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Abstract

Compressed-Sensing (CS) offers a joint compression- and sensing-processes, based
on the existence of a sparse representation of the treated signal and a set of projected
measurements. Work on CS thus far typically assumes that the projections are drawn
at random. In this paper we consider the optimization of these projections. As a
direct such optimization is prohibitive, we target an average measure of the mutual-
coherence of the effective dictionary, and demonstrate that this leads to better CS
reconstruction performance. Both the Basis-Pursuit and the Orthogonal-Matching-
Pursuit are shown to benefit from the newly designed projections, with a reduction
of the error-rate by a factor of 10 and beyond.

keywords: Compressed-sensing, Sparse and redundant representations, optimized projec-

tions, Basis-Pursuit, Orthogonal Matching-Pursuit, Mutual-Coherence.

1 Introduction

Consider a family of signals {xj}j ∈ Rn, known to have sparse representations over a fixed

dictionary D ∈ Rn×k. Thus we have that these signals can be described by

∀j, xj = Dαj, (1)
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with ‖αj‖0 ≤ T ¿ n for all j. The `0-norm used here simply counts the number of

non-zeros in αj.

Compressed-Sensing (CS) offers a joint sensing- and compression-processes for such sig-

nals [1, 2, 3, 4, 5, 6, 7]. Using a projection matrix P ∈ Rp×n with T < p ¿ n, CS suggests

to represent xj by p scalars given by

yj = Pxj. (2)

The original signal xj can be reconstructed from yj by exploiting the sparsity of it’s rep-

resentation – i.e., among all possible α satisfying yj = PDα we seek the sparsest. If

this representation coincides with αj, we get a perfect reconstruction of the signal using

Equation (1). This reconstruction thus requires the solution of

min
α
‖α‖0 s.t. yj = PDα, (3)

which is known to be NP-hard even for moderate-sizes of the linear system in the constraint

[8, 9]. Approximation techniques, known as pursuit algorithms are deployed, and are proven

to lead to the true result for very sparse solutions [11, 12, 10].

Work on CS thus far assumes that P is drawn at random, which simplifies its theoretical

analysis, and also facilitates a simple implementation [1, 2, 3, 4, 5, 6, 7]. In this paper

we show that by optimizing the choice of P such that it leads to better coherence of the

effective dictionary, a substantially better CS reconstruction performance is obtained, with

both the Basis-Pursuit (BP) [10] and the Orthogonal Matching-Pursuit (OMP) algorithms

[11, 12].

In the next section we provide the intuition behind CS, along with a statement of the
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main results in the literature regarding its expected performance, which are related to this

work. Section 3 concentrates on a proposed iterative method for improving the projections

based on the mutual-coherence (as will be defined shortly) of the overall new dictionary. We

demonstrate experimental results Section 4 and show the performance gain obtained with

the optimized projections. As this work is the first to consider the design of the projections,

and as it approaches this problem indirectly by improving the mutual coherence, there is

clearly a room for future work and improvements. Ideas on how to further extend this work

are brought in Section 5.

2 Compressed Sensing – The Basics

We have described above the core idea behind Compressed-Sensing. The first question one

must ask is – why will it work at all? In order to answer this question, we need to recall

the definition of the mutual-coherence of a dictionary [13, 14].

Definition 1: For a dictionary D, its mutual-coherence is defined as the largest absolute

and normalized inner product between different columns in D. Put formally, this reads

µ{D} = max
1≤i,j≤k and i 6=j

∣∣dT
i dj

∣∣
‖di‖ · ‖dj‖ . (4)

The mutual-coherence provides a measure of the worst similarity between the dictionary

columns, a value that exposes the dictionary’s vulnerability, as such two closely related

columns may confuse any pursuit technique.

A different way to understand the mutual-coherence is by considering the Gram matrix

G = D̃T D̃, computed using the dictionary after normalizing each of its columns. The
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off-diagonal entries in G are the inner products that appear in Equation (4). The mutual-

coherence is the off-diagonal entry gij with the largest magnitude.

Suppose that the signal x0 has been constructed by x0 = Dα0 with a sparse representa-

tion. Suppose further that the following inequality is satisfied:

‖α0‖0 <
1

2

(
1 +

1

µ{D}
)

. (5)

A fundamental set of results state that [13, 14, 15]:

1. The vector α0 is necessarily the sparsest one to describe x0, i.e. it is the solution of

min
α
‖α‖0 s.t. x0 = Dα. (6)

2. The BP algorithm for approximating α0, which is solving the linear program

min
α
‖α‖1 s.t. x0 = Dα, (7)

is guaranteed to find α0 exactly. And

3. The OMP for approximating α0 is also guaranteed to succeed. The OMP is a greedy

and sequential method that accumulates the non-zeros in α0 one at a time, while

attempting to obtain the fastest decrease of the residual error ‖x0 −Dα‖.

Based on the above, suppose that the projection matrix P has been chosen and we are

to solve

min
α
‖α‖0 s.t. y0 = Px0 = PDα. (8)

If the original representation is satisfying the more strict requirement

‖α0‖0 <
1

2

(
1 +

1

µ{PD}
)
≤ 1

2

(
1 +

1

µ{D}
)

, (9)
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then necessarily, the original α0 is the solution of the problem posed in (8), both pursuit

methods will manage to recover it perfectly, and thus reconstruct x0 well.

The above implies that if P is designed such that µ{PD} is as small as possible, this

allows a wider set of candidate signals to reside under the umbrella of successful CS be-

havior. While this conclusion is true from a worst-case stand-point, it turns out that the

mutual-coherence as defined above does not do justice to the actual behavior of sparse

representations and pursuit algorithms’ performance. Thus, if we relax our expectations

and allow a small fraction of signals with the same representation’s cardinality to fail, than

values of ‖α0‖0 substantially beyond the above bound are still leading to successful CS.

Considering the average performance of CS as a function of this cardinality, an “average”

measure of coherence is more likely to describe its true behavior.

Another fundamental question in CS is the following: How many measurements are

required for successful reconstruction? Assuming that the cardinality of the representation,

‖α0‖0 = T , is known, one needs at least 2T measurements to form a non-linear set of 2T

equations with 2T unknowns (the indices of the non-zeros and their coefficients). Recent

work has established that indeed, for a high success-rate of CS, it is enough to use O{T}

measurements, with an appropriate coefficient (e.g. Const · log(n) · T , as found in [4]).

These results are typically accompanied by an assumption about the specific dictionary

structure, the use of random projections, and considering an asymptotic case where the

relative sizes grow to infinity.

If we address this very question of the required number of projections from the point of

view of the value of µ{PD}, we are likely to find that O{n} measurements are needed,
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loosing all the compressibility potential in CS. Again we find that replacing the measure

µ{PD} with a parallel one that considers average absolute inner-products may do more

justice to the conclusion about the required number of measurements.

3 Optimizing the Projection Matrix

In this section we shall consider a different mutual-coherence, which reflects average behav-

ior. We define it as follows:

Definition 2: For a dictionary D, its t-averaged mutual-coherence is defined as the average

of all absolute and normalized inner products between different columns in D (denoted as

gij) that are above t. Put formally,

µt{D} =

∑
1≤i,j≤k and i6=j

(|gij| ≥ t) · |gij|∑
1≤i,j≤k and i6=j

(|gij| ≥ t)
. (10)

As the value of t grows, we obtain that µt{D} grows and approaches µ{D} from below.

Also, it is obvious from the definition that µt{D} ≥ t. In the optimization procedure we

are about to describe we will target this value and minimize it iteratively.

Note that a different and more direct approach towards the design of the projection

matrix would be its learning based on signal examples and tests involving the pursuit

algorithm deployed. We believe that such a method is likely to lead to better performance

compared to the method described here. Nevertheless, such a direct scheme is also expected

to be far more complex and involved, and thus its replacement with the optimization of

µt{PD} is an appealing alternative.

Put very simply, our goal is to minimize µt{PD} with respect to P, assuming that the
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dictionary D and the parameter t are known and fixed. Since µt{PD} is defined via the

entries of the Gram-matrix, we propose an iterative scheme that includes transformations

from- and to- the Gram matrix in every iteration. This algorithm is inspired by a similar

approach adopted in [16] for the design of Grassmanian frames that minimize the mutual-

coherence of a desired dictionary. While the work in [16] considers D as an unknown to be

built, we target P in the expression µt{PD}, which adds more complications.

A slightly different mode of operation of the above algorithm can be proposed, where t

varies from one iteration to another, by addressing at all times a constant fraction of the

entries in the Gram matrix. For example, the value t can be updated at each iteration such

that it targets the top 20% of the inner-products. We shall denote the average mutual-

coherence of the top t% by µt%{PD}, and, as we shall see in the next section, it is this

measure that we will work with. The algorithm for optimizing P with the above two options

is described in Figure 1.

In this algorithm we start with a random set of p projections stored in the matrix P.

As our main objective is the reduction of the inner-products that are above t in absolute

value (assuming the first mode of operation), the Gram matrix of the normalized effective

dictionary is computed, and these values are “shrinked” multiplying their values by 0 < γ <

1. As such decrease in the magnitude should lead to monotonic non-increasing function,

entries in G with magnitude below t but above γt are “shrinked” by a smaller amount,
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Objective: Minimize µt{PD} with respect to P.

Input: Use the following parameters:

• t or t% - coherence (fixed or relative) threshold,

• D - the dictionary,

• p - number of measurements,

• γ - down-scaling factor, and

• Iter -number of iterations.

Initialization: Set P0 ∈ Rp×n to be an arbitrary random matrix.

Loop: Set k = 0 and repeat Iter times:

1. Normalize: Normalize the columns in the matrix PkD
and obtain the effective dictionary D̂k.

2. Compute Gram Matrix: Gk = D̂T
k D̂k

3. Set Threshold: If mode of operation is fixed, use t as
threshold. Otherwise, choose t such that t% of the off-
diagonal entries in Gk are above it.

4. Shrink: Update the Gram matrix and obtain Ĝk by

gij =





γgij |gij | ≥ t
γt · sign(gij) t > |gij | ≥ γt

gij γt > |gij |
.

5. Reduce Rank: Apply SVD and force the rank of Ĝk to
be equal to p.

6. Squared-Root: Build the squared-root of Ĝk, ST
k Sk =

Ĝk, where Sk is of size p× n.

7. Update P: Find Pk+1 that minimizes the error ‖Sk −
PD‖2

F .

8. Advance: Set k = k + 1.

Result: The output of the above algorithm is PIter.

Figure 1: The numerical algorithm for optimizing the projection matrix P.
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using the function

y =





γx |x| ≥ t

γt · sign(x) t > |x| ≥ γt

x γt > |x|

. (11)

This function is described graphically for t = 0.5 and γ = 0.6 in Figure 2. For convenience,

the functions y = x and y = γx are also shown. As can be seen, the proposed function is

embraced between these two, switching to the slower one at t.
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Figure 2: The shrink operation employed in the algorithm for t = 0.5 and γ = 0.6.

The above shrinking operation causes the resulting Gram matrix to become full-rank in

the general case. Thus, the next steps are mending this by forcing a rank p and finding the

matrix P that could best describe the squared-root of the obtained Gram matrix. Thus,

steps 1-4 in the algorithm are addressing the objective of the process – the reduction of

µt{PD}, and steps 5-7 are responsible for the feasibility of the proposed new Gram matrix
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and the identity of the emerged projection matrix.

Regarding convergence properties, not much can be said in general. The overall problem

is far from being convex, and convergence is guaranteed only of γ is chosen very close to

1. However, as we show next, in practice one can choose γ = 0.5 and still get convergence,

and in fact an accelerated one, compared to the use of higher values. Since the objective

function can be evaluated after every iteration with almost no additional cost, this could

be used for an automatic stopping of the algorithm (in case an assent is started), and even

for tuning the parameters dynamically form one iteration to another.

To illustrate the behavior of the above algorithm, we provide a demonstration of its

results in Figure 3. Considering a random dictionary (every entry is drawn from iid zero

mean and unit variance Gaussian distribution) of size 200 × 400, we seek the best projec-

tion matrix containing 30 projections, such that µt{PD} is minimized for t = 0.2. The

initialization is a random matrix P0 of size 30× 200, built the same way as the dictionary.

We use several values of γ, from 0.55 to 0.95. In all cases we obtain convergence, and it

is faster as γ is smaller. The value of µt{PD} is by definition above t, but as can be seen,

it gets smaller quite effectively.

Figure 4 presents the histogram of the absolute off-diagonal entries of G = DTPTPD

before the optimization and after 50 iterations (using γ = 0.5 and t = 0.2). As can be

seen, there is a marked shift towards the origin of the histogram after optimization, with an

emphasis on the right tail which represents the higher values. A similar effect is seen also

in Figure 5, which presents similar histograms, this time working with t% = 40%. Thus,

in this run we target at every iteration the minimization of the average of the top 40% of
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Figure 3: The value of µt{PkD} as a function of the iteration for t = 0.2 and various values

of γ.

the off-diagonal entries in the Gram matrix.

4 Compressed-Sensing: Experimental Results

It is now time to assess how the optimized projections perform in the compressed-sensing

setting. We should remind the reader that in this work we assume that by optimizing

µt{PD} w.r.t. P, one leads to more informative projections, which in turn leads to better

CS performance. This link between µt and CS is yet to be theoretically analyzed and

proven, and here we limit our study to an empirical one. The proposed test includes the

following steps:

Stage 1 - Generate Data: Choose a dictionary D ∈ Rn×k, and synthesize N test signals

{xj}N
j=1 by generating N sparse vectors {αN

j=1}j of length k each, and computing
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Figure 4: The histogram of the absolute off-diagonal entries of G before the optimization

and afterwards, using a fixed threshold t = 0.2.
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Figure 5: The histogram of the absolute off-diagonal entries of G before the optimization

and afterwards, operating on the top 40% of the inner-products.

12



∀j, xj = Dαj. All representations are to be built using the same low cardinality

‖α‖0 = T .

Stage 2 - Initial Projection: For a chosen number of measurements m, create a random

projection matrix P, and apply it to the signals, obtaining ∀j, yj = Pxj. Compute

the effective dictionary D̂ = PD.

Stage 3 - Performance Tests: Apply the BP and the OMP to reconstruct the signals

by approximating the solution of

α̂j = arg min
α
‖α‖0 s.t. yj = D̂α,

and testing the error ‖xj−Dα̂j‖2. Measure the average error-rate – A reconstruction

with a mean-squared-error above some threshold is considered as a reconstruction

failure.

Stage 4 - Optimize Projections: Use the algorithm as described in Section 3 to

optimize the projection matrix P.

Stage 5 - Re-evaluation of CS performance: Re-apply the performance tests of the

BP and the OMP as described above, and see how the newly designed projections

influence the CS behavior.

We have followed the above stages in the following two experiments. The first experiment

studies the performance of CS before and after the optimization of the projections, with

BP and OMP, and for varying amounts of measurements. The second one studies the effect

of the cardinality of the representations.
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In the first experiment we used a random dictionary of size 80×120 (other options such as

a redundant DCT dictionary, where tested too, and found to lead to qualitatively the same

results, and thus omitted). This size was chosen as it enables the CS performance evaluation

in reasonable time. We generated N = 100, 000 sparse vectors of length k = 120 with T = 4

non-zeros in each. The non-zeros locations were chosen at random and populated with iid

zero-mean and unit variance Gaussian values. These sparse vectors were used to create the

example-signals with which to evaluate the CS performance. CS performance was tested

with varying values of m in the range 16 ÷ 40. The relative error rate was evaluated as a

function of m for both the BP and the OMP, before and after the projection optimization.

The projection optimization (per every value of m) was done using up to 1, 000 iterations1

using γ = 0.95 and varying %t = 20%. The results are shown in Figure 6.

Each point in the shown graph represents an average performance, accumulated over

a possibly varying number of experiments. While every point is supposed to present an

average performance over N = 100, 000 examples, in cases where more than 300 errors were

accumulated, the test was stopped and the average so far was used instead. This was done

in order to reduce the overall test run-time. Another substantial speed-up was obtained

by replacing the BP direct test (which requires a linear programming solver) with a much

much faster alternative, as described in Appendix A.

As can be seen and as expected, the results of both pursuit techniques improve as m

increases. In this test the BP performs much better than the OMP. The optimized pro-

jections are indeed leading to improved performance for both algorithms. For some values

1The algorithm is stopped in case of an increase in the value µt%.
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Figure 6: Compressed-Sensing relative errors as a function of the number of measurements

m, with random projections and optimized projections. Note: A vanishing graph implies

a zero error rate.

of m there is nearly a 10 : 1 improvement factor for the BP and more than 100 : 1 im-

provement for the OMP. Indeed, the OMP with the optimized projections lead to better

performance compared to the original BP, for low and mid-values of m.

The second experiment is similar to the first one, this time fixing m = 25 and varying

T in the range 1÷ 7. The results are shown in Figure 7. As expected, as T grows, perfor-

mance deteriorates. However, the optimized projections are consistent in their improved

performance.

We should emphasize that the presented results do not include a thorough optimization

of the parameters γ and t, and the relation between µt and the CS performance remains

still obscure at this stage. Also, our experiments concentrated on one specific choice of

dictionary size that enables reasonable run-time simulation, and this has an impact on
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Figure 7: Compressed-Sensing relative errors as a function of the signals’ cardinality T ,

with random projections and optimized projections.

the relatively weak performance CS shows. Other experiments we have done with much

larger dictionaries show the same improvement as above, but require too long run-time

for gathering fair statistics, and thus avoided. Still, the point this paper is making about

the potential to get better projections and thereby improving CS performance, is clearly

demonstrated.

5 Conclusions

Compressed-Sensing (CS) is an emerging field of activity with beautiful theoretical results

that state that signals can be compressed and sensed at the same time. This is based

on the structural assumption such signals are satisfying – having a sparse and redundant

representation over a specific dictionary. A crucial ingredient in the deployment of the
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CS idea is the use of linear projections that mix the signal. This operation has been

traditionally chosen as a random matrix. This work aims to show that better choices of such

mixtures are within reach. The projections can be designed such that the average mutual-

coherence of the effective dictionary becomes favorable. We have defined this property,

shown how to design a projection operator based on it, and demonstrated how it is indeed

leading to better CS performance.

The idea of optimizing the projections is appealing and should be further studied. Here

are several intriguing questions that future work could consider:

• How can the proposed optimization algorithm be performed or approximated for very

high dimensions? This is important in cases where the CS is deployed on images or

other signals of high-dimensions.

• Optimizing the projections can be done alternatively using a direct method that

considers CS performance, rather than addressing an indirect measure as done in this

work. Further work is required to explore this option, and show how effective it is

compared to the one discussed in this work.

• We should develop a theoretical link between the average mutual-coherence as pre-

sented here, to the CS performance, so as to give better justification for the proposed

work. Perhaps there is yet another simple measure of the effective dictionary PD

that could replace µt{PD} and lead to better results.
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Appendix A - Evaluating BP’s Performance

The problem we face is the following: We generate a sparse vector α0 and compute from

it the measurement vector y0 = PDα0. In order to determine whether BP succeeds in the

recovery of the signal x = Dα0, we should solve

α̂ = arg min
α
‖α‖1 s.t. y0 = PDα, (A-1)

and check whether α̂ = α0. The problem in such a direct approach is the need to deploy

a linear programming solver per each test, and as we are interested in many thousands of

such tests, this approach becomes prohibitive.

Since we are dealing here with a synthetic test, where the desired solution is a-priori

known, we can replace the direct solution of (A-1) with a much more moderate test of

considering α0 and checking wether it is indeed it’s global minimizer. In order to do so,

we consider the necessary first-order KKT conditions, as emerging from the Lagrangian of

(A-1). The Lagrangian is given by

L(α, λ) = ‖α‖1 + λT (y0 −PDα), (A-2)

with λ serving as the Lagrange ,multipliers. Taking its derivative with respect to α, and

using the fact that the derivative of the absolute value at zero leads to the feasible interval
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[−1, 1] (considering the sub-gradients), we obtain

DTPT λ =





+1 α0(j) > 0

−1 α0(j) < 0

uj α0(j) = 0

, (A-3)

where one must require ∀j, − 1 ≤ uj ≤ 1.

Thus, if we find a feasible solution λ to this system, we can guarantee that α0 is the

solution of (A-1) and thus the BP is expected to succeed. If we cannot find a solution,

we suspect that BP fails. Declaration of failure in such a case is definitely possible, but

leads to an upper-bound on the true number of errors, as our numerical scheme for solving

Equation (A-3) may fail in-spite of the BP success. Assuming that the expected number of

such suspected failures is substantially smaller compared to N (as is indeed the case in our

simulations), we can directly try to solve (A-1) for this few cases, and see whether failure

takes place.

As for the solution of (A-3), this can be achieved in various ways. We separate the

equation-set to two parts – the equality- and the inequality-constraints, denoted by A1λ =

b and −1 ≤ A2λ ≤ 1, respectively. We use the penalty method, minimizing the function

f(λ) = ‖A1λ− b‖2
2 + β‖WA2λ‖2

2, (A-4)

with respect to λ. The matrix W is a diagonal weight matrix, initialized as W = I.

Starting with a very small β, the first constraint is satisfied while the second might be

violated. Iterating and increasing the value of β, the first term remains zero while the

second one gets closer to the satisfaction of −1 ≤ A2λ ≤ 1. A more delicate update

step can be proposed, where the extreme entries in the vector |A2λ| that are above 1 are

19



treated by increasing their weight in W. A finite number of such an iterative algorithm

(50 iterations) was used, and shown to be 1-2 orders of magnitude faster than the full LP

solver.
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