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Abstract

A simple column generation scheme that employs an interior point method to solve under-
lying restricted master problems is presented. In contrast with the classical column generation
approach where restricted master problems are solved exactly, the method presented in this pa-
per consists in solving it to a predetermined optimality tolerance (loose at the beginning and
appropriately tightened when the optimum is approached). An infeasible primal-dual interior
point method which employs the notion of u-center to control the distance to optimality is used
to solve the restricted master problem. Similarly to the analytic center cutting plane method,
the present approach takes full advantage of the use of central prices. Furthermore, it offers more
freedom in the choice of optimization strategy as it adaptively adjusts the required optimality
tolerance in the master to the observed rate of convergence of the column generation process.

The proposed method has been implemented and used to solve large scale nonlinear multi-
commodity network flow problems. Numerical results are given to illustrate its efficiency.
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1 Introduction

We are concerned in this paper with the solution of the following linear program:

min
s.t.
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where ¢,z € RN, b € R™, A € RN | We assume that the number of variables N is much larger
than the number of constraints m. In particular, the matrix A may not be given explicitly and N
does not have to be finite. This type of problems arise frequently in various real-life applications.

To solve (1) we employ a column generation scheme (see for example [3]). That is, we select a
subset of n columns of A (n < N) to render the problem more tractable

min L'z

s.t. Azx =0, (2)
x>0,

where ¢,z € R" are subvectors of ¢ and Z, respectively and A € R™*" is a submatrix of A Dbuilt of
n columns chosen by now. We solve a restricted master problem (2) and employ its dual solution
to improve the representation, i.e. we select a subset of new columns from A that have to be
appended to the restricted master problem. The process is continued until the representation
becomes sufficiently close to A in the sense that the optimal solution of the restricted master
problem approaches the optimal solution to (1).

In the classical column generation scheme [22], every restricted master problem is solved to
optimality. This may but does not have to be good strategy. For example, whenever a large number
of restricted master problems have to be solved, reaching an exact optimal solution of the restricted
master program may turn out to be a useless computational effort. This is, in particular, the case if
model (2) is learning very slowly adding only one new column to the representation per each outer
iteration (master reoptimization).

What we really need is a “good” dual solution to (2) so as to be able to make a wise choice of
new column(s) to be appended to A. We would be satisfied with any dual solution that is sufficiently
close to the optimality of the restricted master problem.

Consequently, in order to solve subsequent master problems (2) we propose to employ the
infeasible primal-dual interior point method. This method, known as the most efficient interior
point algorithm, offers perfect control of the distance to optimality through the notion of y-centers
[20]. We propose to adjust the optimality tolerance required in subsequent master problems to the
observed rate of convergence of the column generation scheme. The idea is to start from a rather
loose tolerance to benefit from the use of central prices [14] and to build as fast as possible the first
rough approximation to (1). Later on, we tighten the optimality tolerance required for the solution
of the restricted master problem so as to improve our representation of (1) near its optimal solution.

Our approach is closely related to the analytic center cutting plane method of Goffin, Haurie and
Vial [14], who were the first to employ interior point method (primal potential reduction algorithm)
to solve the restricted master problems. The column generation scheme we propose lies somewhere
between the optimal point strategy applied in a number of decomposition schemes [6, 4, 22] and
the analytic center cutting plane method [14].

Compared with Goffin et al.’s approach, the method presented here reflects much of simplicity,
both, in its presentation and in its implementation. Yet, it benefits of all the advantages resulting



from the use of central prices, i.e. the use of dual “central” point that lies in the relative interior
of the dual polytope. The use of central prices can be traced back to the work of Levin [23] who
was the first to suggest the choice of the center of gravity—one of several different strategies for the
choice of a central point which have been proposed in the literature. The idea to use central points
was later developed by Elzinga and Moore [10]. Next, Sonnevend [26] proposed to use the analytic
center and Vaidya [27] advocated for the use of volumetric center.

The use of different centers naturally results in different properties of the cutting plane scheme.
Although the choice of the center of gravity has been proved to generate the best possible cuts [25],
it has little impact in computational practice because of the current lack of an efficient algorithm
to find this center. On the other hand, the analytic center which is the basic notion of the interior
point methodology can be computed efficiently by any interior point algorithm.

In the method of [14], analytic center is computed with the (feasible) primal projective algorithm.
An advanced implementation of this approach [13, 18, 19, 9] rigorously follows the theory, which is
quite a rare advantage in the optimization software. However, a requirement to keep close to the
theory is sometimes a barrier of further development. We have realized this, in particular, when we
were implementing techniques to control the accuracy in the feasible potential reduction algorithm.

The use of the primal-dual method to find an approximate analytic center seems to offer impor-
tant advantages over primal projective algoritm. First, when applied to the general linear programs,
primal-dual method is, on the average, more efficient. Secondly, primal-dual method is an infeasible
algorithm hence the control of accuracy is much easier in it [2]. Replacing projective algorithm in
the analytic center cutting plane method with the primal-dual algorithm seems thus to be a natural
step of its development. Such a replacement could be done in the context of the code [18].

However, we decided to go much further and replace also the control of the distance to optimality
with the one that uses p-centers defined in the primal-dual method.

Let us mention that the use of the logaritmic barrier method within the column generation
scheme has already been proposed by den Hertog et al. [8, 7]. The latter reference reported numer-
ical results of its application to small but difficult geometric programming problems. Mitchell and
Borchers [24] applied primal-dual cutting plane method to solve a set of real-world linear ordering
problems. The structural properties of these problems implied that after every cut addition, the pri-
mal and dual feasible solutions to the new restricted master problem could be found. Consequently,
the method did not have to bother about restoring feasibility and all its effort was concentrated
on approaching well centered optimal solution. Note that such a situation appears rarely in the
computational practice as, in general, there is no way to guess an interior primal and dual feasible
solution to the restricted master problem after the addition of a set of new columnus to it [17].

This paper is organized as follows. In Section 2 we address a general decomposition approach
that leads to the column generation scheme. In particular, we introduce the notions of the restricted
master problem and the subproblem — a procedure to generate new columns. In Section 3 we point
out the advantages resulting from the application of the primal-dual interior point algorithm to
solve the restricted master problems. We discuss the use of u-centers to control the distance to
optimality within the primal-dual method and interpret its consequences in the framework of the
column generation scheme. In Section 4 we recall the nonlinear multicommodity network flow
problem. The method proposed in this paper has been successfully used to solve several large-scale
examples of such problems. We discuss the numerical results of these runs in Section 5, and finally,
in Section 6 we present our conclusions.



2 Column generation

2.1 Principles

In many presentations of the column generation scheme, the principles of the approach are mixed
with the implementation details of the revised simplex method, applied to solve the underlying
restricted master problems. We shall avoid this practice and give first a description of what we
believe are the principles of column generation.

The problem (1) arises typically when one attempts to solve

min d'v (3a)
s.t. Hv=g, (3b)
v € X, (3¢c)

where X is a polyhedral set, H € R™*" d v € R" and b € R™. The problem is rendered difficult by
the presence of constraint (3b). We assume that without (3b), the problem would be easily solved,
taking full advantage of some special structure of X.

Any point of a polyhedral set can be represented as a linear combination of its extreme points
and extreme rays, respectively. Let p1,...,pr and r1,...,7; be the extreme points and extreme rays
of X, respectively. For any v € X there exist multipliers Ay, ..., Ay and p1,...,u; such that

Kk [
v="Y Aipi+ > 1t (4a)
i=1 j=1

\N>0, i=1,...,k (4b)
>0, j=1,...,1, (4c)
k
d =1 (4d)
=1

Using (4a)-(4d) we transform the problem (3a)-(3c) to the one with variables A\; and p;. We got
the full master program

l

k
min > A(dTpi) + > pi(dry)
=1

j=1

st Y N(Hp) + > wi(Hry) =g, (5a)
1<i<k 1<j<i
doxn=1, (5b)
1<i<l
Ai>0, 1<i<k, (5¢)
>0, 1<j<lI (5d)

This problem may have a very large number of variables and usually cannot be solved directly (it
is often not even possible to formulate it explicitly). Instead, we may try to generate points p; and
rj only when needed.

Consider now subsets {p; : ¢« € I'} and {r; : j € J} of the extreme points and extreme rays
of X. If we restrict the full master program to those subsets, the resulting linear program, called



restricted master program (RMP), is a relaxation of (5a)-(5d). Its optimal solution thus provides
an upper bound to the optimal solution of the full master program.

On the other hand, a dualization of constraint (3b) leads to the Lagrangian function
Lw,u) =d'v+u!'(Hv—g), veX.
Hence, for any u, the value

L(w) = inf {d"o +u” (Hv - g)) (6)

is a lower bound of (3a)-(3c). Computing L(u) is by assumption an “easy” task: we call it the
subproblem.

As noted earlier, the optimal solution of the RMP provides a straightforward upper bound z, to
(3a). A part of its dual optimal solution corresponding to constraint (5a) is passed to subproblem
(6) which returns a lower bound z;. Thus we know that the optimal solution of the original problem
falls between the values z; and z,. The difference z, — 2; can serve to measure the accuracy of
the current solution. The algorithm terminates when this difference drops below a predetermined
tolerance €, i.e. when 2z, — z; < e.

If a current solution does not yet satisfy the above stopping criteria, one can only conclude that
the set X is not well enough characterized: one new column Hp; or Hr; should then be introduced
to the restricted master problem. This necessary information originates from the subproblem. Note
that if L(u) > —oo, there exists an extreme point p of X such that L(u) = d'p 4+ u” (Hp — g) and
if L(u) = —oo0, there exist an extreme ray r of X such that d’r +u(Hr — g) < 0. Depending of the
value of L(u) (whether it is finite or not), one introduces a new column Hp or Hr to the restricted
master problem.

2.2 Suboptimal solution of the restricted master problem

Recall that in the classical column generation scheme, the restricted master problem is solved to
optimality. Therefore, its optimal solution generates an upper bound z, for the solution of the full
master problem and its dual optimal solution u can be applied by the subproblem (6) to obtain a
lower bound z; to the solution of (5a)-(5d).

However, we do not have to solve RMP to optimality. All we need is:
e a reliable estimate of its optimal value, and
e a dual feasible point u (with a guarantee of being close to optimality).

The former is needed to determine z, and the latter is needed by the subproblem to update z;
and/or to generate new columns.

Let us assume that we are able to find an ep-optimal solution zy to the restricted master problem
as well as its corresponding primal and dual feasible solutions. Let (u,ug) € R™"! be such a dual
feasible solution. Then we can produce a reliable upper bound to the optimal solution of the full
master problem

Eu = 20 + €0|Z0|.

Moreover, due to the feasibility and the guaranteed small distance to the optimality in the RMP,
its dual solution w« is a constructive proposition that can be used in (6) to generate a new lower
bound Z; and/or a new column.



These considerations lead to the column generation algorithm (Algorithm 2.1) that employs
suboptimal solutions of the underlying restricted master problems.

Algorithm 2.1 A prototype of the column generation scheme

Parameter:
€ = optimality tolerance;
Initialize:
2y = +00, 2] = —00;
while (2, — z, > €) do
begin
choose ¢p;
find an €p-optimal solution to RMP
(let w be the part of its dual solution corresponding to constraint (5a));
update the upper bound:
fu =2z + €0|Zo|,
Zy = min(zy, Zy);
solve subproblem for the u;
update the lower bound:
2z = max(z(, 2);
append new column to RMP;
end

Since the column generation scheme we propose uses inexact solutions of the restricted master
problems, an important theoretical as well as practical question arises about the relative optimality
tolerance ¢y which is required when solving the subsequent restricted master problems. An impor-
tant characteristic of our algorithm is that the optimality tolerance €y is dynamically chosen. At
the beginning of the optimization process, €y should be rather loose as we only aim at building the
first approximation to the full master problem. The tolerance is then tightened when the optimum
to (3a)-(3c) is approached. In other words, we adjust the accuracy required from the solution of the
restricted master problem to the real need in the column generation scheme. In practice, we choose

e = €o(zu2)
|20 — 2

) 7

i.e. the relative optimality tolerance in the restricted master problem is a function of the relative
optimality tolerance of the best available solution to the original problem.

In our implementation, €y is simply a fraction of the relative optimality tolerance of the best
solution found by now. We have experimented with several values of parameter § varying from 0.5
to 0.01. The numerical results reported in this paper correspond to the choice § = 0.02. Naturally,
when the subproblem information is gathered very slowly (e.g., when only one column is appended
after every call to the subproblem), larger —closer to 1.0 might be better. In such a situation we
would prefer to take more advantage of the regularizing central prices.

Let us point out that when the RMP is solved by the simplex method, it always has to be solved
to optimality. Recall that the simplex method does not offer any measure of the distance of a given



feasible solution to optimality. The simplex method has to reach the optimality of both problems in
order to produce the primal and dual feasible solutions and a reliable (perfect in this case) estimate
of the optimal objective function value.

The situation appears different when one employs an interior point method to the solution of
the restricted master problem. In particular a primal-dual method suits our needs perfectly. It
usually provides a dual feasible solution before an exact optimal solution is found. Additionally,
it also provides a primal feasible solution quite quickly and an excellent measure of the distance
of these solutions to the optimality is therefore available. Consequently, the optimization process
in the restricted master problem can be terminated at an early stage producing all the necessary
information to ensure the convergence of the column generation algorithm.

3 Fundamentals of the primal-dual method

Consider the following pair of linear programs consisting in a primal problem

where z,c € R", b € R™ and A € R™*" and its dual

bT

max Y
st. ATy +s=c,
s >0,

where y € R™ and s € R". Having replaced the variable’s nonegativity constraints with the
logarithmic barrier function, we write down the following Lagrangian associated with (8)

n
L(z,y,s) =clo—p Zlnxj —y(Az — b),
j=1

where p > 0 is the barrier parameter. The associated first order optimality conditions give

Az = b, (9a)
Ay +s=c, (9b)
Xs = pe, (9c)

where X = diag{z;} € R"*" and e is a vector in R” whose elements are all equal to one. If the
primal and the dual regions have nonempty interiors then for any p > 0, there exists a unique point
(z(p),y(p),s(p)) with z > 0 and s > 0 which satisfies (9a)-(9¢). This point is called a p-center or
simply an analytic center.

Note that a u-center defines a pair of primal and dual solutions that are primal and dual feasible,
respectively. Consequently, a duality gap between these two solutions measures the distance to
optimality

de—btly=cae—(Az)Ty =27 (c — ATy) = 2T's = np. (10)

Moreover, there exists a simple relation between this distance and the barrier parameter.



Classical primal-dual method for linear programming executes one damped Newton step towards
the p-center and, regardless of how successful this step was, updates (usually by decreasing) the
barrier parameter. All it’s modern implementations (see for example survey in [2]) start from
infeasible solutions and obtain feasibility as the optimality is approached. As the primal and the
dual constraints are linear (in contrast to the nonlinear conditions z;s; = p in (9c)) they are usually
satisfied early in the optimization process [Newton’s method works with a linear model of the system
of equations (9a)-(9c¢), in which the first two equations are linear!] Consequently, the primal-dual
algorithm reaches feasible solutions to the primal and the dual LP’s at a relatively early stage.

Standard primal-dual methods for LP continue iterating until the relative duality gap drops
below a prescribed optimality tolerance €gp, i.e.

< 6Opif7 (]‘1)

where €,,; is usually set between 107® and 1075, In the approach presented in this paper, the
algorithm terminates earlier as the optimality tolerance €y chosen in (7) will not be that small
except near the end of the optimization procedure.

In efficient implementations of the general purpose primal-dual method, subsequent iterates are
not exact p-centers although it is preferable [16] that they lie in the vicinity of the central path.
During the solution of the restricted master problem we thus do not pay special attention to the
centrality of iterates. However, the quality of the final solution is checked by measuring the ratio
between the largest and the smallest complementarity product

Umag = MAXL;s; and 0y, = ming;s;. (12)
J J
If this ratio is excessively large, e.g., when

Umaz > 10 or vy, < 0.1p,

then an additional recentering primal-dual step is made. That way we ensure that the new propo-
sition u sent to subproblem (6) is relatively well centered as we hope to take advantage of the use
of central prices like in the analytic center cutting plane method [14].

At this point, the question of the choice of the final barrier parameter p naturally arises. We
want this parameter to correspond to the ey-optimality in the restricted master problem. Thus,
once we obtain only a rough estimate of the optimal objective value zg = ¢z, e.g., when (11) is
satisfied for €,,; = 107!, we can fix the barrier

20
M =€ —,
n

and believe that the corresponding p-center is an optimal solution with the relative tolerance € (cf.
equ. (10)).

We note that the requirements imposed on the quality of the centrality of u could be relaxed in
the approach we presented in this paper. This is in contrast to the implementation of the analytic
center cutting plane method [18] in which the high quality of the last central prices u is a necessary
condition for an efficient warm start when solving the subsequent relaxed master problem.

The warm start procedure of Gondzio [17], which is applied to re-optimize the restricted master
problems with the primal-dual method, makes a distinction between an advanced initial point
for subsequent problem and the constructive central dual prices needed by the column generation
algorithm (see [17] for details).



4 Nonlinear multicommodity network flow

In order to illustrate the approach presented in this paper, we consider a well-known problem in
the literature, the nonlinear multicommodity network flow problem. It consists in shipping different
commodities that have to share a common facility in a network. Each commodity has to satisfy a
mass-balance equation. Let G = (V, E) be a directed graph and N its incidence matrix. We assume
that there are L commodities and that each commodity [/ has exactly one source s; and one sink #;,
and that its demand volume is v*. Let b* € RV| be the vector defined by

’)’l ife = S,
bl=< -4 ifi=t,
0 otherwise.

Let X! = {z € R¥l : Nz = b,z > 0} be the set of feasible flows for commodity 1. A vector = of X
has a component z;; for each arc (¢,7). Let us introduce now a convex cost function ¢;; : R — R

for each arc (4,75). An example of cost function [11] is given by ¢;;(y) = ﬁ, where Cj; is the
capacity of arc (7,7). A flow formulation of the problem is
min Y ¢ii(yiy)
(1.4)ek
st Y @<y V6,j) €E, (13a)
1<I<L
deXxl, 1<i<L, (13b)

Polyhedral considerations allow us to formulate (13a)-(13c) in an alternative way: Let P € P! be
the set of paths from the source s; to the sink #; of commodity /. One can check that the set X! is a
bounded polyhedra and that its extreme points are feasible solutions that lie along a path P € P’

Since the points of a bounded polyhedra can always be represented as a convex combination of
its extreme points, the flow of X! can be decomposed into elementary flows along paths. The flow
component along a path P will be denoted f(P). For (i,j) € E, let 6;;(P) be equal to 1 if the arc
(¢,7) belongs to P and 0 otherwise. The equivalent formulation of (13a)-(13c) is then

min > i)

(i,J)EE

I<I<KL pep!

S P =+, 112,
Pep!

f(P)y>0, YPeP!, 1<I<L.
Obviously, this formulation does not fit our problem of interest since it is nonlinear. Assuming
that for each (¢,j) € E a family I';; of feasible points yfj indiced with k£ € Kj; is given, we know
that for a y;; that lies in the convex hull of I';;, there exist multipliers Afj > 0, k € K;j such that

k., k
Yij = Z Aijyija
kEK;;



and
D=1
keK;j

Because of the convexity of ¢;;, the convex combination ), K )\fjgbij(yfj) is an upper bound of

¢i;(yi;). Note that the Afj may not be unique. It is therefore quite natural to approximate ¢;;(v;;)
with the smallest possible convex combination of I';;. Hence, we have the problem

min Z Z )\ gbl] yZJ

(1,4) €l kEK;

st Y DL F(P)(P) = Y Ml <0, V(i) €F,

1<I<L pep! keK;;
Y Py =+9, 1<i<L,
Pecp!

f(P)y>0, vPe P,1<I<L,
AE >0, V(i,j) € E, Vk € Kyj.
Now if the sets I';; cover all the feasible y, the above linear problem is equivalent to the nonlinear

program. It has a matrix whose columns represent the paths P € P! and the boundary points of
the epigraphs epi(¢;;). We are now in the usual framework of Section 2.

In this context, the equation (13a), which introduces competition among commodities for the
same capacity y is the “difficult” constraint. If we dualize it, we get the Lagrangian function

L(z',...,z" y,u) = Z bij(yij) + Z wij( Z T — Yij)

(i.4)eE (i,)EE 1<I<L
= > (Bilyi) —uigyig) + D> Y il
(1.4)ek 1<I<L (i,j)€E

The subproblem consists in finding, for a given w, the solution of

L(U,): Z yrnln (¢zy(yz])_UZ]yzy Z min Z U,me

>0 le l
(i.))EE 1<i<L (i,))EE
This is not a difficult task since it simply involves two types of rather simple problems. The first
one is

min (¢i;(yij) — wijyij),
Yij > >0

which may be computed analytically or may represent a trivial problem. The second one is

min E UU%’ (14)
wleXl (i.d)eE

and may be computed by a shortest path algorithm, for example using Dijkstra’s algorithm (see
[1])-

In practice, one often needs to solve undirected multicommodity flow problems. A simple trans-
formation allows to reformulate an undirected problem as a directed one [1]. One can then show that
solving undirected multicommodity flow problem with the column generation method is essentially
the same as solving directed problem. In fact, the only change lies in the function (14): it needs to
find the shortest path in an undirected graph instead of a directed one.

10



Problem H Nodes ‘ Arcs ‘ Comin. | Subprobs

NDO22 14 22 23 45
NDO148 61 | 148 122 270
Random12 300 | 600 1000 1600
Random16 300 | 1000 1000 2000
Random?20 400 | 1000 5000 6000
Random31 700 | 2000 2000 4000
Random32 1000 | 3000 2000 5000
Random33 1000 | 4000 2000 6000
Random41 1000 | 5000 2000 7000
Random42 1000 | 5000 3000 8000
Randombl1 1000 | 2000 6000 8000
Randomb2 1000 | 2000 8000 10000
Randomb3 1000 | 2000 10000 12000
Randomb4 1000 | 3000 6000 9000
Randomb5 1000 | 3000 8000 11000

Table 1: Problems statistics.

5 Numerical results

The method proposed in this paper has been implemented within the context of the public domain
primal-dual code HOPDM [15]. The HOPDM program is written in FORTRAN but the column
generation routines are written in C. All computations were performed on a Power PC workstation
(66MHz, 64MB of RAM, type 7011, model 25T). The program was compiled by the IBM FORTRAN

and C compilers x1f and x1c, respectively. Compilation options -0 -qarch=ppc were used.

Our experimental implementation of the primal-dual column generation method has been applied
to various large scale nonlinear multicommodity network flow problems. T'wo of these problems are
the well known examples NDO22 and NDO148 from [12] and the remainder are randomly generated
undirected problems. A description of our (public domain) generator can be found in [13]. The
problem statistics (the numbers of nodes, arcs and commodities, respectively) are summarized in
Table 1 which also gives the number of subproblems in order to facilitate the determination of the
size of the restricted master problem. In the formulation of nonlinear multicommodity network
flow problems the number of coupling constraints equals to the number of arcs while the number of
subproblems equals to the sum of numbers of arcs and commodities.

Table 1 does not reflect well the difficulty of the problems to be solved. The linear version of
the Random33 problem, for example, in an equivalent compact LP formulation, would involve 1000
blocks of 2000 constraints of commodity flow balance at each node and 4000 coupling constraints of
total flow capacity on the arcs. This formulation comprises 10002000+ 4000 = 2004000 constraints
and 4000 x 2000 = 8000000 variables. When such a problem is decomposed, the restricted master
problem becomes a linear program of quite a considerable size: the number of its constraints equals
to the sum of numbers of arcs and subproblems while the number of columns is continuously
increasing (and approaches 100,000).

It is essential to keep the number of columns the smallest possible so as to preserve the sparsity
of the Cholesky matrix in the interior point method. We reach this goal by applying the technique
of eliminating useless (inactive) cuts. The elimination relies on an analysis of the “central” solution
returned from the restricted master problem. All complementarity products x;s; of this solution

11



Problem ACCPM - No Elimination ACCPM - With Elimination
O Its Cuts  Time | O(S) Its Cuts Time

NDO22 17 84 420 1.1 | 12(19 47(2 241 0.7
NDO148 13 83 2230 14.3 | 13(18 80(6 1875 15.6
Randoml2 | 19 257 16519 737 | 17(30) 246(30) 10730 999
Randoml6 | 21 259 26494 1448 | 20(34) 260(23) 14920 822
Random?20 | 28 577 64241 11689 | 24(43) 497(83) 35352 6624
Random31 | 22 434 57700 17652 | 20(39) 379(43) 33772 9423
Random32 | 20 389 73795 42477 | 19(34) 319(18) 44493 17615
Random33 | 20 382 95902 71429 | 24(42) 401(37) 59253 27990
Random41 | 26 466 148214 63453 | 24(40) 385(35) 71842 31585
Random42 | 24 534 149791 116726 | 24(36) 411(38) 76918 45038
Randomb1 | 26 640 92503 61387 | 22(38) 489(38) 55025 33758
Randomb2 | 30 688 115151 78527 | 24(44) 562(56) 62432 46489
Randomb3 | 32 929 132816 99485 | 25(47) 635(50) 75479 57214
Randomb4 | 26 593 122243 114765 | 22(41) 501(46) 66698 57035
Randomb5 | 28 750 149046 141534 | 24(44) 632(62) 81030 91384

Table 2: Advantages of the use of cut elimination.

remain close to the final barrier parameter p (cf. eqn. (12)). We identify columns j such that
T < pu*’? and 55 > (1/p)pt/?, (15)

(with some p < 1) and assume that the corresponding variables z; approach zero in the optimal
solution. Hence they can safely be eliminated from the restricted master problem.

This column elimination technique was first implemented in the approach presented in this paper
and remarkably contributed to its overall performance (the method was on the average more than
two times faster than the analytic center cutting plane method [13, 19] which did not eliminate
inactive cuts). Clearly, such an elimination technique can be incorporated into any central cutting
plane method. We have thus implemented it within the analytic center cutting plane method so
that the following comparison of the new approach with this method could be more informative.

Goffin et al.’s method [14] uses feasible interior point algorithm to find an analytic center so after
the elimination, a special step has to be made to restore primal feasibility. Next, few additional
interior point iterations are needed to recenter the iterate, which may nonnegligibely contribute to
the solution time. Thus, to keep the method efficient, we decided to perform only few (3 to 5)
very aggressive eliminations with a large value of parameter p. The first elimination is done with
p = 0.25 when a rough approximation of the solution is determined. The later eliminations use
smaller values of p: po = 0.1, p3 = 0.05, p4,ps = 0.01.

In Table 2, we show the advantages of the use of cut elimination in the analytic center cutting
plane method. For two variants of this method we report: the number of outer iterations (O), the
number of inner iterations, i.e. interior point iterations needed to compute the analytic center (Its),
the number of cuts generated (Cuts) and the CPU time in seconds needed to reach 6-digit accurate
optimum on a Power PC computer. In the number of inner iterations we distinguish in parenthesis
the number of special iterations made to restore the centrality after cut elimination. Let us also
note that these results have been obtained with an advanced implementation of the method that
exploits special supersparse structure of cuts [13] and takes advantage of the particular structure of
sparse LP constraint matrix in the master problem [19]. Additionally, knowing that the subproblem
in the nonlinear multicommodity network flow is extremely cheap, we have enabled the additional
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Problem DWCPM ACCPM with elimination PDCGM

O Its Cuts Time | O Its Cuts Time | O Its Cols Time
NDO22 15 334 675 0.5 |12 47 241 0.7 |17 99 359 2.7
NDO148 15 3009 4320 9.8 |13 80 1875 156 | 16 94 1940 37.3
Randoml2 | 17 15210 27200 387 | 17 246 10730 599 | 18 159 10941 637
Randoml6 | 28 44763 56000 2136 | 20 260 14920 822 [ 21 191 15276 1002
Random?20 | 17 49722 102000 5112 | 24 497 35352 6624 | 19 236 28420 3419
Random31 | 31 326399 124000 16825 | 20 379 33772 9423 | 20 213 28543 6092
Random32 | 34 1086443 170000 56259 | 19 319 44493 17615 | 21 196 40797 13654
Random33 | 38 > 4e6 228000 250000 | 24 401 59253 27990 | 25 242 60356 24574
Random41 | 32 > 3e6 224000 398192 | 24 385 71842 31585 | 27 265 70089 30325
Random4?2 | 35 > 3e6 280000 597879 | 24 411 76918 45038 | 21 214 62017 33244
Randomb51 | 17 70507 136000 10007 | 22 489 55025 33758 | 18 230 40930 19314
Randomb2 | 18 91951 180000 17612 | 24 562 62432 46489 | 19 258 51006 25825
Randomb53 | 17 82859 204000 22989 | 25 635 75479 57214 | 18 270 58301 34389
Randomb4 | 36 364287 324000 54417 | 22 501 66698 57035 | 19 249 59051 36393
Randomb5 | 22 271321 242000 44844 | 24 632 81030 91384 | 22 306 66149 51841

Table 3: Comparison of three different column generation schemes.

call to it at the promising point lying close to the optimum of the current relaxed master problem
(cf. [9] for details). Consequently, the number of outer iterations in the method with elimination is
different from the number of subproblem calls. The latter number is given in parenthesis.

The analysis of results collected in Table 2 confirms that cut elimination based on our inexpensive
test is a useful computational technique. It brought a considerable reduction of cuts that simplified
the restricted master problems and saved an important number of inner iterations. These savings
translated into the average 50% reduction of the CPU time.

In Table 3 we report the results of solving the same set of problems with the method proposed
in this paper (PDCGM) and we also compare them with other methods: the Dantzig-Wolfe de-
composition (DWCPM) [6] and the Analytic Center Cutting Plane Method (ACCPM) [14, 13, 19].
For all methods we state: the number of outer iterations (O), the number of inner iterations (Its),
the number of columns generated (Cuts/Cols), and the CPU time in seconds needed to reach a
6-digit accurate optimum on a Power PC computer. Note that both “central” methods: ACCPM
and PDCGM use cut elimination based on inexpensive test mentioned earlier. PDCGM employs
an infeasible interior point algorithm. It then deals easily with a small infeasibility resulting from
columns elimination, so there was no need to limit the number of eliminations in it. However, these
eliminations are significantly less aggressive than in ACCPM (in PDCGM, parameter p is always
kept equal to 0.01).

Table 3 illustrates the advantages of the primal-dual column generation method. For instance,
when large problems are solved (with at least 2000 arcs), PDCGM almost always needs less outer
iterations than ACCPM. Regardless the size of the problems solved, the number of outer iterations
in PDCGM seldom exceeds 20, which is an appreciable result. It can be explained by the strategy
of the choice of accuracy required in the solution of subsequent restricted master problems (cf. eqn.
(7)). This choice does not enforce an exaggerated and needless accuracy (as is the case in the
optimal point strategy applied in DWCPM) but dynamically adjusts it at any given stage to the
real needs of the optimization process.

The second observation stemming from the analysis of these results is a remarkable reduction
of the number of inner iterations when compared with ACCPM. This reduction varies for large
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Problem | DWCPM | ACCPM PDCGM

0=11 0=12 §=13 6=15 6=20 06=30 §=5.0

NDO22 540 145 142 122 119 126 138 155 177
NDO148 | > 10000 866 754 708 733 821 999 1234 1599

Table 4: Comparison of column generation schemes: aggregate cuts.

problems between 40% and 50%. There are at least two reasons for this reduction. One is a general
better performance of the primal-dual method over the primal projective algorithm applied in AC-
CPM. The second reason resides in the use of an efficient warm start procedure [17] to re-optimize.
Naturally, the reduction in the number of interior point iterations has obvious consequences on the
overall efficiency of the method: PDCGM is, on the average, 10% and 40% faster than ACCPM on
very large problems. This is regardless the fact that PDCGM uses a general purpose LP code [15]
and not a sophisticated structure exploiting implementation of the interior point method [13, 19]
as is the case of ACCPM.

Finally, we can observe that the Dantzig-Wolfe decomposition sometimes gets into trouble when
applied to the nonlinear multicommodity network flow problems. This is in contrast with its very
good behavior for linear multicommodity network flow problems [21]. Although our experimen-
tal implementation of the Dantzig-Wolfe decomposition is based on an efficient simplex code—
Cplex 3.0 [5], it is unreliable when applied to the solution of large scale problems.

One can see from the results collected in Table 3 that DWCPM approach is very much sensitive
to the number of arcs in the network (recall that the nonlinear term in the objective penalizes
for flows approaching the arc capacity ¢;;(y) = Cif—y)' DWCPM runs efficiently for problems
with up to 2000 arcs; in fact, it is the most efficient approach on problems Random51, Randomb2
and Randomb3. However, it starts to suffer when the number of arcs is further increased. This
approach is still able to solve problems with 3000 arcs but it fails for larger networks. On the
problem Random33 with 4000 arcs DWCPM reached the relative accuracy of 0.0005 after about
180000 CPU seconds and stalled. We let the program run till 250000 CPU seconds, (10 times longer
than the solution of this problem with PDCGM) before it has been interrupted. DWCPM failed
when applied to problems with 5000 arcs. It had reached the relative accuracy of 0.059 and 0.023 on
the problems Random41 and Random42, respectively before Cplex reported numerical difficulties.

Aggregated cuts

Our last experiment shows the behavior of the primal-dual column generation method in a case
when only one cut is added at every call to the oracle: this cut is the aggregation of all cuts generated
by the independent subproblems. Again we compare the approach proposed in this paper with the
Dantzig-Wolfe decomposition and with the analytic center cutting plane method. In Table 4 we
present the results of solving two NDO problems with the three approaches compared: we report
the number of calls to the subproblems, i.e., the number of outer iterations. As there is exactly one
cut generated at every call to the subproblem, this number indicates also the total number of cuts.
To give more insight into the role of centrality in the nondifferentiable optimization, we have run
PDCGM for several different values of ¢ (cf. (7)) varying from 1.1 to 5.

From the results collected in Table 4 one can conclude that the optimal point strategy does
not perform well with the single cut approach (actually, it fails for NDO148). Both central point
strategies converge to the optimal solution in a competitive number of steps. PDCGM with the
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conservative strategy ¢ € [1.1,1.5] (such a small value of § promotes “centrality” over “optimality”)
is the most efficient approach. It is worth to note that increasing 0 above 1.5 causes a loss of
efficiency in PDCGM. This is not surprizing because for larger § PDCGM strategy approaches the
optimal point strategy of DWCPM. However, unlike DWCPM primal-dual column generation is
still able to reach the optimal solution even for large values of §. This effect confirms that interior
point methods are excellent tools to resolve degeneracy in column generation schemes.

6 Conclusions

We have shown in this paper the computational advantages originating from the use of the primal-
dual method in the column generation approach. The proposed method shares the advantages of
the analytic center cutting plane method in the sense that it uses central prices.

It is more efficient than ACCPM when applied to solve difficult large scale multicommodity
network flow problems. This is due in part to the high overall efficiency of the primal-dual interior
point method and in another part to the successful strategy which consists in dynamically adjusting
the accuracy (required to solve subsequent restricted master problems) to the current needs of the
column generation scheme. The latter strategy is controlled with the notion of u-centers and this
control is done in a particularly easy and comprehensive way.

The computational results given in this paper were restricted to a single class of problems. It
is not obvious that the comparison of ACCPM with the proposed approach would always favorize
the latter to such an extent when applied to other classes of problems. However, these preliminary
results certainly show that our new approach is very promising.
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