
User’s Guide for TVAL3:

TV Minimization by Augmented Lagrangian

and Alternating Direction Algorithms

Chengbo Li, Wotao Yin, and Yin Zhang

Department of CAAM

Rice University, Houston, Texas, 77005

(Version beta2.4, 11-11-2010)

Abstract

This User’s Guide describes the functionality and basic usage of the Matlab package
TVAL3 for total variation minimization. The main algorithm used in TVAL3 is briefly
introduced in the appendix.

Contents

1 Introduction 2

2 Quick Start 2

3 Model Selection 3

4 Fields of opts 4

5 Feedback 6

1

1 Introduction

TVAL3 is short for “Total Variation Minimization by Augmented Lagrangian and Alter-

nating Direction Algorithms”. It is a Matlab solver that at present can be applied to the

following four total variation (TV) based minimization models for reconstructing an image

u from its (linear, incomplete, and/or degraded) observations b:

(TV) minu∈Cn

∑
i ‖Diu‖p, s.t. Au = b, (1)

(TV+) minu∈Rn

∑
i ‖Diu‖p, s.t. Au = b u ≥ 0, (2)

(TV/L2) minu∈Cn

∑
i ‖Diu‖p + µ

2‖Au− b‖22, (3)

(TV/L2+) minu∈Rn

∑
i ‖Diu‖p + µ

2‖Au− b‖22, s.t. u ≥ 0, (4)

where ‖ · ‖p for p = 1 or 2 is the 1-norm or 2-norm, respectively, n = n1 × n2 is the size

of signals or images, Diu (∈ C2 or R2 depending on u ∈ Cn or Rn) is the discrete gradient

vector of u at position i, A ∈ Cm×n (m < n) is the measurement matrix, b ∈ Cm is the

observation of u via some linear measurements, and µ > 0 is the penalty parameter for the

TV/L2 models.

The first terms in the objective functions are the TV regularization terms, which are

isotropic for p = 2, and anisotropic for p = 1. Using the isotropic ones is often preferred,

and is the default in TVAL3, since it results in fewer zig-zagging object boundaries in the

reconstructed image. The second terms in objective functions are commonly referred to as

fidelity terms.

2 Quick Start

TVAL3 can be downloaded from the URL:

http://www.caam.rice.edu/~optimization/L1/TVAL3/.

It has a simple Matlab interface with 5 input arguments and either 1 or 2 output arguments:

U = TVAL3(A,b,n1,n2,opts);

or [U,out] = TVAL3(A,b,n1,n2,opts);

where the input A is either a matrix in Cm×n or a function handle (see more information

below), b ∈ Cm is the observation, n1 and n2 represent the size of the signal/image, and

2

http://www.caam.rice.edu/~optimization/L1/TVAL3/

the output U ∈ Cn1×n2 is the recovered signal/image. All these quantities can be real or

complex. The input argument opts is a structure carrying control options. The optional

output argument out contains some secondary output information.

Unzipping the package creates the directory TVAL3 xx where “xx” is a version number.

Please start by running warm up.m, which updates Matlab’s search path and calls mex to

compile a C++ file for a fast Walsh-Hadamard transform into a Matlab mex file (as such you

will need a compiler installed on your system). Besides, running the Matlab script demo.m

in the current directory would also help users set necessary path, but without compiling

the C++ file.

Upon successful setup, four more demo files in the Demos directory are ready to run.

The input argument A should be either an m × n matrix or a Matlab function handle

corresponding to a given linear transform A from Cn to Cm and its adjoint A∗ in the way

such that

A(x,1) returns Ax,

A(y,2) returns A∗y.

For an example of defining such a function handle A, see the function dfA at the bottom of

the function demo lina.m under the folder Demos.

TVAL3 accepts all kinds of measurement matrices A or corresponding function handles.

It is preferred, but not required, for A to have orthogonal and normalized rows. The speed

of TVAL3 is largely affected by how fast Ax and A∗y can be computed.

TVAL3 requires opts to contain at least one field. If users choose TV/L2 or TV/L2+

model, opts.mu must be set according to the value of µ in the model. All the fields of opts

are described in Section 4 below.

3 Model Selection

TVAL3 can solve one of the four supported models, TV, TV+, TV/L2, and TV/L2+, while

each one can be either isotropic or anisotropic. A model is selected according to options

supplied in opts.

• The isotropic TV model

This model is solved by default. (However, please specify at least one field of opts,

which can be any one compatible with this model. For example, opts.disp = false.)

3

• The isotropic TV+ model

Set opts.nonneg = true.

• The isotropic TV/L2 model

Set opts.TVL2 = true.

• The isotropic TV/L2+ model

Set opts.nonneg = true and opts.TVL2 = true.

• One of the above models with anisotropic TV

To solve any of above four models with anisotropic TV corresponding to p = 1, set

opts.TVnorm = 1 in addition to setting a corresponding field in the way described

above.

For the efficiency of TVAL3, we always suggest users to avoid TV/L2 or TV/L2+ model

unless necessary, since TV or TV+ model could be faster to obtain a certain accuracy. Even

though the noise exists in your cases, TV or TV+ model still works fairly well in practice.

4 Fields of opts

The following fields of opts can be specified by users, and their default values are given

in brackets “[]”. They are roughly ordered by the importance according to the authors’

experience.

opts.mu = [2^8] (primary penalty parameter)

opts.beta = [2^5] (secondary penalty parameter)

opts.mu0 = opts.mu (initial mu for continuation)

opts.beta0 = opts.beta (initial beta for continuation)

opts.tol = [1.e-6] (outer stopping tolerance)

opts.tol_inn = [1.e-3] (inner stopping tolerance)

opts.maxit = [1025] (maximum total iterations)

opts.maxcnt = [10] (maximum outer iterations)

opts.TVnorm = [2] (isotropic or anisotropic TV)

opts.nonneg = [false] (switch for nonnegative models)

opts.TVL2 = [false] (switch for TV/L2 models)

opts.isreal = [false] (switch for real signals/images)

4

opts.scale_A = [true] (switch for scaling A)

opts.scale_b = [true] (switch for scaling b)

opts.disp = [false] (switch for iteration info printout)

opts.init = [1] (initial guess)

Among fields, opts.mu appears to be the most important one. To get the best perfor-

mance, the value of opts.mu should be set in accordance with both the noise level in the

observation b and the sparsity level of the underlying signal/image u. For example, the

higher the noise level is, the smaller opts.mu should be (of course it is difficult to estimate

the noise level without knowing the true solution). Based on our experience, the simplest

way to choose mu is to try different values from 24 up to 213 and compare the recovered

signals/images. The value of opts.beta also affects the performance of TVAL3, but it is

much less important than opts.mu. Users can also decide opts.beta by trying with values

from 24 up to 213 if necessary. Options opts.mu0 and opts.beta0 suggest if the continua-

tion scheme is applied. The default values mean no need for continuation. users can trigger

it by setting both opts.mu0 and opts.beta0 much smaller than opts.mu and opts.beta,

respectively (see Demos). In some scenarios, continuation scheme could accelerate the con-

vergence and reduce the elapsed time. Both opts.tol and opts.tol inn determine the

solution accuracy. Their smaller values result in a longer elapsed time and usually a bet-

ter solution quality. If the observation is noisy or the problem is large-scale, opts.tol =

1.e-2 or 1.e-3 might be sufficient. The options opts.maxit and opts.maxcnt set limits

for the numbers of total and outer iterations, respectively. opts.TVnorm, opts.nonneg, and

opts.TVL2 determines which one of the four models is solved. If the true solution is real

(as opposed to complex), opts.isreal should be set as true. The options opts.scale A

and opts.scale b determine whether A and b should be scaled, respectively. In general,

decisions are made automatically so assigning non-default values to these two options is

not recommended. The field opts.disp controls whether iteration information is displayed

or not. Furthermore, the initial solution is assigned according to opts.init. opts.init

= 1 assigns A∗b, opts.init = 0 assigns the zero matrix, and opts.init = U0 assigns a

user-provided matrix U0.

Getting the best solution quality often requires tuning certain options. Among the most

important ones are opts.mu, opts.tol, opts.beta, and opts.maxcnt. It is advisable to

try the default values first before any tuning.

5

5 Feedback

Your feedback is welcome and appreciated! You can send your questions, bug reports, and

suggestions to cl9@rice.edu.

Acknowledgments

The authors are grateful to a group of users, colleagues, and students from Rice University,

especially those in the ECE department, who helped test previous beta versions of the code

and provided useful feedback. The first author would like to thank Dr. Junfeng Yang of

Nanjing University for his tremendous help at the beginning of the project and Ting Sun

of Rice University for providing test data. The work of C. Li has been supported in part

by NSF Grant DMS-0811188, ONR Grant N00014-08-1-1101, and AFOSR Grant FA9550-

09-C-0121. The work of W. Yin has been supported in part by NSF CAREER Award

DMS-0748839, ONR Grant N00014-08-1-1101, AFOSR Grant FA9550-09-C-0121, and an

Alfred P. Sloan Research Fellowship. The work of Y. Zhang has been supported in part by

NSF Grant DMS-0811188 and ONR Grant N00014-08-1-1101.

Appendix: Algorithm

Our algorithmic framework is a Lagrangian multiplier method applied to a particular aug-

mented Lagrangian function; that is,

Algorithm 1 Input A, b, n1, n2, and opts.

While “not converge” Do

— Approximately minimize the augmented Lagrangian function

by an alternating direction scheme.

— Update multipliers.

End Do

The convergence properties of algorithms in this framework have been well analyzed in

the optimization literature (see [1], for example).

To briefly describe our algorithm, we take the real isotropic TV model

min
u∈Rn

∑
i

‖Diu‖, s.t. Au = b,

6

(where we use ‖.‖ for ‖.‖2 for simplicity) for example. This TV model is clearly equivalent

to

min
wi∈R2,u∈Rn

∑
i

‖wi‖, s.t. Au = b and Diu = wi for all i.

Its corresponding augmented Lagrangian problem is

min
wi,u

∑
i

(‖wi‖ − νT
i (Diu− wi) +

β

2
‖Diu− wi‖2)− λT (Au− b) +

µ

2
‖Au− b‖2. (A-1)

An alternating minimization scheme is applied to solving (A-1). For a fixed u, the mini-

mizers wi for all i can be obtained via the formula

wi = max
{∥∥∥∥Diu−

νi

β

∥∥∥∥− 1
β

, 0
}

Diu− νi/β

‖Diu− νi/β‖
. (A-2)

On the other hand, for fixed wi, we approximately minimize the quadratic with respect

to u by taking one steepest descent step with the steplength computed by a back-tracking

non-monotone line search scheme [2] starting from a Barzilai-Borwein (BB) step length

[3]. After each steepest descent step, we update wi and repeat the process until (A-1) is

approximately solved within a prescribed tolerance.

Let û and {ŵi} represent an approximate solution to (A-1). The multipliers are then

updated through the well-known formulas: for all i

νi ← νi − β(Diû− ŵi),

λ ← λ− µ(Aû− b).

Combining the framework Algorithm 1 with the inner iterations described above leads

to the core algorithm of the solver TVAL3 in version beta2.0.

For anisotropic models, all formulas remain the same except a slight change in the

formula (A-2) for updating wi. For models with nonnegativity constraints, a projected

gradient method instead of the steepest descent method was used for updating u.

For more details, an elaborate description of TVAL3 including theoretical and numerical

results will be fully stated in a forthcoming paper.

7

References

[1] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New

York, U.S.A., (2006).

[2] H. Zhang and W. W. Hager. A nonmonotone line search technique and its application

to unconstrained optimization. SIAM J. Optim., 14 (2004), pp. 1043–1056.

[3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer.

Anal., 8 (1988), pp. 141C148.

8

	Introduction
	Quick Start
	Model Selection
	Fields of opts
	Feedback

