometry and follows in the wake of E. H. Moore.
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