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Lay Summary

A knot is a mathematical object that can be thought of a piece of string in space with

the two ends fused together. The simplest example of a knot is the unknot, which is an

untangled circle.

Unknot

A trefoil knot is a more interesting example. The following pictures are both drawings of

the trefoil knot; they are mathematically equivalent even though they appear different.

Two knots are considered to be the same if one can be picked up and twisted in space

(without cutting or gluing) to look like the second.

Trefoil knots

Knots have been studied in Edinburgh since the days of Peter Guthrie Tait 140

years ago. Following Kelvin, he thought that atoms could be modelled by knots. In

pursuit of this history, Tait initiated the classification of knots.

Topologists have proved that every knot is the boundary of a surface in space.

Such surfaces are called Seifert surfaces for the knot, after the German mathematician

Herbert Seifert, who first proved this 80 years ago. It is obvious that the unknot has

a Seifert surface, but not at all obvious for the trefoil knot and even less obvious for

more complicated knots.

5



Seifert surfaces of the unknot and a trefoil knot

Seifert surfaces are used in the classification of knots. One may create a Seifert surface

for a knot by dipping the knot into soap water; the soap bubble is a Seifert surface for

the knot.

In this thesis, we shall be concerned with mathematical constructions of Seifert

surfaces. We introduce a new construction using the notion of solid angle of a bounded

object in space, measured from a reference point: this is the proportion of the area of

the shadow cast by the object from the point on the surface of a large sphere containing

the object.

Solid angle

We use solid angles to define a canonical differentiable function from the complement

of the knot to the circle. For almost all the points in the circle the union of the inverse

image of the point and the knot is a Seifert surface, all points of which have the same

solid angle. In other words, a Seifert surface in our construction is an iso-surface, where

the quantity measured is the solid angle. Our work also makes use of linking numbers,

as introduced by Gauss and Maxwell.

In general, a knot in (n+ 2)-space can be defined as an n-sphere in (n+ 2)-space.

When n = 1, this is a knot in 3-space discussed earlier. It is possible that our con-

struction can be generalised for knots in higher dimensions. Our construction of Seifert

surfaces by differential geometry might eventually be used to study the mathematical

properties of Seifert surfaces with minimal properties, such as soap bubbles.
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Abstract

A Seifert surface for a knot in R3 is a compact orientable surface whose boundary is the

knot. Seifert surfaces are not unique. In 1934 Herbert Seifert provided a construction of

such a surface known as the Seifert Algorithm, using the combinatorics of a projection

of the knot onto a plane. This thesis presents another construction of a Seifert surface,

using differential geometry and a projection of the knot onto a sphere.

Given a knot K : S1 ⊂ R3, we construct canonical maps F : ΛdiffS
2 → R/4πZ

and G : R3−K(S1)→ ΛdiffS
2 where ΛdiffS

2 is the space of smooth loops in S2. The

composite

FG : R3 −K(S1)→ R/4πZ

is a smooth map defined for each u ∈ R3 −K(S1) by integration of a 2- form over an

extension D2 → S2 of G(u) : S1 → S2. The composite FG is a surjection which is a

canonical representative of the generator 1 ∈ H1(R3−K(S1)) = Z. FG can be defined

geometrically using the solid angle. Given u ∈ R3−K(S1), choose a Seifert surface Σu

for K with u /∈ Σu. It is shown that FG(u) is equal to the signed area of the shadow of

Σu on the unit sphere centred at u. With this, FG(u) can be written as a line integral

over the knot.

By Sard’s Theorem, FG has a regular value t ∈ R/4πZ. The behaviour of FG near

the knot is investigated in order to show that FG is a locally trivial fibration near the

knot, using detailed differential analysis. Our main result is that (FG)−1(t) ⊂ R3 can

be closed to a Seifert surface by adding the knot.
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Chapter 1

Introduction

A closed Seifert surface for a knot K : S1 ⊂ R3 is a compact orientable surface Σ2 ⊂
R3 with boundary ∂Σ = K(S1). Closed Seifert surfaces for a given knot K can be

constructed using Seifert’s algorithm [16], starting with a choice of knot projection.

Closed Seifert surfaces for a smooth knot K : S1 ⊂ R3 can also be constructed by

transversality properties of smooth maps. More explicitly, extend K to an embedding

of a tubular neighbourhood K(S1)×D2 ⊂ R3 and let

X = ClR3(R3 − (K(S1)×D2)) ⊂ R3

be the exterior of the knot. There exists a canonical rel ∂ homotopy class of smooth

maps

(p, ∂p) : (X, ∂X) = (X,K(S1)× S1)→ S1

with ∂p = projection : ∂X = K(S1) × S1 → S1. The preimage of a regular value

∗ ∈ S1 of such a smooth map p is a closed Seifert surface Σ = p−1(∗) ⊂ R3 for K. This

construction depends on the choice of a tubular neighbourhood, the choice of a map in

the rel ∂ homotopy class, and the choice of a regular value.

Let Σ be a closed Seifert surface for a knot K. Then, there exists a smooth embed-

ding

K(S1)× [0, 1] ↪→ Σ,

called a collar. This implies that the interior Σ − ∂Σ is an open surface with the

following properties:

• ClR3(Σ− ∂Σ) = Σ and

• there exists a (topological) embedding K(S1)×[0, 1] ↪→ Σ such that the restriction

K(S1)× (0, 1] ↪→ Σ− ∂Σ

is smooth.

This leads to the following definitions. An open Seifert surface Σ0 for a knot

K : S1 ⊂ R3 is an open surface in R3 whose topological boundary is the knot, i.e.,
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ClR3(Σ0) = Σ0 ∪K(S1). An open Seifert surface Σ0 is said to be regular if there exists

a (topological) embedding

K(S1)× [0, 1] ↪→ Σ0 ∪K(S1)

such that the restriction

K(S1)× (0, 1] ↪→ Σ0

is smooth.

It is clear that if Σ is a closed Seifert surface for K : S1 ⊂ R3, then Σ0 = Σ−∂Σ is a

bounded regular open Seifert surface in R3. Conversely, a bounded regular open Seifert

surface Σ0 for K gives rise to a closed Seifert surface as follows. Since Σ0 is regular,

we consider an embedding Θ : K(S1)× [0, 1] ↪→ Σ0 ∪K(S1) such that the restriction

Θ| : K(S1)× [ε, 1] ↪→ Σ0,

for some small ε > 0, is smooth. Hence,

Σ = Σ0 −Θ(K(S1)× (0, ε))

has boundary K(S1) × {ε} ∼= K(S1), and therefore is a closed Seifert surface for K

(technically, it is a closed Seifert surface for an ε-copy of K).

The main purpose of this thesis is to construct a closed Seifert surface for a smooth

knot K requiring fewer choices, using the knot complement R3 −K(S1), of which the

knot exterior X is a deformation retract. We shall define a smooth map

R3 −K(S1)→ S1

and then show that the preimage of some regular value is a bounded regular open

Seifert surface for K.

Main Construction [Chapter 4, Chapter 5] For any smooth knot K : S1 ⊂ R3 we

construct a smooth map

FG : R3 −K(S1)→ S1

such that Σ0 = (FG)−1(∗) is a bounded regular open Seifert surface for K, where ∗ is a

regular value of FG. Therefore, a closed Seifert surface Σ for K will be obtained from

Σ0 as discussed above.

The map FG above is composed of two maps F and G defined as follows:

F : ΛdiffS
2 → R/4πZ ; λ 7→

∫
D2

(δλ)∗ω

where ΛdiffS
2 is the space of smooth loops λ : S1 → S2, δλ : D2 → S2 is a smooth
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extension of λ, ω is a volume 2-form on S2 with
∫
S2 ω = 4π; and

G : R3 −K(S1)→ ΛdiffS
2 ; u 7→ λu

where λu : S1 → S2 is the loop given by

λu(x) =
K(x)− u
‖K(x)− u‖

(x ∈ S1)

For each u ∈ R−K(S1), choose a Seifert surface Σu with u /∈ Σ. Define Πu : Σu →
S2 by

Πu(y) =
y − u
‖y − u‖

.

It turns out that FG can be computed by

FG(u) =

∫
Σu

Π∗uω.

For computational purposes, by Stokes’ Theorem, the formula for FG can be expressed

as a line integral

FG(u) =

∫
K(S1)

(Πu|im K)∗ η (1.1)

where η is a 1-form on S2 − {z}, for some z ∈ S2, with dη = ω. Moreover, given a

parametrisation γ : [a, b]→ R3 of the knot K, it can be shown that

FG(u) =

∫ b

a

(
γ(t)− u
‖γ(t)− u‖

)
× z

‖γ(t)− u‖
(

1− γ(t)− u
‖γ(t)− u‖

· z
) γ̇(t)dt (1.2)

where z is a point in S2 with z 6= γ(t)− u
‖γ(t)− u‖

for all t ∈ [a, b], and the formula is

independent of z.

In practice, it is quite hard to actually compute FG for particular knots. The

formula (1.2) allows us to compute FG for the simplest knot, an unknot, using elliptic

integrals.

We shall be particularly concerned with the behaviour of FG near the knot K.

Let us introduce the following terminology. A map q : T → S1 is a locally trivial

fibration if for each s ∈ S1 there exists an open neighbourhood V ⊂ S1 of s such that

the following diagram

q−1(V )
∼= //

q

��

q−1(s)× V

proj
xx

V

commutes.
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Main Theorem [Theorem 7.1.1, Corollary 7.1.2] For any knot K ⊂ R3 and sufficiently

small tubular neighbourhood T = K×(D2−{0}) ⊂ R3−K of K with the core removed,

the restriction

FG|T : T → S1

is a locally trivial fibration. A regular value ∗ ∈ S1 of FG is in particular a regular

value of FG|T , and the open Seifert surface Σ = (FG)−1(∗) ⊂ R3 is regular, i.e., there

is a diffeomorphism

(FG)−1(∗) ∩ T = (FG|T )−1(∗) ∼= K × (0, 1].

The proof of the Main Theorem uses nontrivial analysis. The result is not obvious

even for an unknot.

Here is the outline of the thesis:

• Chapter 2 contains basic definitions and some background knowledge and facts

used throughout the thesis − for instance, elementary knot theory, transversality,

loop spaces, solid angles, etc.

• Chapter 3 describes the two constructions of closed and open Seifert surfaces,

Seifert’s algorithm and the transversality construction.

• Chapter 4 introduces our Main Construction. It begins with the definition of

the map F : ΛdiffS
2 → S1 and its properties followed by that of G : R3 −

K(S1) → ΛdiffS
2. We also investigate some properties of the composite map

FG : R3 −K(S1)→ S1.

• Chapter 5 introduces another approach to our Main Construction. More precisely,

we show that the map FG gives the area of a shadow cast by a chosen closed

Seifert surface. This approach is more computable and we are able to derive a

line-integral formula of FG.

• Chapter 6 carries out some computations for the unknot U . The formula of FG

for U can be expressed in terms of elliptic integrals. We refer to the result of

Paxton, see [12], in order to compute the solid angle of a standard circular disc.

We study the behaviour of FG near the unknot and finally show that the open

surface (FG)−1(∗) is regular near U .

• Chapter 7 extends the regularity results of Chapter 6 from the unknot K to an

arbitrary smooth knot K, proving the Main Theorem. For this purpose we divide

K into parts to see that the partial derivatives of K and U are close in a small

tubular neighbourhood.

• Chapter 8 discusses some possible future work.
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Chapter 2

Preliminaries

2.1 Knots

Definition 2.1.1. Let X be any space. A path in X is a continuous map from [0, 1]

to X. A loop in X is a path that sends 0 and 1 to the same point.

We remark that any loop in X induces a map S1 → X by composing with

[0, 1]→ S1 ; t 7→ e2πit.

Thus a loop may be defined as a map with domain S1.

Definition 2.1.2. A knot in R3 (or S3) is an injective loop S1 ↪→ R3 (or S1 ↪→ S3).

A knot is said to be smooth if its embedding is smooth.

Example 2.1.3. The path

p : [0, 1]→ R3 ; t 7→ (sin 2πt+ 2 sin 4πt, cos 2πt− 2 cos 4πt,− sin 6πt)

defines a trefoil knot. Clearly, p is smooth.

Definition 2.1.4. A tubular neighbourhood of a knot K in R3 or S3 is an embedding

T : S1 × D2 ↪→ R3 (or S1 × D2 ↪→ S3) such that T
(
S1 × {0}

)
= K(S1). A tubular

neighbourhood T may be regarded as its image T (K) := T (S1 × D2) = K(S1) × D2,

and we may simply call it T .

For simplicity, we assume that our knot is tame if there exists a tubular neigh-

bourhood for our knot. By the Tubular neighbourhood theorem, Theorem 10.19 in [7],

every smooth knot is tame.

Definition 2.1.5. A meridian of a knot K is a loop in R3 − K(S1) homotopic to a

loop of the form

[0, 1]→ {K(z)} × S1 ; t 7→
(
K(z), e2πit

)
15



for some z ∈ S1. A canonical longitude of a knot K is a loop in R3−K(S1) homotopic

to a loop of the form

[0, 1]→ K(S1)×
{
z′
}

; t 7→
(
K(e2πit), z′

)
for some z′ ∈ S1.

Example 2.1.6. Consider an unknot K : S1 ↪→ R3, coloured in red, and a tubular

neighbourhood T : S1 ×D2 ↪→ R3 with T
(
S1 × {0}

)
= K(S1)

K(S1)

θ=0θ

ψ

ψ=0

with parametrisation

S1 ×D2 ↪→ R3 ; (ψ, (r, θ)) 7→ ((2 + cosψ)r cos θ, (2 + cosψ)r sin θ, sinψ) .

This solid torus is obtained by rotating the disc (x − 2)2 + z2 6 1 about the z- axis.

Setting ψ = 0, r = 1 and θ = 0, r = 1, we have the loop θ 7→ (3 cos θ, 3 sin θ, 0) as a

meridian and the loop ψ 7→ (2 + cosψ, 0, sinψ) as a canonical longitude of the unknot,

respectively.

2.2 Knot projections

We may project a knot in R3 onto a surface − a plane or a sphere, for example. This

makes it easy to visualise the knot. In this section, we present two kinds of projection,

linear projections and radial projections.

For every plane P ⊂ R3, every x ∈ R3 has a unique decomposition

x = xP + x⊥P

where xP ∈ P and x⊥P is perpendicular to P .

P

x

x
P

x-x
P

16



Definition 2.2.1. Given a plane P , the linear projection LP of S ⊂ R3 onto P is

given by

LP : S → P ; x 7→ xP .

We may omit mentioning the plane P and the subset S if they are clearly understood.

Note that xP = x − x⊥P . We can give an explicit formula for the linear projection

onto a plane as follows.

Proposition 2.2.2. Let P ⊂ R3 be a plane with equation ax+ by+ cz = d. The linear

projection of R3 onto P is given by the formula

LP (x0, y0, z0) = (x0, y0, z0)− ax0 + by0 + cz0 − d
a2 + b2 + c2

(a, b, c)

for all x0, y0, z0 ∈ R.

Proof. First notice that the distance between the origin and the plane P is
|d|

a2 + b2 + c2
. Then translating P by − d

a2 + b2 + c2
(a, b, c) gives the plane P ′ ={

(x, y, z) ∈ R3 | ax+ by + cz = 0
}

. Since the vector (a, b, c) is normal to P ′, the

orthogonal projection of (x0, y0, z0) ∈ R3 to this plane is

(x0, y0, z0) · (a, b, c)
a2 + b2 + c2

(a, b, c).

This implies that

(x0, y0, z0)⊥P ′ = (x0, y0, z0)− (x0, y0, z0) · (a, b, c)
a2 + b2 + c2

(a, b, c).

Translating (x0, y0, z0)⊥P ′ back with
d

a2 + b2 + c2
(a, b, c), we have

(x0, y0, z0)⊥P = (x0, y0, z0)⊥P ′ +
d

a2 + b2 + c2
(a, b, c)

= (x0, y0, z0)− (x0, y0, z0) · (a, b, c)
a2 + b2 + c2

(a, b, c) +
d

a2 + b2 + c2
(a, b, c).

Definition 2.2.3. Given a subset S ⊂ R3 and a point p /∈ S, the radial projection Rp

of S from p is a map

Rp : S → S2 ; x 7→ x− p
‖x− p‖

We may omit mentioning the point p and the subset S if they are clearly understood.

17



p

x

We remark that for the radial projection from the point p, we view p as the origin

and draw a unit sphere about p to obtain the projection. Intuitively, this projection

gives the image of S on S2 when we look from p.

Linear or radial projections are not always injective. The linear projection of R3

onto a plane collapses all the points on a line perpendicular to the plane to a point on

the plane. The radial projection of R3 from a point p collapses all the points on a line

passing through p to a pair of antipodal points on S2.

Definition 2.2.4. Let LP be the linear projection of S ⊂ R3 onto P and Rp be the

radial projection of S ⊂ R3 from p. Assume that q, r belong to im (LP ) or im (Rp).

A point q is said to be a double point of the projection if at least two points in S are

projected to q. Similarly, a point r is said to be a triple point of the projection if at

least three points in S are projected to r.

Example 2.2.5. (i) Consider the linear projection of S ={
(a, b, 0) ∈ R3 | a, b = 0, 1, 2

}
onto the plane x + y = 4. The point (2, 2, 0) is

a triple point. The points (3/2, 5/2, 0) and (5/2, 3/2, 0) are double points.

(ii) Every point in S2 is a double point of the radial projection of

{
(x, y, z) ∈ R3 | x2 + y2 + z2 = k for k = 1, 2

}
from the origin. In this case, there is no triple point.

Let us now consider the linear or radial projections of a knot. By definition, given

a knot K : S1 ↪→ R3, the linear projection of K onto a plane P is the linear projection

LP : K(S1)→ P . This induces the composite

S1 K
↪→ R3 L̃P→ P

where L̃P is the linear projection of R3 onto P . Similarly, if p /∈ K(S1), the radial

projection of K from p is the radial projection Rp : K(S1) → S2; this induces the

composite

S1 K
↪→ R3 R̃p→ S2

where R̃p is the radial projection of R3 from p.

18



Definition 2.2.6. The linear projection of a knot K : S1 → R3 onto a plane P is the

composite L̃PK : S1 → P . The radial projection of a knot K : S1 → R3 from a point

p /∈ K(S1) is the composite R̃pK : S1 → S2.

We remark that the linear projection of K onto P gives a loop in P , and the radial

projection of K from p /∈ K(S1) is a loop in S2. We next introduce some “nice”

projections of a knot.

Definition 2.2.7. A linear (or radial) projection of a knot is said to be regular if there

are only a finite number of double points and no triple points. A regular linear (or

radial) projection of a knot is called a linear knot projection (or radial knot projection).

A linear knot projection is usually called a knot diagram. If the type of projection

is clear, we may omit the word “linear” or “radial” for convenience.

Example 2.2.8. In general, a projection of a knot is not a knot projection. For in-

stance, a knot diagram of a standard unit circle in the xy-plane projected onto xz-plane

is not regular since it contains infinitely many double points.

2.3 Linking number

We give two definitions of linking number defined via homology and knot diagrams.

Proposition 2.3.1. Let K be a knot in R3. Then, H1(R3 −K(S1)) ∼= Z is generated

by the class of meridians. The result also holds for knots in S3.

Proof. Let T be a tubular neighbourhood of K and X = ClR3

(
R3 − T

)
. Note that

H1(R3 −K(S1)) ∼= H1(X) and ∂X = ∂T = X ∩ T ∼= K(S1)× S1. Now consider

K(S1)× S1 i //

j

��

T

��
X // R3

where i and j are the inclusion maps. The Mayer-Vietoris sequence is

· · · // H2(R3) // H1(K(S1)× S1)
(i∗,j∗) // H1(T )⊕H1(X) // H1(R3) // · · · .

By Kunneth’s formula and the fact that H2(R3) ∼= 0 ∼= H1(R3), we have the exact

sequence

0 // H1(K(S1))⊕H0(K(S1)) // H1(K(S1))⊕H1(X) // 0.

By exactness,

H1(K(S1))⊕H0(K(S1)) ∼= H1(K(S1))⊕H1(X),
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and thus

H1(R3 −K(S1)) ∼= H1(X) ∼= H0(K(S1)) ∼= Z.

Note that if µ is a simple closed curve in ∂T which bounds a disc in T (meridian of ∂T ),

then we have i∗[µ] = 0, implying that j∗[µ] is a generator of H1(R3 −K(S1)) ∼= H1(X).

Definition 2.3.2. Let K and L be two disjoint knots in R3. The embedding

L : S1 ↪→ R3 −K(S1) induces

L∗ : H1(L) = Z→ H1

(
R3 −K(S1)

)
= Z,

and the homological linking number of K and L is defined by L∗(1), denoted by

Linking(K,L). The linking number of two disjoint knots in S3 is defined in the same

fashion, using H1

(
S3 −K(S1)

)
= Z.

For any two disjoint smooth knots, we can define the linking number geometrically.

Two knot projections are said to be transverse if they have a finite number of intersec-

tion points, and at each intersection their tangent vectors span a plane. Each transverse

intersection point is a double point that gives a crossing for the projection as follows.

If x, y get mapped to a transverse intersection point q under a projection, we say that

x is over y if ||x− q|| > ||y − q||, and say that x is under y if ||x− q|| < ||y − q||. We

can also add the notion of under crossing or over crossing, and assign to each crossing

a sign ± depending on the orientation of those two knots with the following rules:

Definition 2.3.3. Let K and L be oriented knots in R3 or S3. If they have transverse

knot projections, the transverse linking number of K and L is the sum of the signs of

all crossings where K crosses under L.

We remark that this definition of linking number does not depend on the knot

projection.

Example 2.3.4. (i) If two unknots are not linked, we can project them onto the same

plane such that there are no crossings; so the transverse linking number of those unknots

is zero.

(ii) A Hopf link consists of two unknots linked according to the following diagram
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There are only two crossings in the diagram of these two oriented knots, at the top

for Knot 2 going under Knot 1 and at the bottom for the other way around. By Defini-

tion 2.3.3, the transverse linking number is equal to 1. If we change the orientation of

Knot 1, then the transverse linking number is equal to -1. Hence, this linking number

depends on the orientation.

A proof showing that the two definitions of linking number are equivalent can be

found on Page 132 in [14].

2.4 Gauss linking integral

C
1
(x)

C
2
(x)

Definition 2.4.1. Let C1 and C2 be disjoint loops in R3. The Gauss map of C1 and

C2 is defined by

ΨC1,C2 : S1 × S1 → S2; (x, y) 7→ RC2(y) (C1(x)) =
C1(x)− C2(y)

‖C1(x)− C2(y)‖
.

For each y ∈ S1, the Gauss map ΨC1,C2 defines a loop

ΨC1,C2(−, y) : S1 → S2 ; x 7→ ΨC1,C2(x, y)

which is obtained by seeing C1(S1) from C2(y). Hence the Gauss map ΨC1,C2 gives a

collection of the radial projections of C1(S1) onto a sphere seen from each point along

C2.

Let us recall the definition of the degree of a continuous map. The degree of a map

f : M → N between closed connected oriented n-dimensional manifolds is defined via

f∗ : Hn(M)→ Hn(N) ; f∗([M ]) = (deg f) [N ],
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where [M ] and [N ] are the fundamental classes of M and N , respectively. If f : M → N

is a smooth map between closed connected oriented smooth n-manifolds, then

deg f = Σq∈f−1(p) (sgn dqf)

where p is a regular value of f , and dqf is the differential of f at q. It is also shown

that ∫
M
f∗(ω) = deg f

∫
N
ω

where ω is any n-form on N with pullback n-form f∗(ω). See [3] and Chapter 11 in [8]

for detailed descriptions.

The following proposition provides a relationship between Gauss maps and linking

number, see [13] and Chapter 11 in [8].

Proposition 2.4.2. (Gauss linking integral) Let K and L be two disjoint knots. Then,

we have

deg ΨK,L = Linking(K,L) =
1

4π

∫
S1×S1

Ψ∗K,L (VolS2)

where VolS2 is the volume 2-form on S2 with
∫
S2 VolS2 = 4π.

If α and β are parametrisations of K and L respectively, then∫
S1×S1

Ψ∗K,L (VolS2) =

∫
K

∫
L

det (α(s)− β(t), α′(s), β′(t))

||α(s)− β(t)||3
dtds,

see Theorem 11.14 in [8].

Example 2.4.3. Consider two knots K and L in R3∪{∞} = S3 with parametrisations

α : [0, 2π]→ R3 ; s 7→ (cos s, sin s, 0)

and

β : [−∞,+∞]→ R3 ∪ {∞} ; t 7→ (0, 0,−t)

for K and L, respectively. Note that the knot L is the z-axis whose two ends are

identified at infinity and K,L are disjoint. Then K and L form the Hopf link. By
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Proposition (2.4.2), we have

Linking(K,L) =
1

4π

∫ 2π

0

∫ +∞

−∞

det

 cos s sin s t

− sin s cos s 0

0 0 1


(1 + t2)3/2

dtds

=
1

4π

∫ +∞

−∞

2π

(1 + t2)3/2
dt

=
1

4π
(2π)

[
t√

1 + t2

]+∞

−∞

= 1.

2.5 Loop spaces

Let X be a topological space. The loop space ΛX is the set of maps S1 → X with

compact-open topology. If X is pointed with base point x0, the pointed loop space ΩX

is the subspace of ΛX consisting of pointed maps
(
S1, 1

)
→ (X,x0). The space ΩX

has a natural base point the constant map S1 → x0. The reduced suspension of X is

defined as the quotient space

ΣX = X ∧ S1 =
X × S1

X ∨ S1

with base point the equivalence class containing (x0, 1). Let (Y, y0) be another pointed

space. There is a one-to-one correspondence between the spaces of pointed maps

Φ : Map (X,ΩY ) ∼= Map (ΣX,Y ) ,

sending

f : (X,x0)→ ΩY with f(x) :
(
S1, 1

)
→ (Y, y0)

to

Φf : ΣX → Y ; (x, z) 7→ f(x)(z) ∈ Y.

It is not hard to see that two equivalent pairs in ΣX get mapped to the same point

in Y . Note that if f ' f ′ via ht : X → ΩY , then Φf ' Φf ′ via Φht : ΣX → Y . This

implies that there is an isomorphism between the sets of equivalence classes of pointed

maps

[X,ΩY ] ∼= [ΣX,Y ] . (2.1)

Proposition 2.5.1. The fundamental group of ΩS2 is Z.
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Proof. By (2.1), taking X = S1 and Y = S2 yields

[
S1,ΩS2

] ∼= [ΣS1, S2
] ∼= [S2, S2

]
.

Since each equivalence class of maps S2 → S2 is determined by its degree, it follows

that
[
S2, S2

] ∼= Z; and hence

π1

(
ΩS2

) ∼= [S1,ΩS2
] ∼= Z.

If X is a path-connected space, then the fundamental group of ΛX is also com-

putable, using the homotopy exact sequence of the fibre bundle

ΩX → ΛX
p→ X

with p (λ) = λ (1). This gives rise to a long exact sequence of homotopy groups

· · · // πn+1 (X,x0) // πn (ΩX, [(x0, 1)]) // πn (ΛX, [(x0, 1)]) // πn(X,x0) // · · · ,

see Theorem 4.41 in [3]. Consider the section

X → ΛX ; x 7→ (z 7→ x)
(
z ∈ S1

)
.

Its composite with p is the identity map on X

X → ΛX
p→ X ; x 7→ (z 7→ x) 7→ x.

The section induces the inverse homomorphism of p∗ : πn (ΛX, [(x0, 1)])→ X, making

the exact sequence split. Thus

πn (ΛX, [(x0, 1)]) ∼= πn (ΩX, [(x0, 1)])⊕ πn (X,x0) (2.2)

for all n.

Proposition 2.5.2. The fundamental group of ΛS2 is Z.

Proof. Taking X = S2, by (2.2) and Proposition 2.5.1, we have

π1

(
ΛS2

) ∼= π1

(
ΩS2

)
⊕ π1

(
S2
) ∼= Z.

We next investigate the smooth case. Let ΛdiffX denote the subspace of ΛX of

smooth loops, and ΩdiffX the subspace of ΩX of smooth pointed loops in X.
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Proposition 2.5.3. If X is a compact metric space, then the inclusion map

ι : ΛdiffX ↪→ ΛX

is a homotopy equivalence. In particular, π1

(
ΛdiffX

)
∼= π1 (ΛX). This also holds for

the pointed case.

Proof. Given a map f : S1 → X, by the Smooth Approximation Theorem, Theorem

11.8 in [1], (also Chapter 2 in [4]) f is homotopic to a smooth map g : S1 → X. The

map g can be chosen very close to f , so that there is a continuous choice of smooth

approximations. If j : ΛX → ΛdiffX is such a continuous choice of smooth maps, then

ιj ' idΛX : ΛX → ΛX and jι ' idΛdiffX
: ΛdiffX → ΛdiffX.

In the pointed case, given a pointed map f ′ : S1 → X, by the Smooth Approxima-

tion Theorem, f ′ is homotopic to a smooth map g′ : S1 → X relative to the base point.

The rest follows as in the previous case.

Corollary 2.5.4. The fundamental groups of ΛdiffS
2 and ΩdiffS

2 are Z.

2.6 Solid angle

Definition 2.6.1. Given an oriented loop C in R3 and a point p ∈ R3 disjoint from

C, the normalised vector from p to each point of C traces another oriented loop C ′ on

the unit 2-sphere with centre at p. The solid angle of C subtended at p is measured by

the spherical surface area enclosed by C ′. The sign of the solid angle depends on the

choice of the spherical area, on the left or right of the curve.

C

C’

p

In general, given an oriented loop and a point, it is nontrivial to compute the solid angle.

Chapter 6 illustrates some computation for an unknot involving elliptic integrals. If

the loop consists of a finite number of line segments, it is possible to compute it.

Example 2.6.2. Given a planar triangle in R3 and x a point disjoint from the triangle,

we can perform the radial projection of the triangle ABC from x. The three angles in

this triangle are also denoted by A,B and C. The side lengths of the spherical arcs
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are denoted by a, b and c − they are also equal to the three angles at the centre of the

sphere − as in the figure below.

The solid angle of the given planar triangle is, by definition, equal to the spherical area

of ABC, i.e,

Solid angle = A+B + C − π.

This quantity is known as the spherical excess. The values A,B and C are related to

a, b and c by the cosine rules

cosA =
cos a− cos b cos c

sin b sin c
;

cosB =
cos b− cos a cos c

sin a sin c
;

cosC =
cos c− cos a cos b

sin a sin b
,

where a, b and c can be computed directly from the plane triangle. See more detailed

information in [10] and [19].

Another description regarding solid angles appears in A Treatise On Electricity and

Magnetism − Volume II, [9], by James Clerk Maxwell. He gave several methods to

compute the solid angle, one of which comes from physics. It turns out that the solid

angle of an oriented loop subtended at a point can be regarded as the magnetic potential

of a shell of unit strength whose boundary is the loop. Thus, the solid angle is equal to

the work done by bringing a unit magnetic pole from infinity to the given point against

the magnetic force from the shell. Let C : [0, 1]→ R3 be a loop and

P : (0, 1]→ R3 ; t 7→ (ξ(t), η(t), ζ(t))

be a curve from infinity to the given point P (1) = (ξ(1), η(1), ζ(1)) that does not pass

through the shell. The solid angle is given by the formula

∫ ∫
− 1

r3
det


ξ − x η − y ζ − z
dξ

ds

dη

ds

dζ

ds
dx

dt

dy

dt

dz

dt

 dsdt, (2.3)

where r =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2, and the integral with respect to s and t
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means integrating along P and C, respectively. Moreover, this integral is independent

from the choice of the curve P as long as P does not pass through the shell.
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Chapter 3

Seifert surfaces and their

constructions

In this chapter, we first introduce the notion of closed and open Seifert surfaces. We

next discuss a classical construction of such a closed surface invented by Seifert. We end

the chapter with a construction of a (closed or open) Seifert surface using transversality.

3.1 Closed and open Seifert surfaces

Definition 3.1.1. A closed Seifert surface Σ of a knot K in R3 (or S3) is a compact

orientable 2-manifold embedded in R3 (or S3) such that ∂Σ = K(S1).

Example 3.1.2.

It is not hard to see that the shaded surface has 2 sides; so it is orientable. The

boundary of the surface is a trefoil knot. Hence, this is a closed Seifert surface of a

trefoil knot.

Let us introduce the notion of open Seifert surfaces. Recall that x is a topological

boundary point of a subspace A of a topological space X if for each open neighbourhood

U of x in X,

U ∩A 6= ∅ and U ∩ (X −A) 6= ∅.

The set of topological boundary points of A is called the topological boundary of A in X.

The topological boundary is not canonical − it depends on the ambient space. Note

that two concepts of topological boundary and boundary of manifolds are different.
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For example, S1 ⊂ R2 is a 1-manifold without boundary with topological boundary

S1. The topological space D1 has empty topological boundary, but it is a surface with

boundary S1.

Proposition 3.1.3. If X is an n-manifold with nonempty boundary embedded into

Rn+k, then ∂X is the topological boundary of X in Rn+k. Moreover, the topological

boundary of X is independent from k.

Proof. Since ∂X is the boundary of X, there exists an embedding ∂X × [0,∞) ↪→ X.

This implies that for each x ∈ ∂X and for each open neighbourhood U of x in Rn+k,

U ∩X 6= ∅.

Supposing there were some open neighbourhood V of x in Rn+k such that V ∩(
Rn+k −X

)
= ∅, the manifold X would contain an (n + k)-dimensional subspace.

This is a contradiction.

We are now ready to define an open Seifert surface.

Definition 3.1.4. An open Seifert surface of a knot is an orientable embedded 2-

manifold having the knot as a topological boundary.

Example 3.1.5. (i) If Σ is a closed Seifert surface of a knot in R3 or S3, then Σ−∂Σ

is an open Seifert surface.

(ii) The closure in R3 or S3 of an open Seifert surface is not always a closed Seifert

surface. Let K be an unknot defined as the standard unit circle on the xy-plane. Clearly,

K(S1) is a subspace of S2. Then S2 −K(S1) is an open Seifert surface of K because

the topology boundary of S2 − S1 in R3 is K(S1). Since the closure of S2 − S1 in R3

is S2, it is not a closed Seifert surface of K.

S2 - S1

In this chapter we present two methods for constructing a closed Seifert surface.

3.2 A combinatorial construction of a closed Seifert sur-

face

In 1934 Seifert, [16], showed the existence of a closed Seifert surface of a knot:
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Theorem 3.2.1. Every knot has a closed Seifert surface.

The proof proceeds by constructing a closed Seifert surface for a knot. This con-

struction is called Seifert’s algorithm and the steps are as follows.

(1) Choose a knot projection and orient the knot;

(2) Remove the crossings by joining each incoming strand to the adjacent outgoing

strand, creating a finite number of circles, called Seifert circles;

(3) Fill in the interior of each circle to obtain a disc;

(4) Attach twisted bands to those discs according to the removed crossings.

These 4 steps give a surface bounded by the knot. We explain why this surface is

orientable as follows. In Step (3), we can assign ± to those discs depending on the

orientation of the Seifert circles; if it is counterclockwise, assign +. Hence, according

to Steps (2) and (3), two adjacent discs must have opposite signs, and if two adjacent

discs are nested then they must have the same sign. In Step (4), we can see that

each attaching results a two-sided surface. Since the number of crossings is finite, the

resulting surface must be orientable.

Notice also that this construction of a closed Seifert surface depends on the knot

diagram.

Example 3.2.2. We will perform Seifert’s algorithm to produce a closed Seifert surface

of a trefoil knot.

(1) Choose a knot diagram of the trefoil knot and orient the knot.

(2) Now we remove all the crossings and join the red strands according to the ori-

entation.

(3) Each circle spans a disc.
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(4) Attach three twisted bands corresponding to the three crossings removed in Step

(2).

3.3 A transversality construction of a closed Seifert sur-

face

This construction is a direct consequence of the regular value theorem, see Lemma 1

in [11]. Recall that c ∈ N is a regular value of a smooth function f : M → N if the

differential dxf is surjective for all x ∈ f−1(c).

Theorem 3.3.1. (Regular value theorem) Let Mm and Nn be differential manifolds

and c be a regular value of a smooth map f : M → N . Then f−1(c) is a submanifold

of M of dimension m − n. If g : (Mm, ∂M) → (Nn, ∂N) is a smooth map between

manifolds with boundary and c is a regular value of both g and g| : ∂Mto∂N , then

g−1(c) is a manifold with boundary (g|)−1(c).

Any knot in R3 can be viewed as a knot in R3 ∪ {∞} = S3, and vice versa. Hence,

for simplicity, let us work with knots in S3.

Now let K : S1 ↪→ S3 be a smooth knot and let X denote the knot exterior

ClS3(S3 − (K(S1) × D2)) with boundary ∂X = K(S1) × S1. By the regular value

theorem, if a smooth map f : X → S1 has the restriction

f |∂X : K(S1)× S1 → S1 ; (x, y) 7→ y

and z ∈ S1 is a regular value of both f and f |∂X , then

(
Σ,K(S1)× {z}

)
=
(
f−1(z), f |−1

∂X(z)
)
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is a closed Seifert surface for the knot K. Observe that f |∂X = p0 : K(S1)× S1 → S1

is the projection map onto S1, and f is then an extension of p0. This implies that if

we can extend p0 over X, then we obtain a Seifert surface for the knot K.

Let us now prove a fact if an extension f : X → S1 of p0 exists.

Proposition 3.3.2. If f : X → S1 is an extension of the projection map p0, then the

induced homomorphism f∗ : H1(X)→ H1(S1) is given by linking number, i.e., for any

knot L in S3 disjoint from K, we have

f∗([L]) = Linking(K,L).

Proof. Since H1(X) = Z is generated by the class of meridians, it is enough to show

that f∗ maps any meridian of K to 1. Fixing a point x ∈ K(S1), let m be the inclusion

S1 ↪→ {x}×S1 ⊂ X that defines a meridian of the knot K. Since fm = p0m, it follows

that f∗([m]) = deg fm = 1.

Let f and m be defined as in the previous proposition. If g : X → S1 is another

smooth map such that g∗ : H1(X)→ H1(S1) is given by linking number, then f and g

are homotopic. To show this, we use the following fact.

Proposition 3.3.3. Let Y be any space and Map(Y, S1) denote the set of all maps

Y → S1. The following statements hold:

(i) Map(Y, S1) is an abelian group with (f + g)(y) = f(y) · g(y), where · is the

multiplication on S1. So is the set of homotopy classes [Y, S1] of maps Y → S1.

(ii) The group [Y, S1] is isomorphic to HomZ(H1(Y ),Z) via [f ] 7→ f∗ : H1(Y )→ Z.

Proof. (i) Obvious.

(ii) It is clear that f 7→ f∗ is a homomorphism. Now, given a homomorphism

ϕ : H1(Y ) → Z, we can construct a map g : X → S1 such that g∗ = ϕ. See Theorem

7.1, Section 7, Chapter 2 in [5] for the proof.

By Proposition 3.3.3, f and g are homotopic since they have the same induced

homomorphism.

We are now ready to state the existence theorem of a closed Seifert surface.

Theorem 3.3.4. Let K : S1 ↪→ S3 be a knot and X be the knot exterior of K. Then

there exists a unique homotopy class of maps X → S1 which induces

H1(X)→ H1(S1) = Z ; [L] 7→ Linking(K,L)

for every knot L : S1 ↪→ S3 − K(S1). In particular, a smooth map in this homotopy

class determines a closed Seifert surface for K as a preimage of a regular value.

We have already shown the uniqueness of the homotopy class. It remains to explain

how one can extend the projection map p0 : ∂X = K(S1)× S1 → S1 over X; this will
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be Proposition 3.3.6. The following lemma plays an important role in the proof of the

proposition.

Lemma 3.3.5. The Poincaré dual [l]∗ ∈ H1(∂X) of a canonical longitude of K corre-

sponds to the induced homomorphism

(p0)∗ : H1(∂X)→ H1(S1) = Z.

Proof. The homology group H1(∂X) ∼= Z ⊕ Z is generated by the class of meridians

[m] and the class of canonical longitudes [l]. Also, we know that

[m] ∩ [l]∗ = [m ∩ l] = 1 and [l] ∩ [l]∗ = 0.

Since

(p0)∗ ∈ HomZ(H1(∂X),Z) = H1(∂X)

and

(p0)∗([x]) = [x] ∩ (p0)∗ ∈ H1(S1) = Z

for all [x] ∈ H1(∂X), it follows that

[m] ∩ (p0)∗ = deg p0m = 1 and [l] ∩ (p0)∗ = deg p0l = 0.

Thus, (p0)∗ ∈ H1(∂X) is the Poincaré dual [l]∗ of the canonical longitude l.

Proposition 3.3.6. The projection map p0 : ∂X = K(S1) × S1 → S1 extends to a

map X → S1.

Proof. We know that the homotopy class of p0 corresponds to

(p0)∗ ∈ HomZ(H1(∂X,Z)) = H1(∂X).

Consider the Poincaré-Lefschetz duality diagram, see 6.25 in [20],

· · · // H1(X)
i∗ //

∼=
��

H1(∂X) //

PD
��

H2(X, ∂X) //

∼=
��

· · ·

· · · // H2(X, ∂X) // H1(∂X)
i∗

// H1(X) // · · · ,

where both rows are exact sequences of cohomology and homology groups for the pair

(X, ∂X). We shall show that (p0)∗ belongs to the image of i∗ : H1(X) → H1(∂X).

By Lemma 3.3.5, (p0)∗ is the Poincaré dual [l]∗ ∈ H1(∂X) of the class of canonical

longitudes [l]. Hence, PD((p0)∗) = [l]. Since i∗ ([l]) becomes trivial in H1(X), it

follows that

(p0)∗ ∈ ker(H1(∂X)→ H2(X, ∂X)) = im i∗.

Since [∂X, S1] ∼= H1(∂X), there exists an extension X → S1 of p0.
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We remark that the extension of p0 from Proposition 3.3.6 may not be smooth.

However, such an extension is homotopic rel ∂X to a smooth map f : X → S1.

We have already constructed a Seifert surface, embedded in S3, for K which appears

as the preimage of a regular value of a smooth map

f : ClS3

(
S3 − (K(S1)×D2)

)
→ S1

extending p0 : K(S1)× S1 → S1 ; (x, y) 7→ y. Now consider the restriction

f | : ClR3

(
R3 − (K(S1)×D2)

)
→ S1

of f . We can see that f | is a smooth extension of p0 over the knot exterior in R3

because we ignore only the point ∞ ∈ ClS3

(
S3 − (K(S1)

)
. Hence, if ∗ 6= f(∞) is a

regular value of f , then (f |)−1 (∗) is a closed Seifert surface embedded in R3 for K.

3.4 A transversality construction of an open Seifert sur-

face

In Section 3.3, a closed Seifert surface in R3 is obtained as the preimage of a regular

value of a smooth map

f | : ClR3

(
R3 − (K(S1)×D2)

)
→ S1

extending the projection

p0 : K(S1)× S1 → S1 ; (x, y) 7→ y .

Here we study a similar situation for open Seifert surfaces.

Consider the knot complement R3 −K(S1) of the knot K. We shall show that an

open Seifert surface of K can also be obtained as the preimage of a regular value of a

smooth map

g : R3 −K(S1)→ S1

with some certain property. Notice that we drop the condition that g is an extension

of p0.

Proposition 3.4.1. Let K : S1 ↪→ R3 be a knot and m : S1 ↪→ R3 − K(S1) be a

meridian of K. If g : R3 −K(S1)→ S1 is a smooth map such that

g∗ : H1

(
R3 −K(S1)

)
= Z→ H1(S1) = Z ; [µ] 7→ Linking(K,m)

where [µ] is the homology class representing m, then the preimage g−1(c) of a regular

value c ∈ S1 is an open Seifert surface for K.
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Proof. By the regular value theorem, the preimage Σ0 = g−1(c) is an open surface

embedded into R3 −K(S1). It remains to show that K(S1) is a topological boundary

of Σ0 in R3.

Let z ∈ K(S1) and U be an open neighbourhood in R3 containing z. Then, U

must contain a small meridian m : S1 ↪→ R3 − K(S1) of the knot K. Recall that

the naturality of the Hurewicz map h between the fundamental group and the first

homology group, i.e., the diagram

π1

(
R3 −K(S1)

)
//

h
��

π1(S1) = Z

∼=
��

H1

(
R3 −K(S1)

) g∗ // H1(S1) = Z

is commutative. Note that if [m] ∈ π1

(
R3 −K(S1)

)
, then [gm] ∈ π1

(
S1
)

is equal to

g∗ (h([m])) = g∗(µ) = Linking(K,m) = 1;

hence gm(S1) = S1 and m(S1) must intersect Σ0. This implies U ∩ Σ0 6= ∅.

Suppose that U were contained in Σ0. Then, gm(S1) would be {c} and [gm] ∈
π1(S1) = Z would be equal to 0, a contradiction. Thus, U ∩

(
R3 − Σ0

)
6= ∅.

We remark that Proposition 3.3.3 implies that if g′ : R3 −K(S1) → S1 is another

smooth map such that

g′∗ : H1

(
R3 −K(S1)

)
= Z→ H1(S1) = Z ; [µ] 7→ Linking(K,m),

then g and g′ are homotopic.

One may ask: when is a closed Seifert surface obtained from an open counterpart?

We first notice that the condition “g does not have to be an extension of p0” we have

dropped weakens the geometry of the open Seifert surface Σ0 = g−1(c) in the sense

that Π may be wild near the knot, and in that case it cannot be compactified to be a

closed Seifert surface. Thus, if Σ0 behaves “nicely” near the knot, then a closed Seifert

surface can be obtained from Σ0.

We say that an open Seifert surface Σ0 for the knot K is regular near K if there

exists a (topological) embedding

K(S1)× [0, 1]→ Σ0 ∪K(S1)

such that the restriction

K(S1)× (0, 1]→ Σ0

is smooth.

Therefore, the answer to the question above is that if an open Seifert surface Σ0 for

the knot K is bounded and regular near K, then a closed Seifert surface for K can be
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obtained form Σ0.
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Chapter 4

Definition of the map FG

The aim of this chapter is to define a map

R3 −K(S1)→ S1

that induces an isomorphism between the homology groups, Z. Such a map is con-

structed as the composition of two maps

G : R3 −K(S1)→ ΛdiffS
2

and

F : ΛdiffS
2 → R/4πZ ∼= S1.

The map G depends on the given knot K whereas the map F is independent of K.

4.1 Definition of F

We wish to associate to each smooth loop in S2 a real number modulo 4π. For each

smooth loop λ : S1 → S2, we associate

F (λ) =

∫
D2

δλ∗ω ∈ R

where δλ : D2 → S2 is a smooth extension of λ and ω is a volume 2-form on S2 with∫
S2 ω = 4π.

The extension δλ exists since λ is nullhomotopic, but it is not unique. Hence, dif-

ferent extensions may be associated with different real numbers. It turns out, however,

that the difference between those numbers is a multiple of 4π.

Proposition 4.1.1. The real number F (λ) is uniquely defined in R/4πZ ∼= S1, inde-

pendent of the extension δλ.
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Proof. Let δλ′ : D2 → S2 be another extension of λ. Define

g = δλ ∪ −δλ′ : D2 ∪S1 −D2 → S2.

Notice that S2 ∼= D2 ∪S1 −D2 and we can select the orientation on S2 so that g is

orientation-preserving. We then have∫
S2

g∗(ω) =

∫
D2

δλ∗ω +

∫
−D2

δλ′∗ω

=

∫
D2

δλ∗ω −
∫
D2

δλ′∗ω.

Since ∫
S2

g∗ω = deg g

∫
S2

ω and

∫
S2

ω = 4π,

we have ∫
D2

δλ∗ω −
∫
D2

δλ′∗ω = 4π deg g ∈ 4πZ.

In order to emphasise that F (λ) represents an equivalence class in R/4πZ, we may

write

F (λ) =

∫
D2

δλ∗ω mod 4π.

Example 4.1.2. In simple cases, we can construct an extension of a loop in S2 easily.

For instance, the unit circle

λ : S1 → S2 ; θ 7→ (cos θ, sin θ, 0)

can be extended as

δλ : D2 → S2 ; (θ, r) 7→ (r cos θ, r sin θ,
√

1− r2)

with image the upper hemisphere. The standard volume 2-form on S2 is

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

The pullback form δλ∗(ω) is

δλ∗(ω) = r cos θd(r sin θ) ∧ d(
√

1− r2) + r sin θd(
√

1− r2) ∧ d(r cos θ)

+
√

1− r2d(r cos θ) ∧ d(r sin θ)

=
r√

1− r2
dr ∧ dθ.
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Thus,

F (λ) =

∫
D2

r√
1− r2

dr ∧ dθ =

∫ 2π

0

∫ 1

0

r√
1− r2

drdθ = 2π.

Remark 4.1. Any injective loop (simple closed curve) in S2 divides S2 into two con-

nected components. If λ : S1 → S2 is such a loop, then we are able to choose an

extension δλ : D2 → S2 such that δλ(D2−S1) is one of the two connected components

of S2 − im λ. This implies that F (λ) is equal to the (signed) area of that connected

component.

4.2 Properties of F

This section shows that the map F induces isomorphisms between both fundamental

groups and homology groups.

Proposition 4.2.1. The induced homomorphism

F∗ : π1

(
ΛdiffS

2
)
→ π1

(
S1
)

is an isomorphism.

Proof. Let i : ΩdiffS
2 ↪→ ΛdiffS

2 be the inclusion. It is sufficient to show that the

restriction F |ΩdiffS2 = Fi induces an isomorphism(
F |ΩdiffS2

)
∗

= F∗i∗ : π1

(
ΩdiffS

2
)
→ π1

(
S1
)

since i∗ : Z→ Z is an isomorphism.

Let N be the north pole of S2. A generator of π1

(
ΩdiffS

2
) ∼= Z is given by the

loop

β : S1 → ΩdiffS
2 ; t 7→ (βt : s 7→ s ∧ t)

where s ∧ t ∈ S1 ∧ S1 =
S1 × S1

S1 ∨ S1
= S2.

N

S1

1
(1,1)

S2βt(S
1)

βt
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From the picture, the red part is identified as the base point N of S2. For each t ∈ S1,

the loop βt is based at N . If t = 1 ∈ S1, the loop

β1 : s 7→ s ∧ 1 = N

is a constant loop at the base point N . Let Pθ : − sin θy + cos θz = cos θ be the plane

obtained by rotating the plane z = 1 anticlockwise about the line {y = 0, z = 1} with

angle θ ∈ [0, π) and let Cθ be the intersection of Pθ and S2.

x

y

z

N

Pθ : -sinθ y + cosθ z = cosθ

z = 1

Note that if (a, b, c) is a point in the intersection, then

a2 + (b+ sin θ cos θ)2 +
(
c− cos2 θ

)2
= sin2 θ.

So, the intersection is the circle of radius sin θ lying on S2 with centre(
0,− sin θ cos θ, cos2 θ

)
. There is a one-to-one correspondence between βt and Cθ for all

t ∈ S1 and θ ∈ [0, π). By Remark 4.1, we know that F (βt) is equal to the area of one

of the two connected components of S2 − im βt. For each t ∈ S1, consider θ ∈ [0, π)

corresponding to t and

Wθ :=
{

(x, y, z) ∈ S2| (x, y, z) ∈ Pθ′ for some 0 6 θ′ < θ
}
.

We would like to find the area of Wθ. To do so, we rotate Wθ to the standard position.

θ

wθ

x

y

z

sinθ
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Let ϕ ∈ [0, 2π] and γ ∈ [0, π] represent the angles in spherical coordinates. Then the

area of Wθ can be computed by the integral∫ θ

0

∫ 2π

0
sin γdϕdγ = 2π

∫ θ

0
sin γdγ

= 2π (1− cos θ) .

Hence

F (βt) = 2π (1− cos θ) ∈ [0, 4π).

Note that there is a one-to-one correspondence between θ ∈ [0, π) and 2π(1−cos θ) ∈
[0, 4π). Thus, there is a one-to-one correspondence between t ∈ S1 and 2π(1− cos θ) ∈
[0, 4π). This implies that

F∗ (β) : S1 → R/4πZ ; t 7→ 2π(1− cos θ)

is a generator of π1

(
S1
)
. Therefore

(
F |ΩdiffS2

)
∗

maps a generator of π1

(
ΩdiffS

2
)

to

a generator of π1

(
S1
)
, and hence an isomorphism.

Corollary 4.2.2. The induced map FH∗ : H1

(
ΛdiffS

2
) ∼= Z → H1(S1) ∼= Z is an

isomorphism.

Proof. It follows from Hurewicz’s theorem and the naturality of Hurewicz maps.

4.3 Definition of G

Given a smooth knot K : S1 ⊂ R3, we wish to associate to each point in R3 −K(S1) a

loop in S2. Define

G : R3 −K(S1)→ ΛdiffS
2 ; u 7→

(
G(u) : S1 → S2

)
with

G (u) (y) =
K (y)− u
‖K (y)− u‖

.

Since K is smooth, so is G(u) for all u ∈ R3 − K(S1). Hence, the definition of G is

well-defined. We remark that the definition of the map G depends on the knot.

Geometrically, G is the collection of the projections of the knot K onto S2 from all

the points in R3 −K(S1).

Example 4.3.1. Let K : S1 → R3 be the unknot in R3 given by

K(θ) = (cos θ, sin θ, 0)
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for θ ∈ [0, 2π), and let u = (u1, u2, u3) ∈ R3 −K(S1). By the definition of G, we have

G(u)(θ) =
(cos θ − u1, sin θ − u2,−u3)√

(cos θ − u1)2 + (sin θ − u2)2 + u2
3

.

If u1 = u2 = 0, we have

G(0, 0, u3)(θ) =
(cos θ, sin θ,−u3)√

1 + u2
3

.

This matches our geometric intuition that we see a circle when we look at the unknot

from a point on z-axis.

It is more interesting when u3 = 0. Notice that

G(u1, u2, 0)(θ) =
(cos θ − u1, sin θ − u2, 0)√

u2
1 + u2

2 + 1− 2u1 cos θ − 2u2 sin θ
.

If u2
1 + u2

2 < 1, then G(u1, u2, 0)(θ) is injective. If u2
1 + u2

2 > 1, then there will be two

values of θ projected to the same point in S2. Imagine that we look at the unknot from

a point on the xy- plane. We see a circle (the unknot) if we are inside the open unit

disc, but we see only an arc if we are outside.

It is slightly more complicated when u1, u2, u3 6= 0. In this case, we see an ellipse.

To see this, we draw a cone having the unknot as the base and having u as the vertex.

The image G(u)(S1) is the intersection of this cone and the unit sphere centred at u.

Equivalently, G(u)(S1) is obtained by intersecting the cone with some plane perpendic-

ular to the radius vector of this unit sphere. Since the plane is not parallel to the base

of the cone, the intersection is an ellipse.

The example above shows that G gives a collection of the projections of the unknot

onto S2 from all the points outside the unknot. At most points, the projections are

injective loops.

4.4 Properties of G

We investigate some properties of the induced homomorphisms of G on the level of

fundamental groups and homology groups.

Proposition 4.4.1. The induced homomorphism

G∗ : π1

(
R3 −K(S1)

)
→ π1

(
ΛdiffS

2
) ∼= Z

sends any meridian m of the knot K to 1. Moreover, if L : S1 ↪→ R3−K(S1) is another

knot, then G∗ ([L]) = Linking(K,L).

Proof. Let m : S1 ↪→ R3−K(S1) be a meridian of K. Then, Linking(K,m) = 1. Note
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that for each x, y ∈ S1,

G (m(y)) (x) =
K(x)−m(y)

‖K(x)−m(y)‖
= ΨK,m(x, y)

where ΨK,m is the Gauss map of K and m. Since G∗ ([m]) = [Gm] ∈ π1

(
ΛdiffS

2)
) ∼= Z

and Gm defines the Gauss map ΨK,m : S1 × S1 → S2, it follows that [Gm] represents

the degree of ΨK,m, i.e.,

[Gm] = deg ΨK,m = Linking(K,m) = 1.

The second statement follows by replacing the meridian m by the knot L : S1 ↪→
R3 −K(S1).

Corollary 4.4.2. The induced homomorphism GH∗ : H1

(
R3 −K(S1)

) ∼= Z →
H1

(
ΛdiffS

2
) ∼= Z of G is an isomorphism.

Proof. Consider the commutative diagram

π1

(
R3 −K(S1)

) G∗ //

h
��

π1

(
ΛdiffS

2)
) ∼= Z

∼=
��

H1

(
R3 −K(S1)

) GH
∗ // H1

(
ΛdiffS

2)
) ∼= Z

where h is the Hurewicz map. We know that h sends all the meridians to the homology

class of meridians [µ] ∈ H1

(
R3 −K(S1)

) ∼= Z and the class [µ] is a generator of

H1

(
R3 −K(S1)

)
. Since

GH∗ ([µ]) = G∗[m] = [Gm] = 1,

GH∗ sends a generator of H1

(
R3 −K(S1)

) ∼= Z to a generator of H1

(
ΛdiffS

2
) ∼= Z.

Thus, GH∗ is an isomorphism.

4.5 Properties of FG

We have already seen some properties of the maps F and G regarding their induced

homomorphisms. We next study the induced homomorphism

(FG)H∗ : H1

(
R3 −K(S1))

) ∼= Z→ H1(S1) ∼= Z

of the composite map FG.

Proposition 4.5.1. The induced homomorphism

(FG)H∗ : H1

(
R3 −K(S1))

) ∼= Z→ H1(S1) ∼= Z
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is the isomorphism given by

(FG)H∗ ([L]) = Linking(K,L)

for every knot L : S1 ↪→ R3 −K(S1).

Proof. By Corollary 4.2.2,

FH∗ : H1

(
ΛdiffS

2
)
→ H1

(
S1
)
)

is an isomorphism, since F∗ is an isomorphism between the fundamental groups. By

Corollary 4.4.2,

GH∗ : H1

(
R3 −K(S1)

)
→ H1

(
ΛdiffS

2
)

is an isomorphism. Thus, (FG)H∗ = FH∗ G
H
∗ is also an isomorphism.

Let m : S1 ↪→ R3 − K(S1) be a meridian of K with [m] ∈ π1

(
R3 −K(S1)

)
and

let [µ] ∈ H1

(
R3 −K(S1)

)
be the class corresponding to [m] via Hurewicz map h. We

wish to show that (FG)H∗ ([µ]) = 1 = Linking(K,m). By Proposition 4.4.1, we know

that G∗[m] = [Gm] ∈ π1

(
ΛdiffS

2
) ∼= Z represents 1. Hence,

(FG)H∗ ([µ]) = FH∗ G
H
∗ ([µ]) = FH∗ G

H
∗ h([m]) = FH∗ (hG∗([m])) = FH∗ (h[Gm]).

Since h[Gm] ∈ H1(ΛdiffS
2) is a generator and FH∗ is an isomorphism, we obtain

(FG)H∗ ([µ]) = 1 = Linking(K,m).

Let L be a knot in R3 − K(S1) with [L] ∈ π1(R3 − K(S1)). Then,

h[L] ∈ H1(R3 −K(S1)). Since

h[L] = Linking(K,L)[µ],

we have

(FG)H∗ (h[L]) = Linking(K,L)(FG)H∗ ([µ]) = Linking(K,L)

as desired.

A geometric interpretation of the composite function FG can be described when K

is an unknot.

Example 4.5.2. By Example 4.3.1, G(u) is an injective loop for most points u. How-

ever, if u is on the xy-plane with ‖u‖ > 1, then G(u) is not injective.

Now we consider those points u at which G(u) is injective. By Remark 4.1, G(u)

divides S2 into two connected components and F (G(u)) is equal to the (signed) area of

one of those. Hence, we may say that FG(u) is equal to the (signed) area of a region

on S2 enclosed by G(u).
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Let u be on the xy-plane with ‖u‖ > 1 and let u′ ∈ R3 −K(S1) be a point close to

u. Observe that G(u′) encloses a small region or almost all of S2. By continuity, we

may guess that FG(u) would be 0 or 4π (0 = 4π ∈ 4πZ). It will be computed explicitly

using a certain formula.

Corollary 4.5.3. The map FG : R3 −K(S1)→ R/4πZ is surjective.

We shall show later in Corollary 5.3.8 that FG is a smooth map, but now we would

like to use that fact to state the following proposition.

Proposition 4.5.4. Let K : S1 ⊂ R3 be a smooth knot. If t ∈ R/4πZ is a regular

value of FG, then (FG)−1(t) is an open Seifert surface for K.

Proof. It follows directly from Propositions 3.4.1 and 4.5.1.
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Chapter 5

Definition of FG via solid angle

The definition of F , in Chapter 4, involves an extension of a loop in S2. When the loop

is not injective, there is not a direct way to relate FG and the area of some region on

S2. In this chapter, we use the notion of solid angle, see Section 2.6, to define the map

Φ : R3 −K(S1)→ R/4πZ ∼= S1

and we shall show that Φ = FG. The map Φ is more geometric and computable. We

are also able to derive a formula for Φ in terms of a line integral over the knot.

5.1 Definition of Φ

Let K be a smooth knot in R3. For each u ∈ R3 −K(S1), we choose a closed Seifert

surface Σu with u /∈ Σu and define

Πu : Σu → S2 ; y 7→ y − u
‖y − u‖

.

Then, im Πu is the projection of Σu onto S2 from u. Notice also that

Πu(∂Σu) = Πu(K(S1)) = G(u)(S1).

Now we define Φ : R3 −K(S1)→ R/4πZ ∼= S1 by

Φ(u) =

∫
Σu

Π∗u(ω)

where

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

is a volume 2-form on S2 with
∫
S2 ω = 4π.

We need to show that the definition of Φ is well-defined. First notice that we can

always select a closed Seifert surface Σu such that u /∈ Σu. If u belongs to a closed

Seifert surface, then we slightly push a small neighbourhood of u so that it avoids u.
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Hence, Σu exists. We next show that Φ(u) does not depend on the choice of Σu.

Proposition 5.1.1. If Σu and Σ′u are two distinct closed Seifert surfaces for K that

both avoid u, then the difference∫
Σu

Π∗u(ω)−
∫

Σ′u

(Π′u)∗(ω)

is a multiple of 4π.

Proof. Since ∂Σu = ∂Σ′u = im K, we can form a closed surface

C = Σu t −Σ′u

by taking a disjoint union and identifying ∂Σu with −∂Σ′u, and also form a map

f = Πu t −Π′u : C → S2

Since

4π deg f = deg f

∫
S2

ω =

∫
C
f∗(ω),

we have ∫
Σu

Π∗u(ω)−
∫

Σ′u

(Π′u)∗(ω) =

∫
C
f∗(ω) = 4π deg f ∈ 4πZ.

We may write

Φ(u) =

∫
Σu

Π∗u(ω) mod 4π

to emphasise that Φ(u) represents an equivalence class in R/4πZ.

The quantity Φ(u) is, by definition, the signed area of Πu(Σu) ⊂ S2. Equivalently,

Φ(u) is equal to the signed area of the shadow of Σu on the unit sphere with centre u.

Thus, Φ(u) is the solid angle of Σu subtended at u.

5.2 Φ is equal to FG

Recall from Chapter 4 that

FG(u) =

∫
D2

δG(u)∗(ω) ∈ R/4πZ

where δG(u) : D2 → S2 is a smooth extension of the loop G(u) : S1 → S2.

If K is an unknot and G(u) is an injective loop in S2, then δG(u) and Σu can be

chosen such that δG(u)(D2) = Πu(Σu). In this case,

FG(u) =

∫
D2

δG(u)∗(ω) =

∫
Σu

Π∗u(ω) = Φ(u).
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We next prove that Φ = FG for any smooth knot K : S1 ⊂ R3.

Theorem 5.2.1. Let u ∈ R3 − K(S1) and Σu be a closed Seifert surface for K that

avoids u. Then

FG(u) =

∫
Σu

Π∗u(ω) mod 4π.

Proof. We show that for each u ∈ R3 −K(S1)∫
D2

δG(u)∗(ω) =

∫
Σu

Π∗u(ω)

by reducing the domain of integration to ∂D2 = S1 for the left integral and ∂Σu = im K

for the right integral. We need the two following lemmas:

Lemma 5.2.2. Let λ : S1 → S2 be a smooth loop. Then there exists an extension

δλ : D2 → S2 of λ which is not surjective.

Proof. Notice that λ is not surjective because the preimage of a regular value of λ

cannot be of codimension 2.

Let z ∈ S2 be a point outside im λ. Since π1(S2 − {z}) is trivial, there exists a

smooth map

δλ : D2 → S2 − {z} ⊂ S2

extending λ. The extension δλ is clearly not surjective, considered as a map to S2.

We remark that, from the proof of Lemma 5.2.2, we can choose an extension of

δλ : D2 → S2 which misses out z for any z ∈ S2 − im λ.

Lemma 5.2.3. For each u ∈ R3 −K(S1), we can choose a closed Seifert surface Σu

such that u /∈ Σu and Πu : Σu → S2 is not surjective.

Proof. Let Σu be a closed Seifert surface that avoids u. We shall modify Σu so that a

certain straight line from u to infinity does not meet the modified surface.

Consider a ray ru : [0,∞) → R3 with r(0) = u. With small perturbation, let us

assume that im ru ∩Σu is a finite set, consisting of x1, x2, . . . , xn (if the intersection is

empty, we are done). Notice that we can always choose ru such that xi /∈ K(S1) since

G(u) : S1 → S2 is not surjective. In addition, we assume that ‖u − xi‖ is increasing

with respect to i, i.e.

‖u− xi‖ < ‖u− xi+1‖.

u
x1

x2

xn-1
xn
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For each i ∈ {1, 2, . . . , n}, choose a small 2-disc Di ⊂ Σu containing xi and define a

small tube

Ti : Di × [0, 1] ↪→ R3 ; (a, t) 7→ a+ tεi(u− xi)

for some εi > 1 (just over 1). Notice that Ti(Di × {0}) = Di ⊂ Σu and im Ti contains

the line segment between u and xi. In addition, we assume that

Di $ Di+1 and εi < εi+1

for all i, and Dn is chosen so small that im Tn − Dn does not intersect Σu. With all

this, we obtain

im Ti $ im Ti+1

for all i.

u x1 x2 xn-1 xn

Now we remove each Di − ∂Di ⊂ Σu and glue ∂(im Ti) −Di back along ∂Di. By

our construction, all ∂(im Ti)−Di are disjoint and they intersect Σu only at ∂Di. Note

that the resulting space is a surface with corners. We may have to smooth all the

corners to obtain a new closed Seifert surface with the required property.

For each u ∈ R3 −K(S1) and for each closed Seifert surface for K that avoids u,

the image of Πu is the shadow of the closed Seifert surface on S2. By Lemma 5.2.3,

we can see that if z ∈ S2 is not in the shadow of K(S1), there exists a closed Seifert

surface Σu such that z /∈ Πu(Σu).

We are now ready to prove the theorem. By Lemmas 5.2.2 and 5.2.3, we can choose

an extension δG(u) : D2 → S2 of the loop G(u) and a closed Seifert surface Σu avoiding

u such that the images G(u)(D2) and Πu(Σu) miss out the same point z for some z ∈ S2.

Consider the restriction

ω′ = (ω)|S2−{z}

of ω. The form ω′ is an exact 2-form on S2−{z} since H1
dR(S2−{z}) is trivial. Then,

there is a 1-form η on S2 − {z} such that dη = ω′. By Stokes’ Theorem, we have∫
D2

δG(u)∗(ω) =

∫
D2

δG(u)∗(ω′) =

∫
D2

δG(u)∗(dη) =

∫
D2

d(δG(u)∗(η)) =

∫
S1

G(u)∗(η)

and ∫
Σu

Π∗u(ω) =

∫
Σu

Π∗u(ω′) =

∫
Σu

Π∗u(dη) =

∫
Σu

dΠ∗u(η) =

∫
K(S1)

(Πu|K(S1))
∗η.

The two integrals above are equal because K : S1 → K(S1) ⊂ R3 is of degree 1 and
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G(u) = ΠuK, i.e.,∫
S1

G(u)∗(η) =

∫
S1

K∗Π∗u(η) =

∫
K(S1)

(Πu|K(S1))
∗η.

We remark that FG and Φ may be used interchangeably, but FG will be preferable.

5.3 A line-integral formula

The proof of Theorem 5.2.1 paves the way for a line-integral formula. It has been shown

that

FG(u) =

∫
K(S1)

(Πu|K(S1))
∗η mod 4π (5.1)

where η is a 1-form on S2 − {z} for some z ∈ S2, having the property that

dη = ω′ = ω|S2−{z}.

In this chapter, we compute an explicit formula of the line integral (5.1). In order

to do so, we find an explicit expression of the 1-form η and compute the pullback form

(Πu|K(S1))
∗η explicitly.

Let z = (a, b, c) ∈ S2 be a point outside Πu(Σu). As before, let

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

be a volume 2-form on S2, and let

ω′(a,b,c) = ω|{(a,b,c)} and ω′(0,0,1) = ω|{(0,0,1)}

be the 2-forms restricted on S2 − {(a, b, c)} and S2 − {(0, 0, 1)}, respectively. In fact,

ω may be viewed as a 2-form on any subset of R3. Hence ω, ω′(a,b,c) and ω′(0,0,1) have

the same expression

xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy,

but ω′(a,b,c) and ω′(0,0,1) may be rearranged into other forms. We shall find a 1-form η

on S2 − {(a, b, c)} such that dη = ω′(a,b,c) as follows.

S2 − {(a, b, c)}

R
��

T(a,b,c)

&&
S2 − {(0, 0, 1)}

T(0,0,1)

// R2
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Define the stereographic projection

T(a,b,c) : S2 − {(a, b, c)} → R2

as the composite of T(0,0,1) and R where

T(0,0,1) : S2 − {(0, 0, 1)} → R2 ; (x, y, z) 7→
(

x

1− z
,

y

1− z

)
is the stereographic projection of S2 − {(0, 0, 1)} and R is the rotation in R3 with

rotation matrix (a 6= ±1)

[R] =


√

1− a2
−ab√
1− a2

−ac√
1− a2

0
c√

1− a2

−b√
1− a2

a b c

 .

If a = ±1, the rotation matrix is  0 0 ∓1

0 1 0

±1 0 0

 .

Since T(0,0,1) and R are diffeomorphisms, so is T(a,b,c). We start with computing the

2-form on R2 corresponding to ω′(0,0,1).

Proposition 5.3.1. (
T−1

(0,0,1)

)∗
ω′(0,0,1) =

−4

(x2 + y2 + 1)2
dx ∧ dy.

Proof. The inverse of T(0,0,1) is given by

T−1
(0,0,1)(x,y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
, 1− 2

x2 + y2 + 1

)
.

Here,

x =
2x

x2 + y2 + 1
, y =

2y

x2 + y2 + 1
and z = 1− 2

x2 + y2 + 1
.

Setting t =
2

x2 + y2 + 1
, we have dt = −t2(xdx + ydy). Note that

dx = d(xt) = xdt+ tdx and dy = d(yt) = ydt+ tdy.
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Hence,(
T−1

(0,0,1)

)∗
ω′(0,0,1) = xtd(yt) ∧ (−dt) + yt(−dt) ∧ d(xt) + (1− t)d(xt) ∧ d(yt)

= xtdt ∧ dy + ytdx ∧ dt+ (t2 − t3)dx ∧ dy

= xt(−xt2dx ∧ dy) + yt(−yt2dx ∧ dy) + (t2 − t3)dx ∧ dy

= (−t3(x2 + y2 + 1) + t2)dx ∧ dy

= −t2dx ∧ dy =
−4

(x2 + y2 + 1)2
dx ∧ dy.

The 2-form
(
T−1

(0,0,1)

)∗
ω′(0,0,1) is exact. So it is the differential of some 1-form on

R2. As in the previous proposition, set

t =
2

x2 + y2 + 1
.

It is not hard to see that

d

(
2ydx− 2xdy

x2 + y2 + 1

)
= d(ytdx− xtdy) = −t2dx ∧ dy =

−4

(x2 + y2 + 1)2
dx ∧ dy.

We now claim that

T ∗(a,b,c)

(
−4dx ∧ dy

(x2 + y2 + 1)2

)
= ω′(a,b,c). (5.2)

If this is true, we will have

FG(u) =

∫
Σu

Π∗uω
′
(a,b,c)

=

∫
Σu

Π∗uT
∗
(a,b,c)

(
−4dx ∧ dy

(x2 + y2 + 1)2

)
=

∫
Σu

Π∗uT
∗
(a,b,c)d

(
2ydx− 2xdy

x2 + y2 + 1

)
=

∫
K(S1)

(Πu|K(S1))
∗T ∗(a,b,c)

(
2ydx− 2xdy

x2 + y2 + 1

)

and

η = T ∗(a,b,c)

(
2ydx− 2xdy

x2 + y2 + 1

)
.

Notice that

T ∗(a,b,c)

(
−4dx ∧ dy

(x2 + y2 + 1)2

)
= R∗T ∗(0,0,1)

(
−4dx ∧ dy

(x2 + y2 + 1)2

)
= R∗ω′(0,0,1). (5.3)

Hence, in order to show (5.2), we only need to show that the rotation R preserves the
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form ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

Proposition 5.3.2. Let R be any rotation in R3. Then,

R∗ω = ω.

Here, ω may be viewed as a 2-form on any subset of R3.

Proof. Let Ri be the i-th row of the matrix [R] and Cj the j-th column of the matrix

[R] for i, j ∈ {1, 2, 3}. We may think of Ri and Cj as vectors in R3, i.e.,

Ri =

ri1ri2
ri3

 and Ci =

r1j

r2j

r3j

 ,

where rij is the entry [R] from the i-th row and the j-th column. Let

x =

xy
z


be the position vector of (x, y, z). Hence,

R∗ω = (R1 · x)d(R2 · x) ∧ d(R3 · x) + (R2 · x)d(R3 · x) ∧ d(R1 · x)

+ (R3 · x)d(R1 · x) ∧ d(R2 · x)

= (R1 · x)(R2 · dx) ∧ (R3 · dx) + (R2 · x)(R3 · dx) ∧ (R1 · dx)

+ (R3 · x)(R1 · dx) ∧ (R2 · dx)

= (R1 · x)(R2 ×R3) ·

dy ∧ dzdz ∧ dx
dx ∧ dy

+ (R2 · x)(R3 ×R1) ·

dy ∧ dzdz ∧ dx
dx ∧ dy



+ (R3 · x)(R1 ×R2) ·

dy ∧ dzdz ∧ dx
dx ∧ dy

 .

Since [R] is an orthogonal matrix with determinant 1, we have [R]−1 = [R]T and

[R] = adj[R], which implies that

R1 ×R2 = R3, R2 ×R3 = R1 and R3 ×R1 = R2.
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Thus,

R∗ω = ((R1 · x)r11 + (R2 · x)r21 + (R3 · x)r31) dy ∧ dz

+ ((R1 · x)r12 + (R2 · x)r22 + (R3 · x)r32) dz ∧ dx

+ ((R1 · x)r13 + (R2 · x)r23 + (R3 · x)r33) dx ∧ dy

= ((C1 · C1)x+ (C2 · C1)y + (C3 · C1)z) dy ∧ dz

+ ((C1 · C2)x+ (C2 · C2)y + (C3 · C2)z) dz ∧ dx

+ ((C1 · C3)x+ (C2 · C3)y + (C3 · C3)z) dx ∧ dy

= xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

= ω.

Corollary 5.3.3. The map FG : R3 − im K → R/4πZ ∼= S1 can be expressed as the

line integral

FG(u) =

∫
K(S1)

(Πu|K(S1))
∗η

where η = T ∗(a,b,c)

(
2ydx− 2xdy

x2 + y2 + 1

)
.

Proof. We just verify that dη = ω′(a,b,c). By Proposition 5.3.1 and Equation (5.3), we

have

dη = T ∗(a,b,c)d

(
2ydx− 2xdy

x2 + y2 + 1

)
= R∗T ∗(0,0,1)

(
−4dx ∧ dy

(x2 + y2 + 1)2

)
= R∗ω′(0,0,1) = ω′(a,b,c).

The rightmost equality follows from Proposition 5.3.2.

To find an explicit expression of

(Πu|K(S1))
∗η = (Πu|K(S1))

∗R∗T ∗(0,0,1)

(
2ydx− 2xdy

x2 + y2 + 1

)
,

we calculate one pullback form at a time.

Proposition 5.3.4.

T ∗(0,0,1)

(
2ydx− 2xdy

x2 + y2 + 1

)
=
ydx− xdy

1− z
.

Proof. Recall that

T(0,0,1) : S2 − {0, 0, 1} → R2 ; (x, y, z) 7→
(

x

1− z
,

y

1− z

)
.

Here,

x =
x

1− z
and y =

y

1− z
.
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Using x2 + y2 + z2 = 1, we have

2

x2 + y2 + 1
=

2(
x

1− z

)2

+

(
y

1− z

)2

+ 1

= 1− z.

Hence,

T ∗(0,0,1)

(
2ydx− 2xdy

x2 + y2 + 1

)
= yd

(
x

1− z

)
− xd

(
y

1− z

)
= y

(
dx

1− z
− xd(1− z)

(1− z)2

)
− x

(
dy

1− z
− yd(1− z)

(1− z)2

)
=
ydx− xdy

1− z
.

Proposition 5.3.5.

R∗
(
ydx− xdy

1− z

)
=

(cy − bz)dx+ (az − cx)dy + (bx− ay)dz

1− (ax+ by + cz)

=

det

dx dy dz

x y z

a b c


1− (ax+ by + cz)

Proof. Recall that if a 6= ±1, then

R(x, y, z) =

(
(1− a2)x− aby − acz√

1− a2
,
cy − bz√

1− a2
, ax+ by + cz

)
.

Computing R∗(ydx− xdy), we have

cy − bz
1− a2

((1− a2)dx− abdy − acdz)− (1− a2)x− aby − acz
1− a2

(cdy − bdz)

= (cy − bz)dx+ (ab2z − (1− a2)cx+ ac2z)
dy

1− a2

+ (−ac2y + (1− a2)bx− ab2y)
dz

1− a2
.

Using
b2 + c2

1− a2
= 1, we have

R∗
(
ydx− xdy

1− z

)
=

(cy − bz)dx+ (az − cx)dy + (bx− ay)dz

1− (ax+ by + cz)
.

If a = ±1, the rotation is given by

(x, y, z) 7→ (∓z, y,±x)
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and hence the pullback form is
±(zdy − ydz)

1∓ x
.

Proposition 5.3.6. Let y = (y1, y2, y3) ∈ K(S1). Then, we have

(Πu|K(S1))
∗η = (Πu|K(S1))

∗
(

(cy − bz)dx+ (az − cx)dy + (bx− ay)dz

1− (ax+ by + cz)

)

=

det

 dy1 dy2 dy3

y1 − u1 y2 − u2 y3 − u3

a b c


‖y − u‖ (‖y − u‖ − (a(y1 − u1) + b(y2 − u2) + c(y3 − u3)))

.

Proof. For each u = (u1, u2, u3) ∈ R3 −K(S1), recall that

Πu(y1, y2, y3) =
(y1 − u1, y2 − u2, y3 − u3)

‖y − u‖

for all y = (y1, y2, y3) ∈ Σu. Here,

x =
y1 − u1

‖y − u‖
, y =

y2 − u2

‖y − u‖
and z =

y3 − u3

‖y − u‖
.

Then,

(Πu|K(S1))
∗η =

det


d

(
y1 − u1

‖y − u‖

)
d

(
y2 − u2

‖y − u‖

)
d

(
y3 − u3

‖y − u‖

)
y1 − u1

‖y − u‖
y2 − u2

‖y − u‖
y3 − u3

‖y − u‖
a b c


1−

(
a
y1 − u1

‖y − u‖
+ b

y2 − u2

‖y − u‖
+ c

y3 − u3

‖y − u‖

) .

Note that

d

(
yi − ui
‖y − u‖

)
=

dyi
‖y − u‖

− (yi − ui)d‖y − u‖
‖y − u‖2

for all i. Multiplying the second row by
d‖y − u‖
‖y − u‖

and adding to the first row, we have

(Πu|K(S1))
∗η =

det


dy1

‖y − u‖
dy2

‖y − u‖
dy3

‖y − u‖
y1 − u1

‖y − u‖
y2 − u2

‖y − u‖
y3 − u3

‖y − u‖
a b c


1−

(
a
y1 − u1

‖y − u‖
+ b

y2 − u2

‖y − u‖
+ c

y3 − u3

‖y − u‖

) ,
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and hence

(Πu|K(S1))
∗η =

1

‖y − u‖2
det

 dy1 dy2 dy3

y1 − u1 y2 − u2 y3 − u3

a b c


1−

(
a
y1 − u1

‖y − u‖
+ b

y2 − u2

‖y − u‖
+ c

y3 − u3

‖y − u‖

) .

Theorem 5.3.7. Let u = (u1, u2, u3) ∈ R3 −K(S1) and z = (a, b, c) ∈ S2 −G(u)(S1).

Then, FG : R3 −K(S1)→ R/4πZ ∼= S1 can be expressed as the line integral

FG(u1, u2, u3) =

∫
K(S1)

det

 dy1 dy2 dy3

y1 − u1 y2 − u2 y3 − u3

a b c


‖y − u‖ (‖y − u‖ − (a(y1 − u1) + b(y2 − u2) + c(y3 − u3)))

=

∫
K(S1)

(
y − u
‖y − u‖

× z
)
·Dy

‖y − u‖
(

1− y − u
‖y − u‖

· z
) .

Moreover, this formula is independent of the choice of z.

Proof. It follows from previous propositions.

It is not obvious from the original definition of FG that it is a smooth map, but

from this formula we can see that this is indeed the case. The formula above proves it.

Corollary 5.3.8. The map FG : R3 −K(S1)→ R/4πZ is a smooth map.

Proof. As we integrate along the knot, it is sufficient to verify that the integrand

det

 dy1 dy2 dy3

y1 − u1 y2 − u2 y3 − u3

a b c


‖y − u‖ (‖y − u‖ − (a(y1 − u1) + b(y2 − u2) + c(y3 − u3)))

is smooth at each point u ∈ R3 − K(S1). Since the factor 1/‖y − u‖ is smooth on

R3 − K(S1), it remains to show that there exists a small neighbourhood V of u in

R3 −K(S1) and z = (a, b, c) ∈ S2 such that

y − u′

‖y − u′‖
6= z

for all y ∈ K(S1) and u′ ∈ V .
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Choose z /∈ K(S1) such that ‖z‖ = 1 and

−1 6
y − u
‖y − u‖

· z 6M < 1

for all y ∈ K(S1). Hence,
y − u′

‖y − u′‖
· z cannot jump to 1 when u′ is very close to u. In

other words, we can choose a neighbourhood V which is so small that the dot product
y − u′

‖y − u′‖
· z is away from 1 for all y ∈ K(S1) and u′ ∈ V .

5.4 Bounded pre-images

Sard’s theorem says that the set of critical values of any smooth map has Lebesgue

measure zero. This implies that the smooth map FG must have a regular value, say

t ∈ R/4πZ. By Thom-Sard transversality theorem, the pre-image (FG)−1(t) is an

orientable open surface in R3−K(S1), which consists of all the points u ∈ R3−K(S1)

with the property that a closed Seifert surface Σu casts the same (signed) shadow area t

on the unit sphere. Geometry suggests that if u is far from the origin, then the shadow

area cast by the closed Seifert surface will be small.

Proposition 5.4.1. If t is a regular value of FG and t 6= 0, then the pre-image

(FG)−1(t) is a bounded surface.

Proof. Suppose that (FG)−1(t) is not bounded when t 6= 0. Then, for each R > 0,

there is a point u ∈ R3 − K(S1) with ‖u‖ = R such that FG(u) = t. We show that

this contradicts the fact that

lim
‖u‖→∞

FG(u) = 0.

Let w : [−l, l]→ R3 be a smooth arc-length parametrisation of the knot K. Then,

by Theorem 5.3.7, we have

FG(u) =

∫
l

−l

(
w(s)− u
‖w(s)− u‖

× z
)
· ẇ(s)

‖w(s)− u‖
(

1− w(s)− u
‖w(s)− u‖

· z
)ds.

We next consider all the points u ∈ R3 −K(S1) such that ‖u‖ is sufficiently large −
assume ‖u‖ > R0. Since R0 is large, we can choose z1 and z2 with ‖z1‖ = 1 = ‖z2‖
and m > 0 such that for each u ∈ R3 −K(S1) with ‖u‖ > R0, we have

0 < m 6

∣∣∣∣1− w(s)− u
‖w(s)− u‖

· z1

∣∣∣∣ or 0 < m 6

∣∣∣∣1− w(s)− u
‖w(s)− u‖

· z2

∣∣∣∣
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for all s ∈ [−l, l]. Note that for each u ∈ R3 −K(S1) with ‖u‖ > R0,∣∣∣∣∣∣∣∣
(

w(s)− u
‖w(s)− u‖

× z
)
· w′(s)

‖w(s)− u‖
(

1− w(s)− u
‖w(s)− u‖

· z
)
∣∣∣∣∣∣∣∣ 6

1

‖w(s)− u‖
∣∣∣∣1− w(s)− u

‖w(s)− u‖
· z
∣∣∣∣

6
1

m|‖w(s)‖ − ‖u‖|

for all s ∈ [−l, l], where z = z1 or z2. Since
1

|‖w(s)‖ − ‖u‖|
is also bounded, the

dominated convergence theorem yields

lim
‖u‖→∞

|FG(u)| 6
∫ l

−l
lim
‖u‖→∞

ds

m|‖w(s)‖ − ‖u‖|
= 0.

We will see later that in the case when K is the unknot, (FG)−1(0) is not bounded.

One may ask if the converse of the proposition is true in general. We do not know it

yet.

62



Chapter 6

Analysis of FG for an unknot

This chapter focuses on computation and behaviour of the map FG for the standard

unit circle on the xy-plane, which plays the role of the unknot. It turns out that explicit

formulae can be written in terms of elliptic integrals, see [12]. Our main goal is to use

FG to construct a closed Seifert surface for the unknot, Proposition 6.4.5. We first

introduce the definition of elliptic integrals and state some facts that will be used in

the computation, and then derive formulae of FG in terms of complete elliptic integrals.

In the final section, we investigate the behaviour of FG near the unknot.

Throughout this chapter, let U denote the unknot in R3 parametrised by

γ(t) = (cos t, sin t, 0)

for t ∈ [−π, π].

6.1 Elliptic Integrals

This section is based on Handbook of Elliptic Integrals for Engineers and Scientists,

see [2].

Definition 6.1.1. Let ϕ ∈ [0, π/2]. For any k ∈ [0, 1], the complementary modulus k′

of k is defined by k′ =
√

1− k2.

1. The integral

F (ϕ, k) =

∫ ϕ

0

dt√
1− k2 sin2 t

is called an elliptic integral of the first kind. If ϕ = π/2, it is called a complete

elliptic integral of the first kind, denoted by K(k) := F (π/2, k).

2. The integral

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 t dt

is called an elliptic integral of the second kind. If ϕ = π/2, it is called a complete

elliptic integral of the second kind, denoted by E(k) := E(π/2, k).
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3. The integral

Π(ϕ, α2, k) =

∫ ϕ

0

dt

(1− α2 sin2 t)
√

1− k2 sin2 t

is called an elliptic integral of the third kind. If ϕ = π/2, it is called a complete

elliptic integral of the third kind, denoted by Π(α2, k) := Π(π/2, α2, k).

4. The Heuman’s Lambda function Λ0(β, k) can be defined by the formula

Λ0(β, k) =
2

π

(
E(k)F (β, k′) + K(k)E(β, k′)−K(k)F (β, k′)

)
.

Remark 6.1.

• The integrals F (ϕ, k) and Π(ϕ, α2, k) may not be integrable for some values. For

example, if ϕ = π/2 and k = 1, then F (π/2, 1) = K(1) is not integrable.

• Some special values of elliptic integrals and the Heuman’s Lambda function are

E(0, k) = F (0, k) = Π(0, α2, k) = 0

E(ϕ, 0) = F (ϕ, 0) = Π(ϕ, 0, 0) = ϕ

K(0) = E(0) = π/2, E(1) = 1

Λ0(β, 0) = sinβ, Λ0(0, k) = 0

Λ0(β, 1) = 2β/π, Λ0(π/2, k) = 1

Λ0(−β, k) = −Λ0(β, k).

Although K(k) blows up at k = 1 , we know how fast it does so when k approaches

1 from below; see (10) in [18] on Page 318.

Proposition 6.1.2.

K(k) = ln
4√

1− k2
+O

(
(1− k2) ln

√
1− k2

)
as k → 1−.

Corollary 6.1.3.

lim
k→1−

(
K(k)− ln

4√
1− k2

)
= 0.

Since the complete elliptic integrals K(k) and E(k) vary smoothly in the variable

k, we can differentiate them using the formulae on Page 282 in [2]

d

dk
K(k) =

E(k)− (k′)2K(k)

k(k′)2
(6.2)

and

d

dk
E(k) =

E(k)−K(k)

k
(6.3)
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where k′ =
√

1− k2. Heuman’s Lambda function Λ0(β, k) depends smoothly on both

β and k. Hence, the partial derivatives of Λ0(β, k) can be computed by the formulae

on Page 284 in [2]:

∂

∂k
Λ0(β, k) =

2(E(k)−K(k)) sinβ cosβ

πk
√

1− k′2 sin2 β
(6.4)

and

∂

∂β
Λ0(β, k) =

2(E(k)− k′2 sin2 βK(k))

π
√

1− k′2 sin2 β
. (6.5)

6.2 Computation for the unknot U

Recall that the unknot U has the parametrisation γ : [−π, π]→ R3 given by

γ(t) = (cos t, sin t, 0).

For convenience, let us simply set U := U([−π, π]) ⊂ R3.

For each u ∈ R3−U , we choose a point z ∈ S2 with z /∈ im Πu to obtain the formula

in Theorem 5.3.7. Observe that, for most points u, we are able to find a closed Seifert

surface Σu for U such that Πu(Σu) misses out the north pole (0, 0, 1) ∈ S2. However, if

u ∈ {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0},

then (0, 0, 1) ∈ Πu(Σu) − in this case, we can choose a closed Seifert surface whose

image under Πu misses out the south pole (0, 0,−1).

Let us fix z = (0, 0, 1) and consider all the points

u ∈ R3 − {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0}.

By Theorem 5.3.7, we have

FG(u1, u2, u3)

=

∫ π

−π

det

 − sin t cos t 0

cos t− u1 sin t− u2 −u3

0 0 1

 dt

‖γ(t)− u‖ (‖γ(t)− u‖+ u3)

=

∫ π

−π

(u1 cos t+ u2 sin t− 1)dt

1 + ‖u‖2 − 2u1 cos t− 2u2 sin t+ u3(
√

1 + ‖u‖2 − 2u1 cos t− 2u2 sin t)
. (6.6)

Writing

u1 = ‖u‖ cos θ sinϕ, u2 = ‖u‖ sin θ sinϕ and u3 = ‖u‖ cosϕ
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for some θ ∈ [0, 2π) and ϕ ∈ [0, π], we have

FG(u1, u2, u3)

=

∫ π

−π

(‖u‖ sinϕ cos(t− θ)− 1)dt

1 + ‖u‖2 − 2||u|| sinϕ cos(t− θ) + ‖u‖ cosϕ
√

1 + ‖u‖2 − 2‖u‖ sinϕ cos(t− θ)

=

∫ π

−π

(‖u‖ sinϕ cos t− 1)dt

1 + ‖u‖2 − 2‖u‖ sinϕ cos t+ ‖u‖ cosϕ
√

1 + ‖u‖2 − 2‖u‖ sinϕ cos t
.

This shows that FG does not depend on θ. Thus, for each circle parallel to the unknot,

FG is constant on that circle. Hence,

FG(u1, u2, u3) = FG(
√
u2

1 + u2
2, 0, u3).

With this, we assume in addition that u2 = 0; so the formula (6.6) becomes

FG(u1, 0, u3) =

∫ π

−π

(u1 cos t− 1)dt

1 + u2
1 + u2

3 − 2u1 cos t+ u3

√
1 + u2

1 + u2
3 − 2u1 cos t

. (6.7)

We have some special cases where we can compute the integral explicitly.

1. If u3 = 0, we use the identity

cos t =
1− tan2(t/2)

1 + tan2(t/2)

and deal with improper integrals; there are two situations:

• |u1| < 1: we have

FG(u1, 0, 0) =

[
− t

2
− arctan

(
1 + |u1|
1− |u1|

tan
t

2

)]π
−π

= −2π;

• |u1| > 1: we have

FG(u1, 0, 0) =

[
− t

2
+ arctan

(
|u1|+ 1

|u1| − 1
tan

t

2

)]π
−π

= 0.

2. If u1 = u2 = 0, then we have

FG(0, 0, u3) = −
∫ π

−π

dt

1 + u2
3 + u3

√
1 + u2

3

=
−2π

1 + u2
3 + u3

√
1 + u2

3

.

Let us consider the general case (u2 still assumed to be 0). We simplify the integrand
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of (6.7) as follows:

u1 cos t− 1

1 + u2
1 + u2

3 − 2u1 cos t+ u3

√
1 + u2

1 + u2
3 − 2u1 cos t

=
u1 cos t− 1

u3

(
1√

1 + u2
1 + u2

3 − 2u1 cos t
− 1√

1 + u2
1 + u2

3 − 2u1 cos t+ u3

)

=
u1 cos t− 1

u3

(
1√

1 + u2
1 + u2

3 − 2u1 cos t
−
√

1 + u2
1 + u2

3 − 2u1 cos t− u3

1 + u2
1 − 2u1 cos t

)

=
u1 cos t− 1

u3

(
−u2

3

(1 + u2
1 − 2u1 cos t)

√
1 + u2

1 + u2
3 − 2u1 cos t

+
u3

1 + u2
1 − 2u1 cos t

)

=
−u3(u1 cos t− 1)

(1 + u2
1 − 2u1 cos t)

√
1 + u2

1 + u2
3 − 2u1 cos t

+
u1 cos t− 1

1 + u2
1 − 2u1 cos t

.

Set

C(u1) :=

∫ π

−π

u1 cos t− 1

1 + u2
1 − 2u1 cos t

=


0 if |u1| > 1

−π if u1 = ±1

−2π if |u1| < 1

.

Then, we have (u3 6= 0)

FG(u1, 0, u3) =

∫ π

−π

−u3(u1 cos t− 1)dt

(1 + u2
1 − 2u1 cos t)

√
1 + u2

1 + u2
3 − 2u1 cos t

+ C(u1) (6.8)

for u ∈ R3 − U .

Proposition 6.2.1. 1. Let

u = (u1, u2, u3) ∈ R3 − {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0}.

• If u3 6= 0, then

FG(u1, u2, u3) = FG(
√
u2

1 + u2
2, 0, u3)

=

∫ π

−π

−u3(
√
u2

1 + u2
2 cos t− 1)dt

(1 + u2
1 + u2

2 − 2
√
u2

1 + u2
2 cos t)

√
1 + ‖u‖2 − 2

√
u2

1 + u2
2 cos t

+ C(
√
u2

1 + u2
2)

where

C(
√
u2

1 + u2
2) :=


0 if u2

1 + u2
2 > 1

−π if u2
1 + u2

2 = 1

−2π if u2
1 + u2

2 < 1

.
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• If u3 = 0, then

FG(u1, u2, 0) = C(
√
u2

1 + u2
2) =

0 if u2
1 + u2

2 > 1

−2π if u2
1 + u2

2 < 1
.

2. If u = (u1, u2, u3) ∈ {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0}, then

FG(u1, u2, u3) = −FG(u1, u2,−u3) = −FG(1, 0,−u3)

=
1

2

∫ π

−π

u3dt√
2 + u2

3 − 2 cos t
+ π.

6.3 Formulae of FG in terms of elliptic integrals

As in Section 6.2, we assume that u1 > 0 and u2 = 0. To write FG(u1, 0, u3) in terms

of elliptic integrals, from (6.8), we shift t by π and then obtain

FG(u1, 0, u3) =

∫ 2π

0

u3(1 + u1 cos t)dt

(1 + u2
1 + 2u1 cos t)

√
1 + u2

1 + u2
3 + 2u1 cos t

+ C(u1).

Using cos 2θ = 1− 2 sin2 θ, the formula becomes

FG(u1, 0, u3)

= 2u3

∫ π

0

(1/2 + u2
1/2 + u1 cos t)− (u2

1/2− 1/2)

(1 + u2
1 + 2u1 cos t)

√
1 + u2

1 + u2
3 + 2u1 cos t

dt+ C(u1)

= u3

∫ π

0

dt√
1 + u2

1 + u2
3 + 2u1 cos t

− u3

∫ π

0

u2
1 − 1

(1 + u2
1 + 2u1 cos t)

√
1 + u2

1 + u2
3 + 2u1 cos t

dt+ C(u1)

=
2u3√

(1 + u1)2 + u2
3

∫ π/2

0

dt√
1− 4u1

(1 + u1)2 + u2
3

sin2 t

− 2u3(u2
1 − 1)

(1 + u1)2
√

(1 + u1)2 + u2
3

∫ π/2

0

dt(
1− 4u1

(1 + u2
1)

sin2 t

)√
1− 4u1

(1 + u1)2 + u2
3

sin2 t

+ C(u1)

=
2u3√

(1 + u1)2 + u2
3

K

(√
4u1

(1 + u1)2 + u2
3

)

+
2u3(1− u1)

(1 + u1)
√

(1 + u1)2 + u2
3

Π

(
4u1

(1 + u1)2
,

√
4u1

(1 + u1)2 + u2
3

)
+ C(u1). (6.9)

We may write the formula in terms of Heuman’s Lambda function Λ0 using the formula

Π
(
α2, k

)
=
π

2

αΛ0(ξ, k)√
(α2 − k2)(1− α2)
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where

ξ = arcsin

√
α2 − k2

α2(1− k2)
,

see [2] on Page 228 and [12]. We then have (u3 6= 0)

Π

(
4u1

(1 + u1)2
,

√
4u1

(1 + u1)2 + u2
3

)

=
π

2

√
4u1

(1 + u1)2
Λ0

(
arcsin

|u3|√
(1− u1)2 + u2

3

,

√
4u1

(1 + u1)2 + u2
3

)
√

4u1u
2
3(1− u1)2

(1 + u1)4((1 + u1)2 + u2
3)

and (6.9) becomes

FG(u1, 0, u3) = C(u1) +
2u3√

(1 + u1)2 + u2
3

K

(√
4u1

(1 + u1)2 + u2
3

)

+ πΛ0

(
arcsin

|u3|√
(1− u1)2 + u2

3

,

√
4u1

(1 + u1)2 + u2
3

)
u3(1− u1)|1 + u1|
|u3||1− u1|(1 + u1)

. (6.10)

Proposition 6.3.1. 1. Let

u = (u1, u2, u3) ∈ R3 − {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0}.

• If u3 6= 0, then

FG(u1, u2, u3) = FG(
√
u2

1 + u2
2, 0, u3)

= C(
√
u2

1 + u2
2) +

2u3√
(1 +

√
u2

1 + u2
2)2 + u2

3

K

(√
4
√
u2

1 + u2
2

(1 +
√
u2

1 + u2
2)2 + u2

3

)

+ πΛ0

arcsin
|u3|√

(1−
√
u2

1 + u2
2)2 + u2

3

,

√
4
√
u2

1 + u2
2

(1 +
√
u2

1 + u2
2)2 + u2

3

 u3(1−
√
u2

1 + u2
2)

|u3||1−
√
u2

1 + u2
2|

where

C(
√
u2

1 + u2
2) :=


0 if u2

1 + u2
2 > 1

−π if u2
1 + u2

2 = 1

−2π if u2
1 + u2

2 < 1

.

• If u3 = 0, then

FG(u1, u2, 0) = C(
√
u2

1 + u2
2) =

0 if u2
1 + u2

2 > 1

−2π if u2
1 + u2

2 < 1
.
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2. If u = (u1, u2, u3) ∈ {(u1, u2, u3)| u2
1 + u2

2 = 1 and u3 < 0}, then

FG(u1, u2, u3) = −FG(u1, u2,−u3) = −FG(1, 0,−u3) = π +
2u3√
4 + u2

3

K

(√
4

4 + u2
3

)
.

Another approach in computing the solid angle for an unknot was given by F.

Paxton, see [12]. He showed that the solid angle subtended at a point P with height L

from the unknot and with distance r0 from the axis of the unknot is equal to
2π − 2L

Rmax
K(k)− πΛ0(ξ, k) if r0 < 1

π − 2L
Rmax

K(k) if r0 = 1

− 2L
Rmax

K(k) + πΛ0(ξ, k) if r0 > 1

where Rmax =
√

(1 + r0)2 + L2 and ξ = arctan L
|1−r0| . Writing L, r0 and ξ in terms of

u1, u2 and u3, his and our results agree.

We remark that the computation of the solid angle of the unknot was also studied

by Maxwell. He gave the formulae in terms of infinite series, see Page 331-334, Chapter

XIV in [9].

6.4 Behaviour of FG near U

Let T be the tubular neighbourhood of the smooth knot K with the core removed.

Recall that a map q : T → S1 is a locally trivial fibration if for each s ∈ S1 there exists

an open neighbourhood V ⊂ S1 of s such that the following diagram

q−1(V )
∼= //

q

��

q−1(s)× V

proj
xx

V

commutes.

Our main goal in this chapter is to construct a closed Seifert surface for U by showing

that FG is a locally trivial fibration near U . We borrow the result from Theorem 7.2.1,

which says that FG is a locally trivial fibration near U if its partial derivative with

respect to the meridional coordinate never vanishes.

We shall now investigate the behaviour of FG and its partial derivatives near U .

Let us compute FG near the unknot at (1, 0, 0). Write

u1 = 1 + ε cosλ, u2 = 0 and u3 = ε sinλ
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where ε > 0 is sufficiently small and λ ∈ [0, 2π]. By Proposition 6.3.1, we obtain

FG(1 + ε cosλ, 0, ε sinλ)

= C(1 + ε cosλ) +
2ε sinλ√

4 + 4ε cosλ+ ε2
K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

− sgn(tanλ)πΛ0

(
arcsin | sinλ|,

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

=



2ε sinλ√
4 + 4ε cosλ+ ε2

K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)
− πΛ0

(
λ,

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

if λ ∈ [0, π/2];

−2π +
2ε sinλ√

4 + 4ε cosλ+ ε2
K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)
+ πΛ0

(
π − λ,

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

if λ ∈ [π/2, π];

−2π +
2ε sinλ√

4 + 4ε cosλ+ ε2
K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)
− πΛ0

(
λ− π,

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

if λ ∈ [π, 3π/2];

2ε sinλ√
4 + 4ε cosλ+ ε2

K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)
+ πΛ0

(
2π − λ,

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)

if λ ∈ [3π/2, 2π].

(6.11)

Remark 6.12. By (6.11), when λ = 3π/2, it falls into the third and the fourth cases.

Since Λ0(π/2, k) = 1, we have

FG(1, 0, ε) = −3π− 2ε√
4 + ε2

K

(√
4

4 + ε2

)
= − 2ε√

4 + ε2
K

(√
4

4 + ε2

)
+π mod 4π.

With this coordinate system, the point u = (u1, u2, u3) becomes close to U as

ε→ 0+. To understand FG near U , we would like to find

lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ).

We need the following lemma.
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Lemma 6.4.1.

lim
ε→0+

2ε sinλ√
4 + 4ε cosλ+ ε2

K

(√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2

)
= 0.

Proof. Here, set

k =

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2
.

Then, √
1− k2 =

ε√
4 + 4ε cosλ+ ε2

.

It is enough to show that

lim
k→1−

(
√

1− k2)K(k) = 0.

By Proposition 6.1.2, we have

(
√

1− k2)K(k) = (
√

1− k2) ln
4√

1− k2
+O

(
(1− k2)3/2 ln

√
1− k2

)
as k → 1−.

Since

lim
k→1−

(
√

1− k2) ln
√

1− k2 = 0,

it follows that

lim
k→1−

(
√

1− k2)K(k) = 0.

Proposition 6.4.2.

lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ) = −2λ ∈ R/4πZ.

Proof. By Equation (6.11) and the previous lemma, we have

lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ) =



−πΛ0 (λ, 1) if λ ∈ [0, π/2]

−2π + πΛ0 (π − λ, 1) if λ ∈ [π/2, π]

−2π − πΛ0 (λ− π, 1) if λ ∈ [2π, 3π/2]

πΛ0 (2π − λ, 1) if λ ∈ [3π/2, 2π].

Using the identity Λ0(β, 1) =
2β

π
, we finally obtain

lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ) = −2λ ∈ R/4πZ (6.13)

for all λ ∈ [0, 2π].

Next we compute the derivatives of FG with respect to ε and λ near U . As before,
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let

k =

√
4 + 4ε cosλ

4 + 4ε cosλ+ ε2
and k′ =

√
1− k2 =

ε√
4 + 4ε cosλ+ ε2

.

Proposition 6.4.3.

∂

∂ε
FG(1 + ε cosλ, 0, ε sinλ) =

2 sinλ(K(k)− E(k))

(1 + ε cosλ)
√

4 + 4ε cosλ+ ε2
.

Proof. Note that
∂k

∂ε
=

−2ε(2 + ε cosλ)

k(4 + 4ε cosλ+ ε2)2
.

Hence, using (6.2)
d

dk
K(k) =

E(k)− k′2K(k)

kk′2
,

we have

∂

∂ε
k′K(k) = k′

∂

∂ε
K(k) + K(k)

(
−k
k′

)
∂k

∂ε

=

(
E(k)− k′2K(k)

kk′
−
(
k2K(k)

kk′

))
∂k

∂ε

=

(
E(k)−K(k)

kk′

)
−2ε(2 + ε cosλ)

k(4 + 4ε cosλ+ ε2)2
.

Hence,

2 sinλ
∂

∂ε
k′K(k) =

sinλ(2 + ε cosλ)(K(k)− E(k))

(1 + ε cosλ)
√

4 + 4ε cosλ+ ε2
. (6.14)

By the formula

d

dk
Λ0(arcsin | sinλ|, k) =

2(E(k)−K(k))| sinλ cosλ|
πk
√

1− k′2 sin2 λ

in [2], we have

π
∂

∂ε
Λ0(arcsin | sinλ|, k) =

(
2(E(k)−K(k))| sinλ cosλ|

k
√

1− k′2 sin2 λ

)(
−2ε(2 + ε cosλ)

k(4 + 4ε cosλ+ ε2)2

)
=

ε| sinλ cosλ|(K(k)− E(k))

(1 + ε cosλ)
√

4 + 4ε cosλ+ ε2
. (6.15)

By (6.14) and (6.15), we obtain

∂

∂ε
FG(1 + ε cosλ, 0, ε sinλ) =

2 sinλ(K(k)− E(k))

(1 + ε cosλ)
√

4 + 4ε cosλ+ ε2
.

We observe that as ε → 0+, K(k) − E(k) blows up and is thus unbounded. Also,
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notice that the sign of
∂

∂ε
FG depends on sinλ. Hence, FG(1+ε cosλ, 0, ε sinλ) is non-

decreasing with respect to ε when λ ∈ [0, π] and it is non-increasing when λ ∈ [π, 2π].

Since we know that

lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ) = −2λ,

Dini’s theorem, see Theorem 7.13 in [15], yields that FG(1+ε cosλ, 0, ε sinλ) converges

uniformly to −2λ on [0, 2π]. With this, we can extend FG near U over [0, ε] × [0, 2π]

even though FG is not defined at (1,0,0).

We next deal with the derivative of FG with respect to λ.

Proposition 6.4.4.
∂

∂λ
FG(1 + ε cosλ, 0, ε sinλ) < 0

and

lim
ε→0+

∂

∂λ
FG(1 + ε cosλ, 0, ε sinλ) = −2.

Proof. Note that

∂k

∂λ
=

1

2k

(
(4 + 4ε cosλ+ ε2)(−4ε sinλ)− (4 + 4ε cosλ)(−4ε sinλ)

(4 + 4ε cosλ+ ε2)2

)
=
−k′3 sinλ√
1 + ε cosλ

.

Again, using the formula in [2], we have

∂

∂λ
FG(1 + ε cosλ, 0, ε sinλ) =

∂

∂λ
(2 sinλk′K(k)± πΛ0(arcsin | sinλ|, k))

= 2 sinλ
∂k

∂λ

(
E(k)−K(k)

kk′

)
+ 2k′K(k) cosλ

− 2

(
E(k)− k′2 sin2 λK(k))√

1− k′2 sin2 λ

)
− 2

(
2(E(k)−K(k)) sinλ cosλ

k
√

1− k′2 sin2 λ

)
∂k

∂λ
.

As ε → 0+, we have k → 1, k′ → 0. Hence, the only significant term in the above

expression is − 2E(k)√
1− k′2 sin2 λ

since k′K(k)→ 0 and k′E(k)→ 0 as ε→ 0+. Thus,

lim
ε→0+

∂

∂λ
FG(1 + ε cosλ, 0, ε sinλ) = −2E(1) = −2.

Remark 6.16.

lim
ε→0+

∂

∂λ
FG(1 + ε cosλ, 0, ε sinλ) = −2 =

∂

∂λ
lim
ε→0+

FG(1 + ε cosλ, 0, ε sinλ).

In Section 6.2, we have seen that FG has symmetry along any circle that is parallel

to U and has centre on the z-axis. Hence, if α is the longitudinal coordinate near U ,
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then
∂

∂α
FG = 0. The two coordinates we have to deal with are the meridional and

radial coordinates λ and ε.

The following proposition is the main result in this chapter.

Proposition 6.4.5. If t ∈ R/4πZ is a regular value of FG with t 6= 0, then FG−1(t)

is a bounded regular open Seifert surface for U .

Proof. Let D0 be the punctured disc of radius ε without the centre (1, 0, 0). Then, D0

is a slice of the tubular neighbourhood of U , consisting of the points with distance ε

from U . We use the polar coordinates (r, λ) on D0 where r represents the distance

from (1, 0, 0) and λ ∈ [0, 2π] (with 0 and 2π identified, and we may think of λ as the

coordinate on S1) represents the angle.

Let t ∈ R/4πZ be a regular value of FG with t 6= 0. By Propositions 4.5.4 and 5.4.1,

we know that Σ0 := (FG)−1(t) is a bounded open Seifert surface for U . It remains to

show that Σ0 is regular. We can think of (FG)|D0 as

(FG)|D0 : (0, ε]× [0, 2π]→ R/4πZ

with (FG)|D0(r, 0) = (FG)|D0(r, 2π). Since

lim
r→0+

FG(1 + r cosλ, 0, r sinλ) = −2λ

and the convergence is independent of r, we can extend (FG)|D0 over [0, ε]× [0, 2π] to

(FG)|D0 : [0, ε]× [0, 2π]→ R/4πZ

such that (FG)|D0(0, λ) = −2λ. Note that t is also a regular value of both (FG)|D0

and (FG)|D0 . Hence,

[0, 1] ∼= (FG)|−1
D0

(t) ∼= (FG)|−1
D0

(t) ∪ {x}

for some x ∈ U .

[0,ε]⨯[0,2π]

2π
0

0

ε

(FG)-1|D0(t)
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This implies that there exists an embedding

U × [0, 1] ∼=
(

(FG)|−1
D0

(t)× U
)
∪ U ↪→ (FG)−1(t) ∪ U

such that

U × (0, 1] ∼=
(

(FG)|−1
D0

(t)× U
)
↪→ (FG)−1(t)

is smooth.
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Chapter 7

Main results

This Chapter deals with the general situation, where K is an arbitrary knot in R3. As

in Chapter 6, we shall show that FG is a locally trivial fibration near the knot. This

implies that the union of the preimage (FG)−1(t) of a regular value t ∈ R/4πZ and K

is a closed Seifert surface for the knot.

The work in this chapter is in collaboration with Dr. Maciej Borodzik.

7.1 Statement of results

We shall prove the following.

Theorem 7.1.1. Let K ⊂ R3 be a C3-smooth knot. Then for a neighbourhood T of K

the map FG : T −K → S1 is a locally trivial fibration, whose fibers are diffeomorphic

to the product S1 × (0, 1].

Corollary 7.1.2. If t ∈ (0, 4π) is a regular value of FG, then FG−1(t) is a (possibly

disconnected) closed Seifert surface for K.

The proof takes the remainder of this chapter. Here is a short sketch.

• We introduce local coordinates r, ϕ, λ in a neighbourhood of the knot K. We

may think of the neighbourhood as a small tube around the knot so that r is the

distance to the knot, ϕ is the longitudinal coordinate (increasing as we go around

the knot) and λ is meridional coordinate, that is, angle on a plane orthogonal to

the knot at a given point.

• Using Proposition 7.2.1 with M = S1 × (0, 1], we shall show that −∂FG
∂λ

is

bounded from below by a positive constant.

• For given point u /∈ K in a neighbourhood of K we consider an auxiliary knot

K0, which is a round circle. The corresponding function FG for the knot K0 will

be denoted FG0. Notice that K0 depends on the choice of u.
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• The main part of the proof is to show that in a neighbourhood of u /∈ K we have

a bound

∣∣∣∣∂FG∂λ − ∂FG0

∂λ

∣∣∣∣ < Cε1/5, where ε is the distance between u and K, and

C is a constant that depends on derivatives of the parametrisation of K, but not

on u.

• Since the round circle K0 is an unknot, we know from Chapter 6 that
∂FG0

∂λ
+2 =

O(ε1/5) as ε→ 0+.

• The two above results show that
∂FG

∂λ
∼ −2 if ε is small.

Remark 7.1. A little care should be taken. Our function FG takes values in R mod 4π.

However the coordinate λ changes in R mod 2π. Hence the derivative of FG over λ

being 2 means that the preimage of FG is locally connected.

7.2 Fibration theorem

We shall prove the following result:

Proposition 7.2.1. Suppose M is a smooth manifold and π : M×S1 → S1 is a smooth

surjection such that
∂π

∂α
> 0, where α is the second coordinate. Then π is a locally trivial

fibration.

Proof. Choose a Riemannian metric 〈·, ·〉 on M × S1 preserving the product structure

and consider an auxiliary proper function f : M → R≥0 (this might be e.g. the square

of the distance to a point). Extend f to the whole of M × S1 so that it depends on

the first factor only. The vector field v =
∂

∂α
is orthogonal to the gradient of f . Define

w =

(
∂π

∂α

)−1

v. Then w is orthogonal to f and

〈w,∇π〉 = 1. (7.2)

As w admits a proper first integral f , the solution of an equation ẋ = w(x) exists over

the whole of R. Therefore, w defines a flow ϕt on M × S1. We claim that

π(ϕt(x)) = π(x) + t (7.3)

for any x ∈M × S1.

To prove (7.3) differentiate both sides over t at t = 0. The left hand side becomes

w(π), that is, the differential of π in the direction of w. This can be written as 〈w,∇π〉,
by (7.2), it is equal to 1.

Given now (7.3), we notice that ϕt is a diffeomorphism of fibers of π, providing a

local trivialisation.
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In general, unless we have some control over f or M , we cannot claim that the

fibers of π are a disjoint union of copies of M . However, if f has only finitely many

critical points, then an easy exercise shows that π has this property.

7.3 Some facts about curves in R3

We define a knot K as a C3-smooth embedding w : [0, l]→ R3 such that w(0) = w(l),

and both first and second derivatives of w at 0 and l agree. In addition, we assume that

w is an arc length parametrisation of K, that is, ‖ẇ(t)‖ ≡ 1. With this notation, l is

the length of the knot. We denote by C2 the supremum of ‖ẅ‖ and C3 the supremum

of the third-order derivative of w. We will sometimes consider w as a periodic function

on the whole of R with period l.

Lemma 7.3.1. There is a constant δ0 > 0 such that any ball in R3 of radius δ0

or smaller intersects K in a connected set: either an arc, or a point, or an empty

intersection.

Proof. It follows from the Lebesgue’s Number Lemma.

The curvature and the torsion of a C2-smooth closed curve, by compactness, are

bounded. Therefore the following lemma holds.

Lemma 7.3.2. There exist positive constants D1 and D2 such that for any x ∈ K and

for any small ε > 0, the length of K contained in the ball B(x, ε) is between D1ε and

D2ε.

Proof. One can take D1 = 2. To choose D2, we use a result regarding distortion. The

distortion of a curve in R3 is the supremum of the quotient between the length between

two points on the curve and the distance between two points in R3. Since the curvature

is finite, the distortion is also finite, see Section 7 in [17].

7.4 A coordinate system near K

Choose a tubular neighbourhood T of K in R3. We can think of it as a set of points

at distance less or equal to δ0 from K. In other words, T − K can be viewed as a

solid torus without core S1 × (D2 − {0}). We shall introduce the following coordinate

system.
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x

δ0

λ

T

K
(φ,r,λ) r

We set ϕ =
l

2π
mod 2π to be the first coordinate going along K in the longitudinal

direction. For a point x ∈ K, consider the plane perpendicular to K at x which

intersects T along a disk. Then, r is the radial coordinate on the disc representing the

distance to the centre of the disc and λ is the angular coordinate. It remains to specify

the zero of the λ coordinate. To this end, suppose ẅ 6= 0 at each point. Then the

direction of the normal vector of w points to the zero value of the λ coordinate.

The triple (ϕ, r, λ) forms a local coordinate system on T − K (we might need to

shrink δ0). This either follows from the Implicit Function Theorem or can be seen

geometrically that: for any two points x and x′ with x 6= x′, the planes through x and

x′ perpendicular to K do not intersect in T , and each point in T belongs to exactly

one such plane.

7.5 A reference unknot at a point x

For each point x ∈ K, we define K0(x) to be the reference unknot for (K,x). This

is an unknot bitangent to K, that is, a round circle parametrised by w0(t) such that

w(t0) = w0(t0) = x. We assume that the first and second derivative at t0 of w and w0

coincide, i.e.,

ẇ(t0) = ẇ0(t0) and ẅ(t0) = ẅ0(t0).

The radius of the circle is the inverse of ‖ẅ(t0)‖. In addition, we assume that ‖ẅ(t)‖
is bounded from below by a non-zero constant

1

R
.
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x

K
K0(X)

Fix a point x ∈ K. The projection of K from x to the unit sphere, the image of

the map Πx : t 7→ w(t)− x
‖w(t)− x‖

, cannot fill the whole sphere since Πx is a smooth map

whose codomain has higher dimension. Hence, there is a point z in the sphere such

that z misses the image of K. The same argument holds for K replaced by K0(x).

Lemma 7.5.1. There exists ρ′ > 0 such that for any u ∈ T , there exist a point z ∈ S2

and a neighbourhood U of u in R3 with U ∩K 6= ∅ such that∥∥∥∥z − w(t)− y
‖w(t)− y‖

∥∥∥∥ > 1

ρ′

for all y ∈ U . The lemma also holds for all knots K0(x) for x ∈ U ∩K.

Proof. Given u ∈ T , choose x ∈ K that is the closest point to u (if u ∈ K, we choose

x = u). The projection Πx : t 7→ w(t)− x
‖w(t)− x‖

misses some points in S2; so let z and z′ be

antipodal points with this property (any differentiable curve in RP2 is not surjective).

In fact, Πx misses both small neighbourhoods of z and z′ in S2. Let Kx be a small

neighbourhood of x in K. Notice that for any y ∈ T −K near x, Πy(K −Kx) misses

both z and z′ because Πx(K −Kx) and Πy(K −Kx) do not differ much. Since Kx is

almost a straight line, it is clear that Πy(Kx) cannot hit both antipodal points z and z′.

Hence, for each x ∈ K there exist a positive number ρ′(x) and an open neighbourhood

Ux of x in R3 such that for any y ∈ Ux,∥∥∥∥zx − w(t)− u
‖w(t)− u‖

∥∥∥∥ > 1

ρ′(x)

for some zx ∈ S2.

Now we cover K by the union of those Ux’s. Since K is compact, we can pass to a

finite subcover, Ux1 ∪· · ·∪Uxn ⊃ K. Shrinking further δ0 if necessary so that T belongs

to the union of Uxj ’s. Setting ρ′ = min{ρ′(x1), . . . , ρ′(xn)}, we complete the proof.

Corollary 7.5.2. There exists ρ > 0 such that for any u ∈ T , there exist a point z ∈ S2

and a neighbourhood U of u in R3 with U ∩K 6= ∅ such that∥∥∥∥1− w(t)− y
‖w(t)− y‖

· z
∥∥∥∥ > 1

ρ
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for all y ∈ U . The lemma also holds for all knots K0(x) for x ∈ U ∩K.

7.6 Behaviour of FG for the knot K and for its reference

unknots

Recall from Theorem 5.3.7 that the function FG can be expressed as

FG(u) =

∫ l

0
Pz(w(t), u)dt,

where

Pz(w(t), u) =

(
w(t)− u
‖w(t)− u‖

× z
)
· ẇ(t)

‖w(t)− u‖
(

1− w(t)− u
‖w(t)− u‖

· z
) . (7.4)

Here, z is a point in the sphere away from im Πu. The value of FG modulo 4π does

not depend on the choice of z.

Let us describe further about Pz(w(t), u). To be precise, we first fix u =

(u1, u2, u3) ∈ T − K close to w(t0) = x ∈ K. The reference unknot K0(x) is then

defined as in Section 7.5. As before, z can always be chosen so that both Πx(K −{x})
and Πx(K0 − {x}) miss z. Let w = (w1,w2,w3) and

Pz(w, u) =

(
w − u
‖w − u‖

× z
)
· ẇ

‖w − u‖
(

1− w − u
‖w − u‖

· z
)

where the map w 7→ ẇ is C2-smooth with property that if w = w(t) is a curve, then

ẇ = ẇ(t) is the tangent vector. The function Pz(w, u) is defined locally; that is, it is

defined on a small neighbourhood U of u and x. It should be noted that z may not

be fixed for the whole U . However, we can fix z if w changes by a small amount − in

particular, we can fix z if w varies between w(t) and w0(t) for all t near t0. With this,

we can differentiate Pz(w, u) with respect to both wj and uj .

The next lemma follows from the form of Pz(w, u).

Lemma 7.6.1. Given u ∈ T −K, the function Pz(w, u) (respectively its k-th deriva-

tive)1 is bounded from above by an expression of the form

Ek

(
1

‖w − u‖k+1

)
1∥∥∥∥1− w − u

‖w − u‖
· z
∥∥∥∥ ,

where Ek is a constant depending on ‖w‖Ck+1.

1Unless specified explicitly otherwise, we henceforth consider derivatives with respect to uj or wj .
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Setting w = w(t) and EFGk = ρEk, we obtain.

Corollary 7.6.2. The k-th derivative of the function FG(u) is bounded by a constant

EFGk times the integral of
1

‖w(t)− y‖k+1
over [0, l].

Fix a point u ∈ T − K and let ε = r be the distance to the knot K. Consider

the following balls with centre u: Bnear has radius ε3/5 and the ball Bmid has radius

ε2/5. Accordingly, we write Knear = K ∩ Bnear, Kmid = K ∩ (Bmid − Bnear) and

Kfar = K ∩ (R3 −Bmid). We split the interval [0, l] into three parts

Tnear/mid/far = {t ∈ [0, l] : w(t) ∈ Knear/mid/far}.

x

KK0(X)

u
Bnear

Bmid
Kfar

Kfar

By Lemma 7.3.2 the length of Tnear is bounded from above by D2ε
3/5, while the

length of Tmid is bounded by D2ε
2/5.

Lemma 7.6.3. There are constants Cmid and Cfar depending only on δ0 and the C2

norm of w such that∣∣∣∣∣ ∂∂uj
∫
Tmid/far

Pz(w(t), u)dt

∣∣∣∣∣ ≤ Cmid/farε−4/5.

Proof. By Lemma 7.6.1 we have∣∣∣∣∣ ∂∂uj
∫
Tmid/far

Pz(w(t), u)dt

∣∣∣∣∣ ≤
∫
Tmid/far

E1
1

‖w(t)− u‖2
· 1∥∥∥∥1− w(t)− u

‖w(t)− u‖
· z
∥∥∥∥dt.

Now for u ∈ T − K we have
1∥∥∥∥1− w(t)− u

‖w(t)− u‖
· z
∥∥∥∥ < ρ. Therefore the integrand is

bounded by
EFG1

‖w(t)− u‖2
; compare Corollary 7.6.2.
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• For Tmid, the measure of Tmid is bounded by D2ε
2/5, while ‖w(t)− u‖ > ε3/5, so

the integral is bounded by D2E
FG
1 ε−4/5.

• For Tfar, the measure of Tfar is bounded by l and ‖w(t)− u‖ > ε2/5, so the total

contribution is bounded by lEFG1 ε−4/5.

Since EFG1 does not depend on u, we set Cmid = D2E
FG
1 and Cfar = lEFG1 .

Next we take care of Tnear. Following the proof of Lemma 7.6.3,
∂

∂uj
FG(u) is

bounded by D2E
FG
1 ε−7/5, which is too large. This makes sense − as in Chapter 6 we

have already seen that if we go along a very small (of radius ε, for instance) loop around

the knot, the total change of the function FG is 4π. Thus, instead of bounding the

integral over Tnear directly, we shall compare the derivative of FG with the derivative

of FG0.

For the point u ∈ T − K consider the circle K0 := K0(x), where x ∈ K is the

nearest point in K to u. The circle K0 is parametrised by w0(t) for t ∈ [0, l0]. For

convenience, we assume that w0(0) = w(0) = x = w(l) = w0(l0). Notice also that

‖w(t)− w0(t)‖ ≤ C3t
3 because w and w0 agree up to second derivatives.

The FG0 function for K0 can be written as the integral

FG0(u) =

∫ l0

0
Pz(w0(t), u)dt.

Now we assume that ‖u − x‖ = ε. Similarly to K, we define K0,near = K0 ∩ Bnear,
K0,mid = K ∩ (Bmid − Bnear) and K0,far = K0 ∩ (R3 − Bmid), and the interval [0, l0]

will be split into three parts:

T 0
near/mid/far = {t ∈ [0, l] : w(t) ∈ K0,near/0,mid/0,far}.

The derivative of FG0(u) is then also split into three integrals over T 0
near/mid/far. In

the following lemma, we bound the integrals over the intervals T 0
mid and T 0

far as in

Lemma 7.6.3.

Lemma 7.6.4. There are constants C0,mid and C0,far depending only on δ0 and the

C2 norm of w0 such that∣∣∣∣∣ ∂∂uj
∫
T 0
mid/far

Pz(w0(t), u)dt

∣∣∣∣∣ ≤ C0,mid/0,farε
−4/5.

We next compare the contributions of the integrals over Tnear and T 0
near from the

knot K and the reference unknot K0, respectively. First, we notice that Tnear = T 0
near.

Lemma 7.6.5. There is a constant C ′ depending on ρ and the C2 norm of w such that∣∣∣∣ ∂∂uj
∫
Tnear

Pz(w0(t), u)− ∂

∂uj

∫
Tnear

Pz(w(t), u)

∣∣∣∣ ≤ C ′ε−3/5.
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Proof. Applying the Lagrange mean value theorem to Pz(w, u) when w varies between

w(t) and w0(t), we have∣∣∣∣ ∂∂uj Pz(w0(t), u)− ∂

∂uj
Pz(w(t), u)

∣∣∣∣ 6 ∣∣∣∣ ∂2

∂w∂uj
Pz(ξ(t), u)

∣∣∣∣ ‖w(t)− w0(t)‖,

where ξ(t) belongs to the segment connecting w(t) and w0(t). Using Lemmas 7.5.1 and

7.6.1, we obtain ∣∣∣∣ ∂2

∂w∂uj
(Pz(w0(t), u)− Pz(w(t), u))

∣∣∣∣ ≤ ρE2C3t
3

‖ξ(t)− u‖3
.

We integrate this over Tnear with t ∈ [−D2ε
3/5, D2ε

3/5] (this is legitimate as w and w0

are periodic). Notice that ‖ξ(t) − u‖ ≥ D3ε for some D3 ∈ (0, 1). With all this, we

obtain∣∣∣∣∫
Tnear

∂

∂uj
Pz(w0(t), u)−

∫
Tnear

∂

∂uj
Pz(w(t), u)

∣∣∣∣ ≤ ρD4
2E2ε

12/5

D3
3ε

3
≤ ρD4

2E2ε
−3/5

D3
3

.

We have seen earlier that the constants D2 and E2 depend only on w and δ0. Similarly,

the constant D3 is away from 0 and depends only on the curvature of w. Since the

curvature of w is bounded, so is 1/D3. We now set C ′ =
ρD4

2E2

D3
3

to complete the

proof.

Corollary 7.6.6. The difference of the derivatives of FG and FG0 over uj is bounded

from above by Ctotε
−4/5, where Ctot does not depend on the choice of the point u.

Proof. This difference is calculated by integrating Pz(w(t), u) over Tnear/mid/far and

Pz(w0(t), u) over T 0
near/mid/far. On Tmid/far and T 0

mid/far the contribution of each

integral is of order ε−4/5, while the difference of the integrals over Tnear and T 0
near is of

order ε−3/5. More explicitly,∣∣∣∣ ∂∂uj (FG(u)− FG0(u))

∣∣∣∣ 6 ∣∣∣∣ ∂∂uj
∫
Tmid

Pz(w(t), u)dt

∣∣∣∣+

∣∣∣∣∣ ∂∂uj
∫
Tfar

Pz(w(t), u)dt

∣∣∣∣∣
+

∣∣∣∣∣ ∂∂uj
∫
T 0
mid

Pz(w0(t), u)dt

∣∣∣∣∣+

∣∣∣∣∣ ∂∂uj
∫
T 0
far

Pz(w0(t), u)dt

∣∣∣∣∣
+

∣∣∣∣∣ ∂∂uj
∫
Tnear

Pz(w(t), u)− ∂

∂uj

∫
T 0
near

Pz(w0(t), u)

∣∣∣∣∣
6 (Cmid + Cfar + C0,mid + C0,far) ε

−4/5 + C ′ε−3/5.

Set Ctot = Cmid + Cfar + C0,mid + C0,far + C ′. By previous lemmas and corollaries in

Sections 7.5 and 7.6, the constant Ctot depends only on δ0, ρ, w and w0. Thus, Ctot

works for all u ∈ T −K.

Now consider point x ∈ K and a plane P going through x perpendicular to K.
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On this plane there are coordinates r and λ which represent the radius and the angle

as mentioned in Section 7.4. Note that these coordinates are the same for K and for

K0(x), because P is also perpendicular to K0(x) at x by its definition.

Proposition 7.6.7. Consider the restriction FG|T−K : T − K → S1 of FG. Then,
∂

∂λ
FG < 0. Therefore, FG|T−K is a locally trivial fibration.

Proof. Applying the chain rule to FG− FG0 at u ∈ T −K, we have

∂

∂λ
(FG(u)− FG0(u)) =

3∑
j=1

∂

∂uj
(FG(u)− FG0(u))

∂uj
∂λ

.

We know that the polar coordinate (r, λ) is a rotation of the standard polar coordinate

in R2; this implies that

∣∣∣∣∂uj∂λ

∣∣∣∣ 6 r. Since x ∈ K is the nearest point to u ∈ T −K with

‖u− x‖ = ε, the radius coordinate of u is ε; that is

∣∣∣∣∂uj∂λ

∣∣∣∣ 6 ε. Hence,

∣∣∣∣ ∂∂λ (FG(u)− FG0(u))

∣∣∣∣ 6 3∑
j=1

∣∣∣∣ ∂∂uj (FG(u)− FG0(u))

∣∣∣∣ ∣∣∣∣∂uj∂λ

∣∣∣∣
6 (Cε−4/5)ε = Cε1/5

for some C > 0 independent of u. Since limε→0+
∂

∂λ
FG0(u) = −2, it yields

∂

∂λ
FG(u) = −2 +O(ε1/5) as ε→ 0+.

Therefore,
∂

∂λ
FG(u) < 0 for all u ∈ T −K.
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Chapter 8

Prospects

This chapter lists some possible future work regarding our construction.

• Minimality property: The genus of a knot is the minimal genus of Seifert

surfaces for the knot. Given a knot and a knot projection, we can compute the genus

of a Seifert surface for the knot produced from Seifert’s Algorithm by the formula

genus = 1− s− c+ 1

2

where s is the number of Seifert circles and c is the number of crossings, see Chapter 5

in [14]. However, this Seifert surface may not give the minimal genus. We may ask if

a Seifert surface produced from our construction gives the minimal genus of the knot.

• Construction of Seifert surfaces for knots in higher dimensions: A

smooth knot in Rn+2 is a smooth embedding K : Sn ⊂ Rn+2. A (closed) Seifert

surface Σ for a knot K in Rn+2 is a compact orientable (n+ 1)-manifold embedded in

Rn+2 with ∂Σ = K(Sn). It is possible that Seifert surfaces for knots in Rn+2 can be

constructed using a similar method as follows.

Let K : Sn ↪→ Rn+2 be a smooth n-dimensional knot in Rn+2. Consider the

composite

Rn+2 −K(Sn)
G′→ C∞(Sn, Sn+1)

F ′→ R/4πZ = S1

where

F ′ : C∞(Sn, Sn+1)→ S1 ; λ 7→
∫
Dn+1

δλ∗(VolSn+1)

and

G′ : Rn+2 −K(Sn)→ C∞(Sn, Sn+1) ; x 7→
(
G′(x) : y 7→ K(y)− x

‖K(y)− x‖

)
.

Show that if c 6= 0 is a regular value of F ′G′, then (F ′G′)−1(c) ∪ K(Sn) is a Seifert

surface for K.
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• Equipotential surfaces: It has been known since Maxwell’s work, [9], that the

magnetic potential of a magnetic shell of unit strength bounded by a simple closed

curve (knot) can be measured by the solid angle.

The force surface mentioned on Page 140 in [6] by Jancewicz is an equipotential

surface, the surface of constant potential. He wrote “a magnetic force around a circuit

is the locus of points of a constant solid visual angle of the circuit.” He discussed a

geometric problem regarding the unknot “What is the locus of points in which the

circle is seen at a given constant solid angle?”, and pointed out that this locus cannot

be a part of a sphere.

If a knot is regarded as a current inducing a magnetic field, then equipotential

surfaces are Seifert surfaces for the knot. We may investigate further the geometric

nature of these surfaces.
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