A SPECIAL POLYHEDRAL NET OF QUADRICS

W. L. EDGE

L.

Among specialised forms of nets of quadrics in [n] (that is, in projective space of n
dimensions) is one that may appropriately be called polyhedral, this because it is
linked to G, a g}, , on a rational normal curve C of order n. The osculating primes,
or hyperplanes, of C at the n+2 points of a set of G form an (n+2)-hedron 5#; as the
set varies in G the locus 9 of the vertices of J# is the Jacobian curve of the net, of

1
order in(n+1) = n-;— ; the locus of the edges of # is a ruled surface R, of order

2 (n;—l) on which 3 has multiplicity n = (’;) the locus of the plane faces of # is

1
a threefold R; of order 3 < n: ) on which 3 has multiplicity (; ); and so on; for

these matters see [4]. In order to be polyhedral a net has to satisfy 3(n>+n—10)
conditions [4; p. 188].

The pentahedral net in [3], obtainable from the general one by imposing a single
condition—the vanishing of a combinant—was first regarded as the net of polar
quadrics of points of a plane with respect to a cubic surface. But the cubic surface is
not unique; nor is the plane, which can be any osculating plane of a twisted cubic
uniquely determined by the net; this cubic is indeed the one osculated by all the faces
of the pentahedra. It seems, therefore, as remarked on an earlier occasion [4; p. 186],
preferable to define the net by the twisted cubic and g} thereon. The hexahedral net
in [4] was investigated more than 40 years ago [3; pp. 275-315], and other
specialised nets in [4] were studied in the same paper. But it was there decided [3; p.
255] not to press specialisation so far as to force 9 to be composite.

Now G has a Jacobian set J of 2n+2 points; if, on the other hand, 2n+ 2 points
are chosen arbitrarily on C then there is a finite number of linear series G of which
they are the Jacobian set [6]. The set of G which includes a point P of J consists of n
points together with P reckoned twice. One way of specialising the polyhedral net is
to specialise J; if J is such that P accounts for k of its 2n+2 members then P
accounts for k+1 members of the set of G to which it belongs. An obvious
specialisation is to require J to consist of a pair of points X,, X, each counted n+1
times; then the only sets of G whose members are not all distinct are X§*2 and X"*2,
For n = 3 the geometry of this special net of quadrics was described on pp. 471-480
of [5]; for n = 4 a contribution to the geometry is submitted below. But first a few
paragraphs should be written about the geometry in n dimensions.
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2.

If 6 is a parameter on C then take the parameters of a set of G to be the zeros of
polynomials linearly dependent on

f(e) = 0"*2—05"*2 , g(a) = 6"+2—ﬁ"+2.

The sets with multiple members correspond to f(0)—g(6), whose n+2 zeros are all
0 = o0, and A"t 2f(0)—«"*?g(0), whose n+2 zeros are all § = 0.

The zeros of f(0) are 6; = an’ where  is any primitive (n+2)-th root of unity and
j runs from 1 to n+2 inclusive. Since

£10) = (1428 L = (1+2)a"*'nI, and g(6) = a" "2~ p"*?

the expressions
0 P3/1(6)9(6)

appearing, with k = 0, 1,2, on p. 195 of [4] may, ignoring a factor not involving j or
k and common to all n+2 denominators, be replaced by

oMo +an’x, +a P x, o ot x,) 2.1)

the linear form here indicates an osculating prime of C with 6; the parameter of the
point of osculation. When (2.1) is summed over 1 < j < n+2 all terms sum to zero
save those in which the power of #/ is zero or a multiple of n+2. But the zero power
does not occur nor, with k < 3, does any higher than 2n+3; so the non-zero
surviving terms of the sum all involve a to the same power. Hence a can be dropped
when the sum is equated to zero. So one obtains three linearly independent quadrics
corresponding to k = 0, 1, 2, the products (or the square) appearing in the respective
quadratic forms having n+ 1, n, n—1 for sums of suffixes.

The quadratic forms are

n n—1
Qo = Z XiXp+1-j> Q= Z XjXp—js 0, = Z XjXn-1-j
j=1 i=0 i=0

and one may be allowed to speak simply of Q; when meaning the quadric Q; = 0.
Any product with unequal suffixes occurs twice in a sum, but a square only once. The
special polyhedral net N consists of the quadrics

AQo+nQ,+vQ, =0. 2.2)

The quadric Q,, since x, is absent from it, is a cone with vertex X, ; Q, is a cone
with vertex X,; here X; means, as is customary, that vertex of the simplex of
reference opposite to the face x; = 0. Since neither x3 nor x2 appears in any Q,, the
(n—3)-fold B common to all the quadrics of N contains X, and X,; the Jacobian
curve has these points in common with B. Whenever the Jacobian curve and the base
(n—3)-fold of a net of quadrics have a common poinft one may expect it to be
multiple on the curve.
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3.
The discriminant of (2.2) is
D, = cVH
Ry
Al
ot
s
e
Vv and
Ve
////// n 5
7, = (=1)y'uD,_,+viD,_,,
ard
7
7,
s
;s 7
//////
7 7y
. v// y
V[,l///
ua

with initial conditions
Dy =p, Dy =vi—p*.

The upshot is that each D, is a product of factors cvA — u?, with an additional factor
u when n is even. Also, since

D,yy = (vA—=p*)D,_  +(=1)"" "D, _,,

one of the factors of D, has ¢ = 1 whenever n = 1 (mod 3). Thus, as will be exploited
later, D, has both y and vA— u? for factors.

The Jacobian curve 3 of N therefore splits. There is, for u = 0, a pencil of cones
when n is even; apart from this the cones fall into systems of index 2; all these systems
include Q, and Q,. It is a property of, and indeed it is sufficient to define, 3 that the
polar primes of a point on it with respect to the quadrics (2.2) intersect not in an
[n—3] but in an [n—2]; as I splits so, correspondingly, does the primal R, _,, of
order n®—1, generated by these spaces [4; p. 205]. A point of 9 cannot lie in the
corresponding [n— 3] unless it is self-conjugate for every quadric of N, that is, unless
it belongs to B.

Suppose, momentarily, that n = 2m so that Q, = uQ, is a cone whatever u. The
form of D,,,, with = 1, u = 0, v = —u shows, reading by rows from the bottom
upwards, that the vertex satisfies

c=x, =0, ux;—x;., =03 =0,1,...,2m-2), Uxym-g =0,

so that its coordinates are
(1,0,u,0,u?,...,0,u™); (3.1)

it traces, as u varies, a rational normal curve I" in the [m] X, X, X,...X,,,. This point
(3.1) has the same polar with respect to Q, and Q,, namely

Xom—1+tUXgpm_3t+...+u" 1x, =0
while its polar prime with respect to Q, is

Xom+UXgpmost...+u"xg =0.
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The equation of the primal generated by the [2m —2] common to these polar primes
is obtained by eliminating u between the two equations; Sylvester’s dialytic process
applied to these two polynomials of degrees m— 1 and m in u at once shows the primal
to be of order 2m—1.

Suppose now, again momentarily, that n = 3p+1. Then Q,+vQ, +v2Q, is
singular whatever v and the form of D5, , with 4 = 1, 4 = v, v = v* shows, reading
by rows from the bottom upwards, that the vertex satisfies

vXp+X, =0, VX +ox+Xj =0 (j=1,2,..,3p), 02 x3,+0x3,4, =0.
Put xJ' = éJUJ so that

éo"f‘él =0, 51_1+€J+é‘,+1 =0 (i=l,2,...,3p), €3p+§3p+l =0.
Taking &, = 1 these equations give

60 = 1’ él = —19 62 = 0, 63 = 15 64 = —1,65 = Oa seey §3p = 1:

€3p+1 = -1
and the vertex has coordinates
(1, =v,0,0% —v4,0,...,0, 0%, —p3PtY), (3.2)

Its locus as v varies is a rational curve K of order 3p+1 in the
[2p+1] X2 = x5 = e = x3p—l = 0

The curve K has trisecants. If w is a complex cube root of unity then the points
with parameters v, wv, w?v are manifestly collinear. In particular, for v = 0, o0, two
trisecants have all three intersections with K coincident; K has inflections at X,
(v=0)and X;,,, (v = o).

It remains to verify that the polar primes of (3.2) with respect to the quadrics ‘of
N have a common [3p—1]. Since every x; with suffix one less than a multiple of 3 in
(3.2) is zero, the polar primes with respect to Q,, Q,, @, have equations from which,
respectively, all of x;, x3;-, X34+, are absent. The equations are

3 4 6 —p3ptil =
—UX3p41 F+ 0 X3, — 0% X3, + X34 e =L X, =0,
3 4 3 Sp+1 —
X3p+1 =Xy, 0 X322 =0 X3po 3 +uo'x,  —u Xo =0, (3.3)
. 3 4 Sp _
X3p—UX3p-1 U X3, 3=V X34 e +v°’xg =0.

Since (3.2) is the vertex of Q,+vQ, +v>Q, = 0 it is predestined that (3.3) should be
linearly dependent with multipliers 1, v, v?; but explicit forms of two of the equations
are wanted in order to determine the degree of the eliminant. Since, by cancelling v
from the first and taking the result with the third equation, one can use two
polynomials of degree 3p in v, the eliminant is of degree 6p in the x;. This is the
contribution that K makes to the order 3p(3p+2) of R,
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4. The special hexahedral net

We now commence a study of the specialised hexahedral net N in [4]. Now N
is based on

Qo = 2(x; X4+ X3 X3), Q) = 2xoX4+x;X3)+ X3, Q2 = 2Axox3+x,X;).

The cones @, and Q, both contain the plane x, = x; = 0; apart from this their
common points satisfy

o_f_ N @.1)

which are [1; p. 362] a canonical form for the equations of a cubic scroll S in [4]. The
octavic base curve B of N is therefore composite, consisting of the conic in which Q,
meets x; = x3 = 0 and the curve in which it meets S. But this latter curve is itself
composite; the generators of S are, for varying p, the lines

Xo = PX3, Xz = PX4, Xy = —pX3

and those for p = 0, oo, that is, X3 X, and X,X, are both on Q,. The residue,
bisecant to the generators, is at once recognised as a rational normal quartic. For a
parametric form of (4.1) is

(p*, —pq,p, 9, 1) (4.2)
and this point is on @, when 3p = 242. Replacing p by 2¢%/3 in (4.2) gives the point
(4614, - 6‘13, 6‘]2, 9q’ 9)

The generators X3 X, and X, X, of S are the tangents to this quartic at X, and X|,.
Since D, = u(vA—pu2)(3vA — u?) the Jacobian curve of N is tripartite.

Case (i), when u = 0. The pencil of cones has vertices (see 3.1)
(1’ 09 u! 0’ uz)
on a conic I in the plane x, = x; = 0. A vertex has the same polar ux, +x; = 0
with respect to Q, and Q,, while its polar with respect to Q, is u?x,+ux, +x, = 0.
The common plane of these polar solids generates the cubic
XoX3—X;XX3+x3x, =0
having the plane of I for a double plane.

Case (ii), when vA = p2. The system, of index 2, of cones has (see 3.2) vertices

1, —v,0,03, —v%
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on a rational quartic K in x, = 0. The trisecants of K are the members of a regulus
on the only quadric x,x, = x,x; containing K; two of them are inflectional
tangents, their contacts X, and X,.

The plane common to the polar solids of a point on K with respect to all the
quadrics of N is, by 3.3) with p =1,

v’ x, —uvx,+x3 =0,

v3x, —v?x, +x, =0

and the equation of the sextic primal generated by this plane is, by Sylvester’s dialytic
process,

Xo : —X, X3
Xo . —X, X3
Xo . —X, X4 -0
X, —X, . X4 '
X, —X . X4
X, —X, : Xg4

It has been deemed worthwhile to write this determinant down because it shows that
the primal meets x, = 0 in the quadric xy,x, = x;x; three times over. Also its
intersection with x; = x; = 0 is xgx4(xoX, —x3)? = 0.

Case (iii), when 3vA = p2. This is the only one of the three families of cones not
covered by the work in §3. Any cone belonging to it can be identified by
Arp:v=1t"2: —t71/3:1 and the structure of D, shows, taking the rows seriatim
downwards, that the vertex of the cone satisfies

X3—t7 /3xs = x,—t T /3x3 417 2xy = x, —t 7 /3x, 4+t 2 x,

xO—t_l\/3x1+t_ZX2

—t ' /3xo+t7%x, =0,

so that it is the point
(1,803,262, 833, %) 4.3)
and traces, as the cone varies in the family, a rational normal quartic A.

The polar solids of (4.3) have a common plane, so that it is enough to define this
as the plane of intersection of the polar solids with respect to Q, and Q,. These are
Bx; +t2/3%, +2tx;+/3x, = 0,

4.4)
3/3x04+22x; +t/3x,+x3 = 0
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and the dialytic elimination of ¢ shows that this plane generates a sextic primal &
when t varies.

The fact of 3 being tripartite for N forces R13 to be tripartite too, and the above
discussion has shown that R}* consists of a cubic and two sextics.

5.

It may be recalled that if P is a point on the Jacobian curve 3 of a general net of
quadrics in [4] its polar solids with respect to the quadrics of the net all contain the
same plane, a secant plane meeting 9 in six points [2; p.197] and called the plane
conjugate to P. When the net satisfies the necessary conditions to be hexahedral the
six points are the vertices of a quadrilateral of trisecants of 3 [3; p. 273]; whereas the
Jacobian curve of a general net has but 20 trisecants [2; p. 205], that of the
hexahedral net has an infinity generating a scroll R3° [3; p. 284]. But the net now
being studied is further specialised, 3 being composed of I', K, A, so that R3° breaks
up.

Now I' and A are both rational normal curves so that neither has any trisecants; but
K has, and these contribute a quadric to R2°. Any other trisecants of 9 are either
transversal to all three of its components or else are chords of one and meet another.
The chords of I" all lie in its plane, and those of K in x, = 0; but those of A generate [7;
p. 10] the cubic

Xo X /N3 xy/2
/N3 x2/2 x3/J31=0 (5.1)
Xx/2 X3//3 X4
meeting x, = 0 in the cubic scroll x,x3+xZx, = 0 which contains K. So one
anticipates that R%° has three components, viz.

(1) trisecants of K;

(2) transversal trisecants;

(3) chords of A meeting K.

It is a straightforward matter to see how these lines are distributed in the secant
planes according as the points to which these are conjugate are on I', K, or A; one
simply takes the plane, given by a pair of already available linear equations, and
notes its intersections with I', K, A. For instance, (4.4) meets A in the points with
parameters —t, wt, w?t, that is, t multiplied by the non-primitive sixth roots of unity
other than unity itself. The same plane meets K where

3/3-2t20+03 = —tPv+200° - /3* =0,
and so where
2 —tw/3+0v? =0,
t+ilw—w)to+ov? =0,

(t+iwv)t—iw?v) = 0;
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and it is found to meet I" where u = —t2. Hence the secant plane conjugate to a
point of A is trisecant to A, bisecant to K, unisecant to I'.

Similar routine proceedings show that if P is on K with v as parameter the
conjugate secant plane is trisecant to K at —v, —wv, —w?v, bisecant to A at

t = —iwv, io®v and unisecant to I at u = v?; while if P is on I with u as parameter
the corresponding plane is bisecant to all of I', K, A, the intersections having

parameters wu, w?u;v = u'?, —u'?;t = u?, —iy'’?. We just give this one
example in detail: the six points have coordinates

(1,0, 0u,0, w*u? and (1,0, w*u,0,wu?) onT,
(1, —u?,0,u*? —u?) and (1,u'?0, —u’? —u?) onK,

(1,23, —2u, —iw*2y3,u?) and (1, —iu'?y3, —2u,iu’?/3,u?) onA.

The general theory requires that these six points lie by threes on four lines; that they
do so is shown by identities like

[1, (w—w?)u'’?, =2u, (w?—w)u’?, u?] +(w-?)[1, —u'’?,0,u3?, —u?]
+2w?[1,0, wu, 0, w?*u*] =0
wherein i\/3 has been given its value o —w?.

The collinearities in the various secant planes are indicated in the accompanying
diagrams which note the parameters, of the six intersections of each plane with the

12 t = —iu'l?
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u= —t2 v= —iwt wt

-t

composite curve, in terms of that of the point on I', K or A, to which the plane is
conjugate.

6.

The two'chords of A through the point with parameter ¢ which meet K have —wt
and —w’t for the parameters of their further intersections with A. This multiplication
by the two primitive sixth roots of unity suggests ranging the chords of A in closed
hexagons ¥; the sides of all these ¥ all meet K and therefore do so at their
intersections with x, = 0. A move round ¥ from one side to the next multiplies the
two parameters on A, and so the parameter of the intersection of the side with K, by
— w; repetition multiplies the parameter of the intersection with K by w?. Hence
alternate sides of ¥ meet K in the collinear points of one of its trisecants, this being
the unique line meeting the three sides of ¥ involved in the alternation.

The planes spanned by alternate vertices of ¥ contain X ,; (4.3) and the two rows
derived from it by replacing ¢ in succession by wt and w?t are three rows of which
0,0,1,0,0) is a linear combination.

The planes spanned by three consecutive vertices of ¥ generate &; such planes
occur on varying t in (4.4). Now & meets I, the cubic primal (5.1) generated by all
the chords of A, in two scrolls; one of these consists of the joins of alternate vertices
of ¥, and these joins are all in trisecant planes of A containing X,. These planes
generate [7; p. 10] a quadric cone and the joins a scroll of order 6, the surface
common to this cone and IT. A residue of order 12 remains to complete the surface
common to & and I1. But the sides of ¥ are double lines on S; if A, B, C, D are
consecutive vertices in this order BC is in both planes ABC and BCD. Hence the
sides of W generate a sextic scroll; its intersection with x, = 0 includes K and is
completed by X,X, and X, X,.

The scroll R2°, mentioned in §5, of trisecants of the Jacobian curve of a
hexahedral net is now tripartite, and two of its three constituents have been
identified, namely the sextic scroll immediately above and the quadric through K.
There remains a scroll T of order 12 which must consist of the transversals of
[, K, A.Ifu, v, t are the parameters of the intersections of such a transversal then the
matrix

1 0 u 0 u?
1 —v O ¥ =

1 tJ3 22 33 ¢
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has rank 2: the conditions
V42 =0, t—ut*+u =0, w+uw+v* =0

for this are seen to hold for all the 4, 2, 2 transversals in the diagrams. If v is given
then there are two admissible values +iv for ¢; the two quadratic conditions on u are
then consistent. Also K is a double curve on T and is included twice in the
duodecimic intersection of T with x, = 0. The remaining quartic will consist of
X,X, and X;X,, both reckoned twice.

7.

The rational normal quartic C osculated by the faces of the hexahedra has
meanwhile been off stage; but the fact that the plane faces of these hexahedra
generate three primals while their vertices trace three algebraically distinct curves is
a consequence of there being three ways of relating pairs of six objects running in a
single cycle; two places in the cycle may be (a) opposite, (b) alternative,
(c) consecutive.

An osculating solid of C is (see 2.1)

x0+0x1 +02xZ+93X3+04X4 = O s
those solids whose contacts have parameters ¢,, ¢,, 95, ¢, intersect [7; p. 8] at
(84’ —é€3,€6;, —€p, 1)
where e; is the elementary symmetric function of degree j in ¢,, ¢,, ¢;, ¢,. Take the

hexahedron whose bounding solids osculate C at those points with the six sixth roots
of the complex number z° for their parameters.

Case (a). If ¢5 = z and ¢4 = —z then, since

9% — 26

0* —z3)(0*+6%22 + 2%,
the four solids other than the opposite pair meet at
(z4,0,22,0,1),
which is the point on I" with u = z72,
Case (b). If ¢5 = z and ¢¢ = wz then, since
0% —2% = (6% + w? 0z + W22 0* - 0?03z + 02% — w?2*),
the four solids other than the alternate pair meet at

(—wgz4s 23: 0) _wzzs 1))
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-1

which is the point on K with v = wz

Case (). If ¢5 = z and ¢ = — wz then, since
05— 2% = {07 +(w— 1)z — w22 }{6* + (1 — ) 0?2 — 200* 2% + (w? — W) 02 + W? 2%} ,
the four solids other than the consecutive pair meet at

[w?z%, (0® —w)z3, —2wz?, (1 —w)z, 1],

which is the point on A with t = —iwz ™.
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