






























THE GEOMETRY OF AN ORTHOGONAL GROUP 431

provide, with its other four faces, the intersections of C with the remaining
primes of Jf+. But these primes are known once the choices of m and the
pentahedron have been made, for their line of intersection has to lie in V
yet cannot contain the contacts of any of the other three primes; hence it
is km'. Since there are 36 choices for C, 15 for F, 2 for m, and 2 for the
pentahedron, and since any face of the chosen pentahedron can play the
role of T, there are 36 x 15 x 2 x 2/5 = 432

34?+ with A; as a vertex. And since there are 21 of the 126 fc that are vertices
of any 2tf + the number of ^ + is 2592.

Of the left-hand sides of the equations of the primes of J^+ five vanish
at k; the remaining two do not, and so both have 1 as their square. Since
the sum of these two non-zero squares is — 1 it follows that, in terms of the
original homogeneous coordinates,

Moreover, when the Xt are suitably signed their sum is identically zero.
But for an 3^~ the sum of the seven X\ is equal to x2+^y2+-z2-\-u2+-v2+-w2.

As an example let c he u = v = w = y—z = 0, so that k is the first vertex of 2f
and C is x = y-\-z = 0. Take F to be the intersection of C with u = 0; then I" is
y~z = v = w = 0 and m, m' are the points

( . 1 1 1 . . ) and ( . 1 1 - 1 . . ) .

Choose the former to be the contact of the third prime of &C+; then the remaining four
primes join the other four faces, of one of the two pentahedra which include T, to
the join of the latter point to k. The two pentahedra (save for change of notation) are
given on p. 275 of (2); take the one whose faces are the intersections of C with

u = 0, y+u+v = 0, y-\-u—v = 0, y-\- w—u = 0, y — w—u = 0.

Then the seven primes are given by
-X̂ i = x+y + z
X2 = — x+y + z
X3 = —y — z — u
Xi= y +u + v
X5 = y +u—v
X6 == z + u —w
X1 = z + u +w.

Had the other pentahedron in C, of which u = 0 is a face, been chosen the resulting
primes are obtained from these seven by transposing v, w and changing the sign of u.

There are, likewise, and they admit the analogous construction, 2592 Jf-
of which 432 have a given vertex I.

20. The partition of each category into two species appears on construct-
ing an #F to have a given edge. Let p0 be prescribed as an edge of J^+; the
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432 W. L. EDGE

plane of intersection of the three primes which do not pass through p0 is a F
in the polar solid Po; choose it to be Fo, any plane in Po that does not pass
through the intersection m of Po with p0. The contacts of the three primes
are in the polar plane T'o (which contains pQ) and are identified as the three
points, other than m, of Q in F'o. The intersections pv p2, p3, p^ of Fo with
the remaining primes of J4?+ are known. Now those primes that meet Fo

in p2, p3, Pi intersect in a plane Fj through pQ which has to lie in the polar
solid Px of px and yet be distinct from Vo; there are two choices for this plane
since, of the four planes through p0 in Pv three are planes F. Once this
choice is made the primes which join Fx to p2, p3, px are fixed, and so six
primes of «*f+ are known. The seventh is then determined too. Since there
are 27 choices for Fo and two for Yx there are 54 J f + having p0 for an edge.
And since 35 of the 1680 # are edges of any given Jf + the number of Jf? + is,
again, 54 X 1680/35 = 2592.

The two 34? + consequent upon the two choices for Fx are intimately
related; they have in common the three primes through Fo and are harmonic
inverses of each other in the planes Fo and F'o; for this inversion leaves the
three primes all unchanged and transposes the alternative Fj of the choice.

Let us illustrate by constructing a pair of 3tf~ which have in common the edge

n0: u = v = w = x-\-y-\-z — 0,

and the opposite plane face

e0: x = y = z = 0.

In this plane lie the lines nlf n2, n3, n4; namely

x — y = z = 0 = u-\-v-\-w, u—v—w, —u-\-v—w, —u—v-\-w.
The polar solid of nx is u = v = w and the two secant planes other than the polar
plane of e0 which lie in this solid and contain n0 are

u = v = w = e(x-\-y-{-z)

where e2 = 1; three primes of the required J^~ are to join this plane to n2, n3, nt

respectively. Hence, as the contacts of the three primes through e0 are

(1,-1,-1,0,0,0), (-1,1,-1,0,0,0), (-1,-1,1,0,0,0),

these being the three points, other than (1, 1, 1, 0, 0, 0), of Q in the polar plane of e0,
we take „

Ax = x-y-z

Xz = — x + y—z

X3 = -x-y+z

Xt = x + y + z-\-e(u-v-iv) (20.1)

X5 = x-\-y-\-z-\-e{ — u-\-v—w)

X6 = x+y + z + e(-u—v+w)

which imply X7 = x-\-y+z + e(u+v+w),

the prime X1 = 0 containing n0 and nx so that X1 is a linear combination of x+y + z
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THE GEOMETRY OF AN ORTHOGONAL GROUP 433
and u+v+w. The two &C~ that answer to the two choices ± 1 of e are transformed into
one another by changing the signs of u, v, w; that is by harmonic inversion in e0 and its
polar plane.

Heptahedra 2^x and Jf2> of the same category, with three common primes
cannot be transformed into one another by any projectivity of G*; this will
now be proved, and the partition of each category into two species follows.
Suppose, to fix ideas, that ^ and ^ 2 are both Jf+; call the harmonic
inversion, whose fundamental planes are the plane F, of intersection of the
three common primes of 3^x and Jf2, and the polar plane of F with respect
to Q, J. J permutes the 126 & oddly, imposing £(126—6—6) = 57 trans-
positions, and the 126 Z evenly, imposing £(126—3—3) = 60 transpositions.

All projectivities that transform 3#\ into M*2 are obtained by combining
J with those projectivities which leave'«*f2 invariant, and these are products
of those projectivities fl that transpose pairs of primes of «?f2, namely of
harmonic inversions whose fundamental spaces are a vertex h of 24?2 and
its polar K. Each such inversion transposes £(126—1—45) = 40 pairs of
k and £(126—0—36) = 45 pairs of I. If a projectivity permutes the primes
of yf2 evenly then, being the product of an even number of Ji, it permutes
both the k and the I evenly; hence, when it is combined with J, the resultant
imposes permutations of opposite parity on the k and the I and so is outside
G*. If a projectivity permutes the primes of 3tf2 oddly then, being the
product of an odd number of ̂ , it imposes an even permutation on the k
and an odd permutation on the I; hence, when it is combined with J, the
resultant imposes odd permutations on the k as well as on the I and so is
outside 0*.

21. When an 34? is given the appropriate harmonic inversion produces
any of those 35 2ft? of the same category but opposite species that share three
primes with it. For take the canonical ^f of § 18; the polar of the plane
Xx = X2 = X3 = 0 is Z 4 = X5 = X6 = X7, and harmonic inversion in
these two planes leaves any prime through either, and so the first three

7 7

primes of Jf, invariant. The primes ^uiXi = 0 and ^tviXi = 0 are

inverse when % = %_ ^ = ^ ^ ^

v2 = u2, v5 = — u 4 + u 5 — u e — u 7 , (21.1)

vz = u3, v6 = — w4—u5+u6—u7,

The form of these relations may be varied because, in virtue of 2 %i = 0,
all seven ui} as likewise all seven vi} may have the same mark added to them

5388.3.8 Ff
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434 W. L. EDGE

without affecting the geometry; but (21.1) are symmetric as they stand in
ua,ndv. They are obtained by stipulating that the primes ]£ (u^v^Xi = 0
pass one through each of the two fundamental planes of the inversion. I t
follows that one 3^ of the opposite species (and same category) to the
canonical «?f has the primes the left-hand sides of whose equations are

X4—X5—X6—X1

Z 6 - Z 7 (21.2)

—X±—X5-\-Xe—X7

—X±—Xb—Xe-\-X7

The sum of these seven linear forms is 2 Xi> the sum of their squares 2 X\-
Note the application of this substitution to the two 3%*- of (20.1).

This substitution changes the species within the category; its combina-
tion with another of the same type therefore conserves the species, and so
one can derive Stf which belong to the same category and species while
having two common primes. The seven linear forms (21.2) were derived by
fixing the first three; if the same process is now applied to (21.2) but with
the first two and the last of the forms kept fixed the outcome is

—X3—X5—X6-\-X7

- X J - X 4 - X 6 + X 7 (21.3)

—Xs—Xi—X5-\-X7

Z3+X4+X5+Z6
—-X.4—X5—X6-\-X7

This set of forms is symmetric in X3, X4, X5, X6 and so is one of five sets
obtainable by permutations of X3, X4, X5, X6, X7\ thus six 3% arise, of the
same category and species, sharing the two primes Xx = 0 and X2 = 0:
the canonical 3£ and five more. Nor are there any others. For the residual
five primes of every such J f meet C12—the solid X1 = X2 = 0—in the
faces of a pentahedron, and six pentahedra are eligible, their faces being F
for 3€+, e for Jf~. If, say, an #?- is required to share Xx = 0 and X2 = 0
with the canonical £?it is determined when one, p say, of the six pentahedra
in C12 whose faces are e is chosen; for its opposite vertex, being the only I on
the polar of C12, is fixed, and while there are two M containing the solid
joining I to a face of $ they lead to tff- of opposite species.

The number of «5f of given category and species that include a given M
among their seven primes is 1296 X 7/112 = 81; if ^ is any one of these six
others, it has just been shown, share with «^0 not only M but any one of its
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THE GEOMETRY OF AN ORTHOGONAL GROUP 435

six other primes. Thus 81 — 36 = 45 share M only, and so there are •

1296-1 — 7 . 4 5 - 2 1 . 6 = 8 5 4

of this category and species that have no prime in common with 2^Q.

22. The use of supernumerary coordinates whose sum vanishes shows
that every heptahedron in [5] yields a quadric Q for which it serves as an 34?.
Of the 112 points of Q 35 are those points, one on each edge of 2%*, that are
not vertices; of these 35, 20 lie in each prime of J f and consist of 10 opposite
pairs whose joins are concurrent: these points of concurrence, one in each
prime, are the contacts of the primes with Q. Each join has on it one further
point and these 60 further points, 10 contributed by each prime, make
up the tally of 112. It may also be noted that the plane spanned by the
contacts of three of the primes meets Q further on the line of intersection
of the remaining four: the seven contacts form a heptagon whose 35 plane
faces meet each an edge of Jf.

Since Q is thus determined completely by 2tf any projectivity which,
though permuting its bounding primes, leaves 2^ invariant also leaves Q
invariant; moreover", since a projectivity is uniquely determined when the
seven primes corresponding to any given seven primes (no six of either set
concurrent) are known, there is a group of 7! projectivities imposing the
symmetric group of permutations on the primes of 2€,'. The odd permuta-
tions however are imposed by indirect projectivities: the harmonic inversion
in a vertex V of 24? and its polar prime v with respect to Q leaves the five
primes through V invariant and transposes the other two—for the C com-
mon to these latter is in v, and they are those two primes through C other
than v and the join of C to V. This inversion, which has determinant — 1,
thus imposes the transposition; hence every odd permutation, being the
product of an odd number of transpositions, is imposed by a projectivity
also of determinant — 1 , that is, by an indirect projectivity. Thus it is the
alternating group of order \.1\ that consists of direct projectivities; it is a
subgroup of 0* because, leaving 2tF invariant, it cannot transpose the
batches of k and I and because, each of its members being the product of an
even number of harmonic inversions, all these members impose even
permutations on k as well as on I.

23. The presence of the heptahedra, each providing an s#1 which is a
subgroup of G*, explains why G* has operations of period 7; such an
operation is provided by any projectivity which permutes the primes of an
24? in a single cycle. Conversely: since 1296 = 1 (mod 7) there must, for
any operation of period 7 in G*, be an 2/f of each category and species that is
invariant and so has its primes cyclically permuted. In order to give
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436 W, L. EDGE

explicitly the matrix of such an operation take that J f of (20.1) with e = 1.
The poles of its faces are given by the columns

1
—1
—1

#

1 I
1 - 1

- 1 1

1
1
1
1

—1

1
1
1

—1
1

- 1

1
1
1

— 1
- 1

1

1
1
1
1
1
1

and one demands a matrix fi which, on premultiplying any of these columns,
turns it into the one, or the negative of the one, immediately on its right
(the last column reverting to the first). Only one projectivity, and so only a
pair of matrices ±JU., will serve; but the foreknowledge of the orthogonality
of/u, may ease its calculation as well as being a useful check. The outcome is

. 1

—1
1
I

—1

—1

1—
1

- 1
—1

1
1

. - 1
1

1
1

- 1

1

1
1
.

1—
1

1

24. An alternative way of finding /x opens by observing that a cyclic per-
mutation of seven objects is the resultant of six successive transpositions:

(1234567) = (17)(16)(15){14){13){12)

where transpositions to the right act first; hence an operation of period 7 in
0* is the product of six harmonic inversions (cf. (5), § 7.2); these inversions
do not themselves belong to G* but the product of an even number does.
The centres of these inversions are those vertices of 2%* that are common to
the sets of primes

23456 23457 23467 23567 24567 34567

and so, from (20.1), have the respective coordinate vectors

. 1 1
— 11

1
— 1
— 1
— 1

1
1
1
1

— 1

1
1

1—
1

— 1

1—
1

1—
1

1
—1

1
1

1 (24.1)

The matrices for the corresponding inversions are instantly written down
(see below) and their product, in this order, is precisely /x.

The harmonic inversion in a point, whose coordinate vector is £, and its
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THE GEOMETRY OF AN ORTHOGONAL GROUP 437

polar prime with respect to Q has the matrix ££ '+ / when £ is a k, the
matrix ££'—1 when £ is an I. It is enough to substantiate the second state-
ment, which is relevant to the points (24.1). When £ is an I, £'£ = — landso

so that ££'—/ is the matrix of an involution and, being symmetric, is
orthogonal. Moreover

so that | is a latent vector with multiplier 1; while, if 77 is any point in the

polar prime of £, and so g'-q — 0,

(!f-/h = ti'v-v = —n,
so that every point of the polar prime of | is latent with multiplier — 1.
The matrices of the inversions centred on the points (24.1) are therefore

- 1
1 — 1 — 1 — 1

1 . - 1 - 1 - 1

— 1 - 1 . 1 1

- 1 - 1 1 . 1

- 1 - 1 1 1

- 1

- 1
1 - 1 1 1

1 . - 1 1 1

- 1 - 1 . - 1 - 1

1 1 - 1 . 1

1 1 - 1 1 .

- 1

1 — 1

1 - 1

1 - 1

- 1

— 1

- 1
— 1

1 1 — 1 1

1 . 1 - 1 1

1 1 . - 1 1

- 1 - 1 - 1 . - 1

1 1 1 - 1

- 1

- 1

— 1

— 1

25. It is now to be shown that an operation of period 7 in G* leaves
invariant a unique «9f of each category and species. I t will then follow,'
since each of the 1296 Jj? of given category and species is invariant for 6!
operations of period 7 in G*, that there are (cf. (5), p. 449)

1296x6! = 933120

such operations in all. Furthermore: precise formulae will be found which
make the passage from one invariant 3f? to the other three.

First a word or two concerning the primes M referred to the seven co-

ordinates X4. If J 0,1X1 = 0 touches 2 Xi = ° a t Xi = it, ai = &+A
i = l

where A is any mark of Jf. Then
2 of = 2 £f-A 2 &+*2 =

so that af = ( 2 aif-
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438 W. L. EDGE

One may take A = 1, as has happened with all linear forms in the Xi already
used for faces of 3f, and so

2ai = Xat=l; (25.1)

the contact is then given by X{ = ^—1. Each M admits two representa-
tions that conform to (25.1); instances are

(i) Xx and Xx—Z2—Z3—Z4—Z5—Z6—X7,

(ii) Z 1 - X 2 - X 3 - Z 4 and Xx-X5-X6-X7, (25.2)

(iii) X 1 +X J +X 3 +X 4 and X 1 + Z 2 + Z 3 + Z 4 - Z 5 - Z 6 - Z 7 .

All the M are thus identified: 112 = 7+£.7.6C3+7C4. Those headed (i)
consist only of the seven primes of the canonical Jf to which all other primes
are, in this coordinate system, referred.

There are, on the line Xx = X2 — Z3 = Z4 = 0, three vertices of the
canonical «^; at each of them

2X1 = Z|+ZI+Zf = 0+1 + 1 = - 1 .

There is also a fourth point of the line, and there

* = l + i + i = o.

In other words, the edge of ̂ f is a tangent of Q, beings or n according to the
category of Jf. The 21 vertices of Jf leave over 105 more points whereat
2 XI is — 1; these lie five in each of the 21 solids Cyi Xt = Z,- = 0. The
five points in Cy are those which do not lie either on the ellipsoid section of
Q or in any face of the pentahedron wherein Ci:j is cut by the five primes of
i f that do not contain it wholly. The 126 points whereat 2 ^1 is "M a re
4lso partitioned as 21 + 105; there are 21 which do not lie in any face of 34?,
such as the point (1, 1, 1, 1, 1, —1, —1), and three in each of the 35 plane
faces of Jf, such as (0, 0, 0, 1, 1, — 1 , —1). Whenever two 3/if are of opposite
categories 2 -^1+ 2 ^1 is z e r 0 a* every point in [5].

26. Consider now the projectivity TT that permutes the suffixes of the Xt

in the cycle (1234567); it belongs to G* and leaves the canonical «5f in-
variant. Does it leave any other 3/F invariant and, if so, which ?
; Let one face of an 2^ invariant under TT be

, = 0, (26.1)

so that, by (25.1), a2+62+c2+d2+e2+/2+02 = 1, (26.2)

a+b+c+d+e+f+g = 1. (26.3)
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THE GEOMETRY OF AN ORTHOGONAL GROUP 439

Then, by (26.3), £ X ; = 2%i = 0; but, in order that 2X? = 2Xi
and so the Jf be of the same category as the canonical one as well as being
invariant, not only must (26.2) hold but also the three relations

ab+bc+cd+de+ef+fg+ga = 0,

ac+bd+ce+df+eg+fa+gb = 0, (26.4)

ad-\-be-\-cf4-dg-\-ea-\-fb-\-gc = 0.

The question to be resolved is whether any of the forms (25.2), other than
those under (i), satisfy (26.4). It may therefore be presumed that three of
the seven coefficients are zero and all the other four non-zero; furthermore,
since one is at liberty to impose a power of n, one may take a = 1 while,
of the other coefficients, three are zero and the others equal but non-zero.
Thereupon (26.4) become

b+bc+cd+de+ef+fg+g = 0,

c+bd+ce+df+eg+f+gb = 0, (26.5)

d+be+cf+dg+e+fb+gc = 0.

Were b = g = 0 the first of these would demand that cd-\-de-\-ef = 0,
which cannot happen with only one of c, d, e, / zero; were, on the other hand
b = g ^ 0 then three of c, d, e, f would be zero and another condition in
(26.5) contradicted, just as the first would have been by 6 = g = 0. Hence
it must be that #, x „

b ^g
which, under the prevalent restrictions, imply that

bg = cf = de = 0,

b+g = c+f=d+e.

Now subtract the third from the first of the relations (26.5):

d(c-g)+e(f-b)+(b-g)(c-f) = 0.

The third term here is non-zero; were b = f, and so also c = g, the first two
terms would both be zero and the condition violated. Each pair of relations
(26.5) may be so combined, and it follows that

6 = c = e, d=f=g.

One of these two unequal marks is zero; (26.5) then requires the other to
be — 1; the two choices for the zero triad yield however the same M, as (ii)
of (25.2) asserted. Hence there is a single «2f, distinct from but belonging
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to the same category as the canonical <5f, invariant under -n; namely that
whose primes are *

Xx—X2—X3 —X5 = 0,
X2—X3—X4 —X6 = 0,

-X, +X4-Z5-Z6 = 0,
—X2 -\-X5—X6—X7 = 0,

—Xx —X3 -\-X6—X7 = 0,

—X1—X2 —%i -\-%7 = 0-

27. It being now established that, in one category, there is a single J f of
either species invariant under -n it follows, on applying an outer auto-
morphism to G* that transposes k and I, that the same is true for the opposite
category: there is a single Jf therein of either species invariant under a
projectivity of period 7. It is, however, informative to inquire precisely
which Jf these are under w. Equations (26.1), (26.2), (26.3) still hold but
now, for the opposite category, 2 x'i = — 2 -^f • "^ms *s n 0^ incompatible
with (26.2) since any multiple of the vanishing form ]£ Xi can be added to
either side; as the forms now to occur are to have cyclic symmetry the linear
form that multiplies ]F Xi will be ^ Xi itself, and the identity to be satis-
fied is 2 Z ? = ~ ( I Xi)2~I Xl
The relations (26.4) and (26.5) are now to be replaced by those with the
same left-hand sides but with —1 instead of zero on their right; one again
takes a = 1, three of the other coefficients zero and the remaining three
equal but not zero. If, now, b = g = 0, then

cd+de+ef= —1 = c+ce+d/+/= d+cf+e;
one of c, d, e, f is zero and this cannot be d or e. Hence
either c = 0, d = e = f = 1,
or / = 0, c = d = e = 1.
These are the only solutions occurring when 6 = ^ = 0. Hence the two J4?
of the category opposite to the canonical Jti? that are invariant under TT
have for their primes

= 0 , Xi+Xz+X, +X0 = 0 ,
+X6 = 0 , Xt+Xs+Xt +X7 = 0,

+X7 = 0, Xx +X3+Xi+X5 =0,
X1 +X4+X5+X6 = 0, X, +X<+X6+Xt = 0,

X2 +X5+XG+X7 = 0, X, +X5+X6+X7 = 0,
Xl +X3 +X6+X7 = 0, Xx +X4 +X,+X7 = 0,

= 0; Xx+Xz +X5
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THE GEOMETRY OF AN .ORTHOGONAL GROUP 441
This information is available for any projectivity of period 7 and any of

its four invariant Jf. Take the Jf~ of (20.1) with e = + 1 , and the pro-
jectivity whose matrix fx has already been calculated twice. The invariant
2^+ have for their primes

—u-{-v—w = 0, —u—v-\-w = 0,

—y—z -\-v = 0, —y—z—u = 0,

—x—y-\-z-\-u-\-v—w = 0, —x —z -\-w = 0,

x—y—z—u—v—w = 0, —x-\-y—z—u—v—w = 0,

—x-\-y—z—u-\-v-\-w = 0, — x—y-\-z—u-\-v-\-w = 0,

—x —z —w = 0, x—y—z-\-u—v-\-w = 0,

—x—y —u = 0; —x—y —v = 0.

28. There are, in any projective space of odd dimension, null-systems
or screws—correlations whose matrices are skew and non-singular. If x
is the column vector of coordinates of a point and u the row vector of co-
ordinates of a prime the correlation is

u' = Bx
where B' = —B. Since the prime equation of Q is uu' = 0 the locus of
those points that are polars, in the screw, of the primes M is x'B'Bx = 0,
so that the screw reciprocates Q into itself whenever B'B = ±1; each m
then has, in the screw, a polar M and each M a pole m. Now the primes K
are those satisfying uu' = 1, so that their poles in the screw satisfy
x'B'Bx = 1; hence these poles are k if B'B = I and I if B'B = —I. We
confine the discussion to screws which not only, as leaving Q invariant,
turn each m into an M, but which also turn each k into a K and so too each
I into an L. That is, we take B'B = I; B is not only skew, but orthogonal
as well, and the symbol B will henceforward denote only a matrix with
these attributes. The diagonal of B consists of zeros and the sum of the
squares of the other five elements in any row is 1; hence, in any row, either

(a) there is only one non-zero element, or
(6) there is only one zero beside the diagonal one.

Moreover all rows of B are alike; there are no hybrids. For let row r consist
of zeros save for ± 1 in column s so that, since B' = —B, column r has =F 1
in row s and all its other elements zero. Then, because of the orthogonality,
every element save the ^ 1 in column 5 is zero, as is every element save
the ^ 1 in row 5. Hence each row has two zeros off the diagonal and is
of type (a).

In a matrix of this type there are five places in the top row each of which
can be occupied either by 1 or by — 1; if this mark is in column s row s is
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thereby fixed. In any row other than 1 and s there are now three places
available, namely those off the diagonal but in neither column 1 nor column
$; each of these can be occupied by either 1 or — 1; if this mark is in column t
row t is thereby fixed. In either of the two remaining rows only one place
is available for the non-zero mark; hence there are

5.2.3.2.1.2 = 120
matrices under (a).

The calculation of the number of matrices under (6) is but slightly more
elaborate. There are five choices for the column f that the zero element off
the diagonal in the top row occupies, and 24 choices for the other four ele-
ments of the top row; the choice fixes the first column too. Next write in
row r, which already has zeros in columns 1 and r; the orthogonality requires
that rows 1 and r must have zero splice and this allows six choices for the
four non-zero elements of row r; the choice fixes column r too. Every row
other than 1 and r now has two non-zero elements and these contribute zero
to the splice of this row with both row 1 and row r; the other two non-zero
elements still to be inserted must therefore contribute zero too to both
splices, and this double condition determines which two of the three remain-
ing places off the diagonal they occupy as well as determining, save for a
common multiplier — 1 , what they are. Thus two choices are available,
and the choice fixes the corresponding column too. The matrix can then be
filled in one, and only one, way, and so there are

5.24.6.2 = 960
matrices under (6). The whole tally of matrices is thus 1080 so that, as each
matrix is here accompanied by its negative, there are 540 screws. Their
separation into 60 and 480 in the two types has no geometrical significance
but is merely a consequence of the choice of ££. The 60 monomial ±B recipro-
cate the vertices of Z "̂ into its own faces but, whereas Q turns each vertex
into the opposite face, each of the 60 screws is seen, in virtue of the monomial
form of B, to superimpose a triple transposition; to transpose, that is, each
of the three pairs of a syntheme of the six faces. Each of the 15 synthemes
provides (eight matrices and so) four of the 60 screws, the non-zero marks
occupying the same positions in the matrices and differing only in sign.
The product Bx B2 of any two of these eight matrices is diagonal and so has
S ( l u a r e / : BXB%BXB^I
or, since B\ = B\ = —/,

Bt Bx = Bx B2.

This shows that the reciprocations in the four screws are mutually com-
mutative: the screws being

u' = Bxx, u' = B2x,
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the pole y in the second of the polar prime of x in the first is

y = B^Bxx,

so that there is commutation whenever

B?BX = B^B2

which is, since B\ = B\ = —/,
J52 JBJ = B± B2.

Each of the 15 synthemes from each of the 567 S+ provides such a tetrad
of four mutually commutative screws, so that there are 8505 of these tetrads.
The number of tetrads to which a given screw belongs is

8505x4/540= 63.

An equivalent statement is that the number of £+ which are self-polar
for a given screw as well as for Q is

567x60/540 = 63.

29. Similar reasoning can be founded on the negative simplexes S~,
but it is the same tetrads of mutually commuting screws that emerge. For
take any syntheme of faces of a S+, with the polar syntheme of the vertices;
the join s of each pair of vertices has for its polar in Q the solid S spanned
by the joins of the other two pairs. Now through S pass four primes,
namely two K that are faces of S + and two L\ the six L so arising, two from
each S spanned by two of three joins of vertices of £+, are the faces of a S~
whose vertices, poles of these L, are manifestly two on each of the three
joins of the pairs of the syntheme of vertices of S+. All this is clear on taking
Ejf and, say, the syntheme

x = 0, y = 0; z = 0, u = 0; v = 0, w = 0;

whereupon the six L are

x-\-y = 0, x—y = 0; z-\-u = 0, z—u = 0; v-\-w = 0, v—w = 0.

There is a (15, 15) correspondence between the 567 2+ and the 567 S~; two
simplexes correspond when they share three edges, joins of pairs of a syn-
theme of vertices.

30. Since B2 = —I the matrix B, when regarded as the instrument not
of a correlation but of a projectivity, imposes an involution; but it has not
appeared among the operations of G*. This is because it violates the pre-
scription (iv) of § 3; it has no latent root in J^ its characteristic polynomial
being A6+l, and so does not leave any point invariant; it transposes the
126 k as 63 pairs, and so subjects them to an odd permutation, as it likewise
does the 12QL
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B serves to impose an outer automorphism on G* and its geometrical
interpretation is salient once Jf is extended to GF(S2) by adjoining a
mark j satisfying j2 = j-\-l. There then appear planes on Q and they fall
into pairs that are conjugate in the automorphism of period 2 of the ex-
tended field. The Grassmann coordinates of such a plane are the con-
jugates, that is the cubes, of those of the companion plane. Any operation
that involves the two planes symmetrically is expressible in terms of the
marks of XI and B is simply the harmonic inversion whose fundamental
spaces are such a pair of conjugate planes. This inversion transposes the
m as 56 pairs, and the polar of any given ra0 in the corresponding screw is the
tangent prime of Q at that point m' which is paired with ra0. Since m0

lies in this polar, m'm0 is a g; each of the 30 m', three on each of the g through
ra0, is the pole of Mo in 18 of the 540 screws.

Each k has, in each screw, a polar K that passes through it; hence, since
there are only 45 K through k, each K that passes through a given kQ is
the polar of koin 12 of the 540 screws. Suppose, to fix ideas, that k0 is X,
the first vertex of S</"; w = 0 is the polar of X in any screw whose matrix
has every element in its first column zero save the bottom one. Such
matrices are all of type (a), wherein the 60 screws consist of five sets of 12
that reciprocate X into the five faces of Ŝ 1" which pass through it; those
12 that reciprocate X into w = 0 consist of three commuting tetrads, one
tetrad for each of the three synthemes of faces of £</" that include the pair
x = 0, w = 0. The 480 screws of type (6) correspond 12 to each of the
40 K through X which are not faces of S^.

31. A screw in [5] has null planes; planes, that is, which lie in the polar
primes of all their points. The conditions on B which ensure that
x = y = z = 0is& null plane are that the bottom right-hand quadrant
consist wholly of zeros. This not only causes B to be of type (a); it prohibits
any two of the faces u = 0, v = 0, w = 0 forming a pair of the associated
syntheme. Thus no two of x = 0, y — 0, z = 0 can form a pair either, so
that the top left-hand quadrant of B consists wholly of zeros too and
u = v = w = 0is another null plane. This is to be expected: if a secant
plane of Q is a null plane of a screw that reciprocates Q into itself, so is the
polar, in Q, of this secant plane. Now, of the 15 synthemes among the faces
of 2J~, six have the property of pairing each of u = 0, v = 0, w = 0 with
one of x = 0, y = 0, z = 0; hence there are 48 matrices B and so 24 screws.
And since there are, among the 540 screws, 24 which have a given polar pair
of planes e as null planes the number of polar pairs of planes e, as also of
polar pairs of planes F, that are null planes of a given screw is

5760x24/540 = 256.
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32. G* is certainly transitive on the pairs of polar planes e, and in order

to establish that it is transitive on the screws it is therefore only necessary
to show that it is transitive on those 24 screws which have a given pair of
polar planes e as null planes. Given a correlation and a projectivity

u' = Bx, y = Hx

then, if the polar plane of y in the correlation has coordinates given by the
row vector v, the relations

u = vH-1 = y'B'H-1 = x'H'B'H-i

show that the projectivity transforms the screw whose matrix is B into that
whose matrix is the transpose of H'B'H.-1 which, when H is orthogonal and
B skew, is —HBH. Hence, in order that the projectivity transform a screw
of matrix Bx into one of matrix J32, it is necessary that

B2 = HBXH.
This relation is H'B2 = BXH, and it is necessary to show that it is

satisfied, by some H that imposes a projectivity of G*, when

ui- °-up]
where P is a three-rowed monomial matrix. Since PP' = I the relation is
satisfied by rr

of the two matrices ±-Z?i we can use that for which \P | = l ,andso | / / | = 1.
This choice for H is adequate provided that the resulting projectivity
permutes each batch of 126 points, k and I, evenly; and this it certainly
does if P, and therefore H, has odd period. This disposes of those P where
the i 1 occupy the positions of the units in a cyclic permutation matrix,
but in other instances the above choice for H is not adequate. However,
there are always adequate choices available: to give just two instances, for

"1

respectively, take

H =

- 1
— 1

1

belonging to the stabilizer of 2^ in G* (see § 6).
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33. Since 0* is transitive on the 540 screws it has subgroups of index 540
and order 6048, namely the stabilizers of the screws. These are the sub-
groups found by Miss Hartley in (6), and the apparatus required to identify
them in this finite geometry seems simpler than that elaborated there. Yet
there can be little doubt that the most appropriate setting in which to
place these subgroups is neither there nor here. For G* is isomorphic to
one of the hyperorthogonal groups, namely to that group of projectivities
imposed by unitary matrices, of four rows and columns and unit deter-
minant, whose elements are marks of GF(32); that this group has the same
order as G* is seen on p. 310 of (1), where Dickson calls it #0(4, 32). But
there is no mention there, or perhaps for that matter elsewhere, of the
geometrical setting: a [3] wherein the points, with homogeneous coordinates
all marks of GF(32), fall into two classes; isotropic points for which the unit

is zero, and non-isotropic points for which, when their coordinate vectors
are normalized, H = 1. Of these non-isotropic points there are 540, and
#0(4, 32) permutes them transitively so that, in this setting, the occurrence
of the subgroups is patent and taken in at a glance. So, indeed, is their
isomorphism with #0(3 , 32), an isomorphism established by Miss Hartley
at the close of (6). The partitioning of the 6048 operations described in
§ 2.4 of (6), and accomplished there by a final appeal to group characters
by way of a respite from the perhaps over-elaborate geometry, is tanta-
mount to the separation of #0(3 , 32) into conjugate sets. This separation
is most expeditiously achieved by treating #0(3, 32) as a group of unitary
projectivities in a plane consisting of 28 isotropic and 63 non-isotropic
points.
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